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Summary. In this chapter we consider the NP-complete problem of univer-
sity course timetabling. We note that it is often difficult to gain a deep un-
derstanding of these sorts of problems due to the fact that so many different 
types of constraints can ultimately be considered for inclusion in any par-
ticular application. Consequently we conduct a detailed analysis of a 
benchmark problem version that is slightly simplified, but also contains 
many of the features that make these sorts of problems “hard”. We review a 
number of the algorithms that have been proposed for this particular prob-
lem, and also present a detailed description and analysis of an example al-
gorithm that we show is able to perform well across a range of benchmark 
instances. 

1 Introduction to Timetabling 

Timetables are ubiquitous in many areas of daily life such as work, educa-
tion, transport, and entertainment: it is, indeed, quite difficult to imagine an 
organized and modern society coping without them. Yet in many real-
world cases, particularly where resources (such as people, space, or time) 

timetable construction is certainly a problem that we should try to solve as 
best we can. Additionally, given that timetables will often need to be up-
dated or completely remade (e.g. school timetables will often be redes-
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ten have large effects on the day-to-day lives of the people who use them, 
experienced timetable designer. However, given that these timetables can of-
attractive timetables can often be a very challenging one, even for the 
are not overly in abundance, the problem of constructing workable and 



igned at the beginning of each academic year; bus timetables will need to 
be modified to cope with new road layouts and bus stops, etc.), their con-

1.1 Timetabling at Universities 

In this chapter we will be concerning ourselves with the problem of con-
structing timetables for universities. The generic university-timetabling 
problem may be summarised as the task of assigning events (lectures, ex-
ams, etc.) to a limited set of timeslots, whilst also trying to satisfy some 
constraints. 

Probably the most universally encountered constraint for these problems 
is the event-clash constraint: if one or more persons are required to attend a 
pair of events, then these events must not be assigned to the same timeslot. 
However, beyond this simple example, university timetabling problems, in 
general, are notorious for having a plethora of different problem defini-
tions in which any number of different constraints can be imposed. These 
constraints can involve factors such as room facilities and capacities, 
teacher and student preferences, physical distances between venues, the 
ordering of events, the timetabling policies of the individual institution, 
plus many more. (Some good surveys on constraints can be found in [9, 
12, 22, 41].) Some problem definitions may even directly oppose others in 
their criteria for what makes a good timetable. For example, some might 
specify that we want timetables where each member of staff is given one 
day free of teaching per week (e.g. [20]). Others, however, might discour-
age or disallow this. Obviously, which constraints are imposed, as well as 
the relative importance that each one has, depends very much on each in-
dividual university’s preference. This, on the whole, makes it difficult to 
formulate meaningful and universal generalisations about timetabling in 
general. 

One important feature that we do know, however, is that timetable con-
struction is NP-complete in almost all variants [46]. Cooper and Kingston 
[21], for example, have shown a number of proofs to demonstrate that NP-
completeness exists for a number of different problem interpretations that 
can often arise in practice. This, they achieve, by providing transforma-
tions from various well-known NP-complete problems (such as graph-
colouring, bin-packing, and three-dimensional matching) to a number of 
different timetabling problem variants. Even, Itai, and Shamir [28] have 
also shown a method of transforming the NP-complete 3-SAT problem 
into a timetabling problem.  
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Of course, this general NP-completeness implies that whether we will 
be able to obtain anything that might be considered a workable timetable 
in any sort of reasonable time will depend very much on the nature of the 
problem instance being tackled. Some universities, for example, may have 
timetabling requirements that are fairly loose: perhaps there is an abun-
dance of rooms or some extra teaching staff. In these cases, maybe there 
are many good timetables within the total search space, of which one or 
more can be found quite easily. On the other hand, some university’s re-
quirements might be much more demanding, and maybe only a small 
number of workable timetables – or perhaps none – may exist. (It should 
also be noted that in practice, the combination of constraints that are im-
posed by timetabling administrators could often result in problems that are 
impossible to solve unless some of the constraints are relaxed.) Thus, in 
cases where “harder” problems are encountered, there is an implicit need 
for powerful and robust heuristic search methods. Some excellent surveys 
of these can be found in [9, 11, 14, 15, 17, 41]. 

When looking at the timetabling problem from an operations research 
point-of-view, the constraints that are imposed on a particular problem 
tend usually to be classified as either hard or soft.1 Hard constraints have a 
higher priority than soft, and are usually mandatory in their satisfaction. 
Indeed, timetables are usually only considered feasible if all of the hard 
constraints have been satisfied. Soft constraints, on the other hand, are 
those that we want to obey only if possible, and more often than not will 
describe what it is for a timetable to be good (with regards to the time-
tabling policies of the university, as well as the experiences of the people 
who will have to use it). As can be imagined, most real-world timetabling 
problems will have their own particular idiosyncrasies, and while this has 
resulted in a rich abundance of different timetabling algorithms, it also 
makes it very difficult to compare and contrast them. However, as Schaerf 
[46] points out, this situation is perfectly understandable given that many 
people will often be more interested in solving the timetabling problems of 

It is widely accepted, however, that timetabling problems within univer-
sities can be loosely arranged into two main categories: exam timetabling 
problems and course timetabling problems. In reality, and depending on 
the university involved, both types of problem might often exhibit similar 
characteristics (both are usually likely to require a satisfaction of the event-
clash constraint, for example), but one common and generally acknowl-

                                                      
1 A good review of the many different sorts of constraints that can be encoun-

tered in real-world timetabling problems can be found in [22]. 
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edged difference is that in exam timetabling, multiple events can be sched-
uled into the same room at the same time (providing seating-capacity con-
straints are not exceeded), whilst in course timetabling, we are generally 
only allowed one event per room, per timeslot. A second common differ-
ence between the two can also sometimes concern issues with the time-
slots: course timetabling problems will generally involve assigning events 
to a fixed set of timeslots (e.g. those occurring in exactly one week) whilst 
exam-timetabling problems may sometimes allow some flexibility in the 
number of timeslots being used (see for example [8, 10, 23, 27]).    

1.2 Chapter Overview 

In this chapter we will primarily concern ourselves with university course 
timetabling. We will, however, also refer to exam timetabling research 
when and where it is useful to do so. (Readers more interested in the latter 
are invited to consult some good texts presented by Burke et al. [12, 13], 
Thompson and Dowsland [49], Cowling et al. [24], and Carter [14-16].)  

The remainder of this chapter is set out as follows: in the next section 
we will review some of the most common forms of timetabling algorithm 
apparent in the literature, and will discuss some possible advantages and 
disadvantages of each. Next, in section 3, we will give a definition and his-
tory of the particular timetabling problem that we will be studying here, 
and will include a survey of some of the best works proposed for it. In sec-
tion 4, we will then describe an example algorithm for this problem and 
will provide a short experimental analysis. Finally, section 5 will conclude 
the chapter. 

2 Dealing with Constraints 

When attempting to design an algorithm for university timetabling, one of 
the most important issues that needs to be addressed is the question of how 
the algorithm proposes to deal effectively with both the hard constraints 
and the soft constraints. A survey of the literature indicates that most 
metaheuristic timetabling algorithms (of which there are many) will gener-
ally fall into one of three categories: 

1. One-Stage Optimisation Algorithms: where a satisfaction of both 
the hard and soft constraints is attempted simultaneously (e.g. [20, 22, 
26, 45]).  
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2. Two-Stage Optimisation Algorithms: where a satisfaction of the 
soft constraints is only attempted once a feasible timetable has been 
found (e.g. [5, 18, 19, 31, 32, 49]). 

3. Algorithms that allow Relaxations: Violations of the hard con-
straints are disallowed from the outset by relaxing some other feature 
of the problem. Attempts are then made to try and satisfy soft con-
straints whilst also giving consideration to the task of eliminating 
these relaxations (e.g. [8, 10, 27, 37]). 

Looking at category (1) first, algorithms of this type generally allow the 
violation of both hard and soft constraints within the timetable, and the aim 
is to then search for a timetable that has an adequate satisfaction of both. 
Typically, the algorithm will attempt this by using some sort of weighted 
sum function, with violations of the hard constraint usually being given 
much higher weightings than the soft constraints. For example, in [22] 
Corne, Ross, and Fang use the following evaluation function: given a prob-
lem with k types of constraint, where the penalty weighting associated with 
constraint i is wi, and where vi (tt) represents the number of constraint vio-
lations of type i in a timetable tt, quality can be calculated using the for-
mula: 

 
1

( ) 1/ 1 ( )
k

i ii
f tt w v tt  (1)

In [22], the authors use this evaluation method in conjunction with an 
evolutionary algorithm, although, one large advantage of this method is 
that it can, of course, be used with any reasonable optimisation technique 
(see [26] and [45], for example). Another immediate advantage of this ap-
proach is its flexibility: any sensible constraint can be incorporated into the 
algorithm provided that an appropriate penalty weighting is stipulated in 
advance (thus indicating its relative importance compared to others).  

However, this sort of approach also has some disadvantages. Some au-
thors (e.g. Richardson et al. [38]) have argued that this sort of evaluation 
method does not work well in problems that are sparse (i.e. where only a 
few solutions exist in the search space). Also, even though the choice of 
weights in the evaluation function will often critically influence the algo-
rithm’s navigation of the search space (and therefore its timing implica-
tions and solution quality), there does not seem to be any obvious method-
ology for choosing the best ones. Some authors (e.g. Salwach [44]) have 
also noted that a weighted sum function can be problematic, because it can 
cause a discontinuous fitness landscape, where small changes to a candi-
date solution can actually result in overly large changes to its fitness. 
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With regards to timetabling problems, however, it is worth noting that 
some researchers have tried to circumvent some of these problems by al-
lowing penalty weightings to be altered dynamically during the search. For 
example, in order to penalise hard constraint violations in his tabu search 
algorithm for school timetabling, Schaerf [45] defines a weighting value w, 
which is initially set to 20. However, at certain points during the search, 
the algorithm is able to increase w when it is felt that the search is drifting 
into search-space regions that are deemed too infeasible. Similarly, w can 

The operational characteristics of two-stage optimisation algorithm for 
timetabling (category (2)) may be summarised as follows: in stage-one, the 
soft constraints are generally disregarded and only the hard constraints are 
considered for optimisation (i.e. only a feasible timetable is sought). Next, 
assuming feasibility has been found, attempts are then made to try and 
minimise the number of the soft constraint violations, using techniques that 
only allow feasible areas of the search space to be navigated2. 

Obviously, one immediate benefit of this technique is that it is no longer 
necessary to define weightings in order to distinguish between hard and 
soft constraints (we no longer need to directly compare feasible and infea-
sible timetables), meaning that a number of the problems inherent in the 
use of penalty weightings no longer apply. In practical situations, such a 
technique might also be very appropriate where finding feasibility is the 
primary objective, and where we only wish to make allowances towards 
the soft constraints if this feasibility is definitely not compromised. (In-
deed, use of a one-stage optimisation algorithm in this situation could be 
inappropriate in many cases because, whilst searching for feasibility, the 
weighted sum evaluation function would always be taking the soft con-
straints into account. Thus, by making concessions for the soft constraints, 
the search could suffer the adverse effect of actually being led away from 
attractive (i.e. 100% feasible) regions of the search space.) 

One of the major requirements for the two-stage timetabling algorithm 
to be effective, however, is that a reasonable amount of movement in the 
feasible-only search space must be achievable. If the feasible search space 
of the problem is convex and constitutes a reasonable part of the entire 
search space, then this may be so. However, if we are presented with a 

                                                      
2 This could be achieved using neighbourhood operators that always preserve 

feasibility (c.f. [49]); by using some sort of repair mechanism to convert infeasible 
individuals into feasible ones (e.g. [32]); or by immediately rejecting any infeasi-
ble candidate solutions that crop up during the search. (In evolutionary computa-
tion, the latter is sometimes known as the “death penalty” heuristic [36].) 
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non-convex feasible search space, then searches of this kind could turn out 
to be extremely inefficient because it might simply be too difficult for the 
algorithm to explore the search space in any sort of useful way. (In these 
cases, perhaps a method that allows the search to take “shortcuts” across 
infeasible parts of the search space might be more promising.) 

Lastly, whether this technique will be appropriate in a practical sense 
also depends largely on the users’ requirements. If, for example, we are 
presented with a problem instance where feasibility is very difficult or 
seemingly impossible to achieve, then an algorithm of this form will never 
end up paying any consideration to the soft constraints. In this case, users 
may prefer to be given a solution timetable in which a suitable compro-
mise between the number of hard and soft constraint violations has been 
achieved (suggesting that, perhaps one of the other two types of algorithm 
might be more appropriate). 

Looking now at category (3), some authors have shown that good time-
tabling algorithms can also be achieved through the use of more special-
ised methodologies whereby various constraints of the problem are relaxed 
in order to try and facilitate better overall searches. For example, in their 
evolution-based algorithm for exam timetabling, Burke, Elliman, and 
Weare [8, 10] do not allow the direct violation of any of the problem’s 
hard constraints; instead, they choose to open up new timeslots for events 
that cannot be feasibly placed into any existing timeslot. The number of 
timeslots being used by a candidate timetable then forms part of the 
evaluation criteria. In addition to this, the authors also define an opposing 
soft constraint that specifies that exams for individual students must be 
spread out (in order to avoid situations where students are required to sit 
exams in consecutive timeslots). Because a reasonable satisfaction of this 
type of constraint will usually rely on there first being an adequate number 
of timeslots available, the overall aim of the algorithm is to find a suitable 
compromise between the two objectives. 

A second example of this type of approach is provided by Paechter et al. 
in [37]. Here, the authors describe a memetic approach for course time-
tabling in which an evolutionary algorithm is supplemented by a local-
search routine that aims to improve each timetable. In this approach, a 
constructive scheme is also used and, rather than break any hard con-
straints, events that cannot be feasibly assigned are left to one side un-
placed. Soft constraint violations are also penalised through the use of 
weightings that can be adjusted by the user during the search.  

One interesting aspect of this approach is the authors’ use of sequential 
evaluation: when comparing two candidate timetables, the algorithm 
deems the one with the least number of unplaced events as the fitter. How-
ever, ties are broken by looking at the penalties caused by each of the time-
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table’s soft constraint violations. Thus many of the problems encountered 
when judging a timetable’s quality through a single numerical value alone 
(as is the case with category (1)) can be avoided. Note, however, that this 
method of evaluation is only useful for algorithms where it is sufficient to 
know the ordering of a set of candidate solutions, rather than a quality 
score for each (in this case, the authors use binary tournament selection 
with their evolutionary algorithm); it is thus perhaps less well suited to 
other types of optimisation methods. 

Concluding this section, it should be clear to the reader that the question 
of how to deal with both the hard and soft constraints in a timetabling 
problem is not always easily answerable, yet it is certainly something that 
we have to effectively address if automated timetabling is to be considered 
a worthwhile endeavour. As we have noted at various points, the issue of 
meeting the user’s timetabling requirements (whatever these might be) of-
ten constitutes an important part in this decision. Indeed, it would seem 
reasonable to assume that perhaps this is the most important issue, consid-
ering that solutions to practical problems will inevitably have to be used by 
real people. However, it is, of course, also desirable for the algorithm to be 
fast, reliable and robust whenever possible. 

3 The UCTP and the International Timetabling 
Competition 

In the previous two sections, we mentioned that a difficulty often experi-
enced in automated timetabling is that it is not always easy to compare and 
contrast the performance of different timetabling algorithms. Indeed, many 
authors often only report results from experiments with their own univer-
sity’s timetabling problem and fail to provide comparisons to others. (In 
many of these situations we also, of course, have no way of determining if 
the problem instances used in the experiments were actually “hard” or not, 
although what actually constitutes a “hard” timetabling instance is still not 
completely understood). These difficulties in making algorithm compari-
sons are in contrast to many other problems faced in operations research 
(such as the travelling salesperson problem and the bin-packing problem) 
where we often have standardised problem definitions, together with an 
abundance of different problem instance libraries available for benchmark-
ing algorithms3. 
                                                      

3 See, for example, http://www.research.att.com/~dsj/chtsp/index.html or 
http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.htm for libraries of TSP 
and bin packing problems respectively. 
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However, over the past few years a small number of instance sets have 
become publicly available. In 1996 for example, Carter [16] published a 
set of exam-timetabling problem instances taken from twelve separate 
educational establishments from various parts of the world4. A number of 
different studies have now used these in their experimental analyses [8, 16, 
23, 48, 49]. More recently, a number of problem instances for course time-
tabling have also been made publicly available [1, 2]. It will be these par-
ticular collections of problem instances that we will focus our studies upon 
in this chapter. 

3.1 Origins of this Problem Version 

The so-called University Course Timetabling Problem (UCTP) was origi-
nally used by the Metaheuristics Network5 – a European Commission 
funded research project – in 2001-2, but was also subsequently used for the 
International Timetabling Competition in 2002 [1], of which further details 
will be given later. The problem, which was formulated by the authors, is 
closely based on real-world problems, but is also simplified slightly. Al-
though, from the outset, we were not entirely happy about using a simpli-
fied problem, we had a number of reasons for doing this. Firstly the prob-
lem was intended for research purposes, particularly with regards to 
analysing what actually happens in algorithms that are designed to solve 
the problem. (Real problems are often too complicated and messy to allow 
researchers to properly study these processes.) Secondly, the large number 
of hard and soft constraints usually found in real-world problems often 
makes the process of writing code (or updating existing programs to be 
suitable) a long and arduous process for timetabling researchers. Thirdly, 
many of the constraints of real-world problems are idiosyncratic and will 
often only relate to specific institutions, and so their inclusion in a problem 
will not always be instructive when trying to learn about timetabling in 
general. 

The UCTP therefore offers a compromise: a variety of real world as-
pects of timetabling are included, yet for ease of scientific investigation, 

                                                      
4 Download at http://www.or.ms.unimelb.edu.au/timetabling/atdata/carterea.tar 
5 http://www.metaheuristics.org/ 
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3.2 UCTP Problem Description 

A problem instance for the UCTP consists of a set E of n events to be 
scheduled into a set of timeslots T and a set of m rooms R, each that has an 
associated seating capacity. We are also given a set of students S each at-
tending some subset of E.  Pairs of events are said to conflict when one or 
more students are required to attend them both. Finally, we are given a set 
of features6 F. These are satisfied by rooms and required by events. In or-
der for a timetable to be feasible, every event e  E must be assigned to a 
room r  R and timeslot t  T (where | T |  45, to be interpreted as five 
days of nine timeslots), such that the following hard constraints are satis-
fied: 

H1. No student is required to attend more than one event at any one time 
(or, in other words, conflicting events should not be assigned to the 
same timeslot); 

H2. All of the features required by an event are satisfied by its room, which 
must also have an adequate seating capacity; 

H3. Only one event is put in any room in any timeslot (i.e. no double book-
ing of rooms). 

Note that the presence of H1 above makes the task of finding a feasible 
timetable similar to the well-known NP-hard graph colouring problem. In 
order to convert one problem to the other, each individual event is consid-
ered a node, and edges are then added between any pair of nodes that rep-
resent conflicting events. In very basic timetabling problem formulations 
(e.g. [40]), the task is to then simply colour the graph with as many colours 
as there are available timeslots. (Indeed, graph colouring heuristics are of-
ten used in timetabling algorithms [13, 16, 35, 49]).  

However, as we demonstrate in fig. 1, in the case of this UCTP, the 
presence of H2 and H3 add extra complications because we must now also 
ensure that for any given timeslot (i.e. colour class) there are adequate and 
appropriate rooms available. From a pure graph colouring perspective, this 
means that many feasible colourings might still represent infeasible time-
tables7. 

 
                                                      

6 In the real world, these features might be things such as audio equipment, 
computing facilities, wheelchair access, etc. 

7 Note that the presence of the rooming constraints provides us with a lower 
bound to the underlying graph colouring problem, because a feasible solution can 
never use less than /n m colours (timeslots). 
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case of our timetabling problem, if only 2 rooms were available per timeslot then 
the left graph could never represent a feasible timetable because one of the time-
slots would have 3 events assigned to it. The right solution, on the other hand, 
might represent a feasible timetable, providing that each event can also be granted 
the rooming features and seating capacity that they require. 

In addition to the hard constraints outlined above, in this problem there 
are also three soft constraints. These are as follows: 

S1. No student should be required to attend an event in the last timeslot of 
a day; 

S2. No student should sit more than two events in a row; 

S3. No student should have a single event in a day. 

Note that each soft constraint is slightly different (indeed, this was done 
deliberately): violations of S1 can be checked with no knowledge of the 
rest of the timetable, violations of S2 can be checked when building the 
timetable, and, lastly, violations of S3 can only be checked once all events 
have been assigned to the timetable. 

Formally, we work out the number of soft constraint violations in the 
following way. For S1, if a student has a class on the last timeslot of the 
day, we count this as one penalty point. Naturally, if there are s students in 
this class, we consider this as s penalty points. For S2, if one student has 
three events in a row we give one penalty point. If a student has four 
events in a row we count this as two, and so on. Note that adjacent events 
occurring over two separate days are not counted as a violation. Finally, 
each time we encounter a student with a single event on a day, we count 
this as one penalty point (two for two days with single events etc.). Our 
soft constraint evaluation function is simply the total of these three values.  

We consider a timetable to be perfect if it is feasible (i.e. has no hard 
constraint violations) and if it contains no soft constraint violations. 

3.3 Initial Work and the International Timetabling Competition 

Rossi-Doria et al. conducted one of the first studies using this timetabling 
problem in 2002 [43]. Here, the authors used five different metaheuristic 
techniques (namely, evolutionary algorithms, ant colony optimisation, iter-

247Metaheuristics for University Course Timetabling

Fig. 1. In this example, both graphs have been coloured optimally. However, in the 



ated local search, simulated annealing, and tabu search) to produce five 
separate algorithms for the UCTP. In order to facilitate a fair comparison 
of these algorithms (the main objective of their study), all used the same 
solution representation and search landscape. In some cases satisfaction of 
both the hard and soft constraints was attempted simultaneously (in the 
case of the evolutionary algorithm, for example, a weighted sum function 
was used to give higher penalties for hard constraint violations). Others, 
such as the iterated local search and simulated annealing algorithms, used 
a two-stage approach. Upon completing a comparison of these five meta-

 “The performance of a metaheuristic, with respect to satisfying hard 
constraints and soft constraints may be different;” 

 “Our results suggest that a hybrid algorithm consisting of at least two 
phases, one for taking care of feasibility, the other taking care of mini-
mising the number of soft constraint violations, is a promising direc-
tion.” 

Following this work, the International Timetabling Competition [1] was 
organised and run in 2002-3. The idea of this competition was for partici-
pants to design algorithms for this timetabling problem, which could then 
be compared against each other using a common set of benchmark in-
stances and a fixed execution time limit8. Upon the close of the competi-
tion, the participant whose algorithm was deemed to perform best across 
these instances (and checked against a number of unseen instances only 
available to the organisers) was awarded a prize. The exact criteria for 
choosing the winner can be found on the competition web site [1]. 

The twenty problem instances used for the competition consisted of be-
tween 200 and 300 students, 350 to 440 events, and 10 or 11 rooms. As 
usual, the number of timeslots was fixed at 45. Additionally, in 13 of the 
20 instances the number of events n was equal to the number of rooms 
multiplied by 40. This means that, because all instances were ensured to 
have at least one perfect solution9, optimal solutions to these instances had 

                                                      
8 The execution time limit was calculated for a participant’s computer by a pro-

gram that measured various characteristics of that computer during execution. The 
effectiveness of this benchmarking program was later verified by running the best 
competition entries on a single standard machine. 

9 In fact, we actually know that there are at least 5! = 120 perfect timetables, 
because we note that the soft constraints do not actually span across different days. 
Thus, we can permute the days of a perfect timetable, and it will still have no soft 
constraint violations.   
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to have 40 timeslots completely filled with events (as, obviously, perfect 
solutions would not have any events assigned to the five end-of-day time-
slots.) 

Another important aspect of the competition was the way in which time-
tables were chosen to be evaluated. The official rules of the competition 
stated that timetable quality would only be measured by looking at the 
number of soft constraint violations: if a timetable contained any hard con-
straint violations, used any extra timeslots, or had any unplaced events, 
then it would immediately be considered worthless. Participants were then 
only allowed to submit an entry to the competition if their algorithms 
could find feasibility on all twenty instances. Given this rule, and also tak-
ing into consideration the conclusions of Rossi-Doria et al. [43] quoted 
above, it is perhaps, unsurprising that many of the entrants to this competi-
tion therefore elected to use the two-stage timetabling approach mentioned 
in section 2. Another consequence of the evaluation scheme was that the 
problem instances were chosen so that feasibility was relatively easy to 
find. 

The competition, which ended in March 2003, eventually saw a total of 
21 official entries, plus 3 unofficial entries (the latter were not permitted to 
enter the competition because they were existing members of the Metaheu-
ristics Network). The submitted algorithms used a variety of techniques in-
cluding simulated annealing, tabu search, iterated local search, ant colony 
optimisation, some hybrid algorithms, and heuristic construction with 
backtracking. The winning algorithm was a two-stage, simulated anneal-
ing-based algorithm by Philipp Kostuch of Oxford University. Details of 
this, plus many of the others mentioned above can be found at the official 
competition web page [1]. 

3.4 Review of Relevant Research 

Since the running of the competition, quite a few good papers have been 
published regarding this particular timetabling problem. Some of these de-
scribe modifications to algorithms that were official competition entries 
and claim excellent results. Some have gone on to look at other aspects of 
the problem. In this subsection we now review some of the most notable 
and relevant works in this problem area. 

In [5], Arntzen and Løkketangen describe a two-stage tabu search algo-
rithm for the problem. In the first stage, the algorithm uses a constructive 
procedure to build an initial feasible timetable, which operates by taking 
events one by one, and assigning them to feasible places in the timetable, 
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according to some specialised heuristics that also take into account the 



cause. The order in which events are inserted is determined dynamically, 
and decisions are based upon the state of the current partial timetable. The 
authors report that these heuristics successfully build feasible timetables in 
over 90% of runs with the competition instances. Next, with feasibility 
having been found, Arntzen and Løkketangen opt to use tabu search in 
conjunction with simple neighbourhood operators in order to optimise the 
soft constraints. In the latter stage, feasibility is always maintained.  

Cordeau, Jaumard, and Morales (available at [1]) also use tabu search to 
try and satisfy the soft constraints in their timetabling algorithm. However, 
this method is slightly different to Arntzen and Løkketangen above, be-
cause, when dealing with the soft constraints, the algorithm also allows a 
small number of hard constraints to be broken from time to time. The au-
thors achieve this by introducing a partially stochastic parameter  that is 
then used in the following evaluation function: 

 ( ) ( ) ( )f tt h tt s tt  (2) 

where h(tt) indicates the number of hard constraint violations in timeta-
ble tt, and s(tt) the number of soft constraint violations. During the search, 
the parameter  helps to control the level of infeasibility in the timetable 
because if the number of hard constraint violations in tt increases, then  is 
also increased. Thus, as the number of infeasibilities rises, it also becomes 
increasingly unlikely that a search space move causing additional infeasi-
bilities will be accepted. The authors claim that such a scheme allows freer 
movement about the search space. 

Socha, Knowles, and Sampels have also suggested ways of applying the 
ant colony optimisation metaheuristic to this problem. In [47], the authors 
present two ant-based algorithms – an Ant Colony System and a MAX-
MIN system – and provide a qualitative comparison between them. At 
each step of both algorithms, every ant first constructs a complete assign-
ment of events to timeslots using heuristics and pheromone information, 
due to previous iterations of the algorithm. Timetables then undergo fur-
ther improvements via a local search procedure, outlined in [42]. Indeed, 
the only major differences between the two approaches are in the way that 
heuristic and pheromone information is interpreted, and in the methodolo-
gies for updating the pheromone matrix. However, tests using a range of 
problem instances indicate that the MAX-MIN system generally achieves 
better results. A description of the latter algorithm – which was actually 
entered unofficially to the timetabling competition – can also be found at 
[1], where good results are reported. 
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potential number of soft constraint violations that such an assignment might 



different heuristics and metaheuristics for the UCTP. After experimenting 
with a number of different approaches and also parameter settings (much 

ally uses a variety of different search methods. In the first stage, construc-
tive heuristics are initially employed in order to try and find a feasible 
timetable, although, as the authors note, these are usually unable to find 
complete feasibility unaided. Consequently, local search and tabu search 
schemes are also included to try and help eliminate any remaining hard 
constraint violations. Feasibility having been achieved, the algorithm then 
concentrates on satisfying the soft constraints and conducts its search only 
in feasible areas of the search space. It does this first by using variable 
neighbourhood search and then with simulated annealing. The annealing 

mented (this operates by resetting the temperature to its initial starting 
value when it is felt that the search is starting to stagnate). Extensive use of 
delta evaluation [39] is also made in an attempt to try and speed up the al-
gorithm and, according to the authors, the final algorithm achieves results 
that are significantly better than the official competition winner.  

Kostuch also uses simulated annealing as the main construct of his time-
tabling algorithm, described in [31]. Based upon his winning entry to the 
competition, this algorithm works by first gaining feasibility via simple 
graph colouring heuristics (plus a series of improvement steps if the heu-

ping events between timeslots. One of the interesting aspects of Kostuch’s 
approach is that when a feasible timetable is being constructed, efforts are 
made in order to try and schedule the events into just forty of the available 
forty-five timeslots. As the author notes, five of the available timeslots will 
automatically have penalties attached to them (due to the soft constraint 
S1) and so it could be a good idea to try and eliminate them from the 
search from the outset. Indeed, the author only allows the extra five time-
slots to be opened if feasibility using forty timeslots cannot be achieved in 
reasonable time. (In reported experiments, the events in nine of the twenty 
instances were always scheduled into forty timeslots.) Of course, if an as-
signment to just forty timeslots is achieved, then it is possible to keep the 
five end-of-day timeslots closed and simply conduct the soft constraint sat-
isfaction phase on the remaining forty timeslots. This is essentially what 
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petition entry, the authors present a broad study and comparison of various 

Another good study looking at this problem is offered by Chiarandini
et al. in [19].  In this research paper, which also outlines an unofficial com-

et al. [6]), their favoured method is a two-stage, hybrid algorithm that actu-
of which was done automatically using the F-Race method of Birattari

total algorithm, and a simple reheat function for this phase is also imple-
phase is reported to use more than 90% of the available run time of the 

satisfy the soft constraints by first ordering the timeslots, and then by swap-
ristics prove inadequate) and then uses simulated annealing to try and 



Kostuch’s algorithm does and, indeed, excellent results are claimed in 
[31]. 

Finally, in [35] Lewis and Paechter have proposed a “grouping genetic 
algorithm” (GGA) that is used exclusively for finding feasible timetables 
in this UCTP (i.e. the algorithm does not consider soft constraints). The ra-
tionale for this approach is that the objective of this (sub)problem may be 
viewed as the task of “grouping” events into an appropriate number of 
timeslots, such that all of the hard constraints are met. Furthermore, be-
cause, in this case, it is the timeslots that define the underlying building 
blocks of the problem (and not, say, the individual events themselves) the 
algorithm makes use of specialised genetic operators that try to allow these 
groups to be propagated during evolution10. Experiments in [35] show that 
performance of this algorithm can sometimes also be improved through the 
use of specialist fitness functions and additional heuristic search operators. 
One negative feature of this algorithm, however, is that whilst seeming to 
perform well with smaller instances ( 200 events), it seems less successful 
when dealing with larger instances ( 1000 events). This is mainly due to 
the fact that the larger groups encountered in the latter cases tend to pre-
sent much more difficulty with regards to their propagation during evolu-

algorithm (population, recombination etc.) are removed altogether, thus al-
lowing the heuristic-search operator to work unaided. (This heuristic 
search-based algorithm forms a part of the algorithm that will be described 
in section 4.3 later.) 

4 A Robust, Two-Stage Algorithm for the UCTP 

Having reviewed a number of published works that have looked at this 
standardised version of the UCTP, in this section we will now describe an 
example two-stage algorithm that, in our experiences, has performed very 
well with many available benchmark instances for this problem. The feasi-
bility-finding stage (sections 4.2 and 4.3) is particularly successful; with 
the twenty competition instances, for example, we will see that it is often 
able to achieve its goal in very small amounts of time. We will also see 
that it is able to cope very well with a large number of specially made

                                                      
10 The resultant “grouping” genetic operators follow the methodologies used in 

similar algorithms for other “grouping problems” such as bin packing [29] and 
graph colouring [25, 27]. 
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“harder” instances of various sizes. Meanwhile, the second stage of our

better results can actually be gained when the evolutionary features of the 
tion. Indeed, experiments in [35] show that in most cases, significantly 



attempted using two separate phases of simulated annealing that will be 
described in section 4.5. 

4.1 Achieving Feasibility: Pre-compilation and 
Representational Issues 

Before attempting to construct a feasible timetable, in our approach we 
first carry out some useful pre-compilation by constructing two matrices 
that are then used throughout the algorithm. We call these the event-room 
matrix and the conflicts matrix. Remembering that n represents the number 
of events and m the number of rooms, the Boolean (n × m) event-room ma-
trix is used to indicate which rooms are suitable for which events. This can 
be easily calculated for an event i by identifying which rooms satisfy both 
the seating capacity and the features required by i. Thus if, room j is 
deemed suitable, then element (i, j) in the matrix is marked as true, other-
wise it is marked as false. 

The (n × n) conflicts matrix, meanwhile, can be considered very much 
like the standard adjacency matrix used for representing graphs. For our 
purposes, the matrix indicates which pairs of events can and cannot be 
scheduled into the same timeslot. Thus, if event i and event j have one of 
more common student, then elements (i, j) and ( j, i) in the matrix are 
marked as true, otherwise false. As a final step, and following the sugges-
tions of Carter [14], we are also able to add some further information to the 
matrix. Note that, in this problem, if we have two events, k and l, that do 
not conflict but can both only be placed into the same single room, then 
there can exist no feasible timetable in which k and l are assigned to the 
same timeslot. Thus, we may also mark elements (k, l ) and (l, k) as true in 
the conflicts matrix.    

With regards to the way in which an actual timetable will be represented 
in this algorithm, similarly to works such as [19, 32, 35, 47], we choose to 
use a two-dimensional matrix where rows represent rooms, and columns 
represent timeslots. We also choose to place the restriction that each cell in 
the matrix (i.e. each place11 in the timetable) can be blank, or can contain 
at most one event. Note that this latter detail therefore actually encodes the 
third hard constraint into the representation, meaning that it is now impos-
sible to double book a room.  

                                                      
11 For the remainder of this chapter, when referring to a timetable, a place may be 

considered a timeslot/room pair. More formally, the set of all places P = T × R. 
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algorithm is concerned with the satisfaction of the soft constraints, which is 



4.2 Achieving Feasibility - The Construction Stage 

An initial assignment of events to places (cells in the matrix) is achieved 
following the steps outlined in the procedure CONSTRUCT in fig. 2. This 
procedure is also used for completing partial timetables that can occur as a 
result of the heuristic search procedure, explained in the next subsection. 
Starting with an empty or partial timetable tt and a list of unplaced events 
U (in the first case U = E), this procedure first opens up a collection of 
timeslots, and then utilises the procedure INSERT-EVENTS that takes events 
one-by-one from U and inserts them into feasible places in the timetable tt. 
(The heuristics governing these choices are described in Table 1.) The en-
tire construction procedure is completed when all events have been as-
signed to the timetable (and therefore U = ).  

Of course, during this process, there is no guarantee that every event 
will have a feasible place into which it can be inserted. In order to deal 
with these, we therefore relax the requirement regarding the number of 
timeslots being used, and open up extra timeslots as and when necessary. 
Obviously, once all of the events have been assigned, if the number of 
timeslots being used | T | is larger than the actual target amount, then the 
timetable may not actually be considered feasible (in the strict sense), and 
efforts will, of course, need to be made to try and rectify the situation. 
Methods for achieving this will be described in section 4.3.  

With regards to the heuristics that are used in this construction process 
(Table 1), it is worth noting that those used for determining the order in 
which events are inserted are somewhat akin to the rules for selecting 
which node to colour next in the classical Dsatur algorithm for graph col-
ouring [7]. However, in this case we observe that h1 also takes the issue of 
room allocation into account. Heuristic h1 therefore selects events based on 
the state of the current partial timetable, prioritising those with the least 
remaining feasible options. Ties are then broken by h2, which chooses the 
event with the highest conflicts degree (which could well be the most 
problematic of these events). Once an event has been chosen, further heu-
ristics are then employed for selecting a suitable place. Heuristic h4 at-
tempts to choose the place that will have the least effect on the future place 
options of the remaining unplaced events [5]. Heuristic rule h5, meanwhile, 
is used to encourage putting events into the fuller timeslots, thereby hope-
fully packing the events into as few timeslots as possible. Finally, h3 and h6 
add some randomisation to the process and, in our case, allow different 
runs to achieve different timetables. 
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CONSTRUCT (tt, U)                                                                                          . 
1. if (len(tt) < max_timeslots) 
2.     Open (max_timeslots – len(tt)) new timeslots; 
3. INSERT-EVENTS (tt, U, 1, max_timeslots); 
 

INSERT-EVENTS (tt, U, l, r)                                                                              . 
1. while (  e  U with feasible places between timeslots l and r in tt) 
2.     Choose an event e  U with feasible places in tt using h1, breaking ties    
        with h2, and further ties with h3; 
3.     Pick a feasible place p for e using heuristic h4, breaking ties with h5 and 
        further ties with h6;  
4.     Move e to p; 
5. if (U = ) end; 
6. else 
7.     Open | | /U m new timeslots; 
8.     INSERT-EVENTS (tt, U, r, len(tt)); 

 

rent partial timetable and U is a set of unplaced events of cardinality | U |. Addi-
tionally, len(tt) represents a function that returns the number of timeslots currently 
being used by tt; max_timeslots represents the maximum number of timeslots that 
a timetable can use for it to be considered feasible (i.e. 45), and, as before, m 

Table 1. Description of the various event and place selection heuristics used 
within the procedure INSERT-EVENTS. 

Name Description 
h1 Choose the event with the smallest number of feasible places to which it can 

be assigned in the current timetable 
h2 Choose the event which conflicts with the largest number of other events 
h3 Choose an event randomly 
h4 Choose the place that the least number of other unplaced events could be fea-

sibly assigned to in the current timetable 
h5 Choose the place in the timeslot with the most events in 
h6 Choose a place randomly 

4.3 Reducing the Number of Timeslots with a Heuristic Search 
Procedure 

Although no hard constraints will be violated in any timetable produced by 
the construction procedure described above, it is, of course, still possible 
that more than the required number of timeslots will be used, thus render-
ing it infeasible. We therefore supplement the construction procedure with 
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represents the cardinality of the room set.  

Fig. 2. The procedures CONSTRUCT and INSERT-EVENTS: Here, tt represents the cur-



a heuristic search procedure (originally described in [35]) that operates as 
follows (see also fig. 3):  

 

(2) If there are no unplaced events 
(i.e. U = ) then end; else try to 
insert the unplaced events into the 
blank cells in the partial timetable 

(3a) Randomly choose a blank and non-
blank cell in tt and swap; Add 1 to i. 
(3b) If tt’s feasibility is maintained then 
go back to step (2), else reset the swap. 
(3c) If i the iteration limit then end, 
else go back to step (3a). 

Unplaced 

(1) Randomly select some 
timeslots in tt, and remove 
them. Set i = 0. 

 

Fig. 3. Pictorial description of the heuristic search procedure used for attempting 

Given a timetable tt, a small number of randomly selected timeslots are 
first removed (defined by a parameter rm, such that between one and rm 
timeslots are chosen randomly). The events contained within these are then 
put into the list of unplaced events U. Steps (2) and (3) of fig. 3 are then 
applied repeatedly until either U is empty, or an iteration limit is reached. 
If, as in the latter case, upon termination U still contains some events, then 
CONSTRUCT is used to create new places for these. Now, if the resultant 
timetable is using the required number of timeslots, then the process can be 
halted (a completely feasible timetable has been found), otherwise further 
timeslots are selected for removal, and the whole process is repeated. 

4.4 Experimental Analysis 

As it turned out, the construction procedure described in section 4.2 was 
actually able to cope quite easily with the twenty problem instances used 
for the International Timetabling Competition. Indeed, in our experiments 
feasible timetables using a maximum of 45 timeslots were found straight 
away in over 98% of trials without any need for opening up additional 
timeslots or invoking the heuristic search procedure. (Even in cases where 
the heuristic search procedure was needed, feasibility was still always 
achieved in less than 0.25 seconds of CPU time12.) We also observed that 
the construction procedure was often actually able to pack the events into 
less than the available forty-five timeslots. For example, competition in-
stance-15 required only 41.9 timeslots (averaged across twenty runs), and 

                                                      
12 These trials, like all experiments described in this chapter, were conducted on 

a PC under Linux, using 1GB RAM, and a Pentium IV 2.66Ghz processor. 
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to reduce the number of timeslots used by a timetable.  



instance-3 required just 41.8. Others, such as competition instances 6 to 9, 
on the other hand, always required the full forty-five timeslots.   

However, although these observations seem to highlight the strengths of 
our constructive heuristics in these cases, they do not really provide us 
with much information on the operational characteristics of the heuristic 
search procedure. For this reason, we therefore conducted a second analy-
sis using an additional set of UCTP instances [2] that have been used in 
other studies [33-35] and which are deliberately intended to be “hard” with 
regards to achieving feasibility. These sixty instances are separated into 
three classes: small, medium, and large (containing approximately 200 

ness” can be found at [2] and [33]. Note, however, that each of these in-
stances is known to have at least one feasible solution, and that for some of 
them there is also a known perfect solution. For the remaining instances, 
meanwhile, some are known to definitely not have perfect solutions13, 
whilst, for others, this is still undetermined. See Table 2 below for further 
information. 

In this second set of experiments, we conducted 20 trials per instance, 
using CPU time limits of 30, 200, and 800 seconds for the small, medium 
and large instances respectively (these match the time limits used in [35]). 
We also used parameters rm = 1, and an iteration limit of 10000n. Note 
that our use of the number of events n in defining the latter parameter al-
lows the procedure to scale with instance size. 

Table 2 summarises the results of these experiments and entries that are 
highlighted indicate problem instances where feasibility was found in 
every individual trial. Here we can see that in many instances, particularly 
in the small and medium sets, when timetables using 45 timeslots were not 
achieved by the construction procedure, the heuristic search operator has 
successfully managed to remedy the situation within the imposed time lim-
its. Additionally, even with problem instances where solutions using 45 
timeslots were not always achieved, we see that the number of timeslots 
being used generally drops a noteworthy amount within the time limit. 

Indeed, our use of the heuristic search procedure is further justified 
when we compare these results to those achieved by the GGA presented in 

                                                      
13 We were able to determine that an instance had no perfect solution when the 

number of events was greater than 40m (where m represents the number of 
rooms). In these instances we know that at least ( 40 )n m events will always have 
to be assigned to the end-of-day timeslots, thus causing violations of soft con-
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[35]. From the above table we can see that, with this algorithm, we are 

straint S1.  

instances, including information on how we attempted to ensure their “hard-
events, 400 events and 1000 events respectively). Further details of the 



compares favourably with the work described in [35], where solutions to 
only eleven, six, and two problem instances were always found. It is also 
worth pointing out that the results in [35] were also gained after perform-
ing considerable parameter tuning with each instance set. Here, on the 
other hand, the results in Table 2 were gained with very little tuning (be-
yond our own intuitions), hinting that this algorithm might also be more 
robust with regard to what instances it is able to effectively deal with. 

Table 2. Performance of the Heuristic Search Procedure with the Sixty “Harder” 
Instances. This table shows, for each instance, the mean and standard deviations of 
the number of timeslots being used (a) after the initial assignment by the construc-
tion procedure (Av. slots. init. ± ), and (b) at the time limit (Av. Slots. end ± ). 
Also shown is the number of timeslots used in the most successful runs (Best). All 
results are taken from 20 runs per instance and are rounded to one decimal place. 
Lastly, in column P we also provide some supplementary information about the 
instances: a “Y” indicates that we know there to be at least one perfect solution 
obtainable from the instance, an “N” indicates that we know that there definitely 
isn’t a perfect solution, and “?” indicates neither. 

 Small (30 seconds) Medium (200 seconds) Large (800 seconds) 

# P 
Av. slots. 
init. ±  

Av. slots 
end ±  

Best P 
Av. slots. 
init. ±  

Av. slots 
end ±  

Best P 
Av. slots. 
init. ±  

Av. slots 
end ±  

Best 

1 Y 45.8 ± 0.9 44.7 ± 0.5 44 Y 45.8 ± 0.8 44.8 ± 0.4 44 Y 43.9 ± 0.7 43.9 ± 0.7 43 
2 Y 45.0 ± 0.0 45.0 ± 0.0 45 Y 47.9 ± 1.4 44.6 ± 0.5 44 Y 49.2 ± 1.6 44.8 ± 0.4 44 
3 ? 50.0 ± 0.0 44.8 ± 0.4 44 ? 47.1 ± 1.4 44.9 ± 0.3 44 Y 46.9 ± 0.8 44.9 ± 0.3 44 
4 Y 50.5 ± 1.8 44.4 ± 0.5 44 N 50.4 ± 1.3 44.7 ± 0.5 44 N 52.1 ± 0.9 45.2 ± 0.4 45 
5 ? 57.6 ± 1.3 45.0 ± 0.0 45 N 51.0 ± 1.5 45.0 ± 0.2 44 N 54.1 ± 1.5 46.0 ± 0.0 46 
6 Y 43.3 ± 1.6 43.3 ± 1.6 41 Y 56.8 ± 1.8 45.0 ± 0.2 44 N 59.8 ± 1.7 48.7 ± 0.5 48 
7 ? 53.0 ± 0.0 44.9 ± 0.3 44 ? 62.2 ± 1.6 48.1 ± 0.6 47 N 67.1 ± 1.8 54.0 ± 0.6 52 
8 N 55.7 ± 1.2 46.0 ± 0.4 45 Y 58.8 ± 1.4 44.9 ± 0.3 44 N 53.6 ± 1.7 45.0 ± 0.0 45 
9 N 64.0 ± 0.0 45.5 ± 0.5 45 ? 67.1 ± 1.8 47.8 ± 0.6 47 N 51.1 ± 1.0 45.1 ± 0.3 45 

10 N 46.0 ± 0.0 45.0 ± 0.0 45 Y 46.0 ± 1.3 44.7 ± 0.5 44 N 51.7 ± 1.1 46.0 ± 0.0 46 
11 Y 44.9 ± 0.4 44.9 ± 0.4 43 Y 60.3 ± 1.7 45.0 ± 0.2 44 N 53.3 ± 1.0 46.0 ± 0.0 46 
12 N 45.0 ± 0.0 45.0 ± 0.0 45 ? 51.2 ± 1.3 45.0 ± 0.2 44 Y 48.7 ± 1.0 45.0 ± 0.2 44 
13 N 60.8 ± 0.9 45.1 ± 0.3 45 Y 63.7 ± 1.6 45.2 ± 0.5 44 Y 51.6 ± 0.7 45.0 ± 0.0 45 
14 N 64.1 ± 0.8 46.7 ± 0.9 45 Y 55.4 ± 1.0 44.8 ± 0.4 44 Y 49.1 ± 0.9 45.0 ± 0.0 45 
15 Y 45.0 ± 0.0 45.0 ± 0.0 45 N 59.8 ± 1.9 45.0 ± 0.0 45 Y 65.4 ± 1.2 45.6 ± 0.7 45 
16 Y 60.9 ± 2.3 44.8 ± 0.4 44 ? 75.1 ± 1.5 46.9 ± 0.7 46 Y 63.0 ± 1.3 45.9 ± 0.7 45 
17 ? 59.0 ± 0.0 45.0 ± 0.0 45 Y 65.6 ± 1.4 44.7 ± 0.5 44 ? 88.9 ± 1.4 56.0 ± 1.2 54 
18 N 53.2 ± 0.8 45.3 ± 0.5 45 ? 89.6 ± 0.5 45.6 ± 0.6 45 ? 77.0 ± 1.6 56.3 ± 1.1 54 
19 N 73.6 ± 2.8 45.0 ± 0.0 45 N 92.4 ± 1.5 46.0 ± 0.5 45 ? 81.7 ± 1.4 61.1 ± 0.8 60 
20 N 46.0 ± 0.0 45.0 ± 0.0 45 N 77.7 ± 2.3 46.3 ± 0.6 45 ? 76.1 ± 2.3 55.0 ± 0.7 54 
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always able to achieve feasible timetables for fifteen, thirteen, and seven 
instances of the small, medium, and large instance sets respectively. This 



4.5 Satisfying the Soft Constraints 

Having now reviewed a seemingly effective and robust algorithm for 
achieving timetable feasibility, in this section we will now move on to the 
task of satisfying the soft constraints of the UCTP. Similarly to the ideas of 
White and Chan [51] and also Kostuch [31], our algorithm will attempt to 
do this in two phases: firstly, by seeking a suitable ordering of the time-
slots (using neighbourhood operator N1 – see fig. 4), and secondly by shuf-
fling events around the timetable (using neighbourhood operator N2). In 
both phases we will use simulated annealing (SA) for this task and, as we 
will see, the second SA phase will generally constitute the lengthiest part 
of this process. In this algorithm we also make extensive use of delta-
evaluation [39], and the algorithm will halt when a perfect solution has 
been found or, failing this, when a predefined time limit is reached (in the 
latter case, the best solution found during the whole run will be returned). 

rooms 

N1: Randomly choose two 
timeslots in the timetable and swap
their contents. 

N2: Randomly choose two cells (places) in the 
timetable (ensuring that at least one cell is not 
blank), and swap their contents. 

timeslots 

 
Fig. 4. The two neighbourhood operators used with the simulated annealing algo-
rithm. 

In both phases, SA will be used in the following way: starting at an ini-
tial temperature t0, during the run the temperature t will be slowly reduced. 
At each value for t, a number of neighbourhood moves will then be at-
tempted. Any move that increases the cost of the timetable (i.e. the number 
of soft constraint violations) will then be accepted with probability defined 
by the equation exp(– /t), where  represents the change in cost. Moves 
that reduce or leave unchanged the cost, meanwhile, will be accepted 
automatically. 

In the next four subsections we will outline the particular characteristics 
of these two SA phases. We will then present an experimental analysis in 
section 4.5.5-6. 

4.5.1 SA Phase-1 - Search Space Issues 

This phase of SA is concerned with the exploration of the search space de-
fined by neighbourhood operator N1 (see fig. 4). Note that due to the struc-
ture of this timetabling problem (in particular, that there are no hard con-
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straints that depend on the ordering of events), a movement in N1 will al-
ways preserve feasibility. 

It is also worth mentioning, however, that often there may be many fea-
sible timetables that are not achievable through the use of N1 alone. For 
example, the size of the search space offered by N1 is | T |! (i.e. the number 
of possible permutations of the timeslots). However, given that a feasible 
timetable must always have | T |  45, this means that the number of possi-
ble solutions achievable with this operator will not actually grow with in-
stance size. Also, if we were to start this optimisation phase with a timeta-
ble in which two events – say, i and j – were assigned to the same timeslot, 
then N1 would never actually be able to change this fact. Indeed, if the op-
timal solution to this problem instance required that i and j were in differ-
ent timeslots, then an exploration with N1 would never actually be able to 
achieve the optimal solution in this case. 

Given these issues, it was therefore decided that this phase of SA would 
only be used as a preliminary step for making quick-and-easy improve-
ments to the timetable. Indeed, this also showed to be the most appropriate 
response in practice.  

4.5.2 SA Phase-1 - Cooling Schedule 

For this phase, an initial temperature t0 is determined automatically by cal-
culating the standard deviation in the cost for a small sample of 
neighbourhood moves. (We used sample size 100). This scheme of calcu-
lating t0 is based upon the physical processes of annealing, which are be-
yond the scope of this chapter, but of which more details can be found in 
[50].  However, it is worth noting that in general SA practice, it is impor-
tant that a correct value for t0 is determined: a value that is too high will 
invariably waste run time, because it will mean that the vast majority of 
movements will be accepted, providing us with nothing more than a ran-
dom walk about the search space. On the other hand, an initial temperature 
that is too low could also be detrimental, as it might cause the algorithm to 
be too greedy from the outset and make it more susceptible to getting stuck 
at local optima. In practice, our described method of calculating t0 tended 
to allow approximately 75-85% of moves to be accepted, which is widely 
accepted as an appropriate amount in SA literature. 

With regards to other features of the cooling schedule, because we only 
view this phase as a preliminary, during execution we choose to limit the 
number of temperatures that we will anneal at to a fixed value M. In order 
to have an effective cooling, this also implies a need for a cooling schedule 
that will decrement the temperature from t0 to a value close to zero, in ex-
actly M steps. We use the following cooling scheme: 
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Here,  represents a parameter that, at each step, helps determine a value 
for . This -value is then used for influencing the amount of concavity or 
convexity present in the cooling schedule. Fig. 5 shows these effects in 
more detail. 
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Fig. 5. The effects of the parameter  with the cooling scheme defined in eq. (3). 
For this example, t0 = 10.0 and M = 100. 

In our experiments, for this phase we set M = 100 and, in order to allow 
more of the run to operate at lower temperatures, we set  = –0.99. The 
number of neighbourhood moves to be attempted at each temperature was 
set at | T |2, thus keeping it proportional to the total size of the neighbour-
hood (a strategy used in many SA implementations [3, 19, 31]). 

4.5.3 SA Phase-2 - Search Space Issues 

In this second and final round of simulated annealing, taking the best solu-
tion found in the previous SA phase, an exploration of the search space de-
fined by neighbourhood operator N2 is conducted (see fig. 4). However, 
note that, unlike neighbourhood operator N1, moves in N2 might cause a 
violation of one or more of the hard constraints. In our approach we deal 
with this fact by immediately rejecting and resetting any move that causes 
such an infeasibility to occur. 

Before looking at how we will tie this operator in with the SA approach, 
it is first worth considering the large amount of flexibility that N2 can offer 
the search. Suppose, for the sake of argument, that in a single application 
of the operator we elect to swap cells p and q: 
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 (3)



 If p is blank and cell q contains an event e, then this will have the effect 
of moving e to a new place p in the timetable; 

Additionally, 

 If p and q are in the same column, only the rooms of the affected events 
will change; 

 If p and q are in the same row, only the timeslots of the affected events 
will change; 

 If p and q are in different rows and different columns, then both the 
rooms and timeslots of the affected events will be changed. 

As can be seen, N2 therefore has the potential to alter a timetable in a va-
riety of ways. In addition, we also note that the number of new solutions 
(feasible and infeasible) that are obtainable via any single application of N2 
is exactly: 

 1
2

( 1) 1n n nx  (4) 

(where x defines the number of blank cells in the timetable). Thus, 
unlike N1, the size of the neighbourhood is directly related to the number 
of events n, and therefore the size of the problem. This suggests that for 
anything beyond very small instances, more time will generally be re-
quired for a thorough exploration of N2’s solution space. 

4.5.4 SA Phase-2 - Cooling Schedule 

For this phase, an initial temperature t0 is calculated in a very similar fash-
ion to SA phase-1. However, before starting this second SA phase we also 
choose to reduce the result of this calculation by a factor (c2/c1), where c1 
represents the cost of the timetable before SA phase-1, and c2 the cost after 
SA phase-1. Our reason for doing this is that during our experiments, we 
observed that an unreduced value for t0 was often so high, that the im-
provements achieved during the SA phase-1 were regularly undone at the 
beginning of the second. Reducing t0 in this way, however, seemed to al-
low the second phase of SA to build upon the progress of SA phase-1, thus 
giving a more efficient run. 

In order to determine when the temperature t should be decremented we 
choose to follow the methodologies used by Kirkpatrick et al. [30] and 
Abramson et al. [3] and define two values. The first of these specifies the 
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have the effect of swapping the places of events e and g in the timetable. 
 If p contains an event e and cell q contains an event g, then this will



maximum number of feasible moves that can be attempted at any value for 
t and, in our case, we calculate this with the formula: maxn (where max is a 
parameter that we will need to tune14). However, in this scheme t is also 
updated when a certain number of feasible moves have been accepted at 
the current temperature. This value is calculated with the formula 

min( maxn), where min is in the range (0, 1] and must also be tuned.  
To decrease the temperature, we choose to use the traditional geometric 

scheme [30] where, at the end of each cycle, the current temperature ti is 
modified to a new temperature ti+1 using the formula ti+1 = ti, where  is a 
control parameter known as the cooling rate.  

Finally, because this phase of SA will operate until a perfect solution 
has been found, or until we reach the imposed time limit, we also make use 
of a reheating function that is invoked when no improvement in cost is 
achieved for  successive values of t (and so the search has presumably 
become stuck at a local optimum). In order to calculate a suitable tempera-
ture to reheat to, we choose to use a method known as “reheating as a 
function of cost”, which was originally proposed by Abramson, Krish-
namoorthy, and Dang in [4]. In essence, this scheme determines a reheat 
temperature by considering the current state of the search; thus, if the best 
solution found so far has a high cost, then a relatively high reheat tempera-
ture will be calculated (as it is probably favourable to move the search to a 
new region of the search space). On the other hand, if the best solution 
found so far is low in cost, then a lower reheat temperature will be calcu-
lated, as it is probably the case that only small adjustments need to be 
made. In studies such as [4] and [26] (where further details can also be 
found) this has shown to be an effective method of reheating with this sort 
of problem. 

4.5.5 Algorithm Analysis – 45 or 40 Timeslots? 

For our experimental analysis of this SA algorithm, we performed two 
separate sets of trials on the 20 competition instances, using a time limit 
specified by the competition-benchmarking program15. For the first set, we 
simply used our construction and heuristic search procedures (section 4.2 
and 4.3) to make any feasible timetable where a maximum of 45 timeslots 
was being used. The SA algorithm would then take this timetable and op-
erate in the usual way. For our second set, however, we chose to make a 
slight modification to our algorithm and allowed the heuristic search pro-

                                                      
14 Note that our use of the number of events n in this formula keeps the result of 

this calculation proportional to instance size. 
15 This equated to 270 seconds of CPU time on our computers 
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cedure to run a little longer in order to try and schedule all of the events 
into a maximum of just 40 timeslots (we chose to allow a maximum of 5% 
of the total runtime in order to achieve this). Our reasons for making this 
modification were as follows: 

When we were designing and testing our SA algorithm, one characteris-
tic that we sometimes noticed was the difficulty that N2 seemed to have 
when attempting to deal with violations of soft constraint S1: often, when 
trying to rid a timetable of a violation of S2 or S3, N2 would do so by mak-
ing use of an end-of-day timeslot. Or in other words, in trying to eliminate 
one constraint violation, the algorithm would often inadvertently cause an-
other one. The reasons why such behaviour might occur start to become 
more evident if we look back at the descriptions of the three soft con-
straints in section 3.2. Note that S2 and S3 stand out as being slightly dif-
ferent to S1, because if an event e is involved in a violation of either S2 or 
S3, then this will not simply be down to the position of e in the timetable, 
it will also be due to the relative positions of the other events that have 
common students with e. By contrast, if e is causing a violation of S1, then 
this will be due to it being assigned to one of the five end-of-day timeslots, 
and has nothing to do with the relative positions of other events with com-
mon students to e. Thus, given that a satisfaction of S1 depends solely on 
not assigning events to the five end-of-day timeslots, a seemingly intuitive 
idea might therefore be to simply remove these five timeslots (and there-
fore constraint S1) from the search altogether. In turn, the SA algorithm 
will then only need to consider the remaining 40 (unpenalised) timeslots 
and only try to satisfy the two remaining soft constraints.  

In our case, it turned out that our strategy of allowing the heuristic 
search procedure to run a little longer worked quite well: using the same 
experimental set-up as described in section 4.4, with the 20 competition in-
stances the procedure was able to schedule all events into 40 timeslots in 
over 94% of cases. In the remaining cases (which, incidentally, never actu-
ally required more than 41 timeslots) the extra timeslots were labelled as 
end-of-day timeslots. However, in order to still lend special attention to the 
task of eliminating S1 violations, we used a slightly modified version of N2 
that would automatically reject any move that caused the number of events 
assigned to these end-of-day timeslots to increase, but would also elimi-
nate these timeslots if they were ever to become empty during the SA 
process. In our case, this strategy would always eliminate the remaining 
end-of-day timeslots within the first minute-or-so of the run. 
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4.5.6 Results 

Table 3 provides a comparison of these two sets of trials using 50 runs on 
each of the 20 instances. In both cases we used a cooling rate of  = 0.995 
and  = 30. Suitable values for min and max (the two parameters that we 
witnessed to be the most influential regarding algorithm performance), on 
the other hand, were determined empirically by running the algorithm at 
11 different settings for max (between 1 and 41, incrementing in steps of 4) 
and 10 different values for min (0.1 to 1.0, in steps of 0.1). At each setting 
for min and max we then performed 20 separate runs on each of the 20 
competition problem instances, thus giving a total of 400 runs per setting. 
The best performing values for min and max in both cases (i.e. the settings 
that gave the lowest average cost of the 400 runs when using 40 and 45 
timeslots) were then used for our comparison. 

It can be seen in Table 3 that when using just 40 timeslots the SA-
algorithm is able to produce better average results in the majority of cases 
(17 out of the 20 instances). Additionally, the best results (from 50 runs) 
are also produced in 16 of the 20 instances, with ties occurring on a further 
2. A Wilcoxon signed-rank test also reveals the differences in results pro-
duced in each set of trials to be significant (with a probability greater than 
95%). The results gained when using 40 timeslots also compare well to 
other approaches. For example, had the best results in the Table 3 been 
submitted to the timetabling competition, then according to the judging cri-
teria, this algorithm would have been placed second (although note that 
according to a Wilcoxon signed-rank test, there is actually no significant 
difference between these results and the competition winner, which, inci-
dentally, also reported results that were the best found in 50 runs).  

The reasons why we believe the use of just 40 timeslots to be advanta-
geous have already been outlined in the previous subsection. However, it is 
also worth noting that although the entire search space will be smaller 
when we are using only 40 timeslots (because there will be 5m fewer 
places to which events can be assigned to) the removal of the end-of-day 
timeslots will also have the effect of reducing the number of blanks that 
are present in the timetable matrix. Indeed, considering that moves in N2 
that involve blanks (and therefore just one event) are, in general, more 
likely to retain feasibility than those involving two, this means that further 
restrictions will actually be added to a search space where movements are 
already somewhat inhibited. Considering that that one of the major re-
quirements for the two-stage timetabling approach is for practical amounts 
of movements in feasible areas of the search space to be achievable (see 
section 2), there is thus a slight element of risk in reducing the number of 
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timeslots in this way. For these instances, however, the strategy seems to 
be beneficial.  

Table  3. Comparison of the two trial-sets using the 20 competition instances. In 
each case the average cost, standard deviation, and best cost (parenthesised) from 
50 runs on each instance is reported.  

Instance # 1 2 3 4 5 6 7 8 9 10 

Using 45 slots 
with max = 9 and 

min = 0.1 

85.9 
± 10.9. 

(68) 

68.5 
± 8.2. 
(49) 

86.9  
± 12.7. 

(63) 

260.1  
± 23.4. 
(207) 

190.1  
± 25.7. 
(133) 

31.5  
± 8.8.  
(12) 

42.3  
± 17.0. 

(19) 

28.3  
± 7.2. 
(14) 

52.2  
± 9.6. 
(31) 

84.9  
± 8.0. 
(68) 

Using 40 slots 
with max = 5 and 

min = 0.9 

86.9  
± 17.6. 

(62) 

53.5 
± 10.2. 

(39) 

95.6  
± 18.8. 

(69) 

231.8  
± 39.5. 
(176) 

147.7  
± 29.5. 
(106) 

22.8 
± 8.4. 
(11) 

23.7  
± 13.3. 

(5) 

22.2  
± 8.6. 
(10) 

41.4  
± 13.7. 

(22) 

91.7  
± 15.3. 

(70) 
 

Instance # 11 12 13 14 15 16 17 18 19 20 Av. 

Using 45 slots 
with max = 9 and 

min = 0.1 

61.6 
± 9.7. 
(43) 

147.5 
± 16.3. 
(109) 

130 
± 14.1. 
(101) 

107 
± 33.4. 

(55) 

41.5 
± 8.5. 
(22) 

47.2 
± 7.9. 
(29) 

169.3 
± 26.5. 
(119) 

45.9  
± 7.8. 
(27) 

85.5  
± 14.7. 

(62) 

9.5  
± 4.5. 

(1) 

88.8 
 

(61.6) 

Using 40 slots 
with max = 5 and 

min = 0.9 

60.6  
± 16.0. 

(38) 

133.8  
± 28.1. 

(94) 

128.2 
± 19.2. 
(101) 

66.3  
± 20.7. 

(37) 

33.2  
± 13.6. 

(14) 

35.8  
± 12.6. 

(18) 

129.4 
± 25.0. 

(94) 

40.8  
± 9.7. 
(27) 

84.9  
± 21.2. 

(55) 

8.6  
± 6.1. 

(0) 

77 
 

(52.4) 
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Fig. 6. Two example runs of the SA algorithm on competition instance-20. Points 
(a) indicate where the algorithm has switched from SA phase-1 to SA phase-2. 
Points (b) indicate where a reheating has occurred. 

Finally, in fig. 6 we show two example runs of the SA algorithm using 
the parameters defined in Table 3. Here we can observe the contributions 
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that both phases of SA lend to the overall search, and also the general



invoked too late to have a positive effect). Additionally, we can see that 
the second line (using 40 timeslots) actually starts at a markedly lower cost 
than the first, because the elimination of all S1 violations in this case, has 
actually resulted in a better quality initial solution. However, note that this 
line also indicates a slower progression through the search space during the 
first half of the run, which could well be due to the greater restrictions on 
movement within the search space that occur as a result of this condition. 

5 Conclusions and Discussion 

University timetabling in the real world is an important problem that can 
often be difficult to solve adequately, and sometimes impossible (without 
relaxing some of the imposed constraints). In this chapter we have men-
tioned that one of the most important issues for designers of timetabling 
algorithms is the question of how to deal effectively with both the hard 
constraints and the soft constraints, and have noted that when using meta-
heuristics, this is usually attempted in one of three ways: by using one-
stage optimisation algorithms; by using two-stage optimisation algorithms; 
or by using algorithms that allow relaxations of some feature of the prob-
lem.  

In this chapter we have given a detailed analysis of the so-called UCTP 
and have reviewed many of the existing works concerning it. In section 4 
we have also provided a description and analysis of our own particular al-
gorithm for this problem. As we have noted, the UCTP was used as the 
benchmark problem for the International Timetabling Competition in 
2002-3. By formulating this problem and then encouraging researchers to 
write algorithms for it, we have attempted to avoid many of the difficulties 
that are often caused by the idiosyncratic nature of timetabling, and have 
provided a means by which researchers can test and compare their algo-
rithms against each other in a meaningful and helpful way.  

However, it should be noted that when conducting research in this way 
we must always be cautious about extrapolating strong scientific conclu-
sions from the results. For example, whilst one timetabling algorithm may 
appear to be superior to another, these differences could be due to mun-
dane reasons such as programming/compiler issues, or the parameters 
and/or seeds that are used. Superior performance might also simply occur 
because some algorithms are more suited to the particular constraints of 
this problem. 
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effects of the reheating function (although in one case we can see that it is 



It is also worth bearing in mind that whilst the use of benchmark in-
stances may facilitate analysis and comparison of algorithms, ultimately 
they do not necessarily allow insight into how these algorithms might fare 
with other kinds of problem instance. For example, in this chapter we have 
seen that many of the algorithms that have gained good results to the 20 
competition instances – including our own – have done so using a two-
stage optimisation approach. However, this apparent success could, in part, 
be due to the competition criteria for judging timetable quality (section 
3.3), and also the fact that the instances are fairly easy to solve with regard 
to finding feasibility. This might therefore lend favour to the two-stage op-
timisation approach. Indeed, in cases where different judging criteria or 
different problem instances are used, perhaps some other sort of time-
tabling strategy would show more value.  

In conclusion, when designing algorithms for timetabling, it is always 
worth remembering that in the real world many different sorts of con-
straints, problem instances, and even political factors might be encoun-
tered. The idiosyncratic nature of real-world timetabling indicates an ad-
vantage to those algorithms that are robust with respect to problem-class 
changes or to those that can easily be adapted to take account of the needs 
of particular institutions. 

References 

[1] http://www.idsia.ch/Files/ttcomp2002/ 
[2] http://www.emergentcomputing.org/timetabling/harderinstances 
[3] D. Abramson, Constructing School Timetables using Simulated Annealing: 

Sequential and Parallel Algorithms,  Management Science, vol. 37, pp. 98-
113, 1991. 

[4] D. Abramson, H. Krishnamoorthy, and H. Dang, Simulated Annealing Cool-
ing Schedules for the School Timetabling Problem,  Asia-Pacific Journal of 
Operational Research, vol. 16, pp. 1-22, 1996. 

[5] H. Arntzen and A. Løkketangen, A Tabu Search Heuristic for a University 
Timetabling Problem,  in Metaheuristics: Progress as Real Problem Solvers, 

[6] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp, A Racing Algorithm 
for Configuring Metaheuristics,  presented at The Genetic and Evolutionary 
Computation Conference (GECCO) 2002, New York, 2002. 

[7] D. Brelaz, New methods to color the vertices of a graph,  Commun. ACM, 
vol. 22, pp. 251-256, 1979. 

[8] E. Burke, D. Elliman, and R. Weare, Specialised Recombinative Operators 

268 R. Lewis et al.

“

“

”

“

“

“

“

”

”

”

”

for Timetabling Problems,” in The Artificial Intelligence and Simulated 

M. Yagiura, Eds. Berlin: Springer-Verlag, 2005, pp. 65-86. 
vol. 32, Computer Science Interfaces Series, T Ikabaki, K. Nonobe, and 



[9] E. Burke, D. Elliman, and R. Weare, The Automation of the Timetabling 
Process in Higher Education,  Journal of Education Technology Systems, vol. 
23, pp. 257-266, 1995. 

[10] E. Burke, D. Elliman, and R. Weare, A Hybrid Genetic Algorithm for 
Highly Constrained Timetabling Problems.,  presented at Genetic Algo-

[11] E. Burke and M. Petrovic, Recent Research Directions in Automated Time-
tabling,  European Journal of Operational Research, vol. 140, pp. 266-280, 
2002. 

[12] E. K. Burke, D. G. Elliman, P. H. Ford, and R. Weare, Examination Time-
tabling in British Universities: A Survey,  in Practice and Theory of Auto-
mated Timetabling (PATAT) I, vol. 1153, Lecture Notes in Computer Science, 
E. Burke and P. Ross, Eds. Berlin: Springer-Verlag, 1996, pp. 76-92. 

[13] E. K. Burke and J. P. Newall, A Multi-Stage Evolutionary Algorithm for the 
Timetable Problem,  IEEE Transactions on Evolutionary Computation, vol. 
3, pp. 63-74, 1999. 

[14] M. Carter, A Survey of Practical Applications of Examination Timetabling 
Algorithms,  Operations Research, vol. 34, pp. 193-202, 1986. 

[15] M. Carter and G. Laporte, Recent Developments in Practical Examination 
Timetabling,  in Practice and Theory of Automated Timetabling (PATAT) I, 

[16] M. Carter, G. Laporte, and S. Y. Lee, Examination Timetabling: Algorithmic 
Strategies and Applications,  Journal of the Operational Research Society, 
vol. 47, pp. 373-383, 1996. 

[17] M. Carter and G. Laporte, Recent Developments in Practical Course Time-
tabling,  in Practice and Theory of Automated Timetabling (PATAT) II, vol. 
1408, Lecture Notes in Computer Science, E. Burke and M. Carter, Eds. Ber-
lin: Springer-Verlag, 1998, pp. 3-19. 

[18] S. Casey and J. Thompson, GRASPing the Examination Scheduling Prob-
lem,  in Practice and Theory of Automated Timetabling (PATAT) IV, vol. 
2740, Lecture Notes in Computer Science, E. Burke and P. De Causmaecker, 
Eds. Berlin: Springer-Verlag, 2002, pp. 233-244. 

[19] M. Chiarandini, K. Socha, M. Birattari, and O. Rossi-Doria, An Effective 
Hybrid Approach for the University Course Timetabling Problem,  Technical 
Report AIDA-2003-05, FG Intellektik, FB Informatik, TU Darmstadt, Ger-
many, 2003. 

[20] A. Colorni, M. Dorigo, and V. Maniezzo, Metaheuristics for high-school 

298, 1997. 
[21] T. Cooper and J. Kingston, The Complexity of Timetable Construction 

Problems,  in Practice and Theory of Automated Timetabling (PATAT ) I, 
vol. 1153, Lecture Notes in Computer Science, E. Burke and P. Ross, Eds. 
Berlin: Springer-Verlag, 1996, pp. 283-295. 

269Metaheuristics for University Course Timetabling

3-21. 
vol. 1153, E. Burke and P. Ross, Eds. Berlin: Springer-Verlag, 1996, pp. 

timetabling,  Computational Optimization and Applications, vol. 9, pp. 277- 

“

“

“

“

“

“

“

“

“

“

“

“

“

”

”

”

”

”

”

”

”

”

”

”

”

”

Computer Science. Berlin: Springer-Verlag, 1995, pp. 75-85. 

rithms: Proceedings of the Sixth International Conference (ICGA95), 1995. 

Behaviour Workshop on Evolutionary Computing, vol. 993, Lecture Notes in 



[22] D. Corne, P. Ross, and H. Fang, Evolving Timetables,  in The Practical 
Handbook of Genetic Algorithms, vol. 1, L. C. Chambers, Ed.: CRC Press, 
1995, pp. 219-276. 

[23] P. Cote, T. Wong, and R. Sabourin, Application of a Hybrid Multi-Objective 
Evolutionary Algorithm to the Uncapacitated Exam Proximity Problem,  in 
Practice and Theory of Automated Timetabling (PATAT) V, vol. 3616, Lec-
ture Notes in Computer Science, E. Burke and M. Trick, Eds. Berlin: 
Springer-Verlag, 2005, pp. 294-312. 

[24] P. Cowling, S. Ahmadi, P. Cheng, and R. Barone, Combining Human and 
Machine Intelligence to Produce Effective Examination Timetables,  pre-
sented at The Forth Asia-Pacific Conference on Simulated Evolution and 
Learning (SEAL2002), Singapore, 2002. 

[25] A. E. Eiben, J. K. van der Hauw, and J. I. van Hemert, Graph Coloring with 
Adaptive Evolutionary Algorithms,  Journal of Heuristics, vol. 4, pp. 25-46, 
1998. 

[26] S. Elmohamed, G. Fox, and P. Coddington, A Comparison of Annealing 
Techniques for Academic Course Scheduling,  in Practice and Theory of 
Automated Timetabling (PATAT) II, vol. 1408, Lecture Notes in Computer 

[27] E. Erben, A Grouping Genetic Algorithm for Graph Colouring and Exam 
Timetabling,  in Practice and Theory of Automated Timetabling (PATAT) III, 
vol. 2079, Lecture Notes in Computer Science, E. Burke and W. Erben, Eds. 
Berlin: Springer-Verlag, 2001, pp. 132-158. 

[28] S. Even, A. Itai, and A. Shamir, On the complexity of Timetable and Multi-

703, 1976. 
[29] E. Falkenauer, Genetic Algorithms and Grouping Problems: John Wiley and 

Sons, 1998. 
[30] S. Kirkpatrick, C. Gelatt, and M. Vecchi, Optimization by Simulated An-

nealing,  Science, pp. 671-680, 1983. 
[31] P. Kostuch, The University Course Timetabling Problem with a 3-Phase 

Approach,  in Practice and Theory of Automated Timetabling (PATAT) V, 
vol. 3616, Lecture Notes in Computer Science, E. Burke and M. Trick, Eds. 
Berlin: Springer-Verlag, 2005, pp. 109-125. 

[32] R. Lewis and B. Paechter, New Crossover Operators for Timetabling with 
Evolutionary Algorithms,  presented at The Fifth International Conference on 
Recent Advances in Soft Computing RASC2004, Nottingham, England, 
2004. 

[33] R. Lewis and B. Paechter, Application of the Grouping Genetic Algorithm to 
University Course Timetabling,  in Evolutionary Computation in Combinato-
rial Optimization (EvoCop), vol. 3448, Lecture Notes in Computer Science, 
G. Raidl and J. Gottlieb, Eds. Berlin: Springer-Verlag, 2005, pp. 144-153. 

[34] R. Lewis and B. Paechter, An Empirical Analysis of the Grouping Genetic 
Algorithm: The Timetabling Case,  presented at the IEEE Congress on Evo-
lutionary Computation (IEEE CEC) 2005, Edinburgh, Scotland, 2005. 

270 R. Lewis et al.

commodity Flow Problems,  SIAM Journal of Computing, vol. 5, pp. 691- 

“

“

“

“

“

“

“

“

“

“

“

“

”

”

”

”

”

”

”

”

”

”

”

”

pp. 146-166. 
Science, E. Burke and M. Carter, Eds. Berlin: Springer-Verlag, 1998, 



[35] R. Lewis and B. Paechter, Finding Feasible Timetables using Group Based 
Operators,  (Forthcoming) Accepted for publication in the IEEE Trans. Evo-
lutionary Computation, 2006. 

[36] Z. Michalewicz, The Significance of the Evaluation Function in Evolution-

[37] B. Paechter, R. Rankin, A. Cumming, and T. Fogarty, Timetabling the 
Classes of an Entire University with an Evolutionary Algorithm,  in Parallel 
Problem Solving from Nature (PPSN) V, vol. 1498, Lecture Notes in Com-
puter Science, T. Baeck, A. Eiben, M. Schoenauer, and H. Schwefel, Eds. 
Berlin: Springer-Verlag, 1998, pp. 865-874. 

[38] J. T. Richardson, M. R. Palmer, G. Liepins, and M. Hilliard, Some Guide-
lines for Genetic Algorithms with Penalty Functions.,  in the Third Interna-
tional Conference on Genetic Algorithms, J. D. Schaffer, Ed. San Francisco, 
CA, USA: Morgan Kaufmann Publishers Inc, 1989, pp. 191-197. 

[39] P. Ross, D. Corne, and H.-L. Fang, Improving Evolutionary Timetabling 
with Delta Evaluation and  Directed Mutation,  in Parallel Problem Solving 
from Nature (PPSN) III, vol. 866, Lecture Notes in Computer Science, Y. 
Davidor, H. Schwefel, and M. Reinhard, Eds. Berlin: Springer-Verlag, 1994, 
pp. 556-565. 

[40] P. Ross, D. Corne, and H. Terashima-Marin, The Phase-Transition Niche for 
Evolutionary Algorithms in Timetabling,  in Practice and Theory of Auto-
mated Timetabling (PATAT) I, vol. 1153, Lecture Notes in Computer Science, 
E. Burke and P. Ross, Eds. Berlin: Springer-Verlag, 1996, pp. 309-325. 

[41] P. Ross, E. Hart, and D. Corne, Genetic Algorithms and Timetabling,  in 
Advances in Evolutionary Computing: Theory and Applications, A. Ghosh 
and K. Tsutsui, Eds.: Springer-Verlag, New York., 2003, pp. 755- 771. 

[42] O. Rossi-Doria, J. Knowles, M. Sampels, K. Socha, and B. Paechter, A Lo-
cal Search for the Timetabling Problem,  presented at Practice And Theory of 
Automated Timetabling (PATAT) IV, Gent, Belgium, 2002. 

[43] O. Rossi-Doria, M. Samples, M. Birattari, M. Chiarandini, J. Knowles, M. 
Manfrin, M. Mastrolilli, L. Paquete, B. Paechter, and T. Stützle, A Compari-
son of the Performance of Different Metaheuristics on the Timetabling Prob-
lem,  in Practice and Theory of Automated Timetabling (PATAT) IV, vol. 
2740, Lecture Notes in Computer Science, E. Burke and P. De Causmaecker, 
Eds. Berlin: Springer-Verlag, 2002, pp. 329-351. 

[44] W. Salwach, Genetic Algorithms in Solving Constraint Satisfaction Prob-
lems: The Timetabling Case,  Badania Operacyjne i Decyzje, 1997. 

[45] A. Schaerf, Tabu Search Techniques for Large High-School Timetabling 
Problems,  in Proceedings of the Thirteenth National Conference on Artifi-
cial Intelligence. Portland (OR): AAAI Press/ MIT Press, 1996, pp. 363-368. 

tabling Problem with Regard to the State-of-the-Art,  in Evolutionary Com-

271Metaheuristics for University Course Timetabling

“

“

“

“

“

“

“

“

“

“

“

”

”

”

”

”

”

”

”

”

”

”

Institute for Mathematics and Its Applications, University of Minnesota, 
Minneapolis, Minnesota, 1998. 

ary Algorithms,” presented at The Workshop on Evolutionary Algorithms, 

[47] K. Socha and M. Samples, “Ant Algorithms for the University Course Time-
Review, vol. 13, pp. 87-127, 1999. 

[46] A. Schaerf, “A Survey of Automated Timetabling,” Artificial Intelligence 



putation in Combinatorial Optimization (EvoCOP 2003), vol. 2611, Lecture 
Notes in Computer Science. Berlin: Springer-Verlag, 2003, pp. 334-345. 

[48] H. Terashima-Marin, P. Ross, and M. Valenzuela-Rendon, Evolution of 
Constraint Satisfaction Strategies in Examination Timetabling,  presented at 
The Genetic and Evolutionary Computation Conference (GECCO), 2000. 

[49] J. M. Thompson and K. A. Dowsland, A Robust Simulated Annealing based 
Examination Timetabling System,  Computers and Operations Research, vol. 
25, pp. 637-648, 1998. 

[50] P. van Laarhoven and E. Aarts, Simulated Annealing: Theory and Applica-
tions. Reidel, The Netherlands: Kluwer Academic Publishers, 1987. 

[51] G. White and W. Chan, Towards the Construction of Optimal Examination 
Schedules,  INFOR, vol. 17, pp. 219-229, 1979. 

 
 

272 R. Lewis et al.

“

“

“

”

”

”




