
 

1 Fundamentals of acoustics 

“Waves” are well-known to everybody, even when they are not cognitively 
identified as waves. While reading this book, light waves as an example of 
electromagnetic waves are scattered from the white paper and absorbed by 
printed letters. Electromagnetic waves were predicted by James Clerk 
Maxell’s theory in 1864 and experimentally discovered by Heinrich Hertz 
in 1888. Their spectrum from gamma radiation, X-rays, ultraviolet, the 
visible range, infrared toward spectra for technical communication systems 
offers a fascinatingly wide area of natural phenomena and technical appli-
cations. Waves are to be considered local oscillations in a physical “field” 
with the inherent effect of energy and information transport and are found 
in numerous areas of physics. The common approach in these areas is that 
small perturbations of the equilibrium yield linear or approximately linear 
forces and oscillating states of permanently recycled potential and kinetic 
energy.3 

 
Fig. 1.1. Waves in water 

                                                      
3 A row of dominos falling is an example where a kind of transport wave is ob-

served without energetic equilibrium. Energy is not recycled. This effect is not  
a wave in the physical sense we discuss here! 



8 1 Fundamentals of acoustics 

 
Fig. 1.2. Photograph of metal spheres connected by springs 

Although water waves are possibly one of the most enjoyable examples, 
we now focus on a mechanical system to illustrate of the nature of waves. 
A chain of masses is connected by springs. In this example, a one-dimen-
sional wave is excited. When one mass is moved (by forced excitation), it 
takes kinetic energy, transfers this energy to the attached spring, which is 
compressed (and stores potential energy), recycles and transfers its energy 
to the next mass, and so on. By intuition, we can imagine easily that heavy 
masses with large inertia and soft springs with high flexibility provide this 
transport effect at slower speed than lightweight masses and stiff springs. 
We can also think of a row of children holding hands. When the first child 
pushes his neighbour, the neighbour will move to the side, pushing the 
next neighbour and so on. When all children now stiffen their arm mus-
cles, the wave movement in the row runs faster. By this analogy, the phe-
nomena of energy transport in a wave and the microscopic nature of the 
wave speed are already understood. 

1.1 Sound field equations and the wave equation 

Sound is a wave phenomenon in fluid or solid media. The main areas of 
acoustics are accordingly called airborne sound, underwater sound and 
structure-borne sound. The differential equations of vibration and waves in 
acoustics can be derived from dynamic physical laws of continuum me-
chanics. The physical foundations of linear acoustics are introduced in this 
chapter: the one-dimensional wave equation, its solutions and the three-di-
mensional generalization. We start with an image of sound, taken such as  
a photograph at a certain time, and we observe that the medium’s molecules 
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or atoms are somehow displaced from their original position, of course, 
independent of the constant irregular thermal movement. 

1.1.1 Sound field quantities 

In a sound wave, the particles (gas molecules, crystal lattice atoms, etc.) 
follow a space- and time-dependent displacement vector, sv . The time de-
rivative of this displacement, accordingly, is the particle velocity, 

t
sv

∂
∂ v

v = , (1.1) 

with the components vx = ξ&  (x, y, z, t), etc. 
The displacements are neither homogeneous nor isotropic.4 Therefore, 

the medium will be compressed and decompressed. ρ tot is the space- and 
time-dependent total density, ρ 0 the density of the medium at rest. The 
density fluctuations due to sound are then 

0tot ρρρ −= , (1.2) 

and the local sound-induced pressure fluctuations, closely related to den-
sity is given by 

0tot ppp −= . (1.3) 

                                                      
4 Homogenous and isotropic means independent of translation or rotation, re-

spectively. 

 
Fig. 1.3. Microscopic view of a medium with sound 
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The latter quantity, p, is particularly important. We call it “sound pres-
sure.” Note that the sound pressure is a scalar. In acoustics, the sound 
pressure is typically the leading quantity of interest, mainly because the 
human ear is sensitive to sound pressure. Hence, calculations or measure-
ments of sound pressure yield directly the input quantity of the human 
hearing system. 

In fluid media such as air the elasticity of the medium is described by its 
compressibility. In this discussion, the thermodynamic state of the medium 
and its capability of storing energy (heat) are of crucial importance. Parti-
cle displacement and compression affect the pressure, but so do tempera-
ture and heat transfer. For acoustic waves in air, however, we might as-
sume that the sound-induced oscillations are so fast that diffusion of heat 
between local areas of the medium is not possible. This is related to the 
simplified model of adiabatic processes for which we can use the adiabatic 
Poisson equation 

κ

ρ
ρ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0

tot

0

tot

p
p , (1.4) 

with κ denoting the adiabatic exponent, the ratio of heat capacities at con-
stant pressure and volume, respectively. κ = Cp /CV (= 1.4 for air). 

1.1.2 Derivation of the wave equation 

We consider a small volume element of thickness Δx in a one-dimensional 
fluid medium bounded by a tube with cross section S. In the tube is an 
acoustic source pushing and pulling periodically the volume element with 
a strength of qSdx (in units of [m3/s]). It excites a small disturbance from 
the pressure equilibrium. The source can be assumed anywhere in the tube, 
for instance, represented by a small piston mounted flush in the tube wall. 
The pressure and particle velocity on the left-hand side of our test element, 

xx x+dx

p (x)tot

v(x)

p (x+dx)tot

v(x+dx)
S

 
Fig. 1.4. Volume element in a one-dimensional fluid medium. Pressure variations 
are induced by a “pumping” source on the left side 
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at x, might differ from the conditions at the right hand side at x + Δx.  
A pressure difference will lead to a net force on the volume element. 

According to the Euler equation of all forces involved, we obtain a move-
ment of medium mass: 

[ ]
t
vxSSxxpxp

d
dd)d()( tottottot ⋅=⋅+− ρ . (1.5)

Since v is a function of x(t), we must apply the chain rule: 
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and, on the one hand, we find for infinitesimal Δx by setting Δp/Δx → ∂p/∂x 
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On the other hand, a movement of mass must comply with conservation 
of mass. Mass reduction or increase within the volume element, thus, must 
correspond to a change in mass density. Mass changes can be induced by 
medium flow due to density differences or due to injection caused by the 
source. 

( ) ( )[ ] xqS
t

xSvvS xdxx dd tot
tot

tottot ρ
∂

∂ρρρ +−=−+ , (1.8)

or, again with Δx → ∂x, 

( ) q
tx

v
tot

tottot ρ
∂
ρ∂

∂
ρ∂ +−= . (1.9) 

Equations (1.7) and (1.9) allow the derivation of an acoustic theory. 
They are, however, coupled in three variables, pressure, density and parti-
cle velocity, and they are nonlinear. Two linear equations can be easily 
found if the effects of sound are assumed small. We will see later that this 
is a quite sufficient approximation for almost all sound events of interest in 
this book. Now, if the sound pressure is small compared with the static 
pressure, p « p0, and the densities follow the same prerequisite, ρ « ρ0, we 
can decompose Eqs. (1.7) and (1.9) into Taylor series and neglect small 
terms of higher order. A pure factor ρ tot can also be replaced by ρ 0. 
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Fig. 1.5. Linearization of small amplitudes of density as a function of pressure 

Furthermore, the fact that the density and the pressure are linked in the 
adiabatic process lets us change the variable ρ to p: 
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with a constant c2 as an abbreviation of dp/dρ. 
The result of linearization and replacing density is the set of two linear 

sound field equations: 
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One can easily eliminate one variable (the particle velocity v) from these 
two equations to achieve one differential equation containing our variable 
of highest interest, the sound pressure p: 
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or in short, 

qp
c

p &&& 02
1 ρ−=−Δ . (1.14) 

The equation is well known in mathematics and physics as a wave equa-
tion. In the same formal notation, it can be derived for particle velocity, 
density, or temperature. In three dimensions, it is extended with the spatial 
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differential operator, the Laplace operator, in Cartesian coordinates (x, y, z) 
according to common notation used in mathematics and physics 
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in cylindrical coordinates (r, ϕ, z), 
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or in polar coordinates (r, ϑ, ϕ), 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂=Δ 2

2

2
2

2 sin
1sin

sin
11

ϕϑϑ
ϑ

ϑϑr
r

rr
. (1.17)

1.2 Plane waves in fluid media 

The direct solution of the example of one-dimensional sound propagation 
in Sect. 1.1 is the plane wave. We will find terms of wave acoustics such 
as speed of sound, sound intensity, energy density and can define the 
“sound pressure level.” Equation (1.13) holds for the case that the spatial 
displacements, particle velocities, their gradients or density or pressure 
have only a component in the x direction. 

The wave equation is solved by any function f with a variable in the 
form of x – ct, or g as function of x + ct (d’Alembert’s solution); see, for 
instance, (Kuttruff 2007): 

)()(),( ctxgctxftxp ++−= . (1.18) 

The first term, f, describes the propagation of the local state of sound pres-
sure p(x, t) in space and time in the positive x direction, the latter term, g, 
in the negative x direction. This can be easily understood by considering 
the case of propagation to the right side assuming a function f (x) with  
a maximum at x = 0 at time zero. After time t has passed, the maximum 
will be found at the location x = ct. 

The speed of propagation is c, the speed of sound. As described in 1.1.1 
the constant c is calculated in a first approach of ideal gas theory from 
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Taking into account more thermodynamic effects, the humidity, altitude, 
etc., it can be estimated rather precisely (ISO9613). For most cases of 
sound propagation in air, the approximation 

m/s
15.293

15.2732.343 θ+=c  (1.20) 

is a sufficient estimate (θ  is the temperature in degrees Celsius). 
Liquid media in hydrostatics are usually considered incompressible. 

Acoustic waves in liquids result from a small perturbation of the zero 
compressibility. Liquids are thus characterized by their adiabatic com-
pressibility: 
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and the speed of sound is 

ad0

1
βρ

=c . (1.22)

Now we come back to the elementary solution p(x, t). Assuming g = 0, 
we now consider a wave in the positive x direction. All locations ( y, z) in 
planes parallel to the x direction have the same conditions. By using 
Eq. (1.11), we can calculate the particle velocity: 

∫ =−= f
c

tfv
00

1d'1
ρρ

 (1.23) 

and 

00 Zc
v
p == ρ . (1.24) 

This ratio, Z0, is called the wave impedance or characteristic impedance 
of plane waves. It is an important reference. It can be interpreted as the 
characteristic resistance of the medium against pressure excitation in some 
kind of cause-and-effect interpretation: The amount of driving pressure 
needed to set the medium’s particles into motion. 
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Table 1.1. Characteristic acoustic data for air and water 

At normal conditions,  
20°C 

Sound speed 
in m/s 

Characteristic 
impedance in kg/m2s 

Air 344 414 
Water 1484 1,48 · 106 

1.3 Plane harmonic waves 

We get a harmonic wave of sound pressure in the positive x direction by 
choosing a harmonic function representing f (x – ct) (without loss in gener-
ality g is set to zero). In complex form, 

( ) ( )ˆ ˆ( , ) e ejk x ct j t kxp x t p p ω− − −= = , (1.25) 

p̂  is called pressure amplitude, k wave number and ω angular frequency 
(ω = kc). Note the symmetry between the terms kx and ω t in the harmonic 
function and that the space and time domains are coupled by a factor of c. 
Now, it is well known that the period of harmonic functions is 2π. Hence, 
the obvious role of the wave number and angular frequency is to rescale 
the periods of the wave in space and time, respectively, to 2π. The period 
in space is called wavelength, λ. We obtain it from 

λ
π2=k . (1.26) 

With the important relation, 

T
fc λλ =⋅= , (1.27) 

we can introduce the temporal period, T, of the wave: 

f
T

ππω 22 == . (1.28) 

f denotes the frequency in the unit Hertz. 

1.4 Wideband waves and signals 

From the harmonic wave, we can directly construct any other wave func-
tion or, referring to one measurement point in space, a time function of 
sound pressure, called an acoustic “signal.” The procedure of superposition 
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of harmonic signals into a more complex waveform is given by the Fourier 
transformation. 

For continuous periodic pressure-time functions with period T0, the 
transformation into the frequency domain yields the set of Fourier coeffi-
cients, Sm, which are the complex amplitudes of the respective harmonic 
signal components. The set of complex amplitudes is called a “spectrum.” 
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Vice versa, the pressure-time signal, p(t), can be reconstructed by Fou-
rier synthesis, i. e., by adding all harmonic components: 

∑
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−∞=
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m

tfjm
mStp 02e)( π . (1.30) 

Periodic signals have a specific fundamental frequency, f0, and the spec-
trum is composed of discrete components at multiples of the fundamental 
frequency. It is called a line spectrum and has accordingly a frequency 
resolution of Δf = f0 = 1/T0. The same concept can be extended toward ape-
riodic signals (T0 → ∞), which have then a continuous spectrum (line spac-
ing → 0). More details will be discussed in Sect. 7.2. 

When the spectrum contains several frequencies, we talk about wide-
band or broadband sound. Typical spectra of acoustic signals are shown in 
Fig. 1.6. 

1.5 Energy and level 

Usually the sound pressure is not presented in linear form in its units of 
pascals (1 Pa = 1 N/m2). In daily life, the strength of sound is indicated by 
“decibels.” One reason is the enormous range of sound pressures in music, 
speech, and the urban and working environment; another is the somewhat 
better match with human hearing sensation (at least in a first approxima-
tion; see also Chap. 6). The range of sound pressures should be also dis-
cussed in relation to our initial assumption that sound is a small displace-
ment or pressure or density fluctuation compared with static conditions. If 
we just assume a static pressure of 100 kPa in the atmosphere at sea level, 
we have to deal with sound pressures of orders of magnitude lower, be-
tween 0.00001 Pa and 1000 Pa. The lower limit is near the “hearing thresh-
old,” the limit of sensation of human hearing. The upper limit is called the 
threshold of pain which needs no further explanation. Thus typical sound 
pressures are lower than the static pressure p0 by orders of magnitude. 
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Fig. 1.6. Typical acoustic signals and their spectra 
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In practical acoustics, this enormous range is mapped to a logarithmic 
scale between about 0 dB and 130 dB, more or less similar to a scale 
counted in percent with a resolution practically in steps of 1. This resolu-
tion is appropriate for discussing the differences in audible sounds and it 
corresponds with the just noticeable difference, jnd, of about 1 decibel. 

The decibel scale surely has its merits, although we will later emphasize 
that sound evaluation purely based on decibels or related quantities will not 
be sufficient without a more thorough investigation or with auralization. 

The decibel scale is based on sound energy. Similarly, as in other wave 
and vibration phenomena in radio waves, in voltage and current measure-
ments, the level is defined by the energy of the wave. Due to the local 
harmonic medium particle movement, the total energy contained in a small 
volume element can be interpreted similar to the energy in little pendulums 
in terms of kinetic and potential energy. The volume shall be so small that 
all particles in it move in the same way. At the time of maximum particle 
velocity the total energy is purely kinetic, whereas at zero velocity the total 
energy is purely potential. This approach leads to two possible equations 
for the total energy density: 
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in which we used Eq. (1.24) to change from velocity to pressure in  
a plane wave. 

With introduction of the “root mean square” sound pressure (rms) the 
sound pressure level can finally be written as: 
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and setting the reference sound pressure p0 = 20 μPa which is approxi-
mately the human hearing threshold in midfrequencies. 
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Table 1.2. Sound pressure levels of typical sound events 

Event Level in dB 
Hearing threshold in midfrequencies 0 
Anechoic chamber 0–15 
Bedroom 25–30 
Living room 40–55 
Conversation 60 
Office 70 
Typical noise limit for factories 85 
Pneumatic hammer 100 
Rock concert, disco or walkman maximum 110 
Jet engine, 25 m away 120 
Rocket at start > 190 

1.6 Sound intensity 

The microscopic energy in a sound wave is not just a static phenomenon. 
Energy is also transported. Wave propagation should not be mixed up with 
particle flow, however. At zero mean flow (such as random wind), net 
particle displacement is zero, while energy is transported to the neighbour-
ing volume element and so forth. This effect allows a very deep and de-
tailed investigation into sound fields, particularly for sound fields more 
complex than simple plane waves. The basic quantity for describing the 
mean energy flow is the energy transported per second through a reference 
area of 1 m2. It is called sound intensity: 
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In a plane wave, sound pressure and particle velocity are in phase 
(Eq. (1.24)) and the sound intensity formula reduces to 
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with the direction of sound intensity in direction of propagation. Sound 
intensity can also be denoted with a level, the intensity level: 

0
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I
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= . (1.36) 

I0 = 10–12 W/m2. This choice of reference intensity is made to adjust for the 
same levels of sound pressure and sound intensity in a plane wave. 

1.7 Level arithmetic 

If several sound pressure signals are present at a time, the total pressure is 
the sum of the individual pressures. In case of coherent signals, i. e., with 
identical frequency and specific phase relation, the pressure–time functions 
must be added, and the rms value and the level are calculated in the end. In 
the case of incoherent waves of different frequencies or frequency compo-
sitions, the superposition reduces to adding the energies. The reason for the 
simplification can be interpreted as the effect of the binominal formula 

21
2
2

2
1

2
21 2)( pppppp ++=+ , where the latter term of pressure signal mul-

tiplication cancels with incoherent p1 and p2. 

Table 1.3. Example: Level addition of two signals of 50 dB 

Phase relation  Total level in dB 
Coherent, 
in phase 

 

56 

Coherent, 
antiphase 

 

–∞ 

Incoherent 53 
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Thus for incoherent signals, the quadratic pressures or the energy densi-
ties can be added directly: 
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or in level representation, 
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1.8 Frequency bands 

In acoustics, standardized frequency bands are often used, typically one-
third octave bands or octave bands. The midband frequencies of one-third 
octave bands are defined on a logarithmic frequency scale as follows (here 
in the example of the base-2 logarithm); 
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with fl and fu as lower and upper edge frequency and fm, fm+1 as midband 
frequencies of the bands m and m + 1. Similarly, for octave bands, 
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Fractional bands with bandwidth of 1/6 or 1/12 octave are also in use. 
The separation of broadband spectra into several frequency bands allows 
discussion of transmission characteristics or noise frequency content. The 
band-filtered results, however, are still sound levels. The specific spectrum 
in interpretation of Fourier transformation theory is discussed in more de-
tail later (see Sect. 7.2). 
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Fig. 1.7. Band-filtered spectrum of a broadband signal (courtesy of Norsonic A/S)  

 




