
 

7 Signal processing for auralization 

The fundamentals and techniques of theoretical and engineering acoustics 
as introduced in the previous chapters, with all available analytic calcula-
tion models, allow predicting the generation and radiation of sound. Psy-
choacoustics offers performance models of the human auditory system and 
focused evaluation of the technical character of sound. Accordingly, nu-
merous methods for analysis of acoustic signals are available. As described 
in the previous chapter, these can be based on signal theory, wave field 
physics or psychoacoustics. Sound can give information about sound en-
ergy (level), spectral information including masking, temporal attributes, 
spatial cues and specific parameters related to room acoustics. This set of 
analytic tools should be sufficient for all kinds of acoustical problems.  
Or is it not? 

The crucial point is that any number extracted from acoustic signals can 
represent an average impression, at least approximately. But the subjective 
sound event as such is only covered by a full auditory experience. The 
perception, the impression, the interpretation and the meaning of sound is 
not covered by this technical approach. The full characterization and inter-
pretation of sound, in the end, can be achieved only when hearing and 
other senses are involved directly. Therefore the technique of auralization 
offers an important extension to acoustic analysis and synthesis, prediction 
and rating. It involves the listener directly without the need to explain the 
meaning of acoustic events verbally. It represents an important component 
of multimodal sensation and corresponding psychological effects. 

7.1 The concept of auralization 

Auralization is the technique for creating audible sound files from 
numerical (simulated, measured, synthesized) data. 

The principle of auralization is illustrated in Fig. 7.1. It shows the basic 
elements of sound generation, transmission, radiation and reproduction. 
The figure indicates that the coupling between the blocks requires atten-
tion. In room acoustics, for instance, we rarely find an effect of feedback 
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to the source. The radiation impedance is typically not affected by the 
room. Nevertheless the source, if it is a person, will adapt his or her sing-
ing or musical playing based on the room response. This, however, is not  
a problem of physical feedback, but of psychological response. In a purely 
physical sense, the signal flow can be modelled only in the forward direc-
tion. In contrast, in problems of structure-borne sound, the situation 
changes completely. The vibrational velocity and displacement in beams 
and plates depends on the kind of source and the contact admittance of the 
components; see the back arrow in Fig. 7.1. 

If the interface between the source signal and the transmission chain is 
clearly defined in a robust way, the acoustic situation can be transformed 
into a signal flow model. “Robust” in this respect means that the interface 
will transfer the same velocity or pressure when sources or transmission 
elements are changed. The signal flow model can be represented typically 
by a two-port model, whose components can be determined by simulation 
or measurement. If the transfer functions of the elements are known by 
calculation or measurements, then the signal transmitted in the structure, 
duct, room or in a free field can be processed by convolution. 

This looks simple at first glance, but the task of generating an appropri-
ate filter becomes more difficult when more details are considered. For 
more detailed illustration, some examples are given in the following para-
graph. Obviously the auditory quality requirements of the signal used in  
a listening test shall be high: Bandwidth and the corresponding sampling 
rate, the colouration and the corresponding quality of the reproduction 
system, relevance of the direction of sound incidence, perceived distance 
of the sound event, a specific room impression, source characteristics, 
movement of the source or the receiver, just to list a few keywords. 

The technique of auralization and its result, a sound file, must take all 
these aspects into account, depending on the specific application. A basic 
task in this respect is the identification of relevant signal paths, the degrees 
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Fig. 7.1. Principle of auralization 
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of freedom of vibration in structural paths, and the identification of inter-
faces between sound and vibration. 

A historic example was mentioned in the preface. In the year 1929 in 
Munich, Spandöck and colleagues tried to model a room for speech and 
music performance. The basic idea was to use a 1:10 scale model of the 
room under test, to play music and speech into the model at scaled fre-
quencies, to record the result in the scale model and to reproduce it by 
rescaling the frequency content of the signal down to the real scale. 

Today, with powerful computers available, the components of the au-
ralization are typically obtained by computer simulation. Nevertheless, 
some problems in acoustics and vibration may exceed feasibility. Meas-
urements of sources and/or transfer paths are an indispensable prerequisite 
for an auralization for industrial application or for research. Any kind of 
determination of sound and vibration transfer functions from the source(s) 
to the receiver can be integrated into the concept of auralization. 

Before we concentrate on specific models for simulation of acoustics 
and vibration in the next chapter, the technique of auralization shall be 
further introduced in an overview. 

Starting with the source description, a primary signal is created or re-
corded. This primary signal may represent a volume flow of a point source, 
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Fig. 7.2. Convolution of source signal s(t) with a filter impulse response f(t) to 
obtain a receiver signal g(t) 
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the sound power and directivity of an extended source or of distributed 
sources, or the blocked force output or the free velocity of a vibrational 
source, for instance. The primary signal must be made available in ampli-
tude scale, in units of sound pressure or volume flow, for instance. Then the 
primary sound can be fed into the transmission path. The result will be  
a transmitted sound pressure signal which can be considered perceivable 
and ready for sound reproduction (most simply over headphones). The steps 
necessary for proper auralization are performed by using tools of the field of 
signal processing. The transfer function obtained by simulation (or meas-
urement) is, accordingly, interpreted as the transfer function of a “filter.” 

The procedure of convolution is the basis of signal analysis and process-
ing. It is related to linear time-invariant systems. 

7.2 Fundamentals of signal processing 

Nearly all sound-transmitting systems in acoustics can be approximated by 
linear time-invariant systems. By definition, these systems transmit sound 
in a repeatable way, independent of the actual starting time of the acoustic 
excitation. With the term linearity, we describe the fact that linear superpo-
sition holds. 

7.2.1 Signals and systems 

A so-called “signal” in the sense of signal theory is the time-dependent 
function of a scalar physical quantity. In our case, it might be sound pres-
sure, vibrational velocity or a similar signal.19 We denote this function by 
s(t) in the analogue (real) world and s(n) in the digital representation in the 
computer, respectively. This signal can be recorded or simulated, transmit-
ted over a system, changed in some way by a system and finally received 
by a sensor or a human. A linear system affects signals in a linear way, 
which means that signal superposition can be treated as linear combination. 
Amplification just results in an amplitude change. For any transmission20 
(transformation, Tr) of a signal fed into a system, the following holds 

( ) { }( ) ( )∑∑∑ ⋅⋅
⎭
⎬
⎫

⎩
⎨
⎧

⋅
i

tgatsatsa ii
i

ii
i

ii )( =)(=)( TrTr , (7.1)

                                                      
19 output from any kind of sensor. 
20 A “transmission” in a general sense could represent sound propagation in fluid 

media, transduction (in electroacoustics) or propagation/damping/insulation of 
sound and vibration in complex structures. 
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where si denotes the input signals and gi the output signals, i = 1,2,3… We 
can assume that amplifications, delays, filtering or summations behave as 
system transformations. The equation means that the transmission of a lin-
ear combination of input signals (ai si(t)) is equal to the sum of the com-
bined output signals. 

Furthermore, the specific behaviour of a system is important. It is time 
invariant, if for any time shift, 

 )-( = ))-(( 00 ttgttsTr . (7.2) 

By far, most systems in acoustics show this behaviour. A loudspeaker 
radiates a sound pressure proportional to the input current, at least when 
driven in linear mode (nonlinearities are well known in loudspeakers, of 
course, but this happens only at very high sound levels).The variations of  
a system in time are mostly negligible, too (also here the loudspeaker 
might change due to heating of the voice coil, but usually this can be ne-
glected in steady state or we can assume slow variations). 

Linearity and time invariance are combined in the expression LTI sys-
tem. LTI systems can be described with respect to their reactions to signals 
in the time and frequency domains. This reaction is uniquely represented 
by the impulse response (in the time domain) or the stationary transfer 
function (in the frequency domain). 

7.2.2 Impulse response and transfer function 

An LTI system fed with an input signal s(t) will yield an output signal g(t) 
with 

)()(d)()()(
-

thtsthstg ∗=−= ∫
∞

∞

τττ . (7.3)

h(t) is the impulse response of the system. The operation denotes a con-
volution integral. This general equation is the basis for all theoretical con-
siderations of LTI systems. 

s(t) g(t)h(t)

 
Fig. 7.3. Processing of source signal s(t) with a filter impulse response h(t) to 
obtain a receiver signal g(t) 
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Fig. 7.4. Dirac pulse 

It allows in particular the construction of filters. In some examples, it is 
a direct measure of the system characteristics, for instance, in room acous-
tics. The Dirac pulse, δ (t), plays a specific role. It can be intuitively ex-
plained by considering the approximation of a set of rectangular pulses of 
equal area, whose width tends to zero and height to infinity: 

)(rect1

000
lim

0
T
t

TT →
. (7.4) 

The Dirac pulse is the impulse response of an ideal transmission system 
without linear distortions. In this case, the output signal is identical to the 
input signal: 

)(d)()()( tststg =−= ∫
∞

∞−

ττδτ . (7.5) 

The convolution algebra for Dirac pulses is very simple. We will need 
the following examples of rules for Dirac pulses later, particularly for con-
structing auralization filters: 

Multiplication by a factor (amplification): 

).()()( tsatsta =∗δ  (7.6) 

Time shift (propagation path, delay line): 

)()()( 00 ttststt −=∗−δ . (7.7) 

Integration (step function ε(t)): 

)(d)( t
t

εττδ =∫
∞−

. (7.8) 
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Excitation of a system with a Dirac pulse: 

∫
∞

∞

=−=∗
-

)(d)()()()( ththtth ττδτδ . (7.9)

The system performance can also be described by the stationary transfer 
function, S(f ). It can be expressed in terms of components real and imagi-
nary parts (Re{S(f )} and Im{S(f )}) or in an equivalent form as modulus 
and phase(|S(f )| and ϕ(f )): 

{ } { } )(je)()(Im)(Re)( ffSfSfSfS ϕ⋅=+= . (7.10) 

If the signal modification caused by a system is to be determined, the 
linear distortion of harmonic input signals is of particular interest. By dis-
cussing the damping, delay or amplification of harmonic signals, we can 
characterize the system by the ratio of the output, G(f ), and the input, S(f ). 
Generally complex, the steady-state transfer function (related to harmonic 
signals) H(f ) is defined as 

( )
)(
)(

fS
fGfH = . (7.11) 

In an experiment we excite the system directly with a pure tone, equiva-
lent to an infinite stationary harmonic signal, provided the system is re-
sponding in steady state. Determination of the response amplitude and 
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Fig. 7.5. Example of a loudspeaker sensitivity function 
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phase and calculation according to Eq. (7.11) yields the transfer function at 
this frequency. Repetition of this procedure in certain frequency steps 
gives a sample of the transfer function. 

Accordingly the signal flow expressed in frequency domain reads 

( )fHfSfG ⋅= )()( . (7.12) 

As will be explained in the next section, this equation must be inter-
preted as equivalent to Eq. (7.3). 

7.3 Fourier transformation 

The impulse response of a system and its steady state transfer function are 
linked by Fourier transformation one-to-one: 

{ } )()( fHth =F  (7.13) 

Thus, LTI system can be described in time or frequency domain 
uniquely. Signal flow through LTI systems, therefore, can be studied in 
time domain and frequency domain, and all results can be related to the 
corresponding function in the other domain, too. 

The Fourier transformation is the fundamental algorithm to change the 
interpretation of signal flow from time signals to spectra and vice versa. As 
illustrated in Fig. 7.7, the Fourier transformation can be applied at any 

S(f) G(f)H(f)

 
Fig. 7.6. Processing of source signal S(f ) with a stationary transfer function H(f ) to 
obtain a receiver signal G(f ) 
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Fig. 7.7. Input and output signals of LTI systems 
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stage of signal transmission. Even in the temporal calculation process, the 
convolution integral, can be “transformed” into the frequency domain, thus 
giving a multiplication. This is not a surprise since the Fourier transforma-
tion is known in mathematics as the key to solving integrals of the convo-
lution type. 

The calculation rule of Fourier transformation for converting between 
impulse response and steady-state transfer function is 

tthfH ftde)()( 2j∫
∞

∞−

−⋅= π , (7.14)

ffHth ftde)()( 2j∫
∞

∞−

⋅= π . (7.15)

In transforming signals, it reads 

ttsfS ftde)()( 2j∫
∞

∞−

−⋅= π , (7.16) 

ffSts ftde)()( 2j∫
∞

∞−

⋅= π . (7.17) 

The Dirac pulse must be mentioned again. We completely understand its 
function as the identity function of convolution, since its spectrum is 1, the 
neutral element of multiplication. The latter equation can also be inter-
preted as a definition of the Dirac pulse. 

1de)( 2j =⋅∫
∞

∞−

− tt ftπδ  (7.18) 

ft ftde)( 2j∫
∞

∞−

= πδ . (7.19) 

So far, the fundamentals of signal processing related to acoustic systems 
have been introduced. For a deeper understanding, however, these basics 
must be adapted to processing in digital computers. The most important 
aspect, therefore, is consideration of discrete signal processing and the 
proper representation of continuous functions by sampling. 
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7.4 Analogue-to-digital conversion 

To feed signals into a computer memory and to process them, the analogue 
signals must be digitized. By using an A/D converter, the analogue time 
functions s(t) are quantized according to their amplitude (in the end repre-
sented by an electric voltage) in certain steps and sampled in time, thus 
yielding a discrete series of scaled binary data. 

The precision of quantization depends on the amplitude resolution cho-
sen. The range of numbers used is normalized and transformed to an ap-
propriate binary format. The full amplitude scale of the A/D converter is 
then related to n bits, allowing the analogue signal to be expressed in 2n/2 
different values between zero and ± full scale (assuming AC signals with 
an average close to zero). With a resolution of 16 bits, this is related to 
65536 integers between –32768 and +32767, mapped to a voltage between 
–Umax und +Umax. 

Considering arbitrary signals, the approximation uncertainties caused by 
quantization are distributed stochastically. Since the smallest voltage step 
is Umax/2n, the level of the expected (rms) quantization noise is given by 

nN n
quant 62log20 −≈−= . (7.20)

Sampling rates of 40–50 kHz are typical for sound in the hearing range 
are and quantization of 16 bits, in measurement or sound recording hard-
ware, also up to 24 bits. Dynamic ranges caused by hardware limitations 
are thus available with same range as for the best transducers, condenser 
microphones, with about 130 dB between full scale and quantization noise. 

The clock frequency of sampling (sampling frequency) depends on the 
frequency content of the signal (see below). Taking into account an ade-
quate depth of discretization, the samples represent an exact image of the 
analogue signal. In order to modify the signal, however, the discrete form 
allows much more flexible and elegant solutions of processing (filtering, 
analysis, amplification, delay, etc.). These modifications can now be im-
plemented as mathematical operations. 

According to the theory of linear time invariant systems, the sampling 
process can be described as follows. An analogue signal21 s(t) is sampled 
at times nT with n = 0,1,2,… and T = 1/fSample and instantaneous voltage is 
measured at each sample. This process corresponds to a multiplication of 
the analogue signal by a series of Dirac pulses, 

∑
∞

−∞=

−=
n

nTtt )()III( δ , (7.21) 

                                                      
21 To be typically considered preconditioned in volt units at the input of the A/D 

device (sound card). 
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Fig. 7.8. Top: Sampling of a signal. Bottom: Ambiguity of the discrete samples 
matching to sinusoidals 

and the sampled signal reads 

nTtn
nTt nTtnTsttsns

=

∞

−∞=
= ∑ −=⋅≡ )()()(III)()( δ , (7.22) 

see Fig. 7.8. 
At least two samples must cover one period of the harmonic signal, as 

illustrated in Fig. 7.8, to exclude any ambiguity, so-called “aliasing.” 
Otherwise, harmonic signals with integral frequency multiples will lead to 
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the same correspondence between the samples and the analogue signal. 
The complete spectrum is, thus, a series of repeated spectra on the fre-
quency axis. 

More generally, we can identify sampling in time domain (multiplica-
tion in the time domain) as the convolution of spectra in the frequency 
domain. According to one of the main rules of Fourier transformation, we 
can express 

)/(III)/( TtTts ⋅                 )(III)( TfTfS ∗  (7.23)

with 

tTtTf ft de)/(III)(III 2j∫
∞

∞−

−⋅= π  (7.24) 

denoting the Fourier transform of the Dirac series. The time and frequency 
axes are normalized to the sampling rate 1/T. Note the inverse relationship 
between III(t/T) and III(Tf). A narrow Dirac sequence in the time domain 
corresponds to a wide series of spectral lines in the frequency domain. 
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Fig. 7.9. Reconstruction of the analogue signal 



 7.5 Discrete Fourier transformation 115 

Provided we can cut the original spectrum from the series, the original 
signal is constructed unambiguously. This can be achieved by applying  
a low-pass filter (see Fig. 7.9) truncating the spectrum at fmax. Accordingly, 
the distance of the centre of the alias spectra must be larger than 2 fmax. 
This is expressed in the sampling theorem: 

maxSample 2 ff ≥ . (7.25)

7.5 Discrete Fourier transformation 

For sampled signals, there remains the question regarding an efficient Fou-
rier transformation. The calculation algorithm for the discrete Fourier 
transformation (DFT) is (compare Eq. (7.16)) 

1,...,1,0;e)(1)(
1

0

/2j −== ∑
−

=

− Nkns
N

kS
N

n

Nnkπ . (7.26) 

The variable n represents the time domain, k the frequency domain. For 
solution of this sum, N2 (complex) multiplications are required. 
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Fig. 7.10. Sampling and processing of a signal, s(n) in top left. Top right: Corre-
sponding theoretically continuous spectrum, S(f ). Bottom right: Numerical (dis-
crete) spectrum S(k). Bottom left: The periodic signal corresponding to the dis-
crete spectrum s(n) (after (Lüke 1999)) 
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As a consequence of sampling, the spectrum of a sampled signal will be 
periodic (Eq. (7.23)) and continuous. But in digital representation, the 
spectrum can be stored only in digital form at certain frequency lines.22 
The discrete spectrum is, thus, a line spectrum. A line spectrum such as 
this, however, is strictly related to periodic time signals, even when the 
original signal is not periodic. Apparently, there is a contradiction be-
tween (analytic) Fourier transformation and discrete Fourier transforma-
tion (DFT). But this conflict can be solved in the same way as spectral 
aliasing was solved, by having a sufficient distance between the temporal 
periods (see Fig. 7.9). 

7.6 Fast Fourier transformation 

The so-called fast Fourier transformation, (FFT) is a special version of the 
DFT. It is one of the key algorithms in virtual acoustics, in acoustic meas-
urements, in speech and image processing and other fields. It is not an 
approximation, but a numerically exact solution of Eq. (7.26). However, it 
can be applied only in block lengths of 

N = 2m (4, 8, 16, 32, 64, …). (7.27) 

The reason for the accelerated calculation is preprocessing with the re-
sult of presorting symmetric terms and reducing the necessary processing 
steps to a small fraction. 

The algorithm expressed in Eq. (7.26) is arranged in a linear equation 
system in matrix formulation, here illustrated in an example with N = 4: 
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with 
NjeW /2π−= . (7.29) 

Note the high symmetry in the complex phase function, W, which di-
vides the complex plane into N segments. W raised to the power of n corre-
sponds to a rotation and imaging of W into itself, if 2π/N produces circular 
symmetry of a half, quarter, eighth, etc. The core of FFT is thus the trans-
formation of the matrix into a matrix of symmetry. This is achieved by  
                                                      
22 We cannot store continuous data in the computer memory. 
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a so-called “bit reversal,” a specific interchange of columns and rows, so 
that quadratic blocks of zeros (2 × 2, 4 × 4, 8 × 8, …) are created. Of course, 
all multiplication terms involving zeros can be omitted. In our example, 
the transformed matrix is 
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with x1 and x2 denoting the temporal and spectral vectors, respectively, 
after matrix conversion. For instance, the calculation of two vector ele-
ments of x2 reduces to x2(0) = x1(0) + W0x1(1) and x2(1) = x1(0) + W2x1(1). 
All other product terms are zero. 

Worth mentioning is that the remaining terms create links between 
neighboured vector elements to two others. This fact can be used to ex-
press the process in a butterfly algorithm: 

x (0)1

x (1)1 x (1)2

x (0)2

Butterfly-algorithm:

e.g.: x (0) = x (0) + W x (1)2 1 1

0

 
Fig. 7.11. FFT butterfly 

The solution of an m × m matrix can finally be found by a cascade of m 
butterflies, which reduces the necessary number of multiplications from N 2 
to N log2(N/2), for example, for N = 4096 by a factor of 372 from 
16777216 down to 45056. 

7.6.1 Sources of errors, leakage and time windows 

At the given boundary conditions, several sources of errors are possible. At 
first, it must not be forgotten that FFT as a special form of DFT is related to 
periodic signals. If the signal to be transformed is periodic, the block length 
(time frame) of the DFT or FFT must correspond to an even number of peri-
ods, so that the continuation at the end is exactly the same as at the beginning 
of the block. Otherwise the forced periodicity of the DFT creates a disconti-
nuity, and the Fourier transform is related to this discontinuous signal. 

If the DFT or FFT block length exactly matches an even number of pe-
riods, this error is avoided. This can be accomplished by manual or auto-
matic period identification and sampling rate conversion. 
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Fig. 7.12. A 1 kHz pure-tone signal and spectrum by using DFT (6.25 periods) 

Another approximate method is the window technique. A window is 
applied by multiplication of a window function to the time frame. The 
window function acts like a pass filter, however, in the time domain.  
A symmetric window reduces early and late components in the signal and 
lets the midtime part pass unchanged. The window reduces the leakage 
effect by reducing the relative amplitude of the discontinuity. Windowing 
corresponds to a convolution of the signal spectrum with the window 
spectrum. Windows can therefore be optimized, based on temporal and 
spectral features. 

Table 7.1. Typical window functions (Examples, n = 0,1,2,…, N–1) 
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7.7 Digital filters 

Digital filters are used for pre- and postprocessing of signals. In measure-
ments, they serve as high-pass, low-pass or band-pass filters. In auraliza-
tion and sound reproduction they serve as a basis for filtering, convolution 
and for final adjustment of audio effects, including special cues such as 
spatial attributes or equalizing sound reproduction equipment. 

Digital filters are designed from combinations of addition, multiplica-
tion and delay components. Creating delay was always the biggest problem 
with analogue techniques. With digital tools, delay elements in particular 
are created much more easily (just using storage devices). 

A discussion of digital filters is best illustrated with a plot of the com-
plex transfer function, the modulus and phase response. Furthermore, in 
the pole-zero diagram, the order of the filter can be discussed. Figure 7.13 
shows an example of a filter in both diagrams. 

For a theoretical description of digital filters, the Hilbert transformation 
is applied. It is a general form of Fourier transformation, also for treatment 
of harmonic functions. By introducing the Laplace variable, 

ωjez = , (7.31) 

the frequency response is mapped to a complex two-dimensional function 
in the complex plane. The following rules can be applied to designing fil-
ters: Poles and zeros must be either real or they must appear as complex 
conjugates. For example, a pole at z = 0 leads to multiplication of the fre-
quency response by e–jω t, thus affecting the phase without changing ampli-
tudes. A pole (or zero) on the unit circle corresponding to a filter response 
H(jω) becomes infinite (or zero) at a certain frequency. A pole outside the 
unit circle creates an instability with increasing filter impulse response 
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Fig. 7.13. Digital band-pass filter of the sixth order. Top: Frequency response. 
Bottom: Pole-zero diagram 
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h(t). Poles outside the real axis generally correspond to oscillations of the 
filter impulse response. 

Now, the frequency response can be constructed easily from the pole-
zero plot. The z plane is considered to represent a membrane. Poles are 
marked by vertical columns below the membrane, zeros by heavy stones 
put on the membrane. From the resulting landscape on the membrane, with 
hills and valleys, the modulus frequency response of the filter is the height 
along the unit circle, starting from 1 on the real axis. Digital filters can be 
divided into to groups: IIR and FIR filters. 

IIR filters (Infinite Impulse Response) 

IIR filters make approximation of desired impulse response functions pos-
sible. Poles (a(n)) and zeros (b(n)) are placed in the complex plane. The 
filter transfer function is then 

( )
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( )∑

∑
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=

−

= N
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n

n

zna

znb
zH

0

0 , (7.32) 

which should approximate the desired response with the least possible 
order N. This can also be illustrated using a block diagram with forward 
and feedback lines. z–1 means a shift by one sample, and the triangles mean 
multiplication (amplification) by factors a or b. 
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Fig. 7.14. Block diagram of an IIR filter. x(n) and y (n) are input and output sig-
nals, respectively 
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The output signal, y (n), is created by amplifying and adding past sam-
ples. Due to the feedback loop, the filter impulse response can be infinitely 
long (infinite impulse response). 

IIR filters can be optimized to produce a specific modulus response, al-
though the phase response cannot be controlled independently. Due to 
feedback conditions they may be unstable, unlike FIR filters. IIR filters 
also require less effort and complexity than FIR filters and usually have  
a lower order. 

FIR filters (finite impulse response) 

FIR filters are created by approximating the desired function by placing 
zeros on the unit circle and choosing poles exclusively in the origin with 

( ) 1
0

=∑
=

−
N

n

nzna . (7.33) 

Thus the transfer function of the filter reads 
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, (7.34) 

with the following block diagram: 
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Fig. 7.15. Block diagram of an FIR filter 

FIR filters are stable in each case. The output depends only on input 
data and not on feedback. The impulse response is identical to the coeffi-
cients, b(n), and it is finite in length (finite impulse response). 

In FIR filters, the modulus and the phase can be controlled independ-
ently. For control at low frequencies, however, the filter order (length) 
must be quite high since one period of the corresponding spectral content 
must fit within the filter length. 
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Filter concepts are useful and applicable for auralization of various 
kinds. There is no absolute preference for the one or the other approach. 
The optimum filter depends on the application and the software implemen-
tation. For more information, see (Papoulis 1981; Morjopoulos 1994; 
Kirkeby and Nelson 1999).  




