
10 Simulation models 

After getting familiar with the principle of auralization, i. e., the separation 
of the acoustic problem in a model of signal transmission and binaural syn-
thesis, and after having the sources characterized, we will now focus on the 
second key component of auralization. We consider the excitation signal as 
known and ready for convolution. Now, the propagation functions for 
sound and vibration must be measured or modelled. The task is to define 
and apply a theoretical approach to the propagation problem, either in free 
propagation or in a problem with boundary conditions. It is clear that not all 
methods listed in this chapter can be used for virtual reality applications. 
The computation time involved in the methods is to be discussed sepa-
rately. In future more and more simulation methods, however, will be ap-
plicable. The focus, therefore, is set to the physical background of the simu-
lation methods and not on computational constraints. In Chaps. 11–15, we 
will discuss in detail up-to-date simulations methods applicable to virtual 
reality systems. 
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Fig. 10.1. Simulation models in acoustics 

10.1 Simulation methods for sound and vibrational fields 

Modelling of sound and vibrational propagation is one of the main prob-
lems in theoretical and numerical acoustics. All basic features of sound  
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radiation (Chap. 2) and of sound fields (Chap. 3) come into play now. 
Nevertheless, specific methods particularly for nonanalytic approaches 
must be discussed in this chapter. Boundary conditions and field geome-
tries mostly do not match the elementary conditions of standard coordinate 
systems such as Cartesian, spherical or cylindrical geometry. The basic so-
lutions we found in Chaps. 2 and 3 are still interesting because they show 
the basic features of sound sources and propagation. The details and the 
fine structure in the results, however, can be obtained only when the real 
geometry and the conditions of the propagation space are taken into ac-
count with sufficient accuracy. 

The accuracy of the models can be discussed on a physical basis and on 
psychoacoustic basis. The discussion on the physical basis is related to the 
size of objects in relation to the wavelength (diffraction), to the possibility 
of neglecting phase effects (high modal density), to the variety of wave 
types contributing to the transfer function and to elementary features of the 
signals simulated concerning the density of samples in the time and fre-
quency domains. 

A sound propagation or transmission problem can be described by 
Green’s functions. They result from a formulation of the wave equation by 
using the potential function, g(r|r0). It corresponds to the sound field quan-
tities by derivations in space and time (Skudrzyk 1971, Mechel et al. 
2002): 

gp &0ρ= , 

gv −∇= . 
(10.1) 
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The benefit of Green’s formulation is easily understood when it is ap-
plied to sources and spatial propagation paths from a point r0 to a point r. 
For example, for a point source with volume flow Q (see Sect. 2.1), 
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Its Green’s function in free space is 
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Coming back to the acoustic radiation problem and to the Helmholtz 
equation with source term (f = jkZ0q; see Eq. (4.5)), 
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the Green’s formulation leads to the Helmholtz–Huygens integral:31 
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With this integral, the resulting sound pressure of various kinds of source 
distributions in a volume and any kind of reflections from boundaries on  
a surface surrounding the sources can be calculated. The integration surface 
can also represent a virtual surface where the sound field is expanded into 
elementary (secondary) sources (Huygens’ principle). It is interesting that 
the surface source arrangement consists of monopoles and dipoles. 

The discussion of Green’s functions was, so far, related to harmonic 
signals. If we expand the radiation in the time domain by assuming an im-
pulse excitation,32 the tremendous importance of Green’s functions be-
comes clear. They are filters transporting signals to the receiving point, 
expressed in the convolution of source functions with Green’s functions 
(note the temporal relationship between source and receiver point): 
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31 The derivations in the surface integral defined in the direction normal to the 

surface elements (Mechel et al. 2002). 
32 With impulse excitation, we consider a constant harmonic spectrum with zero 

phase, see Sect. 7.2.2. 
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By Fourier transformation, we obtain adequate solutions in the fre-
quency domain. The kernel of the convolution can then be expressed in 
terms of source volume velocity, Q, which leads to the formulation of  
a transfer impedance, 
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Also, the concept of a transfer function between the sound pressure at 
one point to the sound pressure of another point can be chosen, if the 
source characterization is based on a near-field pressure signal. 
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Similarly, transfer functions and Green’s functions for structural acous-
tics can be defined. 

Which approach, Green’s function, transfer impedance or transfer func-
tion, is preferable depends on the kind of source. Force or pressure sources 
are more straightforward to be coupled to Green’s functions, velocity 
sources to transfer functions. Most easy to remember is the fact that multi-
plication of the source signal by the transmission function should yield  
a sound pressure signal in the end. 

10.1.1 Reciprocity 

Green’s functions are reciprocal (Lyamshev 1959). Reciprocity is one of 
the most powerful tools in determining acoustic transfer functions. The 
problem of sound and vibrational transmission in a passive linear time-
invariant system can be solved in both ways. Transfer functions, transfer 
impedances and Green’s functions are identical when source and receiver 
points are interchanged. For an accurate description, we have to distin-
guish between sound propagation from an airborne source to a receiver 
point and vibroacoustic transmission from a force source exciting a struc-
ture that radiates to a receiver point (Fahy 1995). 

Airborne sound reciprocity 

The direct formulation consists of a real volume source emitting sound that 
is received in the field space. The ratio between the sound pressure at the re-
ceiver to the volume flow of the source33 is preceiver /Qsource. In the reciprocal 

                                                      
33 = acoustic transfer impedance. 
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arrangement, this ratio is identical to the ratio of the pressure at the source 
point to the volume flow at the receiver, psource /Qreceiver. However, specific 
reference conditions must be defined. The reference conditions concern the 
determination of the sound pressure which must be obtained in a mechani-
cally blocked state (Q = 0).34 Thus, 
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Vibroacoustic transfer function reciprocity 

In a problem of a force source exciting a structure that radiates sound, the 
reciprocity relationship is given by 
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We consider the sound pressure received from the direct formulation 
depending on the force injected on the sound-radiating structure. This ratio 
is identical to the ratio in the reciprocal approach between the volume flow 
at the receiver point in the fluid to the free (F = 0) normal velocity on the 
structure. 

                                                      
34 equivalent to an open-circuit situation for obtaining the voltage in terminated 

electric circuits. 
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Fig. 10.3. Reciprocity of airborne sound propagation from a monopole source (af-
ter (Fahy 1995)) 
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Fig. 10.4. Vibroacoustic transfer function reciprocity (after (Fahy 1995)) 

Vibroacoustic Green’s function reciprocity 

When the velocity of a vibrating surface element not the force is the input 
at the source side, the reciprocity relationship is given by 
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Here, we consider the sound pressure received from the direct formula-
tion depending on the local normal velocity of a surface element dS of the 
sound-radiating structure. This ratio is identical to the ratio in the recipro-
cal approach between the sound pressure at the receiver point in the fluid 
to the blocked (v = 0) sound pressure on the structure. This relationship is 
valid for all surface elements of the structure. 
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Fig. 10.5. Vibroacoustic Green’s function reciprocity (after (Fahy 1995) with 
dQsource = vsourcedS) 
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After having discussed the principles of sound propagation between 
points in a fluid and between structures and fluid in analytic examples, we 
will focus in the next section on numerical methods in the frequency and 
time domains. These methods are applicable in a more general sense to any 
kind of geometric conditions of source, receiver and environment. 

10.1.2 Frequency domain models 

In frequency domain calculations, a constant frequency is considered. 
Hence, the discussion of transfer functions is based on harmonic signals. 

tjeAts ω⋅=)( , (10.12)

s(t) denoting any complex-amplitude harmonic signal of vibration, source 
volume velocity or sound pressure in the field point. In this case the wave 
equation reduces to the homogeneous Helmholtz equation (compare 
Eq. (4.5)), for instance, for the sound pressure in the field volume, x ∈ V. 

0)( 2 =+Δ pkxp . (10.13)

To obtain the free (modal) response, we consider a source-free field 
domain, where the right-hand side of the equation is zero. Instead, this 
equation enables us to calculate the sound pressure relationships between 
field points, and this is the perfect approach for calculating transfer func-
tions (Eq. (10.8)). 

Depending on the geometry, as mentioned above, generally we cannot 
solve the Helmholtz equation straightforwardly, since the problem geome-
try and the boundary conditions do not match elementary coordinate sys-
tems. Instead, the problem can be solved by numerical methods. The most 
prominent approach is spatial discretization into small elements. In the dis-
crete formulation, the Helmholtz equation can be transformed into a linear 
system of equations in the field space. The approach to solve the problem 
of wave physics is a) use of the Helmholtz equation in an integral formula-
tion or b) the principle of energy conservation (energy minimum) in the 
Lagrange formulation as a variational problem. The first concept is used in 
the boundary element method, the latter in the formulation of the finite 
element method. 

Meshing 

Numerical models require spatial discretization by introducing a “mesh.”  
A mesh is a discretized grid of surface and/or field points (nodes) and cor-
responding elements of groups of nodes. The elements can be rectangular, 
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triangular, tetrahedral, just to give a few examples. The volume or the 
boundary is meshed into elements depending on the method used. The de-
gree of discretization depends on the local waviness of the sound or vibra-
tional field. At high frequencies (small wavelengths), the discretization 
must be sufficiently large to allow interpolation between field points with-
out too much loss of precision. The final limit, of course, is similar to the 
sampling theorem. The practical limit is roughly six nodes per wavelength. 

Meshes must be strictly designed with respect to the numerical method 
used. For finite time differences, the mesh must be geometrically regular, 
whereas meshes for finite or boundary elements are more flexible in shape 
and size. However, in the latter case, mesh elements are crucially coupled 
to the specific formulation of the numerical wave model. 

 

 
Fig. 10.6. Examples of meshes for numerical wave propagation analysis. A re-
cording studio (top) and a customized dummy head (bottom) 
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Boundary Element Method 

The boundary element method (BEM) is explicitly related to Green’s func-
tion, G(r|r0), where r0 denotes a source position and r a set of field points. 
The radiation problem, thus, is rearranged into the Helmholtz–Kirchhoff 
integral equation and discretized. The Helmholtz–Kirchhoff integral is the 
source-free Helmholtz–Huygens integral (Eq. (10.5)): 
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with Green’s functions in 3-D free space: 
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which fulfil the far-field radiation (Sommerfeld) condition of vanishing 
sound pressure for ∞→r . 

The kernel of the integral thus contains monopole and dipole sources. 
The main application for BEM is radiation or equivalent radiation prob-
lems such as scattering. Radiation problems are characterized by boundary 
conditions (local impedances or admittances), including a vibrational ve-
locity as a driving source. This integral is formulated in discretized form 
on a surface mesh and solved numerically in matrix algebra. The crucial 
point of the BEM formulation is the numerical nonuniqueness. It is worth 
mentioning that in contrast to FEM matrices, BEM matrices are full. In the 
famous Burton/Miller approach (Burton and Miller 1971), these problems 
are discussed in all detail. Another strategy for avoiding numerical prob-
lems is the so-called CHIEF point (combined integral equation formula-
tion) method (chapter by Ochmann in (Mechel et al. 2002)). BEM matrix 
solvers are available; some codes are even in free software.35 

The complexity of BEM can be roughly summarized as follows: A simu-
lation which must be calculated up to a frequency of f required a mesh ele-
ment size of at most c/6f. The resulting model size of a surface S is 

2

236
c
SfN = . (10.16)

                                                      
35 The reference software for acoustic BEM is “Sysnoise”™  

http://www.lmsintl.com/SYSNOISE (renamed “Virtual.Lab Acoustics”) 
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The BEM matrix then contains N 2 entries. Solvers of PC software36 to-
day are capable of inverting a matrix of 8000 nodes in 60 seconds. This re-
sult holds for one frequency. In a problem of required frequency resolution 
of 1 Hz, the calculation time multiplies by f, which yields some f /60 hours 
for numerically generating a complete set of transfer functions for all field 
points. 

Advanced techniques such as fast multipole BEM (Sakuma and Yasuda 
2002; Yasuda and Sakuma 2003; Marburg and Schneider 2003) are devel-
opments that allow separating meshes into regions of high discretization 
and others with the effect of transfer propagation. The complex linking be-
tween mesh elements is thus rearranged in a hierarchical way. 

Finite Element Method 

Finite elements are created by discretization of a field volume into volume 
elements. In these elements, the energy formulation of the harmonic field 
equations is used. This is generally known as Hamilton’s principle of 
minimum energy. Any disturbance of the system equilibrium37 leads back 
to a stable and minimum energy state. Due to its general energetic formu-
lation, this principle is used for mechanical problems of static load and de-
formation (also for crash test simulation), for fluid dynamics, heat conduc-
tion, electromagnetic or acoustic field problems, and it is also the basis for 
the finite element method (FEM) (Zienkiewicz 1977). 

                                                      
36 on a machine with a 2 GHz dual-core processor and sufficiently large RAM to 

keep the matrix problem in-core. 
37 by applying virtual displacement, for example. 
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Fig. 10.7. BEM-calculated HRTF of a customized dummy head, left: Frontal inci-
dence; right: 45° in the horizontal plane for the ipsilateral ear. Head model corre-
sponding to Fig. 10.6 (bottom). Example follow the method described in (Fels 
et al. 2004), see also Sect. 6.3.1 
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The field space for the acoustic problem must be discretized into suit-
able volume elements. For each element, the relation between the forces 
and the displacements is introduced by using the variational approach. 
Thus the variational approach is used to identify the field quantities for 
minimum energy, element by element. The total energy is thus the sum of 
all element energies. 

In every element, the so-called “shape functions,” ψ, are defined to rep-
resent the sound pressures within the elements. At the nodes between the 
elements, the shape functions must fit continuously. 

All elements’ entries are combined into a so-called “stiffness” matrix, S,38 
a mass matrix, M, and a damping matrix, C. Furthermore, source contribu-
tions and boundary conditions are formulated and integrated into a matrix 
equation including S, M, and C, which is to be solved to obtain the sound 
pressures in the field space from the shape functions, read at their nodes. 
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Fig. 10.8. Example of an ear canal impedance 20log(|Z|/Z0) (for the CAD model 
shown, ear canal entrance and reference plane on the left) calculated using FEM 

                                                      
38 Although other forces may be used here, the historic name is related to prob-

lems of static deformation by Hooke’s forces. 
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Fig. 10.9. Modulus and phase of results from FEM calculations and measurements 
in a recording studio (corresponding to the mesh shown in Fig. 10.6 (top), exam-
ple after (Aretz 2007)) 

In FEM solvers, the direct solution to determine the eigenvalues of the 
matrix can be used, just using the matrix equation without further subspace 
conditions. In the indirect method, the problem is projected on a modal ba-
sis into an equivalent eigenvalue problem of orthogonal modes. The latter 
method has the great advantage that sources and boundary conditions can 



 10.1 Simulation methods for sound and vibrational fields 159 

be studied in a second step. The numerical complexity is then given by the 
size of the modal basis and not by the FE mesh size. 

State of the art is FE used for sound pressure calculation in small or 
midsize rooms for frequencies up to some kHz. Using PC software, typical 
mesh sizes are in a range of 100,000 nodes, and typical calculation times 
are of the order of magnitude of 5 minutes per frequency. 

Modal approach and modal superposition 

As in the finite element formulation, modes may serve as set of orthogonal 
function basis for expansion of broadband results into a series of modes. 
The modes as such can be described by using elementary second-order 
resonators (see also Sect. 4.1) with midband frequency, half-width or qual-
ity. This way of modal analysis is well known as powerful tool in meas-
urement of complex systems. Also here, in simulation problems, a modal 
basis gives very important information about the system. Modal density 
and modal overlap can be studied and it can be decided to which extent the 
exact complex modal response is relevant. The transition point from sepa-
rated modes to highly overlapping modes is of crucial importance. This 
was first discussed in Sect. 4.2.1, but it is generally interesting for all prob-
lems of acoustics and vibration. 

Frequency spacing 

The resolution of numerically determined spectra should be sufficiently 
high to identify all relevant modal details. Too high a resolution, on the 
other hand, is useless and just contains redundant information. The scale 
for defining reasonable frequency spacing is given by the width of modes. 
Each mode of width 

Δf,mode π
δ=  (10.17)

shall be covered by at least two frequency lines. Δf,mode denotes the half-
width of a typical resonance. This kind of line spectrum can approximate 
well a second-order band-pass function with a damping of δ. The decay 
time of this mode is approximately 

δ
9.6=T . (10.18)
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The required frequency spacing to model the system is thus 

T
f 4.42 ==Δ

π
δ , (10.19)

with T denoting the average decay time derived from the system impulse 
response. 

Statistical Energy Analysis SEA 

Statistical energy analysis, SEA, was introduced by Lyon and Maidanik in 
the early 1960s (Lyon 1975). The model of coupled resonators serves well 
for understanding the basic principles. On this basis, any complex system 
of coupled resonances, in problems of airborne sound or structural vibra-
tion, or both coupled can be described by using energy balance and energy 
flow. At this stage of abstraction, SEA offers a powerful technique for cal-
culating sound pressure levels and so power flow between the subsystems 
of a complex structure. 

The general approach can be compared with the situation of water res-
ervoirs and a connecting tube system. Water pumps are “sources,” losses 
from damping and radiation can be modelled as water loss in porous 
ground or vapourization, respectively. Coupling is given by connecting 
tubes with certain cross section and capacity. 

The amount of water represents energy in a subsystem, water flow pro-
duced by a pump represents sound power injected into a system; connect-
ing tubes are similar to sound power transfer between systems. By using 
SEA the amount of water in each basin can be calculated for steady-state 
conditions. 

The difficult task, however, must still be discussed. Because calculation 
of sound energy in a subsystem is a more complex problem than dealing 
with water, we must define proper conditions of energy analysis. The cru-
cial point of SEA is energy stored in resonators (modes) and statistical 
modal overlap in certain frequency bands. The subsystems contain modes 
of all kind, compressional waves, flexural waves on plates etc. Typically 
subsystems are defined for each medium, material or shape separately. 
They should be clearly separated so that the energy exchange by coupling 
is small. 

All data used in SEA calculations are frequency-dependent since en-
ergy, energy flow and boundary conditions are defined for frequency 
bands. The more modes are present in the frequency bands considered, the 
more precise the calculation. 
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pump
 

Fig. 10.10. Water flow in a system of basins and tubes 

The power extracted from a subsystem i is given by 

iii Eωη=Π , (10.20)

where ηi is the damping loss factor and Ei the steady-state energy stored in 
modes of spectral density vi. When two subsystems are coupled, conserva-
tion of energy and balance leads to equilibrium when 
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The effective energy transport is, thus, expressed by the ratio of absolute 
energy in the frequency band and the modal density. This is appropriate in 
statistical sense since the probability of energy exchange in modal cou-
pling depends on several factors including interaction of normal and  
tangential modes, fluid-structure coupling and geometric factors. It is es-
sential that subsystems are independent, weakly coupled and contain statis-
tically many independent modes. 

Furthermore, reciprocity can be found in SEA, and this is a powerful 
tool to describe coupling loss factors. 

kikiki vv ηη =  (10.22)
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With this concept we can formulate the energy injected into a subsystem 
by accounting for a source and all power input from other systems. 

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=Π

k k

k

i

i
ikkiii v

E
v
EvE ηωωηinput,  (10.23) 

The equation of modal energies of all subsystems, coupling and power 
flow can thus be expressed in matrix form, such as 

CEΠ = , (10.24)

which for three subsystems is expanded in the form 
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Typical applications in acoustic engineering involve hundreds or thou-
sands of subsystems. Free software is available on the Internet.39 

When the energy density or the sound intensity is known, the sound 
pressure can be estimated on the basis of a specific sound field type. In dif-
fuse field condition in a room, for example, the squared sound pressure is 
related to the energy density by using Eq. (1.31). 

10.1.3 Time domain models 

Wave propagation can be simulated in the time domain as well. We do not 
start the discussion with harmonic signals (Dirac pulse in frequency do-
main), but with its “opposite.” the temporal Dirac pulse. Pulse propagation 
can now be studied in a mesh from node to node (finite difference model) 
or on a large scale assuming special wave types (ray tracing). The results 
are wave fronts propagating in time. Reflections, diffraction and other 
propagation effects can be calculated. At chosen field points, impulse re-
sponses can be obtained. 

                                                      
39 The reference (but not free) software is “AutoSEA2”™:  

http://www.esi-group.com/SimulationSoftware/Vibro_acoustics. 
For free software, see, for example: http://opensea.mub.tu-harburg.de/ 
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Waveguides 

The imagination of wave propagation in one dimension is perfectly repre-
sented by waveguides. They introduce propagation delay and attenuation 
due to divergence and damping. A spherical wave (omnidirectional) also 
can be described by waveguides. Points of reflections due to interfaces be-
tween different impedances are also easy to implement by connecting 
waveguides (delay lines) with transfer functions of reflection and transmis-
sion factors. At this point, it is obvious that waveguides contain forth- and 
backtravelling waves and thus are bidirectional. 

In 2-D or 3-D wave propagation, the waveguide model is mapped to  
a corresponding CAD model, such as a room. The delay lines then are geo-
metrically fixed at some point or patches on the walls. Otherwise, the 
combinations of geometric paths would increase exponentially. With geo-
metric concentration of the waveguide nodes, a finite number of node con-
nections results (Krämer 1994). 

Waveguides are well described and studied in application to physical 
modelling of musical instruments and vocal tracts (Välimäki et al. 1993; 
Välimäki 1995; Fant 1970). In these cases, the transmission system is 
separated into adjacent tubes of varying cross section. The famous “Kelly–
Lochbaum” model of the vocal tract explains the formation of formants in 
vowels. 

Frequency-dependent losses are included adding digital low-pass filters 
into the delay loop. FIR and IIR filter networks are used, partly involving so-
phisticated phase models and subsample shifts for better adjusting the actual 
geometric relations between nodes (Karjalainen 2005). The geometric con-
ditions and corresponding wave divergence must be specifically included, 
except for 1-D application such as for wind instruments and vocal tracts. 

 
Fig. 10.11. Mapping room geometry on a set of coupled delay lines (after (Krämer 
1994)) 
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Fig. 10.12. Nodes coupling delay lines (after (Karjalainen 2005)) 
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Fig. 10.13. Room model with waveguide network (after (Karjalainen 2005)) 

Geometrical acoustics 

This model, already introduced for calculating basic features of room 
acoustics in Sect. 4.3, can be applied to various other purposes. Geometri-
cal acoustics is easily understood by using the analogy of geometrical  
optics. A laser beam representing a straight line carrying light energy is 
well known. We now interpret sound propagating as rays, too. Rays are  
reflected, refracted or diffracted (at least in first order). Rays carry sound 
energy, and the quantity hitting a receiver area or volume determines the 
sound energy received. Because rays are not describing near-field wave  
effects, they are related to long-distance approximation of quasi-plane 
waves. In this way, any field geometry, spherical or cylindrical wave fields 
can be modelled by sending rays in an appropriate arrangement. Fields of 
application of geometrical acoustics are 

– room acoustics 
– outdoor sound propagation 
– underwater acoustics 
– ultrasound 
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For auralization, room acoustics and noise immission prognosis are the 
most interesting fields. Accordingly, geometrical acoustics is well devel-
oped in these areas. 

Ray construction is the key to geometrical acoustics. In elementary defi-
nition, rays will travel along the path with shortest travel time (Fermat’s 
principle). Depending on the medium, this might lead to straight lines and 
specular reflections. In layered media such as in the atmosphere with 
height-dependent temperature or a wind profile, the rays are bent by refrac-
tion. But as in geometrical optics and discussion of lenses, refraction can 
well be included in the model. The strategy to construct rays is twofold: 

– forward geometric construction from the source to the receiver 
– reconstruction from the receiver to the source. 

Basically these two approaches are equivalent, which is inherently given 
in the law of reciprocity (source and receiver may be interchanged). But 
the approaches also show partly extremely diverging advantages and dis-
advantages, which are discussed in Chap. 11. 

When the ray propagation is known, impulse responses containing Dirac 
pulses of delays and energies weighting are constructed. Impulse responses 
also may contain specific impulse responses of edge diffraction or bound-
ary reflection factors. 

Radiosity 

A geometric model, too, consisting of elements of energy radiation over 
distances and via observation angles is “radiosity.” The concept is irradia-
tion and reradiation of energy from surface elements.40 It is essential that 
the energy is diffusely scattered. With these prerequisites, the integral 
equation between the total irradiation strength received from all other sur-
face elements can be formulated. This model is also known in illumination 
simulation on diffusely reflecting surfaces. 

According to (Kuttruff 1971), the energy portion irradiating the surface 
element dS ' at r from the other surface elements located at r' is given by 

),('d'coscos),'())'(1(1),( d2 trBS
Rc

RtrBrtrB
S

+−−= ∫∫
ϑϑα

π
. (10.26) 

Bd is the direct sound intensity. Lambert’s law of diffuse scattering is in-
cluded in this integral equation. Note that exact timing is also included due 
to retardation by t – R/c. 

                                                      
40 often called “patches.” 
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Fig. 10.14. Radiosity based on Kuttruff’s integral equation (after (Kuttruff 2000)) 

The pure calculation of energy irradiation on the walls is interesting, but 
the energy at field point r in the interior field space is more relevant. This 
is achieved by 

),('d
'

"cos)','())'(1(1),( d2 trwS
Rc

RtrBr
c

trw
S

+−−= ∫∫
ϑα

π
. (10.27) 

wd denotes the direct sound (see Eq. (4.40)). In discretized form, the In-
tegral (10.27) is exactly the basis for acoustic radiosity. It is used for calcu-
lating the total energy density at the receiving point, r, via a direct path and 
reverberant paths under conditions of diffuse reflections. If not only the 
boundary (in patches) is discretized, but also the time, the temporal process 
of energy transition from wall to wall and to the receiver can be calculated 
(room impulse response). 

10.2 Two-port models 

Many acoustical/mechanical and electrical equations are formally similar, 
for example, 

t
UCI

t
vmF

t
ILU

d
d

d
d

d
d === . (10.28)

Hence it is worthwhile to use these analogies for solving mechanical or 
acoustical problems with techniques known in the analysis of electrical 
circuits. The power of methods in analyzing electrical circuits must be 
seen in coupling current and voltage in complex circuits and in identifying 
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major and minor current flow paths. The model, therefore, is excellently 
qualified to analyze force and velocity ratios over in mechanical systems, 
force feedback and resonance systems. When comparing the equations, in-
cluding the concentrated elements of mechanical masses, springs and resis-
tors and the corresponding equations of voltage, current and the typical 
electronic elements, two possibilities are found: 

Table 10.1. Electromechanical analogies 

Analogy I  Analogy II 
Voltage U Force F Current I 
Current I Velocity v Voltage U 
Electr. impedance

Zel 

Mech. impedance

Zm 

Electr. conductivity 

Yel 
Resistance R Friction losses w Conductivity 1/R 
Inductivity L Mass m Capacity C 
Capacity C Spring n Inductivity L 

Analogy I is impedance conserving and analogy II is conserving the cir-
cuit plan. This means that an equivalent mechanical circuit developed 
from an electrical circuit will have the same general structure. Some  
examples are shown in Fig. 10.15. It is worth mentioning that elec-
troacoustic transducers and, thus, coupled electrical-mechanical devices 
can also be modelled. 

n
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w m
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U
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Fig. 10.15. Equivalent electromechanical circuits 
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Concentrated elements are valid in one-dimensional or multi-dimen-
sional orthogonal signal transmission. Particularly masses, springs and 
losses should act as clearly separated elements. A mass, thus, should not 
show any internal spring or waveguide behaviour, for instance. 

Waveguide elements are delay lines corresponding to a specific kind of 
wave propagation, mostly the plane wave. 

From the definition of circuit elements, the step toward system model-
ling is quite easy. A so-called “two-port” is defined as a system with two 
input terminals and two output terminals. Between these terminals, a volt-
age is defined as a difference in the potential electric field. In the language 
of mechanics and acoustics, this difference is to be interpreted as force or 
velocity, depending on the analogy used. The inside circuit hidden in the 
two-port is a priori unknown. Its circuit plan and the concentrated elements 
are not even necessary for modelling purposes. Instead, the transfer func-
tion and the transfer impedance serve as descriptors. Matrix formulations, 
too, help in connecting two-ports in complex networks. Transfer functions, 
transfer impedances, matrix elements, etc., are spectral data that can be 
used in coupling two-ports and in simulating networks. If the network 
represents a system acting between a source and a receiver, it can be used 
perfectly for calculating auralization filters. 

Passive circuits are reciprocal. If they are fed by excitation signals from 
the left or from the right side, the ratio of the open-circuit forces (infinite 
mechanical load) to the velocities on the opposite side, 

2

o1

1

o2

v
F

v
F

= , (10.29)

remains invariant. Infinite mechanical loads are achieved by blocking the 
motion. 

Similarly, electromechanical transducers can be modelled. They require 
circuits on the electrical and on the mechanical/acoustical side. The inner 
transducer effect (electrodynamic, electrostatic, piezoelectric, etc.) is mod-
elled by a transformer or by a gyrator. 

v1

F1

v2

F2

 
Fig. 10.16. Mechanical two-port, analogy I (force/voltage) 
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Fig. 10.17. Network representing an electromechanical transducer (analogy I) 

Reciprocity also holds here, for instance, in the form of 
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 (10.30)

with the upper sign denoting the rule for electric field transducer 
(force/voltage transduction), and the lower for magnetic field transducers 
with (force/current transduction). The left side represents an actuator (or 
loudspeaker), the right side a sensor (microphone). 

Electroacoustic transducers such as loudspeakers and microphones are 
modelled as mechanical transducers with division of the force by their mem-
brane area, S. The force, thus, becomes a pressure and the velocity a volume 
flow. This is represented exactly by a transformer with the ratio 1: S. The 
port with volume flow and pressure can finally be coupled with radiation 
impedances, Eq. (2.18), for instance. 

It is worth mentioning that the two-port model can be extended into 
multiports, if the paths are clearly separated. One very efficient way of 
separation in terms of linear combination is a modal basis. This way, even 
distributed fields can be used as input and output data, if the fields are 
clearly defined in their modal contribution factors. 
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Fig. 10.18. Electroacoustic two-port (analogy I) 
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10.2.1 Transfer path models 

Complex networks can be established on the basis of general two-port the-
ory. They can be used for airborne sound propagation, vibration propaga-
tion, structure-borne sound radiation and auralization. The energy trans-
mitted in the network is separated into paths, as illustrated in Fig. 10.19. 
Ideal or real force or velocity sources are connected directly to the two-
port network. The difference between ideal and real sources is the imped-
ance coupling between the source and the transmission system. 

For airborne sound paths, the source signals are coupled with transfer 
functions to the receiver (monaural or binaural). Modelling feedback is 
generally not required. Structure-borne should be modelled with feedback, 
and this requires network analysis in a first step and signal flow calculation 
in a second step. 

transfer path

transfer paths

transfer path source  
Fig. 10.19. Transfer path separation. Illustrated with the example of a refrigerator 
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Fig. 10.20. Two-port network of source impedance ZS, transfer matrix A and re-
ceiver impedance, ZR in analogy II (force/current) 

As illustrated in Fig. 10.20, in the first step, the two-port network must 
be analyzed for the total impedance at the interface to the source. Only 
when this load impedance is known, can the power output of the source be 
calculated, in dependence on the inner impedance of the source. This gen-
eral principle must be applied to simple one-dimensional networks and to 
complex matrix formulations. 

The matrix A (chain matrix) contains the mechanical impedances, ad-
mittances and other (dimensionless) parameters. The exact meaning of the 
matrix elements depends on the analogy used (see Sect. 10.2). The matrix 
can also be rearranged into a pure impedance matrix, Z: 
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The two-port parameters Z11 to Z22 are called input and output imped-
ances, respectively, while Z12 and Z21 are called transfer impedances. A can 
be easily transformed into Z. For reciprocal networks, det A = 1 holds. The 
task in transfer path analysis is determining the matrix elements; see also 
Chap. 14. 
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Table 10.2. Two-port matrix conversion, after (Dohm 2004) 

Chain form Impedance form 
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The prerequisite of concentrated elements should be discussed in more 
detail. The elastic and viscous effects of large construction elements such 
as dampers or springs, cannot always be separated into concentrated ele-
ments. At small wavelengths, too, they act as waveguides of propagating 
or standing waves. As in modelling electromagnetic waveguides, they can 
be modelled as quasi-continuous networks of parallel circuits, each repre-
senting a small interval Δx which is appropriate for one-dimensional wave 
propagation; see also Sect. 10.1.3, Waveguides. 
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10.3 Other models 

Not all models for simulating sound and vibration can be described in de-
tail here. If the sources and the sound propagation need not be separated or 
if stimuli are to be created on the basis of an experimental approach mixed 
with a technical parameter model, sound synthesis is a possible tool. 

Sound synthesis can be an adequate model for creating mixtures of 
tones and noise with specific harmonic, stochastic and temporal content for 
subjective testing. The approach is similar to transfer path models with the 
difference that not transfer paths but signal content is separated (in the 
analysis) and recombined in the synthesis. This model can be applied in 
noise control as well as in modelling musical sounds. 

For studies of the propagation paths without the need for predicting 
propagation spectra exactly, wave-front synthesis by using finite time dif-
ferences offer an insight into the field of travelling waves. In mesh-based 
time domain models, there is no a priori assumption of wave types. The 
waves are developing on the basis of the mesh itself (waveguide mesh), 
provided the degrees of freedom of motion and forces are integrated in the 
model equations. The mesh must be uniform. 

The equations are discretized acoustic field equations (Eqs. (1.11) and 
(1.12)). They yield (here, in one-dimensional form) 
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The problem, however, is that the wave propagation, its speed and its in-
teraction with boundaries can be solved exactly only for 1-D cases. Exam-
ples of 2-D problems were presented as approximations, but FTD in 3-D 
domains suffers from severe artefacts such as dispersion, unless correc-
tions are introduced (Savioja and Välimäki 2000). The reason is the geo-
metrically impossible condition of creating a perfectly uniform (isotropic) 
mesh. Furthermore, specific impedance boundary conditions other than 
ideally hard (or soft) surfaces cannot be implemented. The finite time dif-
ference method, however, is useful for illustration and animation of wave- 
front propagation.  




