Multi-relational Decision Tree Induction

Arno J. Knobbe'?, Arno Siebes’, Daniél van der Wallen'

lSyllogic B.V., Hoefseweg 1, 3821 AE, Amersfoort, The Netherlands,
{a.knobbe, d.van.der.wallen}@syllogic.com
’CWI, P.O. Box 94079, 1090 GB, Amsterdam, The Netherlands
arno@cwi.nl

Abstract. Discovering decision trees is an important set of techniques in KDD,
both because of their simple interpretation and the efficiency of their discovery.
One disadvantage is that they do not take the structure of the data into account.
By going from the standard single-relation approach to the multi-relational
approach as in ILP this disadvantage is removed. However, the straightforward
generalisation loses the efficiency. In this paper we present a framework that
allows for efficient discovery of multi-relational decision trees through
exploitation of domain knowledge encoded in the data model of the database.

1 Introduction

The induction of decision trees has been getting a lot of attention in the field of
Knowledge Discovery in Databases over the past few years. This popularity has been
largely due to the efficiency with which decision trees can be induced from large
datasets, as well as to the elegant and intuitive representation of the knowledge that is
discovered. However, traditional decision tree approaches have one major drawback.
Because of their propositional nature, they can not be employed to analyse relational
databases containing multiple tables. Such databases can be used to describe objects
with some internal structure, which may differ from one object to another. For
example, when analysing chemical compounds, we would like to make statements
about the occurrence of particular subgroups with certain features. The means to
describe groups of such objects in terms of occurrence of a certain substructure are
simply not available in propositional (attribute-value) decision trees.

In this paper, we present an alternative approach that does provide the means to
induce decision trees from structural information. We call such decision trees multi-
relational decision trees, in line with a previously proposed multi-relational data
mining framework [4, 5]. In order to be able to induce decision trees from a large
relational database efficiently, we need a framework with the following
characteristics:

1. Both attribute-value and structural information are included in the analysis.

2. The search space is drastically pruned by using the integrity constraints that are
available in the data model. This means that we are considering only the structural
information that is intended by the design of the database, and we are not wasting
time on potentially large numbers of conceptually invalid patterns.

3. The concepts of negation and complementary sets of objects are representable.

J.M. Zytkow and J. Rauch (Eds.): PKDD’99, LNAI 1704, pp. 378-383, 1999.
© Springer—Verlag Berlin Heidelberg 1999



Multi-relational Decision Tree Induction 379

Decision trees recursively divide the data set up into complementary sets of objects. It
is necessary that both the positive split, as well as the complement of that, can
effectively be represented.

4. Efficiency is achieved by a collection of data mining primitives that can be used
to summarise both attribute-value and structural information.

5. The framework can be implemented by a dedicated client/server architecture.
This requires that a clear separation between search process and data processing can
be made. This enables the data processing part (usually the main computational
bottleneck) to be implemented on a scalable server.

Only two of these requirements are met by existing algorithms for inducing first
order logical decision trees, as described in [1, 2]. Specifically the items 1. and 3. are
addressed by this approach, but little attention has been given to -efficient
implementations. The concepts addressed in item 3. are partially solved by
representing the whole decision tree as a decision list in Prolog that depends heavily
on the order of clauses and the use of cuts. By doing so, the problem of representing
individual patterns associated with internal nodes or leafs of the tree is circumvented.

Decision trees typically divide some set of objects into two complementary
subsets, in a recursive manner [8]. In propositional trees, this division is made by
applying a simple propositional condition, and its complement, to the current set of
objects. In an attribute-value environment complementary patterns are produced by
simply negating the additional condition. In a multi-relational environment, producing
such a complement is less trivial. Our previous work on a multi-relational data mining
framework, described in [4, 5], does cover four of the five characteristics that were
mentioned, but does not address the problem of handling negation and
complementary sets of objects (item 3.). An extended framework that does allow the
induction of multi-relational decision trees will be considered in more detail in this
paper. We introduce a graphical language of selection graphs with associated
refinement operators, which provides the necessary representational power. Selection
graphs are graphical representations of the subsets of objects that are associated with
individual nodes and leafs of the tree.

2 Multi-relational Data Mining

We will assume that the data to be analysed is stored in a relational database. A
relational database consists of a set of tables and a set of associations (i.e. constraints)
between pairs of tables describing how records in one table relate to records in
another table. An association between two tables describes the relationships between
records in both tables. The nature of this relationship is characterised by the
multiplicity of the association. The multiplicity of an association determines whether
several records in one table relate to single or multiple records in the second table.
Also, the multiplicity determines whether every record in one table needs to have at
least one corresponding record in the second table.

Example 1 The figure below shows an example of a data model that describes
parents, children and toys, as well as how each of these relate to each other. The data
model shows that parents may have zero or more children, children may have zero or
more toys, and parents may have bought zero or more toys. Note that toys owned by a



380 A.J. Knobbe, A. Siebes, and D. van der Wallen

particular child may not necessarily =

have been bought by their parents. They
can be presents from other parents. Also TS e
note that children have one parent (for Buysriisme
simplicity).

Even though the data model consists
of multiple tables, there is still only a
single kind of objects that is central to po-
the analysis. You can choose the kind
of objects you want to analyse, by
selecting one of the tables as the farget table. Each record in the target table, which
we will refer to as 1 will now correspond to a single object in the database. Any

1

Hame

Age
Gender
ParentName

information pertaining to the object that is stored in other tables can be looked up by
following the associations in the data model. If the data mining algorithm requires a
particular feature of an object to be used as a dependent attribute for classification or
regression, we can define a particular target attribute within the target table.

The idea of mining from multiple tables is not a new one. It is being studied
extensively in the field of Inductive Logic Programming (ILP) [3]. Conceptually,
there are many parallels between ILP and multi-relational data mining. However, ILP
approaches are mostly based on data stored as Prolog programs, and little attention is
given to data stored in relational database and to how knowledge of the data model
can help to guide the search process [7, 10]. Nor has a lot of attention been given to
efficiency and scalability issues. Multi-relational data mining differs from ILP in
three aspects. Firstly, it is restricted to the discovery of non-recursive patterns.
Secondly, the semantic information in the database is exploited explicitly. Thirdly, the
emphasis on database primitives ensures efficiency.

In our search for knowledge in relational databases we want to consider not only
attribute-value descriptions, as is common in traditional algorithms, but also the
structural information which is available through the associations between tables. We
will refer to descriptions of certain features of multi-relational objects as multi-
relational patterns. We can look at multi-relational patterns as small pieces of
substructure which we wish to encounter in the structure of the objects we are
considering. As was explained in [4, 5], we view multi-relational data mining as the
search for interesting multi-relational patterns. The multi-relational data mining
framework allows many different top-down search algorithms, each of which are
multi-relational generalisations of well-known attribute-value search algorithms. Each
of these top-down approaches share the idea of a refinement operator. Whenever a
promising pattern is discovered, a list of refinements will be examined. When we
speak about refinement of a multi-relational pattern, we are referring to an extension
of the actual description of the pattern, which results in a new selection of objects
which is a subset of the selection associated with the original multi-relational pattern.
Recursively applying such refinement operators to promising patterns results in a top-
down algorithm which zooms in on interesting subsets of the database.

Taking into account the above discussion of multi-relational data mining and top-
down approaches, we can formulate the following requirements for a multi-relational
pattern language. In the following section we will define a language which satisfies
these requirements. Descriptions of multi-relational patterns should
° reflect the structure of the relational model. This allows for easier



Multi-relational Decision Tree Induction 381

understanding of, and enforcing referential constraints on the pattern.

° be intuitive, especially where complementary expressions are considered.
° support atomic, local refinements.
o allow refinements which are complementary. If there is a refinement to a

multi-relational pattern which produces a certain subset, there should also be
a complementary refinement which produces the complementary subset.

3 Selection Graphs

In order to describe the constraints related to a multi-relational pattern, we
introduce the concept of selection graphs:

Definition (selection graph) A selection graph G is a directed graph (N, E), where
N is a set of triples (¢, C, s), t is a table in the data model and C is a, possibly empty,
set of conditions on attributes in ¢ of type t.a operator c; the operator is one of the
usual selection operators, =, > etc. s is a flag with possible values open and closed.

E is a set of tuples (p, ¢, a, e) called selection edges, where p and g are selection
nodes and a is an association between p.t and ¢.7 in the data model. e is a flag with
possible values present and absent. The selection graph contains at least one node n,
that corresponds to the target table 7.

Selection graphs can be represented graphically as labelled directed graphs. The
value of s is indicated by the absence or presence of a cross in the node, representing
the value open and closed respectively. The value of e is indicated by the absence or
presence of a cross on the arrow, representing the value present and absent
respectively.

A present edge combined with a list of conditions selects groups of records for
which there is at least one record that respects the list of conditions. An absent edge
combined with a list of conditions selects only those groups for which there is not a
single record that respects the list of conditions. The selection associated with any
subgraph is the combined result of all such individual constraints within the subgraph
on groups of records. This means that any subgraph that is pointed to by an absent
edge should be considered as a joint set of negative conditions. The flag s associated
with nodes of the selection graph has no effect on the selection. Rather, it is used to
indicate whether a particular node in a selection graph is a candidate for refinement.
Selection graphs can easily be translated to SQL [5].

Example 2 The following selection graph and derived SQL statement selects those
parents that have at least one child with a toy, but for whom none of such children are

male. select distinct TO.Name

from Parent TO, Child T1, Toy T2

Child Toy where TO.Name = T1.ParentName
and T1.Name = T2.OwnerName
and TO0.Name not in

(select T3.ParentName

from Child T3, Toy T4

where T3.Name = T4.OwnerName

and T3.Gender = 'M’)

Parent

Gender ='W’



382 A.J. Knobbe, A. Siebes, and D. van der Wallen

Refinements As was described earlier, the selection graphs will be used to
represent sets of objects belonging to nodes or leafs in a decision tree. Whenever a
new split is introduced in the decision tree, we are in fact refining the current
selection graph in two ways. We will be using the following refinement operators of a
selection graph G as potential splits in the multi-relational decision tree. The
refinements are introduced in pairs of complimentary operations:

° add positive condition. This refinement will simply add a condition to a
selection node in G without actually changing the structure of G.

o add negative condition. In case the node which is refined
does not represents the target table, this refinement will
introduce a new absent edge from the parent of the selection
node in question. The condition list of the selection node will % ..
be copied to the new closed node, and will be extended by A&
the new condition. If the node which is refined does represent the target
table, the condition is simply negated and added to the current list of
conditions for this node.

° add present edge and open node. This refinement will O'-'-'-'-'-'-'-b."n}
instantiate an associations in the data model as a present edge
together with its corresponding table and add these to G.

° add absent edge and closed node. This refinement will .
instantiate an associations in the data model as an absent 0‘-‘-‘-‘"‘.’9
edge together with its corresponding table and add these to G.

4 Multi-relational Decision Trees

The induction of decision trees in first order logic has been studied by several
researchers [1, 2, 6, 9]. Each of these approaches share a common Divide and
Conquer strategy, but produce different flavours of decision trees. For example [6]
discusses the induction of regression trees, whereas [1] discusses the induction of

decision trees for classification. In

[2] an overview is given of | build_tree(T : tree, D : database, P : pattern)
potential uses of decision trees R := optimal_refinement(P, D)
within a single framework. if stopping_criterion(R)
However, these papers have largely T := leaf(P)

focused on induction-parameters else

such as the choice of splitting P, =R(P)

criterion or stopping criterion. P =R._ (P)

None of these papers provide a build trecé?ieft D.P)
good solution for the representation buil d_tree(n'glit D 1;3“_ )
of patterns associated with the T = node (eft r’i h,t I’é)'“
leaves and internal nodes of the T - reht,

decision tree. In this section we

give a generic algorithm for the top-down induction of multi-relational decision trees
within the multi-relational data mining framework. It illustrates the use of selection
graphs, and specifically the use of complementary selection graphs in the two



Multi-relational Decision Tree Induction 383

branches of a split.

Top-down induction of decision trees is basically a Divide and Conquer algorithm.
The algorithm starts with a single node at the root of the tree which represents the set
of all objects in the relational database. By analysing all possible refinements of the
empty selection graph, and examining their quality by applying some interestingness
measure, we determine the optimal refinement. This optimal refinement, together with
its complement, is used to create the patterns associated with the left and the right
branch respectively. Based on the stopping criterion it may turn out that the optimal
refinement and its complement do not give cause for further splitting, a leaf node is
introduced instead. Whenever the optimal refinement does provide a good split, a left
and right branch is introduced and the procedure is applied to each of these
recursively. For an extensive demonstration of how this works in practice, we refer to

[5].

5 Conclusion

In this paper we have presented a framework that allows the efficient discovery of
multi-relational decision trees. The main advantage above the standard decision tree
algorithms is the gain in expressiveness. The main advantage above the ILP approach
towards decision trees is the gain in efficiency achieved by exploiting the domain
knowledge present in the data model of the database. One of the main remaining
challenges is to extend this framework such that the selection graphs may contain
cycles. Such an extension would, e.g., allow refining into parents that have not bought
toys for their own children.

References

1. Blockeel, H., De Raedt, L. Top-down induction of first order logical decision trees,
Artificial Intelligence 101 (1-2):285-297, June 1998

2. Blockeel, H., De Raedt, L., Ramon, J. Top-down induction of clustering trees, In
Proceedings of ICML9S, 55-63, 1998

3. Dzeroski, S. Inductive Logic Programming and Knowledge Discovery in Databases,
Advances in Knowledge Discovery and Data Mining, AAAI Press, 1996

4. Knobbe, A.J., Blockeel, H., Siebes, A., Van der Wallen, D.M.G. Multi-Relational
Data Mining, technical report CWI, 1999, http://www.cwi.nl

5. Knobbe, A.J., Siebes, A., Van der Wallen, D.M.G. Multi-Relational Decision Tree
Induction, technical report CWI, 1999, http://www.cwi.nl

6. Kramer, S. Structural regression trees, In Proceedings of AAAI'96, 1996

7. Morik, K., Brockhausen, P., A Multistrategy Approach to Relational Knowledge

Discovery in Databases, in Machine Learning 27(3), 287-312, Kluwer, 1997

8. Quinlan, RJ., C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993

9. Watanabe, L., Rendell, L. Learning structural decision trees from examples, In
Proceedings of IICAI91, 770-776, 1991

10. Wrobel, S. An algorithm for multi-relational discovery of subgroups, In Proceedings

of Principles of Data Mining and Knowledge Discovery (PKDD97), 78-87, 1997





