
 

3 Sound propagation 

Sound radiation from sources often happens in free space. This applies to 
the sound that reaches the receiver directly over a free line of sight.6 The 
dependence of sound intensity and sound pressure level on the propagation 
distance is an important law of sound propagation. The following table 
summarizes some basic distance laws. 

Table 3.1. Free-field propagation from elementary sources in direction of maxi-
mum sound radiation 

Type of source Distance law of 
sound pressure level 

Level reduction  
per distance  
doubling, dB 

Monopole 11log20 −−= rLL w  6 

Multipole or other  
directional source,  
on axis 

Dw LrLL +−−= 11log20  6 

Circular rigid piston 
in baffle, on axis 

Dw LrLL +−−= 11log20  6 

Incoherent line above  
ground (P' = P/Δx) 

( wL'  = 
m1

log10 xLw
Δ− ) 

3log10' −−= rLL w  3 

3.1 Reflection of plane waves at an impedance plane 

Undisturbed free-field propagation is a good sound field model for anech-
oic environments. Any obstacle in the field, however, will interact with the 
incident sound pressure. Small or large objects or room boundaries influ-
ence the total sound pressure through reflection, scattering and diffraction. 
                                                      
6 Obviously this applies typically to outdoor sound propagation or to sound 

propagation in close distances between souce and receiver, so that no obstacle 
is in the propagation path. 
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Fig. 3.1. Reflection of plane waves at impedance plane 

Furthermore, properties of the medium such as inhomogeneity of sound 
velocity and viscous effects can introduce influences such as refraction and 
attenuation, respectively. A plane wave incident on a (infinitely) large 
smooth wall is reflected according to Snell’s law. This can be described 
with a “specular” reflection. 

The amplitude might be reduced and the phase changed. If the wave is 
incident at the angle ϑ, 

( ) ( )ϑϑω sincos
i

eˆ,, kykxtjptyxp −−= , (3.1) 

and the reflected wave is 

( ) ( )ϑϑω sincos
r

eˆ,, kykxtjRptyxp −+= , (3.2) 

where R denotes the reflection factor, jγRR e= . It is related to the wall 
impedance, Z, by 
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Z0 = ρ0c is the characteristic impedance of air. The wall impedance, Z, is 
defined as the ratio of sound pressure to the normal component of particle 
velocity, both determined at the wall. If the impedance is independent of 
the angle of incidence, we talk about “local reaction.” The consequence of 
local reaction is that adjacent sections of the same wall surface are inde-
pendent from each other, so that no tangential waves are transmitted along 
the wall surface. This is a good approximation for heavy walls, for walls 
with low bending stiffness (see Sect. 5.2) and for porous absorbers with 
high flow resistivity. 
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Particularly important is the absorption coefficient, α: 
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and the specific impedance 
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For locally reacting surfaces, the absorption coefficient is 
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3.1.1 Examples of wall impedances 

For perpendicular incidence, we can define some extreme cases. Real ma-
terials approximate these conditions quite well. For example, a heavy con-
crete wall represents a “hard wall,” and the ocean surface in underwater 
sound represents a “soft wall.” Some other examples are listed as follows 
(after (Kuttruff 2007)): 

Matched wall  1;0;0 === αRZZ  

Hard wall  0;1; ==∞= αRZ  

Soft wall  0;1;0 =−== αRZ  

Mass layer 

At x = 0, we assume a layer of mass per surface area of m". The reaction of 
this layer is exclusively inertia. Accordingly, the layer is characterized 
with neglected internal and mounting stiffness and losses. The force p – p' 
on a surface area of 1 m2 excites the layer to vibrations with the velocity 
v' = v. p, v denote the pressure and particle velocity on the incident side and 
p', v' on the transmission side of the mass layer. 

One can easily show that 
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Fig. 3.2. Sound hitting a mass layer 

The absorption coefficient is 
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If ω m" » 2Z0, the equation can be simplified to 
2

0
2

"
2'

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈=

m
Z

p
p

ω
α . (3.9) 

For instance, assuming even a lightweight element such as a 6 mm glass 
pane with m" = 15 kg/m2, the term in brackets in Eq. (3.8) already exceeds 
10 above 30 Hz. 

Mass layer in front of a hard wall 

We now consider the combined impedance from a mass layer mounted 
with an air gap to the rigid wall. At first, the air gap alone is considered. It 
results from choosing a new reference plane for x = 0. Shifting the refer-
ence plane this way may also be intended to place another object such as 
porous fabric at x = 0 (see below). 

Before returning to x = 0, the reflected sound wave travels the twice the 
distance d. The reflection factor is thus 

1,e 2 == − RRR jkd  (3.10) 
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Fig. 3.3. Sound incident on a virtual air gap in front of a hard wall 

and 

)cot(0 kdjZZ −= . (3.11) 

When kd « 1, meaning the air gap is much smaller than the wavelength, 
we can approximate the cotangent function by kdkd 1)cot( ≈ . 
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In this frequency range, the air gap apparently reacts as a spring with the 
stiffness per m2 
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We now add the mass layer at x = 0 by adding its impedance jω m". 
Losses are added by a flow resistivity per m2, w", addressed to porous ma-
terial placed in the air gap. 
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The reader may recognize that this impedance belongs to a resonator 
with resonance frequency 
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Fig. 3.4. Sound hitting a mass layer with air gap and porous filling 

Porous layer in front of a hard wall 

The impedance of the air gap is now combined with a purely resistive 
component, w": 

)cot(" 0 kdjZwZ −= . (3.16) 
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Fig. 3.5. Sound hitting a curtain in front of a wall 
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3.2 Spherical wave above impedance plane 

The total field at R contains a contribution from the direct sound travelling 
along the vector 0r

v  and another component reflected from the plane. In 
contrast to a plane wave reflection, for spherical wave incidence, the im-
pedance plane is hit at various angles and the total reflection must be inte-
grated: 
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The first term represents the direct sound and the latter the contribution 
of the reflection. An approximation of the entire expression assuming  
a constant angle of incidence, ϑ0, is 

)(
4

ˆ

4

ˆ
0

1

0

0

0
10

ϑR
πr

eQjωω
πr

eQjωω
p

jkrjkr −−

+= . (3.18) 

This equation assumes a constant angle and, thus, a plane wave. The 
contribution of the reflection can be related to another point source, called 
an “image source” (see also Sect. 11.3), which is apparently located below 
the surface and radiates a spherical wave whose amplitude is reduced by 
R(ϑ0). Although a spherical wave is present, the reflection is calculated for 
constant angle, ϑ0. Apparently, for the moment of reflection, the sound 
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Fig. 3.6. Spherical wave reflection above impedance plane 



42 3 Sound propagation 

field model is switched to a plane wave.7 This “image source model” is 
even exact when R = 1 or R = –1. For other reflection factors, the approxi-
mation was identified sufficiently accurately for z, z0 and r » λ (Suh and 
Nelson 1999); see also Sect. 11.3.3. 

In a reflecting plane, plane waves or spherical waves can be separated 
into elementary sources (Huygens’ principle). These sources together build 
up an interference field that produces a plane or spherical wave. This 
model is the background for the simplicity in Eq. (3.18) (which is exact 
when 1=R ). 

If, however, the plane has discontinuities in geometry or impedance, the 
Huygens superposition will be disturbed and the reflected field shows scat-
tering and diffraction. Scattering is related to the reflection by an object, 
while diffraction is related to the boundary of an object. 

3.3 Scattering 

3.3.1 Object scattering 

Sound waves may hit obstacles. Depending on the size of the objects com-
pared with the wavelength, the scattered field has large amplitudes in the 
forward direction (“forward scattering”), in the reverse direction (“reflec-
tion”) or in any other direction following a specific distribution. The exact 
formulation and solution of the scattered field amplitude is a difficult prob-
lem, except in academic cases of objects such as spheres, cylinders, etc. 

An efficient strategy for addressing the problem in practical cases is to 
map the scattered field to an equivalent field created by a spherical scat-
terer. By this approach, the scattering cross section is defined. For an inci-
dence plane wave with intensity I0, the scattering cross section is (λ « a) 

02I
P

Q s= . (3.19) 

In a more general approach, the theoretical model is based on superposi-
tion of the undisturbed incident field, p0, and the scattered wave, ps, 

s0 ppp +=  (3.20) 

                                                      
7 Plane wave approximation. 
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Fig. 3.7. Sound scattering at a sphere with radius a (after (Morse and Ingard 1968)) 

ps must fulfil the boundary condition at the object’s surface. With Z = ∞ the 
normal component of the particle velocity must be zero, and, thus, the 
normal component of the pressure gradient, too. From this follows 
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and for the particle velocity of the scattered wave, 
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The radiated field generated from this velocity distribution is to be calcu-
lated by using the models of Sect. 2.4 in an equivalent radiation problem. 

3.3.2 Surface scattering 

Sound reflection at rough, corrugated walls is also described by scattering. 
We still assume a large wall, but its surface corrugations in length and 
depth are not small compared with the wavelength. A plane wave incident 
on the wall will interact in a way that the local phases of the elementary 
(Huygens) sources form a complicated total field of scattered sound. 

As illustrated in Fig. 3.8, the wall can be assumed smooth at low fre-
quencies if the depth, h, and the length, a, of the corrugation profile are 
significantly smaller than λ/2. When corrugations are of the order of mag-
nitude of the wavelength, a complicated scattered field will develop. At 
high frequencies, the fine structure of the corrugations will lead to a specu-
lar type of reflection again. 
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Fig. 3.8. Scattering caused by surface corrugations 

Note that scattering from a rough surface may lead to sound paths with 
oblique angles of incidence and reflection and with delayed arrival, com-
pared with the specular sound path. 

For some corrugation types, analytic or numerical solutions are avail-
able. The bandwidth of the sound waves determines whether the total scat-
tered field at the observation point can be approximated by energetic for-
mulations or if distinct spectral and directional scattering lobes will occur 
(Cox and D’Antonio 2004). Scattering theory is best understood when it is 
expanded into spatial wave decomposition; the zero-order component 
(zero-order lobe) represents the specular reflection component. Higher or-
der lobes direct the sound in nonspecular directions. 

The energies of reflections are normalized with respect to the incident 
plane wave, as shown in Fig. 3.10: 

)1(,)1()1)(1( totalspec αα −=−≡−−= EasE  (3.23) 

S R

R( , , , )21 1 2£ © £ ©

 
Fig. 3.9. Delayed sound paths from surface scattering 
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Fig. 3.10. Energy reflected from a corrugated surface into a scattered and specu-
larly reflected portion. Definition of the total reflected energy (1 – α ), the scattered 
energy (1 – α ) s and specularly reflected enery (1 – α ) (1 – s) (Vorländer and Mom-
mertz 2000) 

where a is the “specular absorption coefficient.” It is an apparent absorp-
tion coefficient because the energy is scattered rather than absorbed. From 
these equations, the energy portion scattered, s, can be determined by 
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α . (3.24) 
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Fig. 3.11. Random-incidence scattering coefficients measured on a scale-model 
sample of a diffusing ceiling structure (PTB, Round Robin III, used in (Bork 
2005a)) 
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Furthermore, measurement data are available to serve as input data for 
simulation software (see Sect. 11.2 and Annex). These data describe the 
energetic amount of scattering (scattering coefficient) compared with the 
zero-order scattering lobe (specular component). 

The uniformity of the directional scattering distribution (diffusion coef-
ficient) is also of interest, but this should not be confused with the scatter-
ing coefficient (Cox and D’Antonio 2004; Cox et al. 2006). The directional 
distribution of the sound scattered from the surface of the object is ob-
tained analogously to the way one might test the uniformity of loudspeaker 
radiation. Thus, a free-field polar response must be calculated or measured. 
The diffusion coefficient is then a single number describing the uniformity 
of the polar response. If the energy is scattered uniformly in all directions, 
then the diffusion coefficient is one. If all the energy is scattered in one di-
rection, then the diffusion coefficient is zero. The diffusion coefficient is 
usually determined in one-third octave bands and is frequency dependent. 

The limiting case is the ideal diffuse reflection according to Lambert’s 
cosine law. The intensity of a Lambert scatterer depends on the cosine of 
the scattering angle, ϑ, and the distance from the wall element dS. It is in-
dependent of the angle of incidence. 

( ) ( ) ϑ
π

αϑ cosd1 2r
SBI −=

v
. (3.25) 
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Fig. 3.12. Probability distribution of scattered sound (Lambert’s law) 
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B denotes the irradiation strength on the wall; α the part of the incident 
energy BdS which is not reflected from the wall. This kind of scattering 
distribution creates a constant illumination effect on a detector with fixed 
sensor area, such as a membrane or, in the optical analogy, such as a cam-
era or an eye with a fixed aperture. A white sheet of paper thus seems to 
have a brightness independent of the observation angle. Another example 
of a Lambert scatterer is the light-reflecting moon which looks more such 
as a disc than a sphere, since the light scattered from the surface near the 
moon’s apparent midpoint (at a direction normal to the observer) has the 
same effective brightness as the light scattered from the apparent circum-
ference, with an observation angle of almost π/2. 

3.4 Diffraction 

Diffraction occurs at objects with free edges, at corners and edges in  
a room, or at boundaries between materials with two different impedances. 
The diffraction wave is apparently radiated from the edges or perimeter of 
an object. Its intensity is negligibly small if the object is small compared 
with the wavelength. In this case, the incident wave remains unaffected. 
As the object gets larger with respect to wavelength, a shadow region first 
appears and then grows clearer and sharper. The shadow results from a to-
tal cancellation of the incident wave by the diffraction wave. 

As for scattering, the calculation of the diffracted field is analytically 
possible for geometrically simple obstacles (sphere, circular disc, cylin-
ders, free edge on a screen, slits or holes in a screen, etc.). 

Diffraction models must be taken into account when sound propagation 
is predicted for large distances in urban areas, for instance, or in open-plan 
offices, just to give a few examples. Noise barriers are a typical example 
for the application of engineering models of diffraction. It can be shown 
(Maekawa 1968) that the diffracted wave from the edge and corresponding 
insertion loss of a vertical screen can be approximated by using the detour, 
d, of the diffraction (see Fig. 3.13): 

)2log(10 2

λ
π dL ≈Δ  (3.26) 

Because the sizes of many objects encountered in daily life are of the 
order of magnitude of the wavelength, diffraction is easily noticeable, al-
though hard to predict by calculation. Diffraction influences binaural hear-
ing, the sound transmission through doors or windows when they are not 
completely sealed and the orchestra sound from an orchestra pit in an op-
era house. 
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Fig. 3.13. Estimating the insertion loss of a screen 

3.5 Refraction 

Based on Fermat’s principle, sound waves take the path with the shortest 
travel time. For transmission of a plane sound wave from air with charac-
teristic impedance Z0 into another medium with characteristic impedance 
Z', we use the refraction index, 
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for calculating the geometric conditions. 
The amplitude of the refracted wave into the medium with Z' follows 

from 
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while for the reflection factor, Eq. (3.3) still holds. 
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Fig. 3.14. Refraction at the boundary between two media 
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This approach can also be used to derive curved transmission paths in 
layered media. If the sound speed changes gradually, for instance, with 
temperature at various atmospheric elevations or with temperature and salt 
concentration in the ocean, the effect can be described by using small lay-
ers of constant sound speed. For the boundary between two adjacent layers 
with sound speed c and c + dc, 

ϑ
ϑ
ϑ

ϑ
ϑϑ d

sin
cos1

sin
)dsin(d +≈+=+

c
cc . (3.29) 

This effect corresponds to a curved sound path with reciprocal radius: 
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where n denotes the normal direction of the sound wave. The curvature is 
the bigger, the larger the sound speed gradient in the direction normal to 
the propagation. This effect can lead to curved sound rays in the atmos-
phere. In some weather conditions (temperature increasing with height), 
upward radiated sound may be bent down to reach the ground again. Long-
distance sound propagation is affected greatly. The same will be observed 
with wind speed profiles. In outdoor sound propagation, therefore, refrac-
tion is an essential aspect of sound field modelling. 

3.6 Attenuation 

Attenuation is another effect of long-distance sound propagation. It should 
be noted that long-distance sound propagation may happen outdoors, of 
course, but also indoors. If a sound wave is observed during its propaga-
tion for some seconds, it is clear that it has travelled several hundred me-
tres; independent of whether the problem is outdoor or indoor, the latter 
involves numerous wall reflections. 

Several attenuative effects lead to a complex wave number, k ', and to an 
exponential decrease of the sound pressure and intensity, described by 

( ) ( ) ( )'xkωtjkxωtjx
m
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where m denotes the energetic attenuation coefficient and 
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The intensity along the x coordinate in a plane wave is 

( ) mxIxI −= e0  (3.33) 

or expressed in effective level loss, 

dB/m34,4 mD = , (3.34) 

with the level loss after propagation over the distance x 

xDLL ⋅−= 0 . (3.35) 

The reason for attenuation is viscosity, heat conduction and thermal re-
laxation (Bass et al. 1995). All effects irreversibly extract energy from the 
sound wave and feed other energy reservoirs, for instance, translational, 
rotational or vibratory modes of water molecules. The amount of water in 
the medium – humidity – has a crucial influence on the attenuation. 
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Fig. 3.15. Typical attenuation curves (after (Kuttruff 2007)) of humid air a) 10%, 
b) 40%, c) 80%, d) classical theory (~ ω2) 
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3.7 Doppler effect 

One of the acoustic effects best known to the public is the Doppler effect, 
the frequency shift perceived when cars, police or fire-brigade horns are 
passing by at high speeds. Moving sound sources or receivers cause  
a change in the received rate of sound pressure maxima and minima and, 
thus of frequency at the receiver. Differing from the analogy in electro-
magnetic waves, the acoustic Doppler effect depends on the actual move-
ment and not just on the relative movement. If the receiver is moving with 
velocity V toward the source, the received frequency is higher than the ra-
diated. Inserting tVxx −= 0  into a harmonic sound pressure equation 
yields 

[ ]0-)+ (jeˆ= kxtkVpp ω . (3.36) 

The perceived frequency is thus 
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If, however, the sound source is moving relative to the medium in direc-
tion of the receiver, at first another sound speed is to be accounted for, 
c' = c – V and k ' = ω/(c – V). This, together with the changed distance  
x = x0 – Vt, yields 

[ ]0')'(jeˆ xktVkpp −+= ω , (3.38) 

with the effective frequency 
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In the latter case only movement with V < c leads to a registration of 
regular harmonic sound at the receiver. If V > c, the sound signal at the re-
ceiver is compressed to a shock wave. The distinction from relative 
movement can be better understood by discussing the extreme cases 
(V → c) with respect to a harmonic signal. The rate of received pressure 
maxima determines the received frequency. 
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Table 3.2. Four cases of the Doppler effect at relative speed c0 

1) Moving receiver toward the source 
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2) Moving receiver away from the source 
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3) Moving source toward the receiver 
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4) Moving source away from the receiver 
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