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The n-Body Problem

2.1 The Two-Body Problem

2.1.1 Orbits

Suppose that two points (r1, m1) and (r2, m2) interact with each other with
potential energy U(|r1 − r2|), so that the equations of motion have the form

m1r̈1 = − ∂U

∂r1
, m2r̈2 = − ∂U

∂r2
.

Proposition 2.1. The relative position vector r = r1 − r2 in the two-body
problem varies in the same way as for the motion of a point of mass m =
m1m2/(m1 +m2) in the central force field with potential U(|r|).

If
ξ =

m1r1 +m2r2

m1 +m2

is the centre of mass of the points m1 and m2, then obviously

r1 = ξ +
m2

m1 +m2
r, r2 = ξ − m1

m1 +m2
r.

It follows from these formulae that in a barycentric frame of reference the
trajectories of the material points are similar planar curves (with similarity
ratio m2/m1). Thus, the problem reduces to studying the single equation

mr̈ = −∂U
∂r

, r ∈ R
3.

Let x, y be Cartesian coordinates in the plane of the orbit. Then Kz =
m(xẏ− yẋ) = const. In polar coordinates x = r cos ϕ, y = r sin ϕ we clearly
have Kz = mr2ϕ̇. Consequently, r2ϕ̇ = c = const. If c = 0, then ϕ = const
(the point moves along a straight line). We assume that c �= 0. Then ϕ is a
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monotonic function of t, and therefore locally there exists the inverse func-
tion t = t(ϕ). As the point m moves, its position vector sweeps out some
curvilinear sector of area

S(t) =
1
2

ϕ(t)∫

ϕ(0)

r2 dϕ =
1
2

t∫

0

r2ϕ̇ dt =
ct

2
.

Thus, Ṡ = c/2 = const (the “sector” velocity is constant). This fact is usually
referred to as the area integral or Kepler’s second law, and the constant c is
called the area constant.

Proposition 2.2 (Newton). For a fixed value of the area constant c we have

mr̈ = −∂Uc

∂r
, where Uc = U +

mc2

2r2
(r > 0). (2.1)

This equation describes the motion of a point of mass m along the straight
line R = {r} under the action of the conservative force with potential Uc. We
can integrate this equation by quadratures using the energy integral

mṙ2

2
+ Uc = h.

The function Uc is called the effective (or amended, or reduced) potential.
Using the energy and area integrals we can find the equation of orbits

without solving (2.1). Indeed, since ṙ =
√

2(h− Uc)/m and r2ϕ̇ = c, we have

dr

dϕ
=
dr

dt

dt

dϕ
=
r2

c

√
2(h− Uc)

m
.

Integrating this equation we obtain

ϕ =
∫

c dr

r2
√

2(h−Uc)
m

.

In calculations of orbits it is sometimes useful to bear in mind the following
proposition.

Proposition 2.3 (Clairaut). Let ρ = 1/r and let ρ = ρ(ϕ) be the equation of
the orbit. Then

m
d2ρ

dϕ2
= − 1

c2
d

dρ
Uc

(
1
ρ

)

.

For fixed values of h and c the orbit is contained in the region

Bc, h =
{

(r, ϕ) ∈ R
2 : U +

mc2

2r2
� h

}

,
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which is the union of several annuli. Suppose that h is a regular value of
the effective potential Uc and suppose that the region Bc, h is the annulus
0 < r1 � r � r2 <∞. We claim that in this case r(t) is a periodic function of
time, and

min r(t) = r1, max r(t) = r2.

For the proof we set

u =
π

τ

r∫

r1

dx
√

2
m (h− Uc(x))

, τ =

r2∫

r1

dx
√

2
m (h− Uc(x))

.

It is obvious that r(u) is a periodic function of u with period 2π and that
u̇ = π/τ = const. The period of the function r(·) is clearly equal to 2τ .

Fig. 2.1. Orbit in a central field

The angle ϕ changes monotonically (of course, if c �= 0). The points on the
orbit that are least distant from the centre are called pericentres, and the most
distant, apocentres. The orbit is symmetric with respect to the straight lines
passing through the point r = 0 and the pericentres (apocentres). The angle
Φ between the directions to the adjacent apocentres (pericentres) is called the
apsidal angle. The orbit is invariant under the rotation by the angle Φ. If the
apsidal angle

Φ = 2

r2∫

r1

c dr

r2
√

2
m (h− Uc)

is commensurable with π, then the orbit is closed. Otherwise it fills the annulus
Bc, h everywhere densely. If r2 = ∞, then the orbit is unbounded.

The motion of the point along a circle r = r0 is called a relative equilibrium.
It is obvious that such a motion is uniform and the values of r0 coincide with
the critical points of the effective potential Uc. If the function Uc has a local
minimum at a point r = r0, then the corresponding circular motion is orbitally
stable.
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Theorem 2.1 (Bertrand). Suppose that for some c �= 0 there is a stable rel-
ative equilibrium and the potential Uc is analytic for r > 0. If every orbit
sufficiently close to a circular one is closed, then up to an additive constant
U is either γr2 or −γ/r (where γ > 0).

In the first case the system is a harmonic oscillator; the orbits are ellipses
centred at the point r = 0. The second case corresponds to the gravitational
attraction. The problem of the motion of a point in the force field with po-
tential U = −γ/r is usually called Kepler’s problem.

Fig. 2.2. Effective potential of Kepler’s problem

The effective potential of Kepler’s problem is

Uc =
c2

2r2
− γ

r
.

According to Clairaut’s equation in Proposition 2.3,

d2ρ

dϕ2
= −ρ+

γ

c2
.

This linear non-homogeneous equation can be easily solved:

ρ = A cos (ϕ− ϕ0) +
γ

c2
=

1
p
(1 + e cos (ϕ− ϕ0)), (2.2)

where e and ϕ0 are some constants and p = c2/γ > 0. Hence,

r =
p

1 + e cos (ϕ− ϕ0)

and therefore the orbits of Kepler’s problem are conic sections with a focus
at the centre of attraction (Kepler’s first law).
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Another proof of this law (based on the amazing duality between the
orbits of Newtonian gravitation and Hooke’s ellipses in the theory of small
oscillations) is given below.

For fixed c �= 0 there exists a unique relative equilibrium r0 = c2/γ. Its
energy h0 = −γ2/2c2 is minimal. Using the simple formula

v2 = ṙ2 + r2ϕ̇2 = c2
(
ρ2 + ρ′2

)
, ρ′ =

dρ

dϕ
,

we can represent the energy integral in the form

c2

2
(
ρ′2 + ρ2

)
− γρ = h.

Substituting into this formula the orbit’s equation (2.2) we obtain the
expression for the eccentricity e =

√
1 + 2c2h/γ2. Since h � h0 = −γ2/2c2,

the eccentricity takes only real values.
If h = h0, then e = 0 and the orbit is circular. If h0 < h < 0, then

0 < e < 1; in this case the orbit is an ellipse. If h = 0, then e = 1 and the
orbit is a parabola. For h > 0 we have e > 1; in this case the point moves
along one of the branches of a hyperbola.

Fig. 2.3.

Fig. 2.3 depicts the bifurcation set Σ in the plane of the parameters c, h.
The set Σ consists of the curve h = −γ2/2c2 and the two coordinate axes
c = 0 and h = 0. The regions of possible motion Bc, h (shaded areas in the
figure) change the topological type at the points of Σ.

In the case of harmonic oscillator the period of revolution in an orbit is
independent of the initial state. This is not the case in Kepler’s problem. For
elliptic motions “Kepler’s third law” holds: a3/T 2 = γ/4π2 = const, where a
is the major semiaxis of the ellipse and T is the period of revolution. Since

a =
p

1 − e2
=

γ

2|h| ,

the period depends only on the energy constant.
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We shall now regard the Euclidean plane where the motion takes place as
the plane of complex variable z = x+ iy.

Proposition 2.4 (Bohlin). The conformal map w = z2 transforms the tra-
jectories of a Hooke (linear) oscillator (ellipses with centre at zero) into Ke-
plerian ellipses (with a focus at zero).

� Zhukovskij’s function z = ξ + 1/ξ transforms the circles |ξ| = c into
arbitrary ellipses (x = (c+1/c) cos ϕ, y = (c−1/c) sin ϕ) with centre at zero.
But w = (1+1/ξ)2 = ξ2 +1/ξ2 +2 for such an ellipse; hence the map ξ2 �→ w
is also Zhukovskij’s function, but with an additional summand 2. It is easy
to calculate that the distance from the centre to a focus of such an ellipse is
equal to 2 for any c, so that adding 2 shifts the centre to a focus, as required.
(The semiaxes c+ 1/c = a, c− 1/c = b give the square of the distance from
the centre to a focus equal to a2 − b2 = 4.) �

This transformation of oscillatory orbits into Keplerian orbits is a special
case of the following amazing fact.

Theorem 2.2 (Foure). A conformal map w �→ W (z) transforms the orbits
of motion in the field with potential energy U(z) = |dw/dz|2 (for the total
energy constant h) into the orbits of motion in the field with potential energy
V (w) = −|dz/dw|2 (for the total energy constant −1/h).

� The easiest way to prove this theorem is to compare the Lagrangians of the
corresponding Maupertuis variational principles; see Ch. 4. (Incidentally, this
comparison shows that the result remains valid also for the quantum-mecha-
nical Schrödinger equation, where too there are “dual” variational principles.)
According to Maupertuis’ principle for natural systems (see § 4.1) a trajec-
tory on the plane of complex variable z is a stationary curve for the length
functional in the Jacobi metric, that is, in the Riemannian metric with length
element

|ds| =
√

2(h− U(z)) |dz|.
Passing to the plane of variable w we can write down the same length func-
tional as the length in the metric with element

|ds| =
|dw|√
U

√
2(h− U) = |dw|

√

2
(
h

U
− 1
)

=
√
h
√

2(h′ − V (w)) |dw|,

where h′ = −1/h and V (w) = −1/U(z). Up to the constant factor
√
h, we have

obtained the metric for the potential energy V and the kinetic energy |dw|2/2.
Therefore our conformal map transforms the trajectories of motion with po-
tential energy U(z) into the trajectories of motion with potential energy V (w),
as required. �
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Example 2.1. The conformal map w = zα transforms the orbits of motion
in a planar central field with a homogeneous force of degree a into the orbits
of motion in a planar central field with a homogeneous force of the dual
degree b, where (a+3)(b+3) = 4. For example, Hooke’s force (linear oscillator)
corresponds to a = 1, and Newton’s gravitational force corresponds to b = −2,
so that these forces are dual.

The exponent α is a linear function of the degree: α = (a+ 3)/2. But the
theorem can also be applied to w = ez (or w = ln z). 


2.1.2 Anomalies

To solve Kepler’s problem completely it remains to determine the law of mo-
tion along the already known orbits. We choose the coordinate axes x and y
along the major axes of the conic section representing the orbit. The equation
of the orbit can be represented in the following parametric form:

x = a(cos u− e), y = a
√

1 − e2 sin u (0 � e < 1) if h < 0;

x = a(cosh u− e), y = a
√
e2 − 1 sinh u (e > 1) if h > 0;

x = 1
2 (p− u2), y =

√
p u if h = 0.

(2.3)

In astronomy the auxiliary variable u is called the eccentric anomaly, and
the angle ϕ between the direction to the pericentre of the orbit (x-axis) and
the position vector of the point, the true anomaly.

Fig. 2.4.

We have the following formulae:

tan
ϕ

2
=






√
1 + e

1 − e
tan

u

2
if h < 0;

√
e+ 1
e− 1

tanh
u

2
if h > 0;

u
√
p

if h = 0.
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Substituting formulae (2.3) into the area integral xẏ− yẋ = c and integrating
we obtain the following relations between time and the eccentric anomaly:

u− e sin u = n(t− t0), n =
√
γ

p3/2
if h < 0;

u− e sinh u = n(t− t0), n = −
√
γ

p3/2
if h > 0;

u+
u3

3p
= n(t− t0), n =

2
√
γ

p
if h = 0.

Here t0 is the time when the point passes the pericentre. These equations
(at least the first one) are called Kepler’s equations. The linear function ζ =
n(t− t0) is usually called the mean anomaly.

Thus, in the elliptic case of Kepler’s problem we have to solve the tran-
scendental Kepler’s equation

u− e sin u = ζ.

It is clear that for 0 � e < 1 this equation has an analytic solution u(e, ζ),
and the difference u(e, ζ)−ζ is periodic in the mean anomaly ζ with period 2π.
There is a choice of two ways of representing the function u(e, ζ) in a form
convenient for calculations:

1) one can expand the difference u − ζ for fixed values of e in the Fourier
series in ζ with coefficients depending on e;

2) one can try to represent u(e, ζ) as a series in powers of the eccentricity e
with coefficients depending on ζ.

In the first case we have

u = ζ + 2
∞∑

m=1

Jm(me)
m

sinmζ, (2.4)

where

Jm(z) =
1
2π

2π∫

0

cos (mx−z sin x) dx =
∞∑

k=0

(−1)k(z/2)m+2k

k!(m+ k)!
(m = 0, 1, . . . )

is the Bessel function of order m. “These ... functions ... have been used
extensively, precisely in this connection (which is that of Bessel), and more
than half a century prior to Bessel, by Lagrange and others.”1

1 See Wintner [52].
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The proof of formula (2.4) is based on the simple calculation

du

dζ
=

1
1 − e cos u

=
1
2π

2π∫

0

dζ

1 − e cos u
+

∞∑

m=1

cosmζ
π

2π∫

0

cosmζ dζ
1 − e cos u

=
1
2π

2π∫

0

du+
∞∑

m=1

cosmζ
π

2π∫

0

cos [m(u− e sin u)] du

= 1 + 2
∞∑

m=1

Jm(me) cosmζ.

It remains to integrate this formula with respect to ζ.
Under the second approach we have the expansion

u(e, ζ) =
∞∑

m=0

cm(ζ)
em

m!
, (2.5)

where

cm(ζ) =
∂mu(e, ζ)
∂em

∣
∣
∣
∣
e=0

.

Using the well-known Lagrange formula for the local inversion of holo-
morphic functions2 ([603], § 7.32) we obtain the following formulae for the
coefficients of this series:

c0(ζ) = ζ; cm(ζ) =
dm−1

dζm−1
sin mζ, m � 1.

The functions cm(ζ) are trigonometric polynomials in the mean anomaly ζ.
One can obtain the expansion (2.4) by rearranging the terms of the series (2.5).
This is how Lagrange arrived at formula (2.4).

By the implicit function theorem (and in view of the periodicity of the
function u(e, ζ) − ζ) the series (2.5) converges on the entire real axis ζ ∈ R
for small e. A detailed analysis of the expansion (2.4) shows that Lagrange’s
series converges for e � 0.6627434 . . . .3

2.1.3 Collisions and Regularization

Above we were assuming that the area constant c is non-zero. Now suppose
that c = 0. The motion of the point will be rectilinear and we can assume that
2 Obtained by Lagrange precisely in connection with solving Kepler’s equation.
3 “In fact, a principal impetus for Cauchy’s discoveries in complex function the-

ory was his desire to find a satisfactory treatment for Lagrange’s series” (Wint-
ner [52]).
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it takes place along the x-axis. If at some instant the velocity ẋ is directed to
the centre of attraction, then x(t) → 0 and ẋ(t) → ∞ as t approaches some t0.
Thus, the two bodies will collide at time t = t0. It is clear that for c = 0 the
function x(t), t ∈ R, necessarily has a singularity of this kind.

We now show that the eccentric anomaly u is a regularizing variable that
resolves the singularity of the analytic function x(t). If c = 0, then e = 1 in the
elliptic and hyperbolic cases, and p = 0 in the parabolic case. Consequently,
formulae (2.3) take the form

x = a(cos u− 1), x = a(cosh u− 1), x = −u
2

2
. (2.6)

In accordance with these formulae, for h < 0 the collisions take place at
u = 2πk, k ∈ Z; and for h � 0, only at u = 0. In the elliptic case it is also
sufficient to consider the case u = 0.

We assume for simplicity that t0 = 0. It is easy to obtain from Kepler’s
equations (for e = 1) that

t = u3f(u)

in a neighbourhood of the point u = 0, where f is an analytic function in
a neighbourhood of zero such that f(0) �= 0. From (2.6) we obtain a similar
representation

x = u2g(u)

with an analytic function g such that g(0) �= 0. Eliminating the eccentric
anomaly u from these formulae we obtain Puiseux’s expansion

x(t) =
(

3
√
t
)2

∞∑

n=0

cn
(

3
√
t
)n
.

The coefficients cn with odd indices are obviously equal to zero, and c0 �= 0.
Consequently, x(t) is an even function of time, that is, the moving point is
reflected from the centre of attraction after the collision. If x and t are regarded
as complex variables, then t = 0 is an algebraic branching point of the analytic
function x(t). The three sheets of its Riemann surface meet at the collision
point t = 0, and the real values of x(t) for t > 0 and t < 0 lie only on one of the
sheets. Consequently, the function x(t) admits a unique real continuation.4

In conclusion we mention that regularization of the two-body problem in
the general elliptic case (where h < 0) can be achieved by the transformation
of coordinates z = x+ iy �→ w and time t �→ τ given by the formulae

z = w2, t′ =
dt

dτ
= 4|w2| = 4|z|. (2.7)

This transformation takes the motions in Kepler’s problem with constant
energy h < 0 to the motions of the harmonic oscillator w′′ + 8|h|w = 0 on the

4 Regularization of collisions in the two-body problem goes back to Euler.
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energy level
|w′|2

2
= 4γ + 4h|w2| (2.8)

(cf. Proposition 2.4).
The regularizing variable τ depends linearly on the eccentric anomaly u.

Indeed, since

|z| = r = a(1 − e cos u) and nt = u− e sin u,

we have
du

dt
=

n

1 − e cos u
=
na

r
,

whence u = 4naτ .

2.1.4 Geometry of Kepler’s Problem

Moser observed that by using an appropriate change of the time variable one
can transform the phase flow of Kepler’s problem into the geodesic flow on
a surface of constant curvature. We shall follow [488] in the exposition of this
result.

Lemma 2.1. Let x(t) be a solution of a Hamiltonian system with Hamil-
tonian H(x) situated on the level H = 0. We change the time variable t �→ τ
along the trajectories by the formula dτ/dt = G−1(x) �= 0. Then the function
x(τ) = x(t(τ)) is a solution of the Hamiltonian system (in the same symplec-
tic structure) with the Hamiltonian H̃ = HG. If G = 2(H +α), then one can
take H̃ = (H + α)2.

We write down the Hamiltonian of Kepler’s problem in the notation
of § 2.1.3: H = |p|2/2 − γ/|z|, where p = ż. We change the time variable
τ̇ = |z|−1 on the manifold H = h (cf. (2.7)). By Lemma 2.1 this corresponds
to passing to the Hamiltonian function |z|(H − h) = |z|

(
|p|2 − 2h

)
/2 − γ.

We perform another change of the time variable τ �→ ′τ , d(′τ)/dτ =
(
2(|z|(H − h) + γ)

)−1 on the same level H = h. In the end we obtain a
Hamiltonian system with the Hamiltonian function

H̃ = |z|2
(
|p|2 − 2h

)2

4
.

Finally we perform the Legendre transformation regarding p as a coordinate,
and z as the momentum. As a result we obtain a natural system with the
Lagrangian

L =
|p′|2

(2h− |p|2)2 . (2.9)

This function defines a Riemannian metric of constant Gaussian curvature
(positive for h < 0, and negative for h > 0). In the case h < 0 the geodesics of
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the metric (2.9) (defined for all p ∈ R
2) are the images of the great circles of

the sphere under the stereographic projection, and in the case h > 0 (in which
the metric is defined in the disc |p|2 < 2h) the geodesics are the straight lines
of the Lobachevskij plane (in Poincaré’s model).

Remark 2.1 (A. B. Givental’). Let the plane (x, y) be the configuration plane
of Kepler’s problem with Lagrangian L = (ẋ2 + ẏ2)/2 + 1/

√
x2 + y2. In the

space (x, y, z) we consider the right circular cone z2 = (x2 + y2) and the
family of inscribed paraboloids of revolution z = (x2 + y2)/4α + α, where α
is a parameter. By “projection” we shall mean the projection of the space
(x, y, z) onto the plane (x, y) parallel to the z-axis. One can show that

1) the trajectories of Kepler’s problem are the projections of the planar sec-
tions of the cone (in particular, the vertex of the cone is a focus of the
projections of its planar sections),

2) the trajectories with the same value of the total energy are the projections
of the sections of the cone by the planes tangent to one and the same
paraboloid,

3) the trajectories with the same value of the angular momentum are the
projections of the sections of the cone by the planes passing through one
and the same point of the z-axis.

2.2 Collisions and Regularization

2.2.1 Necessary Condition for Stability

We now turn to the general n-body problem dealing with n material points
(m1, r1), . . . , (mn, rn) attracted to each other according to the law of univer-
sal gravitation. The kinetic energy is

T =
1
2

∑
miṙ2

i

and the force function

V =
∑

j<k

mjmk

rjk
, rjk = |rj − rk|,

is always positive. We introduce an inertial frame of reference with origin at
the centre of mass, and let the ri be the position vectors of the points in the
new frame. The equations of the n-body problem have the form of Lagrange’s
equations with the Lagrangian L = T + V .

We say that a motion rs(t) (1 � s � n) is stable if the following two
conditions hold:

a) rij(t) �= 0 for all values of t and all i �= j (there are no collisions);
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b) |rij(t)| � c, where c = const.

Theorem 2.3 (Jacobi). If a motion is stable, then the total energy h = T−V
is negative.

� We apply Lagrange’s formula

Ï = 2V + 4h, (2.10)

where I =
∑

mir
2
i is the polar moment of inertia. If h � 0, then the function

I(t), t ∈ R, is convex and therefore cannot be simultaneously bounded below
and above. To complete the proof it remains to use Lagrange’s identity:

I
∑

mi =
∑

j<k

mjmkr
2
jk +

(∑
miri

)2

.

�
Under the additional assumption that the mutual distances be bounded

below (|rij(t)| � c > 0) it follows from the energy integral and Lagrange’s
formula (2.10) that along a stable motion the mean values

lim
s→∞

1
s

s∫

0

V (t) dt, lim
s→∞

1
s

s∫

0

2T (t) dt

exist and are equal to −2h > 0.
The necessary condition for stability h < 0 is not sufficient if n > 2.

2.2.2 Simultaneous Collisions

If the position vectors ri(t) of all points have one and the same limit r0 as
t → t0, then we say that a simultaneous collision takes place at time t0.
The point r0 clearly must coincide with the centre of mass, that is, r0 = 0.
A simultaneous collision occurs if and only if the polar moment of inertia I(t)
tends to zero as t→ t0.

Theorem 2.4. If I(t) → 0 as t → t0, then the constant vector of angular
momentum is equal to zero:

K =
∑

mi(ri × ṙi) = 0.

For n = 3 this theorem was already known to Weierstrass.

� Since V (t) → +∞ as t → t0, by the equation Ï = 2V + 4h we have
Ï(t) > 0 for the values of time close to t0. Consequently, I(t) is monotonically
decreasing before the collision.

We use the inequality K2 � 2IT (see § 1.1), which is equivalent to the
inequality

Ï � K2

I
+ 2h
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by Lagrange’s formula. We multiply this inequality by the positive number
−2İ and integrate it on the interval (t1, t) for t < t0:

İ2(t1) − İ2(t) � 2K2 ln
I(t1)
I(t)

+ 4h(I(t1) − I(t)).

All the more we have the inequality

2K2 ln
I(t1)
I(t)

� İ2(t1) + 4|h|I(t1).

This implies the existence of a positive lower bound for I(t) on the interval
(t1, t0) if K2 �= 0. �

2.2.3 Binary Collisions

We say that a binary collision happens at time t0 if the distance between two
points, say, m1 and mn, tends to zero as t → t0, while the mutual distances
between the other points are bounded below by some positive quantity for
the values of t close to t0. For such values of t the influence of the points
m2, . . . , mn−1 on the motion of m1 and mn is clearly negligible by comparison
with the interaction of m1 and mn. Therefore it is natural to expect that
at times t close to t0 the behaviour of the vector r1n(t) = r1(t) − rn(t) is
approximately the same as in the problem of collision of two bodies (see § 2.1).
In the two-body problem a locally uniformizing variable was the true anomaly
u(t), which is proportional to the integral of the inverse of the distance between
the points. Therefore in the case of a binary collision it is natural to try to
regularize the solution by the variable

u(t) =

t∫

t0

ds

|r1n(s)| . (2.11)

One can show that this consideration indeed achieves the goal: the func-
tions rk(u) are regular near the point u = 0 (corresponding to the binary
collision) and in addition, t(u) − t0 = u3p(u), where p(·) is a function holo-
morphic near u = 0 and such that p(0) �= 0. Thus, in the case of a binary
collision, just like in the two-body problem, the coordinates of the points
rk are holomorphic functions of the variable 3

√
t− t0 and therefore admit a

unique real analytic continuation for t > t0. One can show that the functions
r2(t), . . . , rn−1(t) are even holomorphic in a neighbourhood of the point t0.

To make the uniformizing variable u(t) suitable for any pair of points and
any instant of a binary collision one should replace (2.11) by the formula

u(t) =

t∫

0

V (s) ds =

t∫

0

∑

j<k

mjmk

|rjk(s)| ds.
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If the polar angular momentum is non-zero, then binary collisions are the
only possible singularities in the three-body problem. As shown by Sundman,
the functions rk(u) (1 � k � 3) are holomorphic in some strip | Im u| < δ
of the complex plane u ∈ C containing the real axis. We now map this strip
conformally onto the unit disc |ω| < 1 by the transformation

ω =
eπu/2δ − 1
eπu/2δ + 1

,

which takes the real axis −∞ < u < +∞ to the segment −1 < ω < 1. As a
result the coordinates of the points rk become holomorphic functions in the
disc |ω| < 1 and can be represented as converging power series in the new
variable ω. These series represent the motion of the three bodies for all values
of time t ∈ (−∞,+∞).5

This result is due to Sundman (1913); he followed the earlier work of
Poincaré and Weierstrass, who obtained expansions of the solutions of the
n-body problem in converging power series in the auxiliary variable ω in the
absence of collisions. As for the possibility of collisions, they are infinitely
rare in the three-body problem. Using the theorem on simultaneous collisions
and the regularization of binary collisions one can show that in the twelve-
dimensional state space of the three-body problem (for a fixed position of
the centre of mass) the collision trajectories lie on certain singular analytic
surfaces of dimension 10. Their measure is, of course, equal to zero. However,
it is not known whether these singular surfaces can fill everywhere densely
entire domains in the state space.

In conclusion we give as an illustration the results of numerical calculations
in the “Pythagorean” variant of the three-body problem where the bodies
with masses 3, 4, 5 are initially at rest in the (x, y)-plane at the points with
coordinates (1, 3), (−2,−1), (1,−1). The centre of mass of this system is at
the origin.

The calculations of the Pythagorean three-body problem were started by
Burrau back in 1913 and were continued in modern times by Szebehely using
computers. In Fig. 2.5–2.7 one can see close encounters of the points, their
binary collisions, and the dispersal of the triple system. Fig. 2.8 shows a
“final” motion: the point of mass m = 5 is moving away along a straight
line from the “double star” formed by the points m = 3 and m = 4, which
periodically collide with each other. It is interesting that no triple collisions
occur, although the angular momentum is equal to zero in this case.

5 The power series in ω are absolutely useless for practical computations because
of their extremely slow rate of convergence.
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Fig. 2.5. Motion of gravitating masses in the Pythagorean three-body problem in
the time interval from t = 0 to t = 10

Fig. 2.6. Form of the orbits in the Pythagorean three-body problem in the time
interval from t = 40 to t = 50
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Fig. 2.7. Evolution of the orbits of the Pythagorean three-body problem in the
time interval from t = 50 to t = 60

Fig. 2.8. Formation of a double star in the Pythagorean three-body problem
(from t = 60 to t = 70)
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2.2.4 Singularities of Solutions of the n-Body Problem

In the case of multiple collisions, when simultaneous collisions of k � 3 points
occur, the singular points of the coordinates rs of gravitating points as func-
tions of time have a much more complicated structure from the analytic view-
point. Generally speaking, these singularities are not algebraic; moreover, the
functions rs(t) (1 � s � n) have no real analytic continuation after the instant
of collision.

This can be seen even in examples of simultaneous collision in the three-
body problem. It turns out that for arbitrary values of the masses m1, m2,
m3 there exist solutions of the form

ri(t) = t2/3
∞∑

m=0

aimt
αm. (2.12)

The positive number α is a non-constant algebraic function of the masses m1,
m2, m3, and the coefficients ai1 are not all equal to zero. At time t = 0 a triple
collision took place. In a typical case where α is irrational, the series (2.12)
has an isolated logarithmic singular point at t = 0. In particular, this solu-
tion, which is real for t > 0, has infinitely many different analytic branches
for t < 0, but all these branches turn out to be complex.

Solution (2.12) was found by Block (1909) and Chazy (1918) using the
following method. For any values of the masses the equations of the three-
body problem admit a “homographic” solution such that the triangle formed
by the bodies always remains similar to itself. This solution is analytically
represented by the formula

ri(t) = ai0t
2/3 (1 � i � 3). (2.13)

Among the characteristic roots of the variational equation for this solution
there is a negative number (−α). According to the well-known results of Lya-
punov and Poincaré the equations of motion have a solution (2.12) that is as-
ymptotic to solution (2.13). We remark that the method of Block and Chazy
had already been applied by Lyapunov (1894) for proving that the solutions
of the equations of rotation of a heavy rigid body with a fixed point are not
single-valued as functions of complex time.

Consider a particular solution rk(t) of the three-body problem. Suppose
that at the initial time t0 we have rjk �= 0 for all j �= k. We trace this solution
for t > t0. There are three possibilities:

(a) there are no collisions for any t > t0; then this motion proceeds without
singularities up to t = +∞;

(b) at some instant t1 > t0 a collision occurs that admits an analytic contin-
uation;

(c) at some instant a collision occurs that does not admit an analytic contin-
uation.
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Suppose that case (b) takes place. Then for t > t1 again one of the variants
(a)–(c) is possible. Continuing this process we can either arrive after finitely
many steps at one of the cases (a), (c), or have infinitely many continuable
collisions occurring at times t1, t2, . . . , tk, . . . . One can show that for n = 3
in the latter case we have

lim
k→∞

tk = +∞.

However, in the n-body problem for n � 4 a fundamentally different type
of singularities is possible. Even in the four-body problem on a straight line
there exist motions such that infinitely many binary collisions occur over a
finite time interval [0, t∗). Moreover, in the end, as t→ t∗ three of the bodies
move away to infinity: one in one direction, and two others in the opposite
direction, as in the Pythagorean three-body problem. But unlike the case of
three bodies, the colliding bodies approach each other arbitrarily closely, which
is what gives the energy for going to infinity over a finite time. The fourth body
oscillates between the bodies going to infinity in opposite directions. When
the oscillating body approaches closely the cluster of two bodies, an almost
triple collision occurs. The existence of such a motion was proved by Mather
using McGehee’s regularization of simultaneous collisions in the three-body
problem (see [419]).

In the spatial five-body problem there are collision-free singularities: over
a finite time the bodies move away to infinity without ever having collisions
[531, 607]. The existence of collision-free singularities was also proved for the
planar 3N -body problem for sufficiently large N ; see [255].

2.3 Particular Solutions

Only a few exact solutions have been found in the n-body problem. For the
case of bodies of different masses practically all of these solutions had already
been known to Euler and Lagrange.

2.3.1 Central Configurations

We say that n material points (mi, ri) form a central configuration in a bary-
centric frame of reference if

∂V

∂ri
= σ

∂I

∂ri
, 1 � i � n, (2.14)

where
V =

∑

k<j

mkmj

rkj

is the potential of gravitational interaction, I =
∑

mir
2
i is the polar moment

of inertia, and σ is a scalar function independent of the index i. It follows
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from Euler’s formula for homogeneous functions that σ = −V/2I. Thus, for-
mula (2.14) can also be written in the form

I
∂V

∂ri
= −1

2
V
∂I

∂ri
.

Consequently, central configurations correspond to the critical points of
the function IV 2. Since this function is homogeneous, the set (mi, ri) is a
central configuration simultaneously with the set (mi, αri) for any α �= 0. We
shall not distinguish between such configurations.

Finding all central configurations for any number of points n is a compli-
cated algebraic problem, which is still unsolved. Leaving aside the trivial case
n = 2, we list the known results in this area.

For n = 3 the only non-collinear central configuration is the equilateral
triangle (Lagrange). For n = 4 the only non-coplanar configuration is the
regular tetrahedron.

If the masses of all bodies are equal, then for n = 4 the only planar central
configurations are those in which the bodies are situated either on one straight
line, or in the vertices of a square, or in the vertices and in the centre of an
equilateral triangle, or in the vertices and on the symmetry axis of an isosceles
triangle [62, 63].

The collinear central configurations are described by the following Moul-
ton’s theorem [52]: corresponding to every numbering of the point masses
there is a unique central configuration in which the points are situated on
one straight line in the given order. Thus, there exist exactly n!/2 different
collinear central configurations. For n = 3 there are exactly three such con-
figurations; they were discovered by Euler.

There is a conjecture that for a given n and given masses the number of
central configurations is finite [166] and, moreover, is bounded by a constant
independent of the masses [52]. These problems are open also for the planar
case [559]. (A planar central configuration is a relative equilibrium configu-
ration of the n-body problem; see § 2.3.3.) For n = 4 in the planar case the
conjecture of [166, 52] was proved in [274]; the case n = 5 remains open.

The concept of a central configuration is useful in the analysis of simul-
taneous collisions: it turns out that the configuration of gravitating points at
the instant of a simultaneous collision is central (in the asymptotic sense). It
follows from (2.14) that if initially the points formed a central configuration
and were at rest, then their configuration clearly does not change up to the
instant of a simultaneous collision.

2.3.2 Homographic Solutions

We say that a solution of the n-body problem is homographic if in a barycen-
tric reference frame the configurations formed by the bodies remain similar
to each other at all times. If in addition the configuration is not rotating,
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then such a solution is said to be homothetic. The solutions mentioned at the
end of the preceding subsection may serve as an example. If the configuration
remains congruent to itself, then the solution is called a relative equilibrium.

It is easy to show that

a) a homographic solution is homothetic if and only if the polar angular
momentum is equal to zero;

b) a homographic solution is a relative equilibrium if and only if it is planar
and its configuration rotates with constant angular velocity.
The proof of the following facts is more difficult:

c) if a homographic solution is non-coplanar, then it is homothetic;
d) if a homographic solution is coplanar, then it is planar.

In particular, every homographic solution is either planar or homothetic.
In the three-body problem all the homographic solutions have the property
that in a barycentric reference frame the three bodies lie in an invariable plane
containing the centre of mass (Lagrange).

Proposition 2.5. If a solution is homographic, then the bodies form a central
configuration at all times.

This proposition provides a method for constructing homographic solu-
tions. We give as an example the well-known Lagrange’s theorem (1772).

Theorem 2.5. For arbitrary values of the masses, the three-body problem ad-
mits an exact solution such that

1) the plane containing these points is invariant in a barycentric reference
frame,

2) the resultant of the two Newtonian gravitational forces applied to each of
the three material points passes through their common centre of mass,

3) the triangle formed by the three bodies is equilateral,
4) the trajectories of the three bodies are conic sections similar to each other

with a focus at the common centre of mass.

In the special case of equal masses the conic sections are congruent and
differ from one another by a rotation through 120◦. This remark can be gen-
eralized: the problem of n points of equal masses has a solution in which each
body is describing a conic section with a focus at the centre of mass, the trajec-
tories are congruent and differ from one another by a rotation through 2π/n.
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2.3.3 Effective Potential and Relative Equilibria

Proposition 2.6. The configurations of relative equilibria with polar angular
momentum K coincide with the critical points of the function

UK = U +
K2

2I
, where U = −V.

The function UK is called the effective (or amended , or reduced) potential.
We used it § 1.1 for describing the regions of possible motion in the planar
n-body problem, and in § 2.1 for finding the trajectories of two bodies.

� Suppose that the configuration of a relative equilibrium is rotating around
the centre of mass with constant angular velocity ω. Then, clearly, K = Iω.
We pass to a reference frame with coordinates u, v rotating with the angu-
lar velocity ω; in this frame the configuration of the relative equilibrium is
stationary. In the new frame the Lagrangian function is

L = T + V =
1
2

∑
mi

(
u̇2

i + v̇2
i

)
+ ω

∑
mi(uiv̇i − u̇ivi) + Vω,

where Vω = V + Iω2/2. The equations of motion are

miüi = 2miωv̇i +
∂Vω

∂ui
, miv̈i = −2miωu̇i +

∂Vω

∂vi
. (2.15)

One can easily derive Proposition 2.6 from these equations using the following
observation: the functions UK and Vω have the same critical points, since
K = Iω at these points. �

2.3.4 Periodic Solutions in the Case of Bodies of Equal Masses

If all the n bodies have the same mass, then one can seek periodic solutions
in which all the bodies move along the same trajectory lagging one behind
another by equal time intervals. The law of motion of the jth body (j =
1, . . . , n) is sought in the form

rj(t) = r
(
t− (j − 1)T/n

)
, (2.16)

where r(·) is a periodic function with period T . Such solutions are called
simple choreographies (this term was suggested by Simó). The function r(·)
can be determined from the condition that a periodic solution is an extremal
of the action functional (see § 1.2.3).

For the three-body problem (n = 3) a solution of the form (2.16) was
first found numerically [431]. Then an analytic proof of its existence was
given [170]. In this solution the three bodies describe one and the same planar
curve having the shape of 8 with equal loops. Over the period T each body
passes twice the self-intersection point of the trajectory, and at these instants
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all the three bodies are situated on one straight line and form a collinear cen-
tral configuration (cf. § 2.3.1; one of the bodies bisects the segment between
the other two bodies). This periodic solution is stable in the linear approxima-
tion. Furthermore, the nonlinear terms in the expansion of the Hamiltonian
of the problem about this periodic solution are such that KAM theory (§ 6.3)
guarantees “stability with respect to the measure of initial data”: a small
neighbourhood of this periodic motion is foliated, up to a remainder of small
relative measure, into the invariant tori, on which the motion is conditionally
periodic [551, 553].

In the case n > 3 solutions of the form (2.16) have so far been found only
numerically; all these solutions proved to be unstable. The existence of such
solutions is at present established analytically for the interaction potential
U = −γ/ra

ij , a � 2 (the Newtonian potential corresponds to a = 1) [551, 552].
The variational approach was also used in the search for periodic solutions

in which the orbits of all bodies are congruent curves permuted by a symmetry.
Such a periodic solution was found in the four-body problem [171]. Over the
period of the motion the bodies form a central configuration four times: twice
they are situated in the vertices of a square, and twice in the vertices of
a tetrahedron.

2.4 Final Motions in the Three-Body Problem

2.4.1 Classification of the Final Motions According to Chazy

Here, dealing with the three-body problem, we shall denote by rk the vector
from the point mass mi to the point mass mj for i �= k, j �= k, i < j.

Theorem 2.6 (Chazy, 1922). Every solution of the three-body problem rk(t)
(k = 1, 2, 3) belongs to one of the following seven classes:

1◦. H (hyperbolic motions): |rk| → ∞, |ṙk| → ck > 0 as t→ +∞;

2◦. HPk (hyperbolic-parabolic): |ri| → ∞, |ṙk| → 0, |ṙi| → ci > 0 (i �= k);

3◦. HEk (hyperbolic-elliptic): |ri| → ∞, |ṙi| → ci > 0 (i �= k), sup
t�t0

|rk| <∞;

4◦. PEk (parabolic-elliptic): |ri| → ∞, |ṙi| → 0 (i �= k), sup
t�t0

|rk| <∞;

5◦. P (parabolic): |ri| → ∞, |ṙi| → 0;

6◦. B (bounded): sup
t�t0

|rk| <∞;

7◦. OS (oscillating): lim
t→+∞

sup
k

|rk| = ∞, lim
t→+∞

sup
k

|rk| <∞.

Examples of motions of the first six types were known to Chazy. The
existence of oscillating motions was proved by Sitnikov in 1959.
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Fig. 2.9.

It is natural to associate with the seven types of final motions listed above
the subsets of the twelve-dimensional phase space of the three-body prob-
lem M12 with a fixed position of the centre of mass: these subsets are com-
posed entirely of the phase trajectories corresponding to the motions of a
given type. The qualitative picture of the partition of M12 into the classes
of final motions is represented by Fig. 2.9. The sets H and HPk are entirely
contained in the domain where the constant of total energy h is positive; P
lies on the hypersurface h = 0; the sets B, PEk, OS, in the domain h < 0; and
motions in the class HEk are possible for any value of h. It is known that H
and HEk are open in M12, HPk consists of analytic manifolds of codimension
1, and P consists of three connected manifolds of codimension 2 (represented
by the three points in Fig. 2.9) and one manifold of codimension 3 (which is
not shown in Fig. 2.9). The topology of the other classes has not been studied
sufficiently.

2.4.2 Symmetry of the Past and Future

By Chazy’s theorem one can introduce seven analogous final classes of mo-
tions when t tends not to +∞, but to −∞. To distinguish the classes in the
cases t → ±∞ we shall use the superscripts (+) and (−): H+, HE−

3 , and
so on. In one of Chazy’s papers (1929) a false assertion was stated that in
the three-body problem the two final types, for t → ∞ and t → −∞, of the
same solution coincide. The misconception of the “symmetry” of the past and
future had been holding ground for a fairly long time, despite the numerical
counterexample constructed by Bekker (1920), which asserted the possibility
of “exchange”: HE−

1 ∩HE+
2 �= ∅. Bekker’s example had been “explained” by

errors in numerical integration. In 1947 Shmidt produced an example of “cap-
ture” in the three-body problem: H− ∩HE+ �= ∅. This example, which was
also constructed by a numerical calculation, was given by Shmidt in support
of his well-known cosmogony hypothesis. A rigorous proof of the possibility
of capture was found by Sitnikov in 1953.
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The current state of the problem of final motions in the three-body prob-
lem is concisely presented in Tables 2.1 and 2.2, which we borrowed from
Alekseev’s paper [3]. Each cell corresponds to one of the logically possible
combinations of the final types in the past and future. The Lebesgue measure
of the corresponding sets in M12 is indicated (where it is known).

Table 2.1.

h > 0
t → +∞

H+ HE+
i

Lagrange, 1772 PARTIAL CAPTURE
(isolated examples); Measure > 0

H− Chazy, 1922 Shmidt (numerical example), 1947;
t Measure > 0 Sitnikov (qualitative methods), 1953

↓ COMPLETE DISPERSAL i = j Measure > 0
−∞ Measure > 0 Birkhoff, 1927

HE−
j i �= j EXCHANGE, Measure > 0

Bekker (numerical examples), 1920;
Alekseev (qualitative methods), 1956

Table 2.2.

h < 0
t → +∞

HE+
i B+ OS+

i = j Measure > 0 COMPLETE
Birkhoff, 1927 CAPTURE

EXCHANGE
i �= j Measure > 0






Measure = 0
Chazy, 1929 and
Merman, 1954;






Measure = 0
Chazy, 1929 and
Merman, 1954;

HE−
j Bekker, 1920 Littlewood, 1952; Alekseev, 1968,

(numerical examples); Alekseev, 1968, �= ∅

t Alekseev, 1956 �= ∅

↓ (qualitative methods)

−∞ PARTIAL Euler, 1772 Littlewood, 1952
DISPERSAL Lagrange, 1772, Measure = 0

B− �= ∅ Poincaré, 1892 Alekseev, 1968,
Measure = 0 (isolated examples); �= ∅

Measure > 0
Arnold, 1963

�= ∅ �= ∅ Sitnikov, 1959,
OS− Measure = 0 Measure = 0 �= ∅

Measure = ?
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2.5 Restricted Three-Body Problem

2.5.1 Equations of Motion. The Jacobi Integral

Suppose that the Sun S and Jupiter J are revolving around the common
centre of mass in circular orbits (see Fig. 2.10). We choose the units of length,
time, and mass so that the magnitude of the angular velocity of the rotation,
the sum of masses of S and J , and the gravitational constant are equal to
one. It is easy to show that then the distance between S and J is also equal
to one.

y

A

S xJ

Fig. 2.10. Restricted three-body problem

Consider the motion of an asteroid A in the plane of the orbits of S and J .
We assume that the mass of the asteroid is much smaller than the masses of
the Sun and Jupiter and neglect the influence of the asteroid on the motion
of the large bodies.

It is convenient to pass to a moving frame of reference rotating with unit
angular velocity around the centre of mass of S and J ; the bodies S and J are
at rest in this frame. In the moving frame we introduce Cartesian coordinates
x, y so that the points S and J are situated invariably on the x-axis and
their centre of mass coincides with the origin. The equations of motion of the
asteroid take the following form (see (2.15)):

ẍ = 2ẏ +
∂V

∂x
, ÿ = −2ẋ+

∂V

∂y
; V =

x2 + y2

2
+

1 − µ

ρ1
+

µ

ρ2
, (2.17)

where µ is Jupiter’s mass and ρ1, ρ2 are the distances from the asteroid A
to S and J . Since the coordinates of S and J are (−µ, 0) and (1 − µ, 0), we
have

ρ2
1 = (x+ µ)2 + y2, ρ2

2 = (x− 1 + µ)2 + y2.

Equations (2.17) have the integral

ẋ2 + ẏ2

2
− V (x, y) = h,
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called the Jacobi integral , which expresses the conservation of energy in the
relative motion of the asteroid.

For a fixed value of h the motion of the asteroid takes place in the domain
{
(x, y) ∈ R

2 : V (x, y) + h � 0
}
,

which is called a Hill region.

2.5.2 Relative Equilibria and Hill Regions

The form of Hill regions depends on the positions of the critical points of
the function V (x, y). Corresponding to each critical point (x0, y0) there is an
“equilibrium” solution x(t) ≡ x0, y(t) ≡ y0, which can naturally be called
a relative equilibrium. We claim that for every value of µ ∈ (0, 1) there are
exactly five such points.

We calculate

V ′
y = yf, f = 1 − 1 − µ

ρ3
1

− µ

ρ3
2

,

V ′
x = xf − µ(1 − µ)

(
1
ρ3
1

− 1
ρ3
2

)

and solve the system of algebraic equations V ′
x = V ′

y = 0. First suppose that
y �= 0. Then f = 0 and therefore, ρ1 = ρ2 = ρ. From the equation f = 0 we
obtain that ρ = 1. Thus, in this case the points S, J , and A are in the vertices
of an equilateral triangle. There are exactly two such relative equilibria, which
are called triangular (or equilateral) libration points. They should be viewed
as a special case of Lagrange’s solutions of the general “unrestricted” three-
body problem (see § 2.3). Lagrange himself regarded these solutions as a “pure
curiosity” and considered them to be useless for astronomy. But in 1907 an as-
teroid was discovered, named Achilles, which moves practically along Jupiter’s
orbit being always ahead of it by 60◦. Near Achilles there are 9 more asteroids
(the “Greeks”), and on the other side there were discovered five asteroids (the
“Trojans”), which also form an equilateral triangle with the Sun and Jupiter.

Now consider the relative equilibria on the x-axis. They are the critical
points of the function

g(x) =
x2

2
+

1 − µ

|x+ µ| +
µ

|x− 1 + µ| .

Since g(x) > 0 and g(x) → +∞ as x → ±∞, x → −µ, or x → 1 − µ,
there exist three local minima of the function g in the intervals (−∞,−µ),
(−µ, 1 − µ), (1 − µ,+∞), into which the points S and J divide the x-axis.
In view of the inequality g′′(x) > 0 these points are the only critical points of
the function g. These collinear libration points were found by Euler.
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One can show that the collinear libration points (we denote them by
L1, L2, L3)6 are of hyperbolic type, and the triangular libration points (L4

and L5) are points of non-degenerate minimum of the function V . Fig. 2.11
depicts the transformation of the Hill regions as the Jacobi constant h changes
from −∞ to +∞, under the assumption that Jupiter’s mass is smaller than
the Sun’s mass (the complement of the Hill region is shaded).

Fig. 2.11.

If h is greater than the negative number

−1
2
(3 − µ+ µ2),

then the Hill region coincides with the entire plane R
2 = {x, y}. For µ = 1/2

the Hill regions are symmetric not only with respect to the x-axis, but also
with respect to the y-axis.

The collinear libration points are always unstable: among the roots of the
characteristic equation of the variational equations there are two real roots
of different signs; two other roots are purely imaginary complex conjugates.7

For the triangular libration points the roots of the characteristic equation are
purely imaginary and are distinct only when

27µ(1 − µ) < 1. (2.18)

Under this condition the triangular relative equilibrium points are stable in
the first approximation. The problem of their Lyapunov stability proved to be
much more difficult; we postpone the discussion of this problem until Ch. 6. In
conclusion we remark that condition (2.18) is known to be certainly satisfied
for the real system Sun–Jupiter.

2.5.3 Hill’s Problem

Let us choose the origin of the rotating frame of reference at the point where
the body of mass µ is situated. Then the coordinates x, y of the third body
6 Here L1 is between the Sun and Jupiter, L2 beyond Jupiter, and L3 beyond the

Sun.
7 Two more purely imaginary complex conjugates are added to these roots in the

spatial restricted three-body problem, where motions of the asteroid across the
plane of the orbits of the Sun and Jupiter are also considered.
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of small mass must be changed to x − (1 − µ), y. Renaming these variables
again by x, y we see that the equations of motion have the same form (2.10),
only the potential should be replaced by the function

V = (1−µ)x+
1
2
(x2+y2)+(1−µ)(1+2x+x2+y2)−1/2+µ(x2+y2)−1/2. (2.19)

We now make another simplification of the problem, which was introduced
by Hill and is taken from astronomy. Let the body of mass 1−µ again denote
the Sun, µ the Earth, and suppose that the third body of negligible mass – the
Moon – moves near the point (0, 0), where the Earth is invariably situated. We
neglect in (2.17) all the terms of order at least two in x, y. This is equivalent to
discarding in (2.19) the terms of order at least three in x, y. With the required
accuracy, V is replaced by the function

V =
µ

2
(x2 + y2) +

3
2
(1 − µ)x2 + µ(x2 + y2)−1/2.

Since the mass of the Earth µ is much smaller than the mass of the Sun 1−µ,
we can neglect the first summand in this formula.

It is convenient to change the units of length and mass by making the
substitutions

x→ αx, y → αy, µ→ βµ, 1 − µ→ β(1 − µ),

where

α =
(

µ

1 − µ

)1/3

, β = (1 − µ)−1.

After this transformation the equations of motion of the Moon take the
form

ẍ− 2ẏ =
∂V

∂x
, ÿ + 2ẋ =

∂V

∂y
; V =

3
2
x2 + (x2 + y2)−1/2. (2.20)

These equations have a first integral – the Jacobi integral

ẋ2 + ẏ2

2
− V (x, y) = h.

It is easy to see that on passing from the restricted three-body problem to
its limiting variant called Hill’s problem the two triangular and one collinear
libration points disappear. Indeed, the system of equations V ′

x = V ′
y = 0 has

only two solutions (x, y) = (±3−1/3, 0). The Hill regions

{V (x, y) + h � 0}

are symmetric with respect to the x- and y-axes for all values of h. If h � 0,
then the Hill region coincides with the entire plane. For h < 0 the boundary
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has asymptotes parallel to the y-axis: x = ±
(
− 2

3h
)1/2. The form of the Hill

regions depends on whether the constant (−h) is greater than, equal to, or
less than the unique critical value of the function V , which is equal to 3

2 31/3.
These three cases are shown in Fig. 2.12 (the Hill regions are shaded). Only
case (a) is of interest for astronomical applications and, moreover, only the
domain around the origin.

Fig. 2.12.

We now consider the questions related to regularization of Hill’s problem.
For that we pass to the new parabolic coordinates by the formulae x = ξ2−η2,
y = 2ξη and change the time variable t �→ τ along the trajectories:

dt

dτ
= 4(ξ2 + η2).

Denoting differentiation with respect to τ by prime we write down the equa-
tions of motion in the new variables:

ξ′′ − 8(ξ2 + η2)η′ = V̂ ′
ξ , η′′ + 8(ξ2 + η2)ξ′ = V̂ ′

η ,

where
V̂ = 4 + 4(ξ2 + η2)h+ 6(ξ2 − η2)(ξ2 + η2).

The energy integral takes the form

ξ′2 + η′2

2
− V̂ (ξ, η, h) = 0.

This regularization of Hill’s problem suggested by Birkhoff allows one to
easily investigate the analytic singularities of solutions corresponding to col-
lisions of the Moon with the Earth. Suppose that a collision occurs at time
t = 0 and let τ(0) = 0. Then obviously,

ξ =
(√

8 sin α
)
τ + · · · , η =

(√
8 cos α

)
τ + · · · ; t =

32
3
τ3 + · · · ,
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where α is an integration constant. Thus, the new time τ is a uniformizing
variable and, as in the case of binary collisions in the general three-body
problem, the solution ξ(t), η(t) admits a unique real analytic continuation
after the collision.

As already mentioned, only the motions that take place near the point
ξ = η = 0 are of interest for astronomy. For large negative values of h it is
convenient to pass to the new variables

ϕ = 2ξ
[
−2h− 3(ξ2 − η2)2

]1/2
, ψ = 2η

[
−2h− 3(ξ2 − η2)2

]1/2
.

After this change of variables the energy integral takes quite a simple form

ξ′2 + η′2 + ϕ2 + ψ2 = 8.

This is the equation of a three-dimensional sphere in the four-dimensional
phase space of the variables ξ′, η′, ϕ, ψ. Since points (ξ, η) and (−ξ,−η) cor-
respond to the same point in the (x, y)-plane, the Moon’s states (ξ′, η′, ϕ, ψ)
and (−ξ′,−η′,−ϕ,−ψ) should be identified. As a result we have obtained
that for large negative h the connected component of the three-dimensional
energy level that we are interested in is diffeomorphic to the three-dimensional
projective space. This remark is of course valid for all h < − 3

2
3
√

3.
In conclusion we discuss periodic solutions of Hill’s problem, which have

important astronomical applications. The question is about the periodic solu-
tions x(t), y(t) close to the Earth (the point x = y = 0) with a small period ϑ
whose orbits are symmetric with respect to the x- and y-axes. More precisely,
the symmetry conditions are defined by the equalities

x(−t) = x(t) = −x
(

t+
ϑ

2

)

, y(−t) = −y(t) = y

(

t+
ϑ

2

)

.

Consequently, these solutions should be sought in the form of the trigono-
metric series

x(t) =
∞∑

n=−∞
an(m) cos (2n+ 1)

t

m
, y(t) =

∞∑

n=−∞
an(m) sin (2n+ 1)

t

m
,

where
m =

ϑ

2π
.

Substituting these series into the equations of motion (2.20) we obtain an
infinite nonlinear system of algebraic equations with respect to infinitely many
unknown coefficients. Hill (1878) showed that this system has a unique solu-
tion, at least for small values of m (see [46, 52]). The value m0 = 0.08084 . . .
for the real Moon lies in this admissible interval. The convergence of Hill’s
series was proved by Lyapunov in 1895.
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One can show that the following asymptotic expansions hold for the coef-
ficients ak(m):

a0 = m2/3

(

1 − 2
3
m+

7
18
m2 − · · ·

)

,

a1

a0
= 3

16m
2 + 1

2m
3 + · · · , a−1

a0
= −19

16
m2 − 5

3
m3 − · · · ,

a2

a0
= 25

256m
4 + · · · , a−2

a0
= 0 ·m4 + · · · , . . . .

This shows that for small values of m the main contribution to Hill’s
periodic solutions is given by the terms

x0(t) = m2/3 cos
t

m
, y0(t) = m2/3 sin

t

m
,

which represent the law of motion of the Moon around the Earth without tak-
ing into account the influence of the Sun. The presence of the coefficient m2/3

is a consequence of Kepler’s third law. For small values of the parameter m,
the Sun, perturbing the system Earth–Moon, does not destroy the periodic
circular motions of the two-body problem, but merely slightly deforms them.

2.6 Ergodic Theorems of Celestial Mechanics

2.6.1 Stability in the Sense of Poisson

Let (M, S, µ) be a complete space with measure; here S is the σ-algebra of
subsets of M , and µ a countably additive measure on S. Let g be a measure-
preserving automorphism of the set M . We call the set

Γp =
⋃

n∈Z

gn(p), g0(p) = p

the trajectory of a point p ∈M , and

Γ+
p =

⋃

n�0

gn(p)

its positive semitrajectory.

Poincaré’s Recurrence Theorem. Suppose that µ(M) <∞. Then for any
measurable set V ∈ S of positive measure there exists a set W ⊂ V such
that µ(W ) = µ(V ) and for every p ∈ W the intersection Γ+

p ∩W consists of
infinitely many points.

Following Poincaré we apply this result to the restricted three-body prob-
lem. In the notation of the preceding section the equations of motion of the
asteroid have the form of Lagrange’s equations with the Lagrangian

L =
1
2
(ẋ2 + ẏ2) + xẏ − yẋ+ V, V =

x2 + y2

2
+

1 − µ

ρ1
+

µ

ρ2
.
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These equations can be represented in the Hamiltonian form with the Hamil-
tonian

H =
1
2
(
X2 + Y 2

)
+ yX − xY −G, G =

µ

ρ1
+

1 − µ

ρ2
,

where X = ẋ − y, Y = ẏ + x are the canonical momenta conjugate to
the coordinates x, y. By Liouville’s theorem the phase flow of this system,
which we denote by {gt}, preserves the ordinary Lebesgue measure in R

4 =
{X, Y, x, y}.

Consider the set of all points of the phase space for which the inequality
c1 < −H < c2 holds, where c1 and c2 are sufficiently large positive constants.
As we saw in § 2.5, under this assumption a point (x, y) belongs to one of
the three connected subregions of the Hill region {V � c1}. We choose one of
the two domains containing the Sun or Jupiter. The corresponding connected
domain in the phase space is clearly invariant under the action of gt. From this
domain we delete the collision trajectories, whose union has zero measure. We
denote the remaining set by M and claim that M has finite measure. Indeed,
the coordinates (x, y) of points in M belong to a bounded subset of the plane
R

2. The admissible momenta X, Y satisfy the inequalities

2(V − c2) < (Y + x)2 + (X − y)2 < 2(V − c1),

which follow from the Jacobi integral. In the plane R
2 with Cartesian coordi-

nates X, Y these inequalities define a circular annulus, whose area is at most
2π(c2 − c1). These remarks imply that µ(M) is finite. Therefore we can ap-
ply Poincaré’s recurrence theorem: for almost every p ∈M the semitrajectory
{gt(p), t � 0} intersects any neighbourhood of the point p for arbitrarily large
values of t. Poincaré called such motions stable in the sense of Poisson.

We give a quantitative version of Poincaré’s recurrence theorem, which
was established in [140, 443] (see also [548]) for the case where M is an n-
dimensional smooth manifold.

Theorem 2.7. Suppose that a positive function ψ(t) is arbitrarily slowly in-
creasing to +∞ as t→ +∞, and ψ(t)/t1/n is monotonically decreasing to zero
as t → +∞. Then for almost every x ∈ M there exists a sequence tν → +∞
such that

ρ(gtνx, x) < t−1/n
ν ψ(tν).

Here ρ is some distance on M . In [443] an example is given of a volume-
preserving translation g on the n-dimensional torus T

n such that

ρ(gtx, x) > Ct−1/n, C = const

for all t ∈ N and x ∈ T
n.
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2.6.2 Probability of Capture

Again let V be a measurable set of positive measure. For n ∈ N we denote by
V n the set of points in V such that gk(p) ∈ V for all 0 � k � n. Obviously,
V n1 ⊃ V n2 if n1 < n2. The set

B =
⋂

n�0

V n

is measurable and µ(B) <∞. If p ∈ B, then of course Γ+
p ∈ V for all n � 0.

Let Bn = gn(B). All the sets Bn are measurable, and again Bn1 ⊃ Bn2 if
n1 < n2. The set

D =
⋂

n�0

Bn ⊂ B

is also measurable. If p ∈ D, then clearly Γp ∈ V .

Proposition 2.7. µ(B \D) = 0.

For this assertion not to be vacuous, one has to show first that µ(B) > 0.
But in concrete problems the proof of this fact may turn out to be a consider-
able difficulty. Proposition 2.7, which goes back to Schwarzschild, is of course
valid also in the case where the time n is continuous.

For example, suppose that the system Sun–Jupiter has “captured” from
the surrounding space the asteroids (the “Greeks” and “Trojans”) into a
neighbourhood of the triangular libration points. Proposition 2.7 immediately
tells us that the probability of this event is zero. Thus, the phenomena of “cap-
ture” in celestial mechanics should be considered only in mathematical models
that take into account dissipation of energy.

The following argument of Littlewood is a more interesting application.
Consider the n-body problem with the centre of mass at rest. The motion of
the points is described by a Hamiltonian system; the Hamiltonian function H
is regular in the domain where the mutual distances are rkl > 0. For arbitrary
c > 1 we consider the open set A(c) of points of the phase space where

c−1 < rkl < c (1 � k < l � n), −c < H < c.

Since A(c) is bounded, we have µ(A(c)) < ∞. Consequently, by Proposi-
tion 2.7 the set B(c) of points remaining in A(c) for t � 0 is larger merely
by a set of measure zero than the set D(c) of points that are in A(c) for all
t ∈ R.

If c1 < c2, then clearly A(c1) ⊂ A(c2), B(c1) ⊂ B(c2), and D(c1) ⊂ D(c2).
Hence the corresponding assertion is also valid for the sets

A =
⋃

c>1
A(c), B =

⋃

c>1
B(c), D =

⋃

c>1
D(c).

For points p ∈ B the mutual distances rkl for all t � 0 remain bounded above
and below by some positive constants depending on p. For points p ∈ D this
property holds for all values of t. Almost all points of D belong to B.
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For example, suppose that a planet system was stable “in the past”. If
it captures a new body, say, a speck of dust arriving from infinity, then the
resulting system of bodies will no longer have the stability property: with
probability one, either a collision will occur or one of the bodies will again
move away to infinity. Moreover, it is not necessarily the speck of dust that
will leave the Solar System; it may be Jupiter or even the Sun that may be
ejected.

2.7 Dynamics in Spaces of Constant Curvature

2.7.1 Generalized Bertrand Problem

The potential of gravitational interaction has two fundamental properties.
On the one hand, this is a harmonic function in three-dimensional Euclid-
ean space (which depends only on the distance and satisfies Laplace’s equa-
tion). On the other hand, only this potential (and the potential of an elastic
spring) generates central force fields for which all the bounded orbits are closed
(Bertrand’s theorem). It turns out that these properties can be extended to
the more general case of three-dimensional spaces of constant curvature (the
three-dimensional sphere S

3 and the Lobachevskij space L
3).

For definiteness we consider the case of a three-dimensional sphere. Sup-
pose that a material particle m of unit mass moves in a force field with poten-
tial V depending only on the distance between this particle and a fixed point
M ∈ S

3. This problem is an analogue of the classical problem of motion in a
central field. Let θ be the length (measured in radians) of the arc of a great
circle connecting the points m and M . Then V is a function depending only
on the angle θ. Laplace’s equation must be replaced by the Laplace–Beltrami
equation:

∆V = sin −2θ
∂

∂θ

(

sin 2θ
∂V

∂θ

)

= 0.

This equation can be easily solved:

V = −γ cos θ
sin θ

+ α; α, γ = const. (2.21)

The additive constant α is inessential. For definiteness we consider the case
γ > 0. The parameter γ plays the role of the gravitational constant. Appar-
ently, the potential (2.21) was for the first time considered by Schrödinger for
the purposes of quantum mechanics [536]. In addition to the attracting cen-
tre M this force field has a repelling centre M ′ at the antipodal point (when
θ = π). If we regard this force field as a stationary velocity field of a fluid
on S

3, then the flux of the fluid across the boundary of any closed domain not
containing the points M or M ′ is equal to zero. These singular points M and
M ′ can be interpreted as a sink and a source.
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In the general case, where V is an arbitrary function of θ, the trajectories
of the point m lie on the two-dimensional spheres S

2 containing the points M
and M ′. This simple fact is an analogue of Corollary 1.3 (in § 1.1), which
relates to motion in Euclidean space.

It is also natural to consider the generalized Bertrand problem: among
all potentials V (θ) determine those in whose field almost all orbits of the
point m on a two-dimensional sphere are closed. This problem (from various
viewpoints and in various generality) was solved in [177, 281, 351, 557]. The
solution of the generalized Bertrand problem (as in the classical case) is given
by the two potentials

V1 = −γ cot θ, V2 =
k

2
tan 2θ; k, γ = const > 0.

The first is an analogue of the Newtonian potential and the second is an
analogue of Hooke’s potential (with k being the “elasticity coefficient”). As
shown in [351], the generalized Bohlin transformation (see § 2.1.3) takes the
trajectories of the particle in the field with potential V1 to the trajectories of
the particle in the field with potential V2.

Since the orbits are closed in these two problems, by Gordon’s theo-
rem [263] the periods T of revolution in the orbits depend only on the energy h.
We now give explicit formulae for the function T (h) obtained in [343].

It is well known that in Euclidean space the period of oscillations of a
weight on an elastic spring is independent of the energy. This is no longer
true for the sphere:

T =
2π√
k + 2h

.

For the potential of Newtonian type the dependence of the period on the
energy is given by the formula

T =
π
√
γ

√
h
γ +

√
h2

γ2 + 1
√

h2

γ2 + 1
. (2.22)

The case of the Lobachevskij space can be considered in similar fashion.

2.7.2 Kepler’s Laws [177, 343]

First law. The orbits of a particle are quadrics on S
3 with a focus at the

attracting centre M .
A quadric is the intersection line of the sphere with a cone of the second

order whose vertex coincides with the centre of the sphere. Spherical quadrics
have many properties typical of conic sections on Euclidean plane (see, for
example, [105]). In particular, one can speak about their foci F1 and F2: any
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ray of light outgoing from F1 on reflection from the quadric necessarily passes
through the point F2 (rays of light are, of course, great circles on S

2).
It was shown in [351] that the orbits of the generalized Hooke problem (the

motion of a point in the field with potential k(tan 2θ)/2) are also quadrics
whose centres coincide with the attracting centre M .

At each instant there is a unique arc of a great circle connecting the cen-
tre M and the material point m (the “position vector” of the point m). Un-
fortunately one cannot claim that the area on S

2 swept out by this arc is
uniformly increasing with time. To improve this situation we introduce an
imaginary point m′ by replacing the spherical coordinates θ, ϕ of the point m
by 2θ, ϕ. Clearly the point m′ is at double the distance from the attracting
centre M .
Second law. The arc of a great circle connecting M and m′ sweeps out equal
areas on the sphere in equal intervals of time.

This law is of course valid for the motion in any central field on a surface
of constant curvature.

Let F1 and F2 be the foci of a quadric. There is a unique great circle of the
sphere S

2 passing through these points. The quadric divides this circle into
two parts; the length of each of these two arcs may be called the major axis
of the quadric. Their sum is of course equal to 2π.
Third law. The period of revolution in an orbit depends only on its major
axis.

The main point of the proof is in verifying the equality

tan a = −γ
h
, (2.23)

where a is the length of the major axis. Then it remains to use the formula
for the period (2.22). Note that relation (2.23) does not depend on which of
the two major axes of the quadric is chosen.

In [343] an analogue of Kepler’s equation was obtained connecting the
position of the body in an orbit and the time of motion. The “eccentric”
and “mean” anomalies were introduced based on appropriate spheroconical
coordinates on S

2 and elliptic functions.

2.7.3 Celestial Mechanics in Spaces of Constant Curvature

Having the formula for the interaction potential of Newtonian type (2.21),
we can define the potential energy of n gravitating points with masses
m1, . . . , mn:

V = −
∑

i<j

γmimj cot θij , (2.24)

where θij is the distance between the points mi and mj on the three-dimen-
sional sphere. Formula (2.24) allows one to write down the equation of motion
of n gravitating points on S

3.
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This problem has many common features with the classical n-body prob-
lem in Euclidean space. However, there are also essential differences. First,
the two-body problem on S

3 proves to be non-integrable: there are not suffi-
ciently many first integrals for its solution and its orbits look quite complicated
(see [137]). Here the main difficulty is related to the fact that the Galileo–
Newton law of inertia does not hold: the centre of mass of gravitating points
no longer moves along an arc of a great circle.

Furthermore, as in the classical case, binary collisions admit regularization.
However, the question whether the generalized Sundman theorem is valid for
the three-body problem in spaces of constant curvature remains open. This
question essentially reduces to the problem of elimination of triple collisions.
Recall that in the ordinary three-body problem the absence of simultaneous
collisions is guaranteed by a non-zero constant value of the angular momentum
of the system of n points with respect to their centre of mass (Theorem 2.3).

Of interest is the problem of finding partial solutions for n gravitating
bodies in spaces of constant curvature (similar to the classical solutions of
Euler and Lagrange). Results in this direction can be found in the book [137].
The restricted three-body problem was studied in this book: relative equilibria
were found and the Hill regions were constructed.

2.7.4 Potential Theory in Spaces of Constant Curvature

As established by Newton, a homogeneous sphere in three-dimensional Euclid-
ean space does not attract interior points, and the exterior points are attracted
as if by a single material point located at the centre of the sphere whose mass is
equal to the mass of the sphere. Newton’s theorem on the sphere immediately
implies that a homogeneous ball attracts points in the exterior in the same
way as if its mass was concentrated at the centre, while the attraction force on
interior points depends linearly on the distance to the centre (by Hooke’s law).

It is also known that the level surfaces of the gravitational potential of
a homogeneous rod is a confocal family of ellipsoids of revolution whose foci
coincide with the ends of the rod. This result was generalized by Ivory.

Consider an infinitesimally thin homogeneous layer between two similar
concentric ellipsoids with common centre and the same directions of the axes,
which is called an elliptic layer. It turns out that the gravitational potential
inside the elliptic layer is constant (Newton’s theorem generalizing the theorem
on the gravitation of a sphere) and the level surfaces of the potential in the
exterior are ellipsoids confocal to the layer (Ivory’s theorem). The proofs can
be found, for example, in [83].

It is easier to think of an elliptic layer as an ellipsoid with, generally
speaking, non-constant homeoid density

dσ

|∇f | ,
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where dσ is the area element of the ellipsoid and ∇f is the gradient of the
quadratic form defining the surface of the ellipsoid. The homeoid density of a
sphere and of a segment is obviously constant.

It turns out that the basic theorems of the theory of Newtonian poten-
tial in E

3 can be carried over (with certain reservations) to the case of a
space of constant curvature [349]. For definiteness we consider the case of a
sphere, which is a space with non-trivial topology. A gravitational potential
of Newtonian type is defined by (2.24).

Consider on S
3 a two-dimensional sphere S

2 with a homogeneous mass
distribution. Let θ be the latitude on S

3 measured from the centre of S
2, so

that S
2 = {θ = θ0}, 0 < θ0 � π/2. One should bear in mind that on S

3

there is another sphere S
2
− = {θ = π − θ0} congruent to S

2, whose points
produce a repulsive action. The three-dimensional sphere S

3 is divided by the
two-dimensional spheres S

2 and S
2
− into three connected domains.

The following analogue of Newton’s theorem holds: the sphere S
2 does not

attract points lying “inside” S
2 and S

2
−, while “exterior” points are attracted

in exactly the same way as if the sphere was replaced by a single point at
the centre of S

2, with mass equal to the mass of the whole sphere. This
immediately implies the theorem on the gravitation of a homogeneous ball
bounded by the sphere θ = θ0 (θ0 < π/2): exterior points (θ0 � θ � π − θ0)
are attracted in the same way as if the mass of the ball was concentrated at
the centre. The potential inside the ball of unit density is given by the formula

πγ(2θ − sin 2θ) cos θ
sin θ

,

which is different from Hooke’s potential (k/2) tan 2θ. Only for small θ we
obtain the potential of elastic interaction

4γπθ2

3
+ o(θ2).

In the case of Euclidean space the problem of the gravitation of a segment
is essentially a planar one: in any plane containing the gravitating segment
the level lines of the potential form a family of ellipses with foci at the ends
of the segment. The situation is similar for a space of constant curvature. In
the case of S

3 the role of a plane is played by a two-dimensional sphere of unit
radius.

Thus, on the two-dimensional sphere

x2 + y2 + z2 = 1 (2.25)

we consider a segment – an arc of a great circle with end points F1 = (α, β, 0)
and F2 = (α,−β, 0). Of course, α2 + β2 = 1. To make the arc uniquely
determined we assume that it contains the point with coordinates (1, 0, 0).
This arc admits the parametrization
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x = sin ϕ, y = cos ϕ, z = 0;
π

2
− ϕ∗ � ϕ � π

2
+ ϕ∗,

where cos ϕ∗ = α, sin ϕ∗ = β.
At a point with coordinates x, y, z the value of the potential (up to a

constant factor) is equal to

V =

π/2+ϕ∗∫

π/2−ϕ∗

cos θ̃

sin θ̃
dϕ,

where cos θ̃ = x sin ϕ+ y cos ϕ. As an analogue of a confocal family of ellipses
we have the family of ovals which is the result of the intersection of the cones

c2x2

c2 − α2
+

c2y2

c2 + β2
+ z2 = 0 (2.26)

and the sphere (2.25); here c is a parameter. As c → 0, the ovals converge to
the original segment. As already mentioned, by analogy with the Euclidean
case these ovals may be called spherical conics with foci at the points F1

and F2.
One can verify that the level lines of the potential V created by an arc of a

great circle on S
2 is a family of spherical conics with foci at the ends of the arc.

These observations admit a generalization. Let A be a symmetric operator
in Euclidean space R

4, and I the identity operator. The operator (A− λI)−1

(the resolvent of A, where λ is a spectral parameter) is also a symmetric
operator, which defines the pencil of quadratic forms

f(x) =
(
(A− λI)−1x, x

)
.

Equating these forms to zero we obtain a family of cones, which intersect the
three-dimensional sphere

g(x) = (x, x) = 1

in two-dimensional surfaces. These surfaces may be called spherical confocal
quadrics.

Example 2.2. Dividing equation (2.26) by c2 we obtain equations of the form
f(x) = 0, where A = diag (−α2, β2, 0), λ = c2. 


On the quadrics one can define the homeoid density

dσ

W2
,

where dσ is the area element of the quadric as a surface in R
4 and W2 is

the Euclidean area of the parallelogram constructed on the gradients of the
functions f and g as vectors.
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Theorem 2.8. Let k be a quadric on S
3 with homeoid mass density, and k−

the antipodal quadric. The potential created by k is constant in the two ball-
shaped domains on S

3 bounded by the quadrics k and k−, and the level surfaces
of this potential in the complementary domain form a family of quadrics con-
focal with k.

This is an analogue of the classical Newton–Ivory theorem.
Ivory’s theorem admits a generalization to quadratic forms of other sig-

natures (with ellipsoids replaced by the corresponding hyperboloids in R
n);

see [76, 593]. The simplest case is a one-sheet hyperboloid in R
3.

The gravitational potentials are replaced by differential forms, whose de-
grees are determined by the signature. For a one-sheet hyperboloid in R

3 the
result is 2-forms that are harmonic outside the hyperboloid and whose kernels
are directed along the parallels of the elliptic coordinate system in the mul-
tiply connected component of the complement of the hyperboloid, and along
the meridians, in the simply connected one. These forms can also be described
as flows of an incompressible fluid along the fields of the kernels of the forms.

The corresponding magnetic fields are given by the Biot–Savart integrals
over currents (generalizing the homeoid density) flowing along the meridians
of the surface in the first case, and along the parallels, in the second (the field
created by the current in the second component is zero).




