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Foreword 

Robotics is undergoing a major transformation in scope and dimension. From 
a largely dominant industrial focus, robotics is rapidly expanding into human 
environments and vigorously engaged in its new challenges. Interacting with, 
assisting, serving, and exploring with humans, the emerging robots will 
increasingly touch people and their lives. 

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing 
to the research community the latest advances in the robotics field on the 
basis of their significance and quality. Through a wide and timely dis­
semination of critical research developments in robotics, our objective with 
this series is to promote more exchanges and collaborations among the re­
searchers in the community and contribute to further advancements in this 
rapidly growing field. 

As one of robotics pioneering symposia, the International Symposium on 
Robotics Research (ISRR) has established over the past two decades some of 
the fields most fundamental and lasting contributions. Since the launching of 
STAR, ISRR and several other thematic symposia in robotics find an 
important platform for closer links and extended reach within the robotics 
community. 

This twelfth edition of Robotics Research, edited by Sebastian Thrun, 
Rodney Brooks, and Hugh Durrant-Whyte, offers in its 14-part volume a 
collection of a broad range of topics in robotics. The content of these 
contributions provides a wide coverage of the current state of robotics 
research: the advances and challenges in its theoretical foundation and 
technology basis, and the developments in its traditional and novel areas of 
apphcations. 

In addition to the collection of papers presented in the diverse technical 
areas, this volume reports on a panel discussion on the theme of robotics 
science, and on a major robotic exhibit that took place during the 2005 
World Exposition (Expo 2005) in Aichi, Japan. The diversity and span of 
the unfolding work reveal the increased maturity and expanded scope of the 
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robotics field. This twelfth edition of ISRR culminates with this important 
reference on the current developments and new directions in the field of 
robotics - a true tribute to its contributors and organizers! 

Stanford, Oussama Khatih 
November 2006 



Preface 

This volume contains a collection of papers presented at the 12th International 
Symposium of Robotics Research (ISRR). ISRR is the premiere meeting of the 
International Foundation of Robotics Research (IFRR) that covers all aspects 
of robotics. The 12th ISRR took place October 12-15, 2005, in San Francisco, 
near Fisherman's Wharf. 

The 12th ISRR was attended by 70 researchers from all major geographic 
regions, representing many different research areas within robotics. The tech­
nical program featured 38 regular papers, which were carefully selected to 
cover some of the most important ongoing research in robotics. The presen­
tations of these papers were organized into twelve thematic sessions, each of 
which was chaired by members of the Program Committee or officers of the 
IFRR. Five invited overview talks by Henrik Christensen, Hirohisa Hirukawa, 
Vijay Kumar, Bruno Siciliano, and Alex Zelinski informed the audience about 
special activities and events in the field. As is now tradition with ISRR, one 
evening was dedicated to an open video session chaired by Oussama Khatib, in 
which participants showed brief videos about their work. An open discussion 
on the topic of Robotics Science, organized by Ruzena Bajcsy, addressed im­
portant challenges for the field of robotics. The technical program of the 12th 
ISRR was complemented by a rich social program, which included a dinner 
cruise through the San Francisco Bay, and an excursion to nearby Alcatraz 
Island. 

The scientific program was composed with the help of two committees: 
the Program Committee (PC) and the Selection Committee (SC). The PC 
consisted of Antonio Bicchi, Hirohisa Hirukawa, Andrew Howard, Hiroshi 
Ishiguro, Makoto Kaneko, Alonzo Kelly, Jean-Pierre Merlet, Paul Michael 
Newman, Nicholas Roy, Tomomasa Sato, Claire Jennifer Tomlin, Louis Whit-
comb, and Alex Zelinsky. This committee recruited all reviewers and solicited 
submissions from key researchers in the field. It met at Stanford University 
on July 1, 2005, to make its selection from a pool of 79 submissions. The ac­
ceptance rate for submitted papers was approximately 25%. One day later, on 
July 2, the SC met at Stanford. This committee was comprised of Bob Bolles, 
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Raja Chatila, Hirochika Inoue, Oussama Khatib, and Bernie Roth. The SC 
finahzed all selection decisions and added a number of invited speakers to the 
technical program. The result of this selection process was a truly outstanding 
technical program which, we believe, featured some of the very best work in 
the field. 

The meeting would not have been possible without the diligent work of a 
great number of people, including the various committee members and tech­
nical reviewers. Special thanks go to Jennifer Hodges and Debbie Barros for 
assisting with the organization of the meeting and for running the registration 
desk. Also, Chieh-Chih (Bob) Wang organized the Web site and oversaw the 
submission process, which is gratefully acknowledged. Oussama Khatib, Pres­
ident of the IFRR, provided helpful advice all along, as did John Hollerbach 
and Raja Chatila. And finally, we thank all the participants of the 12th ISRR 
for making the meeting what it was: a premiere event in the field of robotics. 

Stanford, Cambridge, and Sydney Sebastian Thrun 
August 2006 Rodney A. Brooks 

Hugh Durrani-Whyte 
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Physical Human Robot 
Interaction and Haptics 



Session Overview 
Physical Human-Robot Integration and 
Haptics 

Antonio Bicchi^ and Yoshihiko Nakamura^ 

^ Centre Interdipartimentale di Ricerca 
"E. Piaggio" 
Universita di Pisa 
h t t p : / / w w w . p i a g g i o . c c i i . u n i p i . i t 

^ Department of Mechano-Informatics 
University of Tokyo h t t p : //www. ynl . t .u - tokyo . a c . j p 

Machines and robots in the near future will share environments, and often 
come directly in touch with humans. This is to happen in several applica­
tions domains, including domestic applications (domotics), entertainment, as­
sistance, cooperative manipulation tasks, teleoperation, human augmentation, 
haptic interfaces and exoskeletons. Physical Human-Robot Interaction (pHRI) 
poses many challenges, which can be summarized by the dichotomy safety vs. 
performance. The first and foremost concern, indeed, is tha t the robot must 
not hurt humans, directly nor indirectly, in regular operations nor in failures. 
Second, the machine is expected to perform swiftly and effectively its tasks in 
the service to humans. 

As a consequence of this priority inversion, machines interacting with 
humans have different requirements than those currently met in industrial 
robots: while accuracy is less demanding, safety of operations is a must. Fur­
thermore, the definition of performance is to be rethought, being sometimes 
the machine intended for quite different tasks than conventional industrial 
robots. 

This session was designed to explore the safety and performance aspects 
of pHRI. The first paper, A Unified Passivity Based Control Framework for 
Position, Torque and Impedance Control of Flexible Joint Robots by Alin Albu-
Schaffer, Christian Ot t and Gerd Hirzinger, discusses how to effectively control 
a high-performance robot arm designed to minimize risks of impact with hu­
mans by reducing its inertia, and allowing joint compliance. Compare this with 
the traditional approach of controlling stiff and heavy arms so as to appear 
compliant, and consider the degree of fault tolerance of the two approaches. 

S. Thmn , R. Brooks, H. Durrant-Whyte (Eds.): Robotics Research, STAR 28, pp. 3-4, 2007. 

© Springer-Verlag Berlin Heidelberg 2007 



4 A. Bicchi and Y. Nakamura 

The focus of three papers in this session was on design and control of high-
performance haptic devices. Here, performance is to be intended at a broader, 
"system" level than coventionally done in robotics: indeed, the system includes 
both the machine and the human. The goal of haptics is tha t of stimulating 
tactile perceptions of the operator so as to provide a realistic and compelling 
sensation of being in touch (literally) with a remote or virtual environment. 

In Wave Haptics: Encoderless Virtual Stiffnesses^ by G. Niemeyer, N. Dio-
laiti, and N. Tanner, the difference between specifications of a haptic interface 
from those of classical servomechanisms is considered. Accordingly, a control 
scheme tha t exploits some physical behaviours of the actuation system, rather 
than counteracting them by imposing the controller authority, is shown to 
provide definite advantages. In Reality-based Estimation of Needle and Soft 
Tissue Interaction for Accurate Haptic Feedback in Prostate Brachytherapy 
Simulation, by J. T. Hing, A. D. Brooks, and Jaydev P. Desai, an interesting 
application to medical training is reported where the need for an objective 
interaction performance evaluation is preheminent. Finally, in Haptic Virtual 
Fixtures for Robot-Assisted Manipulation, by J. J. Abbot t , P. Marayong, and 
A. M. Okamura, it is shown how software-generated force and position signals 
are applied to human operators to improve the safety, accuracy, and speed of 
robot-assisted manipulation tasks. 



A Unified Passivity Based Control Framework 
for Position, Torque and Impedance Control of 
Flexible Joint Robots 

Alin Albu-SchaflFer, Christian Ot t , and Gerd Hirzinger 

Institute of Robotics and Mechatronics, German Aerospace Center (DLR) 
Alin.Albu-Schaeffer@dlr.de, Chr i s t i an .Ot tSdl r .de , Gerd.HirzingerSdlr.de 

Summary . In this paper we describe a general passivity based framework for the 
control of flexible joint robots. Herein the recent DLR results on torque-, position-
, as well as impedance control of flexible joint robots are summarized, and the 
relations between the individual contributions are highlighted. It is shown that an 
inner torque feedback loop can be incorporated into a passivity based analysis by 
interpreting torque feedback in terms of shaping of the motor inertia. This result, 
which implicitly was already included in our earlier works on torque- and position 
control, can also be seized for the design of impedance controllers. For impedance 
control, furthermore, potential shaping is of special interest. It is shown how, based 
only on the motor angles, a potential function can be designed which simultaneously 
incorporates gravity compensation and a desired Cartesian stiffness relation for the 
link angles. 
All the presented controllers were experimentally evaluated on the DLR light-weight 
robots and proved their performance and robustness with respect to uncertain model 
parameters. Herein, an impact experiment is presented briefly, and an overview of 
several applications is given in which the controllers have been applied. 

1 Introduction 

The currently growing research interest in application fields such as service 
robotics, health care, space robotics, or force feedback systems has led to an 
increasing demand for light robot arms with a load to weight ratio comparable 
to tha t of human arms. These manipulators should be able to perform compli­
ant manipulation in contact with an unknown environment and guarantee the 
safety of humans interacting with them. A major problem which is specific to 
the implementation of light-weight robot concepts is the inherent flexibility 
introduced into the robot joints. Consequently, the success in the above men­
tioned robotics fields is strongly dependent on the design and implementation 
of adequate control strategies which can: 

S. Thmn , R. Brooks, H. Durrant-Whyte (Eds.): Robotics Research, STAR 28, pp. 5-21, 2007. 

© Springer-Verlag Berlin Heidelberg 2007 



6 A. Albu-Schaffer, C. Ott, and G. Hirzinger 

• compensate for the weakly damped elasticity in the robot joints in order 
to achieve high performance motion control, 

• provide a desired Cartesian compliant behaviour of the manipulator, 
• enable robust and fast manipulation in contact with unknown, passive 

environments, 
• provide safety and dependability in interaction with humans. 

It is commonly recognized that these control goals require measurement capa­
bilities which clearly exceed the classical position sensing of industrial robots. 
The solution chosen in the case of the DLR light-weight robots (Fig. 1) was 
to provide the joints with torque sensors in addition to motor position sensors 
[12]. Additionally, a 6 dof force-torque sensor was mounted on the robot wrist. 
The position control problem for flexible joint robots was extensively treated 

in the robot control literature [17, 19, 8, 10, 14]. However, the problem of com­
pliant motion control for interaction with unknown environments and with 
humans is addressed only recently under consideration of robot flexibility. 
The relevance of the topics becomes clear by looking at latest hardware devel­
opments, where elasticity is deliberately introduced into the joints in order to 
increase the interaction performance and the safety of robots [18, 21, 7]. Due 
to the fact that the model structure is slightly more complex than for rigid 
robots, there was still a gap between theoretical solutions (which often require 
very accurate models and the measurement or estimation of high derivatives 
of the joint position) and the practical solutions commonly chosen, which are 
not always based on firm theoretical background. 

Fig. 1. The DLR light-weight robot III 
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In this paper we give an overview of the controller structures for the DLR 
robots, sketch the passivity based theoretical framework on which the actual 
controllers are based, go into some detail with the Cartesian impedance con­
troller, and shortly describe some typical applications. 

2 Controller Overview 

The first stage in the controller development was a joint state feedback con­
troller with compensation of gravity and friction [2, 1]. The state vector con­
tains the motor positions, the joint torques, as well as their first derivatives. By 
an appropriate parameterization of the feedback gains, the controller structure 
can be used to implement position, torque or impedance control. Based on this 
joint control structure, three different strategies for implementing Cartesian 
compliant motion have been realized: admittance control, which accesses the 
joint position interface through the inverse kinematics; Cartesian impedance 
control, which is based on the joint torque interface; and Cartesian stiflFness 
control, which accesses the joint impedance controller (Fig.2). 

Cartesian Compliant Behavior 

Admittance control 
* 

Stiffness control Impedance control 

Force Controller 

Inverse kinematics for 
redundant Robots 

Slow Cartesian 
Task 

(6-10ms) 

Projection of 
stiffiiess & damping: 

Cartesian to joints 
null-space to joints 

Variable gains for 
[joint stiffiiess control] 
|& vibration damping 

Cartesian 
stiffiiess & damping 

matrices 

Operational space 

Robot dynamics 

Joint space 

Jacobian 

Fast Cartesian 
Task (1ms) 

fast stiffness 
module 

Direct 
kinematics! 

Desired Torque M 
computation 

Ims bus 
Joint 
task 

0.33ms 

Position 
control 

k=max Impedance 
control 

k=0 Torque 
control 

F i g . 2 . Controller archi tecture for D L R ' s light-weight robots 
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The latest developments focused on strategies for impedance control based on 
a passivity approach under consideration of the joint flexibilities [16, 5, 4]. A 
physical interpretation of the joint torque feedback loop has been given as the 
shaping of the motor inertia, while the implementation of the desired stiff­
ness can be regarded as shaping of potential energy. Therefore, the Cartesian 
impedance controller can be designed and analyzed within a passivity based 
framework in the same manner as the previously mentioned state feedback 
controller. 
The following model structure based on [17] is assumed for the flexible joint 
robot: 

M{q)q + C{q, q)q + giq) = r + DR-^r + Text 

(1) 
Be + T + DR-^f = Tm (2) 

T = K(e- q) (3) 

The vectors q ^ W^ and 6 ^ W^ contain the hnk and motor side positions 
respectively. M{q) G SR"̂ ^̂  , C(q,q)q, and g(q) G ̂ ^ are the components of 
the rigid body dynamics: inertia matrix, centripetal and Coriolis vector, and 
gravity vector. The vector r G 3?̂  represents the joint torques. Text ^ ^^ 
the external torques acting on the robot, and r ^ e Sft" the motor torques. 
K = diag(ifi) G SR^̂ ^ and B = dia,g{Bi) G Sft"^^ are the diagonal, positive 
deflnite joint stiffness, and motor inertia matrices, respectively, and D = 
didig(Di) G 5R"̂ ^̂  is the diagonal positive semi-definite joint damping matrix. 

3 Passivity Based Framework for Torque, Position 
and Impedance Control 

In the following we summarize the approaches finally adopted for the DLR 
robots for torque, position, and impedance control and give a unified, passiv­
ity based view to these problems. Of course, the control literature for flex­
ible joint robots contains various different other possible approaches to the 
problem. The best performance is theoretically given by decoupling based ap­
proaches, which provide a partially or even fully linearized closed loop system 
and ensure asymptotic stability also for the tracking case [17, 8, 14, 11, 15]. 
These controllers, however, require as a state vector the link side positions up 
to their third derivative and a very accurate robot model. For the DLR robots 
these approaches resulted in only moderate performance and robustness. The 
situation with back-stepping based controllers is similar to that of decouphng 
based approaches. On the other hand, singular perturbation based controllers 
are easy to implement, but their performance is theoretically and practically 
limited to the case of relatively high joint stiffness. 
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For the DLR light-weight robots, we preferred the passivity based approach 
described below, because it is based only on the available motor position and 
joint torque signals, as well as their first order derivatives and it provides a 
high degree of robustness to unmodeled robot dynamics and in contact with 
unknown environments. It provides a framework which is both theoretically 
sound and also practically feasible, as demonstrated by the various applica­
tions realized so far using these controllers. 

3.1 Passivi ty Based Jo in t Posi t ion Control 

The starting point in the control development was a joint state feedback con­
troller given by 

Tjn — —Kp9 — KDO 

+KT{9{qs) -^)- Ksr + 9{q,) (4) 

with Kp^ KD, KT, and Ks being positive definite diagonal matrices and 
with a gravity compensation g(qg) based on the desired position. This con­
stitutes an extension of the PD controllers from [19] to a full state feedback. 
Under some conditions related to the minimal eigenvalues of Kp and Kp, 
[2, 1], the controller together with the motor side dynamics (2) can be shown 
to provide a passive subsystem, what in turn leads to passivity of the entire 
closed loop system^, as sketched in Fig.3. In [1] it was exemplified that by ad-

controller 
K. 

i m . ID, 

ra 
controller 

A A B, D, 
T,T 

e,e 
passive controlled actuator 1 

p,e 
tuator 7 

ext 

>©"> 

rigid robot 
dynamics 

Fig. 3. Representation of the robot as a connection of passive blocks 

^ Passivity is given in this case, e.g. with respect to the variables {Ta,q}, with 
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equately designing the controller gains Kp, Kn, KT, and Ks, the structure 
can be used to implement a torque, position or impedance controller on joint 
level. 

3.2 Joint Torque Control: Shaping the Actuator Kinetic Energy 

In order to be able to generalize the joint level approach also to Cartesian 
coordinates, the idea of interpreting the joint torque feedback as the shaping 
of the motor inertia plays a central role [16]. It enables to directly use the 
torque feedback within the passivity framework and conceptually divides the 
controller design into two steps, one related to the torque feedback and the 
other to the position feedback. However, in contrast to singular perturbation 
approaches, the analysis does not require the two loops to have different time 
scales, which would imply very high bandwidth for the torque controller. 
Consider a torque feedback of the form 

Tm = BB-'u + (J - BB-'){T + DK-^T). (5) 

Herein ix G Sft̂  is an intermediate control input. In [5] a more general form 
of this torque controller was presented, in which the feedback gain of r is an 
additional independent design parameter, giving the possibility to optimize 
the performance and the vibration damping effect of the controller. Due to 
lack of space, the presentation will be restricted here to the simpler case given 
by (5). The torque controller leads together with (2) to 

Be'e + T + DK-^T = u (6) 

Comparing (2) with (6) it is clear that the effect of the torque controller is 
that of changing the motor inertia to BQ for the new subsystem with input 
u. 

3.3 Motor Position Based Feedback: Shaping the Potential Energy 

First notice that for the joint control case, a controller of the form 

u = -Kee-Dee + g{es) (7) 

with 0 = 0 — 05 is passive with respect to the variables {6^u). Taking into 
consideration the passivity of all other subsystems, this enables the conclu­
sion of passivity for the entire closed loop system. Actually, the controller 
can be shown to be equivalent to the formulation (4), with Kp = BB^^KQ, 

KD = BB^^De, KT = BB^^ - / , and Kg = {BB^^ - IJDKK While 
the structure can be effectively used for position control, it has two major 
drawbacks when used for impedance control. First, as mentioned before, in 
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order to prove the asymptotic stability, some minimal values for KQ (or Kp) 
have to be ensured. This is related o the fact that the gravity compensation 
is done based on the desired position. For impedance control, however, the 
desired stiflPness may be arbitrary close to zero, making gravity compensation 
based on desired position not meaningful. Second, the desired stiflPness relation 
is satisfied only locally by controllers of the type give by (7), due to additional 
variation of the gravity term and, in the Cartesian version, of the Jacobian. 
In the next subsection an approach is presented, which overcomes the men­
tioned shortcomings. The main idea is to design the outer loop by introducing 
a new control variable q, which is a function of the collocated (motor) posi­
tion 0 only, but is equal to the noncollocated position q (link side) in every 
static configuration. An iterative computation method based on the contrac­
tion mapping theorem is used to calculate this variable. A passive outer loop 
controller can be designed in this way, while exactly fulfilling all the steady 
state requirements for the system. These include not only the desired equiUb-
rium position, but also the exact stiffness relationship between the tip position 
and the external force. The approach can be interpreted as a shaping of the 
potential energy of the robot. 

3.4 The Cartesian Case: Implementing Exact Desired Stiffness 

In this section, the more general case of Cartesian impedance control is 
treated. The joint level impedance controller can be easily derived from it. 
In analogy to rigid robot impedance control [13], a first choice for the outer 
loop controller would be: 

u = -J{qf{K,x{q) + D,x{q)) + g{q) , (8) 

x{Q) = f{Q)-^s' (9) 

Herein, Xs is the desired tip configuration and x(q) = f(q) is the tip con­
figuration computed by the direct kinematics map / . J(q) = Q is the 
manipulator Jacobian. Kx and Dx are positive definite matrices of desired 
stiflPness and damping. The equilibrium conditions^ are then given by 

KiOo - Qo) = giQo) - J{qofF,^t (10) 

KiOo - Qo) + JiqofK.xiQo) = g{qo), ( H ) 

where the relation Text = «^(9o)"^^ext between the external torque and the 
external tip force Fext was used. Obviously, this leads to the desired stiflPness 
relation Fext = KxX in any equilibrium position as long as J{qo) is invert-
ible (what means that also / is locally invertible). The following analysis is 
restricted to configurations in which this assumption is fulfilled. 

^obtained for a constant Text from (1),(3),(6),(8) by setting all derivatives to zero . 
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It is well known that the system (1) is passive with respect to the input-
output pair {TO + Text?^}- This can be shown with the storage function 
'^Q — \Q^^{Q)Q. + ^p(^): where Vg{q) is a potential function for g{q). In 
order to ensure the passivity of the complete system, we are now looking for a 
control law for u which determines (6) to be passive in {q^—Ta}- Obviously, 
(8) does not satisfy the required passivity condition. It can be observed from 
[19, 2, 22, 16, 5] that it is possible to ensure the passivity in {gf, —To] if tx is a 
function of 6 and its derivative only. The basic idea for the solution proposed 
in this paper uses the fact that, at equilibrium points, there is a one to one 
mapping 6Q = fi(go) (i^ ^^^ ^^^^ through (11)) between 6Q and q^: 

eo = Hqo)=qo + K-H{qo), (12) 

with3 Z(go) = -Jiq^fK^xigo) + giq^). (13) 

Furthermore, the inverse mapping h~^ can be solved iteratively with arbitrary 
accuracy (see Remark 1). 
The proposed solution consists in replacing q in (8) with q{6) = h~^{6) and 
obtaining the following controller, which is statically equivalent to (8): 

u = -Jiqf{K,xiq) + D,J{q)e) + g{q) (14) 

x{q) = f{q)-xs. (15) 

Since q'(0o) = ^o holds at rest, it follows that the equilibrium (10),(11) and 
thus the desired static relation Fext = Kxx{qQ) is still valid for this new 
controller. This basic idea was introduced in [16, 5] for the case of gravity 
compensation only and was generalized in [4] in order to provide an exact 
link side Cartesian stiffness. The closed loop dynamics of the system results 
from (1), (6), and (14): 

M{q)q + C{q, q)q + g{q) = r^ + Text (16) 

Be'e - m + J(qfD,J(q)0 + r , = 0 (17) 

Remark 1. While in general the inverse function q = h~^{9) can not he com­
puted analytically, it is possible to approximate it with arbitrary accuracy by 
iteration in case that the mapping T(q) := 6 — K~^l{q) is a contraction. The 
mapping T{q) has then an unique fixed-point q* = T(q*) = q. The iteration 

q^+i = T(qJ (18) 

converges thus for every starting point (e.g. q^ = 9) to this fixed-point, as 
follows from the contraction mapping theorem (see e.g. [20]): 

lim q^ = q'^ =q . (19) 
n—)-oo 

In order for T{q) to be a contraction, it is sufficient to show that there exists 
an a G ̂  satisfying: 

In [16, 5], Z(gfo) is simply [{QQ) = giq^). 
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dliq) 
dq 

<a< _i Vq e SR". (20) 

This implies the following two inequalities: 

mQi)-l(.Q2)\\<»\\Qi-Q2\\,^Qi, 92e5R" (21) 
\Viiq^)-V,iq^)-{q,-q,fliq2)\ (22) 

TO^/i Vi{q) being a potential function for l{q). As a consequence of (21) it 
follows that 

| | T i ( ^ i ) - T i ( g , ) | | = | |K-^ | | | | / (^ , ) -Kg2) l l 

< \\Qi-<l2\\ 

The condition (20) can always he fulfilled for a sufficiently small \\Kx\\- A 
physical interpretation can he given as follows: ignoring gravity, the condition 
states that the desired Cartesian stiffness, transformed to joint space [9, 3] may 
not exceed the joint stiffness. On the other hand, in ahsence of external forces, 
the condition states that the joint stiffness should he high enough to sustain 
the rohot in the gravity field. In the following it is therefore assumed that q 
is known exactly. In practice, good results are ohtained already hy the first or 
second iteration step. In particular notice that hy a first order approximation 
with QQ = Qg one would ohtain the second version of the controller from [22]. 

4 Passivity Analysis 

The passivity of (17) with respect to {q, —Ta} can be shown using the follow­
ing storage function: 

5, = le'^Bge + ^(e - qfK(e -q)- vm, (23) 

where Vi{6) is a potential function for l{6) = l{q{6)). It should be mentioned 
that a potential function for l(q(9)) with 9 as an argument is required in (23), 
satisfying —^^ = 1(0)^ = l(iq(6))^. A potential function Vi{q) in q^ (with 

Q- = l{q)^) can easily be found: 

V,iq) = -\x'^{q)K,xiq) + VM- (24) 

In [4] it is then shown that the required potential function Vi(9) is related to 
Vi{q) through 

Vjie) = mqie)) + \f{q{e))K-H{q{e)). (25) 
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For robots with rotational joints, —Vg(q) is lower bounded. By substituting 
(25) and (24) into (23), it follows that SQ is bounded from below since all other 
terms are positive (quadratic). Thus Se represents an appropriate storage 
function. 
The time derivative of (23) along the solutions of (17) is: 

So -fj^{q)D,J{q)e -{e- qfD{e - q) 
•T 

-q Ta 

The last term represents the exchanged power of the subsystem and the other 
terms are negative definite dissipation terms. This shows that the subsystem 
is indeed passive with respect to {g, —Ta}. If the robot is contacting an envi­
ronment which is also passive (with respect to {q, —Text}), then the passivity 
of the entire system is given as a parallel and feedback interconnection of pas­
sive subsystems (Fig. 4). 
As already mentioned before, the results of the passivity analysis have im­
portant implications for the robot interaction with the environment. Without 
going into details it should be mentioned that the storage functions from the 
passivity analysis can be used also as a Lyapunov function for the proof of 
asymptotic stability in the case of free motion [4]. 

X. 
^ 

impedance 
law 

J(q) 

^ h 

g(q) 
kinematics 
dynamics 

x(q) 

q(e) 

u 

e 
passive subsystem 

rigid robot 
dynamics 

Fig. 4. Representation of the closed loop system as parallel and feedback intercon­
nection of passive systems. 

5 Experimental Evaluation 

A typical impact experiment with the seven-dof DLR-hght-weight-robot-II is 
shortly described in this section, in order to illustrate the controller perfor-
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Table 1. Chosen values for the diagonal Cartesian stiffness matrix. 

15 

X 

4000 
N 
m 

y 
4000 

N 
m 

Z 

4000 
N 
m 

roll 
300 
N m 
r a d 

pitch 
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N m 
r a d 

yaw 
300 
N m 
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mance. For the experiment a diagonal form of the Cartesian stiffness matrix 
Kx, with the values of Table 1, was chosen. In the experiment a desired trajec­
tory Zd(t) along the vertical ;2;-axis of the end-effector frame was commanded 
such that the robot hit a wooden surface. During this impact, the Cartesian 
contact force was measured by a six-dof force-torque-sensor^. The measure­
ment of the external forces was done here only for the evaluation, but is not 
needed for the implementation of the controller. Furthermore, the end-effector 
coordinate z{q) was computed from the link side angles q — 9-\-K~^T. The re­
sulting motion z(q) and the contact force F^ of the end-effector in ^-direction 
are shown in Fig. 5. In order to evaluate the resulting impedance relationship. 

360 
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- ^7>v 

1 I 
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: \ : \ : : \ : 
• \ • 

; \ ; 
: \ : \ : 
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0 0.05 0.1 0.15 

time [s] 
0.2 0.25 

Fig. 5. The upper plot shows the desired and measured end-effector motion in 
^-direction during the impact experiment. In the lower plot the contact force in 
^-direction is displayed. 

^ A JR3-sensor was used for this. 
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the ratio — r V r was computed as an estimation of the stiffness^. This estima-
tion is of course only vaUd in the steady state. The result is shown in Fig. 6. 
At the steady state the estimated stiffness reaches nearly the desired value of 
4000N/m. The remaining difference lies in the range of known stiction effects 
for this robot. 
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Fig. 6. Stiffness Estimation during the impact experiment. 

6 Applications 

In this section, some applications based on the presented controllers are 
shortly presented. 

Piston insertion 

Teaching by demonstration is a typical application for the impedance con­
troller structure. A practical example was given with the task of teaching and 
automatic insertion of a piston into a motor block. Teaching is realized by 
guiding the robot with the human hand (Fig. 7). It was initially known that 
the axes of the holes in the motor block were vertically oriented. In the teach­
ing phase, high stiffness components for the orientations were commanded. 

beginning at time 0.5s, when the robot movement started 
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while the translational stiffness was set to zero. This allowed only transla-
tional movements to be demonstrated by the human operator. In the second 
phase, the taught trajectory has been automatically reproduced by the robot. 
In this phase, high values were assigned for the translational stiffness, while 
the stiffness for the rotations was low. This enabled the robot to compen­
sate for the remaining position errors. In this experiment, the assembly was 
executed automatically four times faster than by the human operator in the 
teaching phase. For two pistons, the total time for the assembly was 6s. The 
insertion task has been implemented before by using an industrial robot and a 
compliant force-torque sensor. Despite a well tuned Cartesian force controller, 
the insertion process had to be performed much slower, because of the well 
known control problems which occur in the case of hard contacts with conven­
tional robots. Thus, the advantage of a compliant manipulator with stiffness 
control in assembly tasks became obvious. 

Fig. 7. Teaching phase for the automatic piston insertion using the light-weight 
robot II. 

Wiping the table 

Here the demand for a compliant behaviour of the robot also arise from reasons 
of safety for humans interacting with it, while the contact to the environment 
(table) was quite soft due to the cloth and hence not as challenging as in the 
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case of piston insertion. The whole task was spht up into similar guiding and 
impedance control phases as in the piston insertion application. Fig. 8 shows 
a demo at the Hanover fair where the robot's elbow is deflected within its null 
space, while the robot continues wiping the table and applying a constant 
force in vertical direction. 

Fig. 8. Table wiping with null space movement. 

Opening a Door 

In another service robotics application we used the Cartesian impedance con­
trol of the DLR light-weight robot II in order to open a door. Here the arm 
was used in combination with a mobile platform and the DLR-hand-II, Fig. 
9. 
In this application, first, the door handle was manipulated by a sequence 
of impedance controlled movements in order to open the door. During these 
motions the measurements of the joint torques provided an estimate of the 
contact force and thus of the current contact state. 
When the mobile platform finally moved through the door hinge, the door 
was kept at a distance by impedance control of the arm. Therefore, instead of 
using the stiffness term from Section 3.4, in this stage the desired impedance 
was based on an appropriate potential function which has its minimum all 
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i 
-xF 

Fig. 9. DLR light-weight robot II while opening a door. 

along a circularly shaped path with respect to a platform fixed frame. Ad­
ditionally, the rotational stiflPness was set to zero such that the end-effector 
orientation automatically adjusted. 

7 Conclusions 

In this paper, a unified, passivity based perspective was given to the prob­
lem of position, torque and impedance control of flexible joint robots, both 
on joint and Cartesian level. These methods are especially relevant for light­
weight, compliant robots designed for service applications or for human-robot 
interaction. A physical interpretation was given for the torque controller and 
an energy shaping method was designed, which is based only on motor position 
(collocated controller), but which satisfles the static requirements formulated 
in terms of the robot tip. Without going into details, it is worth noting that 
the proposed energy shaping method can be generahzed to a broader class of 
underactuated Euler-Lagrange systems [6], namely to such systems which can 
be stabilized by shaping of the potential energy only. An important advantage 
of these passivity-based controllers is the robustness with respect to uncer­
tainties of the robot or load parameters, as well as to contact situations with 
unknown but passive environments. These properties were validated during 
numerous applications with the DLR light-weight robots. 
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Summary . Haptic rendering commonly implements virtual springs using DC mo­
tors with current amplifiers and encoder-based position feedback. In these schemes, 
quantization, discretization, and delays all impose performance limits. Meanwhile 
the amplifiers try to cancel the electrical motor dynamics, which are actually bene­
ficial to the haptic display. 

We present an alternate approach that fully embraces and utilizes all electri­
cal dynamics, following two insights: First, the electrical inductance L can serve 
as a stiffness, providing a natural sensor-less coupling between the virtual environ­
ment and the user. Second, the electrical resistance R can serve as part of a wave 
transformation. Implementing virtual objects in a wave domain provides complete 
robustness to servo delays or discretization. 

The resulting system requires only a simple voltage drive circuit. Built upon the 
physical behaviors, if can outperform traditional approaches achieving higher virtual 
stiffness. Encoder feedback is only required for absolute position information, with 
damping and velocity information inherently available from back-EMF effects. A 
prototype system has been implemented and confirms the promise of this novel 
paradigm. 

1 Introduction 

Stable implementation of stiff virtual environments remains a challenge for 
kinesthetic force feedback devices with impedance causality. In particular, 
the traditional approach consists of a digital control loop using discretized 
and quantized position readings, as seen in Fig. 1. Force is actuated by means 
of a DC motor controlled by a current amplifier, in turn fed by a constant 
force command during each servo cycle. 

It has been recognized tha t the maximum achievable stiffness with such 
an approach is limited by the lack of information to the controller caused 
by time discretization [1, 2] and position quantization [3, 4] related to the 
use of encoders as position sensors. Therefore the intrinsic friction of the 
device and possibly the damping added by user's grasp become essential in 

S. Thmn , R. Brooks, H. Durrant-Whyte (Eds.): Robotics Research, STAR 28, pp. 22-33, 2007. 

© Springer-Verlag Berlin Heidelberg 2007 
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Fig. 1. The traditional implementation of stiff virtual environments 

stabilizing the haptic rendering. In effect, the virtual environment can only 
be rendered for a limited frequency range. Alternatively, the use of analog 
position measurements and time continuous feedback has been explored in 
[5]. The electrical current amplifiers include their own internal feedback to 
regulate the motor current. They aim to reject back-EMF while speeding up 
the L-R dynamics. 

In the following we adopt a different perspective. We use the electrical 
resistance and back-EMF to implicitly obtain velocity information and enable 
appropriate viscous damping. We also use the electrical inductance to create 
a stiffness. Built out of natural dynamics, these effects are always available at 
high frequency together with the controlled lower frequencies, creating per­
formance beyond traditional approaches. Furthermore, using a wave variable 
description borrowed from telerobotics, the implementation is entirely insen­
sitive to servo delays. 

2 Exploit ing the Motor Dynamics 

Though generally ignored under the assumptions of an ideal actuator and 
perfect current amplification, the electrical motor dynamics are well known 
to be: 

eA{t) = Ri{t) + L^P- + eBE{t) 
dt (1) 

eBEit) = kTx(t) 

where CA is the applied voltage to the armature circuit consisting of the resis­
tance i?, the inductance L and the back-EMF voltage CBE- The mechanical 
dynamics are given as: 

mx(t) = F(t) - c{x(t)) - Fnit) 

F{t) = kriit) 
(2) 
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Fig. 2. The electrical and mechanical DC motor dynamics 

where vn is the rotor inertia, c is the (nonlinear) friction and Fn is the user 
torque opposing the motion x of the rotor. The torque constant and back-
E M F constant are the same physical parameter and are both denoted by kr-
The equations are illustrated in Fig. 2 and represented in block diagram form 
in Fig. 3. 

The actuator converts electrical into mechanical energy and thus the ele­
ments R and L can be easily mapped into the mechanical domain. For exam­
ple, it is well known tha t the back-EMF voltage together with the resistance 
can be used to increase the apparent viscous friction [6] or to obtain an ac­
curate measurement of the velocity. The resistance R maps into a mechanical 
viscous damper 

Bn = '4 (3) 
Similarly, the inductance L provides energy storage and can be interpreted as 
a spring of stiffness: 

K, (4) 

eA -o—x>—— 

R 

kr 

c(.) 

•<>i—o-

Fig. 3. Block diagram of the DC motor dynamics 
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The equivalent spring and damper are connected in series between the rotor 
inertia and the energy conversion element, as seen in Fig. 4. Because of the 
series connection, the damper dominates the low frequency behavior and the 
stiffness is often overlooked. 

eA 

KL 

X 
m 

FH 

7777777777Z 

Fig. 4. Rotor inductance L and resistance R can be interpreted as series connection 
of a spring {KL = kr /L) and a viscous damper (BR = kr /R) 

With low inductance motors commonly used in haptics, KL creates a very 
high stiffness. For example, for the Maxon RE 25 motors found in the PHAN-
ToM 1.0 with values of kr = 43.8 m N m / A and L = 0.83 mH, we have 
KL = 2.31 Nm/ rad . Wi th an approximate 8 : 1 gear ratio and lever arm 
of 14 cm the corresponding t ip stiffness reaches 7500 N / m . For comparison, 
the maximum stable value of a virtual spring implemented according to the 
scheme of Fig. 1 has been found to be approximately 1100 N / m [4]. 

Therefore, it is worthy to develop a control scheme tha t takes advantage 
of the built-in spring present in each motor for the haptic rendering of stiff 
virtual environments. Since KL is a physical element of the system, it is not 
affected by the non-idealities of the digital control loop tha t cause energetic 
inconsistencies and lead the system to instability. Moreover the force feedback 
it provides does not require any position sensing at all and operates at high 
frequencies. 

3 Wave Variables for Haptic Rendering 

For the purpose of designing a controller we consider the inductor as a series 
spring, retaining the resistance in the electrical domain as seen in Fig. 5. The 
controller imposes motion 

Xd{t) = -—e (5) 

on the spring corresponding to a voltage e. The controller represents a voltage 
drive and the current i indicates a measurement of the torque F. 

We interpret the dissipative element as part of a natural wave transform [7, 
8], as shown in Fig. 6. A wave transform encodes the normal power variables of 
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Fig. 5. Motor dynamics interpretation used in the controller design 

velocity x and force F into wave variables u and v^ without loss of information 
or change in power flow. The wave quantities inherently describe both signal 
and power flow and are thus unaffected by delays or lags. In this context, 
according to the notation defined in [8], the wave variables are given as: 

v{t) :-

u{t) :--

Ri BuXd - F 

2R V^Bl 

e^Ri BRXd + F 
(6) 

2R Vwi 
where Xd{t) is the desired spring motion and F denotes the spring force. The 
equivalent viscous damping BR serves as the wave impedance. The overall 
instantaneous power P(t) flowing from the virtual environment to the motor 
is: 

P{t) = e{t)i{t) = Xd{t)F{t) = lu\t) - lv\t) (7) 
2 ' ' 2 ' ' 

so tha t a wave variable has units of square root of Wat t . 
To complete the wave transform, the dark shaded area of Fig. 6 showing 

the two V2R gains and the summing junction is realized by means of an analog 
circuitry. This implements: 
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Fig. 6. Wave Transform connecting Virtual Environment VE to electrical domain 
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Ca = v2Ru 

V = u — V2Ri 
(8) 

A N A L O G CIRCUITRY M O T O R D Y N A M I C S 

Fig. 7. Block diagram of a DC motor with the wave controller 

The complete system is depicted in Fig. 7. The wave variables u{t) and 
v{t) encode the power exchanged with the motor by the simulated virtual 
environment. Since each wave variable carries its own power, the passivity 
of the interconnection is guaranteed as long as the modulus of the transfer 
function 

U{s) D{s) 
V{s) (9) 

representing the virtual environment in wave space is at most the unity. 
Because the wave variable u{t) and v{t) exist as real signals in the circuit, 

the virtual environment can be implemented in several ways. Simple transfer 
functions D{s) can be realized in analog hardware. Alternatively, v{t) and 
u{t) can be digitized and the virtual environment implemented on a computer 
either in wave space or in traditional power variables by use of a second de­
coding digital wave transformation. In either case, any time delays or phase 
lags due to the discretization are guaranteed not to affect the stability of the 
overall system. 

4 Interpretation 

As discussed in detail in [7], wave variables can by used to describe an intercon­
nection of elements. This gives us the ability to implement any passive virtual 
environment, with which the user interacts through the natural dynamics of 
the mechanical device and equivalent spring KL. The latter can therefore be 
interpreted as a coupling element, resembling the virtual coupling concept 
of [9]. This coupling has the advantage of being a physical element and is not 
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affected by the stability issues of a digital implementation. This interpretation 
leads to the conceptual scheme of Fig. 8. 

virtual environment 

IMT 

J] 
Xd 

coupling 

KL 
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Fig. 8. The inductance acts as physical coupling with the virtual environment 

The two most extreme passive environments are free motion and rigid con­
tact . Both imply an infinite frequency response, as motion occurs immediately 
for any force in the former and forces are immediately created for any motion 
in the latter. Causality of an impedance device clearly favors free motion and 
challenges rendition of rigid contact. 

In the wave domain, both of these environments are easily expressed. Free 
motion avoids all forces ( F = 0) and refiects all power carried by the incoming 
wave v{t) back by means of u{t) as: 

u{t) = v(t) 0 Ve or F = 0 \/Xd (10) 

where (6) converts the wave relation into the power variable description. 
Dually, a rigid contact also refiects all power by suppressing any motion 

{xd = 0) as: 

u{t) = -v{t) e = 0 \/i or Xd = 0 V F (11) 

Note this does not hold the applied voltage CA at zero, but only cancels 
the voltage across the inductor and back-EMF. It does not short the motor, 
instead effectively sets CA = Ri- Illustrated in Fig. 9, it implies tha t KL is the 
maximum stiffness tha t can be rendered to the user. 
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c 

Fig. 9. Haptic interaction with a rigid virtual wall 
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A haptic simulation where the user experiences interactions with stiff bod­
ies or unconstrained motion can be implemented as: 

u(t) = rivit) where V = s , ^ • r -̂ (12) 
^ ^ ^ ^ 1̂  +1 m tree motion ^ ^ 

To switch between these two values, a collision detection algorithm should 
take advantage of direct position measurements. An encoder is thus required 
to detect the collision with a unilateral constraint, but is not used to compute 
the force fed back to the user. 

5 Implementation 

Incorporating and utilizing the electrical dynamics, KL is the maximum stiff­
ness that can be rendered by means of a passive wave-haptic approach. Distur­
bances may stem from the unmodeled high frequency dynamics of the power 
transistors used to achieve the desired voltage input e^, as well as from other 
sources of electrical noise in the control loop. These phenomena occur at much 
higher frequency (several hundred kilohertz) than the perceptual bandwidth 
of the human operator (about one kilohertz). To address these limitations, a 
high frequency low-pass wave filter 

H{s) = - ^ (13) 
S -\- A 

can then be included in series with the virtual environment without signifi­
cantly affecting the perceived transients [10]. Indeed such a filter retains pas­
sivity and adds a further series stiffness of 

Kfilter = \ ^ (14) 

which is significantly stiffer than the existing coupling of KL. The transfer 
function D{s) of the overall controller dynamics in the wave domain becomes: 

where the magnitude of 77 can be further tuned in the interval — 1 < 77 < 1 to 
remove power and introduce damping. Finally W{s) may incorporate other 
dynamics into the simulated virtual environment. 

We have implemented a simple prototype system using (12) and (15) with 
A = 10,000 rad/sec, r] = ±1 , W{s) = 1. In particular, we use a Maxon RE25-
118743 motor that features KL = 2.2815 Nm/rad with the control electronics 
realized by means of analog circuitry. Power amplification is performed by a 
couple of complementary MOSFET transistors in a push-pull configuration 
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and an analog switch alternates between free space (77=1) and rigid contact 
(r/=—1). Power supply limits the current provided to the motor to 1 A., Data 
is collected at 5 kHz using A / D conversion and a high resolution encoder (10^ 
counts per revolution) to measure the motor shaft position. 

Consider contact against a stiff virtual wall located at xw = 0- From 
the encoder reading, we derive a simple binary signal indicating penetration 
into the wall. This logic signal commands the analog switch and selects the 
appropriate behavior. Preliminary results are shown in Fig. 10 and 11. In 
Fig. 10 we see the circuit correctly renders the behavior of free space, since 
when X < 0 the feedback torque F is zero. The voltage CA adjusts slightly to 
counter the back-EMF voltage. As contact is experienced, current and torque 
quickly rise to their maximum value before saturation intervenes at about 
F c:^ 0.021 Nm. Better viewed in Fig. 11, the stiffness rendered during the 
compression phase is approximately K'2:^1.9 Nm/ rad , in good agreement with 
the expectations from the previous analysis. 
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Fig. 10. Repeated contacts with the virtual wall: position, force and voltage dia­
grams 

We note tha t the compression and the restitution phases appear asymmet­
ric. This behavior is a direct consequence of voltage saturation, which is not 
yet included in the simple dynamics (1). When the drive voltage hits a fixed 
saturation limit, the back-EMF effects can not be properly canceled and the 
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Fig. 11 . Behavior of the feedback torque F during contact with the virtual wall 

current is affected by motion. As the compression slows, the resisting force 
drops to its steady state value and, as motion begins during restitution, the 
restoring force drops accordingly. Effectively the spring forces are overlayed 
with the back-EMF's viscous damping. 

As a second effect, the voltage modification caused by the saturation also 
shifts the endpoint Xd of the spring KL. Recall from (5) tha t voltage implies 
motion, such tha t the desired behavior depicted in Fig. 9 reverts back to 
Fig. 4. Fortunately, as contact is broken, the behavioral switch via r] resets 
the system for the next collision. 

Finally, we find two issues tha t may require s tudy for future implementa­
tions: First, knowledge of the motor resistance R is necessary to implement (8) 
and create the wave transformation (6) in a passive fashion. Inaccuracies lead 
to errors in the command voltage CA and, as above, to drift. In particular, the 
resistance varies with temperature and adjustable circuitry may be required 
to compensate for this effect. Fortunately thermal dynamics are much slower 
than the dynamics involved in haptic rendering, so their influence on the sta­
bility of the overall scheme is marginal and drift may be negated by encoder 
feedback at a higher level. Finally, commutation in brushed DC motors intro­
duces discontinuities into the simple dynamics (1) and may be perceived by 
the user. Application to brushless motors promises smoother operation. 
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6 Conclusions 

In this paper we propose to exploit the electrical dynamics of the DC motor 
used to render the force feedback in virtual reality applications. For the motors 
commonly used in this context, the equivalent stiffness of the motor inductance 
is higher than the stiffness tha t can be achieved by means of a classical digital 
control loop. 

We propose to take advantage of this physical spring to render stiff vir­
tual objects, avoiding the problems related to position quantization and time 
discretization. In this way, the usually neglected electrical dynamics are ef­
fectively used to improve performance. Realization by means of a reliable 
analog circuitry is possible entirely within the electrical domain. The required 
components include only a sense resistor to acquire i, two gain stages, and 
a summation stage depicted in Fig. 6. The voltage command CA is applied 
directly to the motor via a power stage, replacing the more complex current 
amplifiers typically used. 

The virtual environment is interfaced to the motor by means of wave 
variables and in this domain the t ime delays and phase lags caused by a 
discrete-time implementation do not affect the energy balance and therefore 
the stability of the overall system. 

This approach is very appealing with its intrinsic simplicity and the bet­
ter use it makes of the physical components of the haptic device. It does not 
require assumptions on the mechanical friction to obtain stability and pas­
sivity. Conversely, the passivity is obtained constructively and the effects of 
non-idealities are confined behind the wave variables transform, guaranteeing 
intrinsic robustness to servo delay. 
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Abstract - Prostate Brachytherapy is the implantation of radioactive seeds 
into the prostate as a treatment for prostate cancer. The success rate of the 
procedure is directly related to the physician's level of experience. In 
addition, minor deviations in seed alignment caused by gland 
compression/retraction, gland edema (swelling) and needle deflections can 
create significant areas of over or under dosage to the gland and/or injury to 
surrounding nerves and organs, leading to increased morbidity. Therefore, 
reductions in brachytherapy complication rates will be dependent on 
improving the tools physicians use for training to improve the accuracy of 
needle guidance and deployment of 'seeds' within the prostate gland. 
Through our novel approach of using two C-ARM fluoroscopes, we 
propose a reality-based approach for estimating needle and soft tissue 
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interaction for the purpose of eventually developing an accurate seed 
placement training simulator with haptic feedback for prostate 
brachytherapy. By recording implanted fiducial movement and needle-soft 
tissue interaction forces, we can: extract the local effective modulus during 
puncture events, quantify tissue deformation, obtain an approximate cutting 
force, and build a finite element model to provide accurate haptic feedback 
in the training simulator for needle insertion tasks. 

Index Terms — Surgical Simulation, Soft-tissue Modeling, Prostate 
Brachytherapy, Local Effective Modulus. 

1 Introduction 

Prostate cancer is the most common cancer in men in the United States and 
it is the second leading cause of cancer deaths in men (Jemal 2004). The 
prevalence is about 10 to 20 times the incidence because the vast majority 
of affected men will not die of prostate cancer. This identifies an important 
issue regarding the treatment of prostate cancer: the quality of life for what 
amounts to a normal remaining life span becomes extremely important (Hall 
2003). Patients have three main choices for treatment of prostate cancer: 
surgical excision, radiation therapy, and expectant management/hormone 
therapy (Leak 2002), and each approach is associated with acceptable long-
term survival. The difference between these therapies lies in the associated 
outcomes of treatment, i.e. acute and chronic complications/side effects that 
can limit one's enjoyment of life and even lead to chronic conditions 
requiring medical intervention, medications, surgical procedures, 
hospitalizations, and even death (Hall 2003). Since there are so many 
prostate cancer survivors at risk for chronic disabilities and decreased 
quality of life, reduction of complications and avoidance of adverse 
outcomes becomes a national health issue. Among the three main treatment 
options for locahzed prostate therapy, prostate brachytherapy has emerged 
as an excellent alternative for patients who meet specific criteria because it 
offers the benefits of a higher gland specific dose of radiation therapy 
without the side effects of external beam therapy (Potters 2003). The 
procedure is completed in one session either on an outpatient basis, or 
requiring an overnight hospital stay. There is no significant blood loss, 
making this an attractive alternative to surgery. Recent studies have 
indicated a disease specific survival equal to prostatectomy (Langley and 
Laing 2004, Sharkey 2000). All of these factors point to a potential for 
equal survival with lower morbidity than surgical excision or external beam 
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therapy. For prostate brachytherapy, the success rate of the procedure is 
directly related to the clinician's level of experience. Therefore, 
improvements in brachytherapy complication rates will be dependent on 
improving the tools clinicians use for training to improve the accuracy of 
needle guidance and deployment of 'seeds' within the prostate gland. 

From the surgical simulation viewpoint, most tissue response modeling 
efforts in the literature are targeted towards assuming mechanical properties 
and developing methods to efficiently solve the tissue simulation problem 
for robot-assisted surgery/training. Several simulations have developed 
very sophisticated virtual environments that allow for plastic deformations 
of the material and interactions in multiple dimensions (Forest, et al. 2002, 
Picinbono, et al. 2001). However, it has been difficult to populate these 
models with data from real tissues. Simulation and modeling of needle 
insertions have been conducted by a number of researchers (Alterovitz, et 
al. 2003, Brett, et al. 2000, DiMaio and Salcudean 2002, Hong, et al. 2004, 
Kataoka, et al. 2002, Magill, et al. 2004, Nienhuys and van der Stappen 
2003, Simone and Okamura 2002, Smith, et al. 2001, Stoianovici, et al. 
1998). However, most assume linear elastic properties, homogenous 
tissues, and no needle deflection. Only a few groups have modeled and 
studied the measurement of forces during needle insertion into soft tissue 
and the effects of needle geometry on the deflection during needle insertions 
into homogenous tissues (Kataoka, Washio, Chinzei, Mizuhara, Simone and 
Okamura 2002, O'Leary, et al. 2003). Needle deflection is an important 
part of our study because it has been observed during surgical procedures of 
prostate brachytherapy that the needle can deflect from the initial insertion 
point as it is being inserted through the body by more than 10mm 
(Cormack, et al. 2000). 
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Verification -Are 
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Fig. 1. Schematic of the proposed reahty-based modeling approach for 
accurate needle and soft-tissue interaction in a training simulator for prostate 
brachytherapy. 

To the author's knowledge, there has been no work on measuring in real 
time the 3-D movement of fiducials (beads) in non-homogeneous soft tissue 
during needle insertion. Our method of tracking beads using two C-ARMS 
facilitates the extraction of necessary parameters for accurate estimation of 
needle and soft tissue interaction. This type of reality based modeling is 
critical for providing accurate haptic feedback in surgical simulation. The 
findings in this study will be used to further the development of an accurate 
haptic feedback simulator for prostate brachytherapy training. Figure 1 
shows a schematic of the proposed reality-based modeling approach. 

2 Materials and Methods 

Table 1 demonstrates our proposed approach for modeling needle and 
soft-tissue interaction during a needle insertion and withdrawal task in 
prostate brachytherapy. Each task is broken down into the experimental 
tools needed, data acquired during the experiment and computational tools 
used for analysis. This paper presents: a) the computation model for task 1 
to estimate the local tissue stiffness prior to puncture and b) reality-based 
estimation of needle and soft tissue interaction for tasks 2 and 3. 

Needle insertion device: The needle apparatus was designed to 
measure the forces on a surgical needle during insertion into soft tissue. 
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The insertion and withdrawal speeds varied from 1.14 mm/sec to 
25.4 mm/s. The needle insertion device consisted of a geared DC motor, an 
incremental encoder and a JR3 precision 6 axis force/torque sensor. The 
JR3 sampled the force at 1000 Hz. For our experiments, we used an 18-
gauge prostate seeding needle (Mick Radio Nuclear Instruments, Inc.) of 
length 20 cm. This is consistent with the type of needle typically used by 
surgeons when performing prostate brachytherapy (Figure 2). 

Cannula^..^ Needle 

Fig. 2. Various components of a typical prostate brachytherapy seeding 
needle. 

Soft Tissue Markers: To view the internal tissue movement during 
needle insertion, forty 1mm diameter stainless steel beads were inserted 

into the soft tissue. These beads were chosen because their size was 
small enough to not affect the properties of the soft tissue or impede the 
needle insertion path. They also show up well under X-ray imaging. The 
beads are placed in a grid pattern spaced approximately 5mm apart from 
one another. The grid was meticulously placed to avoid occlusion between 
beads during imaging. Each bead was inserted perpendicular to the 
experiment needle path using an 18 gauge needle to an approximate depth of 
10 to 20 mm from the tissue surface. 
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Table 1. Modeling needle and soft-tissue interaction during needle insertion and withdrawal 

Tasks Tools Data Acquired 
1. Needle Puncture 

Soft Tissue 

Cannula + Needle 
Movement 

Surface Fiducials 

Exp.Tools 
-External Vision Sys. 
-JR3 
-Fiducials on perineum 
-DSpacellOS 
Comp. Tools 
-ABAQUS 
-MATLAB 

-Fiducial movement on skin 
surface 
-Force vs. displacement prior 
to skin puncture 

2. Soft-tissue and needle 
interaction (needle 
insertion) 

Exp.Tools 
-2 C-ARMS 
-JR3 
-Fiducials inside tissue 
-DSpacellOS 
Comp. Tools 
-ABAQUS 
-MATLAB 

-Force vs. displacement 
-Fiducial movement 
-Local tissue motion 
-Global tissue movement 

3. Tissue relaxation 

Soft Tissue 

+ Needle •~~---
nary) 

Exp.Tools 
-2 C-ARMS 
-JR3 
-Fiducials inside tissue 
-DSpacellOS 
Comp. Tools 
-ABAQUS 
-MATLAB 

-Force decay over time 
-Fiducial movement 
-Local tissue movement 
-Global tissue movement 

4. Cannula + Seed applicator Exp.Tools 
removal 
-Seed recoil 
-Cannula-tissue friction 
force 

Soft Tissue 

\ 
Cannula + Seed 

Applicator Removal 

-2 C-ARMS 
-JR3 
-Fiducials inside tissue 
-Seed insert 
-DSpacellOS 
Comp. Tools 
-ABAQUS 
-MATLAB 

-Force vs. disp. 
-Fiducial / seed movement 
-Local fiducial movement vs. 
relaxed state 
-Global tissue movement 
-Cannula and needle friction 
force 

Dual C-arm Fluoroscopes for bead tracking: Two C-ARM 
Fluoroscopes were used to image the fiducial markers and the needle during 
insertion. C-ARM Fluoroscopy allows for real time X-ray imaging where 
X-rays are generated at the transmitter and photographed at the receiver. 
The C-ARMs were positioned so that their imaging planes were orthogonal 
to each other, allowing for real time imaging of the side and top views of the 
soft tissue fiducial markers and needle during insertion (Figure 3a). The 
video images of each C-ARM were captured onto a hard disk using a video 
capture device (Pinnacle Systems) at 30 frames per second at a resolution of 
720 X 480 pixels. 
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Marker Registration: Once the soft tissue was in place for the 
experiment, a 1mm graduation radiopaque ruler (Lightek Corporation) was 
imaged in side view and top view to obtain the conversion for image length 
in pixels to length in millimeters. Using the two C-ARM configuration, we 
were able to correlate the beads in the top view with the beads in the side 
view because of the C-ARM ability to continually image as it is rotated 
from 90 to 180 degrees. Each bead could then be tracked as it moved in the 
image from the top view to the side view. This was done before inserting 
the needle for each soft tissue sample. 

After bead registration, the needle was moved into place and inserted 
approximately 90 mm into the soft tissue at three different speeds, namely: 
1.14, 12.7, and 25.4 mm/s. During the insertion, the JR3 force sensor 
captured the forces acting on the needle while the side view C-ARM and top 
view C-ARM continually recorded X-ray images of the needle position and 
the movement of beads inside the tissue (Figure 3b). After each insertion, 
the needle was moved to a different position in the soft tissue to minimize 
the chance of following a previous insertion path. 

Fig. 3. a) C-ARM fluoroscope setup and b) Images acquired from both C-
ARM's during needle insertion and withdrawal. 

MATLAB image processing toolbox combined with standard kinematic 
transformations was used to extract the bead and needle coordinates in the 
global frame from the top and side view X-ray images. The videos from the 
top and side views for each insertion were loaded separately into MATLAB 
as .avi files. An image difference algorithm was then applied from an image 
of the soft tissue with no beads to the frame being analyzed. The new 
difference image highlighted the bead and needle movement between the 
frames. 



Reality-Based Estimation of Needle and Soft-Tissue 

3 Results and Discussion 

3.1 Needle-Soft Tissue Interaction Forces 

41 

Based on needle and soft-tissue interaction during puncture events, the 
three graphs in Figure 4a represent insertion of the needle into 3 different 
soft tissue samples. Needle insertion consists of 4 events as shown in Table 
1, namely: puncture, insertion, relaxation, and withdrawal. The forces 
acting on the needle are: the force at the tip of the needle required for cutting 
the tissue, the friction force of the tissue sliding along the needle shaft, and 
the clamping force of the tissue on the needle (Kataoka, Washio, Chinzei, 
Mizuhara, Simone and Okamura 2002). As the needle inserts farther into 
the soft tissue, it undergoes a series of micro punctures where the force rises 
a small amount and then drops down. Once the needle is inside the tissue, 
the force increases relatively linearly; with the exception of a few major 
puncture events along its path resulting from significant change in tissue 
stiffness due to its non-homogeneity. A puncture event comprises of initial 
deformation (leading to a rise in the force reading in the force sensor) 
followed by puncture (sudden drop in the force reading). The force 
increases linearly during insertion due to the increased surface area of the 
needle inside the tissue (friction force along the cannula length) and 
clamping force of the tissue around the needle. Based on our experimental 
observations, we hypothesize that in a typical puncture event the tissue is 
deformed at the same rate as the velocity of the needle tip. This causes a 
quick increase in force until puncture occurs. Based on this rationale. 
Figure 4b illustrates ten major puncture events for a sample of soft tissue. 

a) b) 

Total Needle Force 

Major Puncture Events (Soft Tissue 8) 

0 20 40 80 100 120 140 160 180 200 
Time (seconds) 

0 10 20 30 40 50 60 70 80 90 100 
time (seconds) 

Fig. 4a) Total needle forces during insertion and withdrawal and b) Major 
puncture events 
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Fig. 5. Plot of the approximate cutting 
force during needle insertion 

during the insertion part of the experiment, 
cutting force based on this approach. 

We found that separating 
the cutting tip force from the 
friction force on the needle is a 
challenging experimental task. 
Our approach for estimating the 
needle-tissue interaction force 
purely due to cutting was to 
subtract the force data during 
the withdrawal portion of the 
experiment from the force data 
Figure 5 shows the approximate 

3.2 Estimating Needle Trajectory, Bead Movement, and 
Tissue Relaxation 
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Figure 6 shows the trajectory of the needle through the soft tissue during 
insertion and withdrawal. Deflection of the needle tip from the straight line 
trajectory was observed during the experiment. Needle deflection is 
important to measure and predict for training radiation oncologists to place 
seeds accurately in the prostate. In a typical prostate 

brachytherapy task the 
needle can deflect as 
much as 10 mm from 
the initial insertion point 
(Cormack, Tempany 
and D'Amico 2000) 
which requires 
recomputation of the 
dosage information for 
radioactive seed 
placement. In our 
studies, the needle was 
shown during some 
insertions to deflect 

approximately 9.75 mm away from the straight line trajectory. Most of the 
deflection was caused during the initial puncture due to the force produced 
by tissue deformation although deflection was also caused by the 
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Fig. 6. 3-D bead movement during 
insertion and withdrawal 

needle 
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inhomogeneity of the soft tissue, generating asymmetric forces on the 
needle. 

Figure 6 also illustrates the movement of the beads during a typical 
needle insertion and withdrawal in soft tissue. Each cluster in Figure 6 
represents the area covered by the movement of a bead with the surrounding 
tissue. For clarity, we have only shown a small subset of beads actually 
used in the experiment. The needle was inserted at 12.7 mm/sec to a depth 
of approximately 9.5 cm. Each bead has a corresponding blue color for its 
position during insertion and red color for its position during withdrawal. 
Beads closest to the needle path showed the largest range of movement 
while the movement of beads farther away from the needle path was less. 
The estimated movement of the beads is used to validate a finite element 
model to predict soft tissue deformation during needle insertion and 
withdrawal task. 

Tissue relaxation is a very important parameter to understand when 
simulating seed placement for prostate brachytherapy. Relaxation can 
cause a seed to be placed in an inaccurate location. Tissue relaxation can 
be observed by analyzing the force data as the needle is held in its full 
insertion position. Figure 7a illustrates the relaxation of the tissue 
occurring based on the force data. Figure 7b represents the top view of the 
tissue sample for the movement of one bead inside the tissue close to the 
needle path during both needle insertion and withdrawal task. Both needle 
insertion and withdrawal contribute to tissue relaxation, namely relaxation 
after the needle reaches its final position in the tissue and relaxation after 
the needle is completely withdrawn from the tissue. Tissue relaxation based 
on movement can be seen from the difference in the position of the bead 
after full insertion and the position of the bead after tissue relaxation has 
occurred while holding the needle in place. 

Based on our experimental data, we can initially model the tissue 
relaxation process at the end of an insertion task as an exponentially 
decaying curve given by: 

}; = 0.5689^"' ' ' ' ' "+1.5149 (1) 



44 J.T. Hing, A.D. Brooks, and J.P. Desai 

a) 
Soft Tissue Relaxation Plot (1.016mm/sec sample) 

\ 

0.5 

«- Relaxation Force Data 
Exponential Fit 

. ' ^ " " ^ ^ ^ 
1.5 2 2.5 3 3 

Time (s) 

b) 
Be£ 

3.6r 

3 55 

I '•' 
o 3.45 

o 
^ 3,4 

3.35 

3.3 
5 ^ 

Max Position 
Withclrav.̂ al 

Initial ^^ 
Position 

Max Position___ 
Insertion 

i 4,02 4,04 4,06 

d Pos 

4,08 

jition (Top View) 

o f̂ '" '̂ 
'' A *• Position 

v./ 
• . ^ _ . X 

". • Position 
After Relaxtion 

- X 
o..>o 

4.1 4,12 4.14 4.16 4,1 
Position (cm) 

Fig. 7a) Tissue relaxation after needle insertion and b) Bead movement during 
relaxation of the tissue after needle insertion and withdrawal. 

Fig. 8a) 2D FEM model of initial puncture through the perineum and b) 3D 
FEM model of initial puncture. 

3.3 Modeling Needle Puncture 

Based on our experimental data, we have recently modeled step 1 of 
Table 1, namely tissue puncture. A plane stress finite element model, using 
4 node quadrilateral elements was built using the ABAQUS software 
(Version 6.3) as shown in Figure 8a. Figure 8b shows a 3D model of tissue 
deformation prior to puncture. 

We conducted a linear elastic FEM analysis with a Poisson's ratio of 
0.3 and an initial local effective modulus of arbitrary magnitude Ei. The tip 
of the needle was modeled as a node located at points corresponding to the 
position of the puncture events shown in Figure 6. For each event, the node 
was given an experimentally measured displacement Alf ""̂ . The computed 
p̂FEM fj,Qĵ  ^^ displacement at that node was compared with the AF^^^ 

measured experimentally. Using the initial effective modulus Ei, we 
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performed iterations to obtain the AF^^^ equal to AF^^^. The final E value 
determined is the local effect modulus, Ê ^̂ ^̂ ^̂ ,̂ of the tissue during the 
puncture event (see Table 2). Figure 9 illustrates this 
computation procedure. 

start 

Initial guess (E.j 
for LEM 

Displacement Finite Element P»'!odel 

E., = E,( 
\ F " " Normalized Force 

Stop 

Table 2. Local Effective 
Modulus of Puncture Events 

Fig. 9. Flow chart for determination of 
the local effective modulus (LEM). 

Puncture Event 

Initial Puncture 

[2] 

[3] 
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[5] 
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[8] 
[9] 

[10] 

LEM* 10^ 
[N/m^] 

9.575 

13.975 

23.833 
34.263 

11.798 
23.325 

30.459 

8.291 
11.541 

21.422 

The 3D FEM model has been developed and will also be used to predict 
soft tissue movement and forces under needle insertion and will be verified 
with that of experimental data. Figure 8b is an initial three dimensional 
model with a global mesh of 0.5 x 0.5 x 0.5 cm ,̂ 8-node, solid linear brick 
element with incompatible modes. Nodes of elements closest to fiducial 
marker locations are placed at the coordinates of the fiducial markers. The 
tip of the needle was modeled as a node similar to that of the two 
dimensional model. 

4 Conclusion and Future Work 

This study demonstrates a unique approach for estimating needle and 
soft tissue interaction for the simulation of accurate seed placement in 
prostate brachytherapy. We have shown through the use of 2 C-ARM 
Fluoroscopes that we can obtain in real time 3D needle trajectory and 
internal global and local tissue deformation during needle insertion into soft 
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tissue. From this we can extract important parameters for modeling tissue 
puncture and tissue relaxation. The internal tissue movement can also be 
used to verify predictions of soft tissue finite element models. Also, we 
have shown by using the force and displacement data from puncture events 
that we can quantify the local resistance of the soft tissue to puncture, 
through the computation of the LEM. Additionally, by subtracting the 
friction and clamping force during needle withdrawal from the total needle 
force during insertion, we can obtain the tissue cutting force during needle 
insertion. 

We propose to develop a three dimensional finite element model for 
simulating the needle insertion and withdrawal task in prostate 
brachytherapy. Based on 3D fiducial movement estimated from our current 
work, we can compute the "strain field" for each fiducial in the image and 
determine the local effective modulus of the tissue during a needle insertion 
and withdrawal task. 

The work presented in this paper is to our knowledge the first of its kind 
for modeling needle deflection and soft tissue movement during needle 
insertion and withdrawal task in prostate brachytherapy. This work will be 
the basis for developing a reality-based training simulator for training 
radiation oncologists in prostate brachytherapy. 
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Haptic Virtual Fixtures for Robot-Assisted 
Manipulation 
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Summary. Haptic virtual fixtures are software-generated force and position signals 
applied to human operators in order to improve the safety, accuracy, and speed of 
robot-assisted manipulation tasks. Virtual fixtures are effective and intuitive because 
they capitalize on both the accuracy of robotic systems and the intelligence of human 
operators. In this paper, we discuss the design, analysis, and implementation of 
two categories of virtual fixtures: guidance virtual fixtures, which assist the user 
in moving the manipulator along desired paths or surfaces in the workspace, and 
forbidden-region virtual fixtures, which prevent the manipulator from entering into 
forbidden regions of the workspace. Virtual fixtures are analyzed in the context 
of both cooperative manipulation and telemanipulation systems, considering issues 
related to stability, passivity, human modeling, and applications. 

1 Introduction 

Haptic virtual fixtures are software-generated force and position signals ap­
plied to human operators via robotic devices. Virtual fixtures help humans 
perform robot-assisted manipulation tasks by limiting movement into re­
stricted regions and /or influencing movement along desired paths. By cap­
italizing on the accuracy of robotic systems, while maintaining a degree of 
operator control, human-machine systems with virtual flxtures can achieve 
safer and faster operation. To visualize the beneflts of virtual flxtures, con­
sider a common physical flxture: a ruler. A straight line drawn by a human 
with the help of a ruler is drawn faster and straighter than a line drawn free­
hand. Similarly, a robot can apply forces or positions to a human operator 
to help him or her draw a straight line. However, a robot (or haptic device) 
has the additional ability to provide assistance of varying type, level, and 
geometry. 
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Fig. 1. Models of robots of the (a) impedance and (b) admittance types. For the 
impedance-type robot, Fa is the actuator force and Fe is the sum of ah externally 
applied forces. For the admittance-type robot, Fs is the component of the externally 
applied force that is sensed. V is the robot velocity, and T is sampling period of the 
control system. 

Virtual fixtures show great promise for tasks tha t require bet ter- than-
human levels of accuracy and precision, but also require the intelligence pro­
vided by a human directly in the control loop. Human-machine manipulation 
systems make up for many of the shortcomings of autonomous robots (e.g., 
limitations in artificial intelligence, sensor-data interpretation, and environ­
ment modeling), but the performance of such systems is still fundamentally 
constrained by human capabilities. Virtual fixtures, on the other hand, provide 
an excellent balance between autonomy and direct human control. Virtual fix­
tures can act as safety constraints by keeping the manipulator from entering 
into potentially dangerous regions of the workspace, or as macros tha t assist 
a human user in carrying out a structured task. Applications for virtual fix­
tures include robot-assisted surgery, difficult assembly tasks, and inspection 
and manipulation tasks in dangerous environments. 

Virtual fixtures can be applied to two types of human-machine robotic ma­
nipulation systems: cooperative manipulators and telemanipulators. In coop­
erative manipulation, the human uses a robotic device to directly manipulate 
an environment. In telemanipulation, a human operator manipulates a master 
robotic device, and a remote slave robot manipulates an environment while 
following the commands of the master. In general, the robots used in these 
systems can be of the impedance or the admittance type [6]; basic models for 
these robot types are shown in Fig. 1. 
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Robots of the impedance type, 
such as typical haptic devices, 
are backdrivable with low fric­
tion and inertia, and have force-
source actuators. An example of 
an impedence-type robot familiar 
to many is the PHANToM® from 
SensAble Technologies, Inc. [32]. 
Robots of the admit tance type, 
such as typical industrial robots, 
are modeled as being nonback-
drivable with velocity-source actu­
ators. This is due to either large 
inertia and joint friction from gear 
reduction in electric-motor sys­
tems, or valves and incompressible 
fluid in hydraulic systems. The ve­
locity is controlled with a high-
bandwidth low-level controller, and 
is assumed to be independent of 
applied external forces. This model 
loses validity when the admittance-
type robot interacts with a very 
stiff environment. 

Figure 2(a) shows the Johns 
Hopkins University Steady-Hand 
Robot [33], an admittance-type co­
operative manipulator designed for 
microsurgical procedures. Figure 
2(b) shows the da Vinci® Surgical 
System (Intuitive Surgical, Inc.) 
[12,13], an impedance-type telema-
nipulator designed for minimally 
invasive surgical procedures. The 
virtual fixtures created and stud­
ied in our lab are designed explic­
itly for systems such as these. 

Fig. 2. (a) The Johns Hopkins Univer­
sity Steady-Hand Robot [33]. (b) The da 
Vinci® Surgical System [12, 13] (image 
used with the permission of Intuitive Sur­
gical, Inc.). 

2 Prior Work on Virtual Fixtures 

"Virtual fixtures" [1,17,26-29] (also appearing under the name of "synthetic 
fixtures" [31], "virtual mechanisms" [15,24], "virtual tools" [14], "virtual paths 
and surfaces" [25], and "haptically augmented teleoperation" [34]) have been 
applied to robotic manipulators using a variety of methods, though they can 
generally be categorized as either guidance virtual fixtures or forbidden-region 
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Fig. 3. (a) Guidance virtual fixtures assist in guiding the robot along desired paths. 
(b) Forbidden-region virtual fixtures help keep the robot out of forbidden regions. 

virtual fixtures. As their name implies, guidance virtual fixtures (GVFs) help 
keep the manipulator on desired paths or surfaces. Alternatively, forbidden-
region virtual fixtures (FRVFs) [28] help keep the manipulator out of forbidden 
regions of the workspace. These virtual fixture types are illustrated in Fig. 3. 

The majority of prior work on virtual fixtures has been applied to tele-
manipulation. Rosenberg [29] implemented FRVFs as impedance surfaces on 
the master device to assist in peg-in-hole tasks. Joly et al. [15] introduced 
a proxy-based [36] GVF method where the proxy is constrained to move on 
the virtual fixture, and the master and slave both servo to the proxy position 
and affect its movement along the virtual fixture. Micaelli et al. [24] extended 
this method to allow for multiple proxies, each on its own virtual fixture and 
with its own dynamics. Itoh et al. [14] developed a task-assistance tool tha t 
connects admittance-type robots to virtual fixtures with impedance control 
methods. Park et al. [26] implemented FRFVs on the remote slave by reject­
ing master commands into the forbidden region. In their method, the slave 
manipulator servos to a proxy, and the proxy follows the master when outside 
the FRVF, but will not follow the master into the forbidden region. Turro et 
al. [34] implemented GVFs on a system with an impedance-type master and 
admittance-type slave. The master is bound to a proxy, which is constrained 
to move on the virtual fixture, and the slave then tracks either the master 
or the proxy, depending on the desired level of user control. Payandeh and 
Stanisic [28] implemented virtual fixtures on both the master and slave manip­
ulators, using a variety of geometries, to help guide the remote manipulator in 
a predetermined task. Kuang et al. [17] then applied this research to diflftcult 
assembly tasks. The virtual fixtures above were implemented with penalty-
based or potential-field methods. These are impedance-type virtual fixtures 
tha t act in an active way, in tha t stored potential energy in the virtual fixture 
may potentially be released in an undesirable fashion. 

Virtual fixtures have also been implemented on passive cooperative manip­
ulation systems known as Cobots [25]. Park et al. [27] extended these methods 
to telemanipulation systems where the master device is a Cobot, for assistance 
in nuclear deactivation and decommissioning tasks. These virtual fixtures act 
in a passive way in the sense tha t the virtual fixtures are only able to re­
strict, and not generate, motion. These so-called passive virtual fixtures work 
much like methods developed for autonomous robots, such as "passive veloc­
ity field control" [21]. It is also possible to implement passive virtual fixtures 
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using admittance-type systems. Since these nonbackdrivable robots move in 
a highly-controlled fashion, one can passively restrict movement in any given 
direction by simply not commanding any movement in that direction. This 
type of virtual fixture has been implemented on the Johns Hopkins Univer­
sity Steady-Hand Robot [33] by Bettini et al. [7] and Li et al. [18]. In [18], 
an optimization-based approach is used to construct motion constraints from 
known task geometries and instantaneous robot kinematics that can be ap­
plied independent of the manipulator type (cooperative manipulation or tele-
manipulation, admittance or impedance type). Research on this type of virtual 
fixture has also been recently been extended to admittance-type telemanipu-
lators by Aarno et al. [1]. 

Prior work on virtual fixtures has been largely ad hoc, with significant re­
liance on particular applications. Thus, in this paper, we attempt to unify the 
past and present research in the field by considering the design, analysis, and 
application of virtual fixtures to various system types. In Sections 3 and 4, 
we discuss how guidance virtual fixtures and forbidden-region virtual fixtures, 
respectively, can be used for task assistance in both cooperative manipulation 
and telemanipulation. Then, in Section 5, we discuss in detail the issues in­
volved with safe and functional implementation of virtual fixtures. Finally, in 
Section 6, we present a set of interesting topics for future work in this field of 
research. 

3 Guidance Virtual Fixtures 

Guidance virtual fixtures (GVFs) assist the user in moving the robot manipu­
lator along desired paths or surfaces in the workspace. GVFs can be of either 
the impedance or admittance type [6]. Impedance-type GVFs act as potential 
fields, actively infiuencing the movement of the robotic manipulator. These 
impedance methods can lead to unexpected and undesirable movements of 
the manipulator, so we have chosen to focus on GVFs of the admittance type. 

Admittance control typically takes the form v = Kaf, where f is the user's 
applied force vector, Ka is an admittance gain matrix, and v is the output 
velocity vector. This control scheme is sometimes referred to as proportional-
velocity control. Admittance control has the desirable property that the veloc­
ity of the manipulator is proportional to the applied force, so the manipulator 
does not move if the user does not apply a force. In addition, slow robot 
movement is achieved with a soft touch. Admittance-type GVFs are very nat­
ural with admittance-type cooperative systems, but can also be implemented 
on impedance-type telemanipulation systems with a novel Pseudo-admittance 
control law [2,4]. 

3.1 GVFs for Cooperative Manipulation 

In an admittance-type cooperative manipulation system, the robot motion is 
proportional to the user's applied force, which is measured by a force sensor. 
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To create GVFs, an instantaneous preferred direction is defined based on the 
position of the robot relative to the desired pa th or surface. The apphed force 
is then decomposed into components in the preferred direction and in other, 
non-preferred directions. By ehminating the commanded motion due to the 
apphed force in the non-preferred directions, we create a passive guidance 
along the preferred direction. Implementing GVFs in this fashion essentially 
makes the admit tance gain matrix Ka both state and input dependent. Details 
of this GVF method can be found in [7]. 

Varying the response to the non-preferred force component creates differ­
ent levels of guidance. Hard guidance refers to GVFs where none or almost 
none of the non-preferred force component is permitted, leaving the user with 
no or little freedom to deviate from the preferred path. Alternatively, soft 
GVFs give the user the freedom to move away from the pa th by allowing 
some motion in the non-preferred directions. We conducted an experiment 
with the JHU Steady-Hand Robot to evaluate the effect of GVF admittance 
on user performance, including accuracy and execution time [23]. Three tasks 
(Path Following, Off-path Targeting, and Avoidance) were selected to repre­
sent a broader class of motions tha t can occur in a real task execution. GVFs 
were used with varying admit tance to keep the user on the preferred path, in 
this case a sine curve on a horizontal plane. 

Figure 4 shows the robot trajectories during the Off-path Targeting and 
Avoidance tasks, with three levels of guidance. In the Targeting task, the 
users were instructed to reach the target located on the perimeter of the circle 
outlined in gray. In the Avoidance task, the users avoided the area by trying 
to follow along the circle perimeter. Robot trajectories in the Pa th Following 
task were similar to the portions seen outside the circular area in the two off-
pa th tasks shown in Fig. 4. In the Pa th Following task, the users performed 

Tasks Hard Guidance Soft Guidance No Guidance 

Fig. 4. Robot trajectories in the Targeting task (top) and the Avoidance task 
(bottom) with JHU Steady-Hand Robot. 
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the task more accurately (with statistical significance) with GVFs, though 
not significantly faster. In the off-path tasks, the users had to fight against 
the GVF guidance to complete the desired motion. This represents situations 
where the virtual fixture is incorrectly placed and the user wishes to override 
the guidance. As expected, users take significantly longer to perform off-path 
tasks with increased guidance. Error also increases slightly. The experiment 
shows tha t GVFs can improve both t ime and accuracy simultaneously, while 
still allowing some independent user motion. More detailed descriptions of 
the experiment and the results can be found in [23]. GVF implementation for 
tasks in 3-D were also explored in Dewan et al. [9], where the tool was guided 
along a user-defined desired surface. In this experiment, stereo cameras were 
used to reconstruct the workspace and track the tool position and orientation. 

3.2 G V F s for T e l e m a n i p u l a t i o n 

In telemanipulation, good position correspondence between the master and 
slave robots is desirable to create a sense of telepresence for the user. How­
ever, it is actually the slave manipulator tha t we wish to guide using GVFs, 
and master movements in its corresponding workspace are somewhat less im­
portant . 

The GVFs developed for admittance-type cooperative manipulators could 
trivially be extended to telemanipulation systems where both the master and 
slave are of the admit tance type. However, unlike cooperative manipulation 
systems, telemanipulation systems are typically designed as impedance-type 
systems (that is, the master is an impedance-type haptic device, while the 
slave manipulator can be of either the impedance or admit tance type). For 
these systems, we do not control the velocity of the system directly (due to 
force-source actuation), so we cannot implement admit tance control directly. 
We have developed a novel telemanipulation control algorithm called Pseudo-
admit tance control [2,4] tha t mimics admit tance control on impedance-type 
telemanipulators, and extends the GVFs described in Section 3.1 and [7] to 
telemanipulation. Pseudo-admittance makes use of a proxy [36], which exists 
only in software, tha t can be commanded to move under admit tance control. 

Under Pseudo-admittance control, the master servos to the slave position, 
while the slave servos to the proxy position, as illustrated in Fig. 5. The 
proxy moves under admit tance control, using the force of the master 's servo 
controller as its input force. GVFs are then implemented by at tenuat ing the 
commanded velocity in non-preferred directions, as described in Section 3.1. 
Figure 5 shows the experimental results from two PHANToM® robots [32] 
configured for Pseudo-admittance control. Using different levels of guidance 
(i.e., modifying the calculation of the preferred direction and the at tenuation 
of velocities in the non-preferred directions), the slave is guided to a preferred 
plane in the workspace, but the user retains ul t imate control to move the slave 
anywhere in the workspace. 
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Fig. 5. Guidance virtual 
fixtures implemented on 
two PHANToM® robots 
(top) configured for Pseudo-
admittance Bilateral Telema-
nipulation [2,4]. The robots 
are shown superimposed on 
the same workspace to aid in 
visualization. Experimental 
data (bottom), with master 
(—) and proxy (• • •) trajecto­
ries, are shown for two levels 
of guidance. The slave servos 
to the proxy. The GVF is on 
the plane x = 0. The user 
applies a force approximately 
in the positive y direction, 
and the manipulator is guided 
by the GVF. 

4 Forbidden-Region Virtual Fixtures 

Forbidden-region virtual fixtures (FRVFs) prevent the robot manipulator from 
entering into forbidden regions of the workspace. They have an on/off nature, 
such tha t they have no effect on the robot when it is outside of the forbidden 
region. As with GVFs, FRVFs can be of either the impedance or admit­
tance type. Impedance-type FRVFs take the form of "virtual walls," which 
are commonly employed and studied for haptic virtual environments, and are 
typically implemented as simple spring-damper surfaces. These are penalty-
based methods, so the force generated by the FRVF is proportional to the 
manipulator 's penetration of the FRVF (i.e., some penetration is necessary to 
engage the FRVF). Admittance-type FRVFs are simply implemented by not 
commanding any manipulator motion into the forbidden region. 

4.1 F R V F s for C o o p e r a t i v e M a n i p u l a t i o n 

FRVFs can be viewed as a subclass of GVF for an admittance-controlled co­
operative manipulator. The FRVFs are trivial to implement, by simply elim­
inating any commanded motion into the forbidden region. Inherently, the 
forbidden region is the non-preferred direction defined in the GVFs. 
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Examples of FRVFs in cooperative systems are highlighted in [9] and [20]. 
In Dewan et al. [9], the virtual fixtures constrained the user to move along 
the shortest pa th between the current tool position and a predefined target 
on the surface. The robot admit tance gain was turned to zero once the target 
was reached. Li and Taylor [20] combined both GVFs and FRVFs in creating 
anatomy-based motion constraints for a path-following task in a constrained 
workspace. The algorithm uses the robot kinematics, the user's force input, 
and a 3-D geometric model of the workspace to generate virtual fixtures and 
an optimal set of joint displacements to guide the tool t ip along a pa th while 
preventing the tool shaft from entering into forbidden regions. 

The user may want the option to intentionally move past the FRVF if it 
is deemed necessary. The GVFs implemented in Section 3.1 left the user with 
ult imate control to move the manipulator away from the desired path, but it 
is not clear if it makes sense to create admittance-type FRVFs tha t allow some 
motion into the forbidden region. In one sense, an admittance-type FRVF tha t 
acts in this way is not a FRVF at all. It may be possible though, through state-
and-input-dependent adaptat ion of the admittance-gain matrix, to implement 
FRVFs tha t allow some penetration into the forbidden region while retaining 
their functional purpose. 

4.2 F R V F s for T e l e m a n i p u l a t i o n 

As with the GVFs of Section 3.2, in telemanipulation we are only really con­
cerned with penetration of the slave manipulator into the forbidden region. 
Penetration of the master device into the corresponding region of its workspace 
is somewhat inconsequential. 

Impedance-type FRVFs can be implemented on telemanipulators by over­
laying a penalty-based virtual wall on the existing telemanipulation controller. 
It is possible to implement the virtual wall on either the master or the slave 
side (or both simultaneously). Both have the effect of reducing movement of 
the slave into the forbidden region. However, each presents a different haptic 
experience for the user, depending on the underlying telemanipulation con­
troller, and each provides different levels of disturbance rejection, depending 
on the location of the disturbance. In [2], we found tha t slave-side FRVFs are 
most effective at rejecting disturbances on the slave, while maintaining a sense 
of telepresence for the user (i.e., minimizing position error between the master 
and the slave). However, we found tha t master-side FRVFs are most effective 
at rejecting (un)intentional user commands into the forbidden region, while 
maintaining a sense of telepresence. The choice of FRVF architecture is likely 
to be task dependent. 

It is also possible to implement admittance-type FRVFs through the use 
of a proxy. If the slave manipulator servos to a proxy, rather than directly 
servoing to the master, then we can infiuence slave movement in forbidden 
regions by adapting the dynamic properties of the proxy. When the master is 
not interacting with the FRVF, the proxy is made to follow the master exactly. 
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When the master moves beyond the FRVF, we attenuate the movement of the 
proxy past the FRVF (including removing the penetration completely). 

Both types of FRVF act by attenuating slave movement into the forbidden 
region, while allowing the user to move the slave into the forbidden region if 
desired. The amount of attenuation, and consequently user control, is governed 
by system gains. Admittance-type FRVFs implemented on admittance-type 
slaves can be made to be infinitely stiff. The stiffness of an admittance-type 
FRVF with an impedance-type slave is limited by the stability of the virtual 
coupling between the slave and the proxy [6]; however, this FRVF can still be 
made to appear infinitely stiff to the user commands. The performance of an 
impedance-type FRVF is also ultimately limited by stability constraints. The 
stability of impedance-type FRVFs, under stability and passivity considera­
tions, is explored in detail in [2]. 

5 Virtual Fixture Design Considerations 

Prior work in virtual fixtures has focused primarily on application-specific 
virtual-fixture geometries and user performance of specific tasks. This section 
highlights a number of additional design considerations that are important for 
progress in this field; researchers have only recently begun to examine these 
issues. 

One fundamental design problem is to determine the best type of un­
derlying system for a virtual-fixture application. Cooperative manipulation 
systems are intuitive to use, due to the natural hand-eye coordination that 
comes from directly manipulating the tool. The sense of telepresence felt with 
a telemanipulator is limited by the position error in the system, as well as the 
quality of the visual and haptic feedback provided to the user. Admittance-
type cooperative systems also have desirable "steady-hand" properties; the 
user's hand is literally steadied by holding onto the rigid, slow-moving robot. 
This behavior must be mimicked on an impedance-type telemanipulator; the 
slave manipulator can be controlled to move slowly, but a backdrivable master 
device is not as capable of steadying the hand of the user. However, telemanip-
ulators provide not only the ability to manipulate distant environments, but 
also the ability to provide scaling in both position and force. Force scaling is 
also possible with cooperative manipulation [30], although an additional force 
sensor or accurate environmental model is needed to obtain the contact force. 
It is important, in general, to consider whether force sensing is necessary and 
practical in terms of size, cost, and environment compatibility. 

System performance also depends on the accuracy of the task geometry 
definition. For example, a computer vision system can be used to reconstruct 
the workspace and define the geometry of the virtual fixtures. The accuracy 
of the virtual fixtures defined depends on the resolution of the vision system, 
calibrations, and the accuracy of the tracking algorithm, which can be sensitive 
to changing light conditions and occlusions. The designer of a virtual fixture 
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Fig. 6. 1-DOF experimental systems, (a) Admittance-type cooperative manipulator 
for the study of the effect of link compliance on virtual-fixture performance, (b) 
Impedance-type telemanipulator for the study of FRVF stability. 

must be able to predict the sensitivity of system performance to inaccuracies 
in virtual-fixture geometry definition and develop mechanisms to correct for 
errors. It may be necessary to build in enough user control to compensate for 
inaccuracies in the virtual-fixture geometry, as was discussed in Section 3.1. 

In cooperative systems, unmodeled robot dynamics, such as joint and 
link compliance, can introduce significant tool positioning error, especially 
for micro-scale tasks. Joint and link flexibility add unactuated degrees of free­
dom to the robot. A human actively and directly manipulating the tool ex­
acerbates the diflftculty of error correction. A hand dynamic model could be 
added to bet ter predict the system response near a virtual flxture, and adjust 
the controller appropriately to compensate for the error. This issue is being 
investigated on a 1-DOF admittance-type system (Fig. 6(a)) where the FRVF 
was implemented as a virtual wall. Joint compliance was simulated with a 
physical spring added between the tool and the stage. Two methods were 
proposed to create a dynamic virtual flxture, with its location determined 
based on the system dynamics, tha t prevents the user from entering the t rue 
forbidden region. The experimental results shown in Fig. 7 indicate tha t ac­
counting for both the dynamic properties of the hand and the effects of robot 
momentum are effective in preventing FRVF penetration. The description of 
the methods and the complete experimental results can be found in [22]. 

Another major concern in the design of virtual flxtures for impedance-
type telemanipulators is stability. Because of their backdrivable force-source 
actuators, these systems are prone to instability if the control-system gains 
are too high. This makes stable and effective virtual flxtures conflicting goals. 
We have investigated the stability of FRVFs, considering effects of friction, 
sampling, and quantization, using both equilibrium stability analysis [2, 5] 
and passivity analysis [3]. We used a 1-DOF system, shown in Fig. 6(b), 
for this purpose. It is possible to design a FRVF to be passive, with the 
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Fig. 7. Experimental results indicating that the effects of robot compliance on 
FRVF functionality can be mitigated through dynamic modeling of the robot and 
the human hand [22]. Mean values of the penetration into the forbidden region 
and standard deviation bars collected from eight users are shown. Negative error 
indicates no penetration into the forbidden region. 

additional assumption of human passivity being sufficient for system stability. 
However, as shown in Fig. 8, we found tha t including an explicit model of 
potential human users can lead to stability predictions tha t are significantly 
less conservative than simply requiring passivity of the FRVF. The description 
of the methods and the complete experimental results can be found in [2,5]. 

It is tempting to model the human user as an exogenous input to the 
system, for the purpose of stability analysis, but in general, the dynamics of 
the human user are part of the closed-loop feedback system. However, it is 
also reasonable to assume tha t for certain slow-moving systems, the human 
user is essentially unaffected by the movement of the system. An initial s tudy 
in our lab shows tha t , for an admittance-type cooperative manipulator, it is 
the velocity of the robot, and not the admit tance gain, tha t directly affects 
human force control precision [35]. Thus, by restricting the velocity of the 
manipulator, it may be possible to consider the human user as an exogenous 
input, greatly simplifying system stability analysis. More research is needed 
to bet ter understand the role of the human user in the total system response. 

As illustrated above, it is not always obvious when dynamic modeling of 
the human user is necessary or desirable in virtual-fixture design and anal­
ysis. Most of the prior work on virtual fixtures has excluded modeling of 
the human user. In addition to mechanical modeling, experimental results of 
GVFs in cooperative systems suggest tha t human intent and psychophysics 
may also affect GVF performance. Selecting an appropriate level of guidance 
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Fig. 8. Experimental stability limits on master FRVF stiffness on a unilateral tele-
manipulator, for large- and small-handed malicious users, compared to predicted 
stability limits based on models of the "worst-case" user [2,5]. Passivity of the 
FRVF based on [8] is also shown. For each data point, the users found the stiffest 
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is required for optimal performance, and the selection is task dependent. Hav­
ing a high level of guidance increases error and time for tasks tha t require 
off-path motions, though it significantly improves both t ime and error during 
path-following. An optimal GVF selection was explored in [23]. Artificial in­
telligence can also be added to adjust the GVF based on the user's intent. For 
example, Li and Okamura [19] and used Hidden Markov Models to recognize 
user motions and provide appropriate GVF assistance in a combined curve-
following and object-avoidance task in cooperative manipulation. Aarno et 
al. [1] took a similar approach with telemanipulation. Kragic et al. [16] broke 
a complex microsurgical task into subtasks, each of which benefited from dif­
ferent types of virtual-fixture assistance. 

6 Summary and Future Work 

This paper described methods for design and implementation of haptic vir­
tual fixtures on a number of different underlying platforms. Through analysis 
and experiments, we show tha t virtual fixtures can improve human-machine 
performance, while allowing the user to maintain ult imate control over the 
task execution. 
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There are a number of critical questions tha t provide important topics 
for future research in this field. For example, what is the best virtual-fixture 
geometry for a given task? How does the human user interpret the combina­
tion of haptic cues coming from the manipulated environment and the virtual 
fixture? Does this lead to haptic confusion, affecting the user's sense of im­
mersion in the task? If the virtual-fixture geometry and /or gains vary in time, 
not only could it lead to confusion on the part of the user, but it also com­
plicates stability analysis. Can virtual fixtures be used as training devices for 
complicated tasks, and then eventually be removed, much like training wheels 
on a bicycle [10,11]? To what extent does the human need to be included in 
the analysis of these systems? It is desirable to say as much as possible about 
the robotic system itself, without needing to consider human dynamics. Is it 
possible to apply what we have learned thus far to the design of force virtual 
fixtures, which assist the user in applying the proper force to the manipulated 
environment? 

It is important tha t we generalize the research in this field across sys­
tems and tasks, so tha t knowledge gained in individual research efforts can 
advance the field as a whole. Virtual fixtures will no doubt facilitate robot-
assisted tasks tha t were previously impossible, but this nascent field is still rich 
with interesting research topics tha t must be explored before human-machine 
systems can capitalize on the full benefit of virtual fixtures. 
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When we discuss autonomous robots, we think of robots that move around, 
interacting with people and making changes in the world. The problem of 
actually choosing motor commands to achieve high level goals — such as 
moving to a desired destination or answering a query from a human — typi­
cally involves planning. Planning is of course one of the central questions of 
artificial intelligence, and the planning field has moved a long way from the 
early days when planning meant searching for a sequence of abstract actions 
that satisfied some symbolic predicate. Robots can now learn their own repre­
sentations through statistical inference procedures, they can now reason using 
different representations and they can reason in worlds where action can have 
stochastic outcomes. 

However, despite the successes of robots that use machine learning and 
statistical inference in such different areas as mapping, speech recognition, 
computer vision, etc., there remain open questions to be addressed before we 
will see ubiquitous, useful, mobile robots, and some of the most interesting 
problems are in the planning domain. Consider a mobile robot deployed in 
some populated environment such as the home. A human operator typically 
drives the robot around in order to collect sensor data. This data is then 
used to build a "good" map that is largely static. The robot planner then 
computes good paths through this map, assuming that the map is correct 
and complete. The planning system rarely has the ability to reason about the 
robot's position within the map and how different plans may lead to better 
or worse localization. The planner almost never has ability to reason about 
the quality of the map itself and plan to gather more data in order to get a 
better map. In contrast, a planner that can reason about how much it knows 
about the world, and can plan to learn more when necessary, is likely to be a 
much more robust and general system. 

What is becoming clear as robots become increasingly sophisticated is that 
there are three key issues in planning for mobile robots. Firstly, robots must 
be able to reason about uncertainty at all levels, both in the current state but 
also in the current representation. Secondly, robots must be able to plan in 
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extremely high dimensional spaces. Thirdly, robots must be able to plan in 
populated and dynamic spaces. Each of these three issues is addressed by the 
papers in the planning section of ISRR; these papers shed new light on these 
problems and provides new tools for autonomous robots. 

P l a n n i n g w i t h uncer ta in ty Pineau & Gordon's paper describes the 
P E M A algorithm for solving large Partially Observable Markov Decision Pro­
cesses (POMDPs) , in which planning decisions are made with respect to the 
full probability distribution over the state space. P O M D P s in particular have 
been considered computationally intractable for any real world problems, but 
this paper demonstrates tha t good approximation techniques can be used to 
generate plans tha t lead to overall more robust performance for robots in 
uncertain worlds. Additionally, the P E M A algorithm addresses a fairly im­
portant problem of how a planning algorithm should reason about its model. 
P E M A uses sampled beliefs, or probability distributions, in the planning pro­
cess; P E M A demonstrates an approach to choosing these samples intelligently, 
improving the overall plan. 

P l a n n i n g in h igh-d imens iona l spaces In order to find plans in high-
dimensional problems, conventional discretization techniques have been su­
perseded by techniques tha t sample configurations from the world and then 
retain only those samples tha t are useful configurations. Hsu, Latombe and 
Kurniawati address some important questions at the heart of stochastic sam­
pling planners, in particular why these techniques work well, and they describe 
theoretically why some variants of the sampling techniques have not repre­
sented improvements. The critical issue is to recognize tha t the the closer the 
sampling measure is to the desired plan, the bet ter the performance. Most 
sampling techniques are a long way from achieving this goal, but this paper 
points the way to developing even more efficient planners. 

P l a n n i n g in p o p u l a t e d worlds Finally, Alami et al.'s presentation on 
planning in human environments highlighted the need to start building human 
models into autonomous systems. For example, being able to deal with unpre­
dictable people safely is a critical issue, and one of the results in this paper 
describes a motion planning algorithm with the objective of safety around 
people. Additionally, knowing how to behave reasonably around people in 
highly ambiguous situations is also essential. 

It is worth pointing out tha t all three of these topics are highly related. 
Planning under uncertainty inevitably leads to planning in high-dimensional 
information spaces. Planning around people inevitably requires planning un­
der uncertainty. These ideas will be essential for furthering the field of au­
tonomous robots. 
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P O M D P s provide a rich framework for planning and control in partially ob­
servable domains. Recent new algorithms have greatly improved the scalability 
of POMDPs , to the point where they can be used in robot applications. In 
this paper, we describe how approximate P O M D P solving can be further im­
proved by the use of a new theoretically-motivated algorithm for selecting 
salient information states. We present the algorithm, called PEMA, demon­
strate competitive performance on a range of navigation tasks, and show how 
this approach is robust to mismatches between the robot 's physical environ­
ment and the model used for planning. 

1 Introduction 

The Partially Observable Markov Decision Process (POMDP) has long been 
recognized as a rich framework for real-world planning and control problems, 
especially in robotics. However exact solutions are typically intractable for all 
but the smallest problems. The main obstacle is tha t P O M D P s assume tha t 
world states are not directly observable, therefore plans are expressed over 
information states. The space of information states is the space of all beliefs a 
system might have about the world state. Information states are easy to calcu­
late from sensor measurements, but planning over them is generally considered 
intractable, since the number of information states grows exponentially with 
planning horizon. 

Recent point-based techniques for approximating P O M D P solutions have 
proven effective for scaling-up planning in partially observable domains [5, 10, 
11]. These reduce computation by optimizing a value function over a small 
subset of information states (or beliefs). Often, the quality of the solution de­
pends on which beliefs were selected, but most techniques use ad-hoc methods 
for selecting beliefs. 

In this paper, we describe a new version of the point-based value ap­
proximation which features a theoretically-motivated approach to belief point 

S. Thmn , R. Brooks, H. Durrant-Whyte (Eds.): Robotics Research, STAR 28, pp. 69-82, 2007. 
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selection. The main insight is to select points which minimize a bound on the 
error of the value approximation. This allows us to solve large problems with 
fewer points than previous algorithms, which leads to faster planning times. 
Furthermore because a reachability analysis is used to select candidate points, 
we restrict the search to relevant dimensions of the belief, thereby alleviating 
the curse of dimensionality. 

The new algorithm is key to the successful control of an indoor mobile ser­
vice robot, designed to seek and assist the elderly in residential environments. 
The experiments we present show the robustness of the approach to a variety 
of challenging factors, including limited sensing, sensor noise, and inaccurate 
models. 

2 Background 

The Partially Observable Markov Decision Process (POMDP) provides a gen­
eral framework for acting optimally in partially observable domains. It is well-
suited to a great number of robotics problems where decision-making must 
be robust to sensor noise, stochastic controls, and poor models. This section 
first establishes the basic terminology and essential concepts pertaining to 
POMDPs. 

2.1 Basic P O M D P Terminology 

We assume the standard formulation, whereby a POMDP is defined by the 
n-tuple: {S^ A, Z, 6o, T^ O, R}. The first three components, S A and Z denote 
finite, discrete sets, where S is the set of states, A is the set of actions, and Z 
is the set of observations. In general, it is assumed that the state at a given 
time t, 5t, is not observable, but can be partially disambiguated through the 
observation Zf. The next three quantities, bo^T^ and O define the probabilistic 
world model that underlies the POMDP: bo describes the probability that 
the domain is in each state at time t = 0; T(5, a, s^) describes the state-to-
state transition probabilities (e.g. robot motion model); 0{s^a^z) describes 
the observation probability distribution (e.g. sensor model). And R{s,a) : 
S X A —> 9̂  is a (bounded) reward function quantifying the utility of each 
action for each state. 

2.2 Belief Computation 

POMDPs assume that the state St is not directly observable, but instead the 
agent perceives observations {z i , . . . , z^} which convey information about the 
state. From these, the agent can compute a beliefs or probability distribution 
over possible world states: bt{s) = Pr{st = s \ Zt, cit-i^ ^ t - i , • • •, ^o)- Because 
POMDPs are instances of Markov processes, the belief bt at time t can be 



POMDP Planning for Robust Robot Control 71 

calculated recursively, using only the belief one time step earlier, ^t- i , along 
with the most recent action a^-i and observation Zt'. 

^0{s',at-i,zt) T{s,at-i,s') ht-i{s') 

bt{s) =r{bt-i,at-i,zt) := — r (1) 
Pr{zt\bt-i,at-i). 

This is equivalent to the Bayes filter, and in robotics, its continuous generaliza­
tion forms the basis of the well-known Kalman filter. In many large robotics 
applications, tracking the belief can be computationally challenging. How­
ever in POMDPs, the bigger challenge is the generation of an action-selection 
policy. We assume throughout this paper that the belief can be computed 
accurately, and focus on the problem of finding good policies. 

2.3 Policy Computation 

The POMDP framework's primary purpose is to optimize an action-selection 
policy^ of the form: 7r{b) —> a, where 6 is a belief distribution and a is the 
action chosen by the policy TT. We say that a policy 7r*(6t) is optimal when 
the expected future discounted reward is maximized: 

7T*{bt) = argmax^T^ ^ y - t o , ^ bt (2) 

Computing an optimal policy over all possible beliefs can be challenging [2], 
and so many recent POMDP approximations have been proposed which gain 
computational advantage by applying value updates at a few specific belief 
points [7, 5, 10, 11]. These techniques differ in how they select the belief 
points, but all use the same procedure for updating the value over a fixed set 
of points. The key to updating a value function over a fixed set of beliefs, 
B = {bo^bi^ ...^bq}^ is in realizing that the value function contains at most 
one ce-vector for each belief point, thus yielding a fixed-size solution set: Ft = 
{ao.ai,... ,aq}. 

The standard procedure for point-based value update is the following. First 
we generate intermediate sets i~̂ "'* and i~^"'̂ ,Va G A,Vz G Z: 

r,"'* ^ {«"'*}, where ce"'*(5) = R{s,a) (3) 

s'es 

Next, we take the expectation over observations and construct i~f,V6 G B: 

r^ ^ {ce"'̂  I a e A}, where ce"'̂  = T,"'* + ^ a r g m a x ^ 0^(5)6(5). (4) 
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Finally, we find the best action for each belief point: 

rt^{a^\be B}, where 

Because the size of the solution set Ft is constant, the point-based value 
update can be computed in polynomial time. And while these operations 
preserve only the best ce-vector at each belief point b e B^ an estimate of the 
value function at any belief in the simplex (including b ^ B) can be extracted 
from the set Ft'. 

Vt{b) = msixy" a{s)b{s). (6) 
ses 

2.4 Error B o u n d o n P o i n t - B a s e d Value U p d a t e s 

The point-based value update operation is an integral part of many approxi­
mate P O M D P solvers. As shown in [5], given a fixed belief set B and planning 
horizon t, the error over multiple value updates is bounded by^: 

l lT/5_T/* | | ^ (^max - i^min)max5/ez imin5e^ \\b-b'\\i. 

where b^ e A is the point where the point-based update makes its worst 
error in value update , and b G B is the closest (1-norm) sampled belief to b\ 
Now let a be the vector tha t is maximal at 6, and a' be the vector tha t would 
be maximal at 6^ Then, we can show equivalently tha t 

e(60 <a' 'b' -a-b' 

< {a' - a) ' {b' - b) 

\^-a,m-b,)b[>b, 
{^-a,){b[-b,)b[<b,. <E. 

3 Error-Minimization Point Selection 

Many recent point-based value approximations, which show good empirical 
success, use poorly informed heuristics to select belief points. We now describe 
a new algorithm for selecting provably good belief points. The algorithm di­
rectly uses the error bound above to pick those reachable beliefs b ^ A which 
most reduce the error bound. Figure l a shows the tree of reachable beliefs, 
start ing with the initial belief (top node). Building the tree (to a finite depth) 
is easily done by recursively using Equation 1. 

^ The error bound proven in [5] depends on the sampling density over the belief 
simplex A. But when the initial belief bo is known, it is not necessary to sample 
all of A densely. Instead, we can sample the set of reachable beliefs A densely; 
the error bound holds on A. 
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(a) 
b b 

b b b 

(b) -

Fig. 1. (a) The set of reachable beliefs. Each node corresponds to a specific be­
lief, and increasing depth corresponds to an increasing plan horizon.(b) Pearl the 
Nursebot interacting with patients in a nursing facility. 

Applying point-based value updates to all reachable beliefs would guar­
antee optimal performance, but at the expense of computational tractability: 
a planning problem of horizon t has 0 ( |A | |Z |^ ) reachable beliefs. So we select 
from our reachable beliefs those most likely to minimize the error in our value 
function. Given the belief tree in Figure la , we consider three sets of nodes. 
Set 1 includes all points already in B (in this example bo and bao^zo ). Set 
2 contains the set of candidates from which we will select new points to be 
added to B. We call this set the fringe (denoted B). Set 3 contains all other 
reachable beliefs.^ 

Now we need to decide which belief b should be removed from the fringe B 
and added to the set of active points B. Every new point added to B should 
improve our estimate of the value function as much as possible. To find the 
point most likely to do this, we consider the theoretical analysis of Section 2.4. 
Consider 6' G 5 , a belief point candidate, and b e B^ some belief which we 
have already selected. While one could simply pick the candidate V ^ B 
with the largest error bound, e{b')^ this would go against the most useful 
insight from earlier work on point-based approaches: namely tha t reachability 
considerations are important . So we need to factor in the probability of each 
candidate belief point occurring. We first note tha t the error bound at any 
given belief point b in the tree can be evaluated from tha t of its immediate 
descendants: 

e(6) = max \ ^ C^( ,̂ tt, ^) ^{^{^^(^^z)) (7) 
aeA z^Z 

^ In Figure la, the fringe (B) is restricted to the immediate descendants of the 
points in B. The rest of the paper proceeds on this assumption, but we could 
assume a deeper fringe. 
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where r(6, a, z) is the behef update equation (Eqn 1), and e{T{b, a, z)) is eval­
uated as in Section 2.4 (unless T{b,a,z) G 5 , in which case e(r(6, a ,z ) ) = 0). 
So we use Equation 7 to find the existing point b G B with the largest error 
bound, then pick as a new point its descendant r (6 , a, z) which has the largest 
impact on e{b). Points on the fringe are picked one a time, allowing us to look 
deep in the tree; in the experiments presented below, beliefs at 40+ levels are 
in fact selected. 

This concludes the presentation of our new error-minimization point se­
lection technique. In practice, the addition of new points is always interleaved 
with the point-based value updates described in Section 2.3 to form a full 
P O M D P solution. The complete approach, called P E M A (Point-based Error 
Minimization Algori thm), is now evaluated empirically in a series of robot 
control experiments. 

4 Empirical Evaluation 

We begin our empirical evaluation with a few well-studied maze navigation 
domains. Most have been used strictly in simulation, but feature robot-like 
assumptions, such as non-deterministic motion and noisy sensors. The Tiger-
grid, Hallway and Hallway2 problems are described in [3]. The Tag domain 
was introduced in [5]. The goal of these preliminary experiments is simply to 
compare the performance of P E M A with earlier P O M D P approximations on 
s tandard problems. More extensive robot navigation domains are presented 
in the following section. 

E r r o r e s t i m a t e s . A first set of results on PEMA's performance are shown 
in Figure 2. For each problem domain, we first plot PEMA's reward perfor­
mance as a function of the number of belief points (top graphs), and then plot 
the error estimate of each point selected according to the order in which points 
were picked (bottom graphs). As shown in these, P E M A is able to solve all 
four problems with relatively few beliefs (sometimes fewer than the number 
of states). 

Considering the error bound graphs, we see tha t overall there seems to 
be reasonably good correspondence between an improvement in performance, 
and a decrease in the error estimates. We can conclude from these plots tha t 
the error bound used by P E M A is quite informative in guiding exploration of 
the belief simplex.^ 

While the decrease in error over a fixed point (e.g. bo) is monotonic, the decrease in 
error over each new points (in the order it was added) is not necessarily monotonic, 
which explains the large jumps in the bottom graphs. These jumps suggest that 
PEMA could be improved by maintaining a deeper fringe of candidate belief 
points, in which case the time spent selecting points would have to be carefully 
balanced with the time spent planning. Currently, we spend less than 1% of 
computation time selecting belief points; the rest is spent estimating the value 
function. 
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Tiger-grid Hallway Hallway2 

# belief points # belief points belief points # belief points 

Fig. 2. Policy performance (top row) and estimate of the bound on the error (bottom 
row) for selected belief points 

C o m p a r a t i v e a n a l y s i s . While the results outlined above show tha t 
P E M A is able to handle a wide spectrum of large-scale P O M D P domains, 
it is also useful to compare its performance to tha t of alternative approaches, 
on the same set of problems. Figure 3 compares both reward performance and 
policy size^ ( # of nodes in controller) for a few recent P O M D P algorithms, 
on the three larger problems (Hallway, Hallway2, and Tag). The algorithms 
included in this comparison were selected simply based on the availability of 
published results for this set of problems. 

As is often the case, these results show tha t there is not a single algorithm 
tha t is best for solving all problems, so it is difficult to draw broad generaliza­
tions. But we can point out a few salient effects. First, the baseline QMDP [3] 
approximation is clearly outclassed by other more sophisticated methods. We 
also observe tha t some of the algorithms achieve sub-par performance in terms 
of expected reward: BPI [9] (on Hallway2 and Tag)'^, PBVI [5] (on Tag) and 
BBSLS [1] (on Tag). While each of these is theoretically able to reach opti­
mal performance, they would require larger controllers (and therefore longer 
computation time) to do so. 

The remaining algorithms—HSVI [10], Perseus [11], and PEMA—offer 
comparable performance. HSVI offers good control performance on the full 
range of tasks, but requires bigger controllers. HSVI and PEMA share many 

The results were computed on different platforms, so time comparisons are diffi­
cult. The size of the final policy is often a useful indicator of computation time, 
but should be considered with care. 

^ Better results for BPI have since been published in [8]. 
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QMDP B B QMDP BPI PBUA PBVI HSVI Perseus PEMA 

QMDP BPI PBUA PBVI HSVI Perseus PEMA QMDP BPI PBUA PBVI HSVI Perseus PEMA 

QMDP BPI PBVI BBSLS HSVI Perseus PEMA QMDP BPI PBVI BBSLS HSVI Perseus PEMA 

Fig. 3. Results for standard POMDP domains. Top row: Hallway problem. Middle 
row: Hallway2 problem. Bottom row: Tag problem. 

similarities: both use an error bound to select belief points. HSVI's upper-
bound is tighter than PEMA's , but requires costly LP solutions. P E M A solves 
problems with fewer belief points, we believe this is because it updates all belief 
points more frequently, thus generalizing better in poorly explored areas of 
the belief simplex. 

Between Perseus and PEMA, the trade-offs are less clear: the planning 
time, controller size and performance quality are quite comparable. These 
two approaches in fact share many similarities. Perseus uses the same point-
based backups as in P E M A (see Section 2.3), but it differs in both how the 
set of belief points is selected (Perseus uses random exploration traces), and 
the order in which it updates the value at those points (also randomized). The 
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effect of these differences is hard to narrow. We did experiment informally with 
Perseus-type random updates within PEMA, but this did not yield significant 
speed-up. It is likely that randomizing value updates is not as beneficial when 
carefully picking a small set of essential points. We speculate that PEMA will 
scale better to higher dimensions because of the selective nature of the belief 
sampling. This is the subject of ongoing work. 

5 Robotic Applications 

Much of the algorithmic development described in this paper is motivated 
by our need for high-quality robust planning for interactive mobile robots. In 
particular, we are concerned with the problem of controlling a nursing assis­
tant robot. This is an important technical challenge arising from the Nursebot 
project [6]. This project aims to develop personalized robotic technology that 
can improve the level of personal care and services for elderly individuals. The 
robot Pearl (Fig. lb) is the main experimental platform used in this project. 
It is equipped with standard indoor navigation abilities and is programmed 
with the CARMEN toolkit [4]. An important task for this robot is to provide 
timely cognitive reminders (e. g. medications to take, appointments to attend, 
etc.) to its target population. It is therefore crucial that the robot be able to 
find the person whenever it is time to issue a reminder. We model this task as 
a POMDP, and use PEMA to optimize a strategy with which the robot can 
robustly find the person, even under very weak assumptions over the person's 
initial location and ease of mobility. 

We begin by considering the environment in which the robot operates. 
Figure 5 shows a 2D robot-generated map of its physical environment. The 
goal is for the robot to navigate in this environment until it finds the patient 
and then deliver the appropriate reminder. To successfully find the patient, 
the robot needs to systematically explore the environment, while reasoning 
about both its spatial coverage and the likely motion pattern of the person. 

5.1 P O M D P Modeling 

To model this task as a POMDP, we assume a state space consisting of two fea­
tures: RobotPosition^ and PersonPosition. Each feature is expressed through 
a fixed discretization of the environment (roughly 25 cells for each feature, or 
625 total states.) We assume the person and robot move freely, constrained 
only by walls and obstacles. The robot's motion is deterministic (as a function 
of the diCtion={North, South, East, West}). A fifth action (DeliverMessage) 
concludes the scenario if applied when the robot and person are in the same 
location. We assume the person's motion is stochastic, and in one of two 
modes: (1) whenever the person is far from the robot, s/he moves according 
to Brownian motion (i. e. in each cardinal direction with Pr = 0.1 or stays in 
place), this corresponds to a random walk and is a conservative assumption 
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regarding people's motion; or (2) whenever the robot is within sight (< 4m), 
the person tries to avoid the robot and moves away from it (with noise), which 
makes the task more chahenging. 

The observation function has two parts: what the robot senses about its 
own position, and what it senses about the person's position. First we assume 
tha t the robot 's position is fuhy known; this is reasonable since planning is 
done at a much coarser resolution (2m), than the typical localization precision 
(10cm). When testing policies however, probabilistic localization is performed 
by the CARMEN toolkit, and the robot 's belief incorporates any positional 
uncertainty. For the person's position, we assume tha t the robot perceives 
nothing unless the person is within 2 meters. This is plausible given the robot 's 
sensors. Even at short-range, there is a small probability {Pr = 0.01) tha t the 
robot will miss the person. 

The reward function is straightforward: R = —1 for any motion, R = 10 
when the robot decides to DeliverMessage and is within range (<2m) of the 
person, and R = —100 when the robot decides to DeliverMessage in the 
person's absence. The task terminates when the robot successfully delivers the 
message. We assume a discount factor proportional to the map's resolution 
(7 = 0.98). 

With these P O M D P parameters, we can run P E M A to optimize the robot 's 
control strategy. Given the complexity of P O M D P planning we do assume tha t 
P E M A will be used as an off-line algorithm to optimize the robot 's perfor­
mance prior to deployment. The results presented below describe the per­
formance of an optimized control policy when tested onboard the CARMEN 
simulator. 

5.2 E x p e r i m e n t a l R e s u l t s 

We first consider PEMA's performance on this task, as a function of planning 
time. As shown in Figure 4, P E M A is in fact able to solve the problem within 
1800 seconds, using only 128 belief points. In comparison, an MDP-type ap­
proximation (in this case the QMDP technique [3]) proves to be inadequate 
for a problem exhibiting such complex uncertainty over the person's position. 
Using PEMA, the patient was found in 100% of trials, compared to 35% for 
QMDP. 

Figure 5 shows PEMA's policy through five snapshots from one run. The 
policy is optimized for any start positions (for both the person and the robot); 
the execution trace in Figure 5 is one of the longer ones since the robot searches 
the entire environment before finding the person. In this scenario, the person 
star ts at the far end of the left corridor. The person's location is not shown in 
the figure since it is not observable by the robot. The figure instead shows the 
belief over person positions, represented by a distribution of point samples 
(grey dots). We see the robot start ing at the far right end of the corridor 
(Fig. 5a), moving towards the left until the room's entrance (Fig. 5b), and 
searching the entire room (Fig. 5c). Once sufficiently certain tha t the person 
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Fig. 4. Find-the patient domain - Performance results. 

is not there, it exits the room (Fig. 5d), and moves towards the left until it 
finally finds the person at the end of the corridor (Fig. 5e). 

It is interesting to compare snapshots (b) and (d). The robot position in 
both is practically identical. Yet in (b) the robot chooses to go up into the 
room, whereas in (d) the robot chooses to move toward the left. This is a 
direct result of planning over beliefs^ rather than over states. 

These results show tha t P E M A is able to handle realistic domains. In 
particular, throughout these experiments, the robot simulator was in no way 
constrained to behave as described in our P O M D P model. For example the 
robot 's actions often had stochastic effects, the robot 's position was not always 
fully observable, and belief tracking had to be performed asynchronously (i. e. 
not a straight alternation of actions and observations). Despite this mismatch 
between the model assumed for planning and the execution environment, the 
control policy optimized by P E M A successfully completed the task. 

5.3 R o b u s t n e s s t o M o d e l i n g Errors 

Like most P O M D P solvers, P E M A assumes exact knowledge of the P O M D P 
model. In reality, this model is often hand-crafted and may bear substantial 
error. In our experience, such a mismatch between model and the real system 
does not necessarily render our solution useless. The robustness built in to 
P O M D P s to overcome state uncertainty often goes a long way towards over­
coming model uncertainty. Nonetheless, there are cases where a poor model 
can be catastrophic. In this section, we t ry to gain a better understanding of 
the impact of errors in the model we used for the Find-the-patient domain. 

Our model assumes tha t the robot can see the patient with Pr = 0.99, 
whenever s /he is within 2m. We use this parameter both for solving and 
tracking. But it could be tha t in fact the person is only detected with P r = 0.8. 

Wha t would be the loss in performance, compared to if we had planned and 
tracked with the correct parameter? Table 1 examines the effects of this type 
of modeling error. It shows the performance (avg. sum of rewards over 1000 
trajectories) when applying P E M A and tracking the belief with the sensor 
accuracy in the left column, but testing with the accuracy in the top row. 
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Fig. 5. Find-the patient domain - Sample trajectory. 
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Table 1. Sensitivity analysis over observation probabilities. (CI for all: [0.7,1.4]) 

Prmodez (^ ) 

0.99 
0.90 
0.80 
0.70 

0.99 
-9.7 
-12.0 
-9.7 

-17.8 

PYreal(z) 

0.90 
-11.3 
-13.1 
-11.5 
-19.4 

0.80 
-13.2 
-15.6 
-13.1 
-22.0 

0.70 
-15.5 
-19.0 
-14.5 
-22.6 

The main diagonal contains cases where the model is correct. These results 
suggest two things. First, as expected, performance degrades as the real noise 
level increases (i.e. left-to right effect for any given row.) Second, and this was 
not anticipated, the dominating performance factor is in fact the noise in the 
assumed model: regardless of what conditions are used for testing, results are 
better for some values of Fimodei (0.99 and 0.8) and worse for others (0.9 and 
0.7). We hypothesize tha t this happens because in some models, P E M A did 
not have sufficient belief points to perform well (all policies were optimized 
with \B\=bl2). When we repeated experiments for Fimodel(z)=0.9 with more 
beliefs points, the performance improved (for all Pr^ea/(^)) to the level of the 
top row. This suggest tha t in some domains it may be best to optimize policies 
assuming false models (e. g. low sensor noise), because an equally good policy 
can be obtained with fewer belief points. We are currently investigating this, 
as well as the impact of modeling errors in the transition model. 

6 Conclusion 

This paper describes a new algorithm for planning in partially observable do­
mains, which features a theoretically-motivated technique for selecting salient 
information states. This improves the scalability of the approach, to the point 
where it can be used to control a robot seeking a missing person. We also 
demonstrate tha t the algorithm is robust to noise in the assumed model. 
Future work focuses on improving performance under even weaker modeling 
assumptions. 
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Summary. Why are probabilistic roadmap (PRM) planners "probabilistic"? This 
paper tries to establish the probabilistic foundations of PRM planning and re­
examines previous work in this context. It shows that the success of PRM plan­
ning depends mainly and critically on the assumption that the configuration space 
C of a robot often verifies favorable "visibility" properties that are not directly 
dependent on the dimensionality of C. A promising way of speeding up PRM 
planners is to extract partial knowledge on such properties during roadmap con­
struction and use this knowledge to adjust the sampling measure continuously. 
This paper also shows that the choice of the sampling source—^pseudo-random or 
deterministic—^has small impact on a PRM planner's performance, compared to 
that of the sampling measure. These conclusions are supported by both theoretical 
arguments and empirical results. 

1 Introduction 

Probabilistic roadmap (PRM) planners [3, Chapter 7] solve seemingly difficult 
motion planning problems such as the one in Fig. 1, where the robot's configura­
tion space C is 6-D and the environment consists of tens of thousands of triangles. 
While an algebraic planner would be overwhelmed by the high cost of computing 
an exact representation of the free space F, defined as the collision-free subset of 
C, a PRM planner builds only an extremely simplified representation of F, called 
a probabilistic roadmap. The nodes of a roadmap R are configurations sampled 
from F with a suitable probability measure. The edges of R are simple collision-
free paths, e.g., straight-line segments, between the sampled configurations. PRM 
planners work surprisingly well in practice. Why? 

Previous work has partially addressed this question by identifying and for­
malizing free space properties that provide sufficient conditions to guarantee that 
a PRM planner using a uniform sampling measure works well. However, the un­
derlying question "Why are PRM planners probabilistic?" has received little at­
tention so far, and consequently the role of non-uniform sampling measures in 
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PRM planning remains poorly understood. Since no inherent randomness or un­
certainty exists in the classic formulation of motion planning problems like the 
one depicted in Fig. 1, one may wonder why probabilistic sampling helps to solve 
them. 

Fig. 1. A practical motion planning problem. 

In this paper, we attempt to fill this gap, with the intent of identifying promis­
ing directions to improve future PRM planners. We introduce the probabilistic 
foundations of PRM planning (Section 2). We then examine previous work in this 
context and argue that the empirical success of PRM planning tells us as much 
about the nature of motion planning problems encountered in practice as about 
PRM planning itself (Section 3). We emphasize the important distinction between 
the sampling measure, a notion firmly rooted in probability theory, and the sam­
pling source, and show that the source has small impact on a planner's perform­
ance compared to the measure (Sections 4 and 5). 

The main questions addressed in this paper are summarized below: 

• Why is PRM planning "probabilistic"? A foundational choice in PRM 
planning is to avoid computing an exact representation of F. So the planner never 
knows the exact shape of F, in particular, its connectivity. It works very much like 
a robot exploring an unknown environment to build a map. At any moment during 
planning, many hypotheses on F are consistent with the configurations sampled so 
far. The probability measure for sampling F reflects this uncertainty. Hence, PRM 
planning trades the cost of computing F exactly against the cost of dealing with 
uncertainty. This choice is beneficial only if a small roadmap can represent the 
shape of F well enough to answer motion-planning queries correctly. 

• Why does PRM planning work well? One can think of the nodes of a 
roadmap as a network of guards watching over F. To guarantee that a PRM plan­
ner finds a solution quickly whenever one exists, F should satisfy favorable "visi­
bility" properties. A key contribution of PRM planning is to reveal that in prac­
tice, many fi-ee spaces satisfy such properties, despite their high algebraic 
complexity. Since visibility properties can be defined in terms of volume ratios 
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over certain subsets of F, they do not directly depend on dim(C), the dimensional­
ity of C. This explains why PRM planning scales up reasonably well when dim(C) 
increases. 

• How important is the sampling measure? In every PRM planner, a prob­
ability measure prescribes how sampled configurations are distributed over F. 
Since visibility properties are in general not uniformly favorable over F, this 
measure plays a critical role in the efficiency of PRM planning by allocating a 
higher density of samples to regions with poor visibility properties. Existing PRM 
planners use mostly simple, heuristic estimates of visibility properties, but ex­
periments show that they dramatically improve the performance of PRM plan­
ning. 

• How important is the sampling source? A PRM planner needs a source S 
of uniformly distributed pseudo-random or deterministic numbers for sampling C. 
Usually, it calls S to pick a point uniformly from [O,!]'̂ "̂̂ ^̂ ^ and then maps the 
point into C according to a given probability measure. The source S has only a 
limited effect on the efficiency of PRM planning. When dim(C) is small, low-
discrepancy or low-dispersion deterministic sources achieve some speedup over 
pseudo-random sources [13]; however, the speedup is very modest compared to 
that achieved by good sampling measures and fades away quickly, as dim(C) in­
creases. 

This paper does not introduce any new PRM planner or sampling strategy. 
Instead, its contribution is to articulate a coherent framework centered on the 
probabilistic foundations of PRM planning and evaluate several ideas, considered 
separately before, in this framework. It brings new understanding of what makes 
PRM planning effective, which in turn may help us to design better planners in 
the future. 

2 Why Is PRM Planning "Probabilistic''? 

For many robots, computing an exact representation of the free space intakes pro­
hibitive time, but fast, exact algorithms exist to test whether a given configuration 
or path is collision-free [16]. PRM planners use Xv^o probes based on such algo­
rithms to access geometric information from the configuration space C: 
• For any q e C, FreeConf (^) is true if and only if ^ G F. 
• For any pair q, q'e C, FreePath(^ ,^ ' ) is true if and only if ^ and q' can be 
connected with a straight-line path lying entirely in F. 

The choice of using only these two probes is foundational for PRM planning. 
Since a PRM planner does not compute the exact shape of F, it never gains this 
information. At any moment, many hypotheses on F are consistent with the in­
formation gathered so far by the probes, and each hypothesis has some probability 
of being correct. The probabilistic nature of PRM planners comes from the fact 
that this uncertainty is modeled implicitly by a probability measure over the set of 
hypotheses. 
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In this paper, we use the following scheme, which we call Basic-PRM, as a 
reference planner. Like the original PRM planner [12], it operates in two stages, 
roadmap construction and roadmap query. 

• Roadmap construction. The procedure below takes a single input argument 
N, the number of nodes for the roadmap R to be constructed. The nodes of R are 
collision-free configurations sampled from F. The edges represent collision-free 
straight-line paths between the nodes. 

Procedure Roadmap-Construction(AO 
1. repeat until N nodes have been generated 
2. Sample a configuration q from C uniformly at random. 
3. if FreeConf (^) is true then add ^ as a new node ofR. 
4. for every node q'ofR such that q' 7^q do 
5. if F reePath(^ , q') is true then add (q, ^') as a new edge ofR. 
6. return R. 

Most PRM planners use better sampling strategies than the uniform random one 
in Line 2, as well as better connection strategies in Lines 4-5. 

A sampling strategy (TT, S) is characterized by a probability measure n that 
prescribes how sampled configurations are distributed over C and a source S of 
uniformly distributed pseudo-random or deterministic numbers. We will show in 
Sections 4-5 that designing good sampling measures is one of the most promising 
ways to speed up PRM planning. 
• Roadmap query. A query is defined by two configurations qi and ^2 in F. 
Given a roadmap R, the procedure Roadmap-Query tries to connect each ^/, 
/=1,2, to a node of R. For each ^/, it samples uniformly at random K configura­
tions so that for each such configuration q, FreePath(^/,^) is true. It then checks 
whether there is a node V/ of R such that FreePath(^,V/) is true. If so, q^ and V/ 
can be connected via q. If either qi or ^2 cannot be connected to a node of R, 
Roadmap-Query returns FAILURE. Otherwise, it searches for a path in R be­
tween Vi and V2.. If one is found, it returns a path between qi and ^2- Otherwise, it 
returns NO PATH. 

If Roadmap-Query returns a path, the answer is always correct, but the NO 
PATH answer may not be correct, as disconnected components ofR may lie in the 
same connected component of F. The answer FAILURE means that R is insuffi­
cient to answer the query. 

Let us now return to the question "Why is PRM planning probabilistic?". 
Suppose that while constructing a roadmap, R o a d m a p - C o n s t r u c t i o n could 
maintain a representation (H, 77), where H is the set of all hypotheses over the 
shape of F and 77 is a probability measure that assigns to each hypothesis in / / the 
probability of it being correct. Suppose further that we can define what a good 
roadmap is (see Section 3). Then, in each iteration of Roadmap-
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Fig. 2. The experimental convergence rate of Basic-PRM. The plot shows the per­
centage of unsuccessful outcomes out of 100 independent runs for the same query in the 
environment shown on the right, as the number of roadmap nodes increases. 

C o n s t r u c t i o n , the optimal sampling measure n^ is the one that minimizes the 
expected number of remaining iterations until a good roadmap is reached, and n^ 
can be inferred from {H, rj). However, maintaining {H, rj) explicitly is expensive. 
So existing PRM planners use heuristics to select the sampling measure TT (see 
Section 4). 

3 Why Does PRM Planning Work Well? 

In general, Basic-PRM may return an incorrect NO PATH or FAILURE an­
swer with some probability y, but the efficiency of PRM planners in practice indi­
cates that Y is usually small. Experiments show that even in complex geometric 
environments, y often converges to 0 quickly, as N, the number of roadmap 
nodes, increases (Fig. 2). Yet one can also easily construct apparently simple en­
vironments where PRM planners perform terribly (Fig. 3). Together, these two 
examples suggest that many environments encountered in practice satisfy favor­
able properties that PRM planners exploit well. What are these properties? 

We now review results from [9, 11], showing that if F satisfies a rather general 
visibility property, called expansiveness, then Basic-PRM answers planning que­
ries correctly with high probability. In the following, the phrase "with high (low) 
probability in ^" means that the probability converges to 1 (0) at an exponential 
rate, as n increases. 

3.1 Visibility in the Free Space 

We say that two points q and q' in F see each other if F reePa th (^ , q) is true. 
The visibility set of qeF is the set V(q) = { q'^F\ F reePa th (^ , q) is true}. The 
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Fig. 3. A difficult example for PRM planning. F consists of two rectangular chambers 
connected by a narrow corridor. The plot shows the average running time for Bas ic-
PRM to connect the two query configurations, as the corridor width decreases. 

definition of a visibility set is extended to any subset M of points in F by defining 

The first two theorems below say that if F satisfies a property called s-
goodness, then Basic-PRM generates a roadmap that provides good coverage of 
F so that FAILURE rarely occurs. 

Definition 1. Given a constant s G (0,1], a point qeF is s-good if it sees at 
least an £•-fraction of F, i.e., if ju(V(q)) > SXJLI{F), where JLI{S) denotes the volume 
of iS for any S(^C.Fi^ s-good if every point qeF is -̂-good. 

Definition 2. A roadmap R provides adequate coverage of an -̂-good free 
space F if the subset of F not seen by any node oiR has volume at most {SI2)JLI{F). 

Theorem 1. If F is s'-good, then with high probability in N, Roadmap-
Construct ion(AO generates a roadmap that provides adequate coverage of F 
[11]. 

Theorem 2. If a roadmap provides adequate coverage of F, then Roadmap-
Query returns FAILURE with low probability in ^ [11]. 

(Recall that K is the number of configurations sampled randomly in the 
neighborhood of each of the query configurations. See Section 2.) 

Adequate coverage only protects us from FAILURE, but does not prevent an 
incorrect NO PATH answer, because s'-goodness is too weak to imply anything 
on roadmap connectivity. A stronger property is needed to "link" a visibility set to 
its complement in F. 

Definition 3. Let F ' be a connected component of F, G be any subset of F' , 
and /? be a number in (0,1]. The /^LOOKOUT of G is the set of all points in G 
that see at least a /?-fraction of the complement of G in F'\ 

/^LOOKOUT(G) ={q^G\ ju{V{q)\G) > Pxju{F' \G)}. 
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Suppose that the volume of /?-LOOKOUT(G) is at least axju(G). If either a 
or /? is small, then it would be difficult to sample a point in G and another in F\G 
so that the two points see each other, hence to build a roadmap that represents the 
connectivity of F ' well. This happens in the free space of Fig. 3 when the corridor 
is very narrow. These considerations lead to the concept of expansiveness. 

Definition 4. Let s, a, and P be constants in (0,1]. A connected component F' 
of F is {s,a,p)-expansive if (i) every point qeF' is s-good and (ii) for any set Mof 
points in F\ ju(P-LOOKOUT(V(M))) > axju(V(M)). F is (s,a,p)-expansive, if its 
connected components are all (£',cir,/?)-expansive. 

Theorem 3. If F is (^,cir,/^-expansive, then with high probability in N, Road-
m a p - C o n s t r u c t i o n generates a roadmap whose connected components have 
one-to-one correspondence with those of F [9]. 

Expansiveness guarantees that the visibility set V(M) of any set M of points in 
a connected component F' of F has a large lookout. So it is easy to sample at ran­
dom a set of configurations and construct a roadmap that both provides good cov­
erage of F and represents the connectivity of F well. The values of s, a, and /? 
measure the extent to which F is expansive. For example, if F is convex, then 
£=a=/]=l. The larger these values are, the smaller A^needs to be for Basic-PRM 
to answer queries correctly. Although for a given motion planning problem, we 
often cannot compute these values in advance, they characterize the nature of free 
spaces in which PRM planning works well. 

3.2 What Does the Empirical Success of PRM Planners Imply? 

In practice, a small number of roadmap nodes are often sufficient to answer que­
ries correctly. This frequent success suggests that the main reason for the empiri­
cal success of PRM planners is that free spaces encountered in practice often sat­
isfy favorable visibility properties, such as expansiveness. If a connected 
component F' of F had very small values of s, a, and /?, then a planner would 
likely encounter a set M of sampled nodes such that V{M) has a small lookout. It 
would then be difficult to sample a node in this lookout and eventually create a 
connected roadmap in F\ PRM planners scale up well when dim(C) increases, 
because visibilities properties can be defined in terms of volume ratios over sub­
sets of F and do not directly depend on dim(C). So, the empirical success of PRM 
planning says as much about the nature of motion-planning problems encountered 
in practice as about the algorithmic efficiency of PRM planning. The fact that 
many free spaces, despite their high algebraic complexity, verify favorable visibil­
ity properties is not obvious a priori. An important contribution of PRM planning 
has been to reveal this fact. 
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Fig. 4. Comparison of three strategies with different sampHng measures. The plot 
shows the average running times over 30 runs on the problem in Fig. 3 as the corridor 
width decreases. 

According to Theorems 1-3, expansiveness provides a sufficient condition 
for Basic-PRM work well. One can also prove that expansiveness is necessary 
in the following sense: if F is not expansive for large enough values of s, a, and 
P, then it is always possible to choose a query in F so that Basic-PRM fails to 
succeed with high probability. This indicates that expansiveness is a good charac­
terization of the complexity of the free space for PRM planning. We do not have a 
proof that expansiveness is the minimal property that F must satisfy for PRM 
planners to work well, but few alternatives exist {e.g., path clearance and s-
complexity) and they are more specific. However, since the values of s, a, and P 
are determined by the worst configurations and lookouts in F, they do not reflect 
the variation of visibility properties over F. This is precisely what non-uniform 
sampling measures described below try to exploit. 

4 How Important Is the Sampling Measure? 

In the previous section, we have analyzed the performance of Basic-PRM when 
the uniform sampling measure is used. However, most PRM planners employ 
non-uniform sampling measures that dramatically improve performance. To illus­
trate. Fig. 4 compares the average running times of three versions of Basic-PRM 
using sampling strategies with different measures: the uniform strategy, the two-
phase connectivity expansion strategy [12], and the Gaussian strategy [2]. The last 
two strategies perform much better than the uniform one. How can such im­
provement be explained? What information can a PRM planner use to bias the 
sampling measure to its advantage? 
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If nothing is assumed on F, all hypotheses on the shape of F are equally 
likely. There is no reason to sample one region of C more densely than another, 
and the uniform sampling measure is the best that a PRM planner can use. More 
generally, with no prior assumptions, there is little that we can say about the ex­
pected performance of PRM planners. If we persist in using PRM planners, the 
reason must be that F is expected to satisfy certain favorable properties. Note here 
the analogy with the theory of PAC learning, where one can expect to learn a con­
cept from examples only if the concept is assumed to have a simple representa­
tion. Similarly, we can expect a PRM planner to work well - i.e., to "learn" the 
shape of F from sampled configurations - only if we assume that F satisfies fa­
vorable visibility properties, which allow it to be adequately represented by a 
small roadmap. 

Now, if F is expansive, can non-uniform sampling measures work better than 
the uniform one? Since visibility properties are not uniformly favorable over F, a 
PRM planner should exploit the partial knowledge acquired during roadmap con­
struction to identify regions with poor visibility properties and adjust the probabil­
ity measure to sample these regions more densely. Now not only is the sampling 
measure non-uniform over F, but also it changes over time. In each sampling op­
eration, the optimal measure is the one that minimizes the expected number of 
remaining sampling operations needed to reach a good roadmap. 

The problem of constructing good sampling measures is still poorly under­
stood. Existing strategies mostly rely on simple, heuristic estimates of visibility 
properties, for instance: 
• The two-phase connectivity expansion strategy [12] builds an initial roadmap 
by sampling C uniformly at random. While doing so, it identifies the nodes that 
frequently fail to connect to other nodes nearby. Then the strategy samples more 
configurations around these identified nodes. The final distribution of sampled 
configurations is denser in regions having poor visibility. See the circled region in 
Fig. 5a around the corridor. 
• In each sampling operation, the Gaussian strategy [2] samples a pair of con­
figurations, whose distance between them is chosen according to the Gaussian 
measure. If exactly one configuration lies in F, this configuration is retained as a 
roadmap node. Otherwise, both configurations are discarded. This strategy yields 
a distribution of sampled configurations that is denser near the boundary of F 
(Fig. 5b). The rationale is that points inside narrow passages, which have poor 
visibility, often lie near the boundary. Focusing on the boundary may increase the 
sampling density inside narrow passages. 

Fig. 4 shows that these two strategies are effective in exploiting the non-
uniformity of visibility properties in F. When the corridor width is small, regions 
near the corridor have poor visibility, and the non-uniform strategies achieve huge 
speedup over the uniform one. As the corridor width increases, visibility proper­
ties become more uniformly favorable. The benefit of non-uniform sampling then 
decreases. 
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Fig. 5. Sampled configurations generated by {a) the two-phase connectivity expansion 
strategy and {b) the Gaussian strategy. 

The above two non-uniform strategies are chosen here only for illustration. 
Other strategies have been proposed, and some of them achieve even greater 
speedup. They use various techniques to increase sampling density in subsets of F 
expected to have poor visibility. For instance, the bridge test extends the Gaussian 
strategy and samples three configurations, instead of two, to better identify nar­
row passages [7]. Other techniques identify narrow passages in a robot's work­
space {e.g., by computing the medial axis) and use this information to sample 
more densely in regions of F likely to contain narrow passages [4, 5, 20]. For a 
robot manipulator arm, it has been shown that over-sampling near singular con­
figurations improves performance [14]. Indeed, at a singular configuration q^, the 
arm's end-effector loses some degrees of freedom. Thus the region of F near q^ 
has a flattened shape, resulting in poor visibility. Instead of using heuristics to lo­
cate regions with poor visibility, an alternative is to check directly the definition 
of visibility to prune a roadmap and avoid wasting effort in regions with good 
visibility [19], but this may involve high computational cost. A quite different ap­
proach is to slightly dilate F [8, 18]. As visibility in dilated F is more favorable, 
planning becomes easier. A path found in the dilated space is then deformed into 
one in F. 

5 How Important Is the Sampling Source? 

We have mentioned in Section 2 that a sampling strategy (TT, S) is characterized by 
a probability measure n and a source S. The most commonly used source in PRM 
planning is the pseudo-random source Sran- Given a fixed seed, Sran generates a se­
quence of numbers that closely approximate the statistical properties of true ran­
dom numbers. In particular, a pseudo-random sequence is slightly irregular to 
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Fig. 6. Comparison of six sampling strategies on the problem of Fig. 3 when {a) the cor­
ridor width is set to 0.03 and {b) the width decreases. 

simulate the effect that each number is chosen independently. Note that if we fix 
the seed of a pseudo-random source, the numbers generated are in fact determinis­
tic. To get multiple independent runs of a PRM planner, we must use a different 
seed for each run. In the proofs of Theorems 1-3, this independence guarantees 
that samples spread evenly over F according to the uniform measure. However, 
deterministic sources can achieve the same goal, sometimes even better [13]. A 
familiar deterministic source is a grid. In this section, we compare pseudo-random 
and deterministic sources. We also compare the impact of sampling sources with 
that of sampling measures on the overall efficiency of PRM planning. 

In our experiments, we use a pseudo-random source S^^^ as well as two deter­
ministic sources, the Halton sequence iShai [17] and the incremental discrepancy-
optimal sequence S^^^ [15], both of which have been reported to often outperform 
iSran [6, 13, 15]. Wc thcu pair each source with two probability measures, the uni­
form measure ;ru and the measure TTQ used in the Gaussian strategy. This leads to 
six sampling strategies {̂ u?̂ G}x{'5'ran?'5'hab'5'opt}, each embedded in a distinct ver­
sion of Basic-PRM to be tested experimentally. 

• The sampling measure versus the sampling source. Fig. 6a compares the 
six strategies on the example in Fig. 3, when the corridor width is set to 0.03. 
Each table entry gives the ratio of the running time of the uniform random strat­
egy (;ru,iS'ran) vcrsus that of the strategy of the entry. So, the table reports the 
speedup over (;ru,iS'ran)- The running times for (;ru,iS'ran) and (;rG,iS'ran) are averaged 
over 30 independent runs. The second column (;ru) shows that S\,^\ and iSopt indeed 
achieve some speedup over S^^^, but far greater speedup is achieved by switching 
to 7TQ. Furthermore, the advantage of S\,^\ and iSopt over iSran observed with TTU van­
ishes when we switch to TTQ. These results are reinforced in Fig. 6b, which plots 
the running times of the six strategies, as the corridor width decreases. The three 
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curves bundled together at the bottom of the plot all correspond to strategies using 
UQ, demonstrating the importance of the sampling measure on the overall effi­
ciency of the planner. Similar results have been obtained on more realistic prob­
lems, e.g., the one in Fig. 7, in which a 6-degrees-of-freedom robot manipulator 
needs to access the bottom of a car through the narrow space between the lift sup­
ports. 
• Dependence on dimensionality. The main basis for deterministic sources is 
that they minimize criteria such as discrepancy or dispersion. However, the com­
putational cost of maintaining a fixed discrepancy or dispersion increases expo­
nentially with dim(C) [17]. The samples generated by a deterministic source dis­
tribute evenly and regularly over [0,1]̂ '""^^^ and so they roughly correspond to a 
grid with TV^̂ ^̂ ^̂ )̂ discretized intervals per axis, where Â  is the number of samples. 
In typical PRM planning problems, N is relatively small, while dim(C) could be 
large (greater than 6). This leads to large discrepancy and dispersion, even when a 
deterministic source is used. Hence, the advantage that deterministic sources can 
possibly achieve over pseudo-random sources fades away as dim(C) increases. 
Fig. 8 gives an example, showing the running times of the six strategies as dim(C) 
increases from 3 to 8. The robot is a planar linkage with a mobile base. We in­
crease dim(C) by adding more links Fig. 8 shows that the running time of 
(;ru,iS'opt) increases quickly with dim(C). The increase is slower with (;ru,iS'hai) and 
even slower with (̂ ru,*̂ !̂!)- It is interesting to observe that (;ru,iS'hai) performs 
slightly better than (̂ ru,*̂ !̂!) when dim(C) < 6, but worsens afterwards (see the in­
set in the plot). The three strategies using UQ all have only moderate increases in 
running times. As dim(C) increases, visibility properties become less uniformly 
favorable over F, and the advantage of UQ over ;ru grows. 
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6 Conclusion 

The success of PRM planning depends mainly and critically on the assumption 
that, in practice, free spaces often verify favorable visibility properties. Non­
uniform sampling measures dramatically improve the efficiency of PRM planning 
by exploiting these properties. In contrast, the choice of sampling sources has 
only small impact. 

To speed up PRM planning, one promising research direction is to design 
better sampling strategies (and perhaps connection strategies as well) by exploit­
ing the partial knowledge acquired during roadmap construction to adjust the 
sampling measure TT continuously. Initial work along this line has appeared re­
cently [1, 10]. In [1], an approximate model of the configuration space is built and 
used to sample configurations so that the expected value of a utility function is 
maximized. A crucial issue here is to define a utility function that closely ap­
proximates the expected cost of reaching a good roadmap. In [10], the sampling 
measure TT is constructed as a linearly weighted combination of component meas­
ures with complementary strengths. To adjust TT, the weights are updated after 
each sampling operation during roadmap construction to favor the component 
measures that give the most promising results. An important issue here is then to 
develop good criteria to assess the performance of component measures. 
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An epoch of humanoid robotics started from the astonishing reveal of Honda P2 
in 1996, and the focus of interest in the field has been the motion control of 
humanoid robots as well as the development of the hardware in the beginning 
of the decade. A reliable hardware with the minimum level of the mobility 
can be a research platform of humanoid robotics as well as mobile robot plat­
forms like Nomad. Several research platforms are available currently including 
HRP-2 with software platform OpenHRP and HOAP series, and the interests 
in humanoid robotics can spread over various topics; tha t is, intelligence, in­
teractions with humans and a tool of cognitive science. The state of the art of 
humanoid robotics has arrived at the level of the beginning of mobile robot 
technologies in 1980s, and every aspect of robotics is now expected to be 
integrated on humanoid robots. 

The paper by Satoshi Kagami et al. extends the autonomy of humanoid 
robots. They developed an enhanced version of humanoid robot HRP-2, called 
HRP2-DHRC, equipped with three d.o.f. hands, three d.o.f. wrists, one d.o.f. 
toes, higher resolution stereo cameras and laser range fingers. The autonomy 
embedded on the robot includes a footstep planning with mixed reality with 
an online motion capture system, a vision guided footstep planning, an object 
localization from a depth matching, a navigation from 3D localization, and 
tha t among movable obstacles. HRP2-DHRC should be one of most advanced 
humanoid robots from the viewpoint of autonomy. 

The paper by Hiroshi Ishiguro proposes android science as a new cross-
interdisciplinary framework. He found tha t the appearance of the robot should 
have a significant influence on the impression of a humanoid robot as well as its 
behaviors. He developed humanoid robots tha t look like humans and executed 
a cognitive experiment in which subjects are asked to judge if a figure should 
be an android or a real human in two seconds. The result of the experiment 
told tha t the subjects should judge the figure is a real human in more chance 
when the figure has a real appearance with some human-like behavior. We had 
intensive discussions on his talk, especially on the significance of his work. It 
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was claimed out that the objective of the research may not be clarified, but 
Ishiguro tried to defend his approach. 

The paper by Yoshihiro Nakamura et al. investigated the interaction be­
tween a human and a humanoid. They introduced a meta proto-symbol which 
is an abstract analogy of the proto-symbol. The meta proto-symbol is applied 
to recognize and generate the relationship of a human and a humanoid. They 
applied the proposed concept to a fight between a humanoid robot and a sub­
ject in a virtual world. The robot was able to recognize the human behariors 
and generate the responses through mimetic communications with the human. 

The papers contributed to the session showed the three directions in which 
humanoid robotics should be enriched in the coming decade, that is, auton­
omy, cognitive science and interaction with humans. 



Humanoid HRP2-DHRC for Autonomous and 
Interactive Behavior 

S. Kagami^'2, K. Nishiwaki^'^, J. Kuffner^'\ S. Thompson^ J. Chestnutt^, 
M. Stilman^, and P. Michel^ 

^ Digital Human Research Center, AIST. s.kagcLmi@aist.go.jp 
2 CREST Program, JST. 
^ Robotics Institute, Carnegie-Mellon University. 

1 Introduction 

Recently, research on humanoid-type robots has become increasingly active, 
and a broad array of fundamental issues are under investigation. However, 
in order to achieve a humanoid robot which can operate in human environ­
ments, not only the fundamental components themselves, but also the suc­
cessful integration of these components will be required. At present, almost 
all humanoid robots tha t have been developed have been designed for bipedal 
locomotion experiments. In order to satisfy the functional demands of loco­
motion as well as high-level behaviors, humanoid robots require good me­
chanical design, hardware, and software which can support the integration of 
tactile sensing, visual perception, and motor control. Autonomous behaviors 
are currently still very primitive for humanoid-type robots. It is difficult to 
conduct research on high-level autonomy and intelligence in humanoids due 
to the development and maintenance costs of the hardware. We believe low-
level autonomous functions will be required in order to conduct research on 
higher-level autonomous behaviors for humanoids. 

This paper describes our research efforts aimed at developing low-level 
autonomous capabilities required for moving & manipulation tasks involv­
ing humanoid-type robots. In tha t purpose, Humanoid HRP2-DHRC(Fig. l ) 
is designed by improved from original HRP2[1] to have extra joints and sen­
sors, and it is manufactured by Kawada Industries Inc. On this platform, 
sense-plan-act loop is implemented for autonomous moving & manipulation. 
Augmented reality based humanoid robot experiment system is also developed 
to help developing each functions. 
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Fig. 1. Humanoid HRP2-DHRC 

Fig. 2. Hand postures of HRP2-DHRC 

2 Humanoid H R P 2 - D H R C Hardware Improvements 

2.1 A d d i t i o n a l Jo in t s 

Original HRP2 has 30 D O F in total (6 D O F for arm & leg, 2 D O F for neck & 
waist, 1 D O F for gripper). There are three part tha t joints added for HRP2-
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Fig. 3. DHRC-ADR804848: PCI half size lO board 

DHRC: 1) wrist, 2) hand and 3) toe. HRP2-DHRC has 38 DOF in total and 
it is 158cm in height & 58kg in weight (Fig. 1). 

As for 1) arm, in order to increase high manipulability region, 1 DOF is 
added at wrist joint. As for 2) hand, 3 DOF hand that can grasp objects in 
several different ways is designed by Prof. Inoue and attached to Humanoid 
JSK-H7[2]. We adopted the same mechanisms to HRP2-DHRC(Fig.2). As for 
3) foot, 1 DOF is added at toe in order to improve walking motion as like H7. 

2.2 Control Board 

An PCI I/O board is newly developed to achieve current sensor based torque 
control(Fig.3). The board has 80ch AD(14bit), 48ch DA(12bit) & encoder 
counter, 32ch DIO. It can achieve up to lOkhz sampling for all input/output 
usage situation (up to 48 joints) by using DMA data transmission through 
32bit/64bit PCI bus. Current sensor signal of motor driver is connected to 
AD input, so that torque control is possible. Board has almost 1 slot PCI half 
size. 

2.3 Head Sensor 

Original HRP2 has three synchronized mono cameras at head. Firewire 
(IEEE1394) stereo camera Videre design STH-DCGS is adopted together with 
time of flight type laser range sensor Hokuyo URG-04LX at head. Videre de­
sign STH-DCGS has global shuttered VGA stereo camera and has about 90 
degrees view angle in horizontal. 

URG-04LX is a small (160g) range sensor that measures up to 4m and 
covers 270 degrees in 0.36 degrees resolution. 

2.4 Experimental Sensor 

Foot force distribution sensor and HD resolution stereo camera are under 
developing functions for humanoid robots. 
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K » i W ^ 

Fig. 4. Electrode part of the sensor, its sensing area close up and lO board 

Foot Force D i s t r i b u t i o n Sensor 

Scanning Circuit 

A 32 X 32 matr ix scan type high-speed pressure sensor for the feet of humanoid 
robots tha t has l[kHz] sampling rate is developed(Fig.4). This sensor has 
matr ix scan circuit. The matr ix scan method has a problem of interference by 
bypass current. In order to resolve this problem, a novel method is proposed. 

We adopted very thin(0.6[mm]) force sensing conductive rubber sheet for 
high speed sensing. Each sensing area is 4.2 x 7.0[mm] and can measure 
vertical force of approximately 0.25-20[N]. Walking cycle of humanoid robot 
as well as human being is about 0.4-0.8[s] and dual leg phase is about 0 . 1 -
0.15[s]. The target of the sensor is biped walk stabilization so tha t high-speed 
input is important . Matrix scan type circuit is connected to sensor, and the 
system runs l[kHz] with 14[bit] resolution at 4.2 x 7.0[mm] grid for 32 x 32 
points, and the sensor size is the same as humanoid robot foot 135 x 228[mm]. 
The system is running high-speed because of very thin conductive rubber and 
simultaneous measurement. 

Electrodes which are shown in Fig.4 are arranged in the shape of a grid. 
There is a flexible cable part which has connector at the left side of electrode 
part to avoid collision to the ground and robot itself is important . The control 
circuit board is at tached to the shank link of our humanoid robot H7, and 
only USB2 cable goes through the joints to the controlling P C mounted on 
the torso. 

Thin force sensing rubber 

Thickness of developed force sensing rubber is 0.6[mm] (Inaba Instries Inc.). 
Conductive carbon composite grain are mixed in the rubber. Thinness is bet ter 
to achieve small t ime constant and sensitivity, so tha t system can realize higher 
scan rate. Table. 1 shows a specification of our rubber sheet. 

With no load, resistance on a surface and on a volume are both about 
10^ [i?]. As the pressure is exerted, rubber deforms and conductive pa th aug­
ments, so tha t relationship in between pressure and registance changes mono-
tonic and smooth. 
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Analog switch 

column lines Wi - WT 

^ ^ PC 

Fig. 5. Pressure sensor circuit diagram. (Example 3x3 matrix) 

^ % 

Fig. 6. Humanoid robot foot with pressure sensor grid and human foot pressure 
result 

The usual matr ix scan method is equipped with AD converters on the 
column lines. The system in this paper is equipped AD converters both on 
the column lines and row lines of the sensor matrix(Fig.5). When the column 
line 1 is applied the voltage, the following formula is led from Kirchhoff's 
current rule at the top row: 

R ^ i j 

Similarly, the following formula is led also about the i-th row and A;-th 
column line: 
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Table 1. Force Sensing Rubber Resister 

Max. Voltage 
Recomm. Voltage 
Max. Current 
Recomm. Current 
No-load Resistance 
Maximum Load 
Recomm. Load 

30V 
6V 

20mA 
5mA 

20Mi7 
lOON 
40N 

R ^ ra 

Let Xij be - ^ : 

R 
Y^(kw^.ky^y^^ 

This formula means simultaneous equation. When 
2 = 1, the formula is expressed with the following matrix: 

V i = M i X i . 

H e r e , V i , M i , X i are as follows: 

V i 

M l 

X i 

''V,/R\ 

-V./R) 

""Wi -""Vi"' ""Wn - ""Vi 

Xx\ 

Xir. 

Therefore X i is led by using inverse matr ix of M: 

X i = M i - ^ V i . 

X i 

x i i 

Xir. 

ir II 

rir, 
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Similarly, i-th X^ is calculated. 

X, = M-^V, 

Value of resistance rij is found by taking the reciprocal of each element of 
vector X^. 

Experimental results 

Dynamic pressure was applied to the sensor (Fig.6 (right)). As the dynamic 
pressure, the subject(male, weight:65kg, foot size:27cm) run on the sensor. 
Scanning rate was 300[Hz]. 

The pressure sensor is attached to our humanoid robot H7 foot(Fig.6. 
Distributed pressure is measured and COP trajectory is calculated. 

Developed thin force sensing conductive resistance rubber has about 1500-
l[i7] at 0.25-20[N]. Matrix scan is achieved with a novel method. Resistance at 
each sensing point is calculated by solving the simultaneous equations from 
column and row lines voltage. Interference by bypass current is suppressed 
by this method. The result of load and output voltage is monotonic, and 
doesn't have large hysteresis. The high-speed(l[kHz]) sensor was realized by 
measuring voltage simultaneously and thin(0.6[mm]) force sensing conductive 
rubber. 

HD Stereo Camera 

Humanoid vision sometimes requires to have multi-resolution or zooming func­
tion. For example, avoiding obstacles, looking for a path to given goal, detect­
ing human posture, such tasks requires to have wide view angle. However, 
finding face, detecting grasping position of target object, measuring distance 
to next step, such tasks requires to have narrow view angle to measure precise 
accuracy. 

There exists several humanoid systems that have two (or more) stereo 
camera sets which has different lenses. However, alignment of those multi­
ple stereo camera causes difficult problem. Also data bus speed is another 
limitation. 

In order to overcome these problem, we developed stereo camera that has 
HD resolution CMOS, and simultaneously captures use whole image (but 
subsampled) and dense image at desired position (such as center) (Fig.7). 

Imager is Altasens ProCamHD3560 (2/3" CMOS) that has 1920 x 1080 
in 60P global shutter. We also developed C-mount HD resolution lens of 
f=4.8mm (about 90deg). This lens has HD resolution at fringe. This camera is 
connected to PC by using USB2 bus. Bandwidth of USB2 bus is not sufficient 
to handle HD GOP raw color image. Therefore, we prepare dual CIF/VGA 
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Fig. 7. HD stereo camera, whole image, and 320x240 left upper corner image 

resolution stereo mode tha t captures two stereo pair of 1) full screen (sub-
sampled) and 2) dense partial image (about 15 degrees). In GIF mode, the 
camera achieves 60Hz capturing. The camera size is 195x85x65[mm], weight 
is 225 [g] and consumes about 10[W]. 

3 Augmented Reality Based Development System 

In order to develop more sophisticated autonomous humanoid behaviors, thor­
ough testing of various interconnected hardware and software components for 
sense, plan and control becomes increasingly difficult. Many software tools 
are available for dynamic simulation and visualization in simulation stage. 
However, when robots are put to the test in real environments these tools are 
only used offline for processing the da ta of an experiment. We encountered 
difficulty to achieve real-world autonomy even after developing each sense-
plan-act functions. There are problems such as follows: a) perception error 
(accuracy, repeatability) is hard to examine because of the lack of global in­
formation such as relationship between robot and environment, b) planning 
and control software error caused by particular perception are hard to found 
because of lack of repeatability, c) planning and control software tuning are 
also difficult. 

We propose an alternate paradigm for real-world experimentation tha t uti­
lizes a real-time optical tracking system to form a complete hybrid real /vir tual 
testing environment. 

Our proposed system has two objectives: to present the researcher with 
a ground t ru th model of the world and to introduce virtual objects into ac­
tual real world experiments. Conceptually it is real bi-directional augmented 
reality. 

To see the relevance of these tools, consider an example of how the pro­
posed system is used in our laboratory. A humanoid robot with algorithms 
for vision, pa th planning and ZMP stabilization is given the task of naviga­
tion in a field of obstacles. During an online experiment, the robot unexpect­
edly contacts one of the obstacles. Did our vision system properly construct a 
model of the environment? Did the navigation planner find an erroneous path? 
Was our controller properly following the desired trajectory? A ground t ru th 
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model helps resolve ambiguities regarding the source of experimental failures 
by precisely identifying the locations of the obstacles and the robot. Just as in 
simulation, we can immediately determine whether the vision algorithm iden­
tified the model, or whether the controller followed the trajectory designed by 
the planner. In some cases, we can avoid the undesired interaction entirely. 
Having established a correspondence between virtual components such as en­
vironment models, plans, intended robot actions and the real world, we can 
then visualize and identify system errors prior to their occurrence. 

In this section, we describe the implementation of the hybrid experimental 
environment. We develop tools for constructing a correspondence between real 
and virtual worlds. Using these tools we find substantial opportunities for 
experimentation by introducing virtual obstacles, virtual sensors and virtual 
robots into a real world environment. We describe how adding such objects 
to an experimental setting aids in the development and thorough testing of 
vision, planning and control[3]. 

3.1 S y s t e m Conf igurat ion 

To construct a hybrid real /vir tual environment, we instrumented our lab space 
with the Eagle-4 Motion Analysis motion capture system. The environment 
also contains cameras and furniture objects. Our experiments focused on high 
level autonomous tasks for the humanoid robot HRP-2. For instance, the robot 
navigated the environment while choosing foot locations to avoid obstacles and 
manipulated obstacles to free its path . We partit ioned these experiments ac­
cording to the subsystems of vision, planning and control to provide a general 
groundwork for how a hybrid real /vir tual testing environment can be used in 
a larger context of research objectives. 

The Eagle-4 system consists of 12 cameras, covering a space of 5 x 5 x 1.8 
meters. Distances between markers tha t appear in this space can be calculated 
to 0.3% accuracy. In our experiments, the motion capture estimate of the 
distance between two markers at an actual distance of 300mm has less than 
1mm error. 

In terms of processing speed, we employ a dual Xeon 3.6GHz processor 
computer to collect the motion capture information. The EVa Real-Time Soft­
ware (EVaRT) registers and locates 3D markers at maximum rate of 480Hz 
with an image resolution of 1280 x 1024. When larger numbers of markers 
are present, the maximum update speed decreases. Still, when tracking ap­
proximately 60 markers the lowest acquisition rate we used was 60Hz. Marker 
localization was always performed in real-time. 

EVaRT groups the markers at tached to an object. We refer to this set of 
points as the object template. Under the assumption tha t a group of markers 
is at tached to a rigid object, any displacement of the object corresponds to a 
rigid transformation T of the markers. 

During online execution, EVaRT uses distance comparisons to identify 
groupings of markers, as well as the identities of markers in these groupings. 



112 S. Kagami et al. 

.==...1. 

Fig. 8. (a) Real chair with retrorefiective markers illuminated, (b) 3D model of 
chair as recoverd by a laser scanner, (c) Virtual chair is overlayed in real-time. Both 
the chair and the camera are in motion. 

We are then interested in the inverse problem of finding a transform T that 
aligns the template marker locations with those found in the scene by motion 
capture. 

3.2 Geometry Reconstruction 

The transformation of a rigid body's coordinate frame tells us the displace­
ment of all points associated with the body. To reconstruct the geometry of a 
scene, we need to establish the geometry of each object in its local reference 
frame. 

In our work, we have chosen to use 3D triangular surface meshes to repre­
sent environment objects. We constructed preliminary meshes using a Minolta 
VIVID 910 non-contact 3D laser digitizer. The meshes were manually edited 
for holes and automatically simplified to reduce the number of vertices. 

Fig.8 demonstrates the correspondence between a chair in the lab envi­
ronment and its 3D mesh in our visualization. We are able to continuously 
re-compute the transformation of a lab object at a rate of 30IIz. The virtual 
environment can then be updated in real-time to provide a visualization of 
the actual object's motion in the lab. 

3.3 Real and Virtual Cameras 

In this section we consider the latter case of placing a camera in the viewable 
range of motion capture. We show that tracking a camera lets us to establish 
a correspondence between objects in the ground truth model and objects in 
the camera frustum. 

As with other rigid bodies, the camera is outfitted with retro-reflective 
markers that are grouped in EVaRT and then tracked using our algorithm. 
The position and orientation of the camera computed from motion capture 
form the extrinsic camera parameters. The translation vector t corresponds 
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Fig. 9. Environment reconstructions overlaid onto the world, (a) Occupancy grid 
generated from image-based reconstruction using the robot's camera, (b) planar 
projection of an obstacle recovered from range data. 

to the world coordinates of the camera's optical center and the 3 x 3 rotation 
matr ix R represents the direction of the optical axis. Offline camera calibration 
using Tsai 's camera model is performed once to recover the the 3 x 3 upper 
triangular intrinsic parameter matr ix K. Incoming camera images can then 
be rectified on the fly. The extrinsic and intrinsic parameters allow us to 
recover the full camera projection matr ix M. M uniquely maps a scene point 
P = (x, y, z, 1)^ to a point on the image plane p = (-u, v^ 1) T via the s tandard 
homogeneous projection equation. 

Therefore, we can recover not only the locations of motion capture markers 
but also any points tha t compose the surface mesh of a tracked object. 

We can use existing 3D display technology such as OpenGL to efflciently 
compute surface models as they would appear in the camera projection. Over­
laying the virtual display on the camera display creates the a correspondence 
between the camera view and the ground-truth motion capture view. 

3.4 E x a m i n a t i o n of H u m a n o i d Sens ing 

Given a representation of the robot environment reconstructed by image warp­
ing or from range data, we can visually evaluate the accuracy of our perception 
algorithms and make parameter adjustments on the fly by overlaying the en­
vironment maps generated back onto a camera view of the scene. This enables 
us to verify tha t obstacles and free space in our environment reconstructions 
line up with their real-world counterparts, as illustrated in Fig.9. 

3.5 E x a m i n a t i o n of H u m a n o i d P l a n n i n g 

Fig.9(left) and Fig. 10 (left) show examples of control system visualization 
during online robot experiments. The system has planned out the sequence of 
footsteps it wishes to take to reach some goal configuration. For each step, it 
has computed the 3D position and orientation of the foot. Through the use 
of augmented reality, the planned footsteps can be overlaid in real-time onto 
the environment. 
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Fig. 10. Augmenting reality for visualization of planning and execution, (a) Foot­
step plan displayed onto the world, (b) Augmented reality with a simulated robot 
amongst real obstacles. 

The red and blue rectangles represent the steps for the right and left 
feet tha t the robot intends to take. This pa th is constantly updated as the 
robot replans while walking. This display helps expose the planning process 
to identify errors and gain insight into the performance of the algorithm. 

T e m p o r a l P r o j e c t i o n : V ir tua l R o b o t 

One of the components of our overall system tha t we would like to replace 
for testing purposes is the robot itself. One solution to is to build a simulated 
environment for experimentation. However, we would like to continue to use 
the real world as much as possible, rather than using a completely fabricated 
environment. Within our framework, we can continue to use real-world ob­
stacles and sensors, and merely replace the robot with a simulated avatar. 
Fig. 10 (right) shows the augmented reality of our simulated robot traversing 
a real environment. Note tha t for this navigation task, the robot is not manip­
ulating the environment. The obstacles themselves can be moved during the 
experiments, but we do not need to close the loop on robotic manipulation. 

O b j e c t s and t h e R o b o t ' s P e r c e p t i o n 

In addition to complete replacement of all sensing with perfect ground t ru th 
data, we can simulate varying degrees of realistic sensors. We can slowly in­
crease the realism of the data which the system must handle. This approach 
can isolate specific sources of error, and determine to which the control sys­
tem is most sensitive. For example, by knowing the locations and positions of 
all objects as well as the robot 's sensors, we can determine which objects are 
detectable by the robot at any given point in time. Hence, simulated sensors 
can be implemented with realistic limits and coverage. 
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Fig. 11. Automatic following gantry & HRP2-DHRC with markers 

3.6 Gan t ry 

During any task of locomotion or manipulation, a humanoid robot is at risk of 
falling. Typically, a small gantry is used to closely follow and secure the robot. 
However, the physical presence of the gantry and its operator prevent us from 
testing fine manipulation or navigation that requires the close proximity of 
objects. 

To overcome this problem, our laboratory implements a ceiling suspended 
gantry (10 x 7.5 [m]) that can follow the robot throughout the experimental 
space. It is controlled by standard PC with Timesys Linux realtime operating 
system (as like HRP2-DHRC). Having acquired the absolute positioning of 
the robot from motion capture, this gantry is PD controlled to follow the 
robot as it autonomously explores the space. This final component not only 
lets us to test the robot in arbitrary cluttered environments, but also enables 
experiments that typically require four or five operators to be safely performed 
by a single researcher. 

4 Concluding Remarks 

HRP2-DHRC humanoid robot is developed as a research platform for hu­
manoid autonomy research (as like previous our H7 humanoid robot). Us­
ing HRP2-DHRC, we conducted research on sense-plan-act based humanoid 
autonomy as shown in Fig. 12. As for "Sense" part, plane segmentation & 
3D labeling[4], 6D visual odometory & world reconstruction [5], particle filter 
based localization[6], foot distributed force sensor [7] are studied. As for "Plan" 
part, footstep planning[8], arm motion planning by RRT[9], NAMO[10], ma-
nipulatibily maximization arm trajectory planning[11] are studied. As for 



Plan 

Action 

Fig. 12. Sense-Plan-Act Functions for HRP2-DHRC Low-level Autonomy 

"Act" part , whole body cooperated reaching motion generation[12], whole 
body coordinated hand manipulation[13] are studied. 

One fundamental achievement in this paper is augmented reality based 
development system. It is a novel experimental paradigm tha t leverages the 
recent advances in optical motion capture speed and accuracy to enable si­
multaneous online testing of complex robotic system components in a hybrid 
real-virtual world. We believe tha t this new approach enabled us to achieve 
rapid development and validation testing on each of the perception, plan­
ning, and control subsystems of our autonomous humanoid robot platform. 
We hope tha t this powerful combination of vision technology and robotics 
development will lead to faster realization of complex autonomous systems 
with a high degree of reliability. 
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1 Android Science 

A p p e a r a n c e and B e h a v i o r 

In the evaluation of interactive robots, the performance measures are sub­
jective impression of human subjects who interact with the robot and their 
unconscious reactions, such as synchronized human behaviors in the interac­
tions and eye movements. 

Obviously, both the appearance and behavior of the robots are important 
factors in this evaluation. There are many technical reports tha t compare 
robots with different behaviors. However nobody has focused on appearance 
in the previous robotics. There many empirical discussions on very simplified 
static robots, say dolls. Designing the robot 's appearance, especially to give it 
a humanoid one, was always a role of the industrial designer. However we con­
sider this to be a serious problem for developing and evaluating interactive 
robots. Appearance and behavior are tightly coupled with both each other 
and these problems, as the results of evaluation change with appearance. In 
our previous work, we developed several humanoids for communicating with 
people [3] [4] [5], as shown in Figure 1. We empirically know the effect of appear­
ance is as significant as behaviors in communication. Human brain functions 
tha t recognize people support our empirical knowledge. 

A n d r o i d Sc ience 

To tackle the problem of appearance and behavior, two approaches are nec­
essary: one from robotics and the other from cognitive science. The ap­
proach from robotics tries to build very humanlike robots based on knowl­
edge from cognitive science. The approach from cognitive science uses the 
robot for verifying hypotheses for understanding humans. We call this cross-
interdisciplinary framework android science. 

S. Thmn , R. Brooks, H. Durrant-Whyte (Eds.): Robotics Research, STAR 28, pp. 118-127, 2007. 
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Fig. 1. From humanoids to androids 
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Fig. 2. The framework of android science 

Previous robotics research also used knowledge of cognitive science while 
research in cognitive science utilized robots. However the contribution from 
robotics to cognitive science was not enough as robot-like robots were not 
sufficient as tools of cognitive science, because appearance and behavior can­
not be separately handled. We expect this problem to be solved by using an 
android tha t has an identical appearance to a human. Robotics research uti­
lizing hints from cognitive science also has a similar problem as it is difficult to 
clearly recognize whether the hints are given for just robot behaviors isolated 
from their appearance or for robots tha t have both the appearance and the 
behavior. 

In the framework of android science, androids enable us to directly ex­
change knowledge between the development of androids in engineering and 
the understanding of humans in cognitive science. This conceptual paper dis­
cusses the android science from both viewing points of robotics and cognitive 
science. 
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2 Development of Androids 

Very H u m a n l i k e A p p e a r a n c e 

The main difference between robot-like robots and androids is appearance. 
The appearance of an android is reahzed by making a copy of an existing 
person. 

The thickness of the sihcon skin is 5mm in our trial manufacture. The 
mechanical parts , motors and sensors are covered with polyurethane and the 
silicon skin. Figure 3 shows the silicon skin, the inside mechanisms, the head 
part and the finished product of a child android made by painting colors on 
the silicon skin. As shown in the figure, the details are recreated very well so 
they cannot be distinguished from photographs of the real child. 

Fig. 3. The silicon skin and inside mechanisms 

M e c h a n i s m s for H u m a n l i k e M o v e m e n t s and R e a c t i o n s 

Very humanlike movement is another important factor for developing an­
droids. For realizing humanlike movement, we developed an adult android 
because the child android is too small. Figure 4 shows this developed android. 
The android has 42 air actuators for the upper torso except fingers. We de­
cided the positions of the actuators by analyzing movements of a real human 
using a precise 3D motion tracker. The actuators can represent unconscious 
movements of the chest from breathing in addition to conscious large move­
ments of the head and arms. Furthermore, the android has a function for 
generating facial expression tha t is important for interactions with humans. 
Figure 5 shows several examples of facial expression. For this purpose, the 
android uses 13 of the 42 actuators. 

The air actuator has several merits. First, it is very silent, much like a hu­
man. DC servomotors tha t require several reduction gears make un-humanlike 
noise. Second, the reaction of the android as against external force becomes 
very natural with the air dumper. If we use DC servomotors with reduction 
gears, they need sophisticated compliance control. This is also important for 
realizing safe interactions with the android. 
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The next issue is how to control the 42 air servo actuators for reahzing 
very humanUke movements. The simplest approach is to directly send angular 
information to each joint by using a simple user interface termed a motion 
editor. However we need to specify 42 angles for creating a posture, which 
takes a long time. Therefore we added a function to generate smooth motions 
based on sinusoidal signals. This is the same idea as Perlin noise [8] used 
in computer graphics. This function helps especially well in making partial 
movements; however it is still time-consuming. 

Fig. 4. Adult android developed in cooperation with Kokoro Co. Ltd. 

i 4 d 
Fig. 5. Facial expressions of the android 

In addition to this problem, another difficulty is tha t the skin movement 
does not simply correspond to the joint movement. For example, the android 
has more than five actuators around the shoulder for humanlike shoulder 
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movements, with the skin moving and stretching according to the actuator 
motions. For solving this problem, a mapping table was required tha t corre­
lates the surface movement to the actuator motions. 

Our idea for solving this problem is to train a neural network. The neu­
ral network memorizes a mapping between actuator command pat terns and 
marker 3D positions based on a large number of examples of android postures. 

T o w a r d V e r y H u m a n l i k e M o v e m e n t 

The next step after obtaining the mapping between the surface movements 
and actuators is implementing humanlike motions in the android. A straight­
forward approach for this challenge is to imitate real human motions in coop­
eration with the master of the android. By attaching markers of the precise 
3D motion tracker on both the android and the master, the android can au­
tomatically follow human motions. 

H u m a n l i k e P e r c e p t i o n 

The android requires humanlike perceptual abilities in addition to a human­
like appearance and movements. This problem has been tackled in computer 
vision and pat tern recognition in rather controlled environments. However, 
the problem becomes seriously difficult when applied to the robot in other 
situations, as vision and audition become unstable and noisy. 

Ubiquitous/distr ibuted sensor systems solve this problem. The idea is to 
recognize the environment and human activities by using many distributed 
cameras, microphones, infrared motion sensors, floor sensors and ID tag read­
ers in the environment. We have developed distributed vision systems [2] and 
distributed audition systems in our previous work. For solving this problem 
this work must be integrated and extended. 

3 Cognitive Studies Using Androids 

Total Turing T e s t 

As discussed in the Introduction, android science has two aspects, the en­
gineering approach and the scientific approach. The most vivid experiment 
where the two approaches meet is the total Turing test. The original was de­
vised to evaluate the intelligence of computers under the assumption tha t 
mental capacities could be abstracted from embodiment [10]. The approach 
invoked many questions about the nature of intelligence. We consider intelli­
gence as subjective phenomena among humans or between humans and robots. 
Obviously, the original Turing test does not cover the concept of total intelli­
gence [1]. In contrast, the android enables us to evaluate total intelligence. 
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As did the original Turing test, the Total Turing test uses a time com­
petition. We have checked how many people in preliminary experiments do 
not become aware within 2 sec. that they are dealing with an android. Fig­
ure 6 displays the scene. A task is given to the subject to find the colors of 
the cloth. The screen between the android and the subject opens for 2 sec. 
The subject then identifies the color. At the same time, the subject is asked 
whether he/she became aware the other is an android. We have prepared two 
types of android, one a static android and the other an android with the micro 
movements we call unconscious movements. Because a human does not freeze, 
he/she is always slightly moving even when not doing anything, such as just 
sitting on a chair. 

» 

Fig. 6. Total Turing test 

As the result of the experiment with 20 subjects, 70% of the subjects 
did not become aware they were dealing with an android when the android 
had micro movements, but 70% became aware with the static android. This 
result shows the importance of the micro movements for the appearance of 
humanlike reality. 

The 2-second experiment does not mean the android has passed the total 
Turing test. Nevertheless, it shows significant possibilities for the android 
itself and for cross-interdisciplinary studies between engineering and cognitive 
science. 

Uncanny Valley 

Why do 30% of the subjects become aware of the android? What happens if 
the time is longer than 2 sec? In the experiment, the subjects felt a certain 
strangeness about the android's movements and appearance. Mori [7] pre­
dicted that as robots appear more human, they seem more familiar, until a 
point is reached at which subtle imperfections create a sensation of strangeness 
as shown in Figure 7. He referred to this as the uncanny valley. 
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E x t e n s i o n of t h e U n c a n n y V a l l e y 

Why does this uncanny vahey exist? We have two hypotheses: 

• If its appearance is very humanUke, the subject a t tempts to understand the 
android as being human. Therefore the subtle difference creates a strong 
strangeness as the uncanny vahey 

• Humans expect balance between appearance and behaviors when they 
recognize creatures. 

The second hypothesis means familiarity increases for well-balanced ap­
pearance and behavior. We refer to this as the synergy effect. For example, a 
robot should have robot-like behaviors and a human should have humanlike 
behaviors [9]. This differs from the uncanny valley because humans do not 
have sensitive mental models for recognizing robots and other toys. 

KtO**, 

1 'nci inin \ ; t l l 

TOY 1 ctlxtt 

Sii i i i l iui ty I | iiKi'*« 

Fig. 7. Uncanny valley 
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Fig. 8. The extended uncanny valley 

Based on these hypotheses, we have extended the graph depicted by Mori 
as shown in Figure 8, which was obtained by fusing the uncanny valley pro-
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vided by the first hypothesis with the synergy effect provided by the second 
hypothesis. This 3D graph is not exact, but rather conceptual as is Mori's 
graph. Nevertheless it is still a significant guide for our research. Our im­
portant role is to verify the structure of the graph through development of 
androids and cognitive experiments with them and obtain a more precise 
graph. 

A g e - D e p e n d e n t U n c a n n y V a l l e y 

There is also an age-dependent relationship. One-year-old babies were at­
tracted to the child android and were unper turbed by even jerky, robotic 
movements. However children between the ages of three and five were afraid 
of the android and refused to face it. We found this phenomenon with prelim­
inary experiment using infants. 

We consider the reasons to be as follows. If the baby's model of others is 
not so well-developed, the android may be able to pass itself off as human. 
Adults know the android is not human, so they do not expect it to fit closely 
a human model. However young children seem to be in the middle ground of 
applying a human model to the android, but finding it mismatches. This is 
a kind of uncanny valley. We expect to learn more about the developmental 
process of human recognition models of infants by verifying this age-dependent 
uncanny valley. 

C o n s c i o u s and U n c o n s c i o u s R e c o g n i t i o n 

Another important viewing point for the evaluation criteria is whether it is 
conscious or unconscious. The SD method evaluates conscious recognition of 
the subjects. In contrast, our previous approach evaluates the unconscious 
recognition. Which is more significant? In the evaluation of an android, this 
question is difficult to answer. In our experience, the subjects react with it as 
if it is a human even if they consciously recognize it as an android. 

We have observed the eye movement of subjects. Figure 9 shows eye move­
ments between a child and the child android. The child android is very eerie 
because of the jerky movements. As shown in the figure, the subject cannot 
keep gazing on the face of the human child and often looks at the upper right 
corner. In contrast, the subject keeps gazing at the face of the android. 

Previous works in psychology suggest the following two reasons why the 
subject cannot keep gazing at the human face. 

• Arousal reduction theory: Humans shift their gazing direction to create 
barriers against external signals for concentration 

• Differential cortical activation theory: The eye movements are caused by 
brain activities. 

However these theories do not fit our experiment. We consider there is the 
third reason as follows 



126 H. Ishiguro 

ft 
Fig. 9. Eye movements as to a human child and the android 

• Social signal theory: The eye movement is a way of representing thinking 
[6] 

We consider a human indicates he/she is social by not continually gazing 
at the face of another. 

Poss ib i l i t y of an A n d r o i d as a H u m a n 

Then, we have another experiment with the adult android tha t has humanlike 
behaviors. After 5 min. habituation, the subject answered questions posed by 
the android. During the habituation, the android talked while using humanlike 
body movements. Of course, the subject became aware tha t it was an android 
because 5 min. is enough long to observe the details. 

We have prepared two tasks for the subject. One is to respond with either 
lies or the t ru th to questions posed by the android. The other is to answer 
seriously both easy and difficult questions posed by the android. 

When we humans, tell a lie, it is hard to keep gazing at the face of the 
person to whom we are lying. For the first task, many subjects shift their 
gaze when they tell a lie. For the second task, almost all subjects shift their 
gaze when difficult questions are involved. With respect to the second task, 
we have compared human-human interaction and human-android interaction. 
Figure 10 shows the results tha t subjects shift their gaze in the same way for 
both humans and androids. 
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Fig. 10. Comparison between human-human interaction and human-android inter­
action. The gazing directions are represented by 9 areas with the numbers repre­
senting percentages. 
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Obviously the subjects consciously recognized the other as an android. 
However they unconsciously recognized it as a human and dealt with it as 
a social partner. Although we have discussed evaluation criteria, this finding 
suggests the evaluation process looks more complicated. 

Through the experiment, we have reached at the following hypothesis. If 
a human unconsciously recognizes the android as a human, he/she will deal 
with it as a social partner even if he/she consciously recognizes it as a robot. 
At tha t time, the mechanical difference is not significant; and the android can 
naturally interact and at tend to human society. Verification of this hypothesis 
is not easy and will take a long time. However it is an important challenge 
tha t contributes to developing deeper research approaches in both robotics 
and cognitive science. 

This paper has been proposed android science as a new cross- interdisci­
plinary framework. Our purpose is not to develop the androids as commercial 
products, but rather to study principles of human-robot interaction. The au­
thor believes android science will contribute for it. 
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Summary. The theory of behavioral communication for humanoid robots that in­
teract with humans is discussed in this paper. For behavioral communication, it is 
fundamental for a humanoid robot to recognize the meaning of the whole body mo­
tion of a human. According to the previous works, it can be done in the symbolic level 
by adopting the proto-symbol space defined by the Hidden Markov Models based on 
the mimesis theory. The generation of robot motions from the proto-symbols is also 
to be done in the same framework. In this paper, we first introduce the meta proto-
symbols that stochastically represent and become signifiants of the interaction of a 
robot and a human. The meta proto-symbols are a little more abstract analogy of 
the proto-symbols and recognize/generate the relationship of the two. A hypothesis 
is then proposed as the principle of fundamental communication. The experimental 
result follows. 

K e y words: Mimetic Communication, Humanoid Robot, Human Robot In­
teraction, Mimesis Theory, Proto Symbol Space, Hidden Markov Model. 

1 Introduct ion 

Communication is defined as a process of information exchange between social 
creatures through common systems such as gestures, signs, symbols or lan­
guages. Gesture or behavioral communication has much longer history than 
tha t of language for the human beings. Mimesis hypothesis suggests tha t the 
humans started the use of signs and symbols in communication through be­
havioral imitation [1]. The importance of behavioral communication lies in 
the fact tha t it always stays behind and enables physical interactions between 
two humans. 

The link between a sender and receiver of messages is a necessary condi­
tion for any communication [2]. The discovery of mirror neurons [3] [4] was an 
epoch-making event in neuroscience. The mirror systems enabled the link be­
tween a subject and the others through gesture messages. Namely, the mirror 
systems are related to the development of communication [5]. 
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In this paper, we focus on behavioral communication to support inter­
actions between humanoid robots and humans. We discuss the fundamental 
theory of behavioral communication for humanoid robots that interact with 
humans. For behavioral communication, it is essential for a humanoid robot 
to recognize the meaning of the whole body motion of a human. According 
to the previous works [6]-[9], it can be done in the symbolic level by adopting 
the proto-symbol space defined by the Hidden Markov Models based on the 
mimesis theory. The generation of robot motions from the proto-symbols is 
also to be done in the same framework. 

We first introduce the meta proto-symbols that stochastically represent 
and become signifiants of the interaction of a robot and a human. The meta 
proto-symbols are a little more abstract analogy of the proto-symbols and 
recognize/generate the relationship of the two. A hypothesis is then proposed 
as the principle of fundamental communication. Namely, the communication 
is to recognize the relationship of the two and try to maintain it, whether it is 
cooperative or competitive. Technical implementation of the hypothesis can 
be done by simply short-circuiting the output of recognition and the input of 
generation of the meta-proto-symbols. The experimental result follows using 
a 20 DOF small-size humanoid robot, UT-/i2 magnum [18]. 

For interaction between robots and humans, Canamero et al [10] discussed 
the interface of humanoid robot named Feelix that showed various kinds of 
facial expression in response to touch stimulus from a human. Breazeal [11] 
studied a model of social interaction between an infant and a caretaker, and 
then developed a robot named Kismet with the social model. Imitation learn­
ing is also an active field of robotics research and various kinds of approaches 
have been presented [12]. Samejima et al [13] [14] reported that a two-link 
robot could symbolize, recognize motion patterns using predicting modules, 
and generate motion patterns using controlling modules. Morimoto et al [15] 
proposed a hierarchical reinforcement learning in order to acquire motion 
dynamics. Not many works have been done to bridge communication and im­
itation learning. Billard et al [16] presented a very interesting approach to 
acquisition of communication skill based on the child-mother model of imi­
tation learning. This architecture was named DRAMA, the general control 
Dynamic Recurrent Associate Memory Architecture [17]. 

2 Mimetic Communication Model of Interaction 

The proto symbol space [9] [8] is a vector space approximately structured for 
the set of the Hidden Markov Models. A HMM is acquired from a motion 
pattern and to be used to recognize and generate it. In the proto symbol 
space, we can handle continuous transition of motion patterns. Fig.l shows 
the image of bidirectional computation using the HMMs. 

The recognition of transition of motion patterns or the generation of mo­
tion pattern that smoothly changes from one motion pattern to another is 
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Fig. 1. Proto symbol space. Stochastic parameters of Hidden Markov Models are 
used for bidirectional computation of recognition and generation of motion patterns. 
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Fig. 2. Mimetic communication. A behavioral communication model for robots 
interacting with humans. 

represented as a moving point in the proto symbol space. For the motion 
pat terns of the point, we can define the second proto symbol space, which is 
called the meta proto symbol space since it represents the motion pat terns of 
symbols. 

In this paper, we propose to use the meta proto symbol space to represent 
the communication/interaction between a robot and a human or between the 
self and the partner. 

Fig..2 explains the principle of mimetic communication model for interac­
tion proposed using the meta proto symbol space. 

In Fig..2 (1), a proto symbol space executes bidirectional computation of 
the self (robot) as well as tha t of the partner (human) of interaction. A meta 
proto symbol space is set in the second hierarchy and takes the sequences 
of proto symbols of the self and the partner as its behavior and executes 
bidirectional computation. The two recognition outputs of the self and the 
partner from the ptoto symbol space become the recognition input of the 
meta proto symbol space. The generation output of the meta proto symbol 
space separates into two and become the generation inputs of the proto symbol 
space. The recognition output of the meta proto symbol space implies for the 
self (robot) the estimated state of interaction, while the generation input of the 
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meta proto symbol space implies the control strategy for the interaction. The 
essence of interaction is in the process of computing the control strategy from 
the estimated states of interaction. The process should vary and be designed 
depending on whether the interaction is purposeful, emotional, contingent, or 
naturally drifting. 

A hypothesis for designing fundamental interaction, namely naturally 
drifting interaction is to short-circuit the recognition output and the gen­
eration input of the meta proto symbol space as shown in Fig..2 (2). Because 
the naturally drifting interaction can be modeled to estimate the states of 
interaction and attempt to maintain and generate the states. Note that the 
naturally drifting interaction model can represent not only cooperative or 
friendly interactions, but also competitive or hostile interactions.. 

The technical implementation was done in the form of Fig..2 (3) by elimi­
nating generation processes of the partner (human) and approximating recog­
nition processes of the self (robot). 

3 General Algorithms of Recognition and Generation 

3.1 Computational Problems 

For both the proto symbol space and the meta proto symbol space, the com­
putational problems are common. In the literature [9] the computation of 
recognition and generation were discussed in the simplest case, namely, as an 
interpolation between two proto symbols. The norm of the vector space was 
defined by the Kullback-Leibler information modified to satisfy the symmetry 
property. The proto symbol space was then constructed through the multi 
dimensional scaling. 

For the continuous recognition of motion patterns, we use stepwise moving 
recognition. Fig.3 shows the stepwise moving recognition for the meta proto 
symbol space, where Wgpan is the time width of the moving window, and 
Wstep is the moving time step of the window. 

3.2 Motion Recognition 

We represent the observation through the moving window by 0\t) where 
i = {H^R} is used to indicate human (H) and robot (R). Then, P{0\t)\Xj) 
shows the likelihood that observation 0\t) is generated by the proto symbol 

J-
Motion recognition is to find the coordinates in the proto symbol space 

that is appropriate for the observation. We propose the single Gaussian model 
for motion recognition as shown in Fig.4. We define a Gaussian that has value 
P{0\t)\Xj) at the coordinates of proto symbol j of i, x^^'^-. The mean vector, 
IJi^{t)^ and the covariance matrix, ^*(t) , of the Gaussian are computed as 
follows: 
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Fig. 3. Procedure for recognition of motion patterns 
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Fig. 4. The single Gaussian model for motion recognition. 

N-ps" 

Â ŵ = 7r^E^(^^wi^^-)^-^-Nvs 
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(2) 

where Nq^s^ is the number of proto symbols. The coordinates for the obser­
vation is given by x*(t) = A^*(t). 
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Fig. 5. Image of clustering analysis for compensating the sparseness of the proto 
symbols. 

3.3 Likelihood of a Point in the Space 

Computation of likelihood for observation is done in the previous subsection. 
We also need computation of likelihood of a point in the proto symbol space 
being associated with a proto symbol. This computation will be used for 
motion generation. The proto symbols are rather sparse in the proto symbol 
space and cannot provide a meaningful likelihood for a point distant from 
them. 

We apply cluster analysis for the history of observations and use the result 
to compensate the sparseness of the proto symbols. For each observation 0*(t), 
we have a point in the proto symbol space, x^{t) = A^*(t). We also compute 
the proto symbol that provides the maximum likelihood. Namely, 

n' = argmaxP(0^(t)|A^) (3) 
J 

where 7̂ * shows an integer indicating the proto symbol of the highest likeli­
hood. Fig.5 shows the image of cluster analysis for compensating the sparse­
ness of the proto symbols. The Gaussian of the proto symbol j of i is then 
obtained as follows: 

Mp5} = ^ S U M K ( t ) | 7 ^ H t ) = j } (4) 

Urs] = \sVM{{x\t) - iirs)){x\t) - iirs)f\n\t) = j} (5) 

where nj denotes the number of observations that are recognized as associated 
with proto symbol j . 
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3.4 Motion Generation 

Using the Gaussian computed in the previous subsection, we can generate a 
motion pattern of the robot indicated by point x^ {t) in the proto symbol 
space as fohows: 

OG{t) = ^ WkOGk{t) (6) 
k=l 

P{x"{t)\Xf) 
'^iit) = 7̂ H (7) 

where P{x^{t)\Xj^) is the hkehhood of a point x^(t) with respect to the j - th 
proto symbol. OGk{t) means a generated motion pattern by the k-th proto 
symbol. 

In order to use the generated motion patterns for the motion of humanoid 
robot, we will have to consider dynamical consistency, discontinuity at switch­
ing motion patterns, and the other constraints such as work space of joints 
and self-collision and appropriately modify them in realtime. 

4 Experiments 

The experiments of mimetic communication theory were conducted. Small-
size humanoid robot, IJT-mu magnum [18] was used. The realtime motion 
capture system was used to measure the whole body motion of a human and 
their interaction was investigated. The proto symbols and the proto symbol 
space were developed to model the motion patterns of the humanoid robot. 
The same proto symbol space was used for recognition of the human subject. 

The meta proto symbol space was developed by showing the typical fight­
ing scenes of two human subjects. The fights of the humanoid robot and the 
human subject were demonstrated at AICHI EXPO2005 in June 2006. They 
did not make physical contacts, rather they fought only in the virtual screen. 

The sampling time for the motion capture is 30ms. We used the model 
of a humanoid robot [20] with 4 active joints in each arm, 6 active joints in 
each leg. The motion patterns are therefore represented by sequences of 46 
dimensional vectors. The window span of motion data for the recognition is 
180ms, which means that the motion data includes only 6 frames of captured 
data. 

The output motion patterns of humanoid robots were modified in realtime 
to consider dynamical consistency, discontinuity at switching motion patterns, 
and the other constraints. 

The stage at the EXPO is shown in Fig.??. The overall experimental 
system was set up as shown in Fig.??. 
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Fig. 6. Realtime virtual fight between a humanoid robot and a human subject at 
EXPO2005. 
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Fig. 7. Overall experimental setup for realtime virtual fight. 

Fig.6 shows the virtual fighting scene between the humanoid robot and 
the human subject. In this figure, we see tha t the robot bends down against 
the human's punch and takes a punch at the human, and tha t the robot 
tries to protect with a leg against the human's kick and then give a kick 
to the human. The robot was capable of recognizing the human's behaviors 
and generating the suitable behaviors corresponding to the situation. These 
experimental results, we claim tha t the mimetic communication model is valid 
for acquiring primitive communication ability. 

5 Conclusion 

The mimesis model bridges the continuous motion pat terns of the body of 
robot and the system of symbols. In this paper, we developed a fundamen-
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Fig. 8. Experimental result of interaction between the robot and the human. 

tal theory to enable behavioral interactions between humanoid robots and 
humans. The interaction is supported by mimetic communication. 

A hypothesis for designing fundamental interaction, namely naturally 
drifting interaction was established. It was to short-circuit the recognition 
output and the generation input of the meta proto symbol space. Because 
the naturally drifting interaction can be modeled to estimate the states of 
interaction and attempt to maintain the flow of states. 

The mimetic communication theory was integrated into the realtime flght-
ing demonstration of a humanoid robot and a human subject in the virtual 
screen. The experimental results showed the effectiveness of the theory. 
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Appendix 

M i m e s i s M o d e l [9] 

The mimesis model consists of a set of proto-symbols tha t allow bidirectional 
computation of recognition and generation of the whole-body motions, just 
like the mirror system. A set of the stochastic parameters of a Hidden Markov 
Model (HMM) acquired for a segmented whole-body motion is considered a 
proto-symbol. In the li terature [9], the pseudo-distance is defined between the 
proto-symbols, tha t allows to form an Euclidean space to interpolate and ex­
trapolate the proto-symbols. The Euclidean space is named the proto-symbol 
space. 

The left-to-right model for state transition and the continuous HMMs were 
adopted to construct the mimesis model as shown in Fig.9. A HMM is defined 
by a set of stochastic parameters A = {A,B^II}, where A = {aij} is a 
matr ix of state transition probability from node i to node j , B = {bi} is a 
vector of output probability, and II = {TTI, 7r2, • • •, TT^} is a set of initial node 
probability. The probability desity functions are assumed Gaussian as follows: 

bi{x) —. =exp\-(x - uA^S •'•iix-uA] (8) 
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where /j.^ and Ui denote the mean vector and the covariance matr ix of node i. 
X is an 771-dimensional input vector. The parameters of HMM are computed by 
the Baum-Welch algorithm [19]. For computational efficiency the covariance 
matr ix was approximated by a diagonal matr ix with its diagonal elements. 

Motion recognition is to find one among all the HMMs whose probability 
P{0\X) to generate the observed motion pat tern O is maximum. 

Triple A v e r a g i n g for M o t i o n G e n e r a t i o n 

Motion generation is to recover the motion pat terns encoded by the proto 
symbols. This paper proposes the triple averaging method for motion gener­
ation, which is explained as follows: 

stepl Compute a sequence of state transition QQ using the transition proba­
bility A and random variables. 

step2 Repeat stepl for Uq times and obtain QQI, QG2^ ''' ^Qon • Compute 

the mean state transition QQ by simply averaging them. 

1 ^ 
Qo^iQs^} Sk=mt{—'^Sk,) (9) 

i 

where QQ^ = {qs,,. }• Sk represents the state number at t ime k. If the state 
at t ime k is qj, then Sk = j and Sk-\-i = j or j + 1. If 5^ = n or null, then 
Sk-\-i = null.. N is the number of Sk, tha t are not null. 

stepS Compute a sequence of output vector OQ according to the mean state 
transition nodes QQ, using the output vector probability B and random 
variables. 

step4 Repeat stepS for Uo times and obtain output vector sequences OQI, 
OG2J ''' JOGUO- Taking their average, compute the mean output vector 
sequence OQ-

step5 Repeat stepl through step4 for rit times and obtain the mean output 
vectors OQI, OG2, ''' ^Oont- Taking their average, finally compute the 
generated motion pat tern OQ-

Inamura 's generation process [9] included double averaging of step2 and 
step4- The third averaging in step5 was effective to deliver a smooth out­
put vector sequence even when the total cost of averaging was maintained 
constant. 
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Robot mechanisms science must be understood as acquiring an in-depth un­
derstanding of the mechanical behavior of a robot and involve domains such as 
kinematics, dynamics and singularity analysis. Two issues must be addressed: 

• analysis: determine all the mechanical properties of a given robot that are 
necessary to control it and to verify that its behavior will satisfy a given 
set of requirements 

• synthesis: being given a set of requirements determine what should be the 
mechanical arrangement and the dimensioning of the robot. Synthesis is 
in general a much more complex issue than analysis 

The study of robot mechanisms and of their design is a fundamental and 
exciting part of robotic science as the mechanical part of the robot will, at 
the end, condition what the robot can performed in term of tasks and will 
drastically influence control issues. 

It may be believed that this part of robotics is well mastered now, espe­
cially for serial industrial robots. Even in that case they are still many open 
issues. For example for the analysis part, a consequence of manufacturing 
tolerances is that a real robot will always differ from its theoretical model: 
managing these uncertainties to certify some robot properties is a complex 
problem that is far from being solved and involves sophisticated mathemat­
ics. It may then be understood that the synthesis of serial industrial arm is 
also an open problem, especially if manufacturing tolerances are taken into 
account. 

Robotics is also a rapidly evolving field in which new application fields 
and materials renew and enlarge the mechanisms that must be studied. For 
example recent moves in robotics toward closed-chain mechanism and nano-
robots must be emphasized. In the first case the closed structure allows to 
reach very good performance level for load, accuracy and stiffness, that open 
loop mechanisms cannot rival. As for micro-robot the change of scale implies 
that some mechanical effects, that are usually neglected at the macro scale, 
become preponderant: it is hence necessary to completely revisit the analysis 
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and synthesis of such mechanism. Furthermore new materials with astounding 
properties (e.g. Ghz motion) may be used, although their use and integration 
in a robotic system is still an open problem. 

The papers presented in this session illustrates perfectly such evolution: 

1. the paper presented by M. Uchiyama and co-authors describes the use of 
a closed-loop mechanism for a 6-dof haptic device. Here the stiffness and 
force/torque capacities of such type of mechanism is a key advantage for 
the application but requires a careful analysis of the dimensioning 

2. B.J. Nelson and co-authors address the building of nanoelectromechanical 
systems (NEMS). They combine the top-down (direct fabrication) and 
bottom-up (assembly) approaches to design actuators and sensors with 
carbon nanotubes and Si nanocoils and present experimental, theoretical 
and design perspectives 

3. in the last paper of the session J-P. Merlet investigates performance indices 
based on the Jacobian matrix that are used for design purposes and shows 
that they are not appropriate for closed-loop chains. 
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Summary . We present design of a compact haptic device in which parallel mecha­
nisms are utilized. The design realizes a large workspace of orientational motion in a 
compact volume of the device. The device is a parallel-serial mechanism consisting of 
a modified DELTA mechanism for translational motion and a spatial five-bar gimbal 
mechanism for orientational motion. We derive an analytical model of stiffness for 
the modified DELTA mechanism which we utilize for the design of a stiff platform 
for translational motion. The model shows that the compliance matrix is a function 
of kinematic parameters as well as elastic parameters of each mechanical element. 
Configuration dependency of the compliance matrix is therefore an important point 
to be noticed. 

1 Introduction 

A device to make a bridge between human haptic sense and da ta space is called 
a haptic device. It displays the sense of touch to a human. It transfers human 
haptic sense in the real world to signals in da ta space. Those devices include 
a tactile display, a force/torque display, etc. A master arm in a master/slave 
system is a type of haptic device tha t displays force/torque information at a 
slave arm. This paper discusses on the design of such a haptic device of master 
arm type. 

For a haptic device of master arm type, P H A N T O M of SensAble Technolo­
gies, Inc. [1] is well known. But this has not suflftcient force/torque capacity 
and is unable to display a very rigid feeling. A non-holonomic haptic device 
to display a rigid contact using a wheel has been proposed [2]. However, it 
is diflftcult to realize a haptic device of six DOF (Degrees Of Freedom). Fast 
six-DOF motion is realize by a haptic device of magnetic levitation type [3]. 
However, the workspace of the device is limited. A parallel wire system [4] 
may realize fast motion but requires a large place for itself. 
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To solve those problems, this paper proposes to apply parallel mechanisms 
to the design. The target is to realize a compact six-DOF device with large 
workspace for orientational motion and with capability of high-frequency mo­
tion. A compact six-DOF parallel mechanism like [5] may be used as a haptic 
device. However, the haptic device built by such a parallel mechanism only, 
will have limitation in orientational workspace. It is difficult to realize a large 
orientational workspace by such a parallel mechanism. A redundant paral­
lel mechanism [6] may enlarge the workspace to some extent but need extra 
motors. 

A stiff and light-weight mechanism is needed to increase the bandwidth of 
frequency response. For this purpose, a parallel mechanism is a good selection. 
Stiffness analysis of a parallel mechanism has been studied by, for example, 
Gosselin [7]. However, he considers only the stiffness of each actuator. Huang 
[8] proposed a method of stiffness analysis for a parallel mechanism, in which 
elastic components are considered. However, his analysis does not deal with 
bearings at free joints tha t are often used in the parallel mechanism. 

We present a design of a compact haptic device in which parallel mecha­
nisms are utilized and a large orientational workspace is realized in a compact 
volume of the device [9]. The device is a parallel-serial mechanism consisting of 
a modified DELTA mechanism for translational motion and a spatial five-bar 
gimbal mechanism for orientational motion. We derive an analytical model 
of stiffness for the modified DELTA mechanism to design a stiff platform for 
translational motion [10]. 

The paper is organized as follows: In Section 2, the design of a mechanism 
for the haptic device is presented. In Section 3, a model for stiffness analysis 
is derived, based on which the design is elaborated in Section 4 to yield a 
mechanism with well-balanced stiffness. The paper is concluded in Section 5 

2 Synthesis of a Compact 6-DOF Mechanism 

In this section, we present synthesis of a compact six-DOF mechanism for 
a haptic device of a master arm type. Design requirements and a six-DOF 
mechanism to meet the requirements are presented. 

2.1 D e s i g n R e q u i r e m e n t s 

Design requirements for a mechanism of the targeted haptic device are listed 
as follows: 

L Capability of six-DOF motion, 
2. Capability of high-frequency motion, 
3. Compact space for placing, and 
4. Large workspace. 
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To meet the requirements 1, 2, and 3, the parallel mechanism [11], [12] will be 
a good candidate. However, the requirement 4 for orientational motion will 
not be met by a parallel mechanism only, since orientational workspace of the 
parallel mechanism is usually very limited. In this paper, we solve the prob­
lem by applying two parallel mechanisms connected serially to translational 
motion and to orientation motion, separately. 

2.2 A C o m p a c t 6 - D O F M e c h a n i s m 

The overview of the mechanism tha t we synthesize is shown in Figure 1. 
Architecture of the mechanism is shown in Figure 2, diagrammatically. As 
shown in the figure, the mechanism consists of three parts , two of which 
are parallel mechanisms, connected serially. The remaining one is a serial 
mechanism of one DOF. Thus, the mechanism is a parallel-serial mechanism. 

The root of the mechanism is for three-DOF translational motion. Its 
overview is shown in Figure 3. It is a type of the DELTA mechanism invented 
by Clavel [13]. However, it is slightly different from the Clavel's DELTA. 
Difference is shown in Figure 4. The conventional DELTA uses ball joints 
to connect the rod to the arm on one end and to the traveling plate on the 
other, while the mechanism proposed in this paper uses ball bearings for those 
connections. We call this mechanism a modified DELTA mechanism. Wi th the 
modification in the mechanism, we have larger movable range for the joints 
between arm and rod and between rod and traveling plate, respectively. This 
is shown in Figure 5. A similar mechanism has been proposed by Tsai [14]. 

The middle and the top parts of the mechanism are for orientational mo­
tion. The middle part is a five-bar gimbal mechanism [15] as shown in Figure 6. 
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This reaHzes two orientational motions, tha t is roll Or and pitch Op. Yaw mo­
tion Oy is realized by the top part of the mechanism. An assembly drawing of 
the gimbal mechanism is shown in Figure 7. The axes for roll and pitch mo­
tions are supported by two bearings grounded on the rigid frame. It is noted 
tha t a parallel mechanism to implement the three orientational motions si­
multaneously has been proposed in [16], but we do not employ this mechanism 
because its movable range for yaw is small. 

To meets the design requirements, the modified DELTA mechanism at 
the root has to be suflftciently stiff because it has to carry the mechanism for 
orientational motion. In the following sections we present procedure to design 
a stiff mechanism for this part . 
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system for orientational motion 

3 Stiffness Analysis of the Modified DELTA Mechanism 

In this section, we present a model for the analysis of stiffness of a parallel 
mechanism. Then, we apply this model to the modified DELTA mechanism 
presented in the previous section, and point out tha t the stiffness depends on 
the kinematic parameters, and therefore on the configuration of the mecha­
nism, even when the same mechanical components are used. 

3.1 A Stiffness M o d e l of a Paral le l M e c h a n i s m 

A parallel mechanism is a closed-loop mechanism consisting of a base plate, a 
traveling plate and elementary chains tha t connect the two plates. Its stiffness 
is determined by the stiffness of each elementary chain. We assume the base 
and traveling plates are rigid. We begin with the analysis of the elementary 
chain and derive a compliance matr ix of the target mechanism. 
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Tip Compliance of an Elementary Chain 

The stiffness of each elementary chain is represented by its tip comphance 
[17], which we are going to derive here. Svinin and Uchiyama [18] studied the 
static comphant motion of a serial manipulator with elastic deformations in 
its structure. Let us suppose that the elementary chain consists of m elastic 
elements and n joints as shown in Figure 8. Forces and moments at each elastic 
element cause its elastic deformations of translation and rotation: 

ei = [Sxi Syi Szi (pxi (pyi (Pzi] (1) 

where ê  is an elastic deformation vector of the ith element. Sxi^ Syi and Szi 
are the translational deformations, and (pxi^ <t>yi and (pzi are the orientational 
deformations, respectively. Assembling the all ê  for i = 1, 2, • • •, m, we have 
an elastic deformation vector for the elementary chain: 

e=[eJeT,---elf (2) 

which is determined by forces and moments on each element. If we suppose 
linear elasticity, we have 

e = C^[flfl...fl]' (3) 

where 

C e = d i a g [ C e l C e 2 - - - Cem] (4) 

is the compliance matrix of the all elastic elements, C^i is the local compliance 
matrix of the ith. elastic element, and f ^ is the forces and moments acting on 
the ith. element. The tip compliance matrix Cs of the elementary chain which 
relates the tip deformations of the elementary chain to the forces and moments 
applied at the tip is given by 

Cs = Je{o,o)CeJl{e,o) (5) 

assuming that the elastic deformation e is small, namely e = 0 in Jg (^, e), 
where Jg (^, e) is the Jacobian matrix consisting of the Jacobian matrices for 
each elastic element defined by 

Je (6>, e) = [ J el (6>, e) Je2 (6>, e) . . . Jem (6>, e) ] . (6) 

Jei (^, e) is the Jacobian matrix for each elastic element. Jg (^, e) is a func­
tion of both 0 and e. ^ is a joint angle vector. 

Tip Compliance of a Parallel Mechanism 

Using the compliance matrix of the elementary chain given by Equation (5) we 
derive a tip compliance matrix of the parallel mechanism shown in Figure 9. 
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Fig. 8. A model of a serial mechanism Fig. 9. A model of a parallel mechanism 

This parallel mechanism consists of t elemental chains. The point O is the 
origin of the base plate and the point P on the traveling plate is the output 
point of the mechanism. Each elementary chain connects the points O and P. 
The tip compliance matr ix of the parallel mechanism is given by 

'si ' s2 + c: (7) 

where Csj ( j = 1, 2, • • •, t) is the compliance matr ix of the j t h elementary 
chain. It should be noted tha t the elastic deformations of both traveling plate 
and base plate are ignored. 

Now, we have an equation to calculate the t ip compliance matr ix of the 
parallel mechanism. To calculate Cp by Equation (7), we need to have C^i 
in Equation (4), tha t is a model for the ith. elastic element. Typical elastic 
elements in a parallel mechanism are a link and a bearing. We present models 
for them in the following sections. 

M o d e l i n g of a Link 

Suppose tha t the ith. elastic element is a link of a slender beam. Forces and 
moments on the beam cause elastic deformations. The relation between the 
forces and moments and the elastic deformations at the end of the beam is 
well known. It is expressed by 
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where L is the hnk length, E is the modulus of the longitudinal elasticity, G 
is the modulus of the transverse elasticity. Ix^ ly and Iz are the geometrical 
moments of inertia. Ip is the polar moment of inertia. 

M o d e l i n g of a B e a r i n g 

A bearing is a machine element often used in the parallel mechanism. When 
the ith. element is a bearing, the compliance matr ix is given by 
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(9) 

where ka is the coefficient of elasticity in the axial direction, kr is the coefficient 
of elasticity in the radial direction, 1/<P is the coefficient of rotational elasticity 
in the axial direction, and km is the coefficient of rotational elasticity in the 
radial direction. The direction of the x axis is chosen to be the rotation axis. 

If the axial rotation is free, which is usually the case for a bearing, the 
coefficient of rotational elasticity 1 / ^ is nearly zero and ^ is close to infinity. 
However, if <P is chosen close to infinity, the numerical calculation becomes 
unstable. Therefore, <P should be chosen large enough but not close to infinity. 
In this paper, the value of 10^ r a d / N m is used. This value is much larger than 
any other matr ix elements. 
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Fig. 10. An assembly drawing of the modified DELTA mechanism 

3.2 A p p l i c a t i o n of t h e M o d e l t o t h e Modi f i ed D E L T A M e c h a n i s m 

We apply the stiffness model derived in the previous section to the modified 
DELTA mechanism in order to obtain a compliance matr ix for the mechanism. 
A schematic diagram of this mechanism is shown in Figure 10. This mechanism 
is made of a base, bearings 0, three arms, bearings 1 and 2, three rod parts , 
bearings 3 and 4 and a traveling plate. The output shaft of the motor is 
supported by the bearings 0. The rod part which consists of a planar parallel 
mechanism is made of the bearings 2, two parallel rods and the bearings 3 
(see also Figures 3 and 4). The passive joints are equipped with conventional 
ball bearings tha t are mounted in pairs. We derive the compliance matrix for 
this mechanism, first deriving a model of the bearing pair, then a model of 
the rod part , and finally assembling those models. 

M o d e l i n g of a Pair of B e a r i n g s 

The connection between the rod part and the arm and between the rod part 
and the traveling plate is through a pair of bearings as shown in Figure 11. 
The coeflftcients of elasticity in the axial and radial directions of this part are 
obtained as those for a bearing multiplied by two. The coeflftcient of rotational 
elasticity in the axial direction is also obtained by the same way. However, the 
coeflftcient of rotational elasticity in the radial direction cannot be obtained 
simply by this way. This is obtained using a model of deformation shown in 
Figure 12. The moment M in the figure is obtained by 
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where Sx is the elastic deformation in the radial direction, 0 is the rotation 
angle, and a is the distance between the two bearings as shown in the figure. 
km and kr are elastic coefficients. Therefore, we have the compliance matr ix 
of the pair of bearings as follows: 
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M o d e l i n g of t h e R o d Part by a Paral le l M e c h a n i s m 

The rod part is made of a planar parallel mechanism. This parallel mechanism 
consists of two parallel rods and the bearings 2 and 3 as shown in Figure 10 
(see also Figures 3 and 4). We consider the two rods (Rod L and R) sepa­
rately as shown in Figure 13 and calculate the compliance matr ix of each rod, 
first, and then, the compliance matr ix of the whole rod system. According to 
Equation (4), the compliance matrices CgL and CQR for the rods L and R, 
respectively, shown in Figure 13, are given by 

CeL = diag [ Ch2L CrL CbSL ] (12) 
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Fig. 13. Modeling of the rod part 

and 

CeR = diag [ Cb2R CrR C^SR (13) 

where C52L, C})2R^ C^SL and C^SR are the compliance matrices of the bear­
ings 2L, 2R, 3L and 3R, respectively. CrL and CrR are the compliance matri­
ces of the rods L and R, respectively. The Jacobian matrices JQL (^, 0) and 
JeR (^5 0) for the rods L and R are writ ten as 

and 

JeL (6>, 0) = [ J52L (6>, 0) JrL {0, O) J53L (6>, O) ] (14) 

JeR (6>, 0) = [ Jb2R {0, 0) JrR {0, O) J^SR (6>, O) ] , (15) 

respectively, where J52L {0, 0), Jb2R {0, 0), J53L {0, 0) and J^si? (^, 0) are 
the Jacobian matrices of the bearings 2L, 2R, 3L and 3R, respectively. 
JrL {0, 0) and JrR {0, 0) are the Jacobian matrices of the rods L and R, 
respectively. Therefore, the compliance matrices CrodL and CrodR for the 
rods L and R can be writ ten as 

and 

^ r o d L — ^ eL (e, 0) CeLJiL (0, 0) 

CrodiJ = JeR {0, 0 ) CeR J^R (^> 0) , 

(16) 

(17) 

respectively. Consequently, the compliance matrix of the rod part C2r3 is 
obtained as 

^2r3 — ^vodL ^YodR ' (18) 

Stiffness of t h e Modi f i ed D E L T A M e c h a n i s m 

The modified DELTA mechanism consists of three elementary chains as shown 
in Figure 3. Each elementary chain is connected to the same traveling plate 



156 M. Uchiyama, Y. Tsumaki, and W.-K. Yoon 

which does not deform elasticahy. A point on the travehng plate can be a 
common tip for the three elementary chains. Therefore, we first derive the 
compliance matrices Csj {j = 1, 2, 3) for the jth elementary chain using 
Equation (5). Then, using Equation (7), we obtain the compliance matr ix Cp 
of the whole mechanism. 

The compliance matr ix Cgj {j = 1, 2, 3) defined by Equation (4) for each 
elementary chain is given by 

Cej = d i a g [CbOj Caj C^ij C2r3j ^Uj] (19) 

where C50J, C^ij and C^AJ are the compliance matrices of the bearings 0, 
1, and 4, respectively. Caj is the compliance matr ix of the arm. C2r3j is the 
compliance matrix of the rod part . The Jacobian matr ix Jg j (^, 0) is writ ten 
as 

J e , (6>, 0) = [JbOj (6>, 0) Jaj (6>, 0) Jtlj (6>, 0) J2r3j (6>, O) J54, (6>, 0 ) ] 
(20) 

where J^oj (^^ 0), Jbij (^^ 0) and J^j (^^ 0) are the Jacobian matrices of the 
bearings 0, 1 and 4, respectively. Jaj (^, 0) is the Jacobian matrix of the arm. 
J2r3j (^7 0) is the Jacobian matr ix of the rod part . Therefore, the compliance 
matr ix of the jth elementary chain Cgj is obtained by 

Csj = Jej (6>, 0) CejJ^j (6>, 0) . (21) 

Combining the three matrices for the three elementary chains, the compliance 
matr ix of the whole mechanism Cp is obtained by 

c;' = c;/ + c;,' + c-J . (22) 

As has been seen in the derivation, the compliance matrix Cp is a func­
tion of the joint angles ^, kinematic parameters of the structure, and elastic 
parameters of the components such as links, bearings, etc. The model ob­
tained here in this section gives a tool to optimize those parameters through 
evaluation of the matr ix Cry. 

4 Detailed Design of the Modified DELTA Mechanism 

We discuss on the design of a modified DELTA mechanism utilizing the stiff­
ness model derived in the previous section. Using this model we elaborate 
the stiffness of the modified DELTA mechanism to decide its parameters in 
details. We assume a specification tha t the workspace be around a sphere of 
75 mm radius. The procedure of the design is listed as follows: 

L First, we consider the singular configuration to obtain a set of kinematic 
parameters and realize a singularity-free workspace. This part does not 
use the stiffness model but uses only a kinematic model. 
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2. We discuss how each elastic element influences the tip stiffness and identify 
the elastic elements having a large influence on the reduction of the tip 
stiffness. Then, we use the results to improve the tip stiffness. 

3. We discuss on kinematic parameters tha t influence on the tip stiffness and 
tha t may be used as a design index for a well-balanced t ip stiffness. 

4. Finally, we propose an index for the design of a modified DELTA mecha­
nism and give a design example. 

4.1 Singular Conf igurat ion 

Two types of singular configuration are considered. They are undermobility 
and overmobility singularities [12]. Figure 14 shows the two types of singularity 
for the modified DELTA mechanism, diagrammatically on a plane. This figure 
suggests tha t the case where the base radius R is equal to or larger than 
the traveling plate radius r be more recommendable than the case where 
r > R because the former case does not have overmobility singularity in the 
workspace. 

In the following discussion, we set both the traveling plate radius and 
the base radius equal to 40 mm. Also, since the workspace is given around a 
sphere of 75 mm radius, we set the sum of the arm length and of the rod length 
220 mm, the minimum height 50 mm in order to avoid the undermobility, and 
the maximum height 200 mm in order to avoid the overmobility. 

4.2 P a r a m e t e r s of t h e Modi f i ed D E L T A M e c h a n i s m 

Kinematic parameters of the modified DELTA mechanism are shown in Fig­
ure 15. Point O is the origin and point T is the t ip position. L is the arm 
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Fig. 15. Kinematic parameters of the modified DELTA mechanism 

Table 1. Values of kinematic parameters 

Parameter 

Rod length M 
Arra length L 
Base radius R 

Traveling plate radius r 

[mm] 

110 
110 
40 
40 

length, M is the rod length, R is the base radius, r is the traveling plate 
radius and z is the traveling plate height which is the distance between points 
O and S. Here, we deal with the case where the distance between points S 
and T is 15 mm, the distance between points T and U is 63.5 mm, and the 
distance between the two parallel rods at the rod part is 31 mm. The values 
of M , L, i?, and r are given in Table 1. 

It is assumed tha t the arms, rods, motor axes, bearings 0, 1, 2, 3 and 4 
deform elastically. More specific details on the parts of the modified DELTA 
mechanism are given below: 

• The arm is a hollow pole, made of A7075 material, with an internal diam­
eter of 8 mm and an external diameter of 12mm. 

• The rod is a prismatic solid beam, made of SUS304 material, one side 
measure of which is 5 mm and the other 6 mm. 

• Bearing 0 is an NSK model F688A. Bearings 1 and 4 are NSK model 
MR128. 

• Bearings 2 and 3 are NSK model F684. 
• The motor is a Maxon model A-max 26. 

From the values of Table 1 and the elastic parameters of the above parts , 
we calculate the compliance matrices: Caj for the arms, CrL and CrR for 
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the rods, C^j, Ctij, C52L, Cb2R, CtsL, CtsR, and Cb4j for the bearings. Ah 
bearings are used in pairs. 

The stiffness at the tip position (point U, see Figure 15) of the modified 
DELTA mechanism changes largely depending on the traveling plate position. 
Therefore, it is necessary to design the mechanism taking into consideration 
the tip stiffness at all points in the workspace. However, it is very difficult 
to evaluate all the 6x6 elements of the tip compliance matrix at all points. 
Therefore, we simplify the evaluation by limiting the point only in the z 
direction, with no motion in the (x, y) plane. In this case, Cp is given by 

(23) 

where A^ B^ C^ D and E are non-zero elements determined by kinematic and 
elastic parameters. 

It should be noted that the value of ^ for bearing 0 is measured directly 
in the real setup and made 0.0058 rad/Nm. In the bearing 0 a motor axis is 
inserted. Therefore, the compliance around this axis depends on the perfor­
mance of the motor, control law, etc. 

4.3 Influence of Each Elastic Element on the Tip Stiffness 

Evaluating Cp in Equation (23) for each of the compliance matrices Caj for 
the arms, CrL and CrR for the rods, C^oj, Ctij, C52L, Cb2R, CtsL, CtsR, 
and Cb4j for the bearings, with the rest of them being zero, we know inffuences 
of each elastic element on the tip compliance matrix. Through this numerical 
analysis we find that the infiuence on the element A and B of the bearings 
2 and 3 is large, and we decrease the infiuence by replacing the bearings by 
ceramic bearings. Also, to decrease the infiuence of the arm on the elements 
C, D and E^ we change the arm internal diameter to 10 mm and its external 
diameter to 14 mm. Like this way, the compliance matrix is improved. 

4.4 Relation Between Tip Stiffness and a. 

The changes of the compliance matrix for the tip (point U) under elastic 
deformation of all the elements together (arms, rods, motor axes, bearings 
0, 1, 2, 3, and 4) are shown in Figure 16, where a is the angle between the 
traveling plate and the rod as has been shown in Figure 15. According to 
Figure 16, when a increases, each of the elements A, 5 , C, D and E of 
Equation (23) changes as follows: 

• The compliance in the direction of x- and y-Sixes (element A) increases. 
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Fig. 16. Elements of the tip compliance matrix as a function of the parameter a 

• The compliance of rotation around x- and i/-axes against y and x forces, 
respectively, (element B) decreases for the most part of ce, although it 
increases for a while at about 50 degrees. 

• The compliance in the direction of x- and y-SiX.es against y and x moments, 
respectively, (element B) changes in the same manner. 

• The compliance in the direction of z-axis (element C) increases. 
• The compliance of rotation around x- and y-diX.es (element D) decreases. 
• The compliance of rotation around z-axis (element E) increases. 

Therefore, in order to obtain a well-balanced stiffness, it is necessary to limit 
the value of a properly in the workspace. 
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4.5 A D e s i g n I n d e x for t h e Modi f i ed D E L T A M e c h a n i s m 

From the above results, we find tha t the tip stiffness of the modified DELTA 
mechanism changes largely depending on the configuration, represented by 
the parameter ce, even if elastic parameters are fixed. Therefore, we may use 
ce as a design index. We should notice tha t the value of a depends on the 
base radius, the traveling plate radius, the arm length and the rod length. 
According to the results of numerical calculation, the value of a in the range 
from 40 to 70 degrees is best for realizing a well-balanced tip stiffness. If the 
value of a is outside this range, the stiffness of many elements decreases. 

Based on the discussion, we decide tha t both the traveling plate and the 
base radii are 40 mm, the arm length is 93 mm and the rod length is 127 mm, in 
order to obtain a good balance of stiffness in the specified workspace (around 
a sphere of 75 mm radius). 

5 Conclusions 

We have presented a design of a compact haptic device in which parallel mech­
anisms are utilized and a large workspace of orientational motion is realized. 
The device is a parallel-serial mechanism consisting of a modified DELTA 
mechanism for translational motion and a spatial five-bar gimbal mechanism 
for orientational motion. We have derived an analytical model of stiffness for 
the modified DELTA mechanism, which we have utilized for the design of stiff 
platform for translational motion. The model shows tha t the compliance ma­
trix is a function of kinematic parameters as well as elastic parameters of each 
element. Configuration dependency of the compliance matr ix is an important 
point to be noticed. Key points newly proposed in the stiffness model are: 

• Exploitation of stiffness analysis method for a fiexible arm (manipulator) 
to obtain stiffness of the elementary chains in deriving the tip stiffness of 
the parallel mechanism. 

• Modeling of the free motion around the axis of rotation in a bearing using 
a very small value of the elasticity coefficient. 

We have obtained the following results regarding the design of the modified 
DELTA mechanism: 

• The angle a can be a design index to optimize the stiffness of the modified 
DELTA mechanism. 

• The stiffness of the bearings 2 and 3 should be sufficiently large. 

From these results, we have found tha t a be restricted within the value be­
tween 40 to 70 degrees in order to obtain a well-balanced stiffness. 

Future research will be directed to design of a more compact haptic device 
with higher frequency response using an actuator with faster response and 
with less friction. 



162 M. Uchiyama, Y. Tsumaki, and W.-K. Yoon 

References 

1. Massie TH, Salisbury JK (1994) The PHANToM haptic interface: a device 
for probing virtual objects. In: Proc. 1994 ASME Int. Mechanical Engineering 
Exposition and Congress, Chicago, Illinois, pp 295-302 

2. Colgate JE, Peshkin MA, Wannasuphoprasit W (1996) Nonholonomic haptic 
display. In: Proc. 1996 IEEE Int. Conf. on Robotics and Automation, Min­
neapolis, Minnesota, pp 539-544 

3. Berkelman PJ, Hollis RL, Salcudean SE (1995) Interacting with virtual envi­
ronments using a magnetic levitation haptic interface. In: Proc. lEEE/RSJ Int. 
Conf. on Intelligent Robots and Systems, Pittsburgh, Pennsylvania, pp 117-122 

4. Hirata Y, Sato M (1992) 3-dimensional interface device for virtual workspace. 
In: Proc. lEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Raleigh, 
North Carolina, pp 889-896 

5. Inoue H, Tsusaka Y, Fukuizumi T (1986) Parallel manipulator. In: Faugeras O, 
Giralt G (eds) Robotics research, the third international symposium. The MIT 
Press, pp 321-327. 

6. Hayward V (1995) Toward a seven axis haptic device. In: Proc. lEEE/RSJ Int. 
Conf. on Intelligent Robots and Systems, Pittsburgh, Pennsylvania, pp 133-139 

7. Gosselin C (1990) Stiffness mapping for parallel manipulator. IEEE Trans, on 
Robotics and Automation 6:377-382 

8. Huang T, Zhao X, Whitehouse D J (2002) Stiffness estimation of a tripod-based 
parallel kinematic machine. IEEE Trans, on Robotics and Automation 18:50-58 

9. Tsumaki Y, Naruse H, Nenchev DN, Uchiyama M (1998) Design of a com­
pact 6-DOF haptic interface. In: Proc. 1998 IEEE Int. Conf. on Robotics and 
Automation, Leaven, Belgium, pp 2580-2585 

10. Yoon WK, Suehiro T, Tsumaki Y, Uchiyama M (2004) Stiffness analysis and 
design of a compact modified delta parallel mechanism. ROBOTIC A 22:463-
475 

11. Merlet JP (2000) Parallel robots. Kluwer Academic Publishers 
12. Uchiyama M (1994) Structures and characteristics of parallel manipulators. 

Advanced Robotics 8:545-557 
13. Clavel R (1988) DELTA, a fast robot with parallel geometry. In: Proc. 18th 

Int. Symp. on Industrial Robots, Lausanne, Switzerland, pp 91-100 
14. Tsai LW (1995) Multi-degree-of-freedom mechanisms for machine tools and 

like. U.S. Patent No. 5656905 
15. Ouerfelli M, Kumar V (1994) Optimization of a spherical five-bar parallel drive 

linkage. Trans. ASME, J. of Mechanical Design 116:166-173 
16. Gosselin CM, Hamel JF (1994) Development and experimentation of a fast 

three-degree-of-freedom spherical parallel manipulator. In: Jamshidi M, Yuh 
J, Nguyen C, Lumia R (eds) Proc. First World Automation Congress, Maui, 
Hawaii. TSI Press. 2:229-234 

17. Komatsu T, Uenohara M, likura S, Miura H, Shimoyama I (1990) Compliance 
control for a two-link flexible manipulator. Trans. JSME, Series C 56:2642-2648 
(in Japanese) 

18. Svinin MM, Uchiyama M (1994) Contribution to inverse kinematics of flexible 
robot arms. JSME Int. J., Series C: Dynamics, Control, Robotics, Design and 
Manufacturing 37:755-764 



Hybrid Nanorobotic Approaches to NEMS 

B. J. Nelson^ , L. X. Dong^ , A. Subramanian^ , and D. J. Bell^ 

^ Swiss Federal Institute of Technology (ETH), Zurich bnelson@ethz.ch 
^ Swiss Federal Institute of Technology (ETH), Zurich ldong@ethz. ch 
^ Swiss Federal Institute of Technology (ETH), Zurich arun@ethz.ch 
^ Swiss Federal Institute of Technology (ETH), Zurich dbell@ethz. ch 

Robotic manipulation at the nanometer scale is a promising technology for 
structuring, characterizing and assembling nano building blocks into nanoelec-
tromechanical systems (NEMS). Combined with recently developed nanofab-
rication processes, a hybrid approach to building NEMS from individual car­
bon nanotubes (CNTs) and SiGe/Si nanocoils is described. Nanosensors and 
nanoactuators are investigated from experimental, theoretical, and design per­
spectives. 

1 Introduct ion 

Despite the claims of many "futurists," the form nanorobots of the future 
will take and what tasks they will actually perform remain unclear. However, 
it is clear that nanotechnology is progressing towards the construction of in­
telligent sensors, actuators, and systems that are smaller than lOOnm. These 
nanoelectromechanical systems (NEMS) will serve as both the tools to be 
used for fabricating future nanorobots as well as the components from which 
these nanorobots may be developed. Shrinking device size to these dimen­
sions presents many fascinating opportunities such as manipulating nanoob-
jects with nanotools, measuring mass in femto-gram ranges, sensing forces at 
pico-Newton scales, and inducing GHz motion, among other new possibilities 
waiting to be discovered. These capabilities will, of course, drive the tasks 
that future nanorobots constructed by and with NEMS will perform. 

The design and fabrication of NEMS is an emerging area being pursued 
by an increasing number of researchers. Just as with MEMS, NEMS design is 
inextricably linked to available fabrication techniques. However, though the 
development of microfabrication processes has become somewhat stable over 
the past decade, nanofabrication processes are still being actively pursued, 
and the design constraints generated by these processes are relatively unex­
plored. Two approaches to nanofabrication, top-down and bottom-up, have 
been identified by the nanotechnology research community, and the topic of 
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this paper is how these trends can be integrated through robotics resulting in 
new classes of NEMS devices. 

Manipulation - ^.^^^ mmam^.—^ Characterization 

Materials ' -* ^• 

NanoRobotics 

NEMS 

Fabrication H l r i B H Assetubly 

Fig. 1. A nanorobotic manipulation approach to NEMS 

Top-down and bottom-up nanofabrication strategies are being indepen­
dently investigated by various researchers. Top-down approaches are based 
on microfabrication and include technologies such as nano-lithography, nano-
imprinting, and chemical etching. Presently, these are 2D fabrication processes 
with relatively low resolution. Bottom-up strategies are assembly-based tech­
niques. Currently these strategies include techniques such as self-assembly, 
dip-pen lithography, and directed self-assembly. These techniques can gener­
ate regular nano patterns at large scales. With the ability to position and 
orient nanometer scale objects, nanorobotic manipulation is an enabling tech­
nology for structuring, characterizing and assembling many types of nanosys-
tems (shown in Fig. 1) [1]. By combining top-down (Fig. 2(a)) and bottom-up 
processes (Fig. 2(b)), a hybrid nanorobotic approach (Fig. 2(c)) based on 
nanorobotic manipulation provides a third way to fabricate NEMS by struc­
turing as-grown nanomaterials or nanostructures. In this system, nanofabrica­
tion based top-down processes and nanoassembly based bottom-up processes 
can be performed in an arbitrary order. Consider nanofabrication processes 
in which nanomaterials or nanostructures can be fabricated into nano build­
ing blocks by removing unwanted parts. These building blocks can then be 
assembled into NEMS. Conversely, nanoassembly can be performed first and 
nanomaterials or nanostructures can be assembled into higher-level (i.e. more 
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complex, 3D, arrays, etc.) structures, and then the high-level structures can 
be further modified into NEMS by nanofabrication. 

Nanoiiiateriak; 
stmctiires 

NF (iiaiio-litliography, 
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etching, etc.) 
NEMS 

(a) Top-down approach 
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NEMS 
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Nanoiiiaterial 
/structures 

NFNA 
I PC 

1 ^ £L PC 
NANF 

ji. 
Nanomampulation 

k. 

PC 
NEMS 

I 

(c) Hybrid approach 

Fig. 2. Approaches to NEMS (PC: Property Characterization, NF: Nano Fabrica­
tion, NA: Nano Assembly) 

Nanorobotic manipulation enables this hybrid approach for creating NEMS 
tha t can at ta in a higher functionality because they possess more complex 
structures. Moreover, property characterization can be performed after inter­
mediate processes, and in situ active characterization can be performed using 
manipulation rather than conventional static observations. The impact of the 
hybrid approach on robotics is twofold: it expands the lower limit of robotic 
exploration further into the nanometer scale, and it will provide nanoscale sen­
sors and actuators and assembly technology for building nanorobots. Nanoma-
terial science, bionanotechnology, and nanoelectronics will also benefit from 
advances in this new nanomanufacturing technique from the perspectives of 
property characterization, fabrication and assembly. This paper introduces 
carbon nanotubes (CNTs) and nanocoils in Section 2. In Sections 3 and 4, 
the assembly of individual nanotubes and nanocoils into NEMS are presented 
along with characterization results. 
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2 Carbon Nanotubes and Nanocoils for NEMS 

Carbon nanotubes [2] and nanocoils have been used as base materials and 
structures because of their exceptional properties and unique structures. For 
NEMS, some of the most important characteristics of nanotubes include their 
nanometer diameter, large aspect ratio (10-1000), TPa scale Young's modulus, 
excellent elasticity, ultra-small interlayer friction, sensitivity of conductance to 
various physical or chemical changes, and charge-induced bond-length change. 
Helical 3-D nanostructures, or nanocoils, have been synthesized from different 
materials including helical carbon nanotubes [3] and zinc oxide nanobelts [4]. 
A new method of creating structures with nanometer-scale dimensions has 
recently been presented [5] and can be fabricated in a controllable way [6]. 
The structures are created through a top-down fabrication process in which a 
strained nanometer thick heteroepitaxial bilayer curls up to form 3-D struc­
tures with nanoscale features. Helical geometries and tubes with diameters 
between lOnm and 10/im have been achieved. Because of their interesting mor­
phology, mechanical, electrical, and electromagnetic properties, potential ap­
plications of these nanostructures in NEMS include nanosprings [7], electrome­
chanical sensors [8], magnetic field detectors, chemical or biological sensors, 
generators of magnetic beams, inductors, actuators, and high-performance 
electromagnetic wave absorbers. NEMS based on individual single- or multi-
walled carbon nanotubes (SWNTs, MWNTs) and nanocoils are of increasing 
interest, indicating that capabilities for incorporating these individual build­
ing blocks at specific locations on a device must be developed. 

Random spreading [9], direct growth [10], self-assembly [11], dielectro-
phoretic assembly [12] and nanomanipulation [13] have been demonstrated 
for positioning as-grown nanotubes on electrodes for the construction of these 
devices. However, for nanotube-based structures, nanorobotic assembly is still 
the only technique capable of in situ structuring, characterization and assem­
bly. Because the as-fabricated nanocoils are not free-standing from their sub­
strate, nanorobotic assembly is virtually the only way to incorporate them 
into devices at present. 

3 Individual Nanotube Based NEMS 

Basic techniques for the nanorobotic manipulation of carbon nanotubes are 
shown in Fig. 3 [1]. These serve as the basis for handling, structuring, charac­
terizing and assembling NEMS. Configurations of nanotools, sensors, and ac­
tuators based on individual nanotubes that have been experimentally demon­
strated are summarized as shown in Fig. 4. 

For detecting deep and narrow features on a surface, cantilevered nan­
otubes (Fig. 3(a), [15]) have been demonstrated as probe tips for an atomic 
force microscope (AFM) [16], a scanning tunneling microscope (STM) and 
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Fig. 3. Nanorobotic manipulation of CNTs. The basic technique is to pick up an 
individual tube from CNT soot (as in (a)) or from an oriented array; (b) shows a 
free-standing nanotube picked up by dielectrophoresis generated by a non-uniform 
electric field between the probe and substrate, (c) (from [14]) and (d) show the same 
manipulation by contacting a tube with the probe surface or fixing (e.g. with EBID) 
a tube to the tip. Vertical manipulation of nanotubes includes bending (e), buckling 
(f), stretching/breaking (g), and connecting/bonding (h). All examples with the 
exception of (c) are from the authors' work. 

other types of scanning probe microscopes (SPM). Nanotubes provide ultra-
small diameters, ultra-large aspect ratios, and excellent mechanical properties. 
Manual assembly, direct growth and nanoassembly have proven eflFective for 
their construction. Cantilevered nanotubes have also been demonstrated as 
probes for the measurement of ultra-small physical quantities, such as femto-
gram mass [17], mass flow sensors [18], and pico-Newton order force sensors 
[18] on the basis of their static deflections or change of resonant frequencies 
detected within an electron microscope. Deflections cannot be measured from 
micrographs in real-time limiting the application of these types of sensors. 
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Fig. 4. Configurations of individual nanotube-based NEMS. Scale bars: (a) l//m 
(inset: lOOnm), (b) 200nm, (c) l//m, (d) lOOnm, (e) and (f)l//m, (g) 10//m, and (h) 
300nm. All examples are from the authors' work. 

Inter-electrode distance changes cause emission current variation of a nan-
otube emitter and may serve as a candidate to replace microscope images 
[18]. 

Bridged individual nanotubes (Fig.3(b), [19]) have been the basis for elec­
tric characterization. A nanotube based gas sensor design has adopted this 
configuration [20]. 

Opened nanotubes (Fig.3(c), [21]) can serve as an atomic or molecular 
container. A thermometer based on this structure has been demonstrated by 
monitoring the height of the gallium inside the nanotube using transmission 
electron microscopy (TEM) [22]. 

Bulk nanotubes can be used to fabricate actuators based on charge injec­
tion induced bond-length change [23], and, theoretically, individual nanotubes 
also work on the same principle. Electro-static defiection of a nanotube has 
been used to construct a relay [24]. A new family of nanotube actuators can 
be constructed by taking advantage of the ultra-low inter-layer friction of a 
multi-walled nanotube. Linear bearings based on telescoping nanotubes have 
been demonstrated [25],[18]. Recently, a micro actuator with a nanotube as 
a rotation bearing has been demonstrated [26]. A preliminary experiment on 
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a promising nanotube linear motor with field emission current serving as po­
sition feed back has been shown with nanorobotic manipulation (Fig. 3(d), 
[21]). 

Cantilevered dual nanotubes have been demonstrated as nanotweezers [27] 
and nanoscissors (Fig. 3(e)) [13] by manual and nanorobotic assembly, respec­
tively. 

Based on electric resistance change under diflFerent temperatures, nanotube 
thermal probes (Fig. 3(f), [18]) have been demonstrated for measuring the 
temperature at precise locations. These thermal probes are more advantageous 
than nanotube based thermometers because the thermometers require TEM 
imaging. The probes also have better reproducibility than devices based on 
dielectrophoretically assembled bulk nanotubes [28]. Gas sensors and hot-wire 
based mass/fiow sensors can also be constructed in this configuration rather 
than a bridged one. 

The integration of the above mentioned devices can be realized using the 
configurations shown in Fig. 3(g) [29] and (h) [12]. The arrays of individual 
nanotubes can also be used to fabricate nanosensors, such as position encoders 
[30]. 

Nanotube based NEMS remains a rich research field with a large number 
of open problems. New materials and effects at the nanoscale will enable 
a new family of sensors and actuators for the detection and actuation of 
ultra-small quantities or objects with ultra-high precision and frequencies. 
Through random spreading, direct growth, and nanorobotic manipulation, 
proto-types have been demonstrated. However, for integration into NEMS, 
self-assembly processes will become increasingly important. Among them, we 
believe that dielectrophoretic nanoassembly will play a significant role for 
large scale production of 2D regular structures [31]. 

4 NEMS Made from Nanocoils 

The construction of NEMS using nanocoils involves the assembly of as-grown 
or as-fabricated nanocoils, which is a significant challenge from a fabrica­
tion standpoint. Focusing on the unique aspects of manipulating nanocoils 
due to their helical geometry, high elasticity, single end fixation, and strong 
adhesion of the coils to the substrate for wet etching, a series of new pro­
cesses is presented using a manipulator (MM3A, Kleindiek) installed in an 
SEM (Zeiss DSM962). As-fabricated SiGe/Si bilayer nanocoils are shown in 
Fig. 5. Special tools have been fabricated including a nanohook prepared by 
controlled "tip-crashing" of a commercially available tungsten sharp probe 
(Picoprobe T-1-lO-lmm and T-1-10) onto a substrate, and a "sticky" probe 
prepared by tip dipping into a double-sided SEM silver conductive tape (Ted 
Pella, Inc.). As shown in Fig. 6, experiments demonstrate that nanocoils can 
be released from a chip by lateral pushing, picked up with a nanohook or 
a "sticky" probe, and placed between the probe/hook and another probe or 
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an AFM cantilever (Nano-probe, NP-S). Axial pulling/pushing, radial com­
pressing/releasing, and bending/buckling have also been demonstrated. These 
processes have shown the effectiveness of manipulation for the characteriza­
tion of coil-shaped nanostructures and their assembly for NEMS, which have 
been otherwise unavailable. 

/=20nm , 1)^3.4um 

iH'i'jani 

(a) Naiiocoils 

mm^ 
(b) Model 

Fig. 5. As-fabricated nanocoils (Thickness: t=20nm (without Cr layer) or 41nm 
(with Cr layer). Diameter: D=3.4//ni) 
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Fig. 6. Nanorobotic manipulation of nanocoils (a) original state, (b) compress­
ing/releasing, (c) hooking, (d) lateral pushing/breaking, (e) picking, (f) plac­
ing/inserting, (g) bending, and (h) pushing and pulling 
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Fig. 7. Nanocoil based devices. Cantilevered nanocoils (a) can serve as nanosprings. 
Nanoelectromagnets, chemical sensors, and nanoinductors use nanocoils bridged be­
tween two electrodes (b). Electromechanical sensors can use a similar configuration 
but with one end connected to a moveable electrode. Mechanical stiffness (d) and 
electric conductivity (e) are basic properties of interest for these devices. 

Configurations of nanodevices based on individual nanocoils are shown in 
Fig. 7. Cantilevered nanocoils as shown in Fig. 7(a) can serve as nanosprings. 
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Nanoelectromagnets, chemical sensors and nanoinductors involve nanocoils 
bridged between two electrodes as shown in Fig. 7(b). Electromechanical sen­
sors can use a similar configuration but with one end connected to a moveable 
electrode as shown in Fig. 7(c). Mechanical stiffness and electric conductivity 
are fundamental properties for these devices that must be further investigated. 

As shown in Fig. 6(h), axial pulling is used to measure the stiffness of a 
nanocoil. A series of SEM images are analyzed to extract the AFM tip dis­
placement and the nanospring deformation, i.e. the relative displacement of 
the probe from the AFM tip. From this displacement data and the known stiff­
ness of the AFM cantilever, the tensile force acting on the nanospring versus 
the nanospring deformation was plotted. The deformation of the nanospring 
was measured relative to the first measurement point. This was necessary be­
cause the proper attachment of the nanospring to the AFM cantilever must 
be verified. Afterwards, it was not possible to return to the point of zero de­
formation. Instead, the experimental data as presented in Fig. 7(d) has been 
shifted such that with the calculated linear elastic spring line begins at zero 
force and zero deformation. From Fig. 7(d), the stiffness of the spring was es­
timated to be 0.0233 N/m. The linear elastic region of the nanospring extends 
to a deformation of 4.5 fim. An exponential approximation was fitted to the 
nonlinear region. When the applied force reached 0.176 /iN, the attachment 
between the nanospring and the AFM cantilever broke. Finite element simu­
lation (ANSYS 9.0) was used to validate the experimental data [8]. Since the 
exact region of attachment cannot be identified according to the SEM images, 
simulations were conducted for 4, 4.5, and 5 turns to obtain an estimate of the 
possible range according to the apparent number of turns of the nanospring 
of between 4 and 5. The nanosprings in the simulations were fixed on one end 
and had an axial load of 0.106 /iN applied on the other end. For the simulation 
results for the spring with 4 turns, the stiffness from simulation is 0.0302 N/m. 
For the nanospring with 5 turns it is 0.0191 N/m. The measured stiffness falls 
into this range with 22.0% above the minimum value and 22.8% below the 
maximum value, and very close to the stiffness of a 4.5-turn nanospring that 
has a stiffness of 0.0230 N/m according to simulation. 

Fig. 7(e) shows the results from electrical characterization experiments on 
a nanospring with 11 turns using the configuration as shown in Fig. 6(g). 
The I-V curve is non-linear, which may be caused by the resistance change 
of the semiconductive bilayer due to ohmic heating. Another possible reason 
is the decrease in contact resistance caused by thermal stress. The maximum 
current was found to be 0.159 mA under an 8.8 V bias. Higher voltage causes 
the nanospring to "blow off." From the fast scanning screen of the SEM, an 
extension of the nanospring on probes was observed around the peak current 
so that the current does not drop abruptly. At 9.4 V, the extended nanospring 
is broken down, causing an abrupt drop in the I-V curve. 

From fabrication and characterization results, the helical nanostructures 
appear to be suitable for inductors. They would allow further miniaturization 
compared to state-of-the-art micro inductors. For this purpose, higher dop-
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ing of the bilayer and an additional metal layer would result in the required 
conductance. Conductance, inductance, and quality factor can be further im­
proved if, after curling up, additional metal is electroplated onto the helical 
structures. Moreover, a semiconductive helical structure, when functionalized 
with binding molecules, can be used for chemical sensing under the same prin­
ciple as demonstrated with other types of nanostructures [32]. With bilayers 
in the range of a few monolayers, the resulting structures would exhibit very 
high surface-to-volume ratio with the entire surface exposed to an incoming 
analyte. 

5 Conclusions 

A hybrid nanofabrication approach based on nanorobotic manipulation has 
been investigated for building NEMS. Processes for manipulating carbon nan-
otubes and SiGe/Si bilayer nanocoils have been developed, demonstrat ing 
their effectiveness for handling, structuring, and characterizing nanomateri-
als and nanostructures, and for assembling them into NEMS. An overview of 
NEMS made from individual nanotubes and nanocoils has been presented. 
A hybrid approach based on nanorobotic manipulation provides the possibil­
ity for in situ active property characterization, structuring and assembly of 
nanomaterials and nanostructures. The approach enables the construction of 
NEMS sensors and actuators and, eventually, nanorobots. 
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1 Introduction 

Parallel robots are nowadays leaving academic laboratories and are finding 
their way in an increasingly larger number of application fields such as tele­
scopes, fine positioning devices, fast packaging, machine-tool, medical appli­
cation. A key issue for such use is optimal design as performances of parallel 
robots are very sensitive to their dimensioning. Optimal design methodolo­
gies have to rely on kinetostatic performance indices and accuracy is clearly 
a key-issue for many applications. It has also be a key-issue for serial robots 
and consequently this problem has been extensively studied and various ac­
curacy indices have been defined. The results have been in general directly 
transposed to parallel robots. We will now review how well these indices are 
appropriate for parallel robots. 

2 Jacobian and Inverse Jacobian Matrix 

Let Xa denotes the generalized coordinates of the end-effector composed of 
parameters describing the available n d.o.f. of the end-effector while X de­
notes all the generalized coordinates of the end-effector. We will impose no 
constraints on the choice of X (e.g. for a Gough robot with a planar platform 
the pose may be represented by the 9 coordinates of 3 particular points on 
the end-effector). 

The geometry of the robot is described by its joints variables vector 0. 
The twist W of the end effector is composed of its translational and angular 
velocities and the restricted twist Wa is defined as the restriction of W to 
the available d.o.f. of the robot. It is well known that for robot having at 
least 2 rotational d.o.f. W is not the time-derivative of X as there is no 
representation of the orientation whose derivatives corresponds to the angular 
velocities. However there exists usually a matrix H such that 
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W = H X (1) 

In the usual approach the jacobian matr ix Jk hnearly relates the actuated 
joint velocities 0 a to W a i 

W a = J k B a (2) 

In this paper we consider only non-redundant robots so tha t matr ix Jk is 
square and we will call it the kinematic jacobian. A feature of parallel robots 
is tha t it is usually easy to establish an analytical form for J^^ while it is 
often impossible to obtain Jk-

But we may also define other jacobian matrices by first changing the pa­
rameters in 0. Indeed parallel robots differ from their serial counterpart by 
a larger number of passive joints and it may thus be interesting to include 
the m passive joints variables 0p. If 0 is defined as {0a, 0p) we may then 
define write the / inverse kinematics equations as F(6>,Xa) = 0 from which 
we derive 

OF • OF • 
^;^S + ^ ; ^ X a = U e + VaXa = 0 (3) 
00 o X a 

where U is (/ x (n + m)) and Va is {I x n). This relation allows to quantify 
the influence of the measurement errors on the passive and actuated joints 
variables on the positioning errors Z\Xa on the n d.o.f. of the end-effector by 
using (1). 

Although we say tha t some robot have n < 6 d.o.f., still the end-effector is 
a 6 d.o.f. rigid body and positioning errors on all d.o.f. should be examined. 
It is thus interesting to determine an inverse jacobian tha t involves the full 
twist W of the end-effector. In tha t case we write the kinematics equations 
as G(6) , X) = 0 . If we fix X we know tha t these kinematics equations have a 
finite number of solutions, which implies tha t the number of equations in G 
should be n + m. By differentiation we get: 

3C^ BO 
- 0 + - X = A 0 + B X = O (4) 

where A is a square n-\-mxn-\-m matr ix while B is n + m x 6. Provided tha t 
H is square and not singular we may now derive an inverse jacobian such tha t 

0 = - A - ^ B H - ^ W = J - ^ W (5) 

where J~^ is n + m x 6 In most cases however a velocity analysis allows one 
to obtain a simpler inverse jacobian matr ix through a relation tha t involves 
only 0a. 

o ' ) = J r k ' w (6) 

where J^^ is n + m x 6 and will be called the full inverse kinematics jacobian. 
We may further extend this approach to take into account the design 

parameters V of the robot (e.g. the location of the anchor points of the legs 
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in a Gough platform). For tha t purpose the kinematics equations will be 
writ ten as G ( P , 6 ) , X ) = 0 and the matr ix of the partial derivatives of G 
with respect to V will allow one to quantify the influence of the errors on V 
on the positioning error of the end-effector. 

As may be seen there is not a single inverse jacobian matr ix but a multi­
plicity of them. Note however an important property of the inverse jacobian 
J~^ of (5) with respect to J^^: the rank of J^^ is the same than the rank of 
j - i . 

It is also important to note tha t any inverse jacobian involving the full 
twist of the end-effector W will not be homogeneous in terms of units. This 
will be true also for the inverse kinematic jacobian for robot involving both 
translation and rotational d.o.f. for the end-effector. Consequently many ma­
trix properties (such as the trace, determinant) will not be invariant under a 
change of units. 

In this paper we will focus on the influence of A0a on the positioning 
errors of the end-effector through J^^. The necessity of using the full inverse 
kinematic jacobian will be emphasized on an example. 

2.1 Example : T h e 3 - UPU R o b o t 

Tsai [10] has proposed this robot as a 3 d.o.f. translation robot (figure 1). 
Each leg of this robot is constituted, start ing from the base, by a U joint 
followed by an extensible leg terminated by another U joint whose axis are 
the same than the U joint on the base. This constraint allows theoretically 
to obtain only translation for the end-effector. This example will allow us to 
establish a methodology for determining the full inverse kinematic jacobian. 
But it will also enable to show the importance of this matrix. The story is tha t 
such a robot was designed at Seoul National University (SNU) and tha t is was 

Fig. 1. The 3 - UPU robot 
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exhibiting a strange behavior: although the prismatic actuators were locked, 
the end-effector was exhibiting significant orientation motion. This phenom­
ena was explained by Bonev and Zlatanov [1] and later in [2, 11]. Furthermore 
motion sensitivity to manufacturing tolerances has been studied [5, 8] and has 
shown tha t this robot was very sensitive. 

We will denote by Bi,B2,Bs the center of the U joints on the platform 
and will now calculate the full inverse kinematic jacobian matrix. The velocity 
V B of the B points is V B = V + B C X f?. Let us define n as the unit vector 
of the leg and compute the dot product of the right and left terms of the 
previous equation: 

V B . n = pn = V . n + ( B C x r?) .n = V . n + ( C B x n) . r? (7) 

Now let us define Ui, Vi the unit vectors of the two joint axis of the U joint 
at Bi. These vectors are the same for the base and platform. The angular 
velocity of the leg oji with respect to the base and the angular velocity of the 
platform ojp with respect to the leg are 

LVi = 0\ui + d^Vi LVp = O^Ui + d'^Vi 

The angular velocity of the platform is 

where K\^K2 can be obtained from the previous equations. Now define ŝ  = 
Ui X Vi and compute the dot product of the right and left terms of the previous 
equation by Si: 

si .r? = o (8) 

Combining equations (7, 8) we get the full velocities equations involving the 
twist W as 

'oO=J-^=(o' lf^^'"^^)w (9) 
which establish the full inverse kinematic jacobian. The inverse kinematic 
jacobian may be extracted from J^^ as the 3 x 3 matr ix whose rows are the 
rii vectors. But an important point for accuracy analysis is to consider the 
lower par t of J^^ which shows tha t if Si.(s2 x S3) = 0 the platform may 
exhibit orientation motion tha t may be infinitesimal or finite according to the 
geometry of the U joint. It happens tha t the design of the SNU robot was in 
the later category. 

3 Manipulability 

It is realistic to assume tha t the joint errors are bounded and consequently so 
will be the positioning errors. The norm of the bound may be chosen arbitrary 
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as (6) is linear so tha t a simple scaling will allow to determine the positioning 
error from the errors obtained for a given bound. A value of 1 for the bound 
is usually chosen: 

\\A0\\ < 1 (10) 

which leads to 
A X ^ J - ^ J - ^ A X < 1 (11) 

A classical geometrical interpretation of this relation is presented for the 2D 
case in figure 2. If the Euclidean norm is used (10) represents a circle in the 
joints errors space. This circle is mapped through matr ix J~^J~^ into an 
ellipse in the generalized coordinates error space. More generally the mapping 
transform the hyper-sphere of the joints errors space into an ellipsoid, usually 
called the manipulability ellipsoid. 

In fact the use of the Euclidean norm is not realistic: it implies for exam­
ple tha t if one of the joint error is 1, then by some mysterious influence all 
the other joint errors are 0. The appropriate norm is the infinity norm tha t 
states tha t the absolute value of the joint errors are independently bounded 
by 1. With this norm (10) represents a n-dimensional square in the joints 
errors space tha t is mapped into the kinematics polyhedron, tha t includes the 
manipulability ellipsoid, in the generalized coordinates errors space. Figure 2 
illustrates this mapping in the 2D case. It must be noted that , apar t of be­
ing more realistic, the previous mapping leads to geometrical object tha t can 

Fig. 2. The mapping between the joints errors space and the generalized coordinates 
error space induced by J~^J according to the norm: on top the Euclidean norm and 
on bottom the infinity norm. 
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be more easily manipulated than the ellipsoid. For example assume that one 
want to determine what are all the possible end-effector velocities that can 
be obtained in 2 different poses of the end-effector. For that purpose we will 
have to calculate the intersection of the 2 polyhedra obtained for the 2 poses, 
a well known problem of computational geometry, that can be much more 
easily solved than computing the intersection of 2 ellipsoids. 

4 Condition Number 

A large dimension along a given axis of the kinematics polyhedron indicates a 
large amplification error. It is therefore necessary to quantify this amplification 
factor. Let us consider the linear system: 

J - M X = A0 , 

where J~^ is a n x n inverse kinematic jacobian matrix. The error amplification 
factor in this system expresses how a relative error in 0 gets multiplied and 
leads to a relative error in X. It characterize in some sense the dexterity of 
the robot and will be used as a performance index. We now use a norm such 
that 

| | J - M X | | < | | J - i | | | | Z \ X | | , 

and obtain 
" ^ ^ " " < i i j - i i i i j | . i i ^ ^ i 
IXII - \\0\ 

The error amplification factor, called the condition number n^ is therefore 
defined as 

/^(J-^) = | |J-^| | | |J | | . 

The condition number is thus dependent on the choice of the matrix norm. 
The most used norms are: 

• the 2-norm defined as the square root of the largest eigenvalue of matrix 
J~^J~^: the condition number of J~^ is thus the square root of the ratio 
between the largest and the smallest eigenvalues of J~^J~^, 

• the Euclidean (or Frobenius) norm defined for the m x n matrix A by: 

11̂ 11 — \Yl\Ji Yli^jJi l^uP o^ equivalently as ytr(A^\A): if Â  denotes 
the eigenvalues of J~^J~^, then the condition number is the ratio between 
Y^ Af and H K • Note that sometime is also used a weighted Frobenius norm 
in which A^A is substituted by A^WA where W is the weight matrix 

In these two cases, the smallest possible value of the condition number is 1. 
The inverse of the condition number, which has a value in [0,1], is also often 
used. A value of 0 will indicate that the inverse jacobian matrix is singular. 
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The condition number is quite often used as an index to describe first the 
accuracy/dexteri ty of a robot and, second, the closeness of a pose to a singu­
larity. For the later point it is in general not possible to define a mathematical 
distance to a singularity for robots whose d.o.f. is a mix between translation 
and orientation: hence the use of the condition number is as valid an index 
than any other one. But it has the advantage of being a single number for 
describing the overall kinematic behavior of a robot. 

The definition of the condition number makes clear tha t we cannot cal­
culate its analytical form as a function of the pose parameters except for 
very simple robot. But robust linear algebra software allows to calculate it 
numerically for a given pose. 

But for robot having both translation and orientation d.o.f. there is a ma­
jor drawback of the condition number: the matr ix involved in its calculation 
are not homogeneous in terms of units. Hence the value of the condition num­
ber for a given robot and pose will change according to the unit choice, while 
clearly the kinematic accuracy is constant. Ma and Angeles [6] suggested to 
define a normalized inverse jacobian matrix by dividing the rotational ele­
ments of the matr ix by a length such as the length of the links in a nominal 
position, or the natural length defined as tha t which minimizes the condition 
number for a given pose. Still the choice of the length remains arbi trary as it 
just allows to define a correspondence between a rotation and a translation 
and as mentioned by Park [9] " this arbitrariness is an unavoidable consequence 
of the geometry of SE(3)". 

To evaluate the efficiency of the condition number for accuracy evaluation 
we just use our Gough robot and chooses three reference poses defined by 
the coordinates of the center and the Euler angles as Pi=x = y = 0, z = 5 3 
cm, '0 = 0, ^ = 0, 0 = 0 (roughly the pose obtained for the mid-stroke of 
the actuator) , P2=x = y = 0, z = 5 3 cm, ip = 30°, 6* = 0, 0 = 0 (whose 
orientation is roughly 1/3 of the possible rotation around the z axis) and 
Ps=x = y = 10, z = 5 3 cm, '^ = 0, ^ = 0, 0 = 0.(close to the border of the 
translation workspace for this orientation). We then computed the absolute 
value of the maximal positioning error at these poses, obtained as the sum of 
the absolute value of the elements of the rows of the kinematic jacobian, as 
indicated in the following table. 

Pose 

Pi 
P2 
Ps 

^x. 
0.1184 
0.1189 
0.123 

AXy 
0.1268 
0.1274 
0.1309 

AX, 
0.010087 
0.01266 
0.0372 

^Xe^ 
0.1185 
0.1333 
0.15 

^Xe^ 
0.1184 
0.1429 
0.1663 

^Xe^ 
0.697 
0.808 
0.7208 

It can be seen in this table tha t the positioning errors are significantly 
larger for P2 and P3 compared to P i . As for P3 the errors are usually larger 
compared to P2 except for the rotation around z. Hence as far as accuracy 
is concerned the ordering of the poses from the most to the least accurate is 
P i , P2, P3 and we expect to obtain a similar ordering for the condition number. 
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For this robot we define tlie normalized inverse jacobian matr ix J~^ ob­
tained by dividing the orientation components of the J^ by 53 i.e. roughly 
the legs lengths at pose P i . The considered accuracy indices will be 

• Cd'. the determinant of J^ 
• C2, (̂ 2 :̂ the 2-norm condition number of Jj^^, J~^ 
• C F , C^: the Frobenius-norm condition number of Jj^^, J~^ 
• Cf, C| . : the 2-norm and Frobenius norm condition number of the inverse 

jacobian matr ix obtained when the inverse kinematics equations are based 
on the coordinates of 3 points of the end-effector. The chosen points will 
be all possible triplets in the set Bf. hence we will provide ranges for these 
indices. 

The results are presented in the following table: 

Pi 
P2 
P3 

Cd 

-29.22 
-24.64 
-23.93 

C2 

75.14 
75.16 
80.65 

cs 
63.9 
73.8 
68.4 

CF 

152.8 
154 
158.3 

70.2 
80.9 
74.7 

ci 
[9.55,55.47] 
[9.62,43.84] 
[10.06,58.95] 

C'F 
[258.8,3204.9] 
[218.8,2383.6] 
[286.5,3618] 

For C2 it may be seen tha t the difference is surprisingly very small between 
P i , P2 and significant between P3, P2. The ordering between P2, P3 is not 
respected for C2 , C^ although these indices are coherent when considering 
P i . For CF , Cd the ordering is respected although the changes in the index 
are relatively small for CF • On the other hand there is a surprisingly decrease 
of c f , C^ between P2 and Pi while there is a significant increase between P i 
and P3. Hence none of this condition numbers exhibits a completely coherent 
behavior with respect to the accuracy of this robot. 

This simple example shows clearly tha t the concept of condition number 
has to be carefully considered when talking about optimal design for robot. 

5 Isotropy 

An isotropic pose of a robot is defined as a pose where K, is equal to 1 and a 
robot which has only isotropic poses in its workspace is coined an isotropic 
robot. Designing an isotropic parallel robot is often considered as a design ob­
jective [3, 12]. A trivial example of isotropic robot is a serial Cartesian X-Y-Z 
robot whose kinematic jacobian matr ix is the identity. But this is a surprising 
denomination as stricto sensu isotropy indicates tha t the performances of a 
robot should be the same whatever is the motion direction. Now if we assume 
tha t all the actuator velocities of a X-Y-Z robot are bounded to 1, then the 
maximal velocity of the end-effector lie in the range [1, \/3]: as far as veloc­
ity is considered such robot is far from isotropy. Still the concept may have 
some interest: for example any Cartesian robot whose actuator axis are not 
mutually orthogonal will exhibit a ratio between its maximal velocities over 
its workspace tha t will be larger than \ / 3 - Hence, instead of using the name 
" isotropic robot" we may consider using the name " maximally regular robot". 
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6 Global Conditioning Index 

The condition number is a local indication for the dexterity of a robot. To 
evaluate the dexterity of a robot over a given workspace W Gosselin [4] has 
introduced the global conditioning index (GCI) as: 

which correspond to the average value of 1/K. Clearly this concept makes 
sense for the optimal design of robot for which the extremal and average 
value of any performance are important design factors. But apar t of the va­
lidity of the condition number tha t has been discussed in a previous section 
the problem with the GCI is its calculation. Clearly we cannot expect to ob­
tain its closed-form and we must rely on a numerical evaluation. The usual 
method is to sample the workspace using a regular grid, compute l/tZi at 
each node Ni and approximate the GCI as GCIa, the sum of the l/K,i divided 
by the number of nodes. This calculation may be computer intensive as its 
complexity is exponential with respect to the number of d.o.f. of the robot. 
Furthermore this method does not allow to get a bound on |GCI — GCIa|. To 
deal with this error problem it is sometimes assumed tha t if the result with m i 
sampling points is close to the result obtained with 1712 points, 1712 being sig­
nificantly larger than m i , then the later result is a good approximation of the 
index. This assumption will be true only if the condition number is smooth 
enough, a claim tha t is difficult to support . Consider for example a simple 
planar serial 2R robot: its GCI can be computed almost exactly as it depends 
only on a single parameter. We sample this parameter using 10, 20, . . . , m i , 
1712 = m i + 10 points and stop the calculation when the relative error between 
GCIa(mi) , GCIa(m2) is lower than 0.5% and assumes GCI ^ GCIa(m2). For 
m i = 50 the relative error is 0.377% while the relative error on the GCI is 
still 1.751%. It may be assumed tha t such error will even be larger for more 
complex robot. 

A better evaluation will probably be obtained by using Monte-Carlo in­
tegration (with an error tha t decreases as 1 /V^ where n is the number of 
sampling nodes) or quasi-Monte Carlo. In the previous example (which is not 
favorable for Monte-Carlo method as there is only one parameter) we found 
out tha t by using the same stop criteria the relative error on the GCI was 
reduced to 0.63%. A certified evaluation of the global conditioning index is 
therefore an open problem but nevertheless the calculation of such index will 
probably be computer intensive. 

7 Conclusion 

Classical dexterity indices such as the condition number are not very adequate 
for parallel robots. In our opinion the most appropriate accuracy indices are 
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the determination of the maximal positioning errors, their average values and 
their variance. We have presented in a recent paper a a computer intensive 
method for finding the largest maximal positioning errors, up to an arbi trary 
accuracy, of a 6 d.o.f. robot [7]. A real challenge is to design algorithms for 
calculating the average and variance of the maximal positioning errors over a 
given workspace. An important point is tha t there is no need to calculate these 
values exactly as soon as it is possible to impose a bound on the calculation 
error. Indeed for comparison purposes an approximate value with a guaranteed 
error will be sufficient. 
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1 Introduction 

The Simultaneous Localisation and Mapping (SLAM) problem remains a 
prominent area of research in the mobile robotics community. The ISRR sym­
posia have borne witness to marked progress of the field since its conception 
almost 20 years ago. This year, once again, the question "is the SLAM prob­
lem now solved?" was posed. Well the answer to that question probably lies in 
the definition of "solved". We still do not have the persistent SLAM-enabled 
machines that we strive for, so in that sense, perhaps it isn't solved, but we do 
have a firm understanding of the problem now. We do appreciate the limits of 
performance, we can handle uncertainties in a principled way and recognize 
the penalties for failing to do so. We also have several solutions to the scal­
ing problem that so dogged the field for several years. To these probabilistic 
frameworks we are able to attach any of several representational schemes to 
represent both maps and vehicle trajectories. We run these "solutions" on 
vehicles equipped with various sensors, cameras, radars, sonars and of course 
the ubiquitous laser range finder. 

One crucial missing component is that of operational robustness. Broadly, 
the issue can be split into two categories: firstly robustness in the face of er­
roneous manipulation and insufficient representations of the underlying pdfs 
and secondly robustness in presence of perceptual ambiguity. The later prob­
lem is receiving substantial attention under the guise of the "data association" 
and "loop closing" problems within the SLAM context. Failing to obtain per­
sistent, long-term SLAM deployments because of accumulating errors in pdf 
representations is, of course, a closely related problem (bad data association 
can be caused by incorrect probabilistic representations). A common, although 
not blanket, criticism of contemporary SLAM techniques is their lack of intro­
spection, they tend to be passive both in data acquisition and data processing. 
There seems to be a significant scope for planning, acting, and perceiving to 
aid the SLAM estimation process itself and be more pro-active in assessing 
the quality of the estimation results. 
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Perhaps the greatest challenges to contemporary SLAM techniques become 
clear when trying to apply them in the great outdoors. The benign, distinct 
surfaces of the flat indoor domain are no more, the world is now truly 3D 
and single-plane laser scanners are inadequate. The local scene is frequently 
orders of magnitude larger and may need multiple sensor modalities to access 
it - cameras, radar, 3D laser and in the underwater domain, beam-steerable 
sonars. Then there is the issue of performing SLAM in highly dynamic envi­
ronments that outdoor settings typically demand. The overwhelming majority 
of SLAM research has relied upon the static world assumption - with vary­
ing but typically small degrees of tolerance to scene dynamics. This begs the 
question how should a principled SLAM system cope with substantial and 
unexpected scene changes - how can it differentiate this from a catastrophic 
estimation failure? 

2 Summary of Papers Presented at ISRR 

The paper by Bowling et al. addresses the problem of localisation without an 
a-priori choice of representation or specification of process and observation 
models. The paper hinges on the concept of Action Respecting Embedding 
a technique similar to Local Linear Embedding, that learns a low dimension 
manifold within a high dimensional measurement input space. Crucially this 
operation preserves the local topology originally present when the measure­
ment sequence was gathered. While not addressing the SLAM problem in 
a familiar way, the paper does illustrate the opportunities that techniques 
being established in the machine learning domain offer the SLAM research 
community. 

The paper by Wang et al. is a presentation of decoupling in SLAM. Tra­
ditionally there is a correlation between robot motion and sensory readings 
which results in a correlation of all data in a SLAM model. The correlation 
results in an overall complexity of SLAM which is 0(A^^), where N is the 
number of map features. Various approaches to address the scalability prob­
lem have presented in the literature, including the C-EKF by Nebot et al 
[3], FastSLAM by Montemerlo [2] and the Atlas framework by Bosse et al 
[4]. In this paper it is demonstrated how a careful relative formulation of the 
problem, combined with the information filter framework allows decoupling of 
mapping and localisation — providing a SLAM algorithm with good scaling 
properties that still allows each feature estimate to be improved with each 
observation. 

Another approach which addresses the scaling problem is presented by 
Walter et al. The paper again uses the information formulation of the SLAM 
problem and, like the SEIF proposal [1] manages the scaling problem by main­
taining an active set of features with substantial correlations to the vehicle. 
The suggestion here is to use the act of deleting and re-initialising the vehi­
cle states to create and manage this active subset of features in a consistent 
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fashion. The paper analyses the new proposal (ESEIF) and compares it to 
the SEIF formulation concluding with a side by side comparison of the two 
algorithms working on two well known data sets. 

3 Wrap-Up 

So it seems tha t while it is indisputable tha t the state of the art SLAM has 
moved on substantially over the past decade there is still interest research 
going on, much to do and many interesting questions left un-answered. It is 
not a solved problem but we do know what questions we should be asking. 
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Summary. Robot locahzation is the problem of how to estimate a robot's pose within an ob­
jective frame of reference. Traditional localization requires knowledge of two key conditional 
probabilities: the motion and sensor models. These models depend critically on the specific 
robot as well as its environment. Building these models can be time-consuming, manually 
intensive, and can require expert intuitions. However, the models are necessary for the robot 
to relate its own subjective view of sensors and motors to the robot's objective pose. In this 
paper we seek to remove the need for human provided models. We introduce a technique for 
subjective localization, relaxing the requirement that the robot localize within a global frame 
of reference. Using an algorithm for action-respecting non-linear dimensionality reduction, 
we learn a subjective representation of pose from a stream of actions and sensations. We then 
extract from the data natural motion and sensor models defined for this new representation. 
Monte Carlo localization is used to track this representation of the robot's pose while execut­
ing new actions and receiving new sensor readings. We evaluate the technique in a synthetic 
image manipulation domain and with a mobile robot using vision and laser sensors. 

1 Introduction 
A key problem in mobile robotics is localization: estimating a robot's pose while it 
moves and senses in the world. Knowledge of a robot's position in its environment 
is one of the most basic requirements for many autonomous tasks. The majority of 
localization techniques focus on objective localization, where the pose is estimated 
in terms of a human defined global frame of reference. For example, pose may be 
defined as the position and orientation on a two-dimensional Cartesian map with 
units in meters. In this paper, we seek to relax this notion of localization. 

One of the most successful approaches to objective localization uses probabili­
ties to model all aspects of a robot's uncertainty, including the current pose estimate, 
the effect of actions, and the information provided by sensors. Rules of probabilistic 
inference can then be applied in a straightforward fashion to maintain an estimate 
of the robot's location. Approaches of this type often restrict the form of the models 
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(e.g., Gaussian distributions in Kalman filters [Kal60]) or use various approximation 
techniques (e.g., sampHng in Monte Carlo localization [FBDT99]), to allow infer­
ence, and thus localization, to be computationally feasible. 

A key prerequisite for all probabilistic approaches are models of the uncertainty 
in the robot's motion and sensors. Classical kinematics defines the expected global 
motion of the robot when a particular control is applied to it. But kinematics requires 
many assumptions in its deterministic calculations (e.g., infinite friction) that do not 
hold in practice. Hence, robot motion is uncertain. Likewise, there are many uncon­
trollable and unpredictable factors (e.g., acoustic reflectance of a surface with sonar, 
or ambient lighting with vision) that effect readings from sensors. Hence, robot sens­
ing is also uncertain. Probabilistic models of these uncertainties form the basis for 
inference (which drives the localization). Unfortunately, these models are often not 
easy to build. They can require extensive knowledge of the robot's kinematics or sen­
sors, which may not be known or easily described. They may require time-consuming 
manual measurements to estimate characteristics of noise or to build a map of sensor 
readings over the environment. Finally, by definition, a well constructed model must 
be specific to the particular hardware used. Modifying the robot platform invalidates 
these laboriously constructed models and new models must be created. For example, 
changing from a wheeled robot to a legged robot obviously invalidates the motion 
model. Changing from a sonar to a laser, or from a laser to a camera will require 
replacement of the sensor model. Even minor changes, such as inflating the tires 
on the robot, or replacing its camera with one of a different model, will require ex­
pert modifications to the various models. Recent work has examined techniques for 
automatically calibrating some of these models (e.g., [RT99], [MTKW02], [EP04], 
[SS05]), but no current method exits to calibrate these models for objective localiza­
tion without considerable expert knowledge."^ 

This paper examines the problem of subjective localization. We relax the require­
ment that the robot must estimate its pose in terms of a global frame of reference. 
Instead, the choice of representation is left as part of the localization problem. This 
relaxation allows the robot to learn both motion and sensor models as the models 
can be defined purely in terms of its own subjective motor and sensor values. Al­
though objective localization may be necessary for certain tasks, not all tasks require 
knowledge of an objective position. Delivery tasks, for example, need only recognize 
location with respect to locations visited in the past. A robot can be given a guided 
tour of its environment ("getting its bearings") and informed of salient locations 
along the tour which can then be labeled in its subjective map. 

The problem of subjective localization will be tackled with a four-step process. 
We first gather data of the robot moving and sensing in its world. We then use this 
data to learn both an appropriate frame of reference for localization as well as the ac­
tual trajectory the robot followed during the data gathering. We then learn motion and 

^ Special mention should be made of the work of Stronger and Stone [SS05], which learns 
motion and sensor models starting with only an inaccurate motion model. Their approach 
is still quite knowledge intensive, using a human-defined preprocessing step to simplify the 
complex image sensor down to a single estimate of distance to a beacon. 
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sensor models in this frame of reference from the training data and the learned tra­
jectory. Finally, we incorporate these models into Monte Carlo Localization (MCL), 
a probabilistic localization technique. The cornerstone of this approach is extracting 
a subjective frame of reference from a trace of sensorimotor data. This is solved with 
Action Respecting Embedding (ARE) [BGW05], a technique for non-linear dimen­
sionality reduction which finds low-dimensional descriptions of the robot's pose in a 
frame where actions correspond to simple transformations. 

The rest of this paper is organized as follows. Section 2 provides an overview 
of Monte Carlo localization. Section 3 summarizes the Action Respecting Embed­
ding algorithm, which extracts the subjective representation. Section 4 describes the 
learning of motion and sensor models in this new frame of reference, which can then 
be used in MCL. Section 5 demonstrates the effectiveness of this approach, both in 
a synthetic image manipulation domain and with a mobile robot using first a camera 
and then a laser as the primary sensor. Section 6 concludes. 

2 Monte Carlo Localization 
Monte Carlo Localization (MCL) [FBDT99] is a method for estimating the poste­
rior distribution of the robot's pose conditioned on the robot's actions and sensor 
readings. It relies on the Markovian assumption that the past and the future are con­
ditionally independent given the present. MCL is an implementation of a recursive 
Bayes filter. If Xt is the location at time t, Zt is the sensor data at time t, and Ut is the 
motion data at time t then the posterior distribution becomes: 

Bel(xt) =p{xt\zT,UT) (1) 

where ZT = z i , . . . , Zt and, similarly, UT = ixi , . . . , Ut-i. For objective localiza­
tion the sensor data is usually in the form of range data, such as laser range-finder 
readings, however any type of sensor for which the proper kind of model exists is 
admissible. The motion data is usually the report from the robot's odometers, but 
again, any data with an appropriate model will satisfy the equation. 

For a recursive Bayes' filter, a recursive formula is necessary, so Equation 1 is 
converted, using a combination of Bayes' rule and the Markovian assumption, into: 

Bel{xt) = {1/Z)p{zt\xt) / p{xt\xt-i,Ut)Bel{xt-i) dxt-i, (2) 

where Z is a normalization term. p{xt\ut^Xt-i) is called the motion model, the 
probability of a resulting pose given a starting pose and an action. p{zt\xt) is called 
the sensor model, the probability of receiving a particular sensor reading given the 
robot's pose. If these two models exist then MCL can be performed. 

Unfortunately, virtually all robots operate in a continuous space, so the integral 
in Equation 2 is impossible to compute directly. In order to solve the problem, MCL 
approximates the continuous space with a finite set of samples or "particles". At 
each time-step the set of samples is moved probabilistically according to the mo­
tion model. The samples are then annotated with a weight determined by the sensor 
model. The weight of each sample is the probability of receiving the observed sensor 
reading given that the robot is at the location represented by the particle. Finally, the 
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particles are resampled according to their weight. ResampHng generates the new set 
of samples by choosing a particle with probability proportional to its weight with 
replacement. Although MCL is obviously only correct as the number of samples 
approaches infinity, it is often accurate for a relatively small number of samples. 

MCL is a common technique for objective localization, where the motion model 
and sensor model are constructed by hand or through experimentation. It can be used 
equally well for subjective localization if one has appropriate motion and sensor 
models in a subjective frame of reference. Section 3 deals with finding such a frame 
of reference, while Section 4 details the learning of the required models. 

3 Action Respecting Embedding 
High-dimensional data sets, such as a sequence of images or scans from a laser range-
finder, can usually be characterized by a low-dimensional representation that is re­
lated to the process generating the data. For example, one low-dimensional repre­
sentation for image data might correspond to the degrees of freedom of the platform 
moving the camera which gathered the data. Such a low-dimensional representation 
of the sensor readings might be an ideal frame of reference for subjective localiza­
tion. The goal, then, is to take a temporal sequence of sensor readings z i , . . . , z^ with 
associated control actions, 1x2, • • •, ^n, and find a low-dimensional representation for 
z i , . . . , z^ that would be appropriate for localization. 

Recently, non-linear manifold-learning techniques have been used to map high-
dimensional datasets, such as sensor readings, into smaller dimensional spaces. 
Semidefinite Embedding (SDE) [WS04] is one such technique. SDE learns a ker­
nel matrix, which represents a non-linear projection of the input data into a more 
linear representation. It then uses Kernel PC A [SS02], a generalization of princi­
ple components analysis to feature spaces represented by kernels, to extract out a 
low-dimensional representation of the data. The kernel matrix, K, is learned in SDE 
by solving a semidefinite program with a simple set of constraints. The most impor­
tant constraints encode the common requirement in dimensionality reduction that the 
non-linear embedding should preserve local distances. In other words, nearby points 
in the original input space should remain nearby in the resulting feature representa­
tion. Therefore, SDE requires a distance metric 11 • 11 on the original input space, and 
uses this metric to construct a /c-nearest neighbors graph. It then adds constraints into 
the semidefinite program to ensure that the distance between neighbors is preserved. 
The optimization maximizes the trace of K, i.e., the variance of the learned feature 
representation, which should minimize its dimensionality. 

SDE, though, ignores two important pieces of knowledge about our data: the 
temporal ordering of the input vectors Zi, and the action labels Ui. Therefore, SDE 
doesn't require temporally nearby input points to be spatially nearby in the feature 
representation. Also, SDE won't enforce the extracted space to be one where the 
robot's actions have a simple interpretation. The recent Action Respecting Embed­
ding (ARE) algorithm uses the aforementioned knowledge to address these issues. 

Formally, ARE takes a set of I^-dimensional input vectors, z i , . . . , z^ (i.e., sen­
sor readings, in temporal order) along with associated discrete actions 1x1,..., Un-i 
(where action Ui was executed between input Zi and input z^+i), and computes a 
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set of d-dimensional output vectors x i , . . . , x^ in one-to-one correspondence with 
the input vectors that provide a meaningful embedding in d < D dimensions. ARE 
is similar to SDE but extends it in two key ways. First, it exploits the knowledge 
that the sensor readings are given in a temporal sequence by building an improved 
neighborhood graph based on each input's distances to its temporal neighbors using 
an arbitrary local distance metric^. Second, it constrains the embedding to respect 
the action labels that are associated with adjacent pairs of observations. This ensures 
that the actions have a simple interpretation in the resulting feature space. 

This second enhancement of ARE is the critical feature for subjective localiza­
tion. ARE constrains the learned manifold to be a space where the actions correspond 
to transformations consisting only of rotation and translation in that space^—in other 
words, every action is required to be a distance-preserving transformation for all in­
puts in the learned feature space. Letting ^{zi) denote input z^'s representation in 
this learned feature space, we require ix's transformation, fu, to satisfy: 

Now, let u = Ui = Uj, so fu{^{zi)) = ^(^^+i) and fu{^{zj)) = ^ ( ^ j+ i ) . Hence, 
constraint 3 becomes: 

mzi+^)-$iz^+^)\\ = mzi)-$iz^)\\. (4) 

In terms of the kernel matrix, this can be written as: 

\/iJ Ui = Uj => K(^+i)(^+i) - 2K(^+i)(^-+i) + KQ-+I )Q-+I ) 

= Kii-2Kij^Kjj. (5) 

Add constraint 5 to the SDE optimization problem to get the ARE algorithm shown 
in Table 1. 

Table 1. Algorithm: Action Respecting Embedding (ARE). 

Algorithm: ARE(|| • ||, (^i,... ,Zn), {u2,... ,Un)) 

Construct neighbor graph, N, according to [BGW05]. 

MaximizeTY(K) subject toKyO, Y... Kij = 0, 
Vij Nij > 0 V [N^N]ij > 0 ^ 

Kii - 2Kij + Kjj < \\zi - ZjW^ , and 

Run Kernel PCA with learned kernel, K, 

5 We have found that ARE is fairly robust to the choice of distance metrics, and use simple 
Euclidean distance for all of the experiments in this paper. 
Notice this is not requiring the actions in the objective space to be rotations and translations, 
since ARE is learning a non-linear feature representation. 
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4 Subjective Localization 
Recall that the subjective localization problem involves both determining an appro­
priate subjective frame of reference for localization and then tracking the robot's 
position in that representation. In the work presented in this paper, ARE is used to 
learn the frame of reference. A completely unsupervised stream of data from a robot 
acting in the world (consisting of a stream of sensor readings, z i , . . . , z^, and associ­
ated actions, ixi , . . . , Un-i, which are elements of some set of discrete actions) will 
be used as input to ARE in order to learn an appropriate subjective representation. 

In order to perform localization with this representation, a motion model and 
sensor model must be computed. ARE, though, provides more than just a coordinate 
system. It also provides the actual d-dimensional embedded points, x i , . . . , x^, that 
correspond to the trajectory the robot followed in the data-gathering phase. This 
trajectory—along with the robot's sensations, z i , . . . , z^, and actions, ixi , . . . , Un— 
can be used to learn the models from the training data. Both models will be learned 
in a similar fashion. We will first estimate the expectation of the model and then use 
the error to estimate a noise component. We begin with the motion model. 

4.1 Motion Model 

The motion model is the posterior distribution p{xt\ut^ Xt-i). Since this model will 
be used in a particle filter, it is only necessary to be able to draw a sample, x, from 
the model, given a Ut and Xt-i, i.e.: 

X r^ p{Xt\Ut,Xt-l). 

First, separate the model into an expectation plus a noise component. 

X ^ E{xt\ut,xt-i) ^r]{xt\ut,xt-i) 

Now make the simplifying assumption that the noise depends only on the action and 
not on the previous pose. This gives the form: 

X r^ E{xt\ut,xt-i) ^r]{xt\ut) (6) 

We can now learn the model by learning the expectation component, then using the 
sample errors to estimate the noise component. 

Consider some action u. Every t where Ut = u gives one sample, Xt and Xt-i, 
from the distribution p{xt\u^Xt-i). Using these sample points, a function of Xf-i 
is desired that gives a close estimate of Xf. ARE explicitly includes constraints that 
ensure such a function exists and is a simple rotation plus a translation in the learned 
representation. We can recover these functions by solving an optimization problem 
to find the corresponding rotation matrix Au and translation vector bu such that 
fu{x) = AuX + bu. Formally, 

Min J2t,u,=u I \^uXt-i ^bu-xtW^ s.t. A^Au = I (i.e., A is a rotation) 

This problem is similar to the extended orthonormal Procrustes problem [SC70] and 
has a closed form solution. Let Xu be a matrix whose columns are Xt-i for all t 
such that Ut = u, and let Yu be a matrix whose columns are Xt for the same t. The 
following is the solution to this optimization problem: 
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An = VW^ where VSW^ = svd (Y^ ( ^ " ^ ) ^ ^ ) ^^^ 

bu = {Yu - AuXufe/d, (8) 

where svd(-) is the singular value decomposition and e is a column vector with d 
ones. Now the expected motion can be defined as: 

E{xt\ut,xt-i) = Au.xt-i^but. (9) 

Since we only included the top d principal components of the output of ARE, 
this model of the expected motion won't be exact. The errors in the learned transfor­
mation can be used to build a model of the motion noise. Consider again some action 
u, let ^t be the residual error for action u on Xt'. 

Ct = AuXt-i ^bu-xt where ^ 6 = 0-
t:ut=u 

The motion noise can be modeled as a zero-mean multivariate Gaussian, where the 
covariance matrix can be estimated directly from the samples ^f Formally: 

r]{xt\ut)^N{0,UuJ, (10) 

where: 

t:ut=u 

Combining Equations 6, 9, and 10 gives the complete motion model. 

4.2 Sensor Model 

The sensor model is the probability distribution p{zt\xt). In the context of a parti­
cle filter, the density of the distribution at Zt must be provided for a given Xt. In 
estimating this model from the data a few assumptions must be made. Notice that 
ARE doesn't take the images directly as its input, but rather uses an image's dis­
tance to every other image as a kind of feature representation. We will use the same 
representation for new observations, computing a feature vector: 

zt{i) = \\zt- Zi\\ \Ji = l...n. 

The best way to view this feature vector is that it provides a crude estimate of the 
"distance" of the robot's pose to the previous poses, x i , . . . , x^. The additional as­
sumption is required that each of the components of the feature vector are inde­
pendently distributed^. That is, each is an independent estimate of the "distance" to 
a past pose. The final assumption is that this probability only depends upon the dis­
tance to the specific past pose in the subjective representation^, i.e., | |xt — x^ 11. These 
assumptions combine to give the following form for the model. Let du = | |xt — x^ 11: 

^ This assumption, while almost certainly incorrect, is similar to the common MCL assump­
tion (often necessary for tractability) that sensor readings are independent. 

^ This is not an unreasonable assumption, since ARE expHcitly constrains distances in the 
subjective representation | |xi — x^ 11 by observed image distances | |zi — ẑ  11. 
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p{zt\xt)=p{zt\xt) = n^=^p{zt{i)\xt) = n^=^p{zS^^^^ (11) 
Now to estimate a Gaussian model for the conditional random variable Zt{i)\dti. 

Consider again the training trajectory, each Xt gives one sample for this joint distribu­
tion: Zt{i) and du. To build a Gaussian model, for each landmark, i, use regression 
to fit a low-degree polynomial determining the distribution mean as a function of 
distance (/i^(dt^))^. Then take the mean of the squared errors to estimate distribution 
variance {(J^). This gives the following Gaussian density function: 

Zt{i)\du^N{^,{du),aJ). (12) 

Combining Equations 11 and 12 gives the sensor model. 

4.3 Using the Models 

The final step of the technique is to use the motion and sensor models with Monte 
Carlo localization to track the robot's position in the learned subjective space. The 
only detail left to be addressed is the initial distribution for localization. Since we 
processed the data after a single training run, we know our exact position in the 
subjective representation, Xn- All the samples in MCE are initialized to this point. 

In the end, the subjective localization procedure has three configurable parame­
ters: the dimensionality of the subjective representation, d, the degree of polynomial 
used in the sensor model, and the number of particles used by MCE. Overall, the pro­
cedure has a small number of parameters and, as seen in the next section, can actually 
localize in a number of different situations with a variety of parameter settings. 

5 Results 
Here, the algorithm from Section 4 is applied to two different domains. The first is 
IMAGEBOT a synthetic image manipulation domain. The second is a mobile robot, 
demonstrating localization with first a camera, then a laser range-finder as the pri­
mary sensor. First the domains are described followed by the experiments with the 
results of localization. Then a measure of accuracy is presented that is appropriate 
for subjective localization, showing accuracy across a variety of experiments. Finally, 
we show the robustness of the algorithm to the choice of its few parameters. 

5.1 The Domains 

We explored subjective localization in two different domains. 

Image based (IMAGEBOT). 

Given an image, imagine a virtual robot that observes a small patch on that image and 
takes actions to move this patch around the larger image. This "image robot" provides 
an excellent domain in which subjective localization can be rigorously tested while 
having obvious corollaries to mobile robotics. 

For these experiments, IMAGEBOT will always be viewing a 100 by 100 patch 
of a 2048 by 1536 image. All the experiments use the image from Figure 1. IMAGE­
BOT has four translation actions and two zoom actions. The allowed translations are 
forward, backward, left and right, each by 25 pixels. The zoom changes the scale of 

^ This is very similar to the sensor model construction by Stronger and Stone [SS05]. 
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the underlying image by a factor of 2^/^ or 2~^/^. Since we are interested in noisy 
actions, zero-mean Gaussian noise is added to the magnitude of the change of any of 
the actions with a standard deviation of one-tenth of the mean change. 

Fig. 1. IMAGEBOT'S world. Fig. 2. A 45-action IMAGEBOT trajectory. 

Mobile Robot. 

Experiments were performed on an ActivMedia Pioneer 3 DX8 robot equipped with 
an ordinary web camera and a laser range-finder. A series of predefined actions were 
used to move the robot up and down a a corridor with data being collected after 
each action. Additionally, after each action was performed the robot's position was 
manually measured to discover actual error. We performed experiments using the 
camera as the only sensor, then using the laser as the only sensor. 

5.2 Experiments 

In all experiments, a dataset is gathered by executing a sequence of actions and re­
ceiving the associated sequence of sensor readings. After each action, measurement 
of objective location is taken—used later to compute a measure of accuracy. The 
sequence is split into two sets, training and test. The training set is used by ARE 
to extract a subjective representation and associated trajectory. Motion and sensor 
models are learned as described in Section 4. Finally, the models are used in MCL 
to localize given the test set. The mean of the particles after every given action and 
observation is used as the estimated position in the subjective frame of reference. 

In order to extract a model of noise, the training data needs to contain examples 
of executing the same action from approximately the same location. Since the points 
after taking this action will be in various locations, the noise of the motion model 
can then be reconstructed. Therefore, each dataset begins by taking repeated short 
sequences of actions (such as going forward three steps then backward three steps), 
ensuring the training data includes a representation of noise in the robot's actions. 

Image Based ( I M A G E B O T ) . 

In the I M A G E B O T domain three different paths were examined, each path was gen­
erated three times, each different due to noise. The first path was a simple line, where 
I M A G E B O T executed forward and backward actions. The second was an "A" shaped 
path using forward, backward, left, and right (an example of this trajectory is shown 
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Figure 2). The last was the same "A" shaped path where the right and left actions 
were replaced by zoom-in and zoom-out actions, respectively. In all cases, the test 
data involved retracing IMAGEBOT'S steps back over its path. This involves different 
observations, though, as the actions are noisy. 

Figure 3 shows an example "A" shaped path (the 'A" is tilted to the right) in 
objective coordinates. The dotted line shows the training data with the trajectory 
starting in the upper left. The solid line shows the test data, a reversed 'A" starting 
from the bottom left. Note that noise prevents the two paths from exactly lining up. 

X — ^ — ^ — ^ — ^ — . 
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X "" "̂  """""" 
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Fig. 3. IMAGEBOT'S "A" shaped trajectory in Fig. 4. Subjective locaHzation on the "A" 
objective coordinates. The dotted line is the trajectory. Dotted line is ARE's trajectory 
training data, the soHd line is the test data. on training data, soHd Hue is predicted lo­

cation using MCL on test data. 

Figure 4 shows the results of using the data from Figure 3 with our subjective 
localization technique. The dotted line shows the trajectory that resulted from run­
ning ARE on the training data in the learned frame of reference. The solid line is the 
predicted points from MCL while receiving images and actions from the test data. 
The circled cloud of points point shows the set of 100 particles in MCL at that point 
in the trajectory. The learned trajectory corresponds strongly with the objective tra­
jectory, and the localized trajectory follows along appropriately. In the next section 
we investigate a quantitative measure of localization accuracy showing the results on 
this and the other trajectories. 

Mobile Robot. 

There was one simple path studied with the Pioneer robot, but two experiments were 
performed with it. In the first, observations were 160x120 pixel images from the 
camera. In the second, observations were the 180 distance estimates from the laser 
range-finder. Training and test paths were the same as the first path of IMAGEBOT: 

a simple forward and backward trajectory. Figure 5 shows the consecutive images 
taken as the robot traversed this path. The top row (left to right) shows images as 
the robot moves forward down its path. The bottom row (right to left) shows the 
continuation of the trajectory as the robot moves back up the path. 

Figure 6 shows ARE's learned trajectory (dotted line) and the predicted trajec­
tory from localization on the test set (solid line) using the camera as sensor input. 
The objective space corresponds to a single primary dimension, and the trajectories 
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Fig. 5. Images gathered from the robot moving forward (top) then backward (bottom). 

correctly capture this as the x dimension in the plot. The learned and predicted tra­
jectories look qualitatively similar when the laser is used as sensor input and so are 
not shown here. 

Fig. 6. Subjective locaHzation of the robot using the camera. Dotted line is ARE's trajectory 
on training data, solid line is predicted location using MCL on test data. 

5.3 Accuracy 

Accuracy is a measure for evaluating localization performance. In objective localiza­
tion, this amounts to comparing the predicted position to hand-measured objective 
positions and reporting the mean error. For subjective localization, this is not pos­
sible as the robot's location is only known in a subjective frame of reference. This 
makes it difficult to measure the accuracy of an algorithm. As mentioned in the intro­
duction, one use for a subjective representation is for recognizing locations visited 
in the past. In particular, a new position in the subjective frame of reference can be 
compared to previous training points. Distance in the subjective space can be used to 
estimate which training point we expect to be closest to in objective space. 

A method for evaluating subjective localization now becomes clear. For a given 
predicted subjective location, find the closest point in the training data to this lo­
cation and consider this an objective prediction. The error is simply the distance in 
objective coordinates between the robot's true (measured) location and this predic­
tion from the training set. This gives a measure of accuracy in objective terms (Note, 
it is generally impossible to achieve zero error). For comparison, an oracle score can 
also be computed. Look at the actual objective positions of each point in the test data 
and determine the closest training point, using this distance as the oracle error. Any 
measure of accuracy can be compared to this oracle's accuracy. As another baseline, 
compute the error of a random subjective localization algorithm that chooses a ran­
dom training point as the prediction of its location. These two baselines, oracle and 
random, can be used to evaluate the accuracy of any subjective localization method. 

Table 2 shows the accuracy results for all three paths in I M A G E B O T averaged 
over three datasets each with ten complete runs of MCL. Table 3 shows the accuracy 
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results for both camera and laser-based robot experiments, averaged over ten com­
plete runs of MCL. In I M A G E B O T , the accuracies are within approximately 10 pixels, 
a vast improvement over the random baseline and not far from the oracle's accuracy. 
With the mobile robot, the accuracy with the camera is approximately 150mm, an or­
der of magnitude improvement over random and about an order of magnitude behind 
the oracle performance. The performance with the laser range-finder is not quite as 
strong, but still demonstrates effective localization. 

Table 2. IMAGEBOT accuracy. Table 3. Mobile robot accuracy. 

Straight line 
"A" with translation 
"A" with zoom 

Mean Error (Pixels) 
Oracle 

4.82 
3.62 
1.71 

ARE 
10.39 
14.81 
19.58 

Random 
86.83 

104.56 
84.67 

Robot with camera 
Robot with laser 

Mean Error (mm) 
Oracle 
14.25 
16.25 

ARE 
149.10 
287.93 

Random 
1482.83 
1450.50 

5.4 Robustness 

Finally, we consider the robustness of this technique. The results in the previous 
section demonstrate one aspect of robustness—the ability to subjectively localize in 
two very different domains. Even more compelling, the primary sensor was switched 
from camera to laser and the robot was still able to successfully localize. The algo­
rithm, entirely unchanged, found a new subjective representation, and new motion 
and sensor models without requiring time-consuming manual creation of these new 
models. 

Parameters. 

Another aspect is the robustness of the algorithm to the setting of its various param­
eters. There was no tuning of the parameters for any of the results presented here. 
All results used simple Euclidean distance as ARE's local distance metric over ob­
servations. All used a degree three polynomial when computing the sensor model. 
The final two parameters are the choice of the number of dimensions d in the sub­
jective representation and the number of particles used in MCL. Varying the choice 
of d from two to eight dimensions in the I M A G E B O T line example affects the re­
sulting accuracy by no more than 2 pixels. Varying the number of particles used in 
MCL from 50 to 500 caused no difference in the resulting trajectories. In summary, 
the presented technique has surprisingly few parameters and is quite robust to their 
choice. 

Leaving the Map. 

As a final consideration of robustness, an I M A G E B O T trajectory was examined where 
the test data included objective locations far outside the gathered training data. This 
means that the synthetic robot left its map for portions of its trajectory. The accuracy 
measure on the trajectory, averaged over ten runs, was 57 pixels, where the oracle 
was 37, and random was 158. The high errors for all techniques is due to the fact 
that for many test points no point in the training data was objectively close. Despite 
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this, the subjective localization based on ARE continues to perform only marginally 
worse than the oracle. 

6 Conclusion 
In summary we examined the problem of subjective localization, where the algorithm 
can choose an appropriate frame of reference in which to localize. We proposed a 
technique for solving this problem by (i) extracting a subjective representation from 
training data using Action Respecting Embedding, (ii) learning a motion model and 
sensor model for this representation, and (iii) using these models with Monte Carlo 
localization to track the robot's location in the subjective frame of reference. We 
evaluated this technique in both a synthetic image manipulation domain and with 
a mobile robot. The algorithm successfully extracted subjective representations and 
localized on new test data with substantial accuracy. These results were consistent, 
with no changes to the algorithm, across a variety of different experiments, including 
changing the robot's primary sensor from camera to laser. We also showed that the 
algorithm was robust to the few parameters that it depends upon. 

References 
[BGW05] Michael Bowling, Ali Ghodsi, and Dana Wilkinson. Action respecting embed­

ding. In Proceedings of the Twenty-Second International Conference on Machine 
Learning, pages 65-72, 2005. 

[EP04] Austin 1. Eliazar and Ronald Parr. Learning probabilistic motion models for mo­
bile robots. In Proceedings of the Twenty-First International Conference on Ma­
chine Learning. ACM Press, 2004. 

[FBDT99] D. Fox, W. Burgard, R Dellaert, and S. Thmn. Monte carlo locaHzation: Efficient 
position estimation for mobile robots. In Proceedings of the Sixteenth National 
Conference on Artificial Intelligence, 1999. 

[Kal60] R. E. Kalman. A new approach to linear filtering and prediction problems. Journal 
of Basis Engineering, pages 35-45, 1960. 

[MTKW02] Michael Montemerio, Sebastian Thmn, Koller Koller, and Ben Wegbreit. Fast-
SLAM: A factored solution to the simultaneous localization and mapping prob­
lem. In Proceedings of the Eighteenth National Conference on Artificial Intelli­
gence, pages 593-598, 2002. 

[RT99] Nicholas Roy and Sebastian Thmn. Online self-calibration for mobile robots. In 
Proceedings of the IEEE International Conference on Robotics and Automation, 
1999. 

[SC70] P. H. Schoenemann and R. Carroll. Fitting one matrix to another choice of a 
central dilation and a rigid motion. Psychometrika, 35:245-255, 1970. 

[SS02] B. Scholkopf and A. Smola. Learning with Kernels. MIT Press, 2002. 
[SS05] Daniel Stronger and Peter Stone. Simultaneous calibration of action and sensor 

models on a mobile robot. In Proceedings of the IEEE International Conference 
on Robotics and Automation, 2005. 

[WS04] K. Weinberger and L. Saul. Unsupervised learning of image manifolds by 
semidefinite programing. In Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, pages 988-995, 2004. 



D-SLAM: Decoupled Localization and Mapping for 
Autonomous Robots 

Zhan Wang, Shoudong Huang, and Gamini Dissanayake 

ARC Centre of Excellence for Autonomous Systems (CAS) 
Faculty of Engineering, University of Technology, Sydney, Australia 
{zwang,sdhuang,gdissa}@eng.uts.edu.au 

Summary. The main contribution of this paper is the reformulation of the simultaneous 
localization and mapping (SLAM) problem for mobile robots such that the mapping and 
localization can be treated as two concurrent yet separated processes: D-SLAM (decoupled 
SLAM). It is shown that SLAM can be decoupled into solving a non-linear static estimation 
problem for mapping and a low-dimensional dynamic estimation problem for localization. The 
mapping problem can be solved using an Extended Information Filter where the information 
matrix is shown to be exactly sparse. A significant saving in the computational effort can 
be achieved for large scale problems by exploiting the special properties of sparse matrices. 
An important feature of D-SLAM is that the correlation among landmarks are still kept and 
it is demonstrated that the uncertainty of the map landmarks monotonically decrease. The 
algorithm is illustrated through computer simulations and experiments. 

1 Introduction 

Simultaneous localization and mapping (SLAM) has been the subject of extensive 
research in the past few years with a number of robotics research groups contributing 
to make substantial progress in this area (see for example, [1], [2], [3], [4], [5],[6], [7] 
and the references therein). Traditionally, SLAM uses a state vector incorporating the 
location of the robot, all the landmarks and maintains the associated full covariance 
matrix. This, however, leads to a heavy computational burden when solving large 
scale SLAM problems. 

Many researchers have exploited the special structure of the covariance matrix in 
order to reduce the computational effort required in SLAM. One notable result in the 
recent past has been that of Thrun et al. [7] which uses the Extended Information Filter 
to exploit the relative sparseness of the information matrix to reduce the computational 
effort required in SLAM. Frese [8] provided a proof for the approximate sparseness 
of the information matrix. However, Eustice et al. [9] demonstrated that the process 
of sparsification proposed in [7] leads to inconsistent estimates. 

In a recent development, Eustice et al. [10] show that the inclusion of the robot 
trajectory in the form of past robot poses in the state vector leads to an exactly 
sparse information matrix. The resulting Exactly Sparse Delayed State Filter (ESDSF) 
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provides clear computational advantages when a view-based map representation is 
used. In the example presented the "map" is not represented within the state vector 
and is therefore not directly updated. 

Another way to reduce the computation complexity is to delete the robot in the 
map state vector. A variety of attempts have been made to achieve this by constructing 
relative maps using the observation information. For example, Newman [3] introduced 
a relative map in which the map state contains the relative locations among the 
landmarks. Csorba et al. [11] and Martinelli et al. [12] have used relative maps 
where the map state contains distances (and angles) among the landmarks, which are 
invariants under shift and rotation. The structure of the covariance matrix is kept sparse 
by maintaining a state vector with redundant elements. As the relationships between 
these elements are not enforced, for large scale problems the map becomes complex 
and difficult to use. However, if the constraints that enforce these relationships are 
applied, the simple structure of the covariance matrix is destroyed, leading to an 
increased computational complexity [3]. 

This paper presents an extension of the decoupled SLAM algorithm, D-SLAM, 
proposed by the authors in [15] [16], where SLAM is reformulated as a static estima­
tion problem for mapping and a three dimensional dynamic estimation problem for 
localization. The landmark locations are maintained using either a compact relative 
map [15] or an absolute Cartesian map [16]. The new formulation retains the signif­
icant advantage of being able to improve the location estimates of all the landmarks 
from one local observation, yet results in an exactly sparse information matrix with 
the number of nonzero elements related to the range of the sensor on board the robot. 
The main assumption in [15] [16] is that the robot can observe at least two previously 
seen landmarks in each observation. This paper provides a strategy to relax the above 
assumption by merging a set of observations to construct admissible measurements. 
An improved localization process based on a local SLAM is also presented. 

The paper is organized as follows. The mapping and the localization algorithms in 
D-SLAM are stated in Sections 2 and 3, respectively. The computational complexity 
is addressed in Section 4. Section 5 provides simulation and experiments results of 
D-SLAM algorithm. Section 6 concludes the paper by providing a discussion and 
addressing future research directions. 

2 Mapping in D-SLAM 

In D-SLAM, the robot location is not included in the state vector in the mapping 
process. The state vector only contains the Cartesian coordinate of the locations of 
all the observed landmarks: 

X = (Xi , - - - ,Xn)^ = {xi,yi,X2,y2r"^Xn,yn)^' (1) 

In order to generate estimates of the landmark locations the following two pro­
cesses are necessary. (1) A method of recasting the observation vector such that the 
information about the landmarks that is independent of the robot location can be 
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extracted. (2) A new landmark initialization and update method that does not require 
the robot location. The following sections provide details of these two processes. 

2.1 Recasting the Measurement Vector 

Suppose robot observes m > 2 landmarks / i , • • •, /m at a particular time where 
/ i , /2 are landmarks that have been previously seen. The raw measurement and the 
associate Gaussian measurement noise covariance matrix are given by 

Zoid = [ri,Oi,'",rm,Om] , Roid = diag[Ri,R2r",Rn 

This measurements can be recast to contain two parts as follows: 

(2) 

^rob 

^map 

OLrl2 

dir 
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atan2 
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(h^^^\ - atan2 f 1^^) 
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ri cos &i, yi 

^ i ) ^ + (^m -yi) 

i = 1 , • • • , 771. 

(3) 

(4) 

The physical meaning of Zrob is the relative angles and distances from the robot 
to landmarks / i , /2. The physical meaning of Zmap is the distance between / i and /2, 
di2, together with the relative angles and distances from the landmarks /a, • • •, /m 
to landmarks / i , /2. 

It is clear that z^ap contains information about distances and angles among land­
marks that are independent of the robot location and the coordinate system. The two 
measurement vectors Zrob and Zmap are correlated and the associated measurement 
noise covariance matrices, Rrob and Rmap respectively, are not diagonal although 
these matrices can be easily computed. 

2.2 Mapping Using Information Relating Landmark Locations 

The idea for mapping in D-SLAM is the following, (i) When robot is stationary at 
the starting point, the raw measurement and the robot starting location are used to 
initialize and update the landmarks location estimates, (ii) Once the robot moves, two 
previously seen landmarks and the recast observation z^ap will be used to initialize 
and update landmarks. 
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After the robot moves, the measurement model is (assume / i , /2 are previously 
seen landmarks, recall that the state vector X is given in (1)) 

Zmap = [^12, <^312, dis," - , aml2, dim] = Hmap{X) + Wmap (5) 

where Hmapi^) is given by the last 2m — 3 formulas in equation (3) by substituting 
Xi, yi with the absolute locations of the landmarks Xi.yi {i = 1, • • •, m). 
the new measurement noise whose covariance matrix Rmap can be computed by (2), 
(3), and (4). 

The mapping problem can now be solved as a linearized minimum mean square 
error problem. Let i{k) represent information vector and I{k) be the associated 
information matrix. The state vector and the information vector are related through 

i{k) = I{k)X{k). (6) 

The procedure for using the measurements z^ap to update the information vector 
and the information matrix is as follows: 

I{k + 1) = I{k) + VHl^^R^i^VHmap 
i(k + 1) = i(k) + VHl^^^R^l^[Zmap{k + 1) - Hmap{X{k)) + VHmapX{k)] 

(7) 
where VH^ap is the Jacobian of the function H^ap with respect to all the states 
evaluated on the current state estimation X{k). 

2.3 Construction of Admissible Measurements 

To be admissible in the mapping algorithm outlined in the previous section, observa­
tion vectors need to satisfy the following condition. 

Definition. An observation made at a particular point is called admissible if it 
contains at least two previously seen landmarks. 

Figure 1 shows an example where robot observes two old landmarks / i , /2 and 
two new landmarks /3 , /4 at point Pi, but it only observes one landmark /s at point 
P2 and one other landmark /e at point P3. Later on at point P4, it observes landmarks 
kjfsjfr- Thus the observations at P2 and P3 are not admissible. It is, however, 
possible to combine the measurements made from different points to generate new 
admissible measurements as follows. Once it is detected that the observation at point 
P2 is not admissible, the update to the map using the observation information from 
Pi will be removed. Then a virtual observation from P2 to / i , /2, /a, A will be 
constructed using the observation from Pi to / i , /2, /a, A and an estimate of the 
relative motion of the robot from Pi to P2 (Figure 1). The uncertainty associated 
with this composite observation can be computed using the relevant observation 
equations and the process and observation uncertainties. The mapping process will 
proceed as if landmarks / i , /2, /a, /4, /s are observed from P2 and no observation 
is made at Pi. This process is repeated wherever an inadmissible observation is 
encountered, for example at P3. This strategy allows D-SLAM to function where a 
cluster of landmarks are separated from another cluster of landmarks by a region of 
"featureless" terrain. 
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fy (nevv^) ' 

fs (new to P2) 

f4 (new) 

fs (new) 

fi (old) f, (old) 

Fig. 1. Construct admissible measurement from the raw measurements 

3 Localization in D-SLAM 

In the localization process of D-SLAM, estimates from two approaches are combined 
to obtain an estimate for the robot location (and local landmark locations). One 
approach is to use a local traditional SLAM. The other is to use the current observation 
and the map generated in the previous step to solve the kidnapped robot problem. 
Figure 2 shows a flow-chart illustrating the localization process. 

X^Ck-1) Local SLAM X^ " f k | 
X Ck-11 (Observation jc ' ^iki 

- • i i a p ( k - 1 ) 

+ odometer) 

K >^ W "̂̂̂ ^ f'tr'l 

Z map i ^ M a p f k ) 

Fig. 2. Flow chat of localization and mapping process in D-SLAM 

Suppose that robot observes landmarks / i , - - - , / m at time k, among which 
fij''' J fmu^i < m are landmarks that have been previously seen. The state vector 
in D-SLAM localization contains the location of the robot and these previously seen 
l a n d m a r k s / i , - - - , / ^ , . 

Xioc{k) = {Xr{k),X,,---,Xm,f. ( 8 ) 

An estimate of X i , • • •, Xmi and the associated covariance matrix are available 
from the map obtained at time k — 1. These together with the part of the measurement 
vector Zoid that involves landmarks / i , • • • 7 / m i . 
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zioc = {ri,Oi,'",rrm,Orm)^ = Hioc{Xr{k),Xi,-• • .X^^) ^ wioc, (9) 

can be used to estimate Xioc{k). Here Hioc contains 2mi typical range and bearing 
observation functions. The estimate of Xioc{k) is a low dimensional linearized mini­
mum mean square error estimation problem. This approach does not make use of the 
process model and therefore is clearly sub-optimal. 

The alternative is to use a local traditional SLAM process to estimate Xioc{k), 
where only the landmarks in the vicinity of the robot are retained in the state vector. 
Landmarks are removed from the state vector once they are not visible from the robot. 
When a previously deleted landmark is re-observed, the landmark is reinitialised and 
is treated as a new landmark. This is effectively a SLAM-aided dead reckoning 
process which provides a much better robot location estimate than that obtained 
using dead-reckoning alone. 

Which of the two estimates is more accurate depends on the prevailing circum­
stances. Local SLAM estimate is optimal, until the robot closes a loop by revisiting a 
previously traversed region of the map. The kidnapped robot solution will be superior 
when loop closures are present. Fusing the outcomes of the two localization processes 
will result in a better estimate. However, these two estimates for the robot location are 
correlated. Therefore, it is necessary to combine these estimates using a strategy, for 
example covariance intersection (CI) [14], that facilitates combining two correlated 
pieces of information, when the extent of correlation itself is unknown (see Figure 
2). 

The robot location computed is sub-optimal and is correlated to the map. These 
correlations do not affect the mapping process as the observation used for mapping, 
Zmap^ is independent of the robot location. However, as information about the robot 
location is not exploited in the mapping process, estimate of the map will also be 
suboptimal. 

4 Computational Complexity 

A key feature of D-SLAM is that the information matrix in the mapping process is 
exactly sparse, and this reduces the computation cost significantly. 

Since the measurement Zmap only involves a small fraction of the total number of 
landmarks, the matrix VH^^^R'^^^^VH^ap in (7) is sparse with the elements relating 
to the landmarks that are not present in the measurement vector being exactly zero. 

This can be easily seen by the fact VHmap = QX""^ J' '' J QX""^ ^ Or • • ^ 0 • 
In a typical sensor where the sensor range is finite, the observations only relate 

landmarks that are close to each other. Therefore, if landmark i and landmark j are 
not visible simultaneously from the robot, the measurement z^ap will never contain 
both fi and fj. As the information matrix update involves a simple addition, the 
elements relating to i and j in the information matrix will remain exactly zero. Thus, 
in a large scale map, a significant portion of the information matrix will be exactly 
zero, resulting in an exactly sparse information matrix. 
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Let N be the size of the map. The storage requirement is 0{N) because the 
information matrix is sparse with non-zero elements 0{N). Localization step in D-
SLAM requires updating a state vector containing only constant number of elements, 
thus computational cost is 0(1). Mapping in D-SLAM is formulated in the informa­
tion form where the update step is a 0(1) time process and the prediction step, the 
computationally demanding stage of an information filter, does not exist. For data 
association, locations as well as the uncertainty of the landmarks in the vicinity of 
the robot are required. The vicinity here is defined in terms of the range of the sensor 
used and contains only 0(1) landmarks. 

The major computational cost of D-SLAM is due to the need for recovering the 
state vector containing the landmark locations and the related parts of the covariance 
matrix. The state vector can be recovered by solving a sparse linear equation (6). The 
desired columns of the covariance matrix can also be obtained by solving a constant 
number of sparse linear equations. Since good initial guesses are available for the 
linear equations (the previous estimation is a good initial guess for state vector, zero 
vectors are good initial guesses for the columns of covariance matrix), few iterations 
are enough for iterative method (for example, Preconditional Conjugate Gradient 
method) to converge to the solutions. Thus the computation cost for the recovery is 
0{N). The multigrid algorithm proposed in [13] may also be an efficient method for 
the recovery. Overall cost of D-SLAM is, therefore, 0{N). 

5 Evaluation of D-SLAM 

5.1 Experimental Evaluation with a Pioneer Robot in an Office Environment 

The Pioneer 2 DX robot was used for the experimental implementation. This robot is 
equipped with a laser range finder with a field of view of 180 degrees and an angular 
resolution of 0.5 degree. Twelve laser reflectors were placed in a 8 x 8m^ area and 
the Player software was used to control the robot and collect sensor data. 

Matlab implementation of D-SLAM was used to process the data and compute 
the robot and landmark locations. Nearest neighbour algorithm was used for data 
association and for comparison, robot and landmark locations were also obtained 
using the traditional full SLAM algorithm. The results are presented in Figure 3. 
Although the robot localization estimates are conservative compared to traditional 
SLAM, the new algorithm provided a much superior estimate to that presented in 
[16]. 

5.2 Evaluation of D-SLAM in Simulation with a Large Number of Landmarks 

A more complex simulation experiment with larger number of landmarks was con­
ducted to further evaluate D-SLAM and demonstrate its properties. The environment 
used is a 40 meter square with 196 landmarks arranged in uniformly spaced rows 
and columns. The robot starts from the left bottom corner of the square and follows 
a random trajectory, revisiting many landmarks and closing many loops as seen in 
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Fig. 3. D-SLAM implementation: (a) Map obtained by D-SLAM; (b) Robot location estimation 
error; (c) 2cr bounds of robot location estimation (solid line is from D-SLAM; dashed line is 
from traditional SLAM); (d) 2cr bounds of landmark 9 estimation (solid line is from D-SLAM; 
dashed line is from traditional SLAM). 

Figure 4(a). A sensor with a field of view of 180 degrees and a range of 5 meters 
is simulated to generate relative range and bearing measurements between the robot 
and the landmarks. 

Figure 4(b) shows the estimation error and the associated 95% confidence levels 
for one landmark far away from the robot initial location. It is clear that the estimates 
are consistent. Figure 4(c) shows all the non-zero elements of the information matrix 
in black after reordering. It is clear that this matrix is sparse as there are 7312 
non-zero elements and 68864 exactly zero elements. The blocks diagonal terms are 
due to landmarks in close vicinity observed together and the off diagonal terms are 
due to loop closures where a previously seen landmark is re-observed some time 
later. Reordering the information matrix, so that indices of the nearby landmarks are 
adjacent, results in the banded matrix. This matrix demonstrates the fact that only the 
nearby landmarks are linked in the information matrix. 
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(a) (b) (c) 

Fig. 4. D-SLAM simulations: (a) Map obtained by D-SLAM; (b) Estimation error of a landmark 
far away from robot starting location, and its 95% confidence limit; (c) Sparse information 
matrix obtained by D-SLAM after reordering (7312 non-zero elements and 68864 exactly zero 
elements). 

6 Discussion and Conclusions 

In this paper, a new decoupled SLAM algorithm: D-SLAM, is described. While the 
localization and mapping are performed simultaneously, mapping and localization are 
separated processes. The significant advantages gained are that there is no prediction 
step for the mapping, the information matrix associated with mapping is exactly 
sparse and only the landmarks that are in the close vicinity are linked through the 
information matrix. This results in an 0{N) SLAM algorithm where N is the number 
of landmarks. 

Although the robot location is not incorporated in the state vector used in mapping, 
correlations between the landmarks are still preserved. Thus the location estimates 
of all the landmarks are improved using information from one local observation. 

In D-SLAM, however, the knowledge about the robot location is not exploited 
in the mapping process and this results in some information loss. An analysis based 
on a linear one-dimensional model as well as 2-D simulations demonstrated that the 
information loss depends on the ratio between the sensor noise and the process noise. 
The smaller the ratio, the less amount of information lost. Further analytical work to 
quantify the extent of information loss is currently underway. 

Additional work is necessary to further reduce the computation effort by exploring 
the possibilities of using D-SLAM in conjunction with the submap idea (e.g. [5]). 
Investigations in these directions together with a large scale experiment using Victoria 
Park data set [17] are currently in progress. Further work is required to compare 
D-SLAM with the recent developments in view-based SLAM [10]. In view-based 
SLAM the state vector consists of robot poses whereas the map is obtained through 
registration of successive observation sets. In D-SLAM, the map is represented in the 
state vector and one localization estimate is generated by registering the robot in the 
map. Both approaches result in significant computational advantages at the expense 
of some information loss. Examination of the relationship between D-SLAM with 
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the FastSLAM algorithm where particles are used to represent the possible robot 
trajectories will also be interesting. 
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Summary . An open problem in Simultaneous Localization and Mapping (SLAM) 
is the development of algorithms which scale with the size of the environment. A 
few promising methods exploit the key insight that representing the posterior in the 
canonical form parameterized by a sparse information matrix provides significant 
advantages regarding computational efficiency and storage requirements. Because 
the information matrix is naturally dense in the case of feature-based SLAM, addi­
tional steps are necessary to achieve sparsity. The delicate issue then becomes one 
of performing this sparsification in a manner which is consistent with the original 
distribution. 

In this paper, we present a SLAM algorithm based in the information form in 
which sparseness is preserved while maintaining consistency. We describe an intuitive 
approach to controlling the population of the information matrix by essentially ig­
noring a small fraction of proprioceptive measurements whereby we track a modified 
version of the posterior. In this manner, the Exactly Sparse Extended Information 
Filter (ESEIF) performs exact inference, employing a model which is conservative 
relative to the standard distribution. We demonstrate our algorithm both in simula­
tion as well as on two nonlinear datasets, comparing it against the standard EKE as 
well as the Sparse Extended Information Filter (SEIF) by Thrun et al. The results 
convincingly show that our method yields conservative estimates for the robot pose 
and map which are nearly identical to those of the EKF in comparison to the SEIF 
formulation which results in overconfident error bounds. 
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1 Introduction 

A skill which plays an integral role in achieving robot autonomy is the ability 
to operate in a priori unknown environments. Viewed as a coupled problem of 
simultaneously performing localization and mapping, SLAM is further com­
plicated by the stochastic nature of vehicle motion and observations. Most 
effective SLAM algorithms address these issues by posing the problem in a 
probabilistic framework with the goal then being the estimation of the joint 
distribution over the map and vehicle pose. 

Beginning with the seminal work of Smith et al. [14], the Extended Kalman 
Filter (EKF) SLAM formulation has proven to be particularly popular. In 
large part , this is due to its relative simplicity, requiring tha t one only maintain 
the first two moments of the distribution to account for the coupling between 
the robot and map. From knowledge of the correlation, the E K F is able to 
exploit feature observation da ta to update the pose and map estimates. At the 
same time, this capability comes at the cost of complexity which is quadratic 
in the number of s tate elements. As a result, SLAM algorithms relying upon 
an E K F have traditionally been limited to relatively small environments. 

Representing the joint Gaussian distribution in the dual canonical form, 
recent work has given rise to algorithms capable of scaling with the environ­
ment. Pivotal insights by Thrun et al. [15] and Frese et al. [8] have revealed 
that , in the context of SLAM, many of the off-diagonal elements in the in­
verse covariance (information) matr ix are inherently near zero. Considering 
the graphical model represented by the information matr ix [12], the implica­
tion is tha t a majority of the links in the Markov network are relatively weak. 
By essentially breaking these weak links, Frese [7] and Paskin [12] are able to 
approximate the graphical model by a sparse tree structure which provides 
for scalable SLAM algorithms. Alternatively, the Sparse Extended Informa­
tion Filter (SEIF) by Thrun et al. [15] relies upon a version of the Extended 
Information Filter, the dual to the EKF. In the case where the information 
matrix is sparse, the authors demonstrate tha t s tate estimation can be per­
formed in near-constant time. While a majority of the links in the information 
matrix are weak, though, they are nonetheless nonzero. SEIFs then employ a 
strategy by which the posterior is approximated with an information matrix 
having the desired sparse structure. The algorithm has efficiently been applied 
to large, real-world datasets with a priori unknown da ta association [10]. 

Together with the intuitive characteristics of the canonical representation 
noted in [15], the success of SEIFs has brought a lot of at tention to the 
information filter formulation of the SLAM problem. The one issue which 
has, up to now, largely gone unnoticed is the implication of approximating the 
posterior to achieve the necessary sparseness. A close look at the sparsification 
strategy reveals tha t the resulting posterior is prone to over confidence. In [5], 
the authors show that , while the state estimates are only slightly overconfident 
when expressed in a local reference frame, they suffer from an exaggerated 
global inconsistency. The paper presents a modified sparsification rule which 
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yields a posterior which is both locally and globally consistent relative to the 
full Kalman solution but is no longer computationally tractable. 

Our objective in this paper is to present an information-based formulation 
to the SLAM problem which achieves exact sparseness while being computa­
tionally efficient. Rather than relying upon an approximation to remove links 
from the information matrix, the algorithm adopts a new strategy which ac­
tively controls the population of the matrix by relocalizing the robot within 
the map. The filter then maintains an estimate of the state which is both 
globally and locally conservative relative to the full Kalman solution. We 
demonstrate the algorithm alongside the EKF and SEIF on a linear Gaussian 
simulation as well as two real-world experiments, including a benchmark non­
linear dataset. The results reveal that while the SEIF is globally inconsistent, 
our algorithm yields estimates nearly identical to those of the EKF which are 
globally and locally conservative. 

2 Information Filter 

2.1 Canonical Form 

Let ^̂  be a random vector having a Gaussian probability density, ^^ ^ 
A/'(^^;/x^, St) described completely by its mean, /x ,̂ and covariance matrix, 
Tif. An expansion of the exponential term defining the multivariate normal 
distribution, p{^t) oc exp { — ̂ {^t ~ f^t)~^^t' Ht ~ f^t)}^ yields an equivalent 
representation for the probability density function, A/'~^(^t; r/ ,̂ A^), parame­
terized by the information vector and information matrix, r]^ and A ,̂ respec­
tively. 

A ( = S , - ^ r?, = E,-Vt (1) 

The canonical representation for the multivariate Gaussian is the dual of the 
standard form in the sense of the fundamental processes of marginalization 
and conditioning, as exemplified in Table L While marginalization is hard in 
the information form, requiring a matrix inversion, it is easy in the covariance 
form. The opposite is true in regards to the conditioning operation. Further 
details regarding this duality in the context of filtering can be found in [11]. 

One quality of the canonical form is its relationship with Gaussian Markov 
random fields in which nodes in the graph represent individual state variables 
and edge structure describes their conditional independence relationships. The 
information matrix effectively serves as an adjacency matrix for the graph 
[12], with the strength of constraints between pairs of variables proportional 
to the corresponding elements of the matrix. Off-diagonal components which 
are zero then denote the absence of links in the Markov network. Thus, the 
information matrix has the particular advantage of explicitly representing the 
conditional independence of state variables. 
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Table 1. Summary of Marginalization and Conditioning Operations on a Gaussian 
Distribution Expressed in Covariance and Information Form 

pK^)=Ar([-],[^;:^-])=A^-([-], [!;:!-]) 

COVARIANCE 

FORM 

INFORMATION 

FORM 

MARGINALIZATION 

p{(x) = fp{(x,f3)df3 

A = Aaa — Aa(3-App-A(3a 

CONDITIONING 

p{cx \(3)=p{cx,(3)/p{(3) 

M' = Ma + ^c.(3T.-^l{(^ - M/3) 

A' = Ace 

2.2 F e a t u r e - B a s e d S L A M 

The goal of any SLAM algorithm is to concurrently perform navigation and 
map-building in the presence of uncertainty in vehicle motion and environmen­
tal observations. With feature-based SLAM formulations, the map is described 
as a collection of stat ionary primitives, e.g. lines, points, etc. The robot pose, 
Xt, together with the set of map elements, M = { m i , m 2 , . . . , m ^ } , are repre­
sented together by the state vector, ^^ = [xj M ] ^ . The coupling between the 
pose and map is addressed by considering the joint probability distribution 
for the state. Adopting a Bayesian framework, a model of the joint poste­
rior is tracked as it evolves as a result of the uncertainty in vehicle motion 
and measurement data. Typical SLAM implementations make the assumption 
tha t this uncertainty is a result of independent white Gaussian noise which 
corrupts the motion and measurement models. One can then show tha t the 
posterior obeys a Gaussian distribution. 

p(^Jz*,u*) =X{^,;ti„Et) =N-\it-,rit,^t) (2) 

The belief function is traditionally represented in the s tandard form which 
can be tracked relatively easily with the E K F . Modifying the posterior to re­
flect the effect of vehicle motion is a constant-time process as it involves a 
combined process of s tate augmentation and marginalization, both of which 
are easily performed in the covariance form. On the other hand, it is well 
known tha t incorporating new measurement da ta requires a conditioning step 
which is quadratic in the size of the state. Furthermore, maintaining the cor­
relation among state estimates leads to a dense covariance matr ix which must 
be stored. For small scale environments, these problems are surmountable, but 
as the map size becomes increasingly large, implementing a full E K F quickly 
becomes intractable. 
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Alternatively, employing the canonical representation of the posterior, the 
filtering process reflects the duality between the two forms. Performing mea­
surement updates (conditioning) is constant-time, while the marginalization 
component of the projection step, in general, is quadratic in the state di­
mension, at best. Furthermore, recovering the estimate of the mean requires 
the 0{n^) inversion of the information matrix per (1). As a result of these 
limitations, the information filter has had relatively limited use in SLAM. 

Recently, Thrun et al. [15] and Frese et al. [8] have made the pivotal ob­
servation that , when normalized, the information matrix tends to be nearly 
sparse. The matrix is dominated by a small percentage of terms which are sig­
nificantly larger than the remaining elements. In general, the links between the 
robot and the map are stronger for nearby, recently observed features while the 
constraints are weak for distant features. The same is t rue for inter-landmark 
terms which tend to decay exponentially with the distance traversed by the 
robot between observations [6]. Referring to the graphical interpretation of 
the information matrix, these weak links then imply that , given relatively few 
features, the robot is nearly conditionally independent of much of the map. 

Though many of the terms in the normalized information matr ix are very 
small, the SLAM process naturally leads to the full population of the matrix. 
To get a bet ter understanding of why this is, consider a simple example in 
which the map consists of five features. Suppose tha t the off-diagonal terms in 
the information matr ix corresponding to the robot, x^, are non-zero for four 
of the features and tha t the remaining landmark, m4, has shared information 
with another feature. These links between the robot and the map are created 
when features are observed. The graphical model along with the information 
matrix are illustrated in the left-hand side of Figure 1(a). The t ime projection 
step can be viewed as an initial augmentation of the state with the new 
robot pose, x^+i, which, evolving by a Markov process, is linked only to the 
previous pose as indicated in the middle figure. At this point, the information 
matrix remains sparse. Subsequently marginalizing out x^, though, creates 
links between all states which share constraints with the previous pose. The 
result is a fully connected subset of nodes and, correspondingly, a population 
of the information matrix. The only remaining zero entries correspond to 
the lone feature, m4, which will become linked to the robot upon the next 
observation. The time projection step will then lead to a fully connected graph 
and, correspondingly, a dense information matrix. 

Hence, with online SLAM implementations in which only the current pose 
of the robot is estimated, the marginalization of the previous pose in the 
projection step naturally results in a dense information matrix. Alternatively, 
by retaining an entire trajectory history, exact sparsity can be maintained [3] 
at the cost of storage requirements which become significant for large datasets. 

Returning to the example pictoralized in Figure 1(a), note tha t while the 
time projection step populates the information matrix, the strength of the off-
diagonal links decays with time. This behavior is the reason why a majority 
of the elements in the normalized matr ix are very small. The authors show 
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in [15, 8, 12] that if the posterior can be represented by an exactly sparse 
approximation, it is possible to achieve significant gains when it comes to both 
storage and time requirements. In particular, a bound on the number of links 
between the robot and the map allows for near constant-time performance of 
the time projection step and also controls the fill-in of the information matrix 
resulting from marginalization. 

3 Exactly Sparse Extended Information Filters 

Map elements having shared information with the robot are said to be active. 
In feature-based SLAM implementations, a feature becomes active when it 
is first observed. With time, the strength of the link with the robot decays 
and is strengthened only upon being re-observed. Thus, while the off-diagonal 
terms may become arbitrarily small, they will never become zero. In order for 
a landmark to become passive (i.e. no shared information), the link with the 
robot must explicitly be broken. 

3.1 Problem Formulation 

In describing the desired sparsity of the information matrix, we adopt the 
two measures utilized by Thrun et al. [15]. Denote the maximum allowable 
number of active features as Fa and the number of inter-landmark links in 
the matrix by Fp. Let us then partition the map into two sets of features, 
M = {m+,m~} , where m+ represents the active features for which the off-
diagonal terms for the robot pose are non-zero, and m~ denotes the passive 
landmarks, having no direct constraint to the vehicle. 

Controlling the sparsity of the information matrix is, in large part, a direct 
consequence of maintaining the Fa bound. By regulating the number of active 
features, it is possible to limit the population of the matrix. Consider, for 
example, the situation depicted in the left-hand side of Figure 1(b) in which 
four of the five features are active. At this point, if x^ were marginalized 
out, the four active features in m+ would become fully connected, potentially 
violating the Fp bound. Instead, if one of landmarks, mi , were first made 
passive, the number of non-zero elements created as a result of marginalization 
could be controlled. Thus, enforcing the desired sparsity pattern corresponds 
to maintaining a bound on the number of active features. Since features do not 
naturally become passive, a sparsification routine which deliberately breaks 
the links is necessary. 

3.2 SEIF Sparsification 

The SEIF breaks a link between the robot and a feature by approximating the 
posterior with a distribution in which the robot is conditionally independent of 



220 M. Walter, R. Eustice, and J. Leonard 

Fig. 1. A graphical explanation of SEIF's methodology for controlling sparsity 
in the information matrix, (a) A sequence of illustrations depicting the evolution 
of the Markov network and corresponding information matrix resulting from time 
projection when viewed as a two-step process of state augmentation followed by 
marginalization. Darker shades imply larger magnitudes with white indicating zero 
values. From left to right we have: (1) the robot xt connected to four active features, 
mi:3 and rris; (2) state augmentation of the time-propagated robot pose xt+i; (3) 
marginalized distribution where the old pose, xt, has been eliminated, (b) A sequence 
of illustrations highlighting the concept behind sparsification. If feature mi can first 
be made passive by eliminating its link to the old pose, xt, then marginalization over 
Xt will not link it to the other active features. This implies that we can control fill-in 
of the information matrix by bounding the number of currently active features. 

the landmark. The map is broken into three disjoint sets, M = {m^, m + , m " } , 
where m ~ refers to the passive landmarks which will remain passive and, 
in a slight abuse of notation, m + is the set of active features which will 
remain active, and m^ are the active features which will be made passive. 
The sparsification routine proceeds from a decomposition of the posterior 
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p(xt , m^, m ^ , m ~ ) = p{xt \ m^, m ^ , m ~ ) p ( m ^ , m ^ , m ~ ) 

= p(xt I m ° , m + , m " = 5 ' ^ _ / x J p ( m ° , m + , m " ) 

where setting the passive elements to their mean, S^_ii^^ in the last line is 
valid due to their conditional independence with respect to the robot. SEIFs 
then deactivate the landmarks by replacing (3) with an approximation to the 
posterior which drops the dependence upon m^: 

P S E i F ( x t , m ° , m + , m ~ ) = p(xt | m + , m ~ = 5 ' ^ _ / x J p ( m ° , m + , m ~ ) (4) 

While the decomposition in (3) is theoretically sound, it is no longer valid 
to condition on a particular value for the passive features while simultaneously 
ignoring the dependence upon m^. Given only a subset of the active features, 
the robot pose is no longer conditionally independent of the passive map. 

By enforcing the conditional independence between the robot and the de­
activated features, SEIFs rely upon approximate inference on an approximate 
posterior and, as a result, are prone to inconsistency [5]. In particular, the 
authors show tha t sparsifying in this manner leads to a global map which is 
significantly overconfident while the local relationships are preserved. 

3.3 E S E I F Sparsif icat ion 

Rather than deliberately breaking constraints with the robot to maintain a 
bound on the number of active features, ESEIFs take the approach of essen­
tially controlling the initial formation of links. As soon as a feature is first 
observed, it is linked to the current robot pose. As noted earlier, the strength 
of this constraint will decay with time but never truly disappear, leading to 
a growing number of links between the robot and the map. 

Noting the nature of this link formation, ESEIFs control the number of 
active features by deliberately marginalizing out the robot pose. The vehicle 
is relocated within the map using observations of a few known landmarks. 
The new pose is then conditionally independent of the rest of the map, and 
the robot is linked only to the features used for relocalization. 

For a more detailed description of the ESEIF sparsification strategy, we 
consider a situation which would give rise to the representation in Figure 1 
which consists of both active and passive features. Suppose tha t the robot 
makes four observations, Zt = {zi , Z2,Z3, Z5}, three being of active features 
and one of a passive feature: 

Z2 = h(x^;,m2), m2 G m+ Z5 = h(x^;,m5), 1115 G m+ 

zi = h ( x ^ , m i ) , m i G m° Z3 = h(x^,m3) , ma G m~ 

Updating the posterior based upon all four measurements would result in 
the strengthening of the off-diagonal entries in the matr ix pairing the robot 
with the three observed active features. Additionally, a link would be created 
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with the currently passive map element, 1113, leading to the graph structure 
depicted in the left-hand side of Figure 1(a). In the case where this would 
lead to a violation of the Fa bound, one strategy would be to disregard the 
observation of the passive feature entirely. With ESEIFs, though, it is possible 
to incorporate all measurement data while maintaining the desired sparsity 
pattern. 

In the ESEIF sparsification step, the measurement data is partitioned into 
two sets, ZQ, and z^, where the first set is used for updating the filter and the 
second is reserved for performing relocalization. Of the four measurements 
available in our example, group that of the passive feature together with one 
active measurement as ZQ, = {zi,Z3}, leaving zp = {z2,Z5}. To sparsify, we 
first apply the update step followed by the combined process of marginaliza-
tion and relocalization. 

Posterior Update 

A Bayesian update is performed on the joint posterior, p{^^ \ z^~^,u^) = 
-^~^{^t'^Vt^'^t) based upon the ZQ, measurements: 

p(^^ I Z*-\U*) ^" = ̂ "" -^ :p i (C, I {Z*-1,Z4,U*) 

where pi{^f \ {z^~^, ZQ,}, u^) = A/'~^(^^; fy. A) follows from the standard up­
date process for the information filter. Note that we can perform this step 
in constant-time with, in the nonlinear case, access to the mean estimate for 
the robot as well as mi and 013. The information matrix, A ,̂ is modified as 
depicted in Figure 2 with the strengthening of the constraints between the 
vehicle and the active feature, mi and importantly, the creation of shared 
information with the previously passive feature, 013. 

Marginalization and Relocalization 

The addition of a new constraint between the robot and a map element results 
in a violation of, Fa^ the bound on the number of active features. The ESEIF 
sparsification routine then proceeds by first marginalizing out the vehicle pose 

P2{Mt I {z*-i,z„},u*) = y p i ( C ( I {z*-i ,z4,u*)dxt 

Following the representation of the marginalization process presented in Table 
1, the canonical parameterization of the marginal is calculated as 
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(5a) 

P2{Mt I {z*-i,z„},u*) = f/-\Mt;i)t,At) 

^t = SmO,m+,m-^^^mO,m+,m-

fjt = SjnO,m+,m-'^t ~ ^m^,m+,m-^t^^t (Sxt^tSxt) Ŝ f̂/̂  (5b) 

where SmO,m+,m- and Sx^ are projection matrices mapping the state space to 
the { m ^ , m + , m ~ } and x^ subspaces, respectively. 

The inverse term involves the block diagonal of the information matrix 
corresponding to the vehicle pose, Sj^A^Sx^, which is of fixed size. Meanwhile, 
the S^o jn+ m-^^^xt niatrix corresponds to the shared information between 
the map and the vehicle pose and, taken as an outer product over the vehicle 
sub-block, yields a matr ix having nonzero values only for the active feature 
indices. It is a result of this term tha t marginalization establishes the connec­
tivity among the active features shown in the right-hand side of Figure 2. The 
computational complexity of this matr ix outer product is limited by the Fa 
bound and the order of the matr ix inversion is fixed. Thus, the marginalization 
can be performed in constant-time. 

We complete sparsification in ESEIFs by relocalizing the vehicle within 
the map using the remaining zp measurements. The new pose estimate is, 
in general, given by a nonlinear function of measurement da ta and corre­
sponding feature estimates of the form in (6a) where w^ ^ A/ ' (wt ;0 ,R) is 
white Gaussian noise. Equation (6b) corresponds to the linearization about 
the mean of the marginal distribution. A/""^ (M^; ^^, A) in (5). The Jacobian, 
G, is sparse as the only non-zero columns are those corresponding to the map 
elements used for relocalization. Subsequently, only the mean estimates for 
these features are necessary for the linearization. 

xt = g ( m ^ , z ^ ) + w t (6a) 

^ g ( M m ^ , z ^ ) + G ( m - / i J + w t (6b) 

Augmenting the map distribution (5) with the new pose estimate yields a 
state which can be shown to have the following canonical parameterization: 

Vt 

At 

PESEIF(^t I Z^U^) = AT 1 ( ^ , ; ^ „ A , ) 

(7a) 

(7b) 

fjt - G ^ R - i ( g ( / i ^ ^ , z ^ ) - G / i J 

R —R G 
- G ^ R - i (At + G ^ R - ^ G ) 

Due to the sparsity of G, most terms in —R~^G of the information matr ix 
in (7b) tha t link the robot to the map are zero, except for those correspond­
ing to the landmarks used for relocalization. The new instantiation for the 
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robot pose is then conditionally independent of the rest of the map. As a 
result, ESEIF sparsification leads to the joint posterior having the desired 
factorization: 

PESEiF(^t I z^u^ ) = p ( x t I m ^ , z ^ ) p 2 ( M t I { Z ^ " \ Z Q , } , U ^ ) 

As reflected by the resulting information matr ix depicted in Figure 2, the 
active features are then limited to those used for relocalization. 

In this manner, ESEIFs control the size of the active map and, in turn, the 
sparseness of the information matrix. Like the full EKE, the ESEIE performs 
exact inference on an approximate model, albeit on a different posterior. When 
we first marginalize out (kidnap) and subsequently relocalize the robot, we 
are performing the dual of kidnapping and relocation for the s tandard EKE. 
Essentially, we are ignoring the odometry da ta which links the current and 
previous poses. Hence, whereas the full EKE tracks the Gaussian approxima­
tion to the posterior, p{^^ \ Z^), ESEIEs and the relocated EKE maintain 
the Gaussian model of an alternate distribution, p{^^ \ Z^ ). In this way, 
the ESEIE employs exact inference on an approximate model for which the 
information matrix is exactly sparse. 

3.4 R e c o v e r i n g t h e M e a n 

A drawback of representing the posterior in the canonical form is tha t we no 
longer have access to the mean vector or covariance matrix. When the system 
equations are nonlinear, a subset of the mean is required to perform lineariza­
tions. Naively, we could recover the entire mean vector as /x^ = A^^?7^, though 
this operation is cubic in the dimension of the state and quickly becomes in­
tractable. Instead, we can pose the problem in terms of solving a set of linear 
equations 

AtMt = Vt (8) 

and take advantage of the sparseness of the information matrix. There are a 
number of techniques which iteratively solve such sparse, symmetric positive 
definite systems including conjugate gradient descent [13] and, more recently, 
the multilevel method proposed by [9]. Aside from loop closures, the mean 
vector evolves rather slowly in SLAM and, thus, the optimization can be 
performed over the course of multiple time steps. This then allows us to bound 
the number of iterations required per t ime step [2]. 

3.5 D a t a A s s o c i a t i o n 

Traditionally, the problem of da ta association is addressed by evaluating the 
likelihood of a measurement for different correspondence hypothesis. The dis­
tr ibution follows from marginalizing out all s tate elements except for the vari­
ables we are interested in, x^ and x^. Erom the duality indicated in Table 1, 
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• • • 
Fig. 2. Sparsification as performed by ESEIFs during the measurement update step. 
At time t, three of the mapped features are active, m ^ = {mi ,m2,m5} and two 
are passive, m~ = {m3,m4} as indicated by shaded off-diagonal elements of the 
information matrix. The robot makes three observations of active features, zi , Z2, 
and Z5, and one of a passive feature, Z3. The first step of the ESEIF sparsification 
algorithm, as shown in the left-most diagram, is to update the posterior based upon 
a subset of the measurements, ZQ, = {zi,Z3}, resulting in a stronger constraint 
with mi as well as the formation of a link with ms, as depicted in the middle 
figure. Sparsification then proceeds with the marginalization of the vehicle pose and 
subsequent relocation of the robot based upon the remaining measurements, z/3. The 
implication on the information matrix is the connectivity of the initial set of active 
features and a desired restriction on the number of constraints with the vehicle pose. 

this operation is easy in the s tandard form but difficult with the canonical 
parameterization where a large matrix inversion is necessary. Instead, Thrun 
et al. [15] first compute the conditional distribution for the Markov blanket for 
x^ and Xj, p(x^,Xj,x/c | x/) , which involves simply extracting a sub-block of 
the information matrix. They then invert this matr ix and take the covariance 
sub-block corresponding to p(x^,Xj | x/) which they use for da ta association. 
While the authors have had success using this conditional covariance, it can 
be shown to yield overconfident estimates for the likelihood [4]. 

Alternatively, Eustice et al. [4] propose a method which solves for con­
servative estimates for the marginal covariance. The technique stems from 
posing the relationship, A^S^ = I, as a sparse system of linear equations, 
KtTi^i = e^, where E*^ and e^ denote the i^^ columns of the covariance and 
identity matrices, respectively. To determine the robot pose covariance, the 
iterative algorithms previously presented for mean recovery can be used to 
solve the set of equations formed from the robot pose columns. Combining 
the estimate for robot pose covariance with a conservative estimate for the 
covariance of any map element gives rise to a joint covariance which is it-
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self conservative. The joint covariance is then used to represent the marginal 
distribution for data association. 

4 Results 

To better understand the effectiveness of the two different sparse information 
filters, we compare the performance of ESEIFs and SEIFs to the standard 
EKE when applied to different forms of the SLAM problem. In the first case, 
we take a look at a controlled linear Gaussian simulation for which the KE, the 
optimal Bayesian estimator, is the "gold standard". We then follow with ex­
periments using real-world nonlinear datasets including a benchmark outdoor 
data set widely popular in the SLAM community. 

4.1 Linear Gaussian Simulation 

To systematically analyze the two information-based filters, we first apply the 
three estimators in a controlled simulation. The environment consists of a set 
of point features, uniformly distributed to achieve a desired density of 0.10 
features per unit area. The vehicle moves translationally according to a linear, 
constant velocity motion model and, at any time step, is able to observe the 
relative position to a limited number of neighboring features. Both the vehicle 
motion as well as the measurements are corrupted by additive white Gaussian 
noise. 

As a basis for comparison, we apply the Kalman Eilter, the optimal esti­
mator for linear Gaussian problems. The ESEIE and SEIE are implemented 
with a limit of Fa = 10 active features. When sparsifying the ESEIE, we re­
serve as many of the observations for relocalizing the robot as possible, to the 
extent that we do not violate the Fa bound. 

In the LG case, sparse information filters have already been shown to 
be computationally efficient [15]. Instead, we are interested in evaluating the 
effect that the different sparsification strategies have on the estimation accu­
racy. To that end, we perform a series of Monte Carlo simulations, using the 
normalized estimation error squared (NEES) [1] to measure filter consistency 
using a pair of metrics. As one measure, we use the Euclidean distance be­
tween the state estimates and the ground truth which corresponds to the global 
error. To get a local/relative measure of error, we first reference the robot and 
map positions relative to the first observed feature, x ^ using the standard 
compounding operation, x^^ = 0 x ^ 0 x^. We then compute the second error 
metric as the distance to the root-shifted representation of the ground truth. 
We plot the global normalized errors for the estimated vehicle position as 
well as for one of the map elements in Eigures 3(a) and 3(b), respectively. 
Comparing these errors with the 97.5^" chi-square upper bound indicated by 
the horizontal line, we see that the ESEIE yields consistent position estimates 
with errors similar to those of the KE. The normalized errors attributed to 
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Fig. 3. The time history of the (a), (b) global and (c), (d) local normalized errors for 
the LG results, estimated from a series of Monte Carlo simulations. Plotted in (a) 
and (c) are the two errors for the vehicle. In (b) and (d) we show the errors for one of 
the features which is representative of the other elements in the map. The horizontal 
threshold denotes the 97.5 chi-square confidence bound. The local ESEIF and SEIF 
estimation errors are similar in magnitude to that of the Kalman Filter. The global 
error attributed to the SEIF, meanwhile, is noticeably larger, exceeding the chi-
square bound. This indicates that the SEIF preserves local relationships but leads 
to estimates which are globally overconfident while the ESEIF maintains both global 
and local consistency. 

the SEIF, on the other hand, are noticeably larger, frequently exceeding the 
chi-square bound. The local errors shown in Figures 3(c) and 3(d) are simi­
lar for all three filters, generally smaller than the confidence threshold. This 
behavior indicates that , in the linear Gaussian case, ESEIFs maintain a s tate 
estimate which is both globally and locally consistent while the SEIF leads to 
errors which are consistent locally but inconsistent in the absolute sense. 

As a related consequence of the ESEIF sparsification strategy, the filter 
maintains conservative uncertainty estimates. In Figure 4(a) we compare the 
global map uncertainties for the two information filters to those of the Kalman 
Filter. In particular, from the inverse of the information matrices, we compute, 
for each feature, the log of the ratio of the covariance sub-block determinant 
to the determinant of the sub-block for the KF . Since the K F solution repre­
sents the t rue distribution, values larger than zero correspond to conservative 
estimates for a feature's position while values less than zero are a sign of over-
confidence. As the histogram demonstrates, the ESEIF is conservative in its 
estimate for the absolute position of each feature while each of the marginals 
represented by the SEIF are overconfident. When we transform the maps rela­
tive to the first observed feature, we see in Figure 4(b) tha t the overconfidence 
of the SEIF is less severe while the ESEIF remains conservative. As a conse-
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Fig. 4. The LG simulation estimates of map uncertainty maintained by the ESEIF 
and SEIF compared with that of the KF. For each feature, we consider the log of 
the ratio of the covariance sub-block determinant for the information filters to the 
determinant for the KF. Values equal to zero indicate an exact estimate for the 
uncertainty. Log ratios greater than zero imply conservative estimates while values 
less than zero correspond to overconfidence. In (a) we show a histogram describing 
the global measure of uncertainty determined directly from the inverse of the in­
formation matrices. The SEIF yields map estimates which are largely overconfident 
while the ESEIF leads to estimates which are conservative. Depicted in (b), the 
overconfidence of the SEIF is less severe when we consider the relative map uncer­
tainty which follows from root-shifting the state to the first feature added to the 
map. The one outlier corresponds to the original world origin as represented in the 
new reference frame. Meanwhile, the histogram shows that the ESEIF maintains 
conservative estimates for the relative map covariance matrix. 

quence of the overconfidence of its global map, the one exception in the case of 
the SEIF is the representation of the original world origin in the root-shifted 
reference frame. 

4.2 E x p e r i m e n t a l Va l idat ion 

The linear Gaussian simulations allow us systematically analyze the accuracy 
of the sparsified filters when we are able to perform inference on an exact 
model. Unfortunately, for most real-world applications, both the vehicle mo­
tion and observation models are nonlinear and are corrupted by noise which 
is not Gaussian. To demonstrate the application of ESEIFs to typical SLAM 
problems, we implement the algorithm along with the SEIF and the E K F on 
two nonlinear datasets. 

For the first real-world application of SLAM, we consider the benchmark 
Victoria Park dataset, widely used as a testbed for SLAM algorithms. A truck 
equipped with dead-reckoning sensors and a laser scanner drives in a series 
of loops within Victoria Park, Sydney. Using a simple perceptual grouping 
implementation, we are able to detect tree t runks located throughout the 
park among the laser da ta which is cluttered with spurious returns. We solve 
the da ta association problem offline to ensure tha t the correspondences are 
the same for each filter. 

We implement the ESEIF and SEIF estimators together with the E K F 
which has been successfully applied to this dataset in the past. We limit 
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the number of active features to a maximum number of Fa = 10 for the 
information filters. When we perform sparsification in the ESEIF, our priority 
is again on relocation in that we reserve as many tree observations as possible 
(i.e. no more than Fa = 10) for the purpose of adding the vehicle back into the 
map. Remaining measurements, if any, are used to update the ESEIF prior 
to marginalization. This helps to minimize the influence of spurious data on 
the relocated vehicle pose. 

We plot the ESEIF and SEIF estimates of the map together with the 
three sigma uncertainty bounds in Figures 5(a) and 5(b), respectively. The 
estimates of the 3 km trajectory for the car are superimposed on the plot. As a 
basis for comparison, the plots include the feature locations resulting from the 
EKF which are nearly identical to those published elsewhere. Both sparsified 
filters yield similar maps though the deviation from the EKF estimates is 
noticeably larger for the SEIF than it is for the ESEIF. Furthermore, the 
global confidence bounds for the ESEIF are conservative, yet comparable to 
the feature uncertainties maintained by the EKF while they are significantly 
overconfident for the SEIF. While not ground truth, the EKF represents the 
baseline which the information filters strive to match and, yet, many of the 
EKF estimates lie outside the three sigma uncertainty bounds for the SEIF. 
This is especially evident in the periphery as we indicate in the inset plot. 
As we saw in the LG simulation, all three algorithms seem to equivalently 
represent the local map relationships given by the transformation of the map 
into the vehicle's reference frame at its final pose. Both the ESEIF relative 
map shown in Figure 5(c) and the SEIF relative map in Figure 5(d) are almost 
identical to the corresponding EKF results. In this case, the relative ESEIF 
and SEIF uncertainty bounds now capture the EKF estimate for the feature 
locations. The SEIF algorithm allows us to achieve results which are similar 
to the standard EKF in the local but not global sense while ESEIFs provide a 
conservative map estimate which is nearly identical to the EKF both globally 
and locally. 

We have seen from the plots of the two SLAM maps that SEIFs are much 
more confident in their state estimates. In Figure 6(a) we compare the global 
uncertainty of each feature for the ESEIF and SEIF to the EKF, again using 
the log of the ratio of the determinant of the feature covariances. As with 
the linear Gaussian simulations, the ESEIF log ratios are all greater than 
zero, indicating that ESEIFs maintain conservative estimates for the global 
uncertainty of each state element. On the other hand, those of the SEIF 
are largely overconfident. Expressing the state in the vehicle reference frame, 
the histogram in Figure 6(b) reveals that the SEIF remains overconfident, 
although to a lesser extent. The one exception is again the representation of 
the global origin in the vehicle frame and is a direct consequence of the global 
inconsistency of SEIFs. The ESEIF, meanwhile, remains conservative in the 
relative frame. 

In the second experiment, a wheeled robot drives around a gymnasium in 
which 64 track hurdles are positioned at known locations along the baselines of 
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Fig. 5. Map and vehicle trajectory estimates for the Victoria Park dataset. In 
each, we include the final EKF map which agrees with previous results published 
in the literature. The top two plots represent the global state estimate while the 
two at the bottom are the result of root-shifting the map into the vehicle frame via 
compounding: x̂ ;̂  = 0x^; ©x^. The plot in (a) presents the results of the ESEIF, 
including the three sigma confidence bounds for each of the features. The ESEIF 
produces feature estimates which are nearly identical to those of the EKF and, while 
it is omitted to make the plot readable, the uncertainty ellipses are very similar for 
the two filters. In (b), we see that while the SEIF and EKF maps are alike, the 
difference between the two estimates is noticeably larger for the SEIF algorithm. 
Additionally, the inset reveals that the SEIF yields global error estimates which 
are significantly overconfident. Looking at the maps expressed in the vehicle frame, 
though, we see that both (c) the ESEIF and (d) SEIF preserve the relative map 
structure. 
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Fig. 6. Histograms of the ESEIF and SEIF uncertainty estimates as compared to 
the EKF results for the Victoria Park dataset. We again use the log of the ratio of 
the covariance sub-block determinants for each feature. The histogram in (a) corre­
sponds to the direct filter estimates and is representative of the global uncertainty. 
The ESEIF maintains conservative estimates for the uncertainties while the SEIF 
estimates are overconfident when compared to the EKF. Expressing the map in the 
vehicle's reference frame, (b) demonstrates that SEIFs remain overconfident but are 
better able to capture the relative uncertainty. Due to the global overconfidence, 
there is an outlier corresponding to the representation of the global origin in the 
robot's frame. Meanwhile, the ESEIF local estimates remain conservative relative 
to the EKF. 

four adjacent tennis courts. Wheel encoders provide the input to the kinematic 
motion model while observations of the environment are made using a SICK 
laser scanner. Data association is again performed offline and is the same for 
each filter. 

We perform SLAM on the da ta again using both the ESEIF and SEIF 
alongside a s tandard E K F implementation. When necessary, we employ the 
two sparsification strategies to maintain a bound of Fa = 10 active features. 
During ESEIF sparsification, we relocate the robot using a single feature ob­
servation which provides a measurement of the relative transformation (trans­
lation and rotation) between the vehicle and the hurdle. 

In Figure 7(a), we show the final map estimated by the ESEIF, overlayed 
onto a depiction of the ground t ru th . The ellipses drawn around each feature 
correspond to the three sigma bound on the position of one of the hurdle 
legs. The same plot is shown in Figure 7(b) for the map estimated using the 
SEIF algorithm. Notice tha t the uncertainty bounds maintained by the SEIF 
are significantly overconfident and, for many hurdles, do not include the true 
feature position. While we are able to maintain an estimate of the state which 
is both globally and locally conservative compared with tha t of the E K F using 
ESEIFs, enforcing sparsity in the SEIF results in an estimate which suffers 
from global inconsistency. 
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Fig. 7. The final maps generated by the (a) ESEIF and (b) SEIF algorithms. In­
cluded is an outline of the tennis courts overlayed with the ground truth hurdle 
poses indicated by the black cross hairs. The ellipses centered at the base leg of each 
feature represent the three sigma uncertainty bounds for position. Note the signif­
icant difference in magnitude between the confidence estimates maintained by the 
two filters. While the true feature locations are captured by the ESEIF uncertainty 
regions, a majority of the hurdles fall outside the SEIF ellipses. This overconfidence 
is a result of the approximation employed by SEIFs to enforce sparseness and is 
indicative of global inconsistency. 

5 Discussion 

We have shown both in simulation as well as with a pair of nonlinear datasets 
tha t the ESEIF maintains error measures which are both globally and locally 
conservative relative to the full Kalman estimates. In the linear Gaussian case, 
the implication is tha t the ESEIF sparsification strategy preserves consistency 
according to both metrics. On the other hand, as the ESEIF is formulated 
upon the dual of the EKF, it is subject to the same convergence issues tha t 
are a t t r ibuted to the E K F for nonlinear applications [1]. As such, though the 
ESEIF error estimates are relatively conservative, this does not guarantee con­
sistency in such cases. Nonetheless, the ESEIF algorithm is able to capitalize 
upon the computational benefits of the sparse information form without the 
cost of additional overconfidence. In this manner it provides an efficient means 
of achieving estimates nearly identical to those of the E K F which has been 
successfully applied in a number of real-world situations. 
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6 Conclusion 

Of late, many researchers in the robotics community have been interested in 
developing solutions to the SLAM problem which scale with environments of 
arbitrary size. One approach tha t is particularly promising follows from the 
key insight tha t the information matr ix is relatively sparse for feature-based 
SLAM. In the case where the matr ix is exactly sparse, s tate estimation can 
be performed in near-constant time, irrespective of the number of landmarks 
in the environment. 

While a majority of the elements in the information matrix are relatively 
weak, the matr ix is naturally dense due to the effect of marginalizing out old 
robot poses. To achieve the efficiency benefits, the SEIF algorithm enforces 
sparsity by deliberately breaking weak links between the robot and the map. 
As a consequence of this pruning strategy, the SEIF state estimate suffers 
from global inconsistency. 

In this paper, we have introduced an algorithm for feature-based SLAM 
which achieves an exactly sparse information matrix while maintaining global 
and local consistency, relative to the s tandard EKF. We have shown that , by 
periodically marginalizing out the robot and then relocalizing it within the 
map, we control the number of active landmarks and, in turn, the population 
of the information matrix. The ESEIF is then able to benefit from the effi­
ciency of the sparse information form while yielding conservative estimates 
for the robot pose and map. 

We have demonstrated the performance of ESEIFs, both in a systematic 
linear Gaussian simulation as well as on two different nonlinear datasets. In all 
three, we have shown tha t ESEIFs maintain estimates nearly identical to those 
of the E K F which, in comparison, are both globally and locally conservative. 
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Session Overview 
Field Robotics 

Alonzo Kelly and Chuck Thorpe 
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Field robots do not operate in factories or other controlled settings, but rather 
operate outdoors, underwater, underground, or even on other planets. They 
are characterized by a focus on real applications, and on operation in complex 
terrain. Field robots are often large vehicles, and often have forceful interac­
tions with their workspace. Given their complex setting and complex (and 
often dangerous) tasks, most field robots are not fully autonomous: a great 
deal of effort goes into the user interface, providing mixed modes of human 
and robot interaction. 

Field Roboticsis a branch of robotics characterized by its domain: the 
applications of robotics in the unstructured world to perform useful tasks. 
The papers in this session illustrate well the breadth of concerns addressed 
in building field robots. Some of earliest field robots were configured only 
for mobility and data gathering to perform such missions as exploration and 
mapping. Today, systems have been fielded which interact forcefully with the 
environment in such applications as excavation, mining and sampling. Many 
field robots are characterized by large scales (big machines, long distances 
covered); forceful interaction (either with large loads or with difficult terrain); 
complex machines (robots with many degrees of freedom); and complex en­
vironments (moving objects, soft and uneven terrain); and difficult operating 
environments (limited bandwidth, large distances between operator and ma­
chine) . 

Many of the applications that field robotics aspires to automate take place 
outdoors, in fairly unstructured environments, because we would like to give 
our robots the worst jobs; those that are difficult, dirty, and dangerous. Out­
door environments are complex due to their lack of predictable structure, 
uncontrolled weather conditions, and the pervasiveness of hazards. Often, the 
surface over which the robot moves is soft, or uneven, or difficult to sense. 
Such complexity often leads us to either choose more benign environments 
or to reduce the level of autonomy and involve humans: mixed-mode control, 
with varying degrees of control shared between a human and a robot, is an 
active area of field robotics research. Nonetheless, there are situations where 
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higher levels of autonomy can still be argued to be prudent. In particular, 
being productive outdoors is a dangerous business, for robots as for humans. 
This session includes three papers which exploit autonomy to address ex­
tremes, respectively, in environmental complexity, remoteness, and danger to 
humans. 

Some rich environments are characterized by complicated topology and 
many spatially-distributed degrees of mobility hazard. In these environments, 
perception must often make up for characteristically inadequate prior infor­
mation. Yet, perception is only half the problem. Once something unexpected 
is perceived, a new mobility plan must be generated, and it must be generated 
in real-time if the vehicle is to move continuously during the process. The first 
paper Field D*: An Interpolation Based Pa th Planner and Replannerdescribes 
a version of the D* real-time replanning algorithm which is designed for such 
environments. Field Dstar uses interpolation to remove the discretized heading 
constraint under which most discrete motion planners operate. This leads to 
smoother plans which can be superior to those generated by optimal discrete 
planners. 

Due to the well-known difficulties of teleoperation, many situations persist 
where autonomy is the only effective option. Extraterrestrial environments are 
so extremely remote tha t even the speed of light is a limitation. The Mars 
Exploration Rovers named Spirit and Opportuni ty have recently achieved a 
landmark in field robotics history. Kilometers of terrain on another planet 
have now been successfully traversed under autonomous control. The second 
paper in this session Tradeoffs Between Directed and Autonomous Driving on 
The MER Roversdescribes the issues associated with controlling the rovers 
and the graduated autonomy levels tha t arose to address them. The logistics 
of communicating only twice daily with the rovers, combined with the need to 
move quickly to the next science target, leads to the judicious use of autonomy 
in order to optimize productivity while managing risk to the rover. 

Many terrestrial applications also present a plain tradeoff between risk 
and productivity and robotics can, of course, be used to redefine tha t trade­
off. Among commercial applications, mining is well-known to challenge our 
capacity to remove risk while simultaneously addressing the need to get a 
job done quickly and well. The third paper in this session is Surface Mining: 
Challenges and Main Research Issues for Autonomous Operations. It surveys 
the reasons for our present successes in mining automation as well as the re­
maining challenges to be addressed in order to increase the impact of field 
robots on mining in the future. 



Field D*: An Interpolation-Based Path Planner 
and Replanner 

Dave Ferguson and Anthony Stentz 

Robotics Institute 
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{dif,tony}@cmu.edu 

Summary. We present an interpolation-based planning and replanning algorithm 
for generating direct, low-cost paths through nonuniform cost grids. Most grid-based 
path planners use discrete state transitions that artificially constrain an agent's mo­
tion to a small set of possible headings (e.g. 0, | , |^, etc). As a result, even 'optimal' 
grid-based planners produce unnatural, suboptimal paths. Our approach uses linear 
interpolation during planning to calculate accurate path cost estimates for arbitrary 
positions within each grid cell and to produce paths with a range of continuous head­
ings. Consequently, it is particularly well suited to planning low-cost trajectories for 
mobile robots. In this paper, we introduce the algorithm and present a number of 
example applications and results. 

1 Introduction 

In mobile robot navigation, we are often provided with a grid-based represen­
tat ion of our environment and tasked with planning a pa th from some initial 
robot location to a desired goal location. Depending on the environment, the 
representation may be binary (each grid cell contains either an obstacle or 
free space) or may associate with each cell a cost reflecting the diflftculty of 
traversing the respective area of the environment. 

In robotics, it is common to improve eflftciency by approximating this grid 
with a graph, where nodes are placed at the center of each grid cell and 
edges connect nodes within adjacent grid cells. Many algorithms exist for 
planning paths over such graphs. Dijkstra's algorithm computes paths from 
every node to a specifled goal node [3]. A* uses a heuristic to focus the search 
from a particular start location towards the goal and thus produces a pa th 
from a single location to the goal very eflftciently [5, 18]. D*, Incremental A*, 
and D* Lite are extensions of A* tha t incrementally repair solution paths 
when changes occur in the underlying graph [26, 7, 8, 9]. These incremental 
algorithms have been used extensively in robotics for mobile robot navigation 
in unknown or dynamic environments. 

S. Thmn , R. Brooks, H. Durrant-Whyte (Eds.): Robotics Research, STAR 28, pp. 239-253, 2007. 

© Springer-Verlag Berlin Heidelberg 2007 
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'C^m- 4. ****** 

Pioneers Automated E-Gator Automated ATV GDRS XUV 

Fig. 1. Some robots that currently use Field D* for global path planning. These 
range from indoor planar robots (the Pioneers) to outdoor robots able to operate in 
harsh terrain (the XUV). 

However, almost all of these approaches are limited by the small, discrete 
set of possible transitions they allow from each node in the graph. For instance, 
given a graph extracted from a uniform resolution 2D grid, a pa th planned in 
the manner described above restricts the agent's heading to increments of j . 
This results in paths tha t are suboptimal in length and difficult to traverse in 
practice. Further, even when these paths are used in conjunction with a local 
arc-based planner (e.g. as in the RANGER system [6, 25]), they can still cause 
the vehicle to execute expensive trajectories involving unnecessary turning. 

In this paper we present Field D*, an interpolation-based planning and 
replanning algorithm tha t alleviates this problem. This algorithm extends D* 
and D* Lite to use linear interpolation to efficiently produce low-cost paths 
tha t eliminate unnecessary turning. The paths are optimal given a linear inter­
polation assumption and very effective in practice. This algorithm is currently 
being used by a wide range of fielded robotic systems (see Figure 1). 

We begin by discussing the limitations of paths produced using classical 
grid-based planners and mention recent approaches tha t a t tempt to overcome 
some of these limitations. We then present an interpolation-based method for 
obtaining more accurate pa th cost approximations and show how this method 
can be incorporated into existing planning and replanning algorithms. We 
provide a number of example illustrations and applications of our approach 
and conclude with discussion and extensions. 

2 Limitations of Classical 2D P a t h Planning 

Consider a robotic ground vehicle navigating an outdoor environment. We 
can represent this environment as a uniform resolution 2D traversability grid, 
in which cells are given a cost per unit of traverse (traversal cost) reflecting 
the difficulty of navigating the respective area of the environment. If this 
traversability grid encodes the configuration space costs (i.e. the traversal costs 
have been expanded to refiect the physical dimensions of the vehicle), then 
planning a pa th for the robot translates to generating a trajectory through this 
grid for a single point. A common approach used in robotics for performing 
this planning is to combine an approximate global planner with an accurate 
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local planner [6, 25, 1, 23]. The global planner computes paths through the grid 
tha t ignore the kinematic and dynamic constraints of the vehicle. Then, the 
local planner takes into account the constraints of the vehicle and generates 
a set of feasible local trajectories tha t can be taken from its current position. 
To decide which of these trajectories to execute, the robot evaluates both the 
cost of each local trajectory and the cost of a global path from the end of each 
trajectory to the robot 's desired goal location. 

To formalize the global planning task, we need to define more precisely 
some concepts already introduced. First, each cell in the grid has assigned to 
it some real-valued traversal cost tha t is greater than zero. The cost of a line 
segment between two points within a cell is the Euclidean distance between 
the points multiplied by the traversal cost of the cell. The cost of any path 
within the grid is the sum of the costs of its line segments through each cell. 
Then, the global planning task (involving a uniform resolution grid) can be 
specified as follows. 

T h e Globa l P l a n n i n g Task: Given a region in the plane partitioned into 
a uniform grid of square cells T, an assignment of traversal costs c : T ^ 
(0, +oo] to each cell, and two points sstart (^^d Sgoai within the grid, find the 
path within the grid from sstart to Sgoai with minimum cost. 

This task can be seen as a specific instance of the Weighted Region Prob­
lem [17], where the regions are uniform square tiles. A number of algorithms 
exist to solve this problem in the computational geometry literature (see [16] 
for a good survey). In particular, [17] and [21] present approaches based on 
Snell's law of refraction tha t compute optimal paths by simulating a series 
of light rays tha t propagate out from the start position and refract according 
to the different traversal costs of the regions encountered. These approaches 
are efficient for planning through environments containing a small number of 
homogenous-cost regions, but are computationally expensive when the num­
ber of such regions is very large, as in the case of a uniform grid with varying 
cell costs. 

Because of the computational expense associated with planning optimal 
paths through grids, researchers in robotics have focussed on basic approxi­
mation algorithms tha t are extremely fast. The most popular such approach 
is to approximate the traversability grid as a discrete graph, then generate 
paths over the graph. A common way to do this is to assign a node to each cell 
center, with edges connecting the node to each adjacent cell center (node). 
The cost of each edge is a combination of the traversal costs of the two cells 
it transitions through and the length of the edge. Figure 2(a) shows this node 
and edge extraction process for one cell in a uniform resolution 2D grid. 

We can then plan over this graph to generate paths from the robot 's initial 
location to a desired goal location. As mentioned previously, a number of 
efficient algorithms exist for performing this planning, such as A* for initial 
planning and D* and its variants for replanning [5, 18, 26, 8]. Unfortunately, 
paths produced using this graph are restricted to headings of f increments. 



242 D. Ferguson and A. Stentz 

(a) (b) 

o 

Fig. 2. (a) A standard 2D grid used for global path planning in which nodes reside 
at the centers of the grid cells. The arcs emanating from the center node represent all 
the possible actions that can be taken from this node, (b) A modified representation 
used by Field D*, in which nodes reside at the corners of grid cells, (c) The optimal 
path from node s must intersect one of the edges {siS2, S2S3, S3S4, S4S5, S^SQ, SQS7, 
S7S8, sgsi}. 

This means tha t the final solution pa th may be suboptimal in pa th cost, 
involve unnecessary turning, or both. 

For instance, consider a robot facing its goal position in a completely 
obstacle-free environment (see Figure 3). Obviously, the optimal pa th is a 
straight line between the robot and the goal. However, if the robot 's initial 
heading is not a multiple of ^ , traditional grid-based planners would return 
a pa th tha t has the robot first turn to at ta in the nearest grid heading, move 
some distance along this heading, and then turn ^ in the opposite direction of 
its initial turn and continue to the goal. Not only does this pa th have clearly 
suboptimal length, it contains possibly expensive or diflftcult turns tha t are 
purely artifacts of the limited representation. Such global paths, when coupled 
with the results of a local planner, cause the robot to behave suboptimally. 
Further, this limitation of traditional grid-based planners is not alleviated by 
increasing the resolution of the grid. 

Sometimes it is possible to reduce the severity of this problem by post­
processing the path. Usually, given a robot location 5, one finds the furthest 
point p along the solution pa th for which a straight line pa th from 5 to p 
is collision-free, then replaces the original path to p with this straight line 
path. However, this does not always work, as illustrated by Figure 4. Indeed, 
for nonuniform cost environments such post-processing can often increase the 
cost of the path. 

A more comprehensive post-processing approach is to take the result of 
the global planner and use it to seed a higher dimensional planner tha t in­
corporates the kinematic or dynamic constraints of the robot. Stachniss and 
Burgard [24] present an approach tha t takes the solution generated by the 
global planner and uses it to extract a local waypoint to use as the goal for a 
5D trajectory planner. The search space of the 5D planner is limited to a small 
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Fig. 3. A uniform resolution 2D grid-based path (ei plus 62) between two grid nodes 
can be up to 8% longer than an optimal straight-line path (eo). Here, the desired 
straight-line heading is ^ and lies perfectly between the two nearest grid-based 
headings of 0 and J . This result is independent of the resolution of the grid. 

area surrounding the global solution path. Likhachev et al. [15, 14] present 
an approach tha t uses the cost-to-goal value function of the global planner to 
focus an anytime global 4D trajectory planner. Their approach improves the 
quality of the global trajectory while deliberation t ime allows. However, these 
higher dimensional approaches can be much more computationally expensive 
than s tandard grid-based planners and are still influenced by the results of 
the initial grid-based solution. 

Recently, robotics researchers have looked at more sophisticated methods 
of obtaining better paths through grids without sacrificing too much of the 
efficiency of the classic grid-based approach described above. Konolige [10] 
presents an interpolated planner tha t first uses classic grid-based planning 
to construct a cost-to-goal value function over the grid and then interpolates 
this result to produce a shorter pa th from the initial position to the goal. This 
method results in shorter, less-costly paths for agents to traverse but does not 
incorporate the reduced pa th cost into the planning process. Consequently, 
the resulting pa th is not necessarily as good as the pa th the algorithm would 
produce if interpolated costs were calculated during planning. Further, if we 
are computing paths from several locations (which is common when combining 
the global planner with a local planner) then this post-processing interpolation 
step can be expensive. Also, this approach provides no replanning functionality 
to update the solution when new information concerning the environment is 
received. 

Philippsen and Siegwart [20] present an algorithm based on Fast Marching 
Methods [22] tha t computes a value function over the grid by growing a surface 
out from the goal to every region in the environment. The surface expands ac­
cording to surface fiow equations, and the value of each grid point is computed 
by combining the values of two neighboring grid points. This approach incor­
porates the interpolation step into the planning process, producing low-cost, 
interpolated paths. This technique has been shown to generate nice paths in 
indoor environments [19, 20]. However, the search is not focussed towards the 
robot location (such as in A*) and assumes tha t the transition cost from a 
particular grid node to each of its neighbors is constant. Consequently, it is 
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Fig. 4. 2D grid-based paths cannot always be shortened in a post-processing phase. 
Here, the grid-based path from s to ^ (top, in black) cannot be shortened because 
there are four obstacle cells (shaded). The optimal path is shown dashed. 

not as applicable to navigation in outdoor environments, which are often best 
represented by large grids with widely-varying cell traversal costs. 

The idea of using interpolation to produce better value functions for dis­
crete samples over a continuous state space is not new. This approach has 
been used in dynamic programming for some time to compute the value of 
successors tha t are not in the set of samples [11, 12, 13]. However, as LaValle 
points out [13], this becomes difficult when the action space is also continuous, 
as solving for the value of a s tate now requires minimizing over an infinite set 
of successor states. 

The approach we present here is an extension of the widely-used D* fam­
ily of algorithms tha t uses linear interpolation to produce near-optimal paths 
tha t eliminate unnecessary turning. It relies upon an efficient, closed-form so­
lution to the above minimization problem for 2D grids, which we introduce 
in the next section. This method produces much straighter, less-costly paths 
than classical grid-based planners without sacrificing real-time performance. 
As with D* and D* Lite, our approach focusses its search towards the most 
relevant areas of the state space during both initial planning and replanning. 
Further, it takes into account local variations in cell traversal costs and pro­
duces paths tha t are optimal given a linear interpolation assumption. As the 
resolution of the grid increases, the solutions returned by the algorithm im­
prove, approaching true optimal paths. 

3 Improving Cost Estimation Through Interpolation 

The key to our algorithm is a novel method for computing the pa th cost of 
each grid node s given the path costs of its neighboring nodes. By the pa th 
cost of a node we mean the cost of the cheapest pa th from the node to the 
goal. In classical grid-based planning this value is computed as 

9{s) mill (c{s,s')+g{s')), 
s'Gnbrs{s) 

(1) 
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Fig. 5. Computing the path cost of node s using the path cost of two of its neighbors, 
si and S2, and the traversal costs c of the center ceh and b of the bottom ceh. 
niustrations (ii) through (iv) show the possible optimal paths from s to edge siS2-

where nbrs{s) is the set of all neighboring nodes of s (see Figure 2), c(5, s') 
is the cost of traversing the edge between s and s\ and g{s') is the pa th cost 
of node s\ 

This calculation assumes tha t the only transitions possible from node s 
are straight-line trajectories to one of its neighboring nodes. This assump­
tion results in the limitations of grid-based plans discussed earlier. However, 
consider relaxing this assumption and allowing a straight-line trajectory from 
node s to any point on the boundary of its grid cell. If we knew the value of 
every point 55 along this boundary, then we could compute the optimal value 
of node s simply by minimizing c(5, 55) +^(55) , where c(5, 55) is computed as 
the distance between s and 55 multiplied by the traversal cost of the cell in 
which s resides. Unfortunately, there are an infinite number of such points 55 
and so computing g{sb) for each of them is not possible. 

It is possible, however, to provide an approximation to g{sb) for each 
boundary point 55 by using linear interpolation. To do this, we first mod­
ify the graph extraction process discussed earlier. Instead of assigning nodes 
to the centers of grid cells, we assign nodes to the corners of each grid cell, 
with edges connecting nodes tha t reside at corners of the same grid cell (see 
Figure 2(b)). 

Given this modification, the traversal costs of any two equal-length seg­
ments of an edge will be the same. This differs from the original graph ex­
traction process in which the first half of an edge was in one cell and the 
second half was in another cell, with the two cells possibly having different 
traversal costs. In the modified approach the cost of an edge tha t resides on 
the boundary of two grid cells is defined as the minimum of the traversal costs 
of each of the two cells. 

We then treat the nodes in our graph as sample points of a continuous cost 
field. The optimal pa th from a node s must pass through an edge connecting 
two consecutive neighbors of 5, for example 51^2 (see Figure 2(c)). The pa th 
cost of s is thus set to the minimum cost of a pa th through any of these edges, 
which are considered one at a time. To compute the pa th cost of node s using 
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C o m p u t e C o s t ( s , Sa, Sb) 
01. if (sa is a diagonal neighbor of s) 
02. Si = Sb', S2 = Sa', 
03. else 
04. Si = Sa', S2 = St,; 
05. c is traversal cost of cell with corners s, s i , S2; 
06. b is traversal cost of cell with corners s, s i but not S2; 
07. if (min(c, b) = 00) 
08. Vs = 00; 
09. else if (fir(si) < fir(s2)) 
10. Vs = min(c, 6) + g(si); 
11. else 
12. f = gisi) - gis2); 
13. if ( / < b) 
14. if (c < / ) 
15. Vs = cV2-\- g{s2); 
16. else 
17. y = m i n ( - ^ = ^ = = , l ) ; 

18. Vs = c V l + 2/2 + / ( I - y) + fir(s2); 
19. else 
20. if (c < 6) 
21. Vs = c V 2 + fir(s2); 
22. else 
23. x = l - m i n ( - ^ ^ = , l ) ; 

24. Vs = Cy^l + (1 - X)2 + 6X + ^(S2); 
25. re turn v^; 

Fig. 6. The Interpolation-based Path Cost Calculation 

edge 5i52, we use the pa th costs of nodes si and 52 and the traversal costs c 
of the center cell and b of the bot tom cell (see Figure 5). 

To compute this cost efficiently, we assume the pa th cost of any point Sy 
residing on the edge between si and 52 is a linear combination of g{si) and 

9{sy) = yg{s2) + (1 - y)g{si), (2) 

where y is the distance from si to Sy (assuming unit cells). This assump­
tion is not perfect: the pa th cost of Sy may not be a linear combination of 
^(51) and ^(52), nor even a function of these pa th costs. However, this linear 
approximation works well in practice, and allows us to construct a closed form 
solution for the pa th cost of node s. 

Given this approximation, the pa th cost of s given 5i, 52, and cell costs c 
and h can be computed as 

m.m.[hx + c V ( l - x^ ^ y'^ + yg{s2) + (1 - y)g{si)\, (3) 

where x G [0,1] is the distance traveled along the bot tom edge from s 
before cutting across the center cell to reach the right edge a distance of 
y G [0,1] from si (see Figure 5(i)). Note tha t if both x and y are zero in 
the above equation the pa th taken is along the bot tom edge but its cost is 
computed from the traversal cost of the center cell. 

Let (x*, I/*) be a pair of values for x and y tha t solve the above minimiza­
tion. Because of our use of linear interpolation, at least one of these values 
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will be either zero or one. We formally prove this in an extended technical re­
port version of this paper [4]. Intuitively, if it is less expensive to partially cut 
through the center cell than to traverse around the boundary, then it is least 
expensive to completely cut through the cell. Thus, if there is any component 
to the cheapest solution pa th from s tha t cuts through the center cell, it will 
be as large as possible, forcing x* = 0 or i/* = 1. If there is no component of 
the pa th tha t cuts through the center cell, then i/* = 0. 

Thus, the pa th will either travel along the entire bot tom edge to 5i (Figure 
5(ii)), or will travel a distance x along the bot tom edge then take a straight-
line pa th directly to 52 (Figure 5(iii)), or will take a straight-line path from 
s to some point Sy on the right edge (Figure 5(iv)). Which of these paths is 
cheapest depends on the relative sizes of c, 6, and the difference / in path cost 
between si and 52: / = ^(^i) — ^(52). Specifically, if / < 0 then the optimal 
pa th from s travels straight to Si and will have a cost of (min(c, 6) + ^(^i)) 
(Figure 5(ii)). If f = b then the cost of a pa th using some portion of the 
bot tom edge (Figure 5(iii)) will be equivalent to the cost of a pa th using 
none of the bot tom edge (Figure 5(iv)). We can solve for the value of y tha t 
minimizes the cost of the latter pa th as follows. 

First, let k = f = b. The cost of a pa th from s through edge 51^2 is 

c^/lT^^k{l-y)^g{s2). (4) 

Taking the derivative of this cost with respect to y and setting it equal to 
zero yields 

"• ̂  /S^ <'̂' 
Whether the bot tom edge or the right edge is used, we end up with the 

same calculations and pa th cost computations. So all tha t mat ters is which 
edge is cheaper. If f < b then we use the right edge and compute the pa th cost 
as above (with k = f)^ and if 6 < / we use the bot tom edge and substi tute 
k = b and 1/* = 1 — x* into the above equation. The resulting algorithm for 
computing the minimum-cost pa th from s through an edge between any two 
consecutive neighbors Sa and 55 is provided in Figure 6. Given the minimum-
cost paths from s through each of its 8 neighboring edges, we can compute the 
pa th cost for s to be the cost of the cheapest of these paths. The corresponding 
pa th is optimal given our linear interpolation assumption. 

4 Field D* 

Once equipped with this interpolation-based pa th cost calculation for a given 
node in our graph, we can plug it into any of a number of current planning 
and replanning algorithms to produce low-cost paths. Figure 7 presents our 
simplest formulation of Field D*^ an incremental replanning algorithm tha t 
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key(s ) 
01. re turn [min(g(s), rhs(s)) -\- h(sstart, s);min(g(s), rhs(s))]; 

U p d a t e S t a t e ( s ) 
02. if s was not visited before, g(s) = oo; 
03. if (S ^ Sgoal) 
04. rhs(s) = rn,m(_3/_g//̂ ,̂ ^_,̂ ,„_„_{,̂ .̂_3(_g ,̂ConiputeCost(s, s^, s'^); 
05. if (s G OPEN) remove s from OPEN; 
06. if lg(s) i- rhs(s)) insert s into 0 P £ ; A A with key(s); 

C o m p u t e S h o r t e s t P a t h ( ) 
07. while (minsGOP£;iv(key(s))< key(ss tar t ) OR rhs(sstart) ¥" g(sstart)) 
08. remove s ta te s with the minimum key from OPEN; 
09. if {g{s) > rhs{s)) 
10. 5r(s) = rhs(s); 
11. for all s' G nbrs(s) Upda teS ta t e ( s ' ) ; 
12. else 
13. g{s) = oo; 
14. for all s ' G nbrs{s) U {s} Upda teS ta t e ( s ' ) ; 

Main( ) 
15. g(sstart) = rhs(sstart) = oo;5r(sgoaz) = oo; 
16. r/is(sgoaz) = 0; 0 P £ ; A A = 0; 
17. insert SgoaZ into OPEN with key(sgoaz); 
18. forever 
19. ComputeShor tes tPa th( ) ; 
20. Wait for changes in cell traversal costs; 
21. for all cells x with new traversal costs 
22. for each s ta te s on a corner of x 
23. Upda teS ta te ( s ) ; 

Fig. 7. The Field D* Algorithm (basic D* Lite version). 

incorporates these interpolated pa th costs. This version of Field D* is based 
on D* Li te^ 

In this figure, connbrs{s) contains the set of consecutive neighbor pairs 
of node s: connhrs{s) = {(51,52), (^2,53), (53,54), (54,55), (55,55), (55,57), 
(57,55), (58,5i)}, where 5̂  is positioned as shown in Figure 2(c). Apart from 
this construction, notation follows the D* Lite algorithm: ^(5) is the current 
pa th cost of node 5 (its ^-value), rhs{s) is the one-step lookahead pa th cost 
for 5 (its r/i5-value), OPEN is a priority queue containing inconsistent nodes 
(i.e., nodes 5 for which ^(5) 7̂  rhs{s)) in increasing order of key values (line 
1)5 Sstart is the initial agent node, and Sgoai is the goal node. h{sstart^s) is 
a heuristic estimate of the cost of a pa th from sstart to 5. Because the key 
value of each node contains two quantities a lexicographic ordering is used: 
key(5) < key(5') iff the first element of key(5) is less than the first element of 
key(5') or the first element of key(5) equals the first element of key(5') and 

Differences between Field D* and D* Lite appear on lines 4 and 20 through 23. 
As opposed to the original, graph-based version of D* Lite, lines 20 - 22 tailor 
Field D* to grids. Also, because paths intersect edges and not just nodes, the 
heuristic value h{sstart, s) must be small enough that when added to the cost of 
any edge incident on s it is still not greater than a minimum cost path from sstart 
to s. 
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Fig. 8. A close-up of a path planned using Field D* showing individual grid cells. 
Notice that the path is not limited to entering and exiting cells at corner points. 

the second element of key(5) is less than the second element of key(5'). For 
more details on the D* Lite algorithm and this terminology, see [8, 7]. Also, 
the termination and correctness of the Field D* algorithm follow directly from 
D* Lite and the analysis of the cost calculation provided in Section 3. 

This is an unoptimized version of Field D*. In our extended technical 
report [4] we discuss a number of optimizations tha t significantly improve the 
overall efficiency of planning and replanning with this algorithm. 

Once the cost of a pa th from the initial s tate to the goal has been calcu­
lated, the pa th is extracted by start ing at the initial position and iteratively 
computing the cell boundary point to move to next. Because of our interpo­
lation technique, it is possible to compute the pa th cost of any point inside 
a grid cell, not just the corners, which is useful for both extracting the pa th 
and getting back on track if execution is not perfect (which is usually the case 
for real robots). 

Figures 8 and 9 illustrate paths produced by Field D* through three 
nonuniform cost environments. In each of these figures, darker areas represent 
regions tha t are more costly to traverse. Notice tha t , unlike paths produced 
using classical grid-based planners, the paths produced using Field D* are not 
restricted to a small set of headings. As a result. Field D* provides lower-cost 
paths through both uniform and nonuniform cost environments. 

5 Results 

The true test of an algorithm is its practical effectiveness. We have found 
Field D* to be extremely useful for a wide range of robotic systems navigating 
through terrain of varying degrees of difficulty (see Figure 1). 

To provide a quanti tat ive comparison of the performance of Field D* rel­
ative to D* Lite, we ran a number of replanning simulations in which we 
measured both the relative solution pa th costs and runtimes of the opti-
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Fig. 9. (left) Paths produced by D* Lite (top) and Field D* (bottom) in a 150 x 60 
nonuniform cost environment, (right) Field D* planning through a potential field 
of obstacles. 

mized versions of the two approaches. We generated 100 different 1000 x 
1000 nonuniform cost grid environments in which each grid cell was assigned 
an integer traversal cost between 1 (free space) and 16 (obstacle). With prob­
ability 0.5 this cost was set to 1, otherwise it was randomly selected. For each 
environment, the initial task was to plan a path from the lower left corner to a 
randomly selected goal on the right edge. After this initial path was planned, 
we randomly altered the traversal costs of cells close to the agent (10% of 
the cells in the environment were changed) and had each approach repair its 
solution path. This represents a significant change in the information held by 
the agent and results in a large amount of replanning. 

During initial planning. Field D* generated solutions that were on average 
96% as costly as those generated by D* Lite, and took 1.7 times as long to 
generate these solutions. During replanning, the results were similar: Field 
D* provided solutions on average 96% as costly and took 1.8 times as long. 
The average initial planning runtime for Field D* on a 1.5 GHz Powerbook 
G4 was 1.5s, and the average replanning runtime was 0.07s. In practice, the 
algorithm is able to provide real-time performance for fielded systems. 

6 Discussion 

Although the results presented above show that Field D* generally produces 
less costly paths than regular grid-based planning, this is not guaranteed. It 
is possible to construct pathological scenarios where the linear interpolation 
assumption is grossly incorrect (for instance, if there is an obstacle in the 
cell to the right of the center cell in Figure 5(i) and the optimal path for 
node 52 travels above the obstacle and the optimal path for node s\ travels 
below the obstacle). In such cases, the interpolated path cost of a point on an 
edge between two nodes may be either too low or too high. This in turn can 
affect the quality of the extracted solution path. However, such occurrences 
are very rare, and in none of our random test cases (nor any cases we have ever 
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encountered in practice) was the pa th returned by Field D* more expensive 
than the grid-based pa th returned by D* Lite. In general, even in carefully-
constructed pathological scenarios the pa th generated by Field D* is very 
close in cost to the optimal solution path. 

Moreover, it is the ability of Field D* to plan paths with a continuous 
range of headings, rather than simply its lower-cost solutions, tha t is its t rue 
advantage over regular grid-based planners. In both uniform and nonuniform 
cost environments. Field D* provides direct, sensible paths for our agents to 
traverse. 

7 Conclusion 

In this paper we presented Field D*, an extension of classical grid-based plan­
ners tha t uses linear interpolation to efficiently produce less costly, more nat­
ural paths through grids. We have found Field D* to be extremely useful for 
mobile robot pa th planning in both uniform and nonuniform cost environ­
ments. 

We and others are currently extending the Field D* algorithm in a number 
of ways. Firstly, a 3D version of the Field D* algorithm has been developed 
for vehicles operating in the air or underwater [2]. We are also developing 
a version tha t interpolates over headings, not just pa th costs, to produce 
smoother paths when turning is expensive. Finally, we are also working on 
a version of the algorithm able to plan over nonuniform grids, for vehicles 
navigating through very large environments. 
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Summary . NASA's Mars Exploration Rovers (MER) have collected a great di­
versity of geological science results, thanks in large part to their surface mobility 
capabilities. The six wheel rocker/bogie suspension provides driving capabilities in 
many distinct terrain types, the onboard IMU measures actual rover attitude changes 
(roll, pitch and yaw, but not position) quickly and accurately, and stereo camera 
pairs provide accurate position knowledge and/or terrain assessment. Solar panels 
generally provide enough power to drive the vehicle for at most four hours each day, 
but drive time is often restricted by other planned activities. Driving along slopes 
in nonhomogeneous terrain injects unpredictable amounts of slip into each drive. 
These restrictions led us to create driving strategies that maximize drive speed and 
distance, at the cost of increased complexity in the sequences of commands built by 
human Rover Planners each day. 

The MER rovers have driven more than a combined 10 kilometers over Martian 
terrain during their first 21 months of operation using these basic modes. In this 
paper we describe the strategies adopted for selecting between human-planned di­
rected drives versus rover-adaptive Autonomous Navigation and Visual Odometry 
drives. 

Keywords : Mars Rover, MER, Space Robotics, Autonomy, Mission Planning 

1 Background 

NASA successfully landed two mobile robot geologists on the surface of Mars 
in January 2004: the Spirit and Opportuni ty Mars Exploration Rovers (MER). 
Their primary goal was to find evidence of past water at Gusev Crater and 
Meridiani Planum, two geologically distinct sites on opposite sides of the 
planet. Each rover was instrumented with a suite of tools for remote sens­
ing (multi-filter and stereo camera pairs and a thermal emission spectrometer) 
and in situ measurement (5 DOE arm for deploying a grinding Rock Abrasion 
Tool, Microscopic Imager, Alpha Particle X-ray Spectrometer, and Mossbauer 
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Spectrometer). Although the achievement of their successful landings stands 
out as a technological tour de force, it was their ability to traverse while on 
the surface of Mars that enabled both rovers to succeed in their primary goals. 

The MER rovers are typically commanded once per Martian solar day (or 
sol). A sequence of commands sent in the morning specifies the sol's activities: 
what images and data to collect, how to position the robotic arm, and where to 
drive. At the end of each sol, the rovers send back the images and data human 
operators will use to plan the next sol's activities. The next sol's mobility 
commands are selected based on what is known - and what is unknown -
about the terrain ahead. 

1.1 Rover Mobility Commands 

The rovers are driven using three primary modes: low-level commands that 
specify exactly how much to turn each wheel and steering actuator, directed 
driving primitives for driving along circular arcs (of which straight line driving 
and turn-in-place are special cases), and autonomous path selection. 

Several types of potential vehicles hazards are checked reactively, most of 
them during Real Time Interrupts (RTIs) which occur 8 times per second. 
Available checks include Tilt/Pitch/Roll, Northerly Tilt, Rocker/Bogie Sus­
pension Angles, Motor Stalls, Limit Cycle (no forward progress), and Resource 
Contention. 

The rovers maintain an estimate of their local position and orientation up­
dated at 8 Hz while driving. Position is first estimated based on wheel odom-
etry, and orientation is estimated using an Inertial Measurement Unit that 
has 3-axis accelerometers and 3-axis angular rate sensors. In between driv­
ing primitives, the rover can use camera-based Visual Odometry (VisOdom) 
to correct the errors in the initial wheel odometry-based estimate. VisOdom 
tracks terrain features in NavCam stereo images and uses the tracking infor­
mation to estimate true vehicle motion during small steps; the rover can only 
move roughly 60cm, or turn 15 degrees, before successive NavCam images lack 
enough overlap to reliably estimate motion [2]. 

Both directed and path selection modes of driving can make use of onboard 
stereo vision processing and terrain analysis software to determine whether 
the rover would encounter geometric hazards along its chosen path. 

The computing resources required by these different commands vary 
greatly. Directed driving commands execute the most quickly (achieving 
speeds up to 124 m/hour), but also have greater risk since the rover can 
only count wheel rotations to estimate position, and never looks ahead to 
evaluate the terrain before driving onto it. AutoNav commands detect and 
avoid geometric hazards, but only achieve driving speeds from 10 m/hour in 
obstacle-laden terrain up to 36 m/hour in safe terrain, and also rely on the 
accuracy of the wheel odometry to track obstacles once they leave the field of 
view of the cameras. VisOdom commands provide accurate position estimates 
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(but not obstacle detection), and require close spacing between images which 
limits the top speed to 10 m/hour . 

A u t o n o m o u s Terrain Ana lys i s 

When information about nearby terrain is unavailable or uncertain, the rover 
can be commanded to evaluate terrain safety by performing stereo vision and 
terrain assessment autonomously This allows the rover to predictively locate 
traverse hazards and avoid them. The procedure is not summarized here; see 
[4, 1] for details and [9] for the approach tha t inspired it. 

The rock-strewn terrain encountered by Spirit at Gusev Crater corre­
sponded well to the exponential rock distribution models predicted using 
da ta from Viking I, II and Pathfinder missions [5]. The body-mounted 120-
degree Field of View (FOV) HazCams were designed with this terrain model in 
mind, and Spirit has performed all of its autonomous terrain assessment using 
these cameras. However, the terrain encountered by Opportuni ty at Meridiani 
P lanum is vastly different. Instead of a wide variety of rocks at many scales, 
much of the terrain consists of very fine-grained materials; so fine, in fact, 
tha t no large scale features can be found in the wide FOV HazCam images 
at 256x256 resolution. Fortunately, the lack of large scale features implies a 
lack of large "step" obstacles. So, Opportuni ty was reconfigured to perform 
terrain assessment with more narrow FOV NavCam images. Rock and fissure 
obstacles can still be detected, but the limited FOV means less of the ter­
rain around the obstacle will be understood, which reduces its ability to steer 
around them autonomously. 

All MER surface software runs on a 20 MHz RAD6000 computer under 
the VxWorks operating system. The slow processor speed, and the sharing 
of a single address space and cache by dozens of tasks, mean Autonomous 
Navigation (AutoNav) and VisOdom software run slowly. 

1.2 G r o u n d - B a s e d Terrain A n a l y s i s 

Ground-based terrain assessment is generally performed using stereo image 
pairs taken by any of the three types of stereo camera pairs found on MER 
vehicles. There are two pairs of wide field-of-view (120 degree, 10cm baseline) 
Hazard Cameras (HazCams) rigidly mounted 53cm above the ground plane 
on the front and back sides, one pair of medium field-of-view (45 degree, 20cm 
baseline) Navigation Cameras (NavCams) mounted 152cm above the ground 
plane on a pan / t i l t head, and one pair of narrow field-of-view (18 degree, 
28cm baseline) Panoramic Cameras (PanCams) also mounted 152cm above 
the ground plane on the pan / t i l t head. [8] These cameras take up to 1024x1024 
12-bit images tha t provide information about terrain texture throughout their 
images, and stereo range-derived terrain shape at different scales: around 0.5m 
- 5m in the HazCams, 2m - 20m in the NavCams, and 4m - 70m in the 
PanCams. 
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The amount of directed driving tha t can be commanded depends on both 
the terrain itself and on how much information about the terrain is available. 
Orbital imagery, while crucial for long-range planning, cannot resolve vehicle 
hazards like 20cm rocks. So after each long drive, images from each appropriate 
camera pair are requested. 

Downlinked stereo image pairs are processed by an automated pipeline 
tha t generates derived products including 3D range maps, texture-mapped 
terrain meshes, and color overlays indicating terrain properties such as slope 
and elevation [6]. Rover operators use image-based querying tools to measure 
ranges to terrain features and estimate distances and rock sizes [3]. For exam­
ple, a "ruler" tool allows the operator to measure the distance between the 
3D points corresponding to two pixels in an image or image mosaic, useful for 
identifying discrete obstacles such as rocks or steps. Terrain meshes give the 
operator a geometric understanding of the terrain and of spatial relationships 
between terrain features and the planned path, and allow simulation of drive 
sequences to predict drive safety and performance [10]. The raw images are 
also extremely useful in assessing traversability: operators can readily identify 
very sandy or very rocky areas tha t present hazards, though new terrain types 
always carry an element of uncertainty regarding vehicle performance. In some 
cases, no image cues enable rover operators to predict the performance of a 
drive; patches of terrain only a few meters apart , with similar surface texture 
and geometry, can lead to drastically different traction or sinkage. For ex­
ample, while driving uphill toward a topographic high point named "Larry's 
Lookout" on Sol 399, Spirit reached 100% slip (i.e. no forward progress) on 
a 16 degree slope, but only a few meters further had only 20% slip on a 19 
degree slope with no discernible difference in appearance. 

Humans are very good at terrain analysis for motion planning. In ad­
dition to geometric hazards such as rocks or drop-offs, humans can readily 
identify and classify new terrain types (e.g., sandy versus rocky slopes) on 
the basis of appearance alone. In contrast, the MER software does not have 
any appearance-based terrain analysis capabilities, it only detects geometric 
obstacles. Nevertheless, the most serious and frequent hazards (rocks, steps, 
and high-center hazards) can be detected by geometric analysis-assuming suf­
ficient range da ta is available. At longer ranges (over 15m in NavCam images, 
and over 50m in P a n C a m images), range da ta becomes sparse, making it im­
possible to rely solely on geometric analysis. The rover is bet ter able to assess 
nearby hazards, but its lack of a global planner (which the human stands in 
for during manual drives) can cause the rover to get stuck in cul de sacs. 

2 Drive Techniques and Templates 

Most drive sequences can be classified as either traverses (covering maximum 
distance) or approaches (driving to a specific position for subsequent in situ 
arm operations). The techniques used for each drive type are determined based 
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on the time allocated for driving, the amount of terrain visible in imagery, 
known hazards, and level of uncertainty in rover position given the terrain 
type. Generally, driving on level ground requires a mix of blind and AutoNav 
driving, and driving on slopes requires using VisOdom to allow the rover to 
compensate for unpredictable slip. 

2.1 Travers ing t h e P la ins 

We learned during our initial drives in each terrain tha t driving on level ground 
typically leads to accurate and predictable mobility performance; e.g.. Spirit 
only accumulated 3% position error over 2 kilometers of driving [7]. Because of 
the rover's limited processing power, drives using autonomous hazard avoid­
ance are several times slower than "blind" (manually-directed) drives. These 
two facts favor long initial blind drives to achieve the longest drives in the 
least amount of rover execution time. Human operators can easily identify 
rocks tha t are large enough to be hazardous to the rover, and can plan com­
plex paths tha t avoid them. The firm surfaces found on the plains of Gusev 
crater often allowed for blind drives of up to 70m. 

Fig. 1. Left: On Sol 446, Opportunity found its wheels more than half buried in 
sand. Although not a geometric hazard, the ripple of sand on which it stopped kept 
the human planners busy for weeks. Right: On Sol 454, Spirit terminated its drive 
early after detecting 90% slip. This image shows rocks that had collected next to 
the left front wheel. 

On the plains of Meridiani, the terrain hazards were quite different and 
initially allowed for blind drives over 100m. Unlike the Gusev plains, there 
was a near-total absence of rocks at Meridiani, and until Sol 446 (see Fig­
ure 1) none of the innumerable sandy ripples posed a threat to the rover. 
Craters, visible in orbital imagery, and small linear depressions were the most 
significant hazards for Opportunity. While driving over flat terrain, the rover's 
suspension does not articulate significantly, which suggested tha t a measured 
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suspension articulation change could be used to halt driving if the rover were 
to encounter a depression. In April 2004, the rover's software was upgraded to 
allow the rover's suspension angles to be checked against preset limits at 8Hz, 
thus enabling the rover to stop at negative terrain features (i.e., holes) tha t 
were not visible a priori. Because the reason for halting a drive (e.g., time­
out, suspension check, slip amount, or tilt check) is accessible to the rover 
sequencing language, a recovery maneuver could be performed whenever the 
suspension check tripped. The recovery consists of backing up several meters 
and continuing the drive with AutoNav, since AutoNav is able to detect and 
avoid negative hazards. 

Both rovers use a common strategy at the end of long traverses to acquire 
necessary images for manipulator operations and turn to a preset heading 
tha t minimizes the multi-path interference caused by the rover's mast during 
communication with Ear th or an orbiter. However, this presents a problem 
for the next sol's IDD operations: since no camera can see the par t of the 
IDD deployment volume under the rover, a front HazCam image pair of the 
final terrain must be safely acquired 0.5-3m before driving to the rover's final 
location in order to determine if the IDD can be safely deployed. 

The obvious solution is to turn to the desired heading, acquire the image 
pair, then drive a short distance to the final location. The "guarded arc" drive 
primitive solves this problem by only executing the post- turn drive segment 
if the onboard terrain analysis shows tha t it is safe to do so. 

2.2 D r i v i n g on S lopes : M o u n t a i n s and Craters 

While most of the distance covered by the rovers was on level ground, most 
of the sols and most of the approach drives occurred on slopes. The rovers 
invariably slip when driving on slopes, making VisOdom essential for safe 
and accurate driving. But using AutoNav along with VisOdom takes roughly 
twice as much time as VisOdom alone, making the combination impractical 
for normal use. 

This presents a challenge: the rover has the ability to know where it is, but 
in tha t mode cannot detect obstacles. Additionally, in steep terrain the rover 
cannot identify all obstacle classes, since the rover has no means of detecting 
sandy, high-slip areas in advance. Even otherwise safe areas of moderate slope 
may represent hazards if there are steeper slopes or rocks downhill, since 
slippage in moderate slopes could take the rover into dangerous areas. In 
these cases, the rover operators specify "keep out zones" which will cause the 
rover to halt driving before a hazard is encountered (e.g., see Figure 3). The 
rover keeps track of its position using VisOdom (and can preclude driving if 
VisOdom fails) and can close the loop to correct for slippage. On Sol 454, 
Spirit promptly halted driving after detecting slippage over 90%, and post-
drive HazCam images showed several rocks on the verge of falling into the 
wheels, since the wheels had dug into the terrain by nearly one wheel radius 
(see Figure 1). The recurrence of high slopes, sandy terrain with intermixed 
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Fig. 2. Opportunity's planned 8.7 meter drive along a 20-24 degree slope on Burns 
Cliff on Sol 304, and the front HazCam view confirming a successful single sol ap­
proach. The shaded area shows those parts of the surface reachable by the instrument 
arm, which includes the light bedrock that was the target of the drive. A combination 
of VisOdom and conditional sequencing was used to accomplish this drive. 

small rocks, and frequent obstacle-sized rocks caused us to retreat and find a 
new route to the summit of Husband Hill. 

2 .3 Target A p p r o a c h 

Whereas traverse sequences focus on covering maximum distance over terrain, 
target approach sequences aim to place the rover at a specific target position 
and orientation for in situ examination of rocks and soil with the rover's 
manipulator, or less frequently, high-resolution imagery of a distributed or 
inaccessible target region. The accuracy requirements for positioning the rover 
for in situ work are relatively tight, often within 10cm. 

On level ground, directed drive primitives are usually sufficient for accurate 
target approaches from 2-10m away. On sloped terrain, VisOdom is required 
to close the loop on the rover's position. After each motion, VisOdom updates 
the rover's position knowledge, allowing it to correct for slip-induced errors. 
Conditional sequencing tha t confirms the current distance to multiple targets 
is often used in conjunction with visual odometry to accurately approach 
targets 5-10m away while driving on slopes in the 10 to 20 degree range (e.g., 
see Figure 2), with the caveat tha t on surfaces with sufficiently low bearing 
strength, the rover is mechanically incapable of making direct uphill progress. 

3 Relative Merits of Directed/Autonomous Driving 

There are significant differences in resource usage between manual and au­
tonomous driving, with execution time and generated da ta volume being the 
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Fig. 3. Spirit's Sol 436 drive used a variety of driving modes. A simulation of 
the planned drive over a 3D terrain mesh is shown on the left, the actual course 
taken on the right. Circles indicate the waypoints, slashed circles the obstacles and 
keep-out zones developed by human Rover Drivers by inspecting stereo images and 
simulating drives over the 3D mesh. Spirit drove south (downward) over 26 actual 
meters before reaching its time limit. Jagged lines in the course plot above the -12 
meter line indicate the discrete jumps resulting from VisOdom updates, those at the 
-12 meter line show AutoNav backing up to avoid a small ridge blocking its path 
southwest. 

most obvious. Power is also impacted by execution time, for although the 
power used by the mobility system is the same whether a trajectory was 
generated manually or autonomously, the rover's CPU, IMU, and other elec­
tronics draw power for the duration of the drive and thus an autonomous 
drive will require more power than a manual drive of the same distance. 

Less obvious differences in resource requirements between manual and au­
tonomous driving also exist. The most significant is planning time: it takes a 
rover operator more time to identify obstacles and choose appropriate way-
points when sequencing a blind drive than when sequencing a drive using 
AutoNav (e.g., see Figure 3). During the first few months of the mission, it 
often took up to 10 hours to build a drive sequence to travel 20-40m across 
the plains of Gusev. This decreased dramatically later in the mission, often 
requiring only 2-4 hours to sequence drives over 100m in length on either 
rover. Still, a directed drive places full responsibility for vehicle safety on the 
rover operator rather than allowing the rover to safeguard itself, thus requiring 
more time for manual terrain analysis and waypoint selection. This suggests 
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an obvious trade-off between sequencing time and execution time for directed 
and autonomous drives. 

There is an additional long-term resource trade-off: humans can rapidly 
adapt their sequences to deal with new terrain types or drive requirements, 
but changing the onboard software involves a lengthy software development, 
testing, and uplink process. Instead of a day-to-week turnaround in sequence 
development, software updates to cope with new terrain and drive techniques 
occur on a months-to-year cycle. 

3.1 D r i v i n g into t h e U n k n o w n 

There is one notable c i rcumstance in which the h u m a n has no abi l i ty to 
safely select paths: when driving into terrain tha t has not been imaged. On 
Sol 109, Spirit was commanded to drive over the local horizon 50m distant as 
it descended from the rim of Missoula Crater. In this case, AutoNav was the 
only option available to drive further and use the available time and power, 
and post-drive images showed AutoNav correctly avoiding large rocks while 
traversing slopes up to 9 degrees (see Figure 4). Obviously, a high degree of 
confidence in the hazard avoidance software is needed in situations such as 
this; AutoNav has kept both vehicles safe through over 2500 meters of tra­
verse as of August 2005. Less severe, but more frequent, instances in which 
humans cannot guarantee rover safety occur when the rover drives beyond 
the distance at which obstacles can be resolved, or through smaller occluded 
regions. In practice, even when using AutoNav the rover operator typically 
chooses waypoints tha t avoid the most hazardous areas, thus taking advantage 
of the perceptual strengths of both human and rover. 

Fig. 4. On Sol 109, Spirit avoided obstacles in previously-unseen terrain. 
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3.2 E x e c u t i o n 

Directed drives have a limited ability to deal with errors or uncertainty in 
execution. Whereas AutoNav can close the loop on vehicle safety by imaging 
the terrain tha t the rover is about to drive through, a directed drive must 
make the assumption tha t the rover does not deviate far enough from the 
planned pa th to encounter any hazards. For longer drives or in high-slip ar­
eas, the rover must be able to deal with accumulated position error, either 
through safeguarding itself or by using VisOdom to update its position knowl­
edge. When using VisOdom, the rover operator is responsible for specifying 
the criteria for halting the drive, since manually sequencing reliable obsta­
cle avoidance is too difficult. Typically, the halting criteria include proximity 
to known obstacles, the number of times VisOdom has failed to provide a 
position update , and a threshold on slippage. 

Figure 5 summarizes the distance covered and the type of driving modes 
used for each rover during their first 19 months of operation. 
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Fig. 5. Summary of distances driven by each rover (Spirit above Opportunity) per 
Sol. AutoNav drives (in green) include any mode in which terrain assessment was 
done onboard (i.e., both AutoNav and Guarded motion), VisOdom drives (in blue) 
include both directed and adaptive driving modes but not AutoNav, and Blind drives 
(in red) include both directed arcs and rover-adapted drives that compensated for 
yaw changes measured during the drive. The changing quality of the drive types 
suggests how human and rover driving strategies alike had to adapt to new terrains 
many times over the course of each mission. 
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3.3 A d a p t a t i o n 

Mobility performance is uncertain in any novel terrain type and can vary 
substantially in known terrain types, but humans can quickly learn to steer 
the rover clear of newly identified hazard types. For example, after Spirit 
drove through a loose mixture of fine sand and rocks on Sol 339, a potato-
sized rock jammed in one of the wheels, finally coming out a week later. When 
the rover encountered similar terrain over 100 sols later, rover operators knew 
to direct Spirit to check for slippage while driving and stop if the rover became 
bogged down. Post-drive images after the rover detected over 90% slip showed 
a similar mixture of sand and rocks, with two rocks having the potential to 
j am in the wheels, and we subsequently retreated to look for another route 
(see Figure 1). This sort of perception and adaptat ion with a single training 
example is a key strength of manual terrain analysis. 

4 Future Work 

While Spirit and Opportuni ty continue to perform well beyond our origi­
nal expectations, our experience operating the rovers suggests some areas 
for improvement. Perhaps the most obvious area for improvement is com­
putat ional efficiency: driving with either VisOdom or AutoNav can slow the 
rovers' progress by up to an order of magnitude compared to directed drives. 
Some speedup can likely be obtained by accepting decreased accuracy: one 
use of VisOdom is to simply detect when the rover is slipping substantially, 
in which case a precise motion estimate is not required. 

Another promising avenue for future work is terrain classification. Our 
current hazard avoidance software detects only geometric hazards, but areas 
with weak soil-particularly wind-driven drifts-have proven treacherous for 
both rovers. The ability to learn what high-slip terrain looks like so tha t it 
can be autonomously avoided (even dynamically updat ing the onboard in­
terpretat ion of the terrain) would be a great benefit. One potentially useful 
observation is tha t slippage is almost always correlated with sinkage, and 
sinkage can be measured by observing either the wheels or their tracks. 

In terms of mobility system development, one area tha t seems to be un-
deremphasized is precision mobility in natural terrain. For the types of inves­
tigation undertaken by Spirit and Opportunity, mere mobil i ty-the ability to 
traverse a certain-sized obstacle, travel at a certain rate, or climb a certain 
slope-is not sufficient. The ability to reliably navigate the rover to within 
centimeters of a desired location, on slopes, near obstacles, and with external 
constraints on final vehicle heading, has been of the utmost importance in 
uncovering the water history of Mars. 

Flexibility in the rovers' command language and onboard software has 
been critical in allowing us to encode our ever-changing understanding of the 
terrain and vehicle performance. While not a traditional robotics problem, it 
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would be beneficial to introduce methods for easily formalizing and re-using 
new sequence idioms to reduce human errors and speed the sequence design, 
simulation and validation processes. Writing a sequence is writing a program, 
and perhaps techniques could be applied from extreme programming and other 
software development paradigms. 

MER software development continues today. Several technologies are be­
ing evaluated for possible uplink in mid-2006. These include autonomous in 
situ instrument placement following a successful drive (aka Go and Touch), 
global pa th planning to enable intelligent backtracking, visual servoing, and 
autonomous detection of dust devils and clouds in onboard imagery. 

Future vehicles will have faster processors, allowing more advanced terrain 
analysis and pa th selection to be performed. But pa th planning can only be 
as good as the underlying obstacle avoidance methodology, and if rovers are 
to become substantially autonomous then appearance-based adaptive terrain 
analysis will also be required. 

5 Conclusion 

Successful operation of the MER vehicles has depended on both manually-
directed and autonomous driving. The two methods are complementary, and 
careful selection of the right techniques leads to bet ter overall performance in 
the face of limited time, power, imagery, and onboard computation. 

While most of the distance covered by both rovers has been on level ground 
with varying degrees of geometric hazards, most of the time has been spent 
in more challenging environments coupling steep slopes with loose materials 
and positive obstacles. Careful terrain analysis is required in these cases, and 
VisOdom has also been absolutely essential for safe and accurate driving. 
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AutoNav Autonomous Navigation for Surface Operations 
D O F Degrees of Freedom 
HazCams Hazard-detection Camera 



Tradeoffs Between Directed and Autonomous Driving 267 

MER Mars Exploration Rover 
NavCams Navigation Camera 
PanCams Panoramic Imaging Cameras 
RTI Real-time Interrupt (8 per second) 
Sol Mart ian Solar Day, about 24 hours and 40 minutes in duration 
VisOdom Visual Odometry 
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1 Abstract 

This paper presents the author's view on the main challenges for autonomous 
operation in surface mining environment. A brief overview of the mine opera­
tion is presented showing the number of components that needs to interact in 
a safe, robust and efficient manner. Successful implementation of autonomous 
systems in field robotic applications are presented with a discussion of the 
fundamental problems that needs to be addressed to have this technology 
accepted in mining operations. 

2 Introduction 

Resource based economies will be facing enormous challenges to remain com­
petitive in a global economy. Mine operations are in most cases located in 
isolated areas making the relocation of personnel very expensive. Further­
more, this situation is becoming more difficult these days since the deposits 
discovered are much smaller and the life of the mine may not justify the estab­
lishment of new towns. The development of field robotics automation is one 
of the key factors to address this problem. Automated and autonomous sys­
tems are beginning to make a significant appearance in different areas. At the 
simplest level, such systems act as adjuncts to manned vehicles in providing, 
for example, location information, collision warning, or driver enhancements. 
At a more complex level, a number of automated machines for hauling, exca­
vation and loading are being introduced and have had some success mainly in 
underground mining. At the level of a complete mine, it is possible to envision 
the fusion of positional, geophysical information into a complete mine "pic­
ture" and the subsequent use of this to exert overall coordinated control of 
individuals, vehicles and systems in the mine. The overriding strategy in the 
development of the digital mine is the concept of " systems of systems". This 
concept is pervasive in military and other complex systems communities. It 
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recognizes tha t the ult imate system, a mine in this case, is composed of many 
different system units, and tha t these in turn are composed of yet smaller 
systems. The key to the successful management of the overall mining system 
is to understand how component systems need to work together and to devise 
technology and procedures to allow these elements to function as part of the 
overall system. Specifically in mining, the mine site consists of personnel, vehi­
cles and machines tha t have to be allocated according to the best geophysical 
knowledge available, market conditions and financial constraints. Figure 1. 
Figure 2 shows a simplified model of the mine operation. Once the mine pit is 
prepared the trucks are loaded with different type of machines and the ore is 
moved through haul roads to the crusher. It has been estimated tha t the cost 
of haulage accounts for 40 — 50% of the surface mine operating expenses [1] . 
The real t ime availability of information such as ground conditions, orebody 
morphology, grade distribution will make high fidelity simulation of systems 
essential to rapidly adapt to the dynamics of the actual circumstances. The 
full integration and analysis of systems will also be of fundamental importance 
to develop the concept of distance mining. It is now conceivable to integrate 
machine monitoring and control, geophysical sensing and remote image anal­
ysis with different levels of resolution sensors into a global database. This 
information can then be accessed from different locations around the world 
to minimize the number of personnel at the site. This will require the devel­
opment and deployment of different technologies into the mine environment. 
This paper presents discussion of where automation have worked in the past, 
a vision for the mine in the future and some steps tha t will need to be follows 
to enable full autonomous mines. 

Fig. 1. Mining equipment involved in a mine operation 
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Fig. 2. Simplified view of a mine operation 

3 Mining Automation 

3.1 Future of Surface Mining 

Due to the uncertainty on the state of resources actual surface mining opera­
tions needs to operate in a conservative manner to be able to satisfy customer 
requirements and shareholder profit. In the future Surface mining operation 
will be: 

• Product Driven: customers will demand specialized product that meets 
their individual requirements. 

• Flexible: they will employ operations methods focussed towards swings 
as opposed to base line productions. 

• Agile: capable of operating in a market where orders change quickly or 
even daily basis. 

Mine sites will use whole-of-mine plans and will view planning as a dynamic 
and reactive process. The management system are likely to take the form of 
very comprehensive spatio-temporal database representing the actual physi­
cal structure of the mine: geology, resources, pit layout, road structure etc., 
[3]. They will dynamically revise and evaluate operating decision based on 
comprehensive costing models and forecasting tools. Will use accurate real 
time monitoring technologies to track their performance against projections, 
feeding back information to the planning process. These changes will be fa­
cilitated by the emergency of technology that deliver focussed, high quality 
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timely information tha t enables performance against production targets to be 
accurately tracked. These new technology will also reduce the variability in 
the operation making the equipment more reliable and the production more 
predictable. This operation will require breakthroughs in resource character­
ization. It is expected tha t new tools will be available to enable the resources 
to be mapped (seam thickness, structural properties, compositions) to sub-
meter accuracies. Excavation equipment will have on-board sensing used to 
provide real-time visualization ahead of the mine face. These sensors will be 
part of the mine network and their da ta will be used to update and validate 
the resource map in real-time. The mine plan and mine status will be con­
tained in an environment tha t contains up to the minute whole-of-mine da ta 
including mine topography, resource maps, equipment deployment etc. The 
information will be maintained and updated automatically from a variety of 
sources including fly-over images, sensors mounted on mobile platforms, dy­
namic resource maps etc. This information will be visualizable anywhere in 
the site making the mine operation safe and efficient. 

3.2 W h e r e H a s M i n i n g A u t o m a t i o n W o r k e d in t h e P a s t 

There are a number areas where automation has been successful in the mining 
area. These examples are in rail haulage, process control type applications, 
conveyor systems and to a certain extend in underground drilling. An example 
of a process type application is shown if Figure 3. In this case a laser is used 
to track the position of the wagon and control the bin door to load the coal. 
The system also recognizes the locomotive and establish the communication 
with the train driver to synchronize the whole operation. 

| . — » • H T J 

I EatmSi. 

w^-f- • / 

A 
/ 

Fig. 3 . Automatic coal loading application using a laser to detect the position of 
the wagon 
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There are other new automation apphcation that are much more sophis­
ticated. These include: 

• Autonomous LHD's 
• Autonomous Underground and Surface trucks 
• Autonomous straddle carrier 
• Automated underground face drills 
• Longwall automation 
• Dragline swing automation 
• Autonomous drilling / rock recognition 
• 

Among them the most advanced implementation of autonomous system 
in underground environment is the LHD automation. Figure 4 shows an early 
version of an automated LHD. The system navigates in the mine by looking 
at the walls of the tunnel [2]. It has been demonstrated in 1999 and has been 
operating in various mines since then. Figure 5 shows a commercial imple­
mentation of a free range autonomous straddle carrier [6]. The system allows 
the straddles to move and stack containers from the quay, into the holding 
yards, onto vehicles and back to quay cranes with cm accuracy. Both systems 
work in and area where only autonomous systems operate. 
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Fig. 4. Automated LHD 
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Fig. 5. Autonomous Straddle carriers operating in Fishermans Islands, Australia 

3.3 Hard Problems in Mining Automation 

The unit operation that offers the greatest potential for reducing operating 
costs in surface mining is haulage. The enabling technologies (navigation, 
truck control, and collision detection) for autonomous haul trucks (AHS) ex­
ist in a semi-mature form and prototype AHS integrating these technologies 
are known to been developed and tested by at least two of the major manufac­
turers (Komatsu and Caterpillar). The Komatsu system has the capability to 
navigate a haul route, dump automatically to hoppers or to the ground, and 
work with some type of loading equipment. The system leverages off several 
mature technologies, notably the global positioning system (GPS) and inertial 
navigation systems (INS) for navigation and millimetre-wave radar and laser 
systems for safety and collision detection. The system is designed to operate 
in an area with only autonomous trucks. 

Nevertheless there are no actual deployment of these system in any mine 
in the world. Although automation of large machines is already well advanced 
this technology is limited by the extent to which automated trucks interact 
with other equipment and by the system integrity that can be incorporated 
at a reasonable cost. The last statement requires further clarification. All the 
previous successful autonomous application have the following characteristics: 

• Structured environment 
• Well defined automated task requirements 
• There is a need for the solution 
• Site willing to adopt the new technology 



274 E.M. Nebot 

• Simple / Robust technology 
• No interaction with manned machines 

On the contrary the environment where surface mine haul truck need to 
operate are: 

• Rugged environments (Dust, moisture, extreme weather condi­
tions 

• Dynamic and often unpredictable 
• Unstructured and often defined by geology 
• Difficult to sense and costly to incorporate integrity 
• Difficult to build simple, effective and robust models 
• Significant interaction with manned machines 

In general the challenges in mining automation become increasingly for­
midable as the level of autonomy increases. Automation technologies will only 
flourish after the evolution of the real-time, whole-of-mine, information sys­
tems takes place. Such systems are virtually mandated where autonomous 
equipment is to interact with other equipment (manned or autonomous) by 
providing the framework for managing the interaction. Without such a system, 
equipment interactions need to be eliminated or very closely managed to the 
point where the limitations outweigh the benefits of automation. Removing 
the driver means that the functions he or she performs beyond driving need 
to be performed automatically. These consist largely of monitoring the over­
all health of the truck including detecting, isolating, and reporting faults and 
monitoring the environment, e.g. the quality of the road surface. Most of these 
activities are not formal tasks, but rather occur as part of the driver's broader 
state of awareness. For this to happens we need new sensors and perception 
technology capable of determining the actual state of the world under all pos­
sible environmental conditions. For example, an autonomous truck should be 
able to determine the different states of the road as shown in Figure 6 and 
adjust the driving conditions accordingly to optimize the use of the truck. 

One of the main issues in autonomy is integrity. That is the design of 
autonomous system with enough sensory redundancy in the frequency domain 
to detect any possible fault [5]. This problem can be seen in Figure 8 where 
a millimetre wave radar has been designed to be able to monitor the state of 
the face under the presence of smoke / dust. Perception and interpretation 
will also be an area of significant importance in mining applications. Figure 8 
shows an example where the 3-D radar data is used to extract the position of 
nearby vehicles next to shovel based of known models of potential resources 
in proximity. 

3.4 The Next Step 

The most significant advances in the next few years are likely to come through 
tools such as operator assists and partial automation that develop and prove 
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Fig. 6. Typical road state under different environmental conditions 

component technologies while building deeper understanding and awareness 
of the equipment operating and issues leading full automation. This is very 
important since mine operation are essentially high risk. Each year, hundreds 
of mining haulage accidents occur, resulting in a significant number of deaths 
and injuries as well as costs through replacement, repair and downtime. Many 
of these accidents are due to microsleep events tha t are a manifestation of 
operator fatigue. This issue has been researched extensively and it has been 
demonstrated tha t humans will have a significant number of microsleep oc­
currences per shift when they are required to work at night [4]. During these 
events the driver loses control of the truck for a short period of time. This is 
becoming a more important issue where larger trucks are introduced without 
a corresponding enlargement of haul road widths. Most mine managers are 
now more aware of these problems and are starting to take a more active 
role in supporting the development of new operator fatigue systems. Figure 9 
presents a variety of accidents involving haul trucks. Some of these accidents 
are due to the driver falling asleep and veering of / or crossing the centre of the 
road. Others are due to poor visibility of smaller objects or vehicles in close 
proximity to the truck. This section presents two examples of aiding equip­
ment tha t can prevent many of these accidents. The first problem is addressed 
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Fig. 7. Millimetre Wave radar installed in a rope shovel 
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Fig. 8. Automatic object recognition 
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with an approach that uses a scanning lasers mounted on haul trucks. These 
sensors monitor the position of a truck with respect to a series of PVC poles 
embedded in the berms along the length of the haul road. This information is 
used to define a valid corridor for the vehicle, Figure 10. If the truck wanders 
outside this corridor an alarm is triggered. This system has been fitted to a 
fleet of 15 Komatsu 730E trucks, Figure 11, and has been in routine use at 
Alcoa's Huntly and Willowdale mines for more than a year. The system has 
proven to be reliable and is regarded by these mines as an invaluable tool to 
allow large trucks to be used safely on relatively narrow roads [7]. It has the 
obvious additional safety benefit of helping to prevent accidents caused by 
operator fatigue. 

Fig. 9. Haul Truck accidents 

The second problem can be addressed by using a wireless network and GPS 
sensors to detect the position of other vehicles in the area of operation. Figure 
12. The area of operation will be a function of line of sight of the antennas 
of the agents in proximity. Once the agent becomes part of the network they 
will know the position and velocity of all the other agents in the proximity 
area. A protocol implemented in the Haul Truck system will generate a series 
of alarms according to the threats. The installation of this technology has also 



278 E.M. Nebot 

PVC Poles 

\ Laser / 
X 

TYuck I 

^ Centre of the Road 

Valid 
Corridor 

Fig. 10. Basic principle to determine the position of the truck in the road 
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Fig. 11 . Truck fleet and a truck retrofltted with a laser based tracking system 

the potential to be used to move information around the mine. It is easy to see 
tha t by using the haul trucks we can move information from the different par ts 
of the mine and download it to base stations installed in frequently visited 
areas like the crusher. This information can then flow in the internal intranet 
of the mine and can be used for other monitor and optimization purposes. 

4 Conclusions 

This paper presented some successful autonomous application of fleld robotic 
in structured mining type environments. It also presented an overview of some 
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Fig. 12. Local ad-hoc network based proximity system 

of the important challenge faced in mine automation and the areas where 
progress is needed to enable fully autonomous mining. 
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At the DARPA Grand Challenge in October 2005, laser range finders, espe­
cially the ones manufactured by SICK, were the predominant range sensors. 
Does that mean that stereo sensors are dead? No. It means that laser scanners 
satisfied the requirements of the Grand Challenge outdoor vehicle navigation 
application better than stereo. Stereo sensors, on the other hand, are the sen­
sor of choice for several other applications, such as people monitoring and 
human-computer interfaces, because they are passive, relatively inexpensive, 
have no moving parts, and provide registered range and color data. 

In this session, the authors present camera-based algorithms for computing 
3-D descriptions of scenes. Two of the papers focus on stereo techniques and 
one on monocular constraints. 

Sibley, Matthies, and Sukhatme describe two types of biases associated 
with stereo analysis, and then describe approaches that dramatically reduce 
their effects. In the case of triangulation-based range estimation, their new 
approach reduces the bias by an order of magnitude. To accomplish this reduc­
tion, they re-express stereo triangulation as a second order series expansion, 
taking into account the distribution of errors associated with image-based 
stereo matching and the calculation of range. The second type of bias occurs 
when several stereo measurements are combined, often over time, to improve 
the precision of the measured range values. To reduce this bias, they devel­
oped an iterative non-linear Gauss-Newton technique that focuses on image 
space measurements instead of directly averaging/filtering 3-D range values. 

Blake et al describe a technique for combining stereo analysis, color analy­
sis, and occlusion reasoning to segment an image into foreground, background, 
and occluded regions. Their approach uses a probabilistic model formulated as 
a Conditional Random Field that fuses prior information about the expected 
structures in a scene with stereo and color results. They apply their technique 
to a video conferencing application and show its effectiveness at precisely ex­
tracting the foreground people, which is the key to several enhancements, 
including automatic camera control, eye-gaze correction, and the insertion of 
virtual objects into the scene. 
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Delage, Lee, and Ng approach the problem of extracting a 3-D description 
of a scene quite differently than the other two groups in this session. They 
use generic knowledge about buildings and cameras to derive 3-D models of 
indoor scenes from monocular images. In particular, their technique uses such 
facts as floors are horizontal planes and walls are vertical planes to extract 
and interpret linear edge pat terns as floors and walls. They use a Markov 
Random Field to label every pixel in an image as part of a surface or edge, 
and then apply an iterative 3-D reconstruction algorithm. Their approach, 
which includes an analysis of the vanishing points, locates a floor footprint 
first, and then fills in the walls. 
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Summary . We are concerned here with improving long range stereo by filtering im­
age sequences. Traditionally, measurement errors from stereo camera systems have 
been approximated as 3-D Gaussians, where the mean is derived by triangulation 
and the covariance by linearized error propagation. However, there are two problems 
that arise when filtering such 3-D measurements. First, stereo triangulation suffers 
from a range dependent statistical bias; when filtering this leads to over-estimating 
the true range. Second, filtering 3-D measurements derived via linearized error prop­
agation leads to apparent filter divergence; the estimator is biased to under-estimate 
range. To address the first issue, we examine the statistical behavior of stereo tri­
angulation and show how to remove the bias by series expansion. The solution to 
the second problem is to filter with image coordinates as measurements instead of 
triangulated 3-D coordinates. Compared to the traditional approach, we show that 
bias is reduced by more than an order of magnitude, and that the variance of the 
estimator approaches the Cramer-Rao lower bound. 

1 Introduction 

This paper details our efforts to enhance long range depth estimation in stereo 
systems by filtering feature measurements from image sequences. We would 
like to accurately estimate the depth of distant objects from disparities on the 
order of 1 pixel. Improving depth estimation in stereo systems is an important 
pursuit. For instance, bet ter stereo range resolution will enhance a robot 's 
ability to perform tasks such as navigation, long range pa th planning, obstacle 
avoidance, mapping and localization and high-speed driving. Unbiased sensing 
is a prerequisite for these algorithms to perform well. 

In the balance of this paper we will encounter two problems with tradi­
tional stereo error modeling and in turn describe their solutions. First, because 
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of the non-linearity in stereo triangulation, we will see that range estimates 
produced by standard triangulation methods are statistically biased. While 
bias in stereo is a known phenomenon, previous research focused on how 
range bias is induced from uncertain camera positions [3, 16, 20], or dismissed 
it as insignificant [12]. Second, filtering sequences of 3-D measurements from 
stereo leads to biased range estimates when the uncertainty of each 3-D mea­
surement is modeled by standard linearized error propagation techniques; this 
stems from the fact that the uncertainty model is biased. 

For the former issue, analyzing the statistical behavior of stereo triangu­
lation leads us to new triangulation equations based on series expansion; this 
new bias-corrected formulation is shown to be an improvement over tradi­
tional stereo triangulation by more than order of magnitude. For the latter 
biased filter problem, we find that formulating the filter with image coordi­
nates as measurements leads to efficient and unbiased estimation of range. 
Lastly, using the Fisher information inequality we show that the combination 
of bias-corrected stereo and a Gauss-Newton recursive filter yield estimates 
that closely approach the minimum variance Cramer-Rao lower bound. 

2 Statistical Bias in Stereo 

Consider some general stereo triangulation function s : M^ 

S(Z) = X : Xi 

X2 

(1) 

where the current observation, z is the vector of pixel coordinates [i^i, 'L'I, 1̂ 2, '^2]^, 
and the pixels [ui^vi]^ and ['U2, '̂ '2]^ are projections of x into the two camera 
image planes. Let X2 be the range component of x - i.e. X2 is aligned with the 
optical axis of the cameras. 

We are interested in how a particular model of pixel measurement uncer­
tainty will translate into range uncertainty. Before we address the issue of bias 
in more detail we first need to establish an appropriate observation probability 
density function. 

2.1 Measurement Distribution 

A common approximation is that many measurements of a stationary feature 
point, such corner features [6, 8], follow a normal distribution [10, 12, 13, 15]. 
To establish how features are actually distributed we have performed the 
following experiment: we took a sequence of images from a stationary camera 
of a stationary checker board and tracked the corners over time with sub-pixel 
accuracy [11]; we then re-centered each feature track about zero by subtracting 
its mean. For each pixel dimension a histogram of all the measurements is then 
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k 
mW .̂ 

Measurement (pixels) 

Fig. 1. Feature measurement histogram Fig. 2. Standard model of linear per-
of 10,360 measurements. spective projection for stereo triangula-

tion with axis aligned cameras. 

plotted. This histogram approximates the true distribution we should expect 
in measurements. Qualitatively, the histogram in Fig. 1 indicates tha t the 
distribution is close to Gaussian. 

2.2 D e r i v e d R a n g e D i s t r i b u t i o n 

Recall the fronto-parallel configuration, whose geometry is shown in Fig. 2. 
We will derive the range p.d.f. using this simple geometry, though the methods 
and results used here apply to other camera models as well. Using Fig. 2, the 
stereo equations are 

s(z) 
Xo 
Xi 

X2 

= 

ui b/d) 
vi b/d 

[{bf)/d\ 
(2) 

where the last element of x is the range component, and d = {ui — U2) is 
the disparity. Monte-Carlo simulation using these equations indicates tha t if 
image feature positions, and hence disparity, are normally distributed, then 
the expected range will be biased toward over estimating the true value^. 
The bias is empirically visible in Fig. 3. Analytically, the bias can be seen by 
deriving the range p.d.f., fx2{^2)^ from the disparity p.d.f., fd{d) [4, 9, 12]. 
From (2) we have X2 = S2{d) = k/d, where k = bf. Since S2 and s^^ are 
continuously differentiable, then 

fx2{x2) = fd{d) 
dfdid) 

0X2 
fd[s2\x2)] 

ds^\x2) 

0X2 

^ Throughout this paper we use linear camera models with a resolution of 512x384 
pixels, a horizontal FOV of 68.12 degrees and vertical FOV 51.3662 of degrees 



288 G. Sibley, L. Matthies, and G. Sukhatme 

Disparity (pixels) 
5.1 3.6 2.8 2.3 2.0 

CD 

o 0.72 ̂  

^ 0.58^ 
in 
g,0.43 
e 
cc 

DC 0.29k 

0.15^ 

o.ooL 
6.0 10.0 14.0 18.0 22.0 26.0 30.0 

Range (meters) 

Fig. 3. Range vs. Bias at 8 differ­
ent ranges averaged over 10,000 trials. 
Clearly, bias is a strong function of 
range. Pixel standard deviation is 0.3 
pixels in each pixel dimension, with no 
covariance. 

io-^ 
Range (meters) 

Fig. 4. Range p.d.f. for cjd = 0.3 pixels. 
True range is 51.08m = 1 pixel disparity. 
Note that because of the tail, the mean 
is at 55.63m, which is a bias of almost 
10%. 

where | • | denotes absolute value of the Jacobian determinant and ^2 ̂  = d 
k/x2' Thus, since fd{d) is modeled as Gaussian 

fx2{x2) 
2ii(Jdxl exp 

-{k/x2 - l-idf 
(3) 

where iid and dd are the disparity mean and variance. The mean of (3) is 

^x E[X2] = / 
J — ( 

X2fx2{x2)dX2 

which unfortunately does not appear to have an analytical solution, so we 
resort to numerical integration. Plots of fx2{x2) are shown in Fig. 4; clearly, 
for distant features the p.d.f. is non-Gaussian, non-symmetric and exhibits a 
long tail. The tail shifts the mean away from the true range and hence we see 
the source of bias in stereo. 

2.3 Bias Reduction 

Naturally, we would like an unbiased method for calculating range. Recall 
that the distribution on d is approximately Gaussian, the mean of which we 
take to approximate some true underlying state, d. If the true value of d was 
known, then the true unbiased range could be calculated with X2 = S2{d), but 
due to the variation in d, S2{d) is, as we have seen, slightly biased. However, 
if the variation of d around d is small, then a Taylor series expansion of S2 
may provide a better estimate [2], 
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sM^sM^'^ {d-d) + -{d-dy 
7 ^ 

.d^S2 

dd 

Taking the expectation, noting 
tha t E[d - d] = 0, tha t E[{d - d)^] 
is the definition of variance, and re­
placing d with d we get 

S2{d) ^ hid) - 2^^^^^)-^ (4) 

1.16 

1.01 

-^0.87 
CO 

0) 

0) 0.72 

[§0.58 
in 
g,0-43 

25.5 8.5 
Disparity (pixels) 
5.1 3.6 2.8 2.3 2.0 1. 

Standard stereo [ 
Bias corrected stereo 

/ 

7 
:/ 

10.0 14.0 18.0 
Range (meters) 

22.0 26.0 30.0 

Fig. 5. Bias-corrected stereo compared to 
traditional stereo. 

which is the new range equation 
tha t we use to correct for bias. Note 
tha t this formulation requires accu­
rate knowledge of the measurement 
variance; which is reasonable. Look­
ing at Fig. 5 the improvement is im­
mediately visible for small dispari­
ties; in fact, for the ranges shown, 
bias is reduced by more than an order of magnitude. Note tha t higher order 
series approximation, which should theoretically provide a bet ter estimate, 
will depend on higher order moments, E[{d — d)^],n > 2. But if the input 
distribution has negligible higher order moments, then the second term in (4) 
makes use of all the available information. By considering the variance and 
how it impacts the range distribution, this bias-correction method largely 
removes the bias from long range stereo. 

3 3-D Estimation 

In this section we uncover another type of bias tha t results from filtering 
a sequence of 3-D estimates produced by triangulation and linearized error 
propagation. To alleviate this we develop a non-linear Gauss-Newton iter­
ative measurement update using image space measurements instead of 3-D 
measurements. Finally, the statistical efficiency of the 3-D measurement up­
date and the Gauss-Newton update are compared to the Cramer-Rao lower 
bound. 

3.1 3 -D M e a s u r e m e n t U p d a t e 

\ "ZsD ^ IR^ denote the current state, current state estimate Let X G M^, X G 
and the current 3-D observation, respectively. For the case at hand, the cur­
rent observation, ZSD^ is the vector found via bias-corrected stereo. The state 
estimate and observation are independent realizations of multivariate Gaus­
sian distributions: ZSD ^ N{S{Z),IISD) and x ^ A^(x, P ) where HSD and P 
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are the measurement and state error covariance matrices, respectively. The 
error covariance matrix HSD is found via error propagation of image errors 

ds-D ds -^ T) 
3D - g^K-gj , « . -

Si 0 

0 Sr 
(5) 

where s is the bias corrected stereo equation and X)/ and X)̂  are 2x2 error 
covariance matrices from the left and right images, respectively. 

In this scenario the sensor model hso : M^ i-̂  M^ is the vector function 
that returns a predicted measurement for ZSD given x. If x^g is the global 
position of the stereo head with orientation matrix Hws then the generative 
sensor model is, hsoix) = R^^x — R^^x^g. Note that while we focus here 
on the stationary case and solving issues of bias and filter convergence, this 
formulation extends to the mobile sensor case (an issue we are actively working 
on that is beyond the scope of this paper). Following standard notation [14] 
the Kalman Filter update equations for this system are 

P^+1 = ( I - K H , ) P - (6) 
K = P , - H n H , P , - H ^ - R 3 z , ) - i 

where H^ is the Jacobian of hso- Filtering with this setup leads to the situa­
tion depicted in Fig. 6, which clearly shows what is called apparent divergence 
- i.e. convergence to the wrong result [7]. This can be explained by the fact that 
linearized error propagation in (5) gives quadratically larger range variance 
for more distant features. This means that the weighted average in (6) will 
always place more confidence in closer measurements and x+ will be biased 
toward the short measurements. In essence, linearized error propagation leads 
to over confidence for shorter measurements, which in turn leads to serious 
filter bias. 

3.2 Gauss-Newton Measurement Update 

Instead of using the triangulated point ZSD as the observation, let the obser­
vation again be the vector of pixel coordinates z = [ui,vi,U2, V2]^. Thus our 
sensor model /i : M^ i-̂  M^ is the vector function that projects x into the left 
and the right images. 

/i(x) 
/i^(x) (7) 

where hi : M.^ \-^ M? and /i^ : M^ i-̂  M? are the left and right camera pro­
jection functions. Depending on the camera models in use, hi and hr can be 
formulated in a variety of ways [18, 19]. We only require that these functions 
and their first derivatives are available, and otherwise leave them unspecified. 

For convenience we choose to formulate the measurement update as an 
iterative Gauss-Newton method, which is equivalent to an iterated Extended 
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Fig. 6. Kalman Filter of a sequence Fig. 7. Gauss-Newton filter of a se-
of 40 3-D stereo measurements averaged quence of 40 image measurements aver-
over 10,000 trials. aged over 10,000 trials. 

Kalman Filter [1]. To integrate prior information about x we write the current 
state estimate and and current observation as a single measurement vector 

5(x) 
/i(x) 

X 

For the first measurement, the filter is initialized with ^ = ZSD and P = R S D 
which are calculated by bias-corrected triangulation and linearized error prop­
agation in as in section 3.1. Since the current observation and state estimate 
are realizations of independent normal distributions we have Z ^ A^(^(x), C) 
where C = [ ^ p j - Given the measurement Z, we can write the likelihood 
function 

/ :(x) = , ^ exp (-1{Z - g{^))C-\Z - ^(x)) (8) 

where | • | is the determinant. The maximum likelihood estimate for this ex­
pression is x+ = argmaxy^ ^{^^ whose solution is equivalent the solution 
minimizing the negative log-likelihood, argmirix ^(x) . 

£(x) = - ( Z - 5 ( x ) ) C - i ( Z - 3 ( x ) ) + fc 

where A; is a constant. If we let S^S = C~^ and 

r (x ) = S ( Z - 5 ( x ) ) 

(9) 

(10) 

then (9) is a non-linear least squares problem to minimize r (x)-^r(x) . The 
Gauss-Newton method to solve non-linear problems of this form is the se­
quence of iterates [5] 

x^+i = x^ - (J(x^)^J(x^)) ^J(x^)^r(x^) (11) 
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where J is the Jacobian of (10). Noting tha t J 
Jacobian of ^(x^), (11) becomes 

-SG,- where G,- is the 

^+1 ( G f C - i G , ) - i G f C - i ( Z - ^(x,) + G ,x , ) 

which is the famihar normal equation solution. Once iterated to convergence 
the covariance P + can then be approximated using P + = (G-^C~^G)~^. 
As noted in [1], this is equivalent to the iterated Extended Kalman Filter 
measurement update . 

Filtering with this setup leads to the situation depicted in Fig 7. Typi­
cally, the measurement update converges after 3 to 4 iterations. Compared to 
the 3D measurement update , the fact tha t the Gauss-Newton ( lEKF) method 
converges without bias is not surprising considering tha t we avoid the inter­
mediate stereo triangulation and linearized error propagation for calculating 
the 3-D error covariance matrix. 

3.3 E s t i m a t o r Efficiency 

Having derived a bias-corrected esti­
mator it is important to address its 
efficiency, tha t is, how well it approx­
imates a minimal variance estimate 
of the parameters. The information 
inequality, covx(x) > 2z(x)~^, de­
fines such a bound, which is called 
Cramer-Rao lower bound [4]. Here 
the Fisher information matr ix X^ (x) 
is given by the symmetric matr ix 
whose i j ^^ element is the covariance 
between first partial derivatives of 
the measurement log-likelihood func­
tion, 

^z(x)^ ̂ ,J COV^ 
d^j' ^ x . 

(12) 

§0 
E 

056 > 

Cramer-Rao Lower Bound 
3-D Measurement EKF 
Gauss-Newton Filter 

1 2 3 4 5 6 7 8 9 10 

N (measurement number) 

Fig. 8. Gauss-Newton and 3-D EKF es­
timator efficiency compared against the 
Cramer-Rao lower bound over a sequence 
of 10 measurements of a feature 25m away. 
At each step estimator variance is found 
via Monte-Carlo simulation over 10,000 
trials. The measurement log-likelihood func 

tion is 4 ( x ) = | ( z - / i (x ) )R-^ (z -
/i(x)) + k. For a multivariate normal distribution (12) reduces to[17, 20] 

dh 

For n independent identically distributed (i.i.d.) measurements the Fisher in­
formation is simply nX. An estimator tha t achieves the CRLB is said to be 
efficient. Fig. 8 shows range variance convergence for the Gauss-Newton esti­
mator; this demonstrates tha t the Gauss-Newton stereo estimator is efficient. 
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4 Conclusion 

In our efforts to improve long range stereo by filtering image sequences we 
have come across two problems: the first is that stereo triangulated range 
estimates are statistically biased. To address this we have re-expressed the 
stereo triangulation equations using a second order series expansion. This 
new formulation reduces bias in stereo triangulation by more than an order of 
magnitude. The second problem is that temporal filtering of 3D stereo mea­
surements also leads to biased estimates. The solution to this problem is to 
filter with image coordinates as measurements instead of triangulated 3D co­
ordinates. Finally, using the Fisher information inequality we show that the 
bias-corrected Gauss-Newton stereo estimator approaches the minimum vari­
ance Cramer-Rao lower bound. While the scope of this paper is constrained 
to address stereo bias and estimator efficiency, our ultimate goal is to filter 
feature points from a moving platform. This is a task that requires a solid 
solution to the simultaneous localization and mapping problem, which we are 
actively exploring. 

References 

F.W. Bell, B.M. Cathey. The iterated Kalman filter update as a Gauss-
Newton method. IEEE Transactions on Automatic Control, 38(2):294-
297, Feb 1993. 
D.R. Cox and D.V. Hinkley. Theoretical Statistics. Chapman and Hall, 
1979. 
Kostas Daniilidis and Minas E. Spetsakis. Understanding noise sensitivity 
in structure from motion, chapter 4, pages 61-88. Lawrence Erlbaum 
Associates, 1996. 
Morris H. DeGroot and Mark J. Schervish. Probability and Statistics. 
Addison Wesley, 2001. 
Jr Dennis J.E. and Robert B. Schnabel. Numerical Methods for Un­
constrained Optimization and Nonlinear Equations. Soc for Industrial & 
Applied Math, 1996. 
W. Forstner. A feature based correspondence algorithm for image match­
ing. International Archives of Photogrammetry & Remote Sensing, 26(3): 
150-166, 1986. 
Arthur Gelb. Applied Optimal Estimation. MIT Press, Cambridge, MA, 
1974. 
Chris Harris and Mike Stephens. A combined corner and edge detector. 
In Proceedings of The Fourth Alvey Vision Conference, pages 147-151, 
Manchester, 1988. 
Andrew H Jazwinski. Stochastic Processes and Filtering Theory. Aca­
demic Press, New York, 1970. 



294 G. Sibley, L. Matthies, and G. Sukhatme 

[10 

[11 

[12; 

[13; 

[14 

[15 

[16 

[17: 

[18 

[19 

[20; 

Il-Kyun Jung and Simon Lacroix. Simultaneous localization and mapping 
with sterevision. In International Symposium on Robotics Research, pages 
315-324, 2003. 
L. Lucchese and S.K. Mitra. Using saddle points for subpixel feature 
detection in camera calibration targets. In Proceedings of the 2002 Asia 
Pacific Conference on Circuits and Systems, volume 2, pages 191- 195, 
2002. 
L. Matthies and P. Grandjean. Stochastic performance modeling and 
evaluation of obstacle detectability with imaging range sensors. IEEE 
Transactions on Robotics and Automation, Vol. 10(6):783-792, Dec 1994. 
L. Matthies and S. Shafer. Error modelling in stereo navigation. IEEE 
Journal of Robotics and Automation, 3(3):239-248, 1987. 
Peter S. Maybeck. Stochastic models, estimation, and control, volume 
141 of Mathematics in Science and Engineering. Academic Press, Inc, 
1979. 
Clark F. Olson, Larry H. Matthies, Marcel Schoppers, and Mark W. 
Maimone. Stereo ego-motion improvements for robust rover navigation. 
In In Proceedings IEEE Conference on Robotics and Automation (ICRA), 
volume 2, pages 1099- 1104, 2001. 
Amit Roy-Chowdhury and Rama Chellappa. Statistical error propaga­
tion in 3d modeling from monocular video. In 2003 Conference on Com­
puter Vision and Pattern Recognition Workshop, volume 8, pages 89 -, 
Madison, Wisconsin, June 2003. 
Harold W Sorenson. Parameter Estimation: Principles and Problems. 
Marcel Drekker, Inc., 1980. 
Roger Y. Tsai. A versatile camera calibration technique for high-accuracy 
3d machine vision metrology using off-the-shelf tv cameras and lenses. 
IEEE Journal of Robotics and Automation, 3(4):323-344, 1987. 
Y. Yakimovsky and R. Cunningham. A system for extracting three-
dimensional measurements from a stereo pair of tv cameras. In Computer 
Craphics and Image Processing, volume 7, pages 1995-2010, 1978. 
G.S. Young and R. Chellappa. Statistical analysis of inherent ambiguities 
in recovering 3-d motion from a noisy flow field. IEEE Transactions 
Pattern Analysis and Machine Intelligence, 14(10):995-1013, 1992. 



Fusion of Stereo, Colour and Contrast 

A. Blake, A. Criminisi, G. Cross, V. Kolmogorov, and C. Rother 

Microsoft Research Cambridge, 7 J J Thomson Avenue, Cambridge, UK. 
www.research.microsoft.com/vision/cambridge 

1 Introduction 

Stereo vision has numerous appHcations in robotics, graphics, inspection and 
other areas. A prime apphcation, one which has driven work on stereo in our 
laboratory, is teleconferencing in which the use of a stereo webcam already 
makes possible various transformations of the video stream. These include 
digital camera control, insertion of virtual objects, background substitution, 
and eye-gaze correction [9, 8]. 

Digital camera control: Here the foreground part of a scene is isolated 
using stereo, and used to drive the digital pan/zoom/tilt controls of a 
camera, to keep the subject well framed in the virtual view. 

Insertion of virtual objects: Knowing the depth structure of a scene, 
virtual objects can be inserted live into the video stream, in a way that 
respects the space occupancy of existing, real objects. 

Background substitution: Having isolated the background of a scene us­
ing stereo, it can be manipulated — for example blurred, re-colored or 
replaced entirely, without touching foreground elements. This demands 
foreground layer separation to near Computer Graphics quality, including 
ce-channel determination as in video-matting [6], but with computational 
efficiency sufficient to attain live streaming speed. 

Eye-gaze correction: A particularly challenging application is to combine 
video streams from a pair of cameras, stereoscopically, to generate a virtual 
camera in locations that are inaccessible to a real physical camera. In this 
way, a virtual camera can be placed in the centre of the screen of each of 
two computers, so that a pair of subjects in conversation can gaze at one 
another directly, eye to eye. This problem is particularly hard in practice 
because the baseline separating the left and right cameras has to be large 
(fig. 1), resulting in more substantial differences to be resolved between 
the two images. 

S. Thmn , R. Brooks, H. Durrant-Whyte (Eds.): Robotics Research, STAR 28, pp. 295-304, 2007. 
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Fig. 1. Stereo cameras for teleconferencing. Two cameras are placed on the 
frame of a computer monitor. A virtual camera can be sythesised right over the 
window for viewing the remote participant is (marked in blue) on the middle of the 
computer screen. Viewing the subject through the virtual camera, rather than the 
left or right, ensures direct eye contact. 

Stereo algorithms have been developed over the past 25 years that are 
competent at computing depth "densely" — that is at all pixels — in 3D 
scenes. Earlier algorithms used Dynamic Programming (DP) to compute op­
timal matches [15, 7] but lately two new algorithms — Belief Propagation and 
Graph Cut — have come to head the league table of stereo performance [18]. 
Stereo "occlusion" is a further cue, arising for those parts of a scene that are 
visible in one eye (or camera) but not the other. Occlusion needs to be accu­
rately detected, as it is a strong cue for discontinuity of surfaces, and some 
modern algorithms are capable of doing this [10, 1, 13, 9, 8]. However, some 
problems remain. In particular, the strength of stereo cues degrades over low-
texture regions such as blank walls, sky or saturated image areas. In general, 
it is difficult to deal with this problem, but in the particular application of 
stereo to foreground/background segmentation, a powerful remedy is at hand 
in the form of cue fusion. Recently color and contrast have been shown to be 
powerful cues for segmentation [4, 17], even in the absence of texture. Segmen­
tation based on color/contrast alone is nonetheless beyond the capability of 
fully automatic methods. This suggests a robust approach that exploits fusion 
of a variety of cues for segmentation. Here we propose a model and algorithms 
for fusion of stereo with color and contrast, and a prior for intra-layer spatial 
coherence. 

2 Probabilistic Models for Stereo Matching 

First we outline the probabilistic structure of the stereo matching and color/contrast 
models. A notation is set out for state variables and observables. Then an en­
ergy E or cost-function is defined to characterise well matched images. The 
energy E also defines a probabilistic model, by acting as the Gibbs energy in 
a Conditional Random Field (CRF) [14]. 
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Left Image 
3D cost space 

Fig . 2. Matching a pair of rectified stereo images. Rectification means that 
pixels in a left scanline all match to pixels in the corresponding right scanline. A 
match function over a triangular domain is shown that scores the likelihood of all 
feasible pixel pairs over a particular pair of corresponding epipolar lines — bright 
means high match likelihood. 

2.1 N o t a t i o n 

Pixels in the rectified left and right images are indexed by m and n respec­
tively, so the images are denoted 

{L. l , . . . , i V } , R = { i ? n , n = l , . . . , i V } . 

We refer jointly to the da ta as z = (L, R ) . Rectification is a projective warping 
transformation applied to left and right images tha t brings their respective 
scanlines into direct correspondence. Thus, in rectified images, all pixels on 
a horizontal ("epipolar") line in the left image match to pixels in the cor­
responding epipolar line in the right image. This geometrical normalisation 
greatly simplifies the complexity of matching pixels. A pair of rectified im­
ages is illustrated in figure 2 and the stereo problem is to establish a match 
between pixels in the left image and corresponding pixels in the right image. 
Typically, most pixels in each of the images are matched in this way. Those 
tha t remain unmatched are the occluded pixels, arising for instance where a 
particular point in the background of a scene is masked by a foreground object 
in the left view, but visible in the right view. 

The mapping between left and right images is expressed in terms of s tate 
variables x and disparities d. The array x of s tate variables can be defined sym­
metrically with respect to left and right image coordinate frames, in so-called 
Cyclopean coordinates k. The array then coprises components x = {xk} which 
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take values Xk G { M , 0 } , according to whether the pixel is matched or oc­
cluded. A further elaboration of the state space, employs values Xk G {F, B, 0 } 
according to whether the pixel is a foreground match, a background match 
or occluded. This subdivision of the scene into foreground and background 
layers offers the opportunity for imposing further constraints, both prior and 
driven by data . 

Stereo disparity is an inverse measure of three-dimensional depth, and is 
defined to he d = m — n. The disparity values along one epipolar line are 
expressed as d = {dk, /c = 1 , . . . , 2N — 1}. Note this means tha t 

m = i ^ ± ^ and n = t ^ , (1) 
2 2 ' ^ ^ 

so tha t /c, d forms the cyclopean coordinate system for the space of epipolar 
matches, which is symmetric and this is well known to be helpful for proba­
bilistic modeling of stereo matching [1]. 

This sets up the notation for a complete match of two images as the 
combined vector (d, x) of disparities and states. Now a posterior distribution 
for ( d , x ) , conditioned on image data, can be defined. 

2.2 G e n e r a t i v e M o d e l 

A Gibbs energy E{z, d, x; 0) is defined to specify the posterior over the inferred 
sequence ( d , x ) , given the image da ta z, as: 

p(x, d I z) oc e x p — ^ ( z , d , x ; 6>). (2) 

Here 6> is a vector of parameters for the model, which will need to be set ac­
cording to their relation to physical quantities in the stereo problem, and by 
learning from labeled data . The posterior could, for instance, be globally max­
imised to obtain an estimated segmentation x and estimated stereo disparities 
d. 

The model (2) can be regarded simply as a Conditional Random Field 
(CRF) [14], without any generative explanation/decomposition in terms of 
priors over (x, d) and da ta likelihoods. However, simpler forms of the model 
do admit a generative decomposition, and this is very helpful also in motivat­
ing the structure of a fuller C R F model tha t is not so naturally decomposed. 
One reasonable generative model has a Gibbs energy with the following de­
composition: 

E{z, X, d; 0) = y ( x , d; 0) + [ /^(z , x, d; 0) + U^{z \ x; 0), (3) 

in which the role of each of the three terms is as follows. 

Prior: an M R F prior for (x, d) has an energy specified as a sum of unary 
and pairwise potentials: 
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y ( x , d ; ^ ) = Y^ [F{xk,Xk',Adk,Adk')]^YGk{xk,dk), (4) 

where Ad is the disparity gradient along epipolar lines, tha t is 

Adk = dk-dk-i. (5) 

Typically, F{...) discourages excessive disparity gradient within matched 
regions. Pixel pairs {k^k') e Af are the ones tha t are deemed to be neigh­
bouring in the pixel grid. The first component F{...) of the prior Gibbs 
energy V in (4) should incorporate an Ising component tha t favours co­
herence in the segmentation variables Xk, Xk'. It should also favour conti­
nuity of disparity over matched regions, and do so anisotropically — more 
strongly along epipolar lines than across them. 
Optionally, when the extended state-space Xk G { F , B , 0 } is used, the 
Gk{''') term is included to implement "disparity-pull", the tendency of 
foreground elements to have higher disparity than background ones. The 
specific form of Gk{- • •) can be set by taking 

Gk{xk,dk) = -logp{dk I Xk), (6) 

and determining the conditional density p{dk \ Xk) from the observed 
statistics of some labelled data . Various models could be used here, but in 
our experiments a simple, constant disparity, separating surface is used, 
so tha t d > do characterises foreground, with uniform distributions for 
p{dk I Xk) over each of the possible states x G {F, B, O } . 

Stereo l ike l ihood, represented by the U^ term, evaluates the stereo-match 
evidence in the da ta z, both to distinguish occlusion {xk = O) from full 
visibility {xk G {F,B}) and, given visibility, to determine disparity dk. 

Color l ike l ihood, represented by the U^ term, uses probability densities 
in colour space, one density for the background and another for the fore­
ground, to apply evidence from pixel colour to the segmentation Xk of 
each pixel. This term is optional, used only with the extended state-space 
X f c G { F , B , 0 } . 

2 .3 C o n t r a s t D e p e n d e n c e 

One further elaboration, due to Boykov and Jolly [4], incorporates the evi­
dence from image contrast for segmentation — see also 'line processes" [11], 
"weak constraints" [3] and "anisotropic diffusion" [16]. It proves important 
in refining segmentation quality, at the cost of obscuring somewhat the clear 
generative distinction between prior and likelihood [2]. The Ising component 
F in (4) is made contrast dependent, disabling the penalty for breaking co­
herence in X wherever image contrast is high. Segmentation boundaries tend, 
as a result, to align with contours of high contrast. The M R F model (3) is 
extended in this way to a C R F 
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E{z, X, d; 0) = V{z, X, d; 0) + [/^(z, x, d; 0) + U^{z \ x; 0), (7) 

in which dependence on data z is now incorporated in to the V{...) term, so 
that this no longer represents a pure prior distribution. 

3 Inference 

Two inference problems are considered for the model of the previous section. 
The first is the full inference of disparity d and state x, necessary when the 
three-dimensional structure of a scene is required explicitly. This would be the 
case in many robotics applications, and for the gaze-correction function in the 
teleconferencing application described in section 1. The other three telecon­
ferencing applications however, require only segmentation — the inference of 
X but not of d. 

3.1 Inferring Disparity 

To compute both disparity and state, the posterior is maximised with respect 
to d and x: 

(x, d) = argmaxp(x, d | z). (8) 
x,d 

Here we take the short form of the state vector Xk G {M,0}, and use only 
stereo cues, without colour. This problem is not formally tractable but could 
be regarded as tractable in practice because it can be solved approximately by 
the ce-expansion form of graph-cut [5], over the variables x, d jointly (provided 
the energy function E is chosen to meet the necessary regularity conditions). In 
practice ce-expansion over (x, d) jointly is computationally burdensome, one 
or two orders of magnitude slower than real-time, for a conventional video 
stream on a current single processor architecture. A faster solution can be 
computed by neglecting vertical constraints in the model. All vertical cliques 
in V (4) are removed, resulting in a posterior density consisting simply of a 
set of one-dimensional Hidden Markov Models (HMMs), one HMM along each 
epipolar line. For the coherence encouraged by V^ constraints can be imposed 
only horizontally, and the vertical constraint is lost. Nonetheless there is some 
implicit transfer of information vertically via the overlap of the patches used 
in the stereo match likelihood [8]. In exchange for the lost vertical constraint, 
the problem becomes exactly tractable by dynamic programming and DP can 
be performed along scanlines, jointly with respect to disparities and state 
variables [9, 8]. This can be achieved in real time. 

3.2 Inferring Segmentation 

An alternative aim to computing full disparity and state, is to compute only 
the state, and this useful with the extended state Xk G {F ,B ,0} , so that 
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the image is segmented into foreground, background and occluded regions. 
Then colour distributions, associated with background and foreground, can be 
brought into the model. For this problem, the posterior should, in principle, 
be marginalised with respect to d, and then maximised with respect to x to 
estimate a segmentation: 

X = a r g m a x y ^ p ( x , d I z). (9) 
d 

This problem is intractable with the Gibbs energy model (7) above. This 
paper proposes two approaches to simplifying the Gibbs energy model, to 
make inference of segmentation x practically t ractable and efficient. 

L D P . In Layered Dynamic Programming [12], vertical constraints are ne­
glected as above for full stereo. The marginalised form of the problem (9) 
is not t ractable even without vertical constraints, so it is necessary to stick 
with the full problem (8), and simply discard the unwanted disparities. 
This is not ideal because, in principle, statistical information is wasted on 
the computat ion of disparities. 
The difference then between LDP and full DP stereo is simply tha t the 
extended state X]^ G { F , B , 0 } is used, with appropriate energy terms to 
represent foreground and background constraints, both prior and from 
data, in terms of colour properties of the foreground and background 
layers of the scene. 

L G C . In Layered Graph Cut [12], the prior term F ( . . . ) in (4) is made in­
dependent of disparity d. Now the posterior density can be marginalised 
exactly over d in the original inference problem (9). Marginalization gives 
the posterior density p (x | z) for segmentation only, which can be max­
imised by graph-cut with ce-expansion. Parameter learning has not been 
made tractable, but some guidance comes from priors and likelihoods es­
t imated for LDP, t ransplanted (and simplified) to the LGC model. 

In summary, we have two approximate models for the original problem. One, 
LDP, has the advantage of practical tractabili ty not only for inference but in 
fact also for parameter learning [12]. It has the disadvantage though tha t ver­
tical constraints have been neglected. On the other hand LGC retains vertical 
constraints at least for segmentation, but neglects all direct constraints on 
continuity of disparity. It has the advantage of solving the original max-sum 
form of the inference problem, rather than just the max-max approximation, 
but the disadvantage tha t parameter estimation remains intractable. In terms 
of practical efficiency and efficacy, the two algoriths, LDP and LGC, perform 
remarkably similarly [12], despite having very different structures. 

4 Some Results from Stereo Matching and Segmentation 

Results of full stereo matching, used to generate virtual camera views, are 
illustrated in figure 3. The top line show real left and right cameras, used 
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Input left view Input right view 

For ward Baclcifard 

Fig. 3. Virtual camera. 

as input to stereo matching. Computed disparities are then used, either im­
plicitly or explicity, to recover the shape of the scene. The scene can then be 
reprojected onto the image plane of a virtual camera. In the bot tom centre, 
an interpolated cyclopean view is shown, of the sort tha t can be used for gaze 
correction — the subject is looking directly forwards in this view. It is crit­
ically important for the quality of the virtual image, tha t not only disparity 
but also the occlusion information in x is available [9, 8]. Bot tom left and 
right images in the figure show the views when the virtual camera is moved 
respectively backward and forward in space. 

Results of stereo segmentation, fusing stereo, colour and contrast, are 
shown in figure 4. Left and right images are processed using the LGC al­
gorithm above, to separate the foreground subject from its background [12]. 
The extracted foreground can then be applied to a new background and this 
is illustrated in the figure for three frames of a test video. Special measures 
— so-called border matting [17] — are taken so tha t he extracted foreground 
sequence can be composited, free of "aliasing" artefacts, onto the background. 
Border mat t ing deals with mixed pixels — pixels tha t contain both foreground 
and background colour, occurring typically around the boundary of an object. 
If this is neglected, discolouration occurs around boundaries, where traces of 
the original background colour remains stuck to the foreground subject. 

The paper has made a rapid tour of some recent progress in algorithms 
for stereo vision. Highlights include: a probabilistic framework; the full t reat­
ment of occlusion via an appropriate representation of state; fusion of cues, 
specifically stereo, colour and contrast. Many details have been omitted in 
this account, and the reader is directed to [8, 12] for full details. 
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input left view input right view 
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automatic layer separation and background substitution 

Fig. 4. Background substitution. 
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Summary . 3d reconstruction from a single image is inherently an ambiguous prob­
lem. Yet when we look at a picture, we can often infer 3d information about the 
scene. Humans perform single-image 3d reconstructions by using a variety of single-
image depth cues, for example, by recognizing objects and surfaces, and reasoning 
about how these surfaces are connected to each other. In this paper, we focus on the 
problem of automatic 3d reconstruction of indoor scenes, specifically ones (some­
times called "Manhattan worlds") that consist mainly of orthogonal planes. We use 
a Markov random field (MRF) model to identify the different planes and edges in 
the scene, as well as their orientations. Then, an iterative optimization algorithm is 
applied to infer the most probable position of all the planes, and thereby obtain a 3d 
reconstruction. Our approach is fully automatic—given an input image, no human 
intervention is necessary to obtain an approximate 3d reconstruction. 

1 Introduction 

When viewing a single image such as tha t in Figure 1, most humans have little 
trouble estimating the 3d shape of the scene. Given only a single image, depths 
are inherently ambiguous, and thus 3d reconstruction cannot be achieved us­
ing naive, geometry-only approaches such as a straightforward implementation 
of stereopsis (binocular vision). In this paper, we consider the task of monoc­
ular (single camera) 3d reconstruction, specifically of indoor scenes consisting 
mainly of orthogonal planes. Our motivation for studying the monocular 3d 
reconstruction problem is two-fold. First, although one may envision systems 
tha t use both monocular and binocular cues, as a scientific endeavor we find 
it most enlightening to focus exclusively on monocular vision; specifically, this 
allows us to t ry to elucidate how monocular cues—which have heretofore been 
little-exploited in automatic 3d reconstructions—can be used. Second, we con­
sider monocular 3d reconstruction to be interesting and important in its own 
right. For example, unlike stereo vision, it works well even at large distances 
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(if, say, the images are taken through a zoom lens). In contrast, stereo vision 
is fundamentahy hmited by the basehne distance between the two cameras, 
and performs poorly when used to estimate depths at ranges that are very 
large relative to the baseline distance. 

I-:::' • 

Fig. 1. Single camera image of a corridor. 

Apart from stereopsis, there are many other algorithms that use multiple 
images to estimate depths, such as structure from motion [23] and shape from 
defocus [8]. These methods suffer from similar problems to stereopsis when 
estimating depths at large ranges. A number of researchers have attempted 
to recover 3d information from a single image. Shape from shading [25] is 
one well-known approach, but is not applicable to richly structured/textured 
images such as that in Figure 1. For such indoor images, methods based on 
"3d metrology" hold some promise. Given sufficient human labeling/human-
specified constraints, efficient techniques can be used to generate a 3d recon­
struction of the scene. [5, 6, 21, 22] However, these methods tend to require 
a significant amount of human input (for example, specifying the correspon­
dences between lines in the image and the edges of a reference model), and 
are thus limited in their applicability. 

Recent work strongly suggests that 3d information can be efficiently re­
covered using Bayesian methods that combine visual cues with some prior 
knowledge about the geometry of a scene. For example, Kosaka and Kak [13] 
give a navigation algorithm that allows a monocular robot to track its position 
in a building by associating visual cues, such as lines and corners, with the 
configuration of hallways on a fioor plan. However, this approach would fail in 
a new environment in which such a fioor plan is not available beforehand. A 
more fiexible algorithm, due to Han and Zhu [11], used models both of man-
made "block-shaped objects" and of some natural objects, such as trees and 
grass. Unfortunately, this approach has so far been applied only to fairly sim-
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pie images, and seems unlikely to scale in its present form to complex, textured 
images as shown in Figure 1. Saxena, Chung and Ng [19] apply an M R F to 
directly estimating depths from a monocular image, focusing mainly on un­
structured (for example, outdoor) scenes. (See also [18].) The "Manhat tan 
world" assumption [3, 4] (i.e., tha t the environment contains only orthogonal 
planes, as in many urban environments) has been used to develop algorithms 
for estimating camera calibration parameters [20] and camera pose [3, 4] from 
complex images. In this paper, we exploit this same assumption to obtain 
single-image 3d reconstructions. 

(a) (b) 

Fig. 2. 3d reconstruction of a corridor from single image presented in figure 1. 

Our approach uses a Markov random field (MRF) to estimate whether each 
point in an image represents a surface or an edge, and also the orientation of 
the surface or edge. Using this information, we then use an iterative algorithm 
to t ry to infer the 3d reconstruction of the scene. Figure 2 shows an example 
of our algorithm's output , generated fully automatically from the image in 
Figure 1. To our knowledge, our work represents the first fully automatic 
algorithm for 3d reconstruction from single indoor images. 

The remainder of this paper is structured as follows. In Section 2, we 
describe the basic geometric calculations used by our algorithms. Section 3 
presents the M R F model; and Section 4 then describes how we compute a 3d 
reconstruction from the MRF's output . In Section 5, we present experimental 
results. 

2 Preliminaries 

We make the following assumptions: 
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1. The image is obtained by perspective projection, using a calibrated cam­
era^ with cahbration matr ix K. Thus, as presented in Figure 3, a point 
Q in the 3d world is projected to pixel coordinate q (represented in ho­
mogeneous coordinates) in the image if and only if:̂  

QocK-^q. (1) 

2. The objects in the image are composed of planes in each of three mutually 
orthogonal orientations. Thus, the image also contains three vanishing 
points corresponding to three different directions (one of them orthogonal 
to the floor plane).^ 

3. The camera's vertical axis is orthogonal to the floor plane, and the floor 
is in the lower part of the image.(Figure 3)^ 

4. The camera center (origin of the coordinate frame) is at a known height 
above the ground.^ 

Assumption 2 is often called the Manha t tan world assumption [3]. 
In an image tha t has no occluding edges, the assumptions above are suffi­

cient to ensure tha t the full 3d geometry of a scene is exactly specified, given 
only a segmentation of the scene into surfaces (together with labels indicating 
the surfaces' orientations). Thus, knowledge of the segmentation and orien­
tations is sufficient to unambiguously reconstruct the 3d location of every 
pixel in the image. This result is a completely straightforward consequence of 
perspective geometry. Still assuming the absence of occluding edges, we now 
describe how this 3d reconstruction can be obtained. 

First, by perspective projection, the 3d location Q^ of a pixel at position 
q^ in the image plane must satisfy: 

Q , = KK-^ci, (2) 

'f 0 Au' 
0 f A, 
0 0 1 

, q = 
' u~ 

V 

_1_ 
K= \0 f A^\, q = U , Q 

4 

A calibrated camera means that the orientation of each pixel relative to the optical 
axis is known. 
Here, K, q and Q are as follows: 

^ x' 
y 
z _ 

Thus, Q is projected onto a point q in the image plane if and only if there is 
some constant A so that Q = AK~^q. 
Vanishing points in the image plane are the points where lines that are parallel in 
the 3d space meet in the image. In a scene that has mainly orthogonal planes— 
such as in many indoor scenes—most edges (in the 3d world) will lie in one of 
three possible directions, and thus there will be three vanishing points in the 
image. 
Small misalignments of the camera's vertical axis can also be easily compensated 
for (e.g., see [3, 4]). 
If the height of the camera is unknown, then the 3d reconstruction will be deter­
mined only up to an unknown scaling factor. 
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Fig. 3. Coordinate system used by algorithm. 

for some A .̂ Thus, Q^ is restricted to a specific line tha t passes through the 
origin of the camera. Further, if this point lies on some plane p tha t has normal 
vector rip, then we have 

% • Q^ = Â  rip • {K ^q^) = d^ (3) 

where dp is the distance of the plane from the camera center (the origin of 
the 3d coordinate frame). Thus, Â  can be exactly determined given only dp] 
and therefore estimating the position of every pixel in the image reduces to 
the problem of finding dp for all planes p. 

Since we assumed tha t there are no occluding edges, every two adjacent 
pixels in the image are also physically adjacent in 3d.^ Since each point q^ 
(with variable A )̂ is part of some plane, each variable Â  is constrained by 
at least one equation of the form in Equation (3). Moreover, if there are no 
occluding edges in the image, then the points lying on the boundary of two 
adjacent/connected planes participate in two different constraints (one for 
each of the two neighboring planes). By incorporating assumption 4, we also 
know the distance dp from the fioor plane to the camera. Except in degenerate 
cases, this is sufficient to ensure that , treating the Â  and dp as variables, the 
system of equations given in Equation (3) are sufficiently constrained to have 
a unique solution. 

The process described above required knowledge of the segmentation of 
the scene into planes as well as knowledge of the orientation of the planes. In 
Section 3, we describe an algorithm for estimating these quantities. Further­
more, the assumption tha t there are no occluding edges will often fail to hold 

Section 4 will address the case of occluding edges. 
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in indoor scenes; in Section 4, we describe a reconstruction algorithm tha t 
apphes even in the presence of occluding edges. 

3 Markov Random Field Model 

Given an image of a scene comprising planes in three mutually orthogonal 
directions, there are s tandard algorithms for recovering the three vanishing 
points in the image. (E.g., [17, 20]) We use [20] to identify these vanishing 
points; by doing so, we also identify the three possible orientations for the 
planes n^^^^, rii, and n2 (one orthogonal to each of the vanishing point 
directions). 

In our Manha t tan world, the edges (boundaries) of a plane cannot be 
oriented in the same direction as its normal. If there is no occlusion, this 
gives us a constraint on the possible directions for the edges of a surface. (For 
example, the floor should not be bordered by edges tha t point upwards in the 
direction n^^^^) . Our M R F model will incorporate this constraint. 

Our M R F is structured as a 320*240 grid (each node corresponding to a 
different position in the image). Each node corresponds to a random variable 
tha t takes on one of 6 possible values, tha t indicate whether the node is on 
a line pointing toward one of the three vanishing points (labels e i , 62, 63), 
or whether it lies on a plane whose normal is oriented in one of the three 
orthogonal directions (labels p i , p2, Ps)- Figure 4 shows the 6 labels. The 
M R F models the joint probability distribution of this 320*240 grid of label 
values; and will be used to infer the most likely set of labels given a new 
image. 

X 
Pi 

Sl P3 
P2 

Fig. 4. The 6 possible labels for the MRF nodes (points in the 2d image). 
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(a) 

Fig. 5. Example of features extracted from an image, (a) The input image, (b) 
A mask identifying the floor pixels, (c) Lines extracted using [16] and classified 
according to their orientations, (d) Labeling of each pixel with the direction of the 
edge in (c) which is closest in the same row or column. 

3.1 M R F F e a t u r e s 

This section briefly describes the image features used in our M R F model. 

E d g e Sta t i s t i c s F e a t u r e s 

Statistics about edges were computed using the Canny edge detector [2], the 
phase congruence [15], and Sobel edge filter [10]. Using the orientation of 
intensity gradients, we also determined for each location the most likely van­
ishing point of each edge. Line extraction algorithms from [14] and [16] were 
used to obtain a list of lines in the image (generating two different sets of 
features). Each line was also identified according to its vanishing point.^ We 
also created additional features based on the nearby edges' orientations.^ 

S e g m e n t a t i o n - B a s e d F e a t u r e s 

Surfaces often have fairly uniform appearances in texture and color, and thus 
image segmentation algorithms provide another set of useful features. Specif­
ically, pixels tha t are members of the same segmented group should usually 
be labeled with the same orientation. We used a graph-based segmentation 
algorithm [9] to generate a parti t ion of the image, and assigned a unique iden­
tifier to each parti t ion output by the segmentation algorithm. For each pair 
of adjacent nodes in the grid, we also generated a pairwise/relational feature 
in our M R F model indicating whether the nodes were members of the same 
parti t ion of the image. 

^ Lines which diverged from all three vanishing points were discarded. Some lines 
whose 3d orientations were ambiguous were assigned to two vanishing points. 

^ At a given position in the image, we add an extra feature corresponding to the 
orientation of the closest line (measured either in the same row or column) in the 
image. (See Figure 5d.) We also created additional features corresponding to the 
second and third closest lines. 
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Fig. 6. Results from DBN floor segmentation algorithm of [7]. (a),(d) original image. 
(b),(e) floor mask. (c),(f) 3d reconstruction (obtained assuming presence only of floor 
and walls in image). 

Floor S e g m e n t a t i o n F e a t u r e s 

Since many planes (e.g., most walls) are connected to the floor, correct labeling 
of the floor plane plays an important role in 3d reconstruction. Building on 
our earlier work [7], we used a dynamic Bayesian network (DBN) to identify 
the floor boundary in the image plane. Our DBN is a probabilistic model tha t 
incorporates a number of local image features, and tries to reason about the 
chroma of the floor, the position of the floor boundary in each column of the 
image, and the local direction of the floor boundary. The DBN output is then 
used to generate a "floor mask" feature indicating whether each pixel was 
identifled as part of the floor.^ (See Figure 5b.) 

In [7], it was shown tha t if the image contains only the floor and vertical 
walls, then (under mild assumptions) knowledge of this floor boundary is 
suflftcient to give a complete 3d reconstruction of the scene. The basic idea is 
tha t , given the camera height and orientation, every point in the ground plane 
can be reconstructed exactly. Then, because the position of each point on the 
boundary between the floor and each wall is now known (because these points 
also comprise part of the ground plane), we also now know the 3d position 
of the lower-edge of each wall. This is suflftcient to exactly reconstruct the 
position of each wall. Figure 6 shows some examples of results obtained using 
this procedure. We note, however, tha t this procedure does not apply to scenes 

Two additional features were created using the DBN output: one to identify edges 
of the floor boundary; the other to identify sharp changes in direction of the floor 
boundary (which are often indicative of a transition between two wall planes). 
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tha t have other orthogonal surfaces (e.g., the top surfaces of desks and filing 
cabinets), such as in the Manha t tan worlds considered in the present paper. 

3.2 M R F P a r a m e t e r i z a t i o n 

As discussed previously, each node can take on one of 6 possible label 
values: 3 for plane orientations (labels p i , p2, Ps) and 3 for edge orientations 
(labels e i , 62, 63).^^ We used a grid-structured Markov random field. Figure 7 
shows the structure of the MRF. We use V to denote the set of nodes in the 
model, and E to denote the edges. Let tjy G {pi,P2,P3, ^ i , 62, 63} denote the 
value associated with vertex v e V^ and let Xy denote the vector of features 
computed at position v in the image (and similarly Xu,v be computed from 
positions u and v). The M R F defines a joint probability distribution over all 
label assignments y: 

^̂ *̂ '̂̂ ^ ^ z (x) ^̂ ^ ~ ^"^livv^Xy'^Oi) - Y^ '^2{yu^yv^Xu,v;02) . 
^^^^ \ vev {u,v)eE J 

(4) 
Here, ^i is the potential function for individual nodes, ^2 gives the pairwise 
potentials in the MRF, 0 = [6>i, 6̂ 2] are the parameters of the model, and Zo{x) 
is the parti t ion function. 

Using the features described in Section 3.1, we chose ^i{yy,Xy] Oi) to be a 
weighted linear combination of features indicative of the label at a vertex v:^^ 

( ^ > ^ - ^ 

Fig. 7. Markov random field model over the image. 

°̂ A plane with orientation pi has a normal in direction e .̂ Thus, a plane with 
orientation pi would typically be bordered by edges of type 62 and 63 

^̂  For example, given a specific edge-based feature Ci{v,Xv) from Section 3.1 (one 
that is indicative of whether an edge at position v heads towards ei), we create 
the following MRF features: 
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^i{yy,Xy]Oi) = 0j '^{yy.Xy). (5) 

Similarly, we used 

'^2{yu,yv,Xu^v]02) = Ol '^{yu,yv,Xu^v), (6) 

where ^{VuiVviXu^v) were chosen to be features indicative of whether y^ and 
yy are likely to be the same label (e.g., the segmentation-based feature of 
Section 3.1). We also included features in the pairwise potential tha t measure 
"consistency" between the plane and the edge orientations.^^ For example, 
these features can be used to help capture the fact (discussed earlier) tha t a 
plane with normal Pi is unlikely to be bordered by edges of orientation e^. 

Put t ing all the features together, ^{y^^Xy) was a 75 dimension vector, and 
, y ^ , Xy^ ̂ y) was a 9 dimension vector. 

3.3 Tra in ing and Inference 

In order to train the model parameters 6i and 6̂ 2, we hand-labeled two images 
with their ground-truth labels y. This set of two images made up our training 
set. Unfortunately, maximum likelihood parameter learning is intractable in 
grid-structured M R F models; thus we learned the parameters using an objec­
tive similar to pseudo-likelihood.^^ [1] 

^i(yv,Xy) = Ci(v,Xy) X l{yy = ei} 

^2(yv,Xv) = Ci(v,Xv) X l{(yv = 62) V (yv = 63)} 

^3(yv,Xv) = Ci(v,Xv) X l{(y^ y^ ei) A (2/̂ ; / 62) A (2/̂ ; / 63)}, 

For example: 

^i{yu,yv,Xu,v) = l{yu = plane A yv = yu} 

^2{yu,yv,Xu,v) = l{yu = plane A yv = plane A y^ ^ yv} 

^3{yu,yv,Xu,v) = l{yu = edge A yv = edge} 
3 

^4{yu,yv,Xu,v) = ^^l{yu = Pi A y^ = a} 
i=\ 

3 

^5(2/n,2/̂ ;,a:̂ n,̂ ;) = ^ l { 2 / n = P i A 2/̂ ; = edge A yui^ei] 

In our experiments, straightforward pseudo-likelihood (or generalized pseudo-
likelihood [12] using small clusters of nodes) did not work well. Our parameters 
were actually learned using a product approximation over 3-node networks. More 
formally, we used: 

max I I Pe(y uiyv 1 yw \x)^ 
0 -*--*-

(^t,^;,^t;)GF 
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Finally, after learning the parameters, the inference task in our Markov 
random field is to compute the most likely set of labelings, given a feature 
vector X from a new image: 

y = a rgmaxP^( i / |x ) , (7) 
y 

Exact inference in a grid-structured M R F is intractable. We approximated 
this using the algorithm of Wainwright et al. [24]. 

4 Using the MRF Output for 3d Reconstruction 

We now address the problem of 3d reconstruction given an image in which the 
planes have been segmented and labeled with their orientations, for example 
by our MRF. Sturm and Maybank [22] proposed an algorithm for a similar 
problem, and demonstrated good 3d reconstruction given human-labeled im­
ages. However, their algorithm is not directly applicable to an image labeled 
by our MRF, as it requires tha t occlusion vs. non-occlusion edges be labeled 
(i.e., labels indicating whether two adjacent planes in the image are physically 
connected in 3d). This is difficult to infer from local image features, and is 
not part of the information output by our MRF. Their algorithm has also 
been tested only on instances with perfectly correct human-generated labels. 
We now present an algorithm, a modification and generalization of Sturm 
and Maybank's algorithm, for 3d reconstruction from an image given possibly 
noisy labels of the planes and edges. 

If we examine an individual "edge" point q^ tha t is on the boundary be­
tween two planes p and p ^ this point can either be part of an occluding edge 
between the two planes or part of an edge tha t physically connects the two 
planes p and p\ Therefore, in the latter case we would want to find a 3d 
reconstruction where the following distance is small: 

^i,p,p' = \\Qi,p ~ Qi,p'\\2' 

Here, Q^^^ (respectively Q^,^') is the 3d position in the plane of p (respec­
tively p^) tha t would appear at position q^ in the image plane. Thus, we can 
informally think of /\^,p,p/ as the distance between (two specific points on) the 
planes p and p\ 

Thus argument above applies if an edge is known to be non-occluding. 
However, it is usually not obvious if an edge is indeed occluding, and thus 

where 

Pe{yu,yv,yxv\x) = exp - \ ^i{yi,Xi;Oi) - \ ^2{yi,yj, Xij; O2) 

Above, F is set of randomly sampled regions of three connected vertices. 
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occlusion vs. non-occlusion must be inferred. We model the distance /\^,p,p/ 
using a Laplacian probability distribution parameterized by ce^^p/: 

(^p,p' \ '^yPyP/ ^ ^p,p' ^^P\ ^p,p' ^i,p,p' )i V 2- t itp^p'^ [O) 

where Rp^p' is the set of (indices of) points tha t are on the boundary between 
the planes p and p^ 

To form a 3d reconstruction, we will t ry to maximize the log-likelihood of 
d. A, Q and ce, given the M R F labeling of the planes and edges. More formally, 
we have: 

maximizec^^A,Q,a Xl(p,p')GB J2ieR„ 
'P,P 

subject to Qi^p = K ^q_iXi^p , V (i^p) 
dp = n^K-^q_iXi^p , ^ {i,p) 

(9) 

where B is the set of pairs (p^p^) of planes tha t share a common boundary in 
the image. 

We apply an efficient alternating maximization algorithm to this optimiza­
tion problem. For fixed ce, maximizing the objective over d, A and Q reduces 
to a linear program: 

minimize^,A E(p,pOGB ^ieR^,^^ ^^^P^P' \^^^P ~ ^^^P'\ 
subject to dp = njK~^q^A^,p , V {i,p) (10) 

^floor ^ C , 

where Wi^p^p' = ap^p'\\K~'^c{i\\2. For fixed d, A and Q, we can maximize over 
a in closed form:^^ 

We iterate updat ing d, A and Q; and updat ing ce, until convergence.^^ 
Sturm and Maybank's method—which relied on known occlusion edges— 

can roughly be viewed as a variant of our algorithm in which a Gaussian 

^^ Using a heuristic reminiscent of Laplace smoothing, we actually add 0.5 to the 
denominator, and 5 to the numerator. This smooths the estimates, and also pre­
vents a small denominator from causing a^^p' from growing without bound. To 
help the search procedure, we also used a heuristic in which OL^IQQY ' (^^^ ^p,p' 
for horizontal edges) were initialized to be large. Edges that appeared clearly to 
be occluding, specifically ones parallel to the normal of a plane, were discarded 
from the optimization (or, less formally, had a^^p/ set to an infinitesimally small 
value). 

^̂  Other details: During the reconstruction, we also discard the ceiling plane. Also, 
all planes that were reconstructed as lying outside a reasonable range (a 10m 
X 10m X 50 m box in front of the camera) were considered outliers, and also 
discarded. 
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(instead of Laplacian) model with a fixed variance parameter (rather than 
the variable a) is used. [19] found Laplacians to be a superior model than 
Gaussians for modeling differences between distances. In our experiments (de­
scribed in Section 5), we also find the Laplacian to outperform the Gaussian. 

5 Experimental Results 

We applied our algorithm to a test set of 15 images obtained using a cali­
brated digital camera in 8 different buildings (all of which had fairly different 
interior decoration themes from each other, and from the building from which 
the training set images were taken). Since the test set buildings contained 
a diverse range of orthogonal geometries (boxes, doors, hallways, cabinets, 
etc.), we believe tha t the results we present are indicative of the algorithm's 
performance on images of new (Manhat tan world) buildings and scenes. 

Figures 9 shows the labeling obtained by the M R F on 6 images from the 
test set, as well as the resulting 3d reconstructions. Even in fairly complex 
environments or ones tha t do not perfectly respect the Manha t tan world as­
sumption, the algorithm is still able to label most of the planes correctly, and 
obtain reasonable 3d reconstructions. 

We also evaluate the algorithm more formally. First, using a hand-labeling 
of the test set images, we measure the labeling error rate of the MRF. The 
overall accuracy of the M R F is 79.6%. Given tha t there are 6 possible labels 
for each pixel, random guessing would have obtained 16.7% accuracy. Table 1 
shows a further breakdown of these results by planes and edges.^^ Although 
our precision on edges was surprisingly low, this appears to be a consequence 
of only a very small fraction of the pixels being edge pixels, and did not seem 
to significantly affect the final reconstruction performance. 

Table 1. MRF labeling errors on test set images 

p l a n e s edges 

Reca l l 80 .6% 6 5 . 7 % 

Prec i s ion 8 9 . 1 % 29 .0% 

Using a careful hand-labeling of the test set images (including both plane 
orientations and occluding edges), we also generated a full ground-truth 3d re­
construction of the test set scenes. We then measured the average errors in the 
reconstructed distances, for pixels at different ground-truth distances from the 
camera. These statistics do not include planes tha t were discarded during the 

^̂  Recall is the fraction of plane/edge labels that we labeled correctly. Precision is, 
out of all the times we predicted a specific label, the fraction of times that the 
prediction was correct. 
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reconstruction, and thus might reflect a shghtly overoptimistic performance 
metric, but nonetheless represents a fair comparison between the different al­
gorithms.^^ The results are shown in Figure 8. We also compare the Laplacian 
model with a Gaussian one (that , similar to our procedure for learning ce^^p/, 
tries to adapt its variance parameters) , and with an implementation of Sturm 
and Maybank's algorithm tha t assumes there are no occluding edges. When 
performing 3d reconstruction using our MRF's output labels, the Laplacian 
model appears to perform best. 

-•— Laplacian model 
• • -Gaussian model 
• • ' • Sturm and Maybank's method] 

10 15 20 
distance from camera (m) 

Fig. 8. Errors in 3d reconstructions, for pixels at different ground-truth distances 
from the camera. 

6 Summary 

We have presented an algorithm for fully automatic 3d reconstruction of in­
door Manha t tan world scenes from a single image. Our method uses an M R F 
to label each pixel as belonging to one of three plane orientations or one of 
three edge orientations. Given the M R F model's outputs , we use a Laplacian 
probabilistic model to infer a 3d reconstruction. Our experimental results 
show the algorithm performing well on a number of indoor scenes, even ones 
very different from the training set images. The work presented in this paper 

^̂  See footnote 15 for details. Given the MRF output, all three algorithms discard 
(the same) 4% of pixels as belonging to the ceiling; 22% of pixels labeled as edges 
(whose distance is truly ambiguous, since they can be reconstructed as lying on 
either of two planes); and under 1% as outliers (reconstructed as lying outside 
the box described in footnote 15). 
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was restricted to Manha t tan worlds, and it remains an important problem to 
generalize these ideas to other scenes. More generally, we believe tha t monoc­
ular depth estimation holds significant promise, and it remains an important 
problem to develop algorithms tha t exploit other single-image cues for depth 
estimation. 
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(d) 

(g) 

Fig. 9. Inferred 3d reconstructions of test set indoor scenes. Left column: Input 
image. Middle column: Labeling generated by MRF (red, green and blue correspond 
to the three plane orientations; black corresponds to all three edge orientations). 
Right column: Resulting 3d reconstructions. 
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Fig. 9. (continued) 
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Control theory to date has achieved tremendous success in the analysis and 
synthesis of single control systems, as well as in the development of control 
laws for simple groups of systems which are connected together by point-to-
point wires (assumed reliable) so tha t information is received and processed 
synchronously at each subsystem. Many of these advances have been fueled by 
challenges in robotics: force feedback in haptic devices led to new formulations 
of stable control laws, coordination algorithms for robot swarms has likewise 
led to a theory of control for networked systems. 

New vistas and challenges in robotics are continuing to push the envelope 
in control design. In an earlier session, new advances in the area of human-
robot interaction were described. Here, the implications of this for control are 
discussed: the requirement for robots to interact in safe and meaningful ways 
with the handicapped, with soldiers, and in elder care, require new ways of 
thinking about a control theory tha t interacts seamlessly with humans, tha t is 
"self-aware", tha t can provide guarantees about the limits of its operation for 
safety. This also leads us to think about how to endow robots with "human" 
qualities. And, more and more, robotics are being asked to function in extreme 
environments: at the micro-scale level where the sheer size demands engineer­
ing innovations, to the battlefield where robustness, ease of t ransport , and 
ease of use, are paramount . This session features four exciting new research 
directions spanning the aspects discussed above. 

O n e is E n o u g h ! by Lauwers, Kantor and Hollis describes Ballbot, a cylin­
drical robot the height of an adult human, designed to be agile and responsive 
in its interaction with people in their environments. Multi-wheel, statically 
stable robots of this height would be clumsy and slow, with low centers of 
gravity, wide bases of support , and low accelerations. Maneuvering in tight 
spaces, even planning a trajectory through a partially closed door, is challeng­
ing for such robots. Ballbot is a statically unstable, but dynamically stable, 
agile cylindrical robot whose body is supported by a single, omni-directional 
spherical wheel. In this paper, the challenge of designing the control law which 
dynamically stabilizes this system is presented, and results shown. 

S. Thmn , R. Brooks, H. Durrant-Whyte (Eds.): Robotics Research, STAR 28, pp. 325-326, 2007. 

© Springer-Verlag Berlin Heidelberg 2007 
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A Steerab le , U n t e t h e r e d , 250x60 fim M E M S M o b i l e M i c r o - R o b o t 
by Donald, Levey, McGray, Paprotny, and Rus describes the smallest micro-
robot ever - 1-2 orders of magnitude smaller in size than previous designs. 
The robot system is a cantilevered arm mounted on untethered component 
actuators moving on a uniform electrical grid. Here, the challenge is to design 
a control scheme which is simple enough to be robust at this scale. The paper 
discusses how the actuators are used to define two control modes, forward 
motion and turning, which may be coupled together to produce a control 
logic capable of controlling the device globally with impressively small error. 

S o m e Issues in H u m a n o i d R o b o t D e s i g n by Takanishi, Ogura, and 
Itoh addresses a range of new ideas and the resulting design issues for robots 
tha t interact with humans. These include the study of human motion and the 
human muscular-skeletal system to inspire new design structures and control 
laws for robot walking; new thoughts about controlling very high D O F sys­
tems; the mechanisms for realistic joint motion; and finally, the expression of 
emotion through arms, hands, and face (eyes, eyelids, eyebrows, lips and jaws). 
Exciting results on their two humanoid robots, WABIAN-2 and WE-4RII , are 
presented. 

Finally, T h a t wh ich d o e s not stabiHze, wil l on ly m a k e us s tronger , 
by Kazerooni and Steger describes the design and control of BLEEX, the 
Berkeley Lower Extremity Exoskeleton. BLEEX is a human exoskeleton which 
fits around the torso, legs, and shoes of a human body (the pilot) to effectively 
carry 75 lb of pay load while allowing the pilot to walk up to 2.9 mph -
such a system has huge implications for soldiers who are continually asked to 
carry such heavy loads over long distances. The paper focuses on the novel 
control design: how does one design a control scheme which does not require 
direct measurements from the pilot, yet moves in such a way to shadow, with 
very little delay, the pilots movements so tha t the pilot feels very little force 
from the payload. This motivates a design which is counter to today's control 
design techniques of minimizing system sensitivity to errors or disturbances: 
Kazerooni has designed a control scheme which does just the opposite, and 
he demonstrates its success in this paper. 
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Summary. We postulate that multi-wheel statically-stable mobile robots for operation in hu­
man environments are an evolutionary dead end. Robots of this class tall enough to interact 
meaningfully with people must have low centers of gravity, overly wide bases of support, and 
very low accelerations to avoid tipping over. Accordingly, we are developing an inverse of this 
type of mobile robot that is the height, width, and weight of a person, having a high center 
of gravity, that balances dynamically on a single spherical wheel. Unlike balancing 2-wheel 
platforms which must turn before driving in some direction, the single-wheel robot can move 
directly in any direction. We present the overall design, actuator mechanism based on an in­
verse mouse-ball drive, control system, and initial results including dynamic balancing, station 
keeping, and point-to-point motion. 

1 Motivation 

A significant, but frequently overlooked problem is that statically-stable wheeled 
mobile robots can easily become dynamically unstable. If the center of gravity is too 
high, or the robot accelerates/decelerates too rapidly, or is on a sloping surface, the 
machine can tip over. A robot must be tall enough to be able to interact with people 
and the human environment at a reasonable height. On the other hand, it must be 
skinny enough to easily make its way around without bumping into things or getting 
into peoples' way. 

What is needed are robots that are safe; agile and capable of graceful motion; 
slender enough to easily maneuver in cluttered, peopled environments; and which 
readily yield when pushed around. It is surmised that intelligent machines of this 
sort can only be achieved with dynamic stability. This idea follows the model of 
humans and other animals which are intrinsically dynamically stable. 

2 Background 

A two-wheeled robot with inverse pendulum control developed in Japan was demon­
strated in 1994 [2]. The two-wheeled design eliminated the need for a third castor-

S. Thmn , R. Brooks, H. Durrant-Whyte (Eds.): Robotics Research, STAR 28, pp. 327-336, 2007. 
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(a) (b) (c) 

Fig. 1. Ballbot design and realization: (a) with three legs deployed, (b) with legs retracted into 
body, (c) balancing and station keeping. 

ing wheel. The same group introduced a one-wheel balancing robot [3]. The wheel 
is a prolate ellipsoid like a rugby ball and is driven with an axle along the major 
axis. The body of the robot has a hinge above and perpendicular to this axis. The 
robot balances in the forward/backward directions by application of wheel torque in 
the manner of the two-wheeled design, and balances from side to side by leaning 
the body left or right at the actuated hinge. Recently, balancing wheel chairs^ and 
balancing 2-wheel "Segway personal mobility devices"^ have been introduced. The 
2-wheel RMP robotic platforms [4] based on the Segway are the subject of much 
recent development in robotic locomotion. 

The previous work on dynamically-stable rolling machines provides inspiration 
for our current research, yet is distinctly different. For example, there is no previous 
work proposing a balancing rolling machine whose body is supported by a single 
omni-directional spherical wheel. The previous rolling/balancing machines cannot 
immediately drive in a given direction without first re-orienting the drive mecha­
nism. For example, a two-wheel balancing machine such as the Segway RMP cannot 
maneuver in tight spaces by moving sideways; a robot based on such a machine could 

^ Independence Technology, h t t p : / /www. i n d e t e c h . com. 
^ Segway human transporter, h t t p : / /www. segway. com. 
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not open and close a door without knowing the precise location of the hinges in order 
to establish the correct turning radius. The rugby-ball robot cannot turn in place, but 
can only turn in a wide arc. 

3 System Description 

Ballbot, shown in Fig. 1, is a reconfigurable research platform developed and con­
structed to validate the notion of a dynamically stable robot resting atop a single, 
spherical drive wheel. It was designed to meet two goals: approximate the dimen­
sions of a human being, and create a platform that is easily reconfigured for various 
present and future research efforts. The body is a cylinder 1.5 m tall, with a diameter 
of 400 mm and a weight of 45 kg. Three aluminum channels, held together by cir­
cular decks, define the structure of Ballbot's body. Three retractable landing legs are 
attached to the lower third of the channels, which when deployed allow Ballbot to 
remain standing after being powered down. Active components, such as computing, 
power, and sensing, are mounted on the decks, allowing these elements to be placed 
at varying positions along Ballbot's axis. Figures 1(a) and (b) show the design and 
Fig. 1(c) shows its present configuration successfully balancing and station keeping. 

Ballbot is designed to be entirely self-contained; power is supplied by a 48V lead 
acid battery with operating time of several hours, and computing is performed on­
board by a 200 MHz Pentium processor. Communication with Ballbot is through an 
802.11b wireless link. A Crossbow Technology VG700CA-200 Inertial Measuring 
Unit (IMU) emulating a vertical gyro provides Kalman-filtered pitch and roll angles 
and rates with respect to gravity. The drive motors are connected to Copley Model 
412 PWM amplifiers, with 1024 cpr encoders feeding motor shaft position back to 
the computer. Additionally, 1024 cpr encoders are placed on the passive rollers to 
measure ball rotation. The IMU and encoders provide all data required for full-state 
feedback control. 

servomotor-

belt tensioner 

drive belt • ] 

drive roller-

idler roller 
idler encoders 

motor encoders 

ball transfers (3) 

ball 

Fig. 2. Ballbot inverse mouseball drive mechanism 
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The drive mechanism, shown in Fig. 2, is essentially the inverse of a mouse ball 
drive: instead of the mouse ball driving the mouse rollers to provide computer input, 
rollers drive the ball to produce motion. The ball is a 200 mm diameter hydroformed 
steel shell covered with a 3.2 mm thick urethane outer layer. We have fabricated 
balls with urethane formulations of several different durometers. The ball is actuated 
by a pair of 12.7 mm diameter smooth stainless steel rollers placed orthogonally 
at the sphere's equator. These rollers are linked through timing belts to two high 
torque DC servomotors. Opposite the drive rollers are two spring-loaded passive idler 
rollers that apply force at the ball's equator to maintain contact between the drive 
rollers and the ball. This arrangement represents a compromise since some slippage 
is always present. For example, if one roller is being driven, the orthogonal roller 
must be slipping. This simultaneously demands both a high-friction and low-friction 
material for the ball. On the other hand, it is always desirable to have high friction 
between the ball and the floor. The drive works well but a fair amount of ball wear 
has been experienced, and we are at present still seeking a satisfactory compromise 
solution. The entire drive mechanism is attached to the body with a large diameter 
thrust bearing, allowing a third actuator (currently not installed) to re-orient the body 
in yaw. Finally, the entire Ballbot body rests on top of the ball on three commercial 
low friction, omni-directional ball transfer devices. 

4 Simplified Ballbot Model 

For the purposes of developing a stabilizing controller, we introduce and derive equa­
tions of motion for a simplified model of Ballbot. In this model, the Ballbot ball 
wheel is a rigid sphere, the body is rigid, and the control inputs are torques applied 
between the ball and the body. There is no slip between the wheel and the floor. Fric­
tion between the wheel and the floor and between the wheel and the body is modeled 
as viscous damping. Further, we assume that the motion in the median sagital plane 
and median coronal plane is decoupled and that the equations of motion in these two 
planes are identical. As a result, we can design a controller for the full 3D system by 
designing independent controllers for the two separate and identical planar systems. 

Figure 3 is a diagram depicting the planar model. The Lagrangian formulation is 
used to derive the nonlinear equations of motion for the simplified model (see, e.g., 
[1]). The first step is to compute the kinetic energy K5 of the ball: 

where Ib,mi), and r^ are, respectively, the moment of inertia, mass, and radius of the 
ball. The potential energy of the ball is V5 = 0. The kinetic energy KB and potential 
energy VB of the body are 

K^ = ^ (rlO^ + 2n£{d^ + 0^) cos{0 + (̂ ) + £\d + . 
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Fig. 3. Planar simplified Ballbot model used for controller design. 

VB = mBg^cos{(j) -\- 6>), 

where IB is the moment of inertia of the body about the center of the ball, ^ is the 
distance between the center of the ball and the center of mass of the body, TUB is the 
mass of the body, and g is the acceleration due to gravity. The total kinetic energy is 
K = Ki)-^ KB and the total potential energy isV = Vb -^VB. 

Define the system configuration vector q = [0 cf)]^. The Lagrangian £ is a 
function of q and q and is defined to he jC{q^q) = K — V. 

Let r be the the component of the torque applied between the ball and the body 
in the direction normal to the plane. To model the viscous friction terms, define the 
vector 

1^0 0 m) 
where fie and /î ^ are the viscous damping coefficients that model ball-ground and 
ball-body friction, respectively. Using this notation, the Euler-Lagrange equations of 
motion for the simplified Ballbot model are 

dt dq dq 
D{q). 

After computing the derivatives in the Euler-Lagrange equations and rearranging 
terms, the equations of motion can be expressed as 

M{q)q + C{q,q)+G{q) + D{q) 

The mass matrix M{q) is 

M{q) 

(1) 

î 2 ^mBrbicos{0 + 4 
A 

r2 

where 
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A = /5 + / ^ + mtrl + rriBrl + m^^^, 

The vector of Coriolis and centrifugal forces is 

Ciq,q) = 

and the vector of gravitational forces is 

G{q) 

0 

'mBg^sm{0 -\- (j)) 
mBg^sm{0 -\- (j)) 

To put these equations into standard nonlinear state space form, define the state 
vector to be X = [q^ q^]^ and define the input u = r. This together with Eq. 1 
yields 

M{q)-' C{q,q)-G{q)-D{q) 
A f{x,u). 

4" 
PI 

Ballbot 
X =f(x, U) 

i-^-e 

LQR 

^e 

* 1 o^ 
Fig. 4. Structure of stabilizing linear feedback controller. 

5 Stabilizing Feedback Controller 

The linear controller used to stabilize Ballbot has two loops: an inner loop that feeds 
ball velocity 6 back into a PI controller, and an outer loop linear quadratic regula­
tor (LQR) that uses full state feedback. This architecture is shown in Fig. 4. The 
proportional gain kp and integral gain ki in the PI controller are chosen and exper­
imentally tuned so that the actual ball velocity 6 tracks the desired ball velocity ujd-
The integral term adds an extra state to the system. Define the augmented state vector 
Xa = [x^ X5 ]^. The closed loop equations of motion of the inner loop can then 
be written as 
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/ [x,kp{u;d -0) ^ki{xs 

^d 

A 
fa{Xa,UJd)' 

The outer loop is designed by Unearizing the inner loop equations of motion and 
applying LQR. Note that the simplified Ballbot system is at equilibrium whenever 
sin(6> + (̂ ) = 0 and cj) = 6 = {). The objective is to design a controller that will 
balance Ballbot with the body straight up and hold it in a fixed position 6> = 0, which 
is equivalent to stabilizing the equilibrium point at Xa = 0. We begin by linearizing 
the equations of motion about this point: 

dXa =0,CL;d=0 dujd 
^d-

=0,CL;d=0 

Working out the partial derivatives yields 

A 
M: 

0 0 1 0 0 
0 0 0 1 0 

—rriBg^ —rriBg^ /i6) 0 0 
rriBg^ - h -niBgi -kp /i^ ki 

0 0 0 0 0 

B 
M: 

1 

where M* is simply the mass matrix M{q) evaluated at 6> = (̂  = 0. 
Now LQR can be used to find a linear state feedback controller that stabilizes the 

system about Xa = 0 and minimizes the cost function 

J {Xa{tfQXa{t)^RuJd{tf)dt. 

We choose the structure of Q to be 

7b ^ 7B 7B 0 0 0 
7b 7B 0 0 0 

0 0 7b^7BlB 0 
0 0 7^ 7^ 0 
0 0 0 0 75 

where 75, 75, 7 ,̂, 7^, and 75 can be loosely thought of as controlling the relative 
convergence rates of the ball angle, body angle, ball angular velocity, body angular 
velocity, and X5, respectively. In practice, these parameters were hand tuned based on 
simulation results. For a given choice of Q and R, Matlab's LQR command can be 
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Fig. 5. Moving between two locations in a straight line: (a) ball position in meters, (6) body 
angle in degrees. 

used to compute the associated gain matrix K, which defines the stabilizing feedback 
control law ijJd = —Kxa-

When implementing the controller on the actual robot, we were forced to deviate 
slightly from the controller presented above. We found that there is a practical limit 
on the magnitude of the gain k^ that multiplies (̂ . Exceeding this limit induces an 
oscillation not present in the simplified Ballbot model. We hypothesize that this os­
cillation is due to flexibility in the body frame and the mechanics of the soft urethane 
layer that couples the drive roller to the ball. The K matrix generated by the LQR 
algorithm gives a k^ that exceeds the practical limit, so we manually adjusted k^ to 
an allowable level. Unfortunately, with this limit on /c4, it is not possible to directly 
stabilize Ballbot, which explains the need for the inner PI loop. Also, the gain /c5 
turns out to be negligible, so it is set to zero in the experiments. 

6 Initial Results 

A number of tests were conducted to characterize physical system performance, and 
to make comparisons with simulation. During operation on a hard tiled floor, it was 
found that the machine was able to balance robustly, strongly resisting attempts to 
tip it over when a person applied torques to the body. However, it was not able to 
simultaneously balance and station keep. When operated on a carpeted surface, Ball­
bot was able to do both, presumably due to the extra damping afforded by the carpet 
material. 

In the test run shown in Fig. 5, Ballbot was commanded to move from a starting 
position in a straight line to a goal position. There is an initial retrograde ball motion 
causing the body to lean toward the goal position, followed by a reverse motion to 
stop at the goal. As mentioned in the previous section, differences between simu­
lation and experiment might derive from unknown frictional and spring forces. The 
divergence when station keeping is at most about 40 mm in position, and 0.5° in tilt. 
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Fig. 6. Plots of the ball path during (a) balancing and station keeping, and (b) attempting to 
move in a square. 

To see the typical motion jitter experienced during operation, one may plot the 
paths taken as the ball moves around on the carpeted floor. Figure 6(a) shows data 
taken from a 99 s run where Ballbot was released slightly out of balance, which 
was rapidly corrected by ball motion, followed by station keeping within a roughly 
circular region of about 40 mm diameter. Figure 6(b) shows Ballbot's attempt to track 
a square trajectory. 

7 Discussion 

Our results are preliminary and there is much that remains to refine Ballbot's model 
and control. Nevertheless, it would appear that Ballbot and its progeny might well 
represent the vanguard of a new type of wheeled mobile robot capable of agile, omni­
directional motion. Such robots, combined with the research community's ongoing 
work in perception, navigation, and cognition, could yield truly capable intelligent 
mobile robots for use in physical contact with people. If realizable and economi­
cally viable, they might well function as aids to elderly or disabled persons; provide 
guidance and assistance in public spaces; help with education and entertainment; 
perform domestic cleaning and housekeeping; or fetch and carry everyday objects. 
The more immediate goal of our research is simply to gain a deeper understanding 
of how such dynamic agility can be achieved in mobile machines interacting with 
people and operating in normal home and workplace environments. 

Acknowledgment. ThisworkwassupportedinpartbyNSFgrantIIS-0308067. 
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Summary. We present a steerable, electrostatic, untethered, MEMS micro-robot, 
with dimensions of 60 /j.m by 250 /j.m by 10 /j.m. This micro-robot is 1 to 2 orders 
of magnitude smaller in size than previous micro-robotic systems. The device 
consists of a curved, cantilevered steering arm, mounted on an untethered scratch 
drive actuator. These two components are fabricated monolithically from the same 
sheet of conductive polysilicon, and receive a common power and control signal 
through a capacitive coupling with an underlying electrical grid. All locations on the 
grid receive the same power and control signal, so that the devices can be operated 
without knowledge of their position on the substrate and without constraining rails 
or tethers. Control and power delivery waveforms are broadcast to the device through 
the capacitive power coupling, and are decoded by the electromechanical response of 
the device body. Individual control of the component actuators provides two distinct 
motion gaits (forward motion and turning), which together allow full coverage of a 
planar workspace (the robot is globally controllable). These MEMS micro-robots 
demonstrate turning error of less than 3.7°/mm during forward motion, turn with 
radii as small as 176 /am, and achieve speeds of over 200 /am/sec, with an average step 
size of 12 nm. They have been shown to operate open-loop for distances exceeding 35 
cm without failure, and can be controlled through teleoperation to navigate complex 
paths. 

1 Introduction 

This paper addresses the design, fabrication, and control of micro-robots tha t 
are small enough to locomote on the surface of an integrated circuit, and to 
interact with parts as small as individual MEMS components. While there 

Corresponding author (e-mail: brd@cs.dartmouth.edu) 

S. Thmn , R. Brooks, H. Durrant-Whyte (Eds.): Robotics Research, STAR 28, pp. 337-356, 2007. 

© Springer-Verlag Berlin Heidelberg 2007 



338 B.R. Donald et al. 

are many MEMS devices with sizes measured in tens of microns, the smahest 
micro-robotic systems yet produced have dimensions on the order of mihime-
ters or centimeters. A primary reason for this, is tha t existing micro-robot 
architectures employ a rigid chassis on which to mount power, locomotion, 
steering, communication, and control systems. While these active components 
often include thin-film MEMS actuators, the chassis is a macro-scale part such 
as, for example, a silicon die. For this reason, these micro-robots are often re­
ferred to as "walking chips" [1, 2, 3, 4, 5]. 

We build on our previous work [6, 7], which describes MEMS untethered 
scratch drive actuators tha t can move only along straight-line (linear) trajec­
tories, and demonstrate a new generation of micro-robots tha t are steerahle 
along arbitrary trajectories (i.e., globally controllable [81 in R 2 X S^). Our new 
devices integrate, in a single thin film device body, not only power delivery, 
locomotion, and communications, but now also steering and control systems. 
This allows us to build a micro-robot tha t is one to two orders of magnitude 
smaller in length than previous systems, and many thousands of times smaller 
in overall mass. The device is capable of two distinct motions: it can either 
translate forwards, or turn through an arc with a fixed minimum radius of 
approximately 175 jivn. Alternation of these two motion primitives allows for 
execution of turns with any arbitrary radius larger than the minimum. These 
two operations are sufficient to provide our device with global controllability. 

Figure 1 shows the structure of this device. It consists of an untethered 
scratch drive actuator [6, 7] (A) , with a cantilevered steering arm (B) tha t 
protrudes from one side. 

;^tOO^^|a;m-::;-^;;-;?: ;::::::::-;:::;";:" '̂:: 7^: 100 |.im 

Fig. 1. Optical (left) and electron (right) micrographs of an electrostatic micro-
robot. The device consists of an untethered scratch drive actuator (A) [6, 7], with a 
cantilevered steering arm (B) that protrudes from one side. The untethered scratch 
drive is used for propulsion, while the steering arm can be raised or lowered to turn. 
An array of insulated interdigitated electrodes (lighter-colored background) provides 
electrical power and control signals to the device. 

The untethered scratch drive is used for locomotion, while the steering arm 
is used to raise or lower a stylus into contact with the substrate. When this 
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stylus is in contact with the substrate, it provides enough friction to cause the 
device as a whole to turn. The device receives its electrical power and control 
signals through a grid of insulated interdigitated electrodes tha t cover the 
device's operating environment. Since the control signal and electrical power 
are both available to a device anywhere within this environment, the device 
can move freely, unconstrained by wires or rails tha t power most electrostatic 
MEMS devices. The operating environment used for the devices presented 
in this paper extends across 6.25 square millimeters of surface, and could be 
made even larger if desired. 

Previous approaches to micro-robot control rely on providing signals to 
all sub-systems continuously and simultaneously. In macro-scale robotic sys­
tems, instructions are generally only t ransmit ted once, and are then stored 
on-board the device until they are replaced with a new instruction. While 
macro-scale devices typically implement this da ta storage with electronics, a 
thin-film MEMS device can utilize the simpler alternative approach of storing 
state information in the electromechanical fiexure of the active components. 
The devices described in the present paper are controlled through electrome­
chanical state-based component addressing. We exploit the hysteresis of the 
components by applying sequences of voltages in a control waveform. First, 
the desired behavior (forward motion or turning) is specified by an electrical 
pulse, and is stored in the elastic fiexure of the device steering arm. Then, 
a continuous AC drive waveform is applied to actuate the scratch drive and 
produce motion. This is achieved by nesting the electromechanical hysteresis 
loops of the scratch drive within the hysteresis loop of the actuator steering 
arm. 

The micro-robots are composed of polycrystalline silicon using a multi­
user foundry MEMS process [9]. After receipt from the foundry, the die are 
coated with 830 of thermally evaporated chromium to create a well-controlled 
stress gradient in the cantilevered steering arms, determining the cantilevers' 
t ip defiection. Full details of the fabrication process are presented in Appendix 
A. 

The performance of the devices was tested under both open-loop and tele-
operated control. Micro-probes connect the electrodes to a function generator 
and amplifier. During teleoperation, a human operator switches between two 
different waveforms produced by the function generator in order to control 
the motion of the untethered micro-robotic device (see Figure 1). A camera 
records the device's motion through an optical microscope, allowing the oper­
ator to make the necessary adjustment to guide the device along the desired 
path. Section 6 discusses the reliability of the basic motion primitives, and 
shows some examples of more complex paths produced through teleopera­
tion. The device has the ability to push and manipulate other MEMS-scale 
components [6, 7]. 

The introduction of a micro-robotic device with size less than 250 /im could 
extend and enable the set of micro-robot applications tha t have been previ­
ously identified. These include security and surveillance [3]; exploration of 
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hazardous environments; and biomedical research [10]. Of particular interest 
are those applications which allow a controlled environment for micro-robot 
operation, in which cleanliness and surface smoothness can be carefully main­
tained, and in which an ambient power source can be conveniently applied. 
Such applications include the manipulation and assembly of hybrid microsys­
tems [10, 3]; micro-scale self-reconfiguring robotics [11]; and MEMS infose-
curity self-assembly [12], where autonomous locomotion of micro-devices is a 
primary requirement. We envision that the devices, designs, and control sys­
tems presented in this paper will enable these applications for micro-robots. 

2 Related Work 

Previous work has produced a number of micro-robots with dimensions on 
the order of millimeters or centimeters [1, 13, 3, 5]. Past systems have deliv­
ered power through vibration [14], photo-thermal transduction [1], inductive 
coupling [2], and electrically through gold bonding wire [3]. The capacitively-
coupled electrostatic power delivery mechanism that we described in [6, 7] is 
well-suited to the untethered devices presented in the current paper. While 
the linear untethered scratch drive actuators presented in [6, 7] provide some 
building blocks for our current power delivery system, the devices in [6, 7] 
could only be driven in straight lines. The present paper describes the design, 
fabrication, and control challenges in making untethered steerahle micro-robots 
that can execute complex paths and are globally controllable [8]. These capa­
bilities are essential for micro-robotic applications. 

In previous micro-robotic devices, steering systems have been implemented 
primarily through differential operation of matched pairs or arrays of actuators 
[1, 14]. In these devices, each actuator contributes a small propulsive force to 
the device as a whole, which then moves as the vector sum of the forces 
provided by the component actuators. The device described in the present 
paper uses only two actuators: one for propulsion, and a second one to raise 
and lower a stylus into frictional contact with the substrate. This simplifies 
the overall device, reduces its size, and allows for precisely-controlled turning 
motions, even in the presence of small surface abnormalities. 

3 Power Delivery 

In [6, 7], we presented a mechanism for delivering power to linear untethered 
MEMS actuators, via a capacitive coupling across a thin film of thermal silica. 
In this mechanism, a silicon substrate is covered with rows of insulated in-
terdigitated electrodes. When a conductive actuator, such as a scratch drive, 
rests on top of these electrodes (as shown on Figure 1), it forms the capacitive 
circuit with the underlying electrodes. In this way, a voltage is applied to the 
actuator, regardless of its position and orientation relative to the underlying 
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electrodes (i.e. no position-restricting wires or tethers are required.) Each time 
the voltage is cycled, the scratch drive moves forward by a small increment, 
known as the step size. The frequency at which this cycle occurs is known 
as the stepping frequency^ and the speed of the actuator is the product of its 
stepping frequency and its average step size. To deliver power to our steerable 
MEMS micro-robots, we have used substrates covered with zirconia-insulated 
gold electrodes. The edges of the electrodes are jagged (as shown in Figure 
1) to help maintain a consistent voltage on the actuator, regardless of the 
actuator 's pose. Further details regarding the power delivery mechanism are 
provided in Appendix B. 

4 Steering 

The micro-robot controls its direction by raising and lowering its steering arm. 
Figure 2 shows a close-up view of this actuator. It consists of a 133-/im-long 
curved cantilever beam, with a disc at its t ip. At the center of the disc, a 
0.75-/im-high dimple serves as the stylus for frictional contact. The dimple 
has a radius of 1.5 /im, and the surrounding disc has a radius of 18 /im. 

20 .urn ^0\i^c\ 

Fig. 2. Electron micrographs of the steering arm sub-system. The stylus used for 
frictional contact consists of a 0.75 fixn dimple, visible beneath the end of the arm. 
An 18 fivo. radius disc increases the electrostatic force on the arm, which is curled 
upwards to increase the gap between the stylus and the substrate. 

When the steering arm is in the raised position, the device as a whole 
behaves like a linear untethered scratch drive actuator [6, 7]. In this case, when 
an oscillating voltage is applied, the device will move forward in a straight 
line. To actuate the device forward, we chose a pulsed waveform with peak 
and minimum electrode-to-electrode voltages of 112 V and 39 V, respectively. 

Note tha t the voltage applied to the electrode array differs from the poten­
tial between the scratch-drive actuator and the substrate, due to the nature 
of the power delivery mechanism. The power delivery mechanism forms a ca-
pacitive circuit between the electrodes and the scratch drive actuator (see 
Figure 8, p. 15, Appendix B). This circuit sets the potential of the scratch-
drive actuator plate to approximately the midpoint between the potential of 
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the inter-digitated electrodes. Since the "even" electrodes (see Figure 8) are 
held at 0 V while the pulsed drive waveform is only applied to the "odd" 
electrodes (Figure 8), the resulting voltage affecting the scratch-drive actua­
tor is approximately half of the voltage applied to the electrode field. Thus, 
the potential affecting the scratch-drive actuator during the application of 
the power delivery waveform has an effective peak and minimum voltages of 
approximately 56 V and 19 V, respectively. 

The drive waveform is adequate to actuate the scratch drive actuator, but 
does not disturb the steering arm, regardless of whether the arm is in its 
raised or lowered position. For this reason, the same drive waveform can be 
applied either when the device is going straight or when it is turning. The 
behavior of the device is changed only by the position of its stylus. Further 
details regarding the design of the drive waveform are provided in Section 5, 
and also in [15, p. 17, Sec. C]. 

Before the micro-robot can turn, the stylus at the tip of its steering arm 
must be lowered into contact with the substrate. When the stylus is lowered, 
it creates friction at the contact point, causing the device to turn. Then, the 
drive waveform is applied. The frictional force acting on the stylus as the 
scratch drive actuates causes the device to turn. If the maximum available 
force of friction on the stylus exceeds the force applied on it by the scratch 
drive, then the stylus will not move, and the device will pivot around it. 

There are two considerations tha t must be taken into account in the design 
of the steering arm. First, the arm must be stiff enough tha t the peak voltage 
of the drive waveform (112 V) does not inadvertently pull it into contact with 
the substrate. Second, it must be fiexible enough that , once in contact, the 
minimum voltage of the drive waveform (39 V) does not allow it to release 
from the substrate. The voltage at which the beam will snap down into con­
tact with the electrodes is called the snap-down voltage. When the voltage is 
subsequently decreased, the t ip of the cantilever will remain in contact with 
the substrate until another instability is reached, and it snaps upward. This 
latter instability is known as the release voltage. 

The steering arms on the micro-robots presented in this paper have snap-
down and release voltages of approximately 60 V, and 15 V, respectively. ^ In 
this way, the stylus can be raised and lowered at will, independent of forward 
motion. This allows the power delivery waveform to be used both to control 
the state of the arm as well as to provide energy to propel the device forward. 
Further details of the design of the steering arm are provided in Appendix C. 

5 Control 

This section describes the instruction set of the MEMS micro-robots, and 
shows how to encode it in a control waveform to specify device behavior. The 

^ These values correspond to electrode-to-electrode voltages of 120 V and 30 V, 
respectively. 
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devices presented in this paper can, at any given time, be in one of the four 
distinct states shown in Figure 3. The stylus can be either up or down, and 
the scratch drive can be either flexed or relaxed. 

We can now define four voltages tha t comprise the instruction set of the 
micro-robot. We have: 

Vi = 0 V V2 = 39 V Vs 112 V V4 = 140 V 
Raises Steering Arm 

Relaxes Scratch Drive Relaxes Scratch Drive Flexes Scratch Drive 
Lowers Steering Arm 
Flexes Scratch Drive 

To be able to operate the scratch drive independently of the position of 
the stylus, we need the drive waveform to fit within the voltage range defined 
by the steering arm's snap-down and release voltages. Since V2 and V3 fah 
between the snap-down and release voltages of the steering arm, application 
of these two voltages will not change the state of the steering arm actuator. 

Wi th these four instructions, we can model the system as the finite 
s tate machine shown in Figure 3. Here, the set of discrete DC voltages, 
{^1, V2, V3, V4} comprises the transitions, and the zero-voltage state, 6̂ 0, is 
the start state. The pair of voltages, (1^25^3) comprises the drive waveform 
discussed in Section 4. The blue and red transitions in Figure 3 correspond 
to the two motion operations of the device tha t can occur when the drive 
waveform is applied. 
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Fig. 3. The state transition diagram of the micro-robot. Four voltages, Vi < V2 < 
V3 < V4, are used in constructing control waveforms. SDA = untethered scratch 
drive actuator. 

It is easy to see from this s tate transition diagram tha t all four system 
states can be reached, and to compute the voltage sequence required to achieve 
each one. This leads directly to the control waveforms shown in Figure 4. Both 
waveforms begin by selecting the system state associated with the desired 
motion, and then applying the drive waveform. After 250 steps, the waveform 
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polarity is reversed to minimize charge-trapping in the dielectric. The desired 
state is refreshed, and then the drive waveform is continued. 

The control system can be extended to include an arbitrary number of 
states. Further details regarding the extensibility of the control system can be 
found in [15, p. 19, Sec. E]. 

140' 
112' 

39' 

-39' 

-112' 
-140 • 

Forward Waveform 
Drive Waveform 

Drive Waveform 
(250 Pulses) 

140' 
112' 

39' 

0' 

-39' 

-112' 
-140' 

Turning Waveform 
Drive Waveform 

Turn Instruction 
(250 MS) 

0 125 
Time (ms) 

0 125 
Time (ms) 

(a) (b) 

Fig. 4. Control waveforms used for driving the micro-robots at a stepping frequency 
of 4 kHz. a: The forward waveform lowers the device voltage to zero before initiating 
the drive waveform, ensuring that the steering arm will be in the raised position. 
b : The turning waveform increases the device voltage to 140 V (or -140 V) before 
initiating the drive waveform, ensuring that the steering arm will be in the lowered 
position. The polarity of the control waveform is reversed every 250 pulses to limit 
the effects of parasitic charging. The state of the steering arm is refreshed each 
time this occurs. In the control waveform segments shown here, the instructions are 
refreshed at 0 and 125 ms, when the polarity of the control waveform is reversed. 

6 Performance 

We tested the performance of the micro-robots in a variety of ways. First, 
we examined the reliability of the two motion primitives (forward motion 
and turning) with ten test runs of each motion primitive for each of five test 
devices. Second, we looked at how the radius of curvature can be controlled 
by time-sequence multiplexing the motion primitives. Third, we demonstrated 
teleoperated control of the devices by piloting them through clockwise and 
counter-clockwise rectangular paths. Last, we demonstrated device endurance 
by continuous operation in turning mode until accumulated error forced the 
device off of the operating environment. 

This section quantifies results from 271 open-loop test runs of five de­
vices, and presents representative segments of additional paths traversed dur­
ing teleoperation. In all of these test runs, the devices were run under an 
optical microscope while recording their motions with a digital video camera. 
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Table 1. Turning rate of individual devices at 4 kHz stepping frequency. 

Signal 
Forward 
Turning 

Open-Loop Turning Rate (std. dev.) [degrees/mm] 
Device 1 Device 2 Device 3 Device 4 Device 5 
-14.6 (7.8) 9.7 (9.6) 7.8 (14.9) -21.7 (10.5) 0.4 (13.6) 
353 (4.9) 338 (4.6) 250 (9.7) 365 (6.5) 321 (8.1) 

Device headings and positions were later extracted by image analysis with 
precision of ±2° and ±1.6 /im respectively. The position of the device was 
defined at the center of the scratch drive plate, and its heading was defined 
by the orientation of the scratch drive bushing. 

To test the forward motion, each of five devices was operated with the 
waveform shown in Figure 4a for 10 10-second trials with a 4 kHz stepping 
frequency, during each of which the devices traveled an average of 566 /im. 
For consistency, all of these trials were run approximately parallel to the 
electrodes. The turning rate of an individual test run is defined by the slope 
of the best-fit line to the device heading over the course of the test run, plotted 
as a function of distance traveled. 

Figure 5a shows turning rates for all ten forward test runs of one device. 
Over all devices, the average turning rate was —3.7°/mm, with a s tandard de­
viation of 13.9°/mm. Average turning rates for individual devices are shown 
in Table 1, with s tandard deviations in parentheses. The errors shown accu­
mulated open-loop, in the absence of an error-correcting scheme, and can be 
corrected through closed-loop control. 

To test the turning motion, the devices were operated with the waveform 
shown in Figure 4b with a stepping frequency of 4 kHz for 10 trials of one 
full revolution each. Figure 5b shows the deviation from initial heading for 
all test runs of one of these devices. For all devices combined, the average 
turning rate was 325°/mm, which corresponds to a radius of curvature of 176 
/im. The s tandard deviation of the turning rate across all 4 kHz turning runs 
of all devices was 45.3°/mm. Standard deviations for individual devices are 
considerably lower, and appear in Table 1. 

The forward and turning behaviors can be combined to produce turning 
radii with intermediate values. To demonstrate this, we drove a device with 
a signal composed of turning waveforms interleaved with forward waveforms, 
at a stepping frequency of 8 kHz. We tested waveforms with ratios of 50% 
turning and 75% turning, and compared these to the results of the test runs 
with 100% turning described above. There were ten full-revolution test runs 
at each of these turning ratios. Figure 5.c shows sample paths from tests 
runs executed at 50%, 75%, and 100% turning ratio, along with a plot of 
curvature vs. turning ratio averaged across all trials. The devices have been 
experimentally shown to achieve speeds in excess of 200 / im/s , with an average 
step-size of 12 nm. (See Appendix D for more details) 

With a human operator observing the device behavior, and controlling the 
waveforms sent to the device, it is possible to direct the devices through tele-
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Fig. 5. Open-loop test runs of an electrostatic MEMS micro-robot, a: The change 
in device heading over the course of each of ten trials with the forward waveform 
at a stepping frequency of 4 kHz. The inset shows a representative path traversed 
by the device during one of the ten trials. The average turning rate for these trials 
was —14.6°/mm. b : Device heading as a function of distance for each of ten trials 
with the turning waveform at a stepping frequency of 4 kHz. The inset shows a 
representative path. The average turning rate was 353°/mm, corresponding to a 
radius of curvature of 162 /am. c: Representative paths traversed by a device with 
waveforms composed of different amounts of turning and forward control signals. In 
red: 50% turning. In blue: 75% turning. In black: 100% turning. 

operation. Figure 6 shows clockwise and counter-clockwise rectangular paths 
traversed by one of these devices under teleoperated control. Digital videos of 
our devices are available on-line here [16]. 

For additional tests regarding the reliability of the device see Appendix E. 

7 Conclusions 

This paper presented an electrostatic MEMS micro-robot tha t is 1 to 2 orders 
of magnitude smaller than previous micro-robotic systems. This device was 
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Fig. 6. Sample paths traversed by one of the micro-robots under teleoperated con­
trol. Left: Traversal of a counter-clockwise rectangular path by turning corners at 
minimum turning radius. Right: Clockwise paths were achieved by looping at the 
corners. 

shown to perform in a robust and repeatable manner, and could be controlled 
through teleoperation to traverse complex paths. 

The devices are powered through a capacitive coupling with an interdigi-
ta ted electrode array, so tha t the devices need not be restricted by the wires 
and rails tha t power most electrostatic MEMS devices. Careful design of the 
mechanical s tructure of the micro-robot body allows the power signal to dou­
ble as the control signal. The control information received from this signal is 
stored as electro-mechanical s tate information on-board the robot, so tha t the 
device can exhibit different behaviors in response to the same drive waveform, 
based on a previously-encoded state. 

The communication and control system utilized in these micro-robots ex­
ploits electromechanical hysteresis to store state information within the micro-
robot body, and is analogous to a four-state finite s tate machine. 

Useful extensions to the complexity of the control system could include the 
ability to turn in both directions, to move in "reverse", or to manipulate other 
objects in the environment. One particularly interesting extension would be 
the parallel operation of multiple micro-robots for cooperative tasks. 
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Appendix 

Appendix A describes in detai l the fabrication process used to manufac­
ture the micro-robots and the electrical grids. In appendix B we provide an 
extended description of the power delivery mechanism. In appendix C we 
provide an analysis of the design parameters used to define the steering arm, 
and the steering waveform. Appendix D contains da ta on device speed and 
step-size. In appendix E we summarize a reliability test of prolonged device 
operation. Please note tha t the appendix contains an additional reference sec­
tion. 

A Details of the Fabrication Process 

The first steps in fabricating the devices were performed through the Poly-
MUMPs process [9]. This multi-user surface micromachining process consists 
of three layers of polycrystalline silicon, separated by two sacrificial layers 
of phosphosilicate glass. The untethered scratch drive actuators and steering 
arms are both formed from the top layer of polysilicon, as shown in Figure 7. 

The bushing is formed by combining the conformalities tha t result from the 
PolyMUMPs Dimple Etch and Via Etch, and is approximately 1.5 /im high. 
Similarly, the stylus at the end of the steering arm is formed from the Dimple 
Etch conformality, and is 0.75 /im high. After the PolyMUMPs process is 
complete, we coat the devices with a pat terned layer of evaporated chromium. 
The tensile residual stress in the chromium curves the steering arms upwards. 
This curvature allows the arm to remain suspended above the substrate, even 
when sufficient voltage is applied to actuate the scratch drive. 

The electrical grids used as operating environments for the devices were 
fabricated entirely in-house, and consist of an array of metal interdigitated 
electrodes on a silicon substrate. The electrodes are insulated from the sub­
strate by a 3 /imm- thick layer of thermal silica, and are coated with 0.5 /imm 
of zirconium dioxide, followed by a 300 passivation layer of evaporated silica. 
This dielectric layer allows power delivery to devices placed on top of the elec­
trical grids by capacitive coupling with the underlying electrodes. Fabrication 
of these electrical grids is illustrated in Figure 7. Once fabrication is com­
plete, the devices are transferred onto the grids with a vacuum microprobe. 
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Fig. 7. Fabrication of electrostatic micro-robots. Left: Layout and cross-section 
of an electrostatic micro-robot just prior to sacrificial release. The device utilizes 
the first and second released polysilicon layers from the PolyMUMPs process [9], 
plus an additional layer added during post-processing. This layer consists of 830 
of chromium with a tensile residual stress of approximately 550 MPa, and is litho­
graphically patterned with the "Stress" mask (gray, above). After release, the stress 
in this layer curls the steering arm out of plane. Right: Layout and cross-section 
of the electrical grids used as the micro-robots' operating environments. The first 
mask layer defines the metal electrodes, while the second layer defines contact holes 
through the electrode insulation. The metal electrodes are sandwiched between a 
layer of thermal silica, and a deposited layer of zirconium dioxide. 

Processing details regarding the fabrication of the devices and the electrical 
grids are presented in Appendices A. l and A.2. 

A . l A c t u a t o r Fabricat ion 

Figure 7 shows the layout of one of the devices. T h e scra tch drive p la te 
is L5 /im thick, and is defined by a 120 /im by 60 /im rectangle on the third 
polysilicon layer (Poly2) of the PolyMUMPs process. The scratch drive bush­
ing is L5 /im high, and is composed of a Dimple Etch conformality beneath a 
sheet of Polyl tha t is anchored to the Poly2 layer with the Polyl-Poly2-Via 
etch. The steering arm is 133 /im long, 8 /im wide, and has an 18-/im-radius 
disc at its tip. A stylus is defined in the center of this disc by a 1.5-/im ra­
dius dimple tha t protrudes 0.75 /im beneath the bot tom surface. The base 
of the steering arm is curled so tha t the tip of the arm is approximately 7.5 
/im higher than the scratch drive plate. Since the PolyMUMPs process does 
not include a layer with enough stress to create this curvature, a layer of 
tensile chromium is deposited and pat terned in the following post-processing 
sequence. 

The devices are received from the foundry on 1-cm^ silicon die. After the 
protective coating of photoresist is removed, the die are soaked in buffered 
hydrofluoric acid to under-etch the top polysilicon layer. This produces a re­
entrant surface proflle which enables lift-off of subsequent layers. 
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After rinsing and drying, the die are coated with 830 of chromium by 
thermal evaporation. As deposited, the chrome has an intrinsic tensile resid­
ual stress of approximately 550 MPa, which will produce the necessary cur­
vature in the steering arms upon sacrificial release. The chrome is lithograph­
ically pat terned with the "Stress" layer, shown in Figure 7, and etched in a 
perchloric-acid-based chrome etchant to transfer the pat tern. 

Once the chrome pat tern has been defined, the sacrificial release etch is 
performed by soaking in 49% hydrofiuoric acid. In addition to releasing the 
polysilicon structures, this undercuts the excess chrome and detaches it from 
the substrate. After rinsing in DI water, the die are dehydrated by soaking 
in isopropyl alcohol, and are then transferred to an ozone-friendly fiuorocar-
bon solvent (based on 2,3-dihydrodecafiuoropentane and isopropanol). Slow 
removal from this solvent ensures very little spotting or unnecessary stiction. 

The devices are initially at tached to substrate anchors by notched sac­
rificial beams. These beams are broken with a tungsten microprobe tip to 
release the devices, as described in [6, p. 951], prior to transferring them to 
the power-delivery substrates with a vacuum microprobe. 

A . 2 S u b s t r a t e Fabricat ion 

Figure 7 shows the layout of one of t h e electr ical gr ids used as opera t ­
ing environments for the micro-robots. These grids consist of inter digitated 
metal electrodes microfabricated on oxidized silicon substrates. An insulating 
coating of zirconium dioxide provides a high-impedance dielectric coupling 
between the electrodes and the devices. Fabrication of these electrical grids 
was accomplished with the following process sequence. 

The sequence begins with a set of 3-inch (100) n-type (phosphorus-doped) 
silicon wafers. The wafers are cleaned, and oxidized for 20 hours at 1100° C 
in oxygen, followed by an additional 14 hours of wet oxidation using water 
vapor in a nitrogen carrier gas. 

After cooling, the wafers are pat terned with the "Metal" pat tern shown in 
Figure 7, using a bi-layer photodefinable resist suitable for liftoff. Metallization 
is then conducted by resistive boat evaporation at 10~^ Torr. Three metal 
layers are evaporated onto the pat terned substrates. The middle layer consists 
of 500 of gold, and serves as the conductive bulk of the electrodes. Above 
and below this are two layers of chromium, each 50 thick, which serve as 
adhesion layers between the gold, the oxidized substrate, and the zirconium 
dioxide which will be subsequently deposited to insulate the electrodes. 

After metallization, each wafer is cleaved into four 1-inch die. These die are 
sonicated in photoresist stripper at 45° C, to lift off the resists and unwanted 
metal, leaving only the interdigitated electrodes and their associated contact 
pads. To insulate the electrodes, the die are then coated with 5100 of zirco­
nium dioxide, deposited by electron beam evaporation from zirconia powder 
according to the protocol described in [17]. The process used for zirconia de­
position is critical to the quality of the dielectric, and to device performance. 
Since Zr02 dissociates during evaporation, it is important to facilitate re-
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combination at the substrate surface. To do so, the substrates are heated to 
100° C, and oxygen gas is introduced into the chamber to a pressure of 10~^ 
Torr. Throughout the deposition process, the chamber pressure is maintained 
to within ±10% by manuahy adjusting the oxygen flow. When the zirconia 
deposition is complete, the chamber is pumped back down to 2 x 10~^ Torr, 
and a 300 silica layer is then evaporated. We have found empirically tha t 
this over-layer of silica improves the walking performance of scratch drive 
actuators on zirconia-insulated substrates. 

Once the die have been insulated, they are pat terned with the "Contact" 
mask shown in Figure 7, and etched in a 5:1 buffered hydrofluoric acid solution 
for 5 minutes. This etches through the zirconia insulation, stopping on the 
contact pads. 

After rinsing and drying, the substrates are ready for use. The devices 
are transferred to the electrode arrays by vacuum microprobe, and tungsten-
tipped micro-probes are used to provide power to the interdigitated electrodes. 
In the next section, we discuss the delivery of electrical power from these 
insulated arrays of electrodes to untethered MEMS devices. 

B Detailed Explanation of the Power Delivery 
Mechanism 

When a conductive actuator , such as a scratch drive, rests on top of these 
electrodes, it forms the capacitive circuit shown in Figure 8. In this way, a 
voltage is applied to the actuator, regardless of its position and orientation rel­
ative to the underlying electrodes (i.e. no position-restricting wires or tethers 
are required.) 

Once a voltage has been applied to a scratch drive actuator as described 
above, the actuator will deform as shown in Figure 8 [18,20]. Hayakawa et. al 
[21] have calculated the length of the curved region of the scratch drive, ^, as 
follows: 

where n is the dielectric constant of the insulator, eo the permitt ivity of free 
space, h the bushing height, V the applied voltage, E the Young's modulus of 
the plate material, d the insulator thickness, and t the thickness of the actuator 
plate. When the voltage is decreased, the flexure in the scratch drive plate 
relaxes, as shown in Figure 8. Each time the voltage is cycled, the scratch drive 
moves forward by a small increment, known as the step size. The frequency 
at which this cycle occurs is known as the stepping frequency^ and the speed 
of the actuator is the product of its stepping frequency and its average step 
size. 

Equation (1) shows tha t there is a trade-off between voltage, insulator 
thickness, and the relative permitt ivity of the dielectric. Hence, to improve 
device performance at a given voltage, we would like an insulator with a high 
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Fig. 8. Left: A schematic of the operation of a tethered scratch drive actuator 
[18,19]. The length of the curved region of the plate, £, and the step size. Ax, are 
determined by the voltage. Right: A schematic of a capacitively-coupled power 
delivery mechanism for untethered actuators [6]. The potential induced on the ac­
tuator, Vpiate, is approximately the mean of Vi and V2. 

value of nEt>r^ where ^ 5 ^ is the dielectric strength. For this reason, the high-
K. dielectrics under investigation by the semiconductor industry [22] should 
also be good materials to use as the insulating layer in contact-mode electro­
static MEMS. One such material tha t performs well in this regard is e-beam-
evaporated zirconium dioxide. 

To deliver power to our MEMS micro-robots, we have used insulated sub­
strates covered with zirconia-insulated gold electrodes. The edges of the elec­
trodes are jagged (as shown in Figures 1 and 7) to help maintain a consistent 
voltage on the actuator, regardless of the actuator 's pose. The electrodes are 
thin enough tha t the capacitance between adjacent electrodes is negligible, 
so the largest source of parasitic capacitance is between the electrodes and 
the underlying silicon substrate. This was sufficiently small for the purposes 
of the experiments conducted in this paper, and could easily be made much 
smaller by replacing the silicon substrate with an insulating material such 
as quartz, or with silicon-on-insulator (SOI) techniques. Wi th these parasitic 
capacitances removed, the bulk of the delivered power can be focused only on 
those areas where a device is present. 

C Design of the Steering Arm Actuator 
The snap-down voltage of a cantilever beam is one of the earliest problems 
studied in the field of MEMS. First presented by Nathanson et. al. in 1967 
[23], the electromechanical analysis of cantilever snap-down has since been 
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refined in numerous papers [24-27]. For simpficity, we will use Nathanson's 
model here. 

Nathanson used a lumped energy minimization model to calculate the 
snap-down voltage of a cantilever beam as follows: 

where K is the spring constant of the cantilever beam, go is the zero-volt age 
gap between the cantilever and the electrode, and A is the total area of the 
cantilever. A similar analysis can be used to calculate the release voltage: 

where gi is the contact gap between the cantilever and the electrode, as de­
fined, for example, by a dimple. 

These values are, of course, somewhat approximate, but they serve to 
illustrate the following interesting limitation. As mentioned earlier, we would 
like the micro-robot's steering arm to have a high snap-down voltage, and a 
low release voltage. In other words, we would like to be able to increase the 
ratio of the snap-down voltage to the release voltage. We'll call this the snap 
ratio. From the above two equations, the snap ratio is as follows: 

VR ^y27gf{go-gi) 

We note that the snap ratio is independent of the beam's spring constant 
and area, but depends strongly on the gaps go and gi. 

Due to the largely planar nature of current microfabrication techniques, it 
can be difficult to parameterize z-axis geometries such as a cantilever's zero-
voltage gap, without introducing a new processing step (e.g. a new material 
layer or etch mask) for each desired parameter value. One way to be able 
to parameterize these z-axis geometries is to deform parts out-of-plane using 
stress gradients of bi-layer materials. Tsai et. al. presented a general technique 
for controlling part curvature, using a top layer of silicon nitride with tensile 
residual stress [28,29]. We have adapted this approach for use with a chromium 
stress layer as described in Appendix A.l. 

By curving the steering arm out-of-plane, we can increase the snap-down 
voltage well above the peak voltage of the scratch drive actuator's drive wave­
form, while keeping its release voltage well below the minimum of the drive 
waveform. 

D Speed and Step-Size Data 

Table 2 presents the speed of 5 devices using a stepping frequency of 2,4,8 
and 16 KHz. The maximum recorded device speed was 224 /im/s, using a 
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Table 2. Speed of individual devices. 

Signal 
Forward (4 kHz): 

Turning (2 kHz): 
Turning (4 kHz): 
Turning (8 kHz): 

Turning (16 kHz): 

Open-Loop Speed (std. dev.) [yt/m/sec] 
Device 1 Device 2 Device 3 Device 4 Device 5 
55 (4.4) 58 (2.7) 55 (5.9) 49 (4.0) 66 (2.6) 

25 (0.3) 28 (0.7) 24 (0.8) 16 (0.4) 29 (0.6) 
51 (0.8) 53 (0.5) 47 (1.2) 34 (1.0) 59 (0.7) 
80 (7.6) 93 (1.7) 97 (4.7) 70 (1.1) 105 (2.2) 
224 (2.9) 147 (1.7) 204 (7.4) 133 (1.3) 197 (6.0) 

stepping frequency of 16 KHz. The step-size can be obtained by dividing the 
measured speed by the frequency of the drive waveform. The step-sizes for the 
experiments displayed in Table 2 range from 8 nm to 16 nm, with an overall 
average step-size of 12 nm. 

E Reliability Testing of Device Operat ion 

For all exper iment descr ibed in Section 6 and below, t he h u m i d i t y was 
maintained at below 15% RH by a continuous stream of dry nitrogen. Drive 
waveforms were produced using an Agilent 33120A arbitrary waveform gener­
ator, and amplified with a Trek PZD700-1 high-voltage power amplifier with 
a gain of 200. 

To test the reliability of the devices during prolonged operation, we op­
erated one device until the point of failure. The device was piloted to the 
center of the operating environment, and the turning waveform was applied 
at a stepping frequency of 4 kHz. Over the course of the next seventy-five 
minutes, the device executed 215 full rotations, open-loop, without operator 
intervention, for a total distance traveled of over 35 centimeters. The device 
eventually stopped when accumulated position error forced it off of the 2.5-
mm-wide operating environment. When the device was pushed back onto the 
operating environment with a microprobe, it continued to operate correctly. 

Refs. 1-16 are in the main text on pages 12-13 
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Some Issues in Humanoid Robot Design 
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1 Introduction 

Even though the market size is still small at this moment, applied fields of robots 
are gradually spreading from the manufacturing industry to the others in recent 
years. One can now easily expect that applications of robots will expand into the 
first and the third industrial fields as one of the important components to support 
our society in the 21st century. There also raises strong anticipations in Japan that 
robots for the personal use will coexist with humans and provide supports such as 
the assistance for the housework, care of the aged and the physically handicapped, 
since Japan is the fastest aging society in the world. 
Consequently, humanoid robots and/or animaloid robots have been treated as 
subjects of robotics researches in Japan such as a research tool for human/animal 
science, an entertainment/mental-commit robot or an assistant/agent for humans in 
the human living environment. 
Over the last couple of years, some manufactures started to develop prototypes or 
even to sell mass production robots for the purposes mentioned above, such as the 
SONY'S pet robot AIBO and the small size humanoid robot QRIO, the TMSUK's 
tele-humanoid robot TMSUK04 and the TMSUK-SANYO's home utility robot 
ROBORIOR, the HONDA's humanoid robot ASIMO, the TOYOTA's partner 
humanoid robots, the NEC's information agent robot PaPeRo, etc. Most of those 
robots have some lifelikeness in their appearances and behaviors. Moreover, 
AIST, METI of Japan launched some national projects, such as Humanoid 
Research Project (HRP) in 1998 and the New Generation Robot Project in 2004 to 
develop humanoid robots and service robots, to accelerate the market growth of 
personal and service robots in the near future. 
On the other hand, Waseda University, where we belong to, has been one of the 
leading research sites on humanoid robot research since the late Prof. Ichiro Kato 
and his colleagues started the WABOT (WAseda roBOT) Project and produced 
the historically first humanoid robots WABOT-1 that could bipedal-walk in 1973 
and the musician robot WABOT-2 that could play the electric organ in 1984. One 
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of the most important aspects of our research philosophy is as follows: By 
constructing anthropomorphic/humanoid robots that function and behave like a 
human, we are attempting to develop a design method of a humanoid robot having 
human friendliness to coexist with humans naturally and symbiotically, as well as 
to scientifically build not only the physical model of a human but also the mental 
model of it from the engineering view point. 
Based upon the research philosophy mentioned above, we have been doing 
researches on humanoid robots, such as the Biped Walking Robots as WL(Waseda 
Leg) series and WABIAN(WAseda Bipedal humANoid) series. Mastication 
Robots as WJ(Waseda Jaw) series. Flute Player Robots as WF(Waseda Flutist) 
series. Emotion Expression Robots(Waseda Eye) series. Speech Production 
Robots as WT(Waseda Talker) series, etc. In this paper we introduce the 
mechanical design of the latest bipedal humanoid robot WABIAN-2 and the 
emotion expression humanoid robot WE-4RIII as shown in the Figure 1 and 2. 

2 Bipedal Humanoid Robot WABIAN-2 

In retrospect, many researchers have studied the control and mechanism of biped 
robots in recent years (Sakagami et al. 2002), (Nishiwaki et al. 2000), (Nishiwaki 

Fig. 1. Bipedal humanoid robot WABIAN-2 
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!ji,iwjrti*|^ 

Fig. 2. Emotion expression humanoid robot WE-4RII 

et al. 2002), (Loffler et al. 2003). These humanoid robots assimilated dynamic and 
stable walks. However, there are a few studies on human-like upper body. The 
Japanese National Institute of Advanced Industrial Science and Technology with 
cooperation of Kawada Industries, Inc., have developed HRP-2 and HRP-2P, 
which have 2-DOF trunk system and implement falling down motion in a positive 
way and rising from a lying position (Kaneko et al. 2002), (Fujiwara et al. 2003). 
This robot effectively bent its trunk in the experiments. The humanoid research 
group of Waseda University has also been studying biped humanoid robots since 
1966. Research on the WABIAN (WAseda Bipedal humANoid) series had set 
walking with 3-DOF trunk motion and walking with 3-axis ZMP (Zero Moment 
Point) compensation using the trunk (Lim H et al. 1999), (Lim H et al. 2002). 
In advance of this study, we already have developed a new biped walking robot 
named WABIAN-2/LL (WAseda Bipedal humANoid-2 Lower Limb). Moreover, 
we have developed an algorithm that enables the robot to stretch its knees in 
steady walking avoiding singularity by using waist motion, and carried out stretch 
walking experiment by using this robot (Ogura Y et al. 2004), (Ogura Y et al. 
2004). WABIAN-2/LL without upper limb originally developed as a lower limb 
system for a humanoid type robot WABIAN-2(WAseda Bipedal humANoid-2). In 
this chapter, we propose this new humanoid robot WABIAN-2 which has two 7-
DOF legs, a 2-DOF waist, a 2-DOF trunk, and two 7-DOF arms. In the 
development of the robot, new design principle for a robot which can be used as a 
walking assist machine for a handicapped or elderlies is set as the first goal of this 
study. 
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pelvis yawing 

percent of two steps 

Fig. 3. Human's pelvis and knee modon (Klopsteg et ak 1963) 

2.1 Design Concept 

2.1.1 Human Motion 

Human body mechanism basically comprises bones as rigid links, cartilage that 
lines the joints, muscles and tendons that actuate each part of the body. It is 
impossible to replace all of this muscular-skeletal system by current mechanical 
components. 
Therefore, we determined that the primary goal of the mechanical design is to 
develop a robot that can imitate equivalent human motion. 
Klopsteg et al. have proposed the result of the gate analysis of humans (Klopsteg 
et al. 1963). Figure 3 shows the pelvis and the knee motion plotted in the steady 
walking phase. The data is based on experimental results of 8 people walking 
motion who do not have physical or mental handicaps. In the result, human's 
pelvis motion in steady walking is observed in frontal plane (defined as roll 
motion in this study) and horizontal plane (defined as yaw motion). Waist motion 
in side plane (defined as pitch motion) is seldom observed. According to this a 
humanoid robot which can perform walks similar to human should be able to 
move its hips in the roll and yaw axes. These hip movements have to be 
independent in its trunk position. 
Moreover, a study of gait analysis and bio mechanics has reported about pelvis 
motion. In steady walking. Pubic symphysis, the two hipbones combined by a 
cartilage, moves like a crank joint. According to this motion, the two hipbones are 
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sacrum 

^hip bone 

Fig. 4. Pelvis of a human 

sliding on each other. Therefore, we considered that the hip joint is able to make 
two dimensional circular motions as shown in Fig.4. 
On the other hand, human can move its trunk independently from the hip motion. 
The Japanese Association of Rehabilitation Medicine (JARM) and the Japanese 
Orthopaedic Association (JOA) have established basic roles of representation and 
measurement method for range of motion (ROM) (Klopsteg et al. 1963). The 
general idea of ROM does not always means joints or articulation. These ROM 
measurements had carried out in a sitting position or with instruments to fix the 
pelvis in order to avoid the pelvis movement. 
It is essential for a human motion simulator to have the ability to move its trunk. 
For example, trunk motions are used for rising a sitting position, walking with a 
limp, walking with movements are useful, not only for keeping the whole body 
balance, in other words, compensate motion for ZMP on contact ground, but also 
for absorption mechanism of positional error in the case that the robot grasps or 
leans against something on the ground. When the robot leans against a rail or use a 
walker or a walking assist machine, the system composed to the robot and the 
instrument becomes a statically indeterminate structure. Such a system will need 
some redundant DOF and a robust control method. It is considered that a human 
usually use its trunk motions unconsciously in these cases. 

2.1.2 DOF Configuration 

Figure 5 presents the DOF configuration of the new humanoid robot having 41 
DOFs in Total. In this study, the initial pose of the robot is defined as standing 
straight, and rotational direction of each joint is defined by using inertial 
coordinate system fixed on the ground as shown in Fig. 5 (Ogura et al. 2004). 
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AABIAN-2 having 41 DOFs in total 

WABIAN-2 has 7-DOF legs and arms like a human. Although many researchers 
have studied 7-DOF arms, there are few studies on mechanisms and control 
method of 7-DOF legs. The ankles of almost all conventional biped humanoid 
robots consist of the pitch and the roll axes. If the ankle is composed of pitch, roll 
and yaw joint, the biped robot can select a stable position and reduce the impact 
and/or contact forces produced between the landing foot and the ground using a 
proper control algorithm. Moreover, this leg system has an advantage in 
generating diverse walking patterns by using the leg redundancy. Biped robots 
which have only 6-DOF legs allow a unique knee orientation when position and 
orientation of those foot and waist are set. On the other hand, a biped robot which 
has 7-DOF legs can rotate knee orientation independently from foot trajectory. 
Therefore, this leg system will be useful when avoiding obstacles; for example, 
climbing a ladder up and down, riding on something, working in a narrow place 
and so on. 
In 2-DOF waist system, the roll axis and yaw axis should be perpendicular to each 
other, and crossing the middle point between the two hip joints. This will result in 
minimizing the displacement of the trunk by waist motion and simplifying the 
kinematics calculation. In addition, the roll joint should be laid on the lower limb 
side and the yaw joint on the trunk side. This makes the yaw joint able to be used 
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as yaw rotation for both the hips and the trunk. This DOF configuration of waist 
and trunk gives substantial 3-DOF trunk motions. 

2.2 Mechanisms 

2.2.1 Overview 

The whole mechanical design was done by using a 3D CAD software, SolidWorks 
2003. The frameworks of WABIAN-2 are mainly made of duralumin in order to 
realize antithetical concepts; light weight, high stiffness and wide movable range. 
Each actuator system of joint consists of a DC motor, a Harmonic drive gear, a lug 
belt and two pulleys. This double speed reduction mechanism allows high 
reduction ratio, and also a joint axis to be set apart from a motor axis. Therefore, 
we could design a human-like joint mechanism without a big projection. In this 
paper, we mainly focus on the development of the waist, trunk and arms. 
Specifications of each joint such as maximum torque and rotating speed are 
designed based on results of software simulations. Those results were computed 
by using Newton-Euler's Method and estimated mass distribution. The several 
types of the simulations were carried out for the determination of the joint 
specification. The details are described as follow. 

2.2.2 Waist and Trunk 

Figure 6 and 7 show the 2-DOF waist and 2-DOF trunk system. 2-DOF waist 
combination of a roll and a yaw joint is attached on the middle between the hip 
joints. 2-DOF trunk having a pitch and a roll joint is assembled over the waist. 
In the design of the trunk some simulations have been conducted. The simulation 
tested the maximum torque for the trunk roll and pitch joint. During each walking 
step the robot moves its trunk in a way that can keep it balance. There are two type 

Fig. 6. Waist mechanism 
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Fig. 7. Trunk mechanism 

of simulation. First, static modeling which determined the maximum angle. 
Second, dynamic modeling which calculated the angle during the time used to 
complete one walking cycle. The maximum angle that can be determined by 
dynamic modeling is half the maximum movable angle determined by static 
modeling. Figure 8 shows a static model of the trunk in form of link and mass 
block. There are two models, one from side plane (Pitch axis) and other from front 
plane (Roll axis). 

2.2.3 Arms 

The arm of WABIAN-2 has 7-DOF. Figure 9 shows the 3D-CAD. The arms were 
designed in such a way that can support the robot balance while it is walking. It 
includes three actuators for fingers that can bend like human's hand fingers. 
Moreover, the arms were designed to hold the robot weight while it leans on a 
walking assist machine. 

Upper Body + Arms i 
r " ) 3 4 [ k g ] I 

Arm 
n4[kg] 

-xUpper Body 
id } j 26[kg] 

^> /^H \Arm 
i \ 4[kg] 

Fig. 8. Static Mechanics Model for Trunk Design 
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Fig. 9. Left Arm Mechanism 

Since the robot could lean on a walking assist machine, most of the robot weight 
will become on both the elbow. In order to determine the suitable angles of the 
arms some software simulation were conducted. Figure 10 shows software 
simulations for determination of specification of upper limb mechanisms. In this 
simulation, the robot leans on a walking assist machine using its forearms. The 
elbow angle is 15deg from a posture bend at right angle, when the arm supports a 
half weight of the robot (30kg, the two arms support a whole weight of the robot 
(60kg)). 

3 Emotion Expression Humanoid Robot WE-4RII 

Humans take a certain posture in their communication. For example, when they 
are happy or cheerful, they take a posture in which the activity is high such as 
moving arms upward or opening the arms. When they are angry, they square the 

Shoulder 

Half weight of WABIAN-2 A 

in 5̂  

Wrist ^ ' ^ ^ ! ; ^ ^ ^ 

Fig. 10. 
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shoulders. When they are tired or sadness, they shrug the shoulder or close the 
arms (Hama et al. 2001). Therefore, the emotion and mental state are closely 
related to the human posture and behavior. And, human obtain many information 
from partner's posture in their communication. In this situation, the human arms 
play an important role. 
We can control the usual 6-DOFs robot arms' tip position as accurately as 
human's arm. But, all their joint angles are fixed according to the inverse 
kinematics. By the way, humans have 7-DOFs arms consisting of 3-DOFs 
shoulder, 1-DOF elbow and 3-DOFs wrist. However, we considered that there is a 
center of rotation in the base of shoulder, and the shoulder joint itself moves up 
and down and moves back and forth so that humans square and shrug their 
shoulders. We considered that these motions played a very important role in the 
emotional expressions. Therefore, we tried to develop more emotional expressive 
humanoid robot arms than the usual 6-DOFs robot arms. 

3.1 9-DOFs Emotion Expression Humanoid Arm 

Figure 11 shows the 9-DOFs Emotion Expression Humanoid Arm developed in 
2003 (Miwa et al. 2002), (Miwa et al. 2003), (Miwa et al. 2004). It has 2-DOFs at 
the base shoulder, 3-DOFs at the shoulder, 1-DOF at the elbow and 3-DOFs at the 
wrist. The robot arm can move each joint as widely as human for the more human­
like emotional expression. Moreover, we designed the new robot to have the same 
dimension as the averaged male for the natural appearance using a 3D CAD 
software, SohdWorks 2003, like the WABIAN-2 design. 

,206 [mm] i 112 [mm] 

^Mfl m. Weight 
[ ^ 1 110.6 [kg] 

Base 
Shoulder 

/ N ^ ^ Hand 

Front 

Shoulder 

Elbow 

Fig. 11. 9-DOFs Arm Mechanism of WE-4RII and Its DOF Configuration 
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3.1.1 Base Shoulder 

The base shoulder consists of the yaw axis and roll axis. They cross at the right 
angle. The yaw axis is driven by a direct driven mechanism with DC motors and 
harmonic drive systems. On the other hand, the roll axis is driven by a direct 
driven mechanism with an AC motor and a harmonic drive system because the roll 
axis needs the higher torque than the other axis to lift up the robot arm. 

3.1.2 Shoulder 

The shoulder has the pitch, roll and yaw axes. All axes are driven by a direct 
driven mechanism with DC motors and harmonic drive systems. In the case that 
the three shoulder axes cross at the identified position at the right angle, the 
posture where a robot horizontally stretches its arm is the singular point. So, we 
can't solve the inverse kinematics geometrically. However, the posture which the 
arm is lengthened just beside can be taken in everyday action. Therefore, we 
leaned the pitch axis 30 [deg] from the horizontal plane as shown in Figure 12 in 
order to reduce to move the arm to the singular point problem in a common use 
range. However, this mechanism couldn't avoid singular point problem 
completely. So, we avoid moving the tip of the arm to the singular point by 
software. 

3.1.3 Elbow 

The elbow has 1-DOF. In order to reduce the sense of incongruity on appearance 
realizing the same movable range with human, we adopted a belt driven 
mechanism, in which an output axis of a motor connects with a harmonic drive 
system by a timing belt. 

DC Motor 

Harmonic Drive Systems 

T 

DC IVIotor 

I ^o,. 
Fig. 12. Shoulder Mechanism of WE-4RII 
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3.1.4 Wrist 

The wrist has the pitch, roll and yaw axes. They cross at the identified point at the 
right angle. The pitch axis is driven by a belt driven mechanism and the yaw and 
roll axes are driven by direct driven mechanism with DC motors paired with 
planetary gears. 

3.1.5 Hand 

The hands called RCH-1 (RoboCasa Hand No. 1) were designed in an 
international collaboration at RoboCasa which was established in 2003 between 
Waseda University in Japan and Scuola Superiore Sant' Anna in Italy (Zecca et al. 
2004). RCH-1 is an under actuated hand having 6 DOFs of Motions while having 
16 degrees of kinematical degrees. 

3.2 Integration to Humanoid Robot WE-4RII 

We developed the whole Emotion Expression Humanoid Robot WE-4RII shown 
in Figure 2 by integrating the 9-DOFs Emotion Expression Humanoid Arms and 
the 6-DOFs Humanhke Hands RCH-1 into the Human-like Head Robot WE-4. 
WE-4RII is 0.97 [m] tall and weigh 59.3 [kg]. And, it has 59-DOFs in total shown 
in Table 1. By adding the arms and the hands, WE-4Rn could express its emotion 

95[mm] 

Fig. 13. RCH-1 Hand 
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with not only the facial expression but also the upper-half body including the 
waist, arms, hands and neck. Moreover, the motion velocity is as important as the 
posture in emotional expression. Therefore, we controlled both the posture and the 
motion velocity for the effective emotional expression. Figure 14 shows the 
emotional expression exhibited by WE-4RII. 

i l l 

rW'vm ̂ ^ 

(a) Neutral (b) Disgust 

(c) Fear (d) Sadness 

:•;;••••= 3 ^ " ' : ; i vii-
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(f) Surprise (g) Anger 

Fig. 14. Presented seven basic emotions by WE-4RII 
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Table 1. DOFs of WE-4RII 

Part 
Neck 
Eyes 

Eyelids 
Eyebrows 

Lips 
Jaw 

Lungs 
Waist 
Arms 
Hands 
Total 

DOF 
4 
3 
6 
8 
4 
1 
1 
2 
18 
12 
59 

Weight: 59.3 [kg] 

4 Conclusions and Future Work 

This paper describes how we designed the two humanoid robots WABIAN-2 and 
WE-4RIL WABIAN-2 has 7-DOF legs, a 2-DOF waist, a 2-DOF trunk, and 7-
DOF arms. In the development of the robot, new design principle for a robot 
which can use walking assist machine is proposed. In the near future, we shall 
propose a hardware simulator system capable of being applied to the evaluation of 
welfare machines or robots. In order to demonstrate the validity of the proposal, 
we are presently preparing an experiment in which a biped humanoid robot uses a 
walking assist machine. The measurements of the current or force/torque sensors 
will present a quantitative clarification of the manner in which the machine assists 
humanoid walking. We also designed the 9-DOFs Emotion Expression Humanoid 
Arms as well as the 6-DOFs RCH-ls, and integrated them into the Emotion 
Expression Humanoid Robot WE-4R. We also have developed an emotion 
expression control method for WE-4Rn and that was presented in IROS 2004. In 
the future, we shall increase the emotional expression patterns and robot 
behaviors. And, we also shall introduce the behavior model which autonomously 
determines and outputs the most suitable behavior or emotional patterns according 
to the situation which is one of the essential functionalities of an intelligent robot 
to interact with humans. 
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Abstract. The Berkeley Lower Extremity Exoskeleton (BLEEX) is a load-
carrying and energetically autonomous human exoskeleton that, in this first gen­
eration prototype, carries up to a 34 kg (75 lb) pay load for the pilot and allows the 
pilot to walk at up to 1.3 m/s (2.9 mph). This article focuses on the human-in-the-
loop control scheme and the novel ring-based networked control architecture (Ex-
oNET) that together enable BLEEX to support payload while safely moving in 
concert with the human pilot. The BLEEX sensitivity amplification control algo­
rithm proposed here increases the closed loop system sensitivity to its wearer's 
forces and torques without any measurement from the wearer (such as force, posi­
tion, or electromyogram signal). The tradeoffs between not having sensors to 
measure human variables, the need for dynamic model accuracy, and robustness to 
parameter uncertainty are described. ExoNET provides the physical network on 
which the BLEEX control algorithm runs. The ExoNET control network guaran­
tees strict determinism, optimized data transfer for small data sizes, and flexibility 
in configuration. Its features and application on BLEEX are described. 

1 Introduction 

The goal of the exoskeleton project at U.C. Berkeley is to develop funda­
mental technologies associated with the design and control of energetically 
autonomous lower extremity exoskeletons that augment human strength 
and endurance during locomotion. The first generation lower extremity 
exoskeleton (commonly referred to as BLEEX) is comprised of two pow­
ered anthropomorphic legs, a power unit, and a backpack-like frame on 
which a variety of heavy loads can be mounted. This system provides its 
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pilot (i.e. the wearer) the abiHty to carry significant loads on his/her back 
with minimal effort over any type of terrain. BLEEX allows the pilot to 
comfortably squat, bend, swing from side to side, twist, and walk on as­
cending and descending slopes, while also offering the ability to step over 
and under obstructions while carrying equipment and supplies. Because 
the pilot can carry significant loads for extended periods of time without 
reducing his/her agility, physical effectiveness increases significantly with 
the aid of this class of lower extremity exoskeletons. 

BLEEX has numerous potential applications; it can provide soldiers, 
disaster relief workers, wildfire fighters, and other emergency personnel 
the ability to carry heavy loads such as food, rescue equipment, first-aid 
supplies, communications gear, and weaponry, without the strain typically 
associated with demanding labor. Unlike unrealistic fantasy-type concepts 
fueled by movie-makers and science-fiction writers, the lower extremity 
exoskeleton conceived at Berkeley is a practical, intelligent, load-carrying 
robotic device. BLEEX was first unveiled in 2004, at U.C. Berkeley's 
Human Engineering and Robotics Laboratory (Fig. 1). In this initial model, 
BLEEX offered a carrying capacity of 34 kg (75 lbs), with weight in ex­
cess of that allowance being supported by the pilot. 

The effectiveness of the lower extremity exoskeleton is a direct result of 
the control system's ability to leverage the human intellect to provide bal­
ance, navigation, and path-planning while ensuring that the exoskeleton 
actuators provide most of the strength necessary for supporting payload 
and walking. In operation, the exoskeleton becomes transparent to the pilot 
and there is no need to train or learn any type of interface to use the robot. 
The control algorithm ensures that the exoskeleton always moves in con­
cert with the pilot with minimal interaction force between the two and was 
first presented in [1]. 

The control scheme needs no direct measurements from the pilot or the 
human-machine interface (e.g. no force sensors between the two); instead, 
the controller estimates, based on measurements from the exoskeleton 
structure only, how to move so that the pilot feels very little force. This 
control scheme is an effective method of generating locomotion when the 
contact location between the pilot and the exoskeleton is unknown and un­
predictable (i.e. the exoskeleton and the pilot are in contact in variety of 
places). This control method differs from compliance control methods em-
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Fig. 1. Berkeley Lower Extremity Exoskeleton (BLEEX) first generation proto­
type and pilot. 1: Hydraulic power supply and payload occupy the upper portion of 
the backpack; 2: Rigid BLEEX spine connected to the flexible pilot vest; 3: Cen­
tral control computer occupies the lower portion of the backpack; 4: Some of the 
hydraulic actuators (ankle, knee and hip); 5: Two of the control network's Remote 
I/O Modules (RIOM); 6: Rigid connection of the BLEEX feet to the pilot's boots. 
More photographs can be found at http://bleex.me.berkeley.edu 

ployed for upper extremity exoskeletons [2], and haptic systems [3,4] be­
cause it requires no force sensor between the wearer and the exoskeleton. 

The basic principle for the control of BLEEX rests on the notion that the 
exoskeleton needs to shadow the wearer's voluntary and involuntary 
movements quickly, and without delay. This requires a high level of sensi­
tivity in response to all forces and torques on the exoskeleton, particularly 
the forces imposed by the pilot. Addressing this need involves a direct con­
flict with control science's goal of minimizing system sensitivity in the de­
sign of a closed loop feedback system. If fltted with a low sensitivity, the 
exoskeleton would not move in concert with its wearer. We realize, how­
ever, that maximizing system sensitivity to external forces and torques 
leads to a loss of robustness in the system. 

Taking into account this new approach, our goal was to develop a con­
trol system for BLEEX with high sensitivity. We were faced with two real­
istic concerns; the first was that an exoskeleton with high sensitivity to ex-
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ternal forces and torques would respond to other external forces not initi­
ated by its pilot. The key to stabilizing the exoskeleton and preventing it 
from falling in response to external forces depends on the pilot's ability to 
move quickly (e.g. step back or sideways) to create a stable situation for 
himself and the exoskeleton. For this, a very wide control bandwidth is 
needed so the exoskeleton can respond to both pilot's voluntary and invol­
untary movements (i.e. reflexes). 

The second concern is that systems with high sensitivity to external 
forces and torques are not robust to variations and therefore the precision 
of the system performance will be proportional to the precision of the exo­
skeleton dynamic model. Although this is a serious drawback, we have ac­
cepted it as unavoidable. Nevertheless, various experimental systems in 
our laboratory have proved the overall effectiveness of the control method 
in shadowing the pilot's movement. 

Realization of this control scheme requires a high-performance physical 
control architecture. This paper presents the ring-based protocol and dis­
tributed networked control hardware called the ExoNet. Traditional cen­
tralized control architectures where a supervisory controller directly inter­
faces in a point-to-point fashion with all sensors and actuators in the 
system have been successfully implemented in the past. They are generally 
feasible when a controller interfaces with small number of sensors and ac­
tuators and requires short wiring to them. Larger sophisticated multi-
degree-of-freedom systems frequently require the control network to be 
compact, easily reconfigurable, expandable, and maintainable. Hence, we 
utilized a networked control system (NCS) as an alternative to the conven­
tional centralized control system because of its advantages in flexibility, 
volume of wiring and capacity of distribution [5]. 

2 Previous Work 

In our research work at U.C. Berkeley, we have divided the technology as­
sociated with human power augmentation into lower extremity exoskele-
tons and upper extremity exoskeletons. The reason for this was two-fold; 
firstly, we could envision a great many applications for either a stand­
alone lower or upper extremity exoskeleton in the immediate future. Sec­
ondly, and more importantly for the separation, is that the exoskeletons are 
in their early stages, and further research still needs to be conducted to en­
sure that the upper extremity exoskeleton and lower extremity exoskeleton 
can function well independently before we can venture an attempt to inte-
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grate them. See [6,7] for research work on upper extremity exoskeletons at 
Berkeley. 

The concept of a powered human-assistive exoskeleton has been ex­
plored in various reach projects since the 1950's, though recent advances 
in controls and computation have generated renewed interest (see [8-11]). 
A recent notable project is the "RoboKnee," which is a powered knee 
brace that functions in parallel to the wearer's knee but does not transfer 
loads to the ground [12]. This device transfers the weight of the backpack 
pay load onto the human skeleton (including shanks, ankles, and feet). 
"HAL", a walking aid system for individuals with gait disorders, is another 
current exoskeleton-like device in that it adds to the force generated by the 
human muscles but relies on the human skeleton to transfer loads [13]. 
BLEEX draws on this history of exoskeleton development but is unique in 
that it mechanically functions as a true load bearing exoskeleton, is ener­
getically autonomous, and utilizes a unique control system that does not 
require any direct measurements on the human. 

Networked control systems (NCSs), such as the one developed for 
BLEEX, have broad applications beyond just exoskeleton control and have 
been adopted in fields related to industrial automation, building automa­
tion, office and home automation, intelligent vehicles, aircrafts, and space­
crafts [14-18]. Several network types had been developed based upon the 
applications, such as a process field bus (PROFIBUS) [19], manufacturing 
automation protocol (MAP) [20], and fiber distributed data interface 
(FDDI) [21]. EtherNet, ControlNet, and DeviceNet are some other com­
mon NCSs that are compared as control networks in different situations 
and schemes in [5]. 

3 Sensitivity Amplification Controller 

3.1 A Simple One Degree-of-Freedom (DOF) Example 

The control of the exoskeleton is explained here through the 1 DOF exam­
ple shown in Fig. 2. This figure schematically depicts a human leg at­
tached and interacting with a 1 DOF exoskeleton leg in a swing configura­
tion (no interaction with the ground). For simplicity, the exoskeleton leg is 
shown as a rigid link pivoting about a joint and powered by a single actua­
tor. The exoskeleton leg in this example has an actuator that produces a 
torque, r, about pivot point A. 
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Fig. 2. One DOF conceptual model of an exoskeleton leg interacting with the pilot's leg. 
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Fig. 3. The exoskeleton's angular velocity shown as a function of the input to the actua­
tors, r, and the torques imposed by the pilot onto the exoskeleton, d. 

Although the pilot is attached securely to the exoskeleton at the foot, 
other parts of the pilot leg, such as the shanks and thighs, can contact the 
exoskeleton and impose forces and torques on the exoskeleton leg. The lo­
cation of the contacts and the direction of the contact forces (and some­
times contact torques) vary and are therefore considered unknown values 
in this analysis. In fact, one of the primary objectives in designing BLEEX 
was to ensure a pilot's unrestricted interaction with BLEEX. The equiva­
lent torque on the exoskeleton leg, resulting from the pilot's applied forces 
and torques, is represented by d. Fig. 3 presents the system dynamics in 
block diagram form. 

In the case where multiple actuators produce controlled torques on the 
system, r is the vector of torques imposed on the exoskeleton by the actua­
tors. G is the transfer function from the actuator input, r, to the exoskele­
ton angular velocity, v (actuator dynamics are included in G). The form of 
G and the type of internal feedback for the actuator is immaterial for the 
discussion here. The Laplace operator has been omitted in all equations for 
the sake of compactness. 

The sensitivity transfer function Ŝ', represents how the equivalent hu­
man torque affects the exoskeleton angular velocity. S maps the equiva­
lent pilot torque, d, onto the exoskeleton velocity, v. If the actuator already 
has some sort of primary stabilizing controller, the magnitude of S will be 
small and the exoskeleton will only have a small response to the imposed 
forces and torques from the pilot or any other source. For example, a high 
gain velocity controller in the actuator results in small S, and conse­
quently a small exoskeleton response to forces and torques. Also, non-
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backdrivable actuators (e.g. large transmission ratios or servo-valves with 
overlapping spools) result in a small S which leads to a correspondingly 
small response to pilot forces and torques. 

The resulting torque from pilot on the exoskeleton, d, is not an exoge­
nous input; it is a function of the pilot dynamics and variables such as po­
sition and velocity of the pilot and the exoskeleton legs. These dynamics 
change from person to person, and within a person as a function of time 
and posture. These dynamics will be added to the analysis in later para­
graphs, but they are unrelated to the purpose of current discussion. 

Our goal is to develop an exoskeleton with a large sensitivity to forces 
and torques from the operator using measurements only from the exoskele­
ton (i.e. no sensors on the pilot or the exoskeleton interface with the pilot). 

S ^ ^ 

Fig. 4. Negative feedback control loop added to block diagram of Fig. 2 where C is the 
controller and it operates only on exoskeleton variables. 

Creating a negative feedback loop from the exoskeleton variables only, 
as shown in Fig. 4, the closed-loop sensitivity transfer function is pre­
sented inEq. (1). 

V S (1) 
SNEW = ^ = Y^GC 

Observation of Eq. (1) reveals that Sj^^w < *̂ ? ^nd therefore any nega­
tive feedback from the exoskeleton leads to an even smaller sensitivity 
transfer function. With respect to Eq. (1), our goal is to design a controller 
for a given 6' and G such that the closed loop response from d to v (the 
new sensitivity function as given by Eq. (1)) is greater than the open loop 
sensitivity transfer function (i.e. S) within some bounded frequency range. 
This design specification is given by inequality (2) 

|^^^,^|>|^| ycueiO^iUo) (2) 

or alternatively 

\1^GC\<1 \fiue(0,iuo) (3) 

where UQ is the exoskeleton maneuvering bandwidth. 
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Exoskeleton control requires a totally opposite goal from classical and 
modern control theory: maximize the sensitivity of the closed loop system 
to forces and torques. In classical servo problems, negative feedback loops 
with large gains result in small sensitivity within a bandwidth, which 
means that they reject forces and torques (usually called disturbances). 
However, the above analysis states that the exoskeleton controller needs a 
large sensitivity to forces and torques. 

The exoskeleton controller uses the inverse of the exoskeleton dynamics 
as a positive feedback such that the loop gain for the exoskeleton ap­
proaches unity from below (slightly less than 1), which can be written as: 

_v _ S (4) 
^NEW - ^ - Y^GC 

where C is chosen as 

C = {l-a-^)G-^ (5) 

and a is the amplification number greater than unity. 

If a = 10, then C = 0.9G'~ ,̂ and the new sensitivity transfer function is 
^NEw = 10*5' (ten times the force amplification). Equation (5) simply 
states that a positive feedback controller needs to be chosen as the inverse 
dynamics of the system dynamics scaled down by (1 - a~^). Note that 
Eq. (5) prescribes the controller in the absence of unmodeled high-
frequency exoskeleton dynamics. In practice, C also includes a unity gain 
low pass filter to attenuate the unmodeled high-frequency exoskeleton dy­
namics that may not be captured in the model, G ~^. 

The success of this control method is dependant on the accuracy of sys­
tem model (i.e. G~^) which governs how much torque is needed at each 
joint to compensate for the pay load and dynamics of the exoskeleton. 
Models errors which cause the exoskeleton to apply too little actuation 
torque mean that the pilot would feel a portion of the payload. Errors 
which cause over-actuation however, could lead to instability. This 
straightforward control solution comes with an expensive price: robustness 
to parameter variations. To get the above method working, one needs to 
know the dynamics of the system very well. The next section discusses this 
tradeoff. 
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3.2 Robustness to Parameter Variations 

The variation in the new positive feedback sensitivity transfer function (4) 
is given by Eq. (6). 

/^SNEW _ A6; GC AG (6) 

^NEW ^ 1 — GC G 

If GC is close to unity (when the force amplification number, a, is 
large) any parameter variation on modeling will be amplified as well. For 
example if the parameter uncertainty in the system is about 10%, i.e.: 
AG 
G 

0.10 and 
A ^ 0, then Eq. (6) results in 

A^, NEW 

s NEW 

GC 

1-GC 
0.10 (7) 

Now assume C is chosen such that C = 0.9G ^. Substituting into Eq. (7) 
results in 

A '̂̂ v 
0.90. (8) 

Equation (8) indicates that any parameter variation directly affects the 
system behavior. In the above example, a 10% error in model parameters 
results in nine times the variation in the sensitivity function. This is why 
model accuracy is crucial to exoskeleton control. One can see this problem 
as a tradeoff: the design approach described above requires no sensor (e.g. 
force or electromyogram) in the interface between the pilot and the exo­
skeleton; one can push and pull against the exoskeleton in any direction 
and at any location without measuring any variables on the interface. 
However, the control method requires a very good model of the system. At 
this time, our experiments with BLEEX have shown that this control 
scheme—which does not stabilize BLEEX—forces the exoskeleton to fol­
low wide-bandwidth human maneuvers while carrying heavy loads. 

3.3 Pilot Dynamics 

In our control scheme, as will be shown, there is no need to include the in­
ternal components of the pilot limb model; the detailed dynamics of nerve 
conduction, muscle contraction, and central nervous system processing are 
implicitly accounted for in constructing the dynamic model of the pilot 
limbs. For more detail on in-depth modeling and analysis of the internal 
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components of the pilot limb as applied to haptic systems and human 
power amplifiers, see [22,23] and our preliminary results in [24]. 

The pilot force on the exoskeleton, d, is a function of both the pilot dy­
namics, H, and the kinematics of the pilot limb (e.g., velocity, position or 
a combination thereof). 

d = -H(v) (9) 

The specific form of H is not known other than that it results in the 
human muscle force on the exoskeleton. In general, H is determined pri­
marily by the physical properties of the human dynamics. Here we assume 
iJ is a nonlinear operator representing the pilot impedance as a function of 
the pilot kinematics. 

Figure 5 represents the closed loop system behavior when pilot dynam­
ics is added to the block diagram of Fig. 4. Examining Fig. 5 reveals that 
Eq. (4), representing the new exoskeleton sensitivity transfer function from 
d to V, is not affected by the feedback loop containing H. 

Figure 5 shows an important characteristic for human exoskeleton con­
trol: two distinct feedback loops in the system. The upper feedback loop 
represents how forces and torques from the pilot affect the exoskeleton and 
is internal to the human. The lower loop shows how the controlled feed­
back loop affects the exoskeleton. While the lower feedback loop is posi­
tive (potentially destabilizing), the upper human feedback loop stabilizes 
the overall system of pilot and exoskeleton taken as a whole. 

r 
G -*-

Fig. 5. The two feedback loops in this diagram represent the overall motion of the 
human and exoskeleton. The upper feedback loop shows how the pilot moves the 
exoskeleton through applied forces. The lower positive feedback loop shows how 
the controller drives the exoskeleton. 

3.4 The Effect of Pilot Dynamics on Closed Loop Stability 

How does the pilot dynamic behavior affect the exoskeleton behavior? In 
order to get an understanding of the system behavior in the presence of pi­
lot dynamics we use our 1 DOT system and assume / / is a linear transfer 
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function. The stability of the system shown in Fig. 5 is decided by the 
closed-loop characteristic equation: 

l^SH -GC = Q (10) 

In the absence of feedback controller, C , the pilot carries the entire load 
(payload plus the weight of the exoskeleton torso). The stability in this 
case is decided by the characteristic equation: 

l + 6'iJ = 0 (11) 

Characteristic equation (11) is always stable since it represents pilot 
coupled to a passive exoskeleton (i.e. no controller means GC = 0 ). When 
a feedback loop with C is added, the closed loop characteristic equation 
changes from Eq. (11) to Eq. (10), and using the Small Gain Theorem, one 
can show that the closed loop stability is guaranteed as long as inequality 
(12) is satisfied: 

\GC\<\l^SH\ VcjG(0,oo) (12) 

According to Eq. (5), C is chosen such that \GC\ < 1 and therefore in 
the absence of uncertainties, Eq. (12) is guaranteed as long as 
1 < |1 + SH\. Unlike control methods utilized in the control of the upper 
extremity exoskeletons [6,25,26], the human dynamics in the control 
method described here has little potential to destabilize the system. Even 
though the feedback loop containing C is positive, the feedback loop con­
taining H stabilizes the overall system of pilot and exoskeleton. The con­
dition in Eq. (12) could be violated if \GC\ > 1, which would result from 
model parameter uncertainties. In summary, the controller discussed here 
is stable when worn by the pilot as long as parameter uncertainties are kept 
to a minimum. 

4 Controller Implementation on BLEEX 

4.1 Mechanical System 

The above discussion motivated the design philosophy using a one DOT 
system. BLEEX, as shown in Fig. 1, is a system with many degrees of 
freedom and therefore implementation of BLEEX control deserves further 
attention. Each BLEEX leg has three DOFs at the hip, one DOF at the 
knee, and three DOFs at the ankle, of which only four are powered DOFs: 
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hip, knee, and ankle joints in the sagittal plane and the hip abduction-
adduction joints. See [24] for details of the BLEEX mechanical design. 

The pilot and BLEEX have rigid mechanical connections at the torso 
and the feet; everywhere else, the pilot and BLEEX have compliant or pe­
riodic contact. The connection at the torso is made using an adjustable 
compliant vest that distributes the forces between BLEEX and the pilot, 
thereby preventing abrasion. The vest includes a rigid plate (with hole pat­
tern) on the back that bolts to the rigid metal spine of the BLEEX torso. 

The pilot's shoes or boots attach to the BLEEX feet using a modified 
quick-release binding mechanism similar to snowboard bindings. The 
binding cleat on the modified pilot boot does not interfere with normal 
wear when the pilot is undipped from BLEEX. The BLEEX foot is com­
posed of a rigid heel section with the binding and a compliant, but load 
bearing, toe section that begins mid foot and extends to the toe. The 
BLEEX foot has a compressible rubber sole with a tread pattern that pro­
vides both shock-absorption and traction while walking. The rubber sole of 
the BLEEX foot contains multiple embedded pressure sensors (coarse 
on/off information only), that are used to detect the trajectory of the 
BLEEX ground reaction force starting from "heel-strike" to "toe-off in 
the walking gait cycle. This information is used in the BLEEX controller 
to identify the BLEEX foot configuration relative to the ground. 

BLEEX is powered via a compact portable hybrid output power supply 
contained in the backpack. Several different portable BLEEX power sup­
plies have been designed by our group for different applications and envi­
ronments. Each provides hydraulic flow and pressure for the actuators and 
generates electric power for the sensors, network, and control computer. 
Details of the design, testing, and performance of the BLEEX power sup­
plies can be found in [27]. 

4.2 Dynamic Modeling 

Although biomechanical studies of walking frequently identify seven or 
more distinct phases of the human walking gait cycle [28], for simplicity in 
control we consider BLEEX to have three distinct phases (shown in Fig. 6) 
which manifest to three different dynamic models: 

1. Single support: one leg is in the stance configuration while another 
leg is in swing. 

2. Double support: both legs are in stance configuration 
and situated flat on the ground. 
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single double double support single 
support support one redundancy support 

Fig. 6. Three phases of the BLEEX walking cycle. 

3. Double support with one redundancy: both legs are in stance 
configuration, but one leg is situated flat on the ground while the 
other one is not. 

Using the information from the sensors in the foot sole, the controller 
determines in which phase BLEEX is operating and which of the three dy­
namic models apply. 

In our initial control design process, we decoupled the control of the ab­
duction-adduction DOE at the hip from the control of joints in the sagittal 
plane. This is valid because we noticed through measurements that the ab­
duction-adduction movements during normal walking (less than 0.9 m/s or 
2 mph) are rather slow [29]. In comparison with the movements in the sag­
ittal plane, the abduction-adduction movements can be considered quasi-
static maneuvers with little dynamical affects on the rest of system. Eor the 
sake of brevity, the following sections describe the control method in the 
sagittal plane for a given set of abduction-adduction angles. 

4.3 Single Support 

In the single support phase, BLEEX is modeled as the seven DOE serial 
link mechanism in the sagittal plane shown in Eig. 7. The dynamics of 
BLEEX can be written in the general form as: 

M{e)e + c{e,e)e + p{e) = T ^d (13) 

where i9 = [6>i 0^ ... O^f md T = [o T^ Ts-.-Te]^. 

M is a 7 X 7 inertia matrix and is a function of 6 , C{6,6) is a 7 x 7 

centripetal and Coriolis matrix and is a function of 0 and 0, and P is a 
7 x 1 vector of gravitational torques and is a function of 6 only. T is the 
7 x 1 actuator torque vector with its first element set to zero since there is 
no actuator associated with joint angle Oi (i.e. angle between the BLEEX 
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Fig. 7. Sagittal plane representation of BLEEX in the single stance phase. 

foot and the ground), d is the effective 7 x 1 torque vector imposed by the 
pilot on BLEEX at various locations. According to Eq. (5), we choose the 
controller to be the inverse of the BLEEX dynamics scaled by (1 - a~^), 
where a is the amplification number. 

T = P{e) + (1 - a-^)[M{e)e + c{e,e)e] (14) 

C{0,0), P{0) and M{0) are the estimates of the Coriolis matrix, gravity 
vector, and the inertia matrix respectively for the system shown in Fig. 7. 
Note that Eq. (14) results in a 7 x 1 actuator torque. Since there is no ac­
tuator between the BLEEX foot and the ground, the torque prescribed by 
the first element of T must be provided by the pilot. Substituting T from 
Eq. (14) into Eq.( 13) yields, 

M{e)e + c{e,e)e + p{e) = P{e) + (i - a-^)[M{e)e + c{e,e)e] + d (15) 

In the limit when M{e) = M{0), C(0,0) = 6(0,0), P(e) = P(e), and a 
is sufficiently large, d will approach zero, meaning the pilot can walk as if 
BLEEX did not exist. However, it can be seen from (15) that the force felt 
by the pilot is a function of a and the accuracy of the estimates C(0,0), 

P(0), and M(0) . In general, the more accurately the system is modeled, 
the less the human force, d, will be. In the presence of variations in ab­
duction-adduction angles, only P(6) in Eqs. (13, 14) needs to be modified. 
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4.4 Double Support 

In the double support phase, both BLEEX feet are flat on the ground. The 
exoskeleton is modeled as two planar 3 DOF serial link mechanisms that 
are connected to each other along their uppermost link as shown in Fig. 8-
a. The dynamics for these serial links are represented by Eqs. (16, 17). 

ML {mTL,OL)h + CL [171^1,0^,6^)6^ + PL (mrL,^L ) = ^ + d^ (16) 

+ CR [mTRA.0R)6R + PR{mTR,6R) = TR + dR (17) 

w h e r e : OL = [Ou 0^ O^s] and OR = [ORJ eR2 eR3\ . UITR and UITL 

are effective torso masses supported by each leg and TTIT is the total torso 

mass such that: 

rriT = rriTR + TTITL (18) 

The contributions of rrirp on each leg (i.e., rrirpi and rrirpR ) are chosen as 

functions of the location of the torso center of mass relative to the loca­
tions of the ankles such that: 

^TR ^ XTL_ (19) 

where x^i is the horizontal distance between the torso center of mass and 

the left ankle, and X^R is the horizontal distance between the torso center 

of mass and the right ankle. For example, if the center of mass of the torso 

is located directly above the right leg, then TTITI = 0 and TTITR = TUT . 

Similar to the single stance phase, the controllers are chosen such that 

TL = PL(mTL,OL) +(1 - a-^)\ML(mTL,0L)6L + CL(mTL,0LA)6L\ (2^) 

TR = pR(mTR,eR) + (1 - a-^)[MR(mTR,eR) OR + Qfrn^^^,^^,^^)^^ ] (21) 

Needless to say, Eq. (19) is valid only for quasi-static conditions where 
the accelerations and velocities are small. This is in fact the case, since in 
the double support phase, both legs are on the ground and BLEEX's angu­
lar acceleration and velocities are quite small. This allows us to simplify 
Eqs. (20, 21) during slow walking by removing all terms except the esti­
mates of the gravitational vectors. 
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Fig. 8. Sagittal plane representation of BLEEX in a) the double support phase and 
b) the double support phase with one redundancy. 

4.5 Double Support with One Redundancy 

Double support with one redundancy is modeled as a 3 DOF serial link 
mechanism for the stance leg with the foot flat on the ground and a 4 DOF 
serial link mechanism for the stance leg that is not completely on the 
ground (Fig. 8-b). Each serial link supports a portion of the torso weight. 
The dynamics for these serial links are similar to Eqs. (16, 17), with the 
exception that the redundant leg equation represents four DOFs as opposed 
to three. For the specific instant shown in Fig. 8-b, the left leg has 4 DOF 
and the right leg has 3 DOF. 

Similar to the double support case, the effective torso mass supported by 
each leg is computed by Eq. (19). Controllers for this case can be chosen 
in the same manner as Eqs. (20, 21). Note that the actuator torque vector 
associated with the leg that has 4 DOF (e.g. TL for the case shown in Fig. 
8-b) is a 4 X 1 vector. As in the single support phase, the torque prescribed 
by the first element of T must be provided by the pilot because there is no 
actuator between the BLEEX foot and the ground. As the pilot walks, 
BLEEX transitions through the various phases shown in Fig. 6. The foot 
sole pressure sensors detect which leg has four degrees of freedom and 
which leg has three degrees of freedom and the controller then chooses the 
appropriate algorithm for each leg. 
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Fig. 9. Overall view of ExoNET networked control system and external GUI de­
bug terminal. 

5 Networked Control System 

5.1 Network structure 

Fig. 9 provides global picture of the ExoNET networked control system 
that hosts the control algorithm. ExoNET was designed for BLEEX to en­
able the central controller to interact with distributed sensors, reduce the 
bulk, complexity, and difficulty of wiring, and achieve high-speed real­
time control. 

ExoNET consists of four ring networks (ExoRingO-3). Each ring has a 
series of sensor and actuator data aggregation network nodes we call Re­
mote I/O Modules, or RIOMs. Also, an additional network (GuiRing) pro­
vides a graphical user interface (GUI) for debugging and can be hot-
swapped into the system while the network is running. 

These five networks are all served by a central module (ExoBrain) com­
posed of a single board computer (ExoCPU), a PCI Interface Module 
(ExoPCI) and a Supervisor I/O Module (SIOM). The SIOM is a custom 
built board that has three independent transceiver channels. Channel 1 con­
tains the two leg network rings: ExoRingO and ExoRing2. Channel 2 con­
tains the two torso network rings: ExoRing 1 and ExoRingS. The third 
transceiver channel is coupled to GUI network (GuiRing). 
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The GUI network allows for real-time monitoring and administration of 
the control system for debugging purposes. The GUI network includes the 
GUI RIOM (GuiRIOM), the GUI PCI interface module (GuiPCI) and the 
GUI computer (GuiPC) inside the GUI computer case. The GuiRIOM and 
the GuiPCI stack together on a PCI riser card that is plugged into one of 
PCI slots of the GuiPC. 

Fig. 10 shows the ExoNET ring topology of an ExoRing where N 
RIOMs (Slave 1,2,...N) are serially connected to one SIOM (Master). 
Each serial link consists of three twisted pairs of wires. While the first and 
second pairs are used for receiving and transmitting data, the third pair is 
used for carrying power to RIOMs. The direction of data fiow in this net­
work is from the transmit port (TX) of the master node to the receive port 
(RX) of the Slave 1 node, and from the TX of the Slave 1 node to the RX 
of the Slave 2 node, and so forth. This path continues to the RX of the 
Slave N node. A loop-back terminator completes the ring by plugging into 
the TX of the Slave-N node so that data leaving from the TX of the Slave-
N node will arrive at the RX of the SIOM master node after passing 
through each slave node internal loop line (labeled LP in Fig. 10). 

SIOM 
(Master) 

RIOM 
(Siave 1) 

LP 
RxrZXEK 
f I 

-J 

RIOM 
(Slave 2) 

LP 

RIOM 
(Slave N) 

L P 
'" X TXI -\TX RX /^ \TX R X / ^ ^ T ) 

"Serial 'L ink-- ' ' 
Loop-back 
Terminator 

Fig. 10. Ring Topology 

This ring topology provides flexibility and expandability for the net­
work: a user can easily add or remove slave nodes and then plug a loop-
back terminator at the last slave node to complete the network. This topol­
ogy eliminates the requirement of a single circulating serial cable connect­
ing from the last slave node to the master node. It is particularly useful in 
cabling a network where all nodes are physically oriented on a line (as on 
the BLEEX legs). In this case, only one serial link cable between any two 
consecutive nodes and a loop-back terminator on the last node are required 
to form a complete ring network. 

5.2 Remote I/O Modules (RIOMS) - A Practical Solution to 
Managing Wiring Complexity 

The ExoNET RIOM modules (Fig. 11) act as smart sensor and control data 
aggregation nodes. BLEEX is a complex multi-degree of freedom device 
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Fig. 11. ExoNET RIOM photo and schematic. Each RIOM provides for 3 analog inputs 
(AIN), 1 analog output (AOUT), 6 digital inputs (DIG IN), 1 quadrature encoder input 
(ENC IN), and 2 network communication ports (UP and DWN). Two integrated circuits 
handle processing (Xilinx Inc.) and network communication (Cypress Semiconductor Inc.) 
respectively. 

with a large number of sensor inputs and control outputs. A common ap­
proach in robotic design would be to route all sensor and actuator signal 
wires directly to a central control computer. For BLEEX, this would have 
meant a total of over 210 wires. By distributing network nodes around the 
robot, we only require one wire per limb (ring network) to route all sensor 
and actuation information. Each node takes care of interfacing with the 
various types of sensors (serial, parallel, analog, digital, etc..) located 
physically close by it and assembles the data into digital packets that can 
be transmitted via the network to-from the central computer. In addition, 
the RIOM can send out analog control signals for actuation (e.g. control­
ling a hydraulic servo-valve). The distribution and location of RlOMs is 
generally chosen to achieve a minimum volume of wiring and a reasonable 
and convenient allocation of sensors and actuators to each RIOM. 

Each RIOM in the first generation BLEEX provides five sensor inputs 
(three 16-bit analog inputs, one quadrature encoder input, and one 6-bit 
digital input) and one 16-bit analog actuation output. Details of the elec­
tronics hardware design can be found in [30]. Each link includes a pair of 
linear accelerometers that are connected to two of the analog input chan­
nels. When spaced out along a limb and read in differentially, these pro­
vide angular rate data for the controller. Each link is also responsible for 
recording data from an angular encoder at its proximal joint through the 
encoder channel. The remaining digital input channels are used on the foot 
links for capturing footswitch data that corresponds to the ground contact 
location. The analog output channel is used to send the control signal to 
the hydraulic servo-valve on an actuator. 
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5.3 Network Protocol 

ExoNET network communication consists of passing "messages" around 
the ring formed by the nodes on the network (SIOM and RlOMs). A mes­
sage is a series of data packets that is preceded by a chosen start deHmiter 
code ("S" in Fig. 12) and proceeded by a chosen end deHmiter code ("E" 
in Fig. 12). Each data packet in a message includes bits that indicate the 
source of the packet (e.g. the ID# of a RIOM), the type of data (e.g. error, 
sensor, actuation command,...), the actual data value, and error checking 
bits based on a cyclic redundancy check (CRC). Fig 12 shows two types of 
data packets in the message being passed between nodes: actuator com­
mands sent from the master to the RIOMs (CI, C2), and sensor data des­
tined for the master that was collected by the RIOMs (Til, T12, T21,...). 

Master RX 

TX 

Slave 1 RX 

TX 

Slave2 RX 

TX 

IsYCi /c2 |E^^^==^ 

message Wk^H^/cEH^i... 

i!A!!.\!!f/ 
^ CI )(C2 ITHy-

Ti» i V {/ y u \r^,r^,r^,r^ 
/C F iT-l V (-^'3 V T I 1 V n ^ VTl-S V T T I V T ' ! - } VT'i-5 VCZXTI lVTl2yTl3VT2l rr22)(T23VEV 

/ l U Vl/VIJ VlAl iLJvl iu ' 
Network Update Time (NUT) 

Fig. 12. Network communication overview. In a communication cycle, messages (strings 
of data packets beginning with start delimiter, S, and ending with end delimiter, E) pass 
from a master node (SIOM) to each slave node (RIOM) sequentially and return to the mas­
ter node to complete the ring network communication. 

Each communication cycle in the network protocol (Fig. 12) involves 
passing a message sequentially from the master node (e.g. a SIOM) to each 
slave node in the ring network (e.g. the RIOMs) and then returning the 
message back to the master node. As the message travels around the ring, 
each RIOM reads its assigned actuator command data packet (by looking 
for its RIOM ID#), and then appends its collected sensor data to the mes­
sage. When the message returns to the master, completing the ring, it has 
grown to include the sensor data from each node in the network. Because 
the communication cycles occur at a fixed rate set by the control scheme, 
this protocol allows for deterministic control and provides built in network 
error detection because every message returning to the master must contain 
information from each node on the ring. 

Testing ExoNET on BLEEX has shown that the network update time 
(NUT) for a ten RIOM network, passing 140 bytes of data, takes less than 
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20|LLS. The controller for BLEEX updates at 2 kHz (500 |LLS sample time), 
which leaves 480|LLS to perform the control algorithm calculations on the 
ExoCPU. For a more detailed discussion of the BLEEX control network 
and performance analysis, see [30,31]. 

6 Conclusion 

The Berkeley Lower Extremity Exoskeleton (BLEEX) is not a typical 
servo-mechanism. While providing disturbance rejection along some axes 
preventing motion in response to gravitational forces, BLEEX actually en­
courages motion along other axes in response to pilot interface forces. This 
characteristic requires large sensitivity to pilot forces which invalidates 
certain assumptions of the standard control design methodologies, and thus 
requires a new design approach. The controller described here uses the in­
verse dynamics of the exoskeleton as a positive feedback controller so that 
the loop gain for the exoskeleton approaches unity (slightly less than 1). 
Our current experiments with BLEEX have shown that this control scheme 
has two superior characteristics: 1) it allows for wide bandwidth maneu­
vers; 2) it is unaffected by changing human dynamics. The trade off is that 
it requires a relatively accurate model of the system. The ExoNET control 
network that hosts the control algorithm is also presented. Video clips 
which demonstrate BLEEX, the control network, and the effectiveness of 
the control scheme can be found at http://bleex.me.berkeley.edu/bleex. 
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It is an auspicious time for this first-ever ISRR special session on the topic of 
underwater robotics. Underwater robots are now performing high-resolution 
acoustic, optical, and physical oceanographic surveys in the deep ocean that 
previously were considered impractical or infeasible. For example: in 2001 the 
Argo n underwater robotic vehicle, [1], was employed to discover the first 
off-axis hydrothermal vent field located 15 km from the Mid-Atlantic Ridge 
at 30° North Latitude [5]. The dynamics of this important hydrothermal vent 
site have since been mapped, sampled, and probed extensively with human-
occupied submersibles, tethered remotely controlled underwater robots, and 
untethered autonomous underwater robots [6, 4, 7]. 

The technical obstacles arising in underwater robotic missions differ from 
those in land, air, and space missions in several fundamental respects: First, 
the rapid attenuation of acoustic and electromagnetic radiation in seawater 
severely restricts the range (and field of view) of high resolution acoustic 
and optical sensors. In consequence, high-resolution underwater survey sen­
sors must be submerged to the immediate vicinity of a survey site — in sharp 
contrast to airborne and space-based survey sensors systems. Moreover, ra­
dio navigation techniques commonly employed in land, air, and space oper­
ations do not function undersea. Second, the high ambient pressure of the 
underwater environment poses formidable design challenges both for (inhab­
ited) submarines and (uninhabited) robots. At present, only a handful of the 
world's submarines are capable of diving beyond 1000 meters in depth. Only 
one present-day operational research submarines can dive to 6500 meters; none 
can dive to the ocean's deepest depths of 11,000 meters. In contrast, numerous 
underwater robots operate to 6500 meters, and at least one vehicle presently 
under construction will be capable of 11,000 meters operation [2, 3]. Finally, 
in the case of untethered vehicles, underwater missions are limited not only by 
on-board energy storage capacity, but also by the severely limited bandwidth 
and delay inherent in underwater acoustic communication, the intelligence of 
on board control system, and payload capacity. 

S. Thmn , R. Brooks, H. Durrant-Whyte (Eds.): Robotics Research, STAR 28, pp. 399-401, 2007. 
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The three papers in this session represent accomphshments in the engineer­
ing science problems arising in the problem domain of underwater robotics. 
Moreover, the are exemplars of engineering science which is motivated by and 
directly advance the natural sciences by enabling new methods of oceano-
graphic research. 

Plotnik and Rock report a computer vision tracking system to enable a re­
motely controlled underwater vehicle to track autonomously a class of gelati­
nous animals (e.g. free-swimming Coelenterates or "jellyfish") in the water 
column. The problem addressed is tha t , due to the irregular natural motion 
of these animals in the water column and the limited field of view of under­
water camera systems, it has proven difficult or impossible for an underwater 
vehicle to observe these creatures for any significant length of time, thus limit­
ing scientific observations thereof. The paper reports a model based approach 
which seeks to classify statistically the observed motion of the animals into the 
distinct phases of motion which characterize their natural swimming behavior. 
This system, which is evaluated on field data obtained with an actual oceano-
graphic robotic vehicle, holds promise of significantly enhancing our ability 
to observe these animals and, in consequence, enable advances in mid-water 
Pelagic Biology. 

Yoerger, Jakuba, Bradley, and Bingham report the algorithms developed 
and refined with the Autonomous Benthic Explorer (ABE) autonomous un­
derwater vehicle over a decade of field work performing autonomous scientific 
surveys in the deep sea. At the time of this paper 's writing, ABE had suc­
cessfully performed a total of over 150 science dives, traveling survey paths 
totaling over 2,500 Km and over 1,300 hours of bot tom-t ime at an average 
of over 2,000 meters depth. The paper articulates the need for precisely navi­
gated co-registered AUV surveys in order to combine datasets obtained with 
a variety of disparate scientific sensors, vehicles, and deployments. The paper 
reports robust and accurate methods for autonomous navigation of under­
water vehicles with long baseline acoustic navigation, bo t tom following and 
obstacle avoidance, and automated nested survey methodologies for locating 
hydrothermal vents on the mid-ocean ridges. These methods have resulted 
directly in numerous scientific discoveries, for example [7]. 

Singh, Roman, Pizarro, and Eustice report advances in high resolution 
acoustic and optical imaging from underwater vehicles. The authors report ad­
vances in methodologies to exploit consistency and redundancy of local sensor 
measurements of the environment to construct large scale high-resolution op­
tical and acoustic maps tha t are a self-consistent quantitative representation 
of the environment. Their approach extends techniques from simultaneous lo­
calization and mapping (SLAM), photogrammetry, and computer vision to 
address directly the structure-from-motion problem as it arises in large scale 
underwater surveys with sensors possessing limited range. The authors report 
an overview of their research in large-scale structure from motion, self consis­
tent bathymetric mapping, and visually aided navigation. The utility of these 
methods is demonstrated on several large scale deep-ocean data sets including 
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a survey of the shipwreck RMS Titanic and the Trans-Atlantic Geotraverse 
(TAG) Hydrothermal Vent site at 26°N 44°W on the Mid-Atlantic Ridge. 
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Summary . A vision-based automatic tracking system for ocean animals in the 
midwater has been demonstrated in Monterey Bay, CA. Currently, the input to 
this system is a measurement of relative position of a target with respect to the 
tracking vehicle, from which relative velocities are estimated by differentiation. In 
this paper, the estimation of target velocities is extended to use knowledge of the 
modal nature of the motions of the tracked target and to incorporate the discrete 
output of an online classifier that categorizes the visually observable body motions 
of the animal. First, by using a multiple model estimator, a more expressive hybrid 
dynamical model is imposed on the target. Then, the estimator is augmented to 
input the discrete classification from the secondary vision algorithm by recasting 
the process and sensor models as a dynamic Bayesian network (DBN). By leveraging 
the information in the body motion classifications, the estimator is able to detect 
mode changes before the resulting changes in velocity are apparent and a significant 
improvement in velocity estimation is realized. This, in turn, generates the potential 
for improved closed-loop tracking performance. 

1 Introduction 

A vision-based automatic tracking system for ocean animals in the midwater 
has been developed and demonstrated under a program of joint research be­
tween the Stanford University Aerospace Robotics Lab and the Monterey Bay 
Aquarium Research Inst i tute ( M B A R I ) [1-4]. In field tests using MBARl's ROVs 

S. Thmn , R. Brooks, H. Durrant-Whyte (Eds.): Robotics Research, STAR 28, pp. 402-415, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 
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Ventana and Tiburon in the Monterey Bay, this system has demonstrated 
fully autonomous closed-loop control to track animals for periods up to 1.5 
hours. This tracking system has been designed for both ROV and AUV deploy­
ments. A snapshot of the system tracking a small squid in Monterey Bay is 
shown in Fig. 1. 

The current tracking system's control laws use velocities derived by dif­
ferentiating the relative position of the target with respect to the vehicle as 
measured by the stereo vision sensing system. This system has been very ef­
fective in tracking many target specimens but performance can be poor when 
tracking very mobile and/or small targets. The performance of human pilots 
when doing this task, however, does not degrade nearly as much when track­
ing such targets. One difference between the logic currently embedded in this 
system and the way human pilots operate is tha t human pilots exploit their a 
priori knowledge of the strongly modal motion behaviors of the tracked an­
imal and the visible body deformations associated with those motions. They 
do not rely solely on lead information determined through differentiation of 
relative position. 

To improve the robustness of the tracker and expand its applicability to 
smaller and more mobile animals, this paper presents methods for incorporat­
ing into an estimator knowledge of the modal motions of the tracking target. 
Some information about the motion modes can be inferred from measured 
water-relative velocities. However, visual information of the type tha t the pi­
lot uses is potentially available to the system, quantified as a classification 
of the visible body deformations exhibited by the animal [5,6]. This non-
traditional knowledge-based lead information exploits the detection of mode 

Stereo 
Camera Pair 

TCR 0 6 : 1 1 . 0 7 : 2 4 

Fig. 1. A side view of robotic tracking of a squid (lower left) using the ROY Tiburon. 
The stereo camera pair used for relative position sensing is indicated at top right. 
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switches as an early indicator of acceleration or deceleration, and hence pro­
vides improved velocity estimation (e.g., faster convergence). 

In [7], an estimator was presented tha t derives water-relative velocities of 
the tracking vehicle and target by merging measurements of water-relative 
velocities with the stereo vision measurements using a Sigma Point Kalman 
Filter ( S P K F ) [8]. In this paper, the estimator is augmented with knowledge 
of the modal nature of the tracking specimen. Improved velocity tracking is 
demonstrated using a multiple model boots t rap filter^ [9]. The estimator is 
then further augmented with discrete measurements from the online vision al­
gorithm tha t classifies the type of body deformation pat terns exhibited by the 
specimen [5]. This discrete information is fused by recasting the process and 
sensor models as a dynamic Bayesian network (DBN) [10] and by characteriz­
ing the discrete classification of body deformation pat terns with a probability 
distribution conditioned on the propulsive motion mode of the specimen. 

Section 2 of this paper describes the motion modes exhibited by typical 
midwater ocean animals. In Section 3, a set of process models for the target 
dynamics within a multiple model boots t rap estimator are proposed to rep­
resent the propulsive modes of a typical tracking target. Section 4 details the 
DBN framework tha t is used to incorporate the body deformation classifica­
tions from the secondary vision algorithm into the boots t rap filter. Finally, 
Section 5 presents the resulting performance improvements at tained by uti­
lizing multiple models and the unique lead information in these visual cues in 
the new DBN-based filter. 

2 A Mode Model of Motion Behavior 

In this section, the motion behaviors exhibited by gelatinous animals are enu­
merated, and a body motion mode model derived from those behaviors is 
established.^ 

Gelatinous animals generally effect propulsive forces by deforming some 
part of their bodies (or the entire body) in a pulsing motion. Pumping water 
in and out of the bell portion of their bodies generates a thrust force on the 
surrounding water. Many species exhibit periodic bell pulsing behaviors in 
order to propel themselves through the water. Others exhibit these pulsing 
actions in non-periodic pat terns. Fig. 2 shows some image sequences with 
examples of these motions. For medusa jellyfish, an expression for dynamic 

The method referred to by this paper as "bootstrap" filtering is a Sequential 
Monte Carlo method of filtering that is often called other names including particle 
filtering, condensation, and Monte Carlo filtering. 
While the automatic tracking system is most commonly used to track gelatinous 
animals, other types of animal such as small squid and some (low swimming 
speed) fish species have been tracked. The visible cues related to their motions 
are also discernible by the vision algorithms of [5]. However, (1) does not apply 
to those classes of animal. 
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(a) (l>) 

(c) 

Fig. 2. Examples of body motion behaviors: (a) the head of a Praya siphonophore 
exhibiting repetitive pulsing motions with period of about 0.9 sec. time-lapse at 
0.43 sec intervals and stabilized, (b) a Benthocodon jellyfish making a single pulse 
swimming motion, time-lapse at 0.27 sec intervals, (c) a Colobonema jellyfish makes 
a sudden swimming motion while being tracked by the automatic system, evading 
the tracking system, time-lapse at 1 sec intervals. (Images courtesy of MBARI.) 

thrust given by Equation (1) shows thrust , T, related to water density, p, and 
generated by the time rate of change in the volume of the bell, V^ and the 
velar area, Ay^ as proposed by Daniel [11]. 

Fig. 3(a) shows a finite automaton tha t expresses an observer's perception 
of body motion mode, including the criteria used to detect switching events. 
Algorithms for applying this finite automaton to a stream of video images of 
an object in real t ime were presented in [5] and [6]. The output of this vision 
algorithm is a classification of the motion type exhibited by the body of the 
observed animal at t ime t: 

a{t) G {Resting, Moving, Repetitive Pulsing} (2) 

For species whose active swimming modes are accomplished by moving or 
contracting significant portions of their bodies, the visible indication of those 
motions will lead the actual changes in velocity as the animal accelerates. In 
Section 5, this information is shown to assist the estimation of an animal's 
velocity by allowing the estimator to anticipate accelerations and decelerations 
before they manifest as significant changes in measured velocity. 
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1(a). Motion detected 

1(b). No body motion 

l^oving ]r< 1(c). Still in motion— 

2. Periodicity 
detected 

3. Pattern broken 

(a) (b) 

Fig. 3. (a) Gelatinous animal body motion from point of view of observer, (b) The 
hybrid dynamical system representation of the motion of the tracking target used by 
the multiple model bootstrap filter. The relationship between the body motions of 
(a) and the water-relative dynamic modes of (b) is assumed to be one-to-one. Thus, 
(1) when the body is not actively moving, no thrust is produced, (2) when the body 
begins moving, the animal accelerates, and (3) periodic motion of the body results 
in approximately constant velocity. 

3 Multiple Model Estimation in the Water Frame 

In [7], estimation of water-relative velocities was accomplished by merging 
relative bearing measurements from the stereo camera pair with water-relative 
vehicle velocities measured by a Doppler Velocity Log ( D V L ) . By applying the 
additional knowledge of the modal nature of the active motions by the target, 
velocity estimation can be improved. 

The use of multiple models in target tracking estimation is a popular 
method to estimate target motion without direct knowledge of the accelerat­
ing inputs on the target, for instance [12]. Approaches such as the Interacting 
Multiple Model ( IMM) estimator [12] or the multiple model boots t rap filter [9] 
have the effect of adapting the bandwidth of the estimator based on the most 
probable models of the model set. The model set is typically chosen to have 
appropriate bandwidth properties for different tracking situations and /or to 
incorporate specific knowledge of the modes present in a hybrid dynamical 
system [13]. For a multiple model estimator tracking an unknown maneuver­
ing target, during non-maneuvering periods, a low bandwidth estimator (one 
with low process noise assumed) is preferable to mitigate the effects of noisy 
sensors. However, during maneuvers by a target, a higher bandwidth estimator 
is preferable to allow the state estimate to adapt quickly to the changing con­
ditions. Multiple model estimators for target tracking are designed to adapt 
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by favoring the most likely models based on the evidence provided by the 
measurements. 

To apply these techniques to the underwater tracking system, a three-
mode hybrid dynamical model is used, as shown in Fig. 3(b). Because detailed 
dynamic parameters are not known for a given specimen, only very generic 
kinematic models are used to model the motion. The q = Resting dynamics 
include a small white noise acceleration term and a damping term represent­
ing the tendency for water-relative velocity to stay low in this mode, q = 
Accelerating is represented as simply driven by large variance white noise 
acceleration. The q = ConstantVelocity mode is associated with constant 
velocity dynamics with a different, more moderate white noise acceleration 
term. Switching between modes is assumed to be a Markov process for all 
unmarked transitions. To help capture the case of repetitive pulsing motions 
tha t accelerate from rest to a steady-state velocity, a timed transition is added 
from the Accelerating and ConstantVelocity modes. This timed transition 
also encodes the delay by the motion classification algorithm when classifying 
a motion as periodic, which typically requires the observation of 1 or 2 periods 
of motion. The full process and sensor models for the vehicle and the relative 
bearing (vision) and water relative velocity (DVL) sensors are presented in [7], 
and are not dependent on the discrete mode q of the target. 

4 Incorporation of Visual Classifications of Body Motion 
via a Dynamic Bayesian Network Model 

In this section, the modeling of a stochastic dynamic system as a dynamic 
Bayesian network is briefiy defined and related to the familiar Kalman filter. 
Then the model of the tracking system's target is recast as a DBN, including 
an additional observation model to represent the motion classifier. 

4.1 B a y e s i a n and D y n a m i c B a y e s i a n N e t w o r k s 

A Bayesian network (BN) is a graphical representation of a model of the prob­
abilistic relationships and conditional independence of a set of variables [14]. 
The network in Fig. 4 is an example. An arrow connecting two nodes in the 
network (an edge) indicates tha t a conditional dependence exists for the child 
variable (the node pointed to) upon the parent variable. Based on the condi­
tional dependencies defined by the network and the distributions associated 
with the variables and their parents, full joint distributions may be computed 
for any particular assignments to the variables in the network. Tha t is, if each 
of N variables in the network are X^, . . . ^XN^ then the joint probability tha t 
they are assigned to x^, . . . ,XAr, respectively, is given by 

p{xi,..., XN) = ]^p(x^ |parent5(X^)) (3) 
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Hybrid with Discrete Mode Observations 

Fig. 4. A dynamic Bayesian network (DBN) representation of the process and sensor 
models of the multiple model estimator, including the output ak from the online 
body motion classifier, Equation (2). 

A dynamic Bayesian network (DBN) is a Bayesian network describing the 
relationships between dynamic state variables tha t evolve over time. In this 
case, the network illustrates the dependencies between these variables at given 
instances in time. The Kalman filter ( K F ) [15] for linear Gaussian state-space 
systems is one example. The continuous-time portion of the DBN of Fig. 4 
could represent the relationships between the states Xk-i and Xk and the 
observations tjk as modeled by a discrete-time KF (with no control inputs). 
Then the conditional probabilities represented by the edges in tha t DBN are 
the conditional Gaussian distributions of Xk given Xk-i defined by the state 
transition matrix and the process noise covariance, and of y^ given x^ based 
on the observation matr ix and the observation noise covariance. 

4.2 E s t i m a t i o n of t h e Target ' s Ve loc i ty w i t h a D B N - B a s e d 
B o o t s t r a p Fi l ter 

In [16], boots t rap filtering was applied to a set of hybrid dynamical systems 
by representing the systems being monitored as dynamic Bayesian networks. 
The conditional probability densities (CPDs) associated with the DBNS were 
of varying forms including Gaussian, simple conditional probability tables 
(CPTs) and softmax densities [17]. A similar approach to the problem of es­
t imating the velocities of a tracked ocean animal is employed here, combining 
dissimilar probabilistic models for the evolution and observation of both con­
tinuous states (the velocities) and discrete variables (the propulsive mode of 
the animal, q^ and the discrete observation variable, a). 

Fig. 4 illustrates the state evolution and observation models of the target, 
cast in the form of a DBN. Note the inclusion of the discrete motion classifier, 
whose output , ak^ is assumed to be dependent only upon q^. To use this DBN 
in a boots t rap filter, some C P D (that can be numerically sampled) relating the 
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observation ak to the value ofqk is necessary. Based on the error rates expected 
when running the visual classifier [5], a simple CPT can be constructed and 
utilized to approximate this relationship. 

The bootstrap filter, with the discrete classifier observation model added 
is evaluated as in [9] with two modifications based on the models used here. 
The first change is to the mode transition model that updates each sample 
for mode changes from step /c — 1 to /c. In [9], the finite automaton is assumed 
to be entirely Markovian. However, the mode model as specified by Fig. 3(b), 
requires time-in-mode for a sample to be tracked. This is accomplished by 
augmenting the continuous state vector with this variable and integrating it 
throughout the sample's life, resetting it to zero upon any mode transition. For 
each sample in the filter, during the time update step, this time is checked 
before applying the Markovian mode update for any superseding switching 
criteria. 

The second change from [9] is more significant, the modification of the mea­
surement update step of the filter. In systems with only continuous variables 
being observed, the measurement update consists of calculating the probabil­
ity of i/k^ the continuous-time observation, given the continuous state of each 

(i) 
sample, x ^ \ Here, the measurement update requires the computation of a 
joint probability of {vk^cFk) given (x/ ,̂ qk) of the sample. Because the values 
of the (x/c, qk) pair (and their parents Xk-i and qk-i) have been instantiated 
to specific values, the probabilities of yk and ak given Xk and qk become in­
dependent. Therefore the joint probability is given by the product of the two 
separately conditioned probabilities: 

p{yk,cfk\xk,(ik) = p{yk\xk)p{(^k\qk) (4) 

5 Results 

5.1 Test Data Description 

To test the performance of the multiple model and DBN-based estimators, test 
data was generated using the baseline tracking control software to track a sim­
ulated moving target. This target was tracked through a sequence of propulsive 
modes, q^ in the following order: resting, acceleration, steady swimming, rest­
ing. Noisy, distorted pixel measurements for each camera of the stereo pair 
as well as compass and angular rate readings were generated at the 10 Hz 
update rate of the tracking system. DVL velocities with additive zero-mean 
Gaussian noise at a standard deviation of 3 cm/s were generated at 5 Hz (the 
maximum update rate of the DVL deployed at MBARl), with angular rates of 
the vehicle coupled into the measurements based on the location of the DVL 
on the ROV Ventana. 

The vector of values for a^ the noisy and imperfect mode classification, is 
generated based upon the expected error rates of the body motion classifier 
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vision algorithm as applied to the "true" mode, q^ of the target. This C P T , 
S^ is given by the following: 

(1 
Rest 
Accel 

ConstVel 

p{a = Resting) 
0.90 
0.15 
0.03 

p{a = Moving) 
0.08 
0.80 
0.09 

p{a = RepPulse) 
0.02 
0.05 
0.88 

5.2 E s t i m a t o r D e t a i l e d D e s i g n 

This da ta set was used to compare the performance of three estimators: (i) 
the UKF estimator of [7], (ii) a multiple model boots t rap filter as described in 
this paper but operating only on continuous state observations, and (iii) the 
multiple model boots t rap filter from (ii) supplemented by the classifier data, 
a. For all models, the sensor noise s tandard deviations assumed were 2 pixels 
for each camera measurement (in a 160x120 image) and 3 cm/s on the DVL 
water velocities. Vehicle disturbance process noise s tandard deviation was set 
to 0.5 volts on all axes (on a scale with limits at + / - 5 volts for thruster 
command levels). 

Several parameters specify the target models of Fig. 3(b) for the multi­
ple model estimators. Target process noise terms were specified with stan­
dard deviations of 2 cm/s^ {Resting^ ConstantVelocity) and 10 cm/s^ 
{Accelerating). The exponential decay (damping) term of the Resting mode 
dynamics was specified with a t ime constant, TR^ of 2 sec. The time-in-mode 
limit for the Accelerating mode, tA was set to 5 seconds. 

For the UKF, which uses a single model design, the target model is a con­
stant velocity model, with a single value for white noise acceleration s tandard 
deviation of 4 cm/s^. This choice lies between the settings within the multiple 
model estimators for quiescent modes and the maneuvering mode, and is the 
result of the compromise required such tha t a single mode estimator will track 
adequately through more than one type of motion behavior. 

The Markov mode switching probabilities are given by H below, where hij 
represents the probability of switching to mode i from mode j . The modes 
are indexed from 1 to 3 in the order presented in Equation 2. 

H 
0.85 0.33 0.10 
0.15 0.34 0.05 
0.0 0.33 0.85 

The direct use of the C P T probabilities from S in Equation 4 were found to 
make the estimator too sensitive to errors in the classifier output , a^ forcing the 
estimator to be too trusting in a over evidence in the continuous measurements 
and the priors. To blunt this effect and achieve a bet ter balance between the 
discrete classifier outputs and the prior belief states, a more uncertain version 
of S was used in the DBN-based estimator, given as SDBN'-
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(I 
Rest 
Accel 

ConstVel 

p{a = Resting) 
0.75 
0.20 
0.10 

p(a = Moving) 
0.18 
0.67 
0.18 

p{a = RepPulse) 
0.07 
0.13 
0.72 

5.3 R e s u l t s S u m m a r y 

A marked improvement in overall tracking quality is demonstrated by the 
augmented multiple model estimator (iii) over the other two estimators. The 
test trajectory was partit ioned into phases by the motion of the target, and 
the estimator errors for each algorithm are tabulated in Table 1. The modal 
trajectory of the target consists of a sequence of {Resting^ Accelerating^ 
ConstantVelocity ^ Resting}^ and for the purposes of judging the performance 
of the estimators, the transition from ConstantVelocity to Resting is broken 
down into two phases (deceleration and resting, where velocity is nearly zero). 

The estimator tha t utilizes the output of the body motion mode classifier 
(iii) outperforms both of the other estimators in all motion phases. The perfor­
mance improvement is particularly notable in the deceleration portion of the 
trajectory, where this estimator is able to anticipate the deceleration based 
on visual cue of the ceasing of body motions by the target (as recognized by 
the body motion classifier). 

The mode probabilities calculated for each multiple model estimator are 
shown in Fig. 5, with (a) showing results from the estimator of (ii) which uses 
continuous measurements only, and (b) showing the results from estimator 
(iii). These results demonstrate tha t the uncertainties of the measurements 
and of the vehicle and target dynamics are too high to discern modal infor­
mation successfully without the extra information from the online classifier. 
The noisiness in the mode probabilities in (b) are primarily in response to 
errors in a. This response is momentary, countered by the evidence in the pri­
ors and continuous measurements, keeping overall s tate tracking errors due to 
classifier errors small. Velocity tracking results for the target 's velocity in the 
vertical direction and the 2-norm of the overall velocity error are presented in 
Fig. 6 (a) and (b), respectively. 

Table 1. Average of 2-norm of error in target velocity estimates (cm/s), by target 
motion phase. 

Estimator 
(i) UKF 
(ii) MM 

(iii) MM-DBN 

Restl 
1.1 
0.7 
0.4 

Accel 
2.4 
4.1 
2.3 

ConstVel 
1.4 
4.5 
1.2 

Decel 
3.1 
1.2 
1.1 

Rest2 
1.7 
1.3 
0.9 

Overall 
1.8 
2.5 
1.0 
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Fig. 5. Mode probability estimates calculated by (a) multiple model bootstrap, and 
(b) bootstrap utilizing DBN model and discrete mode observations. 
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Fig. 6. Velocity tracking results comparing performance with UKF, multiple model 
bootstrap (denoted MM), and bootstrap utilizing DBN model and discrete mode 
observations (denoted MM-DBN). (a) Tracking of velocity in vertical direction (m/s) 
[true velocity is in bold, dashed], (b) 2-norm of tracking error for target velocity 
(m/s). 
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6 Conclusion 

It has been shown tha t a significant advantage can be imparted to a multi­
ple model estimator of target velocity by incorporating the extra information 
from a vision-based body motion mode classifier. This information allows the 
estimator to discern the modes of the tracked specimen in spite of large uncer­
tainties present in the measurements, the dynamics of the vehicle and target, 
and the disturbances encountered by the tracking vehicle in the underwater 
environment. This approach allows the on-line estimator to interpret the scene 
in a way tha t is modeled after the manner in which human pilots do. With 
these improved estimates of the tracking target 's velocities, the performance 
of the tracking control system can be expected to improve, especially when 
tracking actively maneuvering targets. 
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Summary . This paper reports the development and at-sea deployment of a set of 
algorithms that have enabled our autonomous underwater vehicle, ABE, to con­
duct near-bottom surveys in the deep sea. Algorithms for long baseline acoustic 
positioning, terrain-following, and automated nested surveys are reported. 

1 Introduction 

This paper reports navigation algorithms tha t enable an underwater vehicle 
to accomplish fully autonomous scientific surveys in the deep sea. These al­
gorithms allow the vehicle to determine its position, to bottom-follow (main­
tain a constant height above seafloor terrain) and avoid obstacles, and to 
autonomously focus on the highest value par ts of a survey. 

Scientific exploration of the deep sea has traditionally been performed us­
ing inhabited submersibles, towed vehicles, and tethered remotely operated 
vehicles (ROVs). Autonomous underwater vehicles (AUVs) have begun to re­
place these vehicles for mapping and survey missions. Autonomous vehicles 
complement the capabilities of these existing systems, offering superior map­
ping capabilities, improved logistics, and improved utilization of the surface 
support vessel. AUVs are particularly well suited to systematic preplanned 
surveys using sonars, in situ chemical sensors, and cameras in the rugged 
deep sea terrain tha t is the focus of many scientific expeditions. Inhabited 
submersibles and ROVs remain the only option for manipulation tasks such 
as sampling, deploying and recovering experiments on the seafloor, detailed 
inspection, and servicing subsea instruments; however, high resolution maps 
from AUVs can facilitate these tasks. 

Figure 1 shows the Autonomous Benthic Explorer (ABE), a 6000 m au­
tonomous underwater vehicle tha t our team has been developing and deploy­
ing for fine-scale quantitative survey and mapping of the seafloor. ABE can 
survey at constant depth or bottom-follow even in rugged terrain, and it can 
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Fig. 1. Operations with the Autonomous Benthic Explorer (ABE): (left) ABE 
being recovered; (right) world map depicting ABE's 155 science dives. To date, 
ABE has surveyed a distance of over 2500 km in over 1300 h of bottom-time. The 
average depth of these dives was over 2000 m 

autonomously determine its position and drive tracklines with a precision on 
the order of several meters. ABE carries a variety of sensors, including scan­
ning and mult ibeam sonars; a magnetometer; a digital still camera; two sets 
of pumped conductivity and temperature probes; an acoustic Doppler current 
profiler (ADCP); several chemical sensors for hydrothermal plume mapping; 
and occasional mission-specific instrumentation. ABE's shape and thruster 
placement allow it to maintain control over a wide range of speed, and to stop 
or back up if necessary to avoid obstacles. 

ABE descends to the seafloor with the aid of a descent weight. ABE glides 
in a controlled spiral trajectory to ensure tha t it reaches the desired start­
ing point without consuming significant bat tery energy. After reaching the 
seafloor and performing a series of checks, ABE releases its descent weight to 
become neutrally buoyant and begins its survey. Throughout the dive, includ­
ing descent, ABE uses acoustic long-baseline (LBL) transponder navigation 
and, when in range of the bot tom (< 300 m), bottom-lock acoustic Doppler 
measurements to determine its position and velocity. 

A dive can consist of a mix of hydrothermal plume survey at constant 
depth, sonar and magnetics survey following the seafloor (at heights of 5 0 -
200 m), and digital photography (height of 5 m). ABE usually surveys until its 
batteries are depleted (between 15 and 30 hours depending on sensor pay load 
and terrain). At the end of its dive, ABE releases its ascent weight to become 
positively buoyant and returns to the surface. 

The remainder of this report is organized as follows: Sect. 2 summarizes 
scientific survey tasks tha t have motivated our AUV work, Sect. 3 reports 
an algorithm for acoustic positioning. Sect. 4 reports methods for terrain-
following and obstacle avoidance. Sect. 5 reports a technique for automated 
nested survey, and Sect. 6 presents a brief summary and conclusion. 



418 D.R. Yoerger et al. 

2 Precisely Navigated, Coregistered AUV Surveys 

Proximity to the seafloor, precise navigation, robust control, and coregistered 
sensors permit an AUV to characterize the seafloor and the near-bot tom en­
vironment with complementary sensing modalities on the meter-scale. This 
section summarizes scientific work in which ABE-derived bathymetric maps, 
magnetics maps, digital photos, and hydrographic maps have played critical 
enabling roles. 

Meter-scale bathymetric and magnetic maps made using ABE have pro­
vided geologists and geophysicists with new perspectives on important seafloor 
processes. Combined magnetics and bathymetric maps show crustal magneti­
zation, which permits the age and thickness of lava flows to be determined. 
Combined maps have also been used to identify volcanic features such as 
lava flow units [1], delimit their fronts, and estimate their thicknesses [2, 3]. 
Meter-scale bathymetric maps show tectonic features such as faults with great 
clarity, even enabling them to be resolved into multiple components [4]. In 
other cases, these maps have revealed the relationship between tectonic fea­
tures and morphology, such as volcanic domes [3], and hydrothermal vents [1]. 
ABE bathymetric maps have proved to be of sufficient detail and precision for 
one collaborator to reconstruct the tectonic history of a rift valley by compu­
tationally removing faults [5]. The result revealed a dome-like structure from 
which the valley evolved. On a recent cruise to the Atlantis Massif, detailed 
renderings of faults and the hydrothermal structures provided critical clues 
as to the mechanisms controlling the hydro-geology at the newly discovered 
Lost City hydrothermal vent site [6]. Digital photographs of the seafloor from 
ABE have provided details of lava flow types and effusion rates [3], sediment 
cover, and the distribution of benthic organisms. 

Water column data from ABE yields indications of hydrothermal plume 
activity and has been used to estimate heat flux from known hydrothermal 
vent sites, and to locate undiscovered sites on the seafloor. To estimate the 
heat flux from vent fields on the Juan de Fuca Ridge in the Northeast Pacific 
(47°54^ N, 129° 10^ W) [7], ABE measured temperature , salinity, and three-
axis water velocity while repeatedly executing a tight grid pa t tern above the 
field [8]. Recently ABE located and preliminarily characterized several pre­
viously unmapped hydrothermal sites on the Eastern Lau Spreading Center 
(ELSC) south of Tonga (21°08' S, 175° 12' W) [9]; and on the Southern Mid 
Atlantic Ridge (SMAR) north of Ascension Island ( 7 ° 5 r S, 14°22' W) [10]. In 
each case, we started with clues provided by towed systems tha t indicated a 
vent site within several kilometers. ABE then executed a three-dive sequence 
[9, 10] of grid pat terns at increasing finer scales and increasingly close to the 
seafloor. To plan each dive, the scientific par ty carefully scrutinized the da ta 
from the previous dive along with any available ancillary data . 

These vent prospecting missions capitalized on ABE's ability to conduct 
precisely navigated surveys at scales O (m-km) , to operate over rugged ter­
rain, and relied on nearly all of ABE's sensing modalities. Figure 2 shows 
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tracklines from sequence of dives designed to locate and survey a vent site on 
ELSC along with a sampling of the variety of data products acquired and used 
to plan each stage of the dive sequence. ABE mapped plume activity (tem­
perature, optical backscatter, and reduction-oxidization potential (eH) [11]) 
to pinpoint the locations of plumes emanating from the field, built fine-scale 
bathymetric maps of the vent fields and surrounding environment, and finally 
photographed the vent structures and animal populations. 

The remainder of this paper presents the underlying algorithms that en­
abled ABE to perform this work. 

3 Real-Time Long Baseline Acoustic Navigation 

Acoustic navigation from a set of seafloor transponders [13, 14] provides a 
critical capability for a seafloor mapping AUV. By georeferencing transponder 
location using GPS, the vehicle's position on the globe can be determined to 
within a few meters. 

Long-baseline (LBL) positioning refers to the determination of position via 
interrogation of two or more fixed transponders separated by large distances 
(long baselines). The transponders all listen for a particular interrogation 
code and then reply immediately with their own unique codes. An AUV can 
determine its own position within a subsea LBL net as follows: 

1. Before the vehicle is launched, an array of two or more acoustic transpon­
ders are moored near the seafloor. Their position and depth are de­
termined by concurrently measuring acoustic travel times between each 
transponder and a number of different GPS-referenced vessel positions. 

2. After launch, the vehicle repeatedly interrogates the transponders on a 
regular cycle and measures the time between the outgoing interrogation 
code and incoming replies from each transponder. 

3. From these travel times, slant ranges to each transponder are computed 
using knowledge of the local sound speed profile, and are then projected 
onto the horizontal plane with knowledge of vehicle depth. 

4. The horizontal position of the vehicle is then determined either through 
deterministic trilateration (two ranges received; relative position of base­
line known), or through a nonlinear least-squares calculation (three or 
more ranges received). 

Figure 3 shows acoustic travel time and range data from an ABE dive 
that illustrates many of the difficulties in autonomously processing LBL data. 
The upper panel of the figure shows many returns that do not correspond to 
the direct, round-trip path between transponder and vehicle. Some of these 
returns are distributed somewhat randomly, while others are systematic. The 
systematic incorrect returns correspond to paths that include either one or 
two reflections off the surface, so called bounce paths. These could be used for 
positioning if properly identified [15]. Returns from the previous cycle that 
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Fig. 2. Data products from a series of nested surveys whose purpose was to locate 
the source vent field of a hydrothermal plume near on the ELSC: (a) vehicle track-
lines from the four nested surveys; (b) multibeam bathymetry overlain with vehicle 
tracklines; (c) closeup of bathymetry showing spires of hydrothermal origin (no ver­
tical exaggeration); (d) photomosaic created automatically [12] from six individual 
photographs. We relied primarily on water column hydrothermal tracer data (not 
shown) to drive the design of each survey stage. 
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Fig. 3 . Acoustic travel-time processing for long-baseline navigation: (top) raw 
acoustic travel times from three transponders, indicated by color, received by the 
vehicle during a survey operation; (bottom) filtered ranges computed by the vehicle 
in real-time. The labels indicate many of the pathologies of long baseline data: sur­
face bounces, wrapped returns, missed returns, and nonstationary noise. The filtered 
results show that the median test and range gates in ABE's LBL navigation algo­
rithm (Fig. 4) have largely rejected systematic, but incorrect returns from bounce 
paths and from previous cycles (wrap-around), and have also rejected most random, 
unsystematic returns 

exceed the cycle period show up as short, consistent ranges (wrap-around). 
Reflections from terrain can provide consistent, incorrect returns as well. The 
distribution of unsystematic, random returns can change dramatically over 
the course of a dive, and we have even seen periods of uncor rec ted returns 
due to active interrogation of the transponders by marine mammals. In sum­
mary, LBL range da ta is systematically corrupted by noise processes with 
non-Gaussian, nonstationary error distributions. 

Because of these inherent difficulties, our LBL algorithm for autonomous 
AUV navigation (Fig. 4) emphasizes reliability over accuracy. The algorithm 
is self-starting and recovers gracefully from long periods of bad data . For 
instance, if the algorithm calculates a bad position due to unanticipated cir-
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cumstances (e.g. a consistent reflection off a steep cliff), the computed position 
returns quickly to the correct position when the anomalous condition passes. 

Much of the algorithm's reliability derives from the use of a median test 
for range consistency and from range gates tha t eliminate consistent bounce 
paths . These tests prevent most incorrect ranges from entering into fix com­
putat ion. Both the capabilities and limitations of this portion of the algorithm 
are evident in the lower panel of Fig. 3. The indirect and wrap-around returns 
have been rejected as have nearly all the random returns. Even dense sections 
of noisy returns result in only a few bad ranges being accepted, and these 
single returns were rejected by the residual test when the fix was computed. 
The weakness of the median test is also evident: when the percentage of good 
ranges drops to near 50% or lower, the median test drops most ranges. Despite 
this weakness, we employ the median test for its predictability and ability to 
recover quickly from extended periods of bad data . 

When the vessel is close enough to the vehicle, we observe the vehicle's 
position from the support vessel by monitoring the arrival time of the in­
terrogation pulse from the vehicle and the corresponding replies from the 
transponders. This process is simplified if the time at which the interrogation 
is initiated at the vehicle is known. ABE's LBL cycle is controlled by a pre­
cise clock (accurate to 2 par ts in 10'', i.e. a drift of about 1 m s / h ) . From the 
vessel, we periodically interrogate a separate transponder on the vehicle to 
measure the slant range to the vehicle. Comparing this range to tha t implied 
by the interrogation pulse allows the start time of the acoustic cycle to be 
determined and any clock drift to be tracked. 

4 Bottom-Following and Obstacle Avoidance 

To execute mapping missions successfully, ABE must drive commanded track-
lines and avoid unexpected obstacles. On seafloor imaging dives, ABE must 
also follow the seafloor at a prescribed height to ensure proper sonar (height: 
50-200 m) and camera (height: 5 m) performance. Bottom-following and ob­
stacle avoidance become especially difficult during photographic surveys, as 
the vehicle must cope with steep-sided features such as hydrothermal spires 
and scarps tha t are many times the nominal survey height (Fig. 1(c)). Spires 
and volcanic collapse pits frequently have overhanging structures tha t present 
a substantial threat , as the vehicle has no up-looking sonars and could become 
trapped. 

Our a priori knowledge of the seafloor bathymetry is rarely sufficient to 
permit preplanning, therefore ABE's terrain-following algorithm (Fig. 6, left 
panel) relies strictly on real-time height da ta from three different sonar devices 
(two down-looking, one forward looking). The algorithm uses the height da ta 
to command the set-point for the depth controller, which remains active since 
the depth sensor is more reliable than the bottom-finding sonars. The depth 
setpoint is varied to keep the height off bo t tom within a prescribed depth 
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Fig. 4. Block diagram of our long baseline acoustic navigation processing algorithm. 
After converting travel times to ranges, a median test eliminates ranges that lack 
consistency over time. Consistent ranges may still be excluded before entering into 
the fix-computation portion of the algorithm if they fall outside of range gates 
derived from estimated position and expected bounce path lengths. Fixes are then 
computed with all available ranges; if three or more ranges are available, a least-
squares solution is computed. Before a computed fix finally enters the vehicle's state 
estimate, it is checked for good transponder/vehicle geometry and sufficiently low 
residual error. 
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envelope. The envelope is established based on the desired depth, the desired 
height off bottom, and a prescribed thickness. The algorithm recomputes the 
envelope at each iteration based on the shortest of all reported ranges; how­
ever, it updates the depth setpoint only when the setpoint strays outside the 
envelope. When this happens, the algorithm recenters the commanded vehicle 
depth setpoint within the current envelope. 

Tighter envelopes require the commanded vehicle position to follow the ter­
rain more closely, but this requires increased vertical thruster activity and in­
creases power consumption. When climbing or descending steadily, the depth 
set-point advances in steps. Additionally, forward thrust is reduced when the 
vehicle cannot change depth rapidly enough to stay in the envelope. Large 
deviations from the prescribed envelope, such as might be caused by the sud­
den proximal detection of a hydrothermal spire, cause the vehicle to reduce 
or even reverse forward thrust. The tight coupling between forward thrust 
and ABE's bottom-following and obstacle-avoidance performance takes ad­
vantage of ABE's ability to maintain control over a wide speed range. Figure 
6 shows an example of bottom-following performance during a sonar survey 
at a nominal height of 40 m with a 10 m envelope. 

5 Automated Nested Survey 

This section describes our approach to data-driven nested survey for increas­
ing the yield of high value data from unexplored hydrothermal vent fields. 
The critical component is a mapping algorithm (Fig. 7) that condenses hy-
drographic data acquired by our vehicle into a compact, two-tiered spatial 
representation of seafloor regions likely to contain active hydrothermal vents. 
We have implemented and field-tested the algorithm on near-bottom photo-
surveys. After completing the preplanned portions of these dives, ABE used 
maps constructed by the algorithm to plan additional tracklines over ac­
tively venting hydrothermal structures. These autonomously-directed addi­
tional surveys yielded improved coverage over high-value targets at a fraction 
of the cost of additional dives. Additional dives would have been necessary 
had human interpretation of the data been required. 

The first tier representation produced by the algorithm consists of multiple 
fixed-length sorted lists of hydrographic measurements classified as indicative 
of hydrothermally altered water, relative the rest of each data set. Prior to 
classification, the raw data are filtered in time to enhance signals associated 
with venting, to compensate for sensor dynamics, and to reduce noise. For 
convenience, we filter the data such that large positive values cause measure­
ments to be selected. As each new measurement arrives, its filtered value is 
compared with the least positive member in the corresponding list. Favorable 
comparisons cause the new measurement to be stored along with the vehicle's 
current location and the original list member to be discarded. This compo­
nent of the algorithm is executed iteratively, with list-lengths set to O (0.1%) 
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Fig. 5. ABE's bottom-following algorithm 

of the total number of sensor measurements expected. The iterative imple­
mentation eliminates the need for batch processing of entire data sets, which 
often consist of O (lO^) measurements per sensor. 

The second tier consists of spatial groupings (clusters) of the selected mea­
surements from the first tier. We use maximum inter-measurement distance 
as the criterion for cluster membership, set to twice the trackline spacing. 
Each stored measurement location is treated independently of its associated 
data type when deciding cluster membership. The algorithm then assigns a 
scalar value to each cluster that represents the relative value of revisiting the 
area circumscribed by that cluster (its revisitation-merit). The revisitation-
merit of a cluster reflects both the ranking of its member measurements in 
their respective lists, and prior knowledge about the relative importance of 
each sensor in identifying hydrothermally altered water: first the filtered val­
ues stored in each list of selected measurements are normalized, then scaled 
according to data type, and finally summed to arrive at a scalar value for 
the cluster's revisitation-merit. Since the first tier of the algorithm consists of 
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Fig. 6. Bottom following performance during a sonar survey at a height of 40 m: 
(top) vehicle depth, control envelope, and bottom trace as a function of distance 
traveled; (middle) vertical thrust; (bottom) forward thrust. These plots show that 
the bottom following algorithm (Fig. 5) makes infrequent adjustments to the com­
manded depth in mild terrain, driving with constant forward thrust and drawing 
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only a small fraction of the total da ta acquired, the computational costs of 
clustering are modest. 

Thus far our approach to autonomous survey design based on these maps 
has been conservative. We have predefined the extent, spacing, and orienta­
tion of additional tracklines, leaving only absolute position to be determined 
in real-time as the centroid of the highest ranked cluster. Other procedures 
for autonomous survey design based on these maps might for instance define 
survey extent to cover member points such tha t some fraction total cluster 
value is included, or such tha t survey bounds completely encompass a clus­
ter. These alternate strategies transfer much more of the onus of data-driven 
survey design to the vehicle and we anticipate they will improve performance 
by virtue of more tightly coupling da ta and trajectory generation. 

Our strategy requires tha t an AUV survey an entire site to first build a map 
of high-re visitation-merit features before it makes any autonomous decisions. 
This approach to nested survey permits the vehicle to focus on the most 
interesting features, rather than relying on careful design of a threshold [16] to 
trigger pursuit of all potentially interesting features as they are encountered. 
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For the problem of detecting and locating hydrothermal vents, our approach 
may require the vehicle to cover more ground than a triggered approach would; 
however, the vehicle is less likely to spend time exploring false alarms or low-
value targets. 

To date we have applied our methodology to a total of four near-bot tom 
photo-survey dives on two expeditions with ABE (ELSC and SMAR). Of 
these four dives, three returned with additional photographs of vent structures 
and associated fauna. A camera problem prevented the single unsuccessful 
survey from returning any photographs at all, but even after careful scrutiny 
of the intact da ta from the dive, the autonomously-directed portion of the 
unsuccessful dive became the basis of a subsequent preplanned dive. The right 
panel of Fig. 7 shows example results from a dive to a hydrothermal site on 
the ELSC. The output of the mapping algorithm is shown at the conclusion 
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of the preplanned portion of the dive along with the autonomously-directed 
portion of the dive. The latter portion comprised only 5% of total dive time, 
yet it yielded a 36% increase in the number of photographs with high scientific 
value. 

Our goal on future expeditions is to apply the same map-based strategy 
to automate the sequence of successively higher resolution and lower altitude 
surveys currently employed to find hydrothermal vent sites on the seafloor 
with ABE (Fig. 1(a)). 

6 Conclusion 

We describe a set of algorithms tha t have been successfully used in the field 
with our autonomous underwater vehicle, ABE. We present our algorithm for 
processing acoustic long baseline returns tha t enables the vehicle to reliably 
determine its position despite the non-Gaussian noise properties of the data . 
We report on the algorithm tha t permits ABE to follow the seafloor even in 
very rugged terrain. Finally we report on an algorithm for automated, nested 
survey tha t permits ABE to automatically revisit sites of high interest. 

We have used ABE, enabled by these algorithms, to build detailed sonar 
maps and photomosaics, and to locate and characterize deep sea hydrothermal 
vent sites. These mapping results have yielded scientifically significant da ta 
in their own right, and have enabled follow-up expeditions using remotely 
operated vehicles to efficiently perform detailed survey and sampling. 
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Summary. Large area mapping at high resolution underwater continues to be 
constrained by the mismatch between available navigation as compared to sensor 
accuracy. In this paper we present advances that exploit consistency and redun­
dancy within local sensor measurements to build high resolution optical and 
acoustic maps that are a consistent representation of the environment. 

We present our work in the context of real world data acquired using Autono­
mous Underwater Vehicles (AUVs) and Remotely Operated Vehicles (ROVs) 
working in diverse applications including shallow water coral reef surveys with 
the Seabed AUV, a forensic survey of the RMS Titanic in the North Atlantic at a 
depth of 4100 meters using the Hercules ROV and a survey of the TAG hydro-
thermal vent area in the mid-Atlantic at a depth of 2600m using the Jason II ROV. 

Specifically we focus on the related problems of Structure from Motion and 
Visually Based Navigation from underwater optical imagery assuming pose in­
strumented calibrated cameras. We present general wide baseline solutions for 
these problems based on the extension of techniques from the SLAM, photo-
grammetric and the computer vision communities. We also examine how such 
techniques can be extended for the very different sensing modality and scale asso­
ciated with multi-beam bathymetric mapping. For both the optical and acoustic 
mapping cases we also show how the consistency in mapping can be used not only 
for better mapping but also to refine navigation estimates. 

1 Introduction 
A number of oceanographic applications require large area site surveys 
from underwater imaging platforms. Such surveys are typically required 
to study hydrothermal vents and spreading ridges in geology [1], ancient 
shipwrecks and settlements in archaeology [2], forensic studies of modern 
shipwrecks and airplane accidents [3,4], and surveys of benthic ecosystems 
and species in biology [5]. Scientific users in these disciplines often rely 
on multi-scalar, multi-sensor measurements to best characterize the envi­
ronment. 
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At finer scales, for resolutions down to millimeters, optical imaging of 
the seafloor offers scientists a high level of detail and ease of interpreta­
tion. However, light underwater suffers from significant attenuation and 
backscatter, limiting the practical coverage of a single image to a few 
square meters. To cover larger areas of interest, hundreds or thousands of 
images may be required. The rapid attenuation of the visible spectrum in 
water implies that a composite view of a large area (or photomosaic) can 
only be obtained by exploiting the redundancy in multiple overlapping im­
ages distributed over the scene. Although there has been considerable ef­
fort in this regard for land-based applications, the constraints on imaging 
underwater are far different. Mosaicing assumes that images come from an 
ideal camera (with compensated lens distortion) and that the scene is pla­
nar. Under these assumptions the camera motion will not induce parallax 
and therefore no 3D effects are involved and the transformation between 
views can then be correctly described by a 2D homography. These as­
sumptions often do not hold in underwater applications since light attenua­
tion and backscatter rule out the traditional land-based approach of acquir­
ing distant, nearly orthographic imagery. Underwater mosaics of scenes 
exhibiting significant 3D structure usually contain significant distortions. 
In contrast to mosaicing, the information from multiple underwater views 
can be used to extract structure and motion estimates using ideas from 
structure from motion (SFM) and photogrammetry. 

For coarser resolutions (O(lOcm)), but covering far greater (O(10m-
100m)) swaths, acoustic sensing centered at several hundred kilohertz is 
the modality of choice. Multi-beam sensors mounted on underwater plat­
forms can provide high resolution three dimensional scans of the environ­
ment that can be transformed into bathymetric maps. 

Unfortunately for both optical and acoustic sensors, the fundamental 
limitation in converting high resolution sensor measurements into quantita­
tive maps is the mismatch between sensor accuracy and navigation as illus­
trated schematically in Figure 1. Due to the rapid attenuation of the elec­
tromagnetic spectrum, GPS signals are not available underwater. Instead 
underwater imaging platforms typically rely on a combination of acoustic 
transponders and inertial navigation systems. Acoustic transponders [6], 
like sonar systems, must trade off range for resolution. Although trans­
ponders have been built to work as high as 300kHz providing centimeter 
level accuracy over an area of 100 square meters, the typical large area 
surveys utilize lower frequency (8-13 kHz) long-baseline transponders that 
provide meter level accuracy across several kilometers. The deployment 
of such systems is nontrivial and usually requires significant time and ef­
fort as each individual transponder must be deployed and its position inde­
pendently calibrated. 
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Inertial navigation sensors such as Doppler velocity logs used in combi­
nation with fiber optic or ring laser gyros can provide navigation estimates 
underwater [7] that grow as a function of time (distance traveled). How­
ever, such systems inherently provide an estimate whose error characteris­
tic grows without bound over time (distance). Although expensive, from a 
cost, power and size standpoint, these systems are far easier to use as they 
are integral to the underwater vehicle and as such do not require any extra 
effort for deployment and use. 

Fig. 1. A schematic of error sources for high resolution optical and acoustic deep 
water mapping. Vehicle based mapping is navigationally limited in comparison to 
other potential error sources. 

2 Structure from Motion Underwater - The Two-View Case 

As outlined above, the fundamental problem of obtaining a large area per­
spective of an underwater scene is constrained by the attenuation and 
backscatter of light, the highly unstructured nature of underwater terrain, 
and issues associated with moving lighting on underwater robotic vehicles. 

Our methodology for Structure from Motion takes a local to global ap­
proach inspired by mosaicing and other land-based applications of SFM 
[8-12] but differs in that it takes advantage of navigation and attitude in­
formation [13]. Local sequences are derived independently [11] and then 
registered in a global frame for bundle adjustment [10]. Our approach 
seems more suitable than pure sequential methods [9,11] because in an un-
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derwater survey each 3D feature appears only in a few images making the 
global solution look more like a series of weakly correlated local solutions. 

We relate images using a feature-based approach under wide-baseline 
imaging conditions with changing illumination and unknown scene struc­
ture. A modified Harris comer detector yields interest points by selecting 
local maxima of the smaller eigenvalue of the second moment matrix. We 
extract features by determining a neighborhood around each interest point 
that is invariant to affine geometric transformations. In essence, we sam­
ple the neighborhood along lines radiating from the interest point. For 
each line we select the extrema of an affine invariant function (maximum 
difference in intensities between the interest point and points along the 
ray). The set of these maximal points defines the boundary of a region that 
can be extracted under affine geometric transformations. This region is 
approximated with an elliptical neighborhood which is then mapped onto 
the unit circle. These circular patches are normalized for affine photomet­
ric invariance. Features are then represented compactly using moment-
based descriptors. We chose to use Zernike [13] moments as descriptors 
for their compactness and highly discriminative nature. 

The core of the algorithm for SFM is based on robust estimation of the 
essential matrix [8]. Similarity of descriptor vectors is used to propose 
correspondences between features. The navigation-based estimates of in­
ter-image motion and vehicle altitude are used to limit possible correspon­
dences by propagating pose and altitude uncertainties through the two 
view point-transfer equation [13] as shown in Figure 2. A modified ver­
sion of RANSAC determines the correspondences which are consistent 
with that essential matrix and the essential matrix consistent with the inli-
ers as illustrated in Figure 3. In cases of multiple valid solutions we select 
the one closest (in the Mahalanobis distance sense) to the navigation-based 
prior. The inliers and the essential matrix estimate are used to produce a 
maximum a posteriori estimate of relative pose with the navigation-based 
estimates as a prior. The solution includes the triangulated 3D features. 
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Fig. 2. Prior pose restricted correspondence search on a pair of underwater coral 
reef images. A sampUng of interest points are shown in the top image along with 
their color coded sensor instantiated epipolar lines. The bottom image shows the 
corresponding color coded constrained search regions for the interest points in the 
top image; the sensor instantiated epipolar lines; and the candidate interests points 
which fall within these regions. 
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Fig. 3. Epipolar geometry and correspondences. The given image pair illustrates 
the maximum likelihood refined image-based epipolar geometry. RANSAC de­
termined 106 consistent inliers designated 'x', from the putative set of 116 
matches. The rejected outliers are designated 'o'. 

3 Large Area Structure from Motion 

The temporal sequence of images is processed into a set of 3D submaps 
with estimates of coordinate transformations between temporally adjacent 
submaps (Figure 4). This can be viewed as a graph where each node is the 
origin of a submap and the edges in the graph are the coordinate transfor­
mations between submaps. Our algorithm attempts to establish additional 
spatial relationships between submaps corresponding to overlap from par­
allel tracklines or loop closures. 

While the sparse set of 3D points contained in the submaps do not con­
sistently offer discriminating structure, the very fact that they exist as 3D 
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points implies that their appearance in multiple views is characteristic 
enough to effectively establish correspondences and be reconstructed by 
the SFM algorithm. We therefore extend the feature description and simi­
larity based matching between images to matching submaps by relying on 
the appearance of 3D points to propose corresponding features between 
submaps. The average of the descriptors of the 2D neighborhoods on all 
views is used as the appearance of the 3D point. The underlying assump­
tion is that a similarity measure which was effective to match 3D points 
along track will also be effective when matching across submaps. Corre­
sponding 3D points are proposed based on appearance and a robust regis­
tration using RANSAC with Horn's algorithm [20] is used to determine 
which points are in correspondence and the transformation parameters. 

The search of additional links continues until no links are left to check 
or an upper limit is reached (we use eight times the number of submaps for 
sparse, locally-connected graphs). The submaps are then placed in a 
global frame by minimizing the discrepancies between composed global 
estimates and the transformations between submaps. Additional cost terms 
consider the navigation prior. 

Once submaps are in a global frame, camera poses within submaps can 
also be placed in the global frame. These camera poses are then used to 
triangulate the location of 3D features. Sparse bundle adjustment then re­
fines both camera poses and 3D feature locations. 

Figure 5 illustrates this process. The results are from a survey per­
formed in the Johns Hopkins University (JHU) Hydrodynamics Test Facil­
ity using the JHU ROV. As shown in the figure the results were highly 
consistent with ground-truth obtained by draining the test tank and laser 
scanning the scene geometry. We have also obtained similar results from a 
survey using the Seabed AUV at a coral reef off of Bermuda [5]. 
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Fig. 4. Two views of the registered submaps derived from images sequences that 
correspond to two neighboring sections along the images shown in figures 2 and 3. 
The blue and green dots correspond to features from the neighboring tracklines 
that have been successfully co-registered. 
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I 
Fig. 5. (Left) Two views of the reconstruction of poses and structure for the JHU 
tank dataset. The camera poses are connected by a red hne. A Delaunay triangu-
lation interpolates a surface between 3D feature points. The structure is color-
coded according to height. Units are in meters. (Right) Distance map from SFM 
3D points to the ground-truth laser scan after ICP registration. Areas of large dis­
crepancies tend to correspond to the carpet being buoyant for the visual survey. 
An outlier in the reconstruction produced the large error visible at approximately 
x=1.4m, y=0.8m. 

4 Self Consistent Bathymetric Mapping 

Another application of our techniques arises from the case of multi-beam 
mapping [16] where the areas of interest encompass several square kilome­
ters that are typically mapped with a sonar with ten centimeter sensor ac­
curacy but where the navigation from the standard combine of long base­
line transponders and inertial navigation is only good to a meter. To avoid 
this navigation limitation we break the total mapping problem down into 
small pieces, each of which contains internal errors typical of the mapping 
sonar rather than the navigation [19]. This is accomplished by assembling 
small bathymetry sub-maps using only the short term dead reckoning in­
formation provided by the vehicle navigation sensors. Algorithmically this 
is accomplished using a delayed state Extended Kalman Filter (EKF) and a 
simple constant velocity dynamic model of the vehicle motion. This sim­
ple model is sufficient given the slow dynamics typical of underwater sur-
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vey vehicles. The current estimate of the filter state vector contains the 
position and velocity information required for a 6 degree of freedom 
(DOF) state estimate. The delayed portion of the state vector is used to ar­
chive historical poses of the vehicle which serve as local 6 DOF origins for 
the small sub-maps. 
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Fig. 6. The delayed state EKF block diagram. The sub-mapping algorithm util­
izes vehicle navigation data to create small bathymetric sub-maps. The sub-map 
origins are held in a delayed state vector and used to create relative pose meas­
urements that reduce navigation error. 

After accounting for issues specific to acoustic sensors such as possible 
errors associated with weak returns, beam patterns effects resulting in the 
acoustic pulse not striking the bottom, and other false detections, we can 
approximate the sonar as a three dimensional line scanner. These line 
scans are assembled into sub-maps using the range data and the vehicle 
position estimates extracted from the state vector at the time each sonar 
ping is taken (Figure 6). 

The individual beam ranges are projected and kept as points (soundings) 
in 3D dot clouds referenced to the delayed state local origins (Figure 7). 
Sub-maps are sized by collecting pings in this manner over short time 
scales during which the vehicle position error associated with the inertial 
navigation is considered small. A sub-map is broken, and a new one 
started, when the one of several condition are met. A map will be broken 
when the terrain contained in the map has sufficient 3D structure, the map 
has become too large or has poor outline shape, or when the estimate of 
vehicle position uncertainty relative to the map origin becomes greater 
than a threshold consistent with mapping sonar accuracy. The position er­
ror based end condition is designed to keep the navigation errors from cor­
rupting the mapping data. 
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The mapping error growth associated with navigation errors across the 
entire survey is reduced by registering the terrain sub-maps to one another 
and generating relative position measurements between previously visited 
vehicle states. The sub-maps are compared and aligned using a 2 DOF 
translation based on correlation followed by a 6 DOF alignment with a 
modified Iterative Closest Point (ICP) [17,18] approach. Improved regis­
tration results are obtained by selecting matching points bases on the qual­
ity of the individual sonar returns [19,21,22]. The end result of the algo­
rithm is a constraint network, between the sub-map origins (Figure 8). 
This network enforces consistency based on the sub-map alignments and 
helps to significantly reduce the inconsistency that would be present if 
navigation was used alone to produce the terrain map. 

Fig. 7. Two sample sub-maps showing their outlines and local reference frames. 
Note the fine scale features that can be resolved individually within each sub-map. 
Normal smoothed navigation tends to blur these real and often significant features, 
cf Figure 9. 
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Fig. 8. Sub-mapping pose network. This pose network was established by the 
sub-mapping algorithm. Nodes indicate the location of the sub-map origins. Blue 
links indicate consecutive poses in time. Green links indicate where relative pose 
measurements were made. Magenta links indicate links that were tried but not es­
tablished. The uncertainty ellipses have been scaled in size by 8 times for visibil­
ity. Note that the poses fall into alignment with the LBL fix locations even though 
this algorithm did not utilized LBL measurements. This survey consisted of 62 
sub maps and 92 established links. 
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Fig. 9. Error in bathymetric mapping as measured by self consistency across mul­
tiple sub-maps. (Left) Map to map surface error for our algorithm versus (right) 
map to map surface error using a standard smoothing method. 
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Fig. 10. A comparison between the terrain map created using sub-mapping, (top), 
and a version of the map created using a standard smoothing method (bottom). 
The sub-map created map shows significantly less registration error and sonar 
scan patterning. The sub-mapped version also brings out details that were lost in 
the smoothed map due to mis-registration. 
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Another application of our techniques arises from the case of multi-
beam mapping [21] where the areas of interest encompass several square 
kilometers that are typically mapped with a sonar with ten centimeter sen­
sor accuracy but where the navigation from the standard combination of 
long baseline transponders and inertial navigation is only good to a meter. 

The results of our framework are illustrated in Figures 9 and 10 using 
data collected by the Jason ROV at the TAG Hydrothermal Vent Site lo­
cated at a depth of 2600 meters on the mid-ocean ridge in the Atlantic 
Ocean. One can see that the resulting map is a far better representation of 
the environment. We have also used consistency within the submaps to 
derive corrected navigation estimates for the vehicle trajectory over the 
course of the survey. 

5 Visually Augmented Navigation 

We can further build upon the delayed-state EKF framework and two-view 
structure from motion case to formulate a vision-based simultaneous local­
ization and mapping (SLAM) approach to providing high precision, accu­
rate navigation measurements on an underwater robotic vehicle. Similar to 
the bathymetry-based EKF submapping strategy, our methodology is to 
employ pairwise-generated image measurements as spatial constraints in a 
graph over a collection of historical vehicle poses. However, because we 
are able to generate camera measurements at the pairwise level, we choose 
to instead maintain all pose samples that are associated with image acquisi­
tion (Figure 11). This differs from the aggregate submapping strategy 
used for bathymetry-based navigation and implies that the EKF's scalabil­
ity becomes a severe issue (due to the quadratic complexity of maintaining 
the covariance) as the image-based navigation uses orders of magnitude 
more delayed-states. 

camera 

camera camera 

Fig. 11. The above diagram is a conceptual depiction of the delayed-state graph 
network and its constraints. 
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A well known and very attractive property of formulating SLAM in the 
information form is that the information matrix (as in Fisher information) 
has the direct interpretation as a Gaussian graphical model [23,24]. Spar-
sity in this model (i.e., missing edges) implies available conditional inde­
pendencies in the joint-distribution, which can be exploited to realize effi­
cient inference. While others have shown that the feature-based SLAM 
information matrix obeys a "close-to-sparse" structure when properly nor­
malized [14,25] in our formulation of view-based SLAM [15], the infor­
mation matrix is exactly sparse without having to make any sparse ap­
proximations. This implies that for a bounded graph structure, as is the 
case with typical underwater surveys, view-based SLAM systems com­
prise a sparse information parameterization without incurring any sparse 
approximation error. 

Based upon this insight, we have implemented a view-based SLAM sys­
tem for underwater applications built around fusing 6-DOF relative-pose 
camera measurements from monocular overlapping seafloor imagery with 
traditional underwater vehicle dead-reckon navigation sensors. Our state 
vector consists of samples from the robot's trajectory acquired at image ac­
quisition and is maintained using an exactly sparse delayed-state filter 
(ESDF) [15]. We use our two-view image registration engine to provide 
non-Markov edge constraints in the corresponding pose network. These 
"spatial" edges constrain the pose graph and enforce global consistency 
from local constraints. This system was tested with data collected using 
the Hercules ROV operating at a depth of 3750 meters at the wreck of the 
RMS Titanic. The survey covered an area of about 3100 square meters on 
the seafloor with a accumulated survey path length over 3.4 kilometers. 
Results are shown in Figure 12. 
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Fig. 12. Results from visually mapping the RMS Titanic. (Top) An XY plot 
comparing the raw dead-reckon navigation data (gray), ship-board ultra-short 
baseline tracking (brown), and reconstructed survey trajectory from a vision-based 
6 DOF SLAM information filter (red). (Middle) A photomosaic of the RMS Ti­
tanic constructed from the digital still images and (Bottom) the complete 6 DOF 
visually based navigation results for the entire survey. 
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6 Conclusions 

In this paper we have highhghted some of the fundamental issues associ­
ated with the lack of precise and accurate navigation and how they affect 
our ability to conduct high resolution mapping efforts in the deep sea. We 
have presented three different applications of systems level approaches for 
deep water mapping that exploit vehicle attitude and navigation informa­
tion and enforce local and global consistency within sensor measurements 
to yield superior mapping results commensurate with sensor accuracy. 
While improving mapping fidelity these methods also provide us with in­
dependent mechanisms for ground-truthing, refining and bounding the 
coarse navigation estimates that are typical in the deep ocean. 

These algorithms are applicable across the entire suite of imaging and 
robotic underwater vehicles - manned, towed, tethered and autonomous. 
Our work in these areas is continuing with an emphasis on implementing a 
number of these algorithms in real-time on board the vehicles to better 
help us exploit our precision mapping algorithms for real-time adaptive 
surveys. 
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In the evolution of robotics, robots have been increasingly operating in a va­
riety of environments, unstructured, and dynamically changing over time. It 
has been clear since the first progresses of advanced robotics how the capabil­
ity of perceiving the environment and of behaving accordingly is critical for 
robots. 

Learning and adaptive behavior are therefore basic capabilities for most 
categories of robots, being them applied in services, in assistance, in au­
tonomous tasks. 

Though different in shape and functions, most robots share a common 
mechatronic structure, which integrates mechanisms, actuators, sensors, elec­
tronics, control, and power supply. Such structure interacts on one side with 
the external world and with a human user, on the other. 

Learning and adaptive behavior is first of all needed for (autonomous) 
interaction with dynamic environments. 

Considering the closer and closer interaction tha t robots have with human 
beings, learning and adaptive behavior is becoming increasing important also 
in the interaction with the human user. Robots are going to become more 
similar to personal assistants than to appliance, and a fruitful interaction 
requires tha t the robot and the user know each other, learn each other 's habits 
and preferences, and adapt to each other. 

Finally, biological inspiration in robotics is leading to complex structures 
with many sensor and unconventional actuators. Still following a biological in­
spiration, learning often plays an important role in the development of sensory-
motor coordination on such structures. Furthermore, leading-edge research is 
also investigating the development of mechatronic structures tha t can change 
over time and evolve, so tha t it is required tha t robots have the capability to 
adapt to the modifications of their own bodies. 

The papers in the ISRR 2005 session on "Learning and Adaptive Behavior" 
presented new advances in different aspects of this area. 

The first paper, "Semantic labeling of places", by Cyrill Stachniss, Oscar 
Martinez Mozos, Axel Rot tmann, and Wolfram Burgard, presented a novel 
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approach to classify different places in the environment of a mobile robot, into 
semantic classes. This approach was successfully validated both in simulation 
and with real robots. The algorithm developed by the authors allows a mobile 
robot to identify typical environmental places, like rooms, hallways, doorways, 
and other, and to classify them into semantic classes. The robot thus gets 
the capability of interpreting its operational environment and also to share 
semantic knowledge with human users. 

The second paper, by Yasuo Kuniyoshi, Shinsuke Suzuki, and Kyosuke 
Shiozumi, presented "Emergence, Exploration and Learning of Embodied Be­
havior" . In this case, learning is adopted to control a complex musculo-skeletal 
system. A novel model is proposed for dynamic emergence and adaptat ion 
of embodied behavior, based on a number of chaotic elements, each driving 
a muscle with local sensory feedback. The results obtained with a simula­
tion confirm tha t modeling the musculo-skeletal structure as a couple chaotic 
system allows to obtain emergent ordered pat terns tha t correspond to mo­
tor coordination pat terns, able to re-organize in response to environmental 
changes. 

The session was closed by the paper "Extracting places and activities 
from G P R traces", by Lin Liao, Dieter Fox, and Henry Kautz. The authors 
presented a novel approach to extract, simultaneously, activities and places 
of a person, from GPS data. Learning is used to identify pat terns of human 
behavior, which may results useful in a variety of human-robot interaction 
contexts. 
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Summary. Indoor environments can typically be divided into places with different function­
alities like corridors, kitchens, offices, or seminar rooms. We believe that the ability to learn 
such semantic categories from sensor data or in maps enables a mobile robot to more effi­
ciently accomplish a variety of tasks such as human-robot interaction, path-planning, explo­
ration, or localization. In this work, we first propose an approach based on supervised learning 
to classify the pose of a mobile robot into semantic classes. Our method uses AdaBoost to 
boost simple features extracted from vision and laser range data into a strong classifier. We 
furthermore present two main applications of this approach. Firstly, we show how our ap­
proach can be utilized by a moving robot for robust online classification of the poses traversed 
along its path using a hidden Markov model. Secondly, we introduce a new approach to learn 
topological maps from geometric maps by applying our semantic classification procedure in 
combination with probabilistic labeling. Experimental results obtained in simulation and with 
real robots demonstrate the effectiveness of our approach in various environments. 

1 Introduction 

In the past, many researchers have considered the problem of building accurate maps 
of the environment from the data gathered with a mobile robot. The question of 
how to augment such maps by semantic information, however, is virtually unex­
plored. Whenever robots are designed to interact with their users, semantic informa­
tion about places can be important. It can furthermore be used to intuitively segment 
an environment into different places and learn accurate topological models. 

In this work, we address the problem of classifying places of the environment 
of a mobile robot using range finder and vision data as well as building topologi­
cal maps based on that knowledge. Indoor environments, like the one depicted in 
Figure 1, can typically be divided into areas with different functionalities such as 
laboratories, office rooms, corridors, or kitchens. Whereas some of these places have 
special geometric structures and can therefore be distinguished merely based on laser 
range data, other places can only be identified according to the objects found there 
like, for example, coffee machines in kitchens. To detect such objects, we use vision 
data acquired by a camera system. 
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Fig. 1. An environment with offices, doorways, a corridor, a kitchen, and a laboratory. Addi­
tionally, the figure shows typical observations obtained by a mobile robot at different places. 

In the approach described here, we apply the AdaBoost algorithm [7] to boost 
simple features, which on their own are insufficient for a reliable categorization of 
places, to a strong classifier for the semantic labeling of the poses of a robot in an 
indoor environment. Since the original version of AdaBoost provides only binary 
decisions, we determine the decision list with the best sequence of binary strong 
classifiers. We then use this semantic classifier in two main applications. Firstly, we 
show how to classify the different poses of a mobile robot along its trajectory by ap­
plying a hidden Markov model (HMM) which estimates the label of the current pose 
based on the current and the previous outputs of the semantic classifier. Secondly, 
we introduce a new approach to learn topological maps from occupancy grids. This 
is achieved by simulating the laser scans of a mobile robot at the corresponding 
locations and applying our semantic classification algorithm. We then apply a proba­
bilistic relaxation algorithm to smooth the classification output, followed by a region 
extraction. Experimental results presented in this paper illustrate that our classifica­
tion system yields recognition rates of more than 88% or 98% (depending on the 
number of classes to distinguish between). We also present experiments illustrating 
that the resulting classifier can even be used in environments from which no training 
data were available. This offers the opportunity to label places and to learn accurate 
topological maps from unknown environments. 

In the past, several authors considered the problem of adding semantic informa­
tion to places. Buschka and Saffiotti [4] describe a virtual sensor that is able to iden­
tify rooms from range data. Also Koenig and Simmons [11] apply a pre-programmed 
routine to detect doorways from range data. Althaus and Christensen [1] use line fea­
tures to detect corridors and doorways. Some authors also apply learning techniques 
to localize the robot or to identify distinctive states in the environment. For example, 
Oore et al. [20] train a neural network to estimate the location of a mobile robot in 
its environment using the odometry information and ultrasound data. 

Learning algorithms have additionally been used to identify objects. For exam­
ple, Anguelov et al [2, 3] apply the EM algorithm to cluster different types of objects 
from sequences of range data and to learn the state of doors. Limketkai et al [16] 
use relational Markov networks to detect objects like doorways based on laser range 
data. Furthermore, they employ Markov Chain Monte Carlo to learn the parameters 



Using AdaBoost for Place Labeling and Topological Map Building 455 

of the models. Treptow et al. [29] utilize the AdaBoost algorithm to track a soc­
cer ball without color information. Finally, Torralba and colleagues [28] use hidden 
Markov models for learning places from image data. 

Compared to these approaches, our algorithm is able to combine arbitrary fea­
tures extracted from different sensors to form a sequence of binary strong classifiers 
to label places. Our approach is also supervised, which has the advantage that the 
resulting labels correspond to user-defined classes. 

On the other hand, different algorithms for creating topological maps have been 
proposed. Kuipers and Byun [14] extract distinctive points in the map. These points 
are defined as local maxima using a measure of distinctiveness between locations. 
Kortenkamp and Weymouth [12] fuse the information obtained with vision and ultra­
sound sensors to determine topologically relevant places. Shatkey and Kaelbling [26] 
apply a HMM learning approach to learn topological maps in which the nodes repre­
sent points in the plane. Thrun [27] uses the Voronoi diagram to find critical points, 
which minimize the clearance locally. These points are then used as nodes in a topo­
logical graph. Choset [5] encodes metric and topological information in a generalized 
Voronoi graph to solve the simultaneous localization and mapping problem. Addi­
tionally, Kuipers and Beeson [13] apply different learning algorithms to calculate 
topological maps of environments of a mobile robot. 

In contrast to these previous approaches, the technique described in this paper 
applies a supervised learning method to identify complete regions in the map like 
corridors, rooms or doorways that have a direct relation with a human understanding 
of the environment. The knowledge about semantic labels of places is used to build 
accurate topological maps with a mobile robot. 

The rest of the chapter is organized as follows. In Section 2, we describe the 
sequential AdaBoost classifier. In Section 3, we present the application of a hidden 
Markov model to the online place classification with a moving mobile robot. Sec­
tion 4 contains our approach for topological map building. Finally, Section 5 presents 
experimental results obtained using our methods. 

2 Semantic Place Labeling Using AdaBoost 

One of the key problems to be solved is to define a classifier that allows us to cate­
gorize places in the environment according to a set of given categories. Rather than 
hand-coding such a classification system, our approach is to apply the AdaBoost 
algorithm to learn a strong classifier from a large set of simple features. In this sec­
tion, we first present the AdaBoost algorithm and our approach to deal with multiple 
classes. We then describe the different features extracted from laser and vision data 
used in our current system. 

2.1 The AdaBoost Algorithm 

Boosting is a general method for creating an accurate strong classifier by combining 
a set of weak classifiers. The requirement for each weak classifier is that its accu­
racy is better than a random guessing. In this work we apply the boosting algorithm 
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AdaBoost in its generalized form presented by Schapire and Singer [25]. The input 
to this algorithm is a set of labeled training examples. The algorithm repeatedly se­
lects a weak classifier hj{x) using a distribution D over the training examples. The 
selected weak classifier is expected to have a small classification error on the train­
ing data. The idea of the algorithm is to modify the distribution D by increasing 
the weights of the most difficult training examples in each round. The final strong 
classifier H is a. weighted majority vote of the best T weak classifiers. 

Throughout this work, we use the approach presented by Viola and Jones [30] in 
which the weak classifiers depend on single-valued features fj G R. Two kinds of 
weak classifiers are created in our current system. In addition to the classifier defined 
by Viola and Jones, which has the form 

h^^^) = l+]^fp^M^)<pA (1) 
•^^ ^ [ — 1 otherwise, 

where Oj is a threshold and pj is either —1 or + 1 and thus represents the direction of 
the inequality, we designed a second type 

•^^ ^ \ —pj Otherwise, 

where 0^ and 6>| define an interval and pj is either + 1 or —1 indicating whether ex­
amples inside the interval are positive or negative. For both types of weak classifiers, 
the output is + 1 or —1 indicating whether the classification is positive or negative. 
The AdaBoost algorithm determines for each weak classifier hj{x) the optimal pa­
rameters, such that the number of misclassified training examples is minimized. The 
final AdaBoost algorithm place categorization is shown in Algorithm 0.1. 

The AdaBoost algorithm has been designed for binary classification problems. 
To classify places in the environment, we need the ability to handle multiple classes. 

Algorithm 0.1 Generalized version of AdaBoost for place categorization. 

Input: Set of N labeled examples {xi,yi),..., {xN,yN), where yn = +1 for positive 
examples and yn = —I for negative examples. 

Initialize weights Di(n) = ^ for /̂n = +1 and Di(n) = i^ fox yn = —I, 

where / and m are the number of positive and negative examples respectively. 

fort = l , . . . , r d o 
1. Normalize the wei 2 hts Dt{n) so that ^ L i ^ t (n ) = 1. 
2. For each feature fj train a weak classifier hj using Dt. 
3. For each classifier hj calculate Vj = ^^ Dt{n)ynhj{xn), 

with hj{xn) e { -1 ,+1}. 
4. Choose the classifier hj that maximizes \rj \ and set {ht,rt) = {hj,rj). 
5. Update the weights A + i ( n ) = Dt{n) e:^p{-atynht{xn)), 

whereat = I I n ( ^ ) . 
end for 

Output: The final strong hypothesis H{x) = sign(F(x)), where F{x) = J2t=i Oitht{x). 
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Fig. 2. A decision list classifier for K classes using binary classifiers. 

To achieve this, we use a sequence of binary classifiers, where each element of such 
a sequence determines if an example belongs to one specific class. If the binary 
classifier returns a positive result, the example is assumed to be correctly classified. 
Otherwise, it is recursively passed to the next element in this list. Figure 2 illustrates 
the structure of such a decision list classifier. 

In our current system, we typically consider a small number of classes which 
makes it feasible to evaluate all potential sequences and choose the best order of 
binary classifiers. Although this approach is exponential in the number of classes, 
the actual number of permutations considered is limited in our domain due to the 
small number of classes. In practice, we found out that the heuristic which sorts the 
classifiers in decreasing order according to their classification rate also yields good 
results and at the same time can be computed efficiently. Compared to the optimal 
order, the classifier generated by this heuristic for six different classes performed in 
average only 1.3% worse as shown by Rottmann et al. [23]. 

To evaluate the performance of the decision list, we compared it to the Ada-
Boost.M2 [7] algorithm, which is a multi-class variant of AdaBoost. In our experi­
ments, the sequential AdaBoost classifier yields better results than the AdaBoost.M2 
algorithm. A more detailed comparison between both algorithms can be found in the 
work by Martinez Mozos [17]. 

2.2 Features from Vision and Laser Data 

In this section, we describe the features used to create the weak classifiers in the 
AdaBoost algorithm. Our robot is equipped with a 360 degree field of view laser 
sensor and a camera. Each laser observation consists of 360 beams. Each vision 
observation consists of eight images which form a panoramic view. Figure 1 shows 
typical laser range readings as well as fractions of panoramic images taken in an 
office environment. Accordingly, each training example for the AdaBoost algorithm 
consist of one laser observation, one vision observation, and its classification. 

Our method for place classification is based on single-valued features extracted 
from laser and vision data. All features are invariant with respect to rotation to make 
the classification of a pose dependent only on the position of the robot and not on 
its orientation. Most of our laser features are standard geometrical features used for 
shape analysis [9, 24]. Typical examples considered by our system are illustrated 
in Figure 3. A detailed list of laser features is contained in our previous work [18]. 
In the system described here, we implemented several additional features which are 
listed in Table 1. 
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Fig. 3. Examples for features generated from laser data, namely the average distance between 
two consecutive beams, the perimeter of the area covered by a scan, and the mayor axis of the 
ellipse that approximates the polygon described by the scan. 

Table 1. New Laser Features 

1. Average and standard deviation of the fraction between the length of two consecutive 
beams. 

2. Average and standard deviation of the fraction between the length of two consecutive 
beams divided by the maximum beam length. 

3. Circularity. Let P be the perimeter of the area covered by the beams and A be the area 
covered by the beams. The circularity is defined as P^ /A. 

4. Average and standard deviation of the distance from the centroid of A to the shape 
boundary of A, divided by the maximum distance to the shape boundary. 

5. Number of gaps. Two consecutive beams form a gap if the fraction between the first 
and the second is smaller than a threshold. 
Kurtosis. The kurtosis is defined as 6. 

E i = i (length(beam^) - if _ 

where I is the average beam length and a the corresponding standard deviation. 

In the case of vision, the selection of the features is motivated by the fact that typ­
ical objects appear with different probabilities at different places. For example, the 
probability of detecting a computer monitor is larger in an office than in a kitchen. 
For each type of object, a vision feature is defined as a function that takes as argu­
ment a panoramic vision observation and returns the number of detected objects of 
this type in it. This number represents the single-valued feature fj within AdaBoost 
according to Eq. (1) and Eq. (2). In our case, we consider monitors, coffee machines, 
soap dispensers, office cupboards, frontal faces, face profiles, full human bodies, and 
upper human bodies. An example of such objects is shown in Figure L The individ­
ual objects are detected using classifiers also trained with AdaBoost and based on 
the set of Haar-like features proposed by Lienhart et al. [15]. 

In case the observations do not cover a 360 degree field of view, the property of 
the rotational invariance is lost. In such a situation, we expect that more training data 
will be necessary and that the classification will be less robust. 
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Fig. 4. The left image illustrates a classification output z. The right image depicts probabilities 
of possible transitions between places in the environment. To increase the visibility, we used 
a logarithmic scale. Dark values indicate low probability. 

3 Probabilistic Classification of Trajectories 

The approach described so far is able to classify single observations only but does not 
take into account past classifications when determining the type of place the robot is 
currently at. However, whenever a mobile robot moves through an environment, the 
semantic labels of nearby places are typically identical. Furthermore, certain transi­
tions between classes are unlikely. For example, if the robot is currently in a kitchen 
then it is rather unlikely that the robot ends up in an office given it moved a short 
distance only. In many environments, to get from the kitchen to the office, the robot 
has to move through a doorway first. 

To incorporate such spatial dependencies between the individual classes, we ap­
ply a hidden Markov model (HMM) and maintain a posterior Bel (It) about the type 
of the place It the robot is currently at 

Bel{lt) = aP{zt I / t ) ^ P G t I lt-uUt-i)Bel{lt-i). (3) 

In this equation, a is a. normalizing constant ensuring that the left-hand side sums 
up to one over all If. To implement this HMM, three components need to be known. 
First, we need to specify the observation model P{zt \ U) which is the likelihood 
that the classification output is Zt given the actual class is It- Second, we need to 
specify the transition model P{lt \ / t - i , ^ t - i ) which defines the probability that the 
robot moves from class It-i to class It by executing action Ut-i- Finally, we need to 
specify how the belief Bel{lo) is initialized. 

In our current system, we choose a uniform distribution to initialize Bel{lo). Fur­
thermore, the classification output Zt is represented by a histogram, as illustrated in 
the left image of Figure 4. In this histogram, the k-ih bin stores the probability that 
the classified location belongs to the k-th class according to the sequence of classi­
fiers in our decision list (compare Figure 2). To compute the individual values for 
each bin of that histogram, we use the approach by Friedman et al [8]. It determines 
a confidence value C G [0,1] for a positive binary classification 

C = P{y = +1 I x) 
oF{x) 

-Fix) ^ gF(x) ' (4) 
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Fig. 5. The distributions depicted in the first row show the learned histograms zi:h{l) for the 
individual classes (here corridor (1), doorway (2), kitchen (3), lab (4), seminar room (5), and 
office (6)). The left image in the second row depicts a possible classification output zt. In 
the right image, each bar represents the corresponding likelihood P{zt \ It) for the different 
estimates oflt. 

where F{x) is the output of the AdaBoost algorithm according to Algorithm 0.1. Let 
Ck refer to the confidence value of the /c-th binary classifier in our decision list. The 
probability that the location belongs to the /c-th class is given by the /c-th bin of the 
histogram z computed as 

k-l 
Ak] Ck\{{l-C,). (5) 

Note that the confidence value CK which is used to compute the last bin z^^^ of 
the histogram holds CK = 1 according to the structure of the decision list (compare 
Figure 2). 

To determine P{zt \ / t) . we use the KL-divergence [6] between two distributions. 
The first distribution is the current classification output Zt. The second one is learned 
from a statistics: for each class /, we compute a histogram zi:h{l) using h observa­
tions recorded within a place belonging to class / (here h = 50). This histogram 
zi:h{l) is obtained by averaging over the individual histograms z i , . . . , z/^, which are 
computed according to Eq. (5). To determine P{zt \ / t) . we use the KL-divergence 
kld{' II •) which provides a measure about the similarity of two distributions 

P{zt I k) = e -kld{zt II zi;hilt)) (6) 

To illustrate the computation of the observation likelihood P{zt \ k) consider 
Figure 5. The first row depicts examples for the histograms zi:h{l). The left image 
in the second row depicts the output Zt of the sequential classifier while the robot 
was in an office. As can be seen, also the classes doorway and seminar room have a 
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probability significantly larger than zero. This output Zt and the histogram zi:h{lt) 
is than used to compute P{zt \ U) according to Eq. (6). The result for all classes is 
depicted in the right image in the second row. In this image, each bin represents the 
likelihood P{zt \ k) for the individual classes If. As can be seen, the observation 
likelihood given the robot is in a doorway is close to zero, whereas the likelihood 
given it is in an office is around 90%, which is actually the correct class. 

To realize the transition model P{lt \ / t - i , ^ t - i ) . we only consider the two ac­
tions Ut-i G {Move^ Stay}. The transition probabilities were learned in a manually 
labeled environment by running 1000 simulation experiments. In each run, we started 
the robot at a randomly chosen point and orientation. We then executed a random 
movement so that the robot traveled between 20cm and 50cm. These values corre­
spond to typical distances traveled by the robot between two consecutive updates 
of the HMM. The finally obtained transition probability matrix P{lt \ It-i^Ut-i) 
for the action Move is depicted in the right image of Figure 4. As can be seen, the 
probability of staying in a place with the same classification is higher than the prob­
ability of changing the place. Moreover, the probability of moving from a room to a 
doorway is higher than the probability of moving from a room directly to a corridor. 
This indicates that the robot typically has to cross a doorway first in order to reach 
a different room. Furthermore, the matrix shows a lower probability of staying in a 
doorway than staying at the same type of room. This is due to the fact that a doorway 
is usually a small area in which the robot never rests for a longer period of time. 

4 Topological Map Building 

The second application of our classification system is learning topological maps from 
occupancy grids. To take into account spatial dependencies between neighboring 
places, we apply a probabilistic relaxation labeling. Additionally, we describe how 
to perform the region extraction and the final creation of a graph representing the 
topological structure of the environment. 

4.1 Probabilistic Relaxation Labeling 

One of the key problems that need to be solved in order to learn accurate topological 
maps, in which the nodes correspond to the individual rooms an the environment, 
is to eliminate classification errors. In this section, we apply the probabilistic relax­
ation labeling, which has been introduced by Rosenfeld et al [21], to smooth the 
classifications based on neighborhood relations. 

Probabilistic relaxation labeling is defined as follows. Let ^ = (V, (£̂ ) be a graph 
consisting of nodes V = {^i,... ^VN} and edges (f C V x V. Let furthermore 
C = {/i,..., / L } be a set of labels. We assume that every node Vi stores a proba­
bility distribution about its label which is represented by a histogram Pi. Each bin 
Pi{l) of that histogram stores the probability that the node Vi has the label /. Thus, 
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For each node Vi, Af{vi) C V denotes its neighborhood which consists of the 
nodes Vj ^ Vi that are connected to Vi. Each neighborhood relation is represented 
by two values. Whereas the first one describes the compatibility between the labels 
of two nodes, the second one represents the influence between the two nodes. The 
term 1Z = {r^j(/, V) \ Vj G N'{vi)} defines the compatibility coefficients between 
the label / of node Vi and the label V ofvj. Finally, C = {cij \ Vj G Af{vi)} is the set 
of weights indicating the influence of node Vj on node Vi. 

Given an initial estimation for the probability distribution over labels p[^\l) 
for the node Vi, the probabilistic relaxation method iteratively computes estimates 
p\^\l)^ r = 1 ,2 , . . . , based on the initial probabilities p\ ^' 

coefficients IZ, and the weights C in the form 
(/), the compatibility 

pr'\i) 
i^[\i) i + ^[\i) 

Et> ._,P^\l')\l + Qf\l') 
(7) 

where 

<if\i) 
M 

L/'=i 
(8) 

Note that the compatibility coefficients rij{l^V) G [—1,1] do not need to be 
symmetric. A value Vij (/, V) close to —1 indicates that label V is unlikely at node Vj 
when label / occurs at node Vi, whereas values close to 1 indicate the opposite. A 
value of exactly — 1 indicates that the relation is not possible and a value of exactly 
1 means that the relation always occurs. 

Probabilistic relaxation provides a framework for smoothing but does not specify 
how the compatibility coefficients are computed. In this work, we apply the coeffi­
cients as defined by Yamamoto [31] 

;(M0 
Ml) 

1 P^il) 

P^J(l\l'] 
if Pi{l) <Pij{l 

otherwise, 
n (9) 

where pij{l \ /') is the conditional probability that node Vi has label / given that node 
Vj G N'{vi) has label V. 

So far we described the general method for relaxation labeling. It remains to 
describe how we apply this method for spatial smoothing of the classifications ob­
tained by our AdaBoost classifier. To learn a topological map, we assume a given 
two-dimensional occupancy grid map [19] in which each cell ^(x,y) stores the prob­
ability that it is occupied. We furthermore consider the eight-connected graph in­
duced by such a grid. Let Vi = V(x,y) be a node corresponding to a cell m(^x,y) from 
the map. Then, this node is connected to all immediate neighbors of that cell 

'^8{V{x,y)) = { ' ^ ( x - l , y - l ) , ' ^ ( x - l , y ) , ' ^ ( x - l , y + l ) , ' ^ ( x , y - l ) , 

^(x,y+l), ' ^ (x+ l ,y - l ) , ^(x+l,y) 5 '^(x+l,y+l) }• (10) 
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For the initial probabilities p)J N (/), we use the output of the classifier described 
in Section 2.1. Our set of labels C is composed of the labels corridor, doorway, 
room, and wall. For each node V(x,y) in the free space of the occupancy grid map, 
we calculate the expected laser scan by ray-casting in the map. We then classify 
the observation and obtain a probability distribution z over all the possible places 
according to Equation (5). The classification output z for each pose {x^y) is used to 
initialize the probability distribution P^J . of node v^^.y)-

For the nodes lying in the free space, the probability p)J A wall) of being a wall 
is initialized with 0. Accordingly, the nodes corresponding to occupied cells in the 
map are initialized with p\ J J wall) = 1. 

Each of the weights Cij G C is initialized with the value | , indicating that all the 
eight neighbors Vj of node Vi are equally important. The compatibility coefficients 
are calculated using Equation (9). The values pi{l) and pij{l \ V) are obtained from 
statistics in the given (occupancy grid) map corresponding to the training data as will 
be described in Section 5. 

4.2 Region Extraction and Topological Mapping 

We define a region A/ on an adjacency graph ^ as a set of eight-connected nodes with 
the same label /. For example, the region Aroom represents a room in the correspond­
ing occupancy grid map. If there is a different region with the label room, this will 
represent a different room in the map. For each label / G { corridor^ room^ doorway}, 
regions are extracted from the adjacency graph using the algorithm by Rosenfeld and 
Pfaltz [22]. In an analog way, we extract the connections between regions. 

Finally, a topological graph T = {VTJ^T) is constructed so that each node 
Vi G Vr represents a region and each edge Cg G Sr represents a connection. The 
topological graph forms the resulting topological map. We finally apply a heuristic 
region correction step to the topological map to increase the classification rate: 

1. We mark each region corresponding to a room or a corridor whose size does not 
exceed a given threshold of Im^ compared to the training set as classification 
error and assign the label of one of its connected regions to it. 

2. We mark each region labeled as doorway whose size does not exceed a given 
threshold of O.lm^ square meters or that is connected to only one region as false 
classification and assign the label of one of its connected regions to it. 

5 Experiments 

The approach described above has been implemented and tested on real robots as 
well as in simulation. The robots used to carry out the experiments were an Activ-
Media Pioneer 2-DX8 equipped with two SICK laser range finders as well as an 
iRobot B21r robot which is additionally equipped with a camera system. 
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corridor room doorway 

Fig. 6. Whereas the left image depicts the training data, the right image shows the classification 
result on the test set. The training and test data were obtained by simulating laser range scans 
in the map. 

The goal of the experiments is to demonstrate that our simple features can be 
boosted to a robust classifier of places. Additionally, we analyze whether the result­
ing classifier can be used to classify places in environments for which no training 
data was available. Furthermore, we demonstrate the advantages of utilizing the vi­
sion information to distinguish between different rooms like, e.g., kitchens, offices, 
or seminar rooms. Additionally, we illustrate the advantages of the HMM filtering 
for classifying places with a moving mobile robot. Throughout these experiments, 
the term classification result refers to the most likely class reported by the HMM or 
respectively by the sequence of binary classifiers. Furthermore, we present results 
applying our method for semantic topological maps. We first show the results for 
a typical office environment. Then, we present an experiment illustrating that our 
approach is able to construct a topological map of a completely new environment 

5.1 Results with the Sequential Classifier Using Laser Data 

The first experiment was performed using simulated data from our office environ­
ment in building 79 at the University of Freiburg. The task was to distinguish be­
tween three different types of places, namely rooms, doorways, and a corridor based 
on laser range data only. In this experiment, we solely applied the sequential clas­
sifier without the HMM filtering. For the sake of clarity, we separated the test from 
the training data by dividing the overall environment into two areas. Whereas the 
left part of the map contains the training examples, the right part includes only test 
data (see Figure 6). The optimal decision list for this classification problem, in which 
the robot had to distinguish between three classes, is room-doorway. This decision 
list correctly classifies 93.9% of all test examples (see right image of Figure 6). For 
alternative training and test sets we obtained similar success rates. The worst config­
urations of the decision list are those in which the doorway classifier is in the first 
place. This is probably due to the fact, that doorways are hard to detect because typ­
ically most parts of a range scan obtained in a doorway cover the adjacent room and 
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! corridor doorway 

Fig. 7. The left image depicts a trajectory of a robot and the corresponding classifications 
based on real laser data. The robot used in this experiment is depicted in the right image. 

the corridor. The high error in the first element of the decision list then leads to a 
high overall classification error. 

The next experiment has been carried out with a real mobile robot that we manu­
ally steered through the environment. We used the same classifier as in the previous 
experiment. The trajectory including the corresponding classification results as well 
as the mobile robot are depicted in Figure 7. As can be seen from this figure, the 
learned classifier yields a robust labeling also for real robot data. 

Additionally, we performed an experiment using a map of the entrance hall at 
the University of Freiburg which contained four different classes, namely rooms, 
corridors, doorways, and hallways. The optimal decision list is corridor-hallway-
doorway with a success rate of 89.5%. 

5.2 Transferring the Classifiers to New Environments 

The second experiment is designed to analyze whether a classifier learned in a par­
ticular environment can be used to successfully classify the places of a new environ­
ment. To carry out this experiment, we trained our sequential classifier in the left half 
of the map shown in Figure 1. In the right half of this environment, our approach was 
able to correctly classify 97% of all places. The resulting classifier was then evalu­
ated on scans simulated given the map of the Intel Research Lab in Seattle depicted in 
Figure 8. Although the classification rate decreased to 86.0%, the result indicates that 
our algorithm yields good generalizations which can also be applied to correctly la­
bel places of so far unknown environments. Note that a success rate of 86.0% is quite 
high for this environment, since even humans typically cannot consistently classify 
the different places. 

5.3 Classification of Trajectories Using HMM Filtering 

The third experiment was performed using real laser and vision data obtained in 
an office environment, which contains six different types of places, namely offices. 
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^ ^ ^ corridor ^ ^ ^ room doorway 

Fig. 8. The left map depicts the occupancy grid map of the Intel Research Lab and the right 
image depicts the classification results obtained by applying the classifier learned from the 
environment depicted in Figure 1 to this environment. The fact that 86.0% of all places could 
be correctly classified illustrates that the resulting classifiers can be applied to so far unknown 
environments. 

doorways, a laboratory, a kitchen, a seminar room, and a corridor. The true classifi­
cation of the different places in this environments is shown in Figure 9. 

The classification performance of the classifier along a sample trajectory taken 
by a real robot is shown in left image of Figure 10. The classification rate in this 
experiment is 82.8%. If we additionally apply the HMM for temporal filtering, the 
classification rate increases up to 87.9%. The labeling obtained with the HMM is 
shown in the right image of Figure 10. 

A further experiment was carried out using test data obtained in a different part 
of the same building. We applied the same classifier as in the previous experiment. 
Whereas the sequential classifier yields a classification rate of 86.0%, the combina­
tion with the HMM generated the correct answer in 94.7% of all cases. A two-sample 
t-test applied to the classification results obtained along the trajectories for both ex­
periments showed that the improvements introduced by the HMM are significant on 
the ce = 0.05 level. Furthermore, we classified the same data based solely on the 
laser features and ignoring the vision information. In this case, only 67.7% could 
be classified correctly without the HMM. The application of the HMM increases 
the classification performance to 71.7%. These three experiments illustrate that the 
HMM seriously improves the overall rate of correctly classified places. Moreover, the 
third experiment shows that only the laser information is not sufficient to distinguish 
robustly between places with similar structure (see ojfice and kitchen in Figure 10). 

Finally we studied how the HMM improves the final classification rate accord­
ing to the output of AdaBoost. For this purpose, we analyzed the improvement of 
the HMM using different classification rates from AdaBoost. This is achieved by 
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Fig. 10. The left image depicts a typical classification result for a test set obtained using only 
the output of the sequence of classifiers. The right image shows the resulting classification in 
case a HMM is additionally applied to filter the output of the sequential classifier. 
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Fig. 11. Improvement of the HMM according to the percentage of weak classifiers used in 
each of the binary AdaBoost classifiers. 

increasing the percentage of weak classifiers used in each binary classifier of the 
AdaBoost decision list. Here, 100% corresponds to the number of weak classifiers 
used in the previous experiments (Figure 10). For example, the classification rate de­
creases to 60% if only 5% of the weak classifiers are used. The results are shown in 
Figure 11. In average, the HMM improves the classification rate by 5.0%. 
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5.4 Building Topological Maps 

The next experiment is designed to analyze our approach to building topological 
maps. It was carried out in the office environment depicted in the motivating exam­
ple shown in Figure 1. The length of the corridor in this environment is approx. 20 m. 
After applying the sequential AdaBoost classifier (see Figure 12(a)), the classifica­
tion of the test set was 97%. Then, we applied the probabilistic relaxation method for 
50 iterations. As can be seen from Figure 12(b), this method generates more com­
pact regions and eliminates noise. Finally, the topological map is created using the 
connections between regions. Some regions detected as doorways do not correspond 
to real doorways and are marked with circles. After applying the steps described in 
Section 4.2 on the corresponding topological map, these false doorways are elim­
inated. The final result gives a classification rate of 98.7% for all data points. The 
different steps of the process are illustrated as colors/grey levels in Figure 12. The 
doorway between the two right-most rooms under the corridor is correctly detected 
(Figure 12(c)). Therefore, the rooms are labeled as two different regions in the final 
topological map. 

5.5 Topological Maps of New and Unknown Indoor Environments 

This experiment is designed to analyze whether our approach can be used to create 
a topological map of a new unseen environment. To carry out the experiment we 
trained a sequential AdaBoost classifier using the training examples of the maps 
shown in Figure 6 and Figure 12 with different scales. In this case only the classes 
room and corridor were used in the training process. The resulting classifier was then 
evaluated on scans simulated in the map denoted as "SDR site B" in Radish [10]. 
This map represents an empty building in Virginia, USA. The corridor is approx. 26 
meters long. The whole process for obtaining the topological map is depicted in 
Figure 13. The Adaboost classifier gives a first classification of 92.4%. As can be 
seen in Figure 13(d), rooms number 11 and 30 are originally part of the corridor, 
and thus falsely classified. Moreover, the corridor is detected as only one region, 
although humans potentially would prefer to separate it into six different corridors: 
four horizontal and two vertical ones. In the final topological map, 96.9% of the data 
points are correctly classified. 

We also analyzed the results obtained without applying the relaxation process. 
Not using relaxation had several effects. Firstly, omitting the relaxation procedure 
reduces the classification rate. Secondly, the finally obtained regions are typically 
more sparse and do not represent the original ones as well as with relaxation. Finally, 
omitting the relaxation procedure increases the number of errors in the resulting 
topological map. For example, the map of the SDR building contained four incorrect 
nodes without relaxation, whereas there were only two incorrect nodes when we used 
the probabilistic relaxation. 
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(a) Sequential classification (b) Relaxation (circles identify incorrect regions) 
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Fig. 12. This figure shows in image (a) the result of applying the sequential AdaBoost with a 
classification rate of 97%. (b) the result after applying relaxation including some incorrectly 
labeled regions (marked with circles), and finally in image (c) the final tropological map with 
the corresponding regions. 

6 Conclusion 

In this paper, we presented a novel approach to classify different places in the en­
vironment of a mobile robot into semantic classes, like rooms, hallways, corridors, 
offices, kitchens, or doorways. Our algorithm uses simple geometric features ex­
tracted from a single laser range scan and information extracted from camera data 
and applies the AdaBoost algorithm to form a binary strong classifier. To distinguish 
between more than two classes, we use a sequence of strong binary classifiers ar­
ranged in a decision list. 

We presented two applications of our approach. Firstly, we perform an online 
classification of the positions along the trajectories of a mobile robot by filtering the 
classification output using a hidden Markov model. Secondly, we present a new ap-
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Fig. 13. This figure shows (a) the original map of the building, (b) the results of applying the 
sequential AdaBoost classifier with a classification rate of 92.4%, (c) the resulting classifica­
tion after the relaxation and region correction, and (d) the final topological map with semantic 
information. The regions are omitted in each node. The rooms are numbered left to right and 
top to bottom with respect to the map in (a). For the sake of clarity, the corridor-node is drawn 
maintaining part of its region structure. 

proach to create topological graphs from occupancy grids by applying a probabilistic 
relaxation labeling to take into account dependencies between neighboring places to 
improve the classifications. 

Experiments carried out using real robots as well as in simulation illustrate that 
our technique is well-suited to reliably label places in different environments. It al­
lows us to robustly separate different semantic regions and in this way it is able to 
learn topologies of indoor environments. Further experiments illustrate that a learned 
classifier can even be applied to so far unknown environments. 
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1 Introduction 

The real world is full of unexpected changes, contingencies and opportunities. 
Thus it is virtually impossible to perfectly specify in advance all the condi­
tions, states and outcomes for all the possible actions. The so-called "frame 
problem" was originally discovered with symbolic reasoning agents [6], but es­
sentially it affects any "intelligent" system tha t relies on explicit descriptions 
about the states and actions. For example, in control theory terms, the target 
system can abruptly deviate from the assumed model of the system dynamics, 
making the pre-defined control law invalid. 

The above problem shows up in a wide range of robot behavior, particu­
larly when the situation is complex and fiuid. Cognitive interactive tasks such 
as recognizing another agent's behavior and imitating the task or generating 
helpful/competing responses often involves high unpredictability due to the 
caprice and complexity of human behavior and the mutual dependency be­
tween the agents' behavior. Even at the level of physical motion control, the 
situation can be highly complex and unpredictable with a complex body such 
as a humanoid and the characteristics of the dynamics such as non-linearity, 
under-actuation, contact states, and rough terrain. 

Various adaptive methods have been developed in the past with successful 
robotic experiments. However, they are either too slow to converge or too nar­
row in terms of the adaptat ion range. For example, the most popular learning 
methods such as reinforcement learning and genetic algorithm both require 
vast number of trials to converge, and when the bodily or environmental con­
dition changes, they need thousands of trials again to adapt . Moreover, these 
methods require careful design of the state representation which is not always 
straightforward unless the characteristics of the body and the environment is 
well understood. 

This paper proposes a novel alternative method for motor behavior emer­
gence. Our model assumes no predefined motion primitives nor s tate repre­
sentation. It discovers and exploits the natural dynamics of body-environment 

S. Thmn , R. Brooks, H. Durrant-Whyte (Eds.): Robotics Research, STAR 28, pp. 473-486, 2007. 
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interaction. It adapts to the dynamic change of the bodily or environmental 
structures very quickly, in a few seconds. It has biological correlates such as 
spine/medulla circuit and general movements (GM) tha t play an important 
role in very early motor development of human babies. 

In the following sections, we first review the issue of exploiting natural 
body-environment dynamics. Then we present our model which facilitates 
the emergence of behavior exploiting such dynamics, with some experimental 
results. In the final part we present our ongoing effort on simulating early 
human motor development based on the model. 

2 Exploiting Embodied Dynamical Structures 

In dynamic motion control, exploiting the property of natural body-environment 
dynamics is very important in order to achieve robustness and efficiency. A 
well-known example of a meaningful behavior based on pure body-environment 
dynamics is the passive dynamic walker [5]. And one way to successfully ex­
ploit and extend the natural dynamics is to combine it with neural oscilla­
tors [10]. These and related issues are gaining more and more interests with 
quickly accumulating knowledge. 

Another related example is juggling. It is also a rhythmic and cyclic motion 
but somewhat simpler than biped walking. Its dynamics is well understood 
and effective control methods are proposed [8, 1]. 

Recently, we presented an example of exploiting acyclic dynamics of whole-
body humanoid motion called " roll-and-rise" [3]. Our adult-size humanoid 
robot first lies fiat on the fioor, then swings up and down both of the legs, 
rolling on the back and achieving a crouching posture very quickly. The task 
requires exploitation and switching of multiple body-environment dynamics 
with different constraints. 

The above and other related examples show tha t very simple controllers 
can realize very robust and efficient motion if they properly exploit the natural 
body-environment dynamics. An outstanding question is how to automatically 
discover the dynamics and exploit it. This can be a very difficult problem if 
we assume a body with many degrees of freedom and changing constraints. 

3 Emergent Coordination of Multiple Degrees of 
Freedom 

We propose a novel model in which a distributed set of chaotic elements are 
coupled with the multi-element musculo-skeletal system. Consistent motor be­
havior pat terns emerge from embodied interactions. The same principle gives 
rise to immediate adaptat ion capability to changing constraints and switch­
ing to different/novel motion pat terns. It requires no training or evaluation 
function. The system autonomously explores, discovers, and exploits possible 
motion pat terns. 
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3.1 C o u p l e d Chaot i c S y s t e m 

Coupled Map Lattice(CML) and Globally Coupled Map(GCM)[2] have been 
investigated in complex systems science for their rich dynamics properties. 
They follow (l)-(2) . CML is a coupled chaotic system with local interaction 
(1). GCM is one with global interaction (2). 

<+l = (1 - £ ) / « ) + I { / « + l ) + / « - ^ ) } (1) 

<+i = ( i - ^ ) / K ) + ^ E / K ) (2) 

Where, x^ denotes the internal s tate of ith element at t ime n, N the total 
number of elements, and £ the connection weight between elements. f{x) 
can be any chaos function. In this paper, we adopt a s tandard logistic map 
represented as the following. 

f{x) = l - ax^ (3) 

With no interaction between the elements, all of them behave chaotically. 
But with interaction, depending on the parameters (a, e), a rich variety of dy­
namical structures emerge such as ordered phases (with clusters of resonating 
elements) and partially ordered phases (configuration of the clusters changes 
with t ime). 

This phenomenon is essentially caused by a competition of two tendencies; 
(1) A tendency to synchronize each other by the effect of the mean-field, and 
(2) a tendency to take arbitrarily different values due to the nature of chaos 
dynamics. 

3.2 B o d y and E n v i r o n m e n t as an In terac t ion F ie ld of C h a o t i c 
E l e m e n t s 

Figure 1 shows our model of chaos coupling through robotic embodiment. 
N chaotic elements are connected with actuators and sensors of the robot 

body. Each element drives a corresponding actuator based on its current in­
ternal state. The effect of N actuators collectively change the physical s tate 
of the body which is constrained by and interacting with the environment. 
In other words, the output of N chaotic elements are mixed together and 
transformed by the embodied dynamics. The result is then sensed at each 
site of the actuator, e.g. in terms of joint angle or muscle length. Each sensor 
value is then input to the corresponding chaotic element. Then each element 
updates, by chaotic mapping, its internal s tate from the new sensor value and 
the previous internal state. 

The important points of our model are as follows : 

• A chaotic element connect each sensor and actuator. 
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Fig. 1. Outline of our model 

• Each actuator is coupled to the body via a spring, simulating a muscle. 
Each sensor measures the deformation of the spring. Thus, the actuators 
collectively affect the dynamic state of the body. And the sensors get the 
mixed effects of the corresponding actuator and the global s tate of the 
body. 

• The body and the environment interacts. Together, they serve as the in­
teraction field of the chaotic elements. 

In our model, body-environment interaction dynamics, or embodiment^ serves 
as the chaos coupling field, which is non-linear and time-varying. Theoreti­
cally very little is known about such cases, but since the coupling field directly 
refiects the current body-environment dynamics, we believe tha t the emergent 
ordered pat terns correspond to useful motor coordination pat terns which im­
mediately get reorganized in response to dynamically changing environmental 
situation. 

We devised 3 types of formula to update the internal state of an element: 
(4), (5), and (6). Where , u denotes the in ternal s ta te , s the sensor value, 
and s the mean of sensor values. The 2nd and the 3rd terms in / of (4) and 
(6) are intended to be GCM-like connection and CML-like connection. £i,£2 
are the weight of each connection. We used logistic map (3) for f{x)^. Initial 
condition of ix is a random value within (0,1). 

Table 1 shows the interpretation of each formula ^. 

^ In implementation, to avoid divergence, x is constrained as follows : if{x > 1) x = 
1, if{x < - 1 ) X = -1 

^ In order to understand the "adjustment" effect, the GCM/CML equations should 
be transformed by applying / on both sides and re-arranged to match (4)-(6) 
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Type-A : < = /<̂  < _ i + Si {sn-i - 4 _ i ) 

+ ^2 S n - 1 

Type-B : < = / (4 ) 

Type-C : < = /<̂  4 - i + ^i («»-! " 4 - i ) 

+ £2 
' i+1 , i - 1 
* n - l ^^ * n - l 

(4) 

(5) 

(6) 

Table 1. Interpretation of the update rules of the coupled chaotic systems 

G C M 

CML 

Type-A 

Type-B 

Type-C 

Each element follows its own pure chaos 
dynamics with some adjustment to ap­
proach the global mean value of all the 
other pure chaos elements. 
Each element follows its own pure chaos 
dynamics with some adjustment to ap­
proach the local mean value of the adjacent 
pure chaos elements. 
Each element follows its own pure chaos 
dynamics with some adjustment to reduce 
the difference of the corresponding sensor 
value from the global and the local means 
of other sensor values. 
Each element is updated by a chaos map 
of its sensor value. The sensor value con­
tains the effects of the self and the other 
elements mixed together through the em­
bodiment. The mixing function does not 
appear explicitly in the equation. It is a 
non-linear and time-varying function, re­
flecting the physical dynamics of the body-
environment interaction. 
In addition to the Type-B, some adjust­
ment is applied in order to reduce the de­
viation of the corresponding sensor value 
from the global and the local means of 
other sensor values. 
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4 Experiments 

Our model of behavior emergence is quite simple. However, its behavior is 
extremely complex. Even theoretically, a behavior of coupled chaotic systems 
with time-varying non-linear coupling is very poorly understood. Moreover, 
there has been no a t tempt so far to exploit this phenomena for robotic be­
havior generation. Therefore, we carried out a series of experiments in order 
to investigate the following points. 

1. How to design the connection between the body and the chaotic elements? 
2. How does the system behave in case the structure of body dynamics 

changes? 
3. How does the system behave in case the structure of environment changes? 
4. How can we impose "goal-directedness" onto the behavior while maintain­

ing the emergent property? 

In the following, we present some results from our preliminary experiments. 
Further details should be found in another paper [4]. 

We use dynamics simulation library ODE[9] to simulate the dynamics of 
a robot and environment. The t ime step size of ODE was 0.01 and tha t of 
couple chaotic system was Tc- In implementation, u and s in section 3.2 were 
associated with Sraw and m ((7), (8), (9), (10)), where Sraw denotes the raw 
value of a sensor and m the motor output of an actuator. Note tha t the 
gains gu^guout^QsiQsin and the offsets Ou^ ^Uout^ ^si Og^^ are independent of the 
element index i. They are constant parameters. 

Uout = Qu-U^Ou ( 7 ) 

^ = dUo^ut ' ^OUt + O^o^t ( 8 ) 

^in ^ Qsin ' ^raw ~r Og^^ \iy) 

S = gs' Sin^ Os (10) 

4.1 E x p e r i m e n t s w i t h a Musc le -Jo in t M o d e l 

Conf igurat ion 

Firstly, we experiment with a muscle-joint model shown in Fig. 2 which con­
sists of two cylindrical rigid bodies and 12 muscle fibers. The base link is fixed 
to the ground, and the upper link is connected by a ball-joint to the base link. 
It can be bent in any direction within the limit of 0.5 [rad]. The 12 muscle 
fibers are at tached between the two links isotropically. 

Each muscle fiber is modelled with Hill's characteristic equation [7]. m 
in (8) corresponds to the activation level of a muscle fiber in this model. 
The sensor value Sraw is provided by either a "length-sensor" measuring the 
normalized length of the muscle fiber or a "tension sensor"^ measuring the 

^ In case of tension sensor, before the process of (10), Sin is constrained as follows: 
if{Sin > 1) Sin = 1, if{Sin < - 1 ) Sin = " 1 
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r\ Muscle 

M 
^Ball Joint 

Fig. 2. Appearance of the muscle-joint model 

normalized tension of the muscle fiber. In all experiments, (guout^^Uout) ^^^ 
set to (0.5,0.5) respectively. In case of tension sensor, {gsin^Os^^) was set to 
(—2.5,3.0). In case of length sensor, (^sî .̂  ^sir.) ^^^ ^^^ ^^ (1.0,0.0). 

E x p e r i m e n t s w i t h / w i t h o u t sensor feedback 

Firstly, when there is no sensor feedback (Fig. 3), the motion of the joint was 
chaotic and no cluster structure was observed. 

0.1 

Y 

0 

-0.1 

1 
Uout 

j f';; ,; f f ) i ) i » 
i: index 10 

Fig. 3. Experiment with no sensor feedback. Trajectory of the center of mass of the 
upper link projected on x — y plane (left graph). Cluster plot of the chaotic elements 
(right). For each element with index i, its motor output Uout is plotted superposedly 
for n = 10,11,12, . . . . The points of all the elements are connected with a line for 
each time step. (Type-A, a = 1.6, £i = 0.0, £2 = 0.0, Tc = 0.21, QU = 1.7, QS = 
2.0, On = -0 .65, Os = -1.0) 

Secondly, in case of an experiment with tension sensor feedback, the mo­
tion was chaotic for the initial several steps. But after a time, it changed 
to the ordered rhythmical motion. Fig. 4 is the graph while the motion was 
rhythmical. Cluster structure is observed. 

In case of an experiment with length sensor feedback, the motion was or­
dered and rhythmical from the beginning (Fig. 5). In the same experiment 
with a different parameter set, the motion was rhythmical in the beginning, 
then after a while, the direction of oscillation changed and it began another 
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0.1 

-0.1 

1 
Uout 
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-1 

• ^ ^ ^ 7 f 

" / %^A^ 1 

-0.1 X 0.1 i: index 10 

Fig. 4. Experiment with feedback of tension sensor (Type-A, tension sensor, a 
1.55, si = 0.3, 62 = 0.3, Tc = 0.21, QU = 1.7, QS = 2.0, Ou = -0 .65, o, = -1.0) 

i: index 

Fig. 5. Experiment with feedback of length sensor (Type-B, length sensor, a 
1.6, Tc = 0.21, gu = 1.7, gs = 1.0, Ou = -0 .65, o, = 0.0) 

rhythmical motion (Fig. 6). The change of oscillating direction occurred ape-
riodically. 

E x p e r i m e n t s w i t h a d y n a m i c change of t h e e n v i r o n m e n t a l 
s t ruc ture 

The environment makes a part of the interaction field for the chaotic elements. 
In this experiment, we observed the system's behavior when the structure of 
the environment is dynamically changed by bringing in an obstacle disturbing 
the oscillation of the muscle-joint system (Fig. 7). 

The obstacle was brought in at t = 3. Fig. 8 shows the result : beginning 
at the top, from t = 0.42 to t = 3.15, from t = 3.15 to t = 6.93, and from 
t = 6.93 tot = 12.6. A little while after colliding against the obstacle, the joint 
made a complex motion tha t it repeated colliding in a short period of time 
and the motor commands were chaotic. But soon after tha t , within about 3 
seconds, it began to oscillate orderly in a new collision-free direction. 
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• ~~ ^ ^ s 5 1 
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Uoutl 

i: index ^^ 

i: index 10 

Fig. 6. Experiment when dynamic transitions could be seen. The upper graph shows 
the behavior before transition and the lower one shows that after transition. (Type-
A, length sensor, a = 1.6, Tc = 0.21, QU = 0.52, QS = 1.0, Ou = -0.107, Os = 0.0) 

Fig. 7. The muscle joint model and obstacle 

4.2 E x p e r i m e n t s w i t h an Insect -Like M u l t i - l e g g e d R o b o t 

Conf igurat ion 

In order to investigate the effects of our model in a more meaningful be­
havior with more complex interactions with the environment, we defined an 
insect-like multi-legged robot. The robot has a disc-shaped body with 12 legs 
attached on its fringe with regular spacing (Fig. 9). Each leg is connected to 
the body by a rotational joint and 2 springs whose spring constant is K. Each 
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i : index 10 

Fig. 8. Experiment with obstacle (Type-B, length sensor, a = 1.6, Tc = 0.21, QU 
0.82, gs = 1.0, On = - 0 . 3 , Os = 0.0) 

leg can swing only in the direction shown in the middle of Fig. 9, and its joint 
angle is constrained to be less than ±6>/̂ m- The environment has a s tandard 
gravity and a constant friction (with the static friction coefficient /i). m in 
(8) corresponds to the torque r of each joint. Sraw in (9) corresponds to the 
angle 0. Table 2 shows the parameters common to all the experiments using 
the above robot model. 

Table 2. Parameters for the insect-like robot 

Tc K Oiim Quo^t 9s Qsjr, Oup^t Os Osjr, 

0.17 1.0 0.8 1.0 0.5 1.25 0.0 0.5 0.0 
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Fig. 9. Appearance of the insect-hke robot (left), direction of leg motion (middle), 
and the mechanism of a leg (right). 

E x p e r i m e n t s w i t h sensor feedback 

With no sensor feedback, no order was observed in the motion of the robot. 
It just kept on randomly struggling around the same spot on the ground. 

On the other hand, when the sensor feedback is introduced, after the initial 
chaotic period (a few seconds), the robot started to move in a certain direction, 
and then finally showed a stable locomotive behavior with a constant speed 
in a stable direction. The locomotive behavior was realized by synchronizing 
the 3 or 4 hind legs and kicking the ground with them. Fig. 10 is the graph 
while the locomotive behavior was observed. 

1 
Uout 

3O0OC^>C 

X 

Fig. 10. Experiment with sensor feedback (Type-C, a 
0.1, Qu = 0.4, Ou = -0 .28, lii = 0.1) 

i : i n d e x '•̂  

1.47, £i = 0.1, £2 

4 .3 S u m m a r y 

The proposed model exhibited a capability to quickly discover various mo­
tion pat terns in accordance with the body-environment dynamics. It can cope 
with dynamically changing constraints. In other experiments [4], we confirmed 
tha t the model can adapt to changes of the muscle arrangements, the ca­
pability persists over a range of parameters, and a possibility of imposing 
goal-directedness on the emergent behavior. 
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5 Simulated Baby 

The above model correlates with the essential structure of vertebrates, i.e. 
the spine/medulla circuit and the musculo-skeletal body. It is well established 
tha t parts of spine/medulla circuit acts as non-linear oscillators, called C P G 
(central pat tern generator). Under certain conditions, a coupled system of 
non-linear oscillators act as a coupled chaotic system. Therefore, it is quite 
plausible tha t vertebrates exploit the similar principle as our model for acqui­
sition and adaptat ion of motor behavior. 

Since our model explores and discovers motion pat terns tha t fit the natural 
property of the body, it may be a good candidate for simulating the initial 
mechanism of motor development. It may be able to start with very little pre­
defined knowledge and autonomously acquire appropriate motor primitives. 

A human body is so complex, and a systematic search for all possible 
motion pat terns is virtually impossible. However, our model should be able to 
discover appropriate motions very quickly. Moreover, the cluster emergence in 
pure CML and GCM are known to scale to thousands of elements. This is a 
good reason to expect tha t our model can handle the musculo-skeletal system 
of a human body. 

.....;. 
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Fig. 11 . Simulated baby. 

Figure 11 shows the view of our simulated baby. The outlook is crude as 
we invest little effort on the quality of graphics. However, the musculo-skeletal 
system is modeled at a highly detailed level. Our model has 198 muscles. We 
omitted the wrist, ankle, fingers, toes, neck and face. But the body stem and 
the limbs are quite faithfully modeled. The dimensions, mass, and inertial 
parameters of all the body parts are defined according to the measurements 
of real babies. The proprioceptive sensing organs, i.e. the muscle spindles and 
Golgi tendon organs, are also modeled as precisely as possible. The muscles 
are also modeled to match the performance of real babies. All the physical 
body parameters are modeled as functions of week age after gestation (in the 
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uterus). So the body can simulate physical growth of the fetal and neonatal 
periods. 

As the first step of neural modeling, we adopted the same coupled chaos 
model (in section 4) for the spinal circuit. In addition, we added self-organizing 
maps to simulate sensory and motor areas of the cerebral cortex. All the 
connections are continuously updated by Hebbian learning while the neural 
system drives the body. 

The simulated baby body is placed in two types of simulated environments; 
The "fetus" is placed in a simulated uterus with a pushable wall, filled with 
liquid. The "neonate" is placed on a fiat fioor surrounded by fiat walls (like 
a playpen). We are starting to observe emergence of pat terned motions and 
stable clustering of cortical neurons. 

6 Summary and Discussions 

We proposed a novel framework for highly (quick) adaptive motor behavior. 
The core mechanism is based on coupled chaotic system, which autonomously 
explores and generates various coordination pat terns of multiple degrees of 
freedom. The emergent motion pat terns exploit and resonate with the body-
environment dynamics. Therefore our model is a very good candidate as the 
initial core mechanism to simulate very early motor development of human 
babies. It should be important for human babies to acquire motor primitives 
exploiting the characteristics of body-environment dynamics. 

The above model correlates with real human babies because the C P G in 
spine/medulla can generate high dimensional chaos under certain conditions, 
and the resulting whole body movement has the similar property as the general 
movement (GM) which appears in early motor development of human babies. 

We are now constructing and experimenting with a simulated baby. It is 
designed to be very close to real human babies in terms of musculo-skeletal 
system. The coupled chaotic system model is adopted as the basic mechanism 
of behavior emergence. When an emergent motion pat tern persists for certain 
t ime duration, the learning in the cortex model and other neural connections 
fixates it in the neural connections. This way the system should be able to 
explore, discover and learn various motor primitives which fully exploit the 
natural body-environment dynamics. It is still an open question how to design 
a mechanism tha t appropriately integrate the learning and emergence. 

The above approach may provide a solution to avoid the frame problem, 
as the system does not rely on static (or very slowly adapting) internal rep­
resentations, and can immediately adapt to changing situations. 
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Hierarchical Conditional Random Fields for 
GPS-Based Activity Recognition 

Lin Liao, Dieter Fox, and Henry Kautz 
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Summary. Learning patterns of human behavior from sensor data is extremely important 
for high-level activity inference. We show how to extract a person's activities and significant 
places from traces of GPS data. Our system uses hierarchically structured conditional random 
fields to generate a consistent model of a person's activities and places. In contrast to existing 
techniques, our approach takes high-level context into account in order to detect the significant 
locations of a person. Our experiments show significant improvements over existing techniques. 
Furthermore, they indicate that our system is able to robustly estimate a person's activities 
using a model that is trained from data collected by other persons. 

1 Introduction 
The problem of learning patterns of human behavior from sensor data arises in many 
applications, including intelligent environments [4], surveillance [5], human robot in­
teraction [2], and assistive technology for the disabled [18]. A focus of recent interest 
is the use of data from wearable sensors, and in particular, GPS (global positioning 
system) location data, to learn to recognize the high-level activities in which a person 
is engaged over a period of many weeks, and to further determine the relationship 
between activities and locations that are important to the user [1, 12, 14]. The goal 
of this research is to segment a user's day into everyday activities such as "working," 
"visiting," "travel," and to recognize and label significant locations that are associated 
with one or more activity, such as "workplace," "friend's house," "user's bus stop." 
Such activity logs can be used, for instance, for automated diaries or long-term health 
monitoring. Previous approaches to location-based activity recognition suffer from 
design decisions that limit their accuracy and flexibility. 

Restricted activity models: Ashbrook and colleagues [1] only reason about moving 
between places, without considering different types of places or different routes be­
tween places. In the context of indoor mobile robotics, Bennewitz et al. [2] showed 
how to learn different motion paths between places. However, their approach does 
not model different types of places and does not estimate the user's activities when 
moving between places. In our previous work [12, 19] we developed a hierarchical 
dynamic Bayesian network model that can reason about different transportation rou­
tines between places. In separate work, we developed an approach that can learn to 
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distinguish between different types of places, such as work place, home, or restau­
rant [14]. However, this model is limited in that it is not able to consider information 
about motion between places and about activities occurring at each point in time. 
Inaccurate place detection: Virtually all previous approaches address the problem 
of determining a person's significant places by assuming that a geographic location 
is significant if and only if the user spends at least 6 minutes there, for some fixed 
threshold 0[l, 12, 14, 2]. In practice, unfortunately, there is no threshold that leads to 
a satisfying detection of all significant locations. For instance, locations such as the 
place where the user drops off his children at school may be visited only briefly, and 
so would be excluded when using a high threshold 6. A low threshold, on the other 
hand, would include too many insignificant locations, for example, a place where the 
user waited at a traffic light. Such detection errors can only be resolved by taking 
additional context information into account, such as the user's current activity. 

In this paper we present a novel, unified approach to automated activity and place 
labeling which overcomes these limitations. Key features of our system are: 

• It achieves high accuracy in detecting significant places by taking a user's con­
text into account when determining which places are significant. This is done 
by simultaneously estimating a person's activities over time, identifying places 
that correspond to significant activities, and labeling these places by their type. 
This estimation is performed in a unified, conditionally trained graphical model 
(conditional random field). As a result, our approach does not rely on arbitrary 
thresholds regarding the time spent at a location or on a pre-specified number of 
significant places. 

• It creates a rich interpretation of a user's data, including transportation activities 
as well as activities performed at particular places. It allows different kinds of 
activities to be performed at the same location, and vice-versa. 

• This complex estimation task requires efficient, approximate inference and learn­
ing algorithms. Our system performs inference using loopy belief propagation, 
and parameter learning is done using pseudo-likelihood. In order to efficiently 
reason about aggregations, such as how many different places are labeled as a per­
son's home, we apply Fast Fourier Transforms to compute aggregation messages 
within belief propagation. 

This paper is organized as follows. We begin with a discussion of conditional random 
fields (CRFs) and how to apply them to the problem of location-based activity 
recognition. Then, we explain how to perform efficient inference and parameter 
learning in CRFs. Finally, we present experimental results on real-world data that 
demonstrate significant improvement in coverage and accuracy over previous work. 

2 Hierarchical Activity Model 

The basic concept underlying our activity model is shown in Figure 1. Each circle 
indicates an object such as a GPS reading, a location in the map, or a significant 
place. The edges illustrate probabilistic dependencies between these objects. 
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Significant places 
home, work, bus stop, parking lot, friend 

Activity sequence 
walk, drive, visit, sleep, pickup, get on bus 

GPS trace 
association to street map 

Fig. 1. The concept hierarchy for location-based activity recognition. For each day of data 
collection, the lowest level typically consists of several thousand GPS measurements. 

GPS readings are the input to our model — a typical trace consists of approximately 
one GPS reading per second; each reading is a point in 2D space. We segment a 
GPS trace in order to generate a discrete sequence of activity nodes at the next 
level of the model. This segmentation is done spatially, that is, each activity node 
represents a set of consecutive GPS readings that are within a certain area. If a 
street map is available, then we perform the segmentation by associating the GPS 
readings to a discretized version of the streets in the map (in our experiments 
we used 10m for discretization). This spatial segmentation is very compact and 
convenient for estimating high-level activities. For instance, our model represents 
a 12 hour stay at a location by a single node. Our model can also reason explicitly 
about the duration of a stay, for which dynamic models such as standard dynamic 
Bayesian networks or hidden Markov models have only limited support [6]. 

Activities are estimated for each node in the spatially segmented GPS trace, as 
illustrated in Figure 1. In other words, our model labels a person's activity 
whenever she passes through or stays at a 10m patch of the environment. We 
distinguish two main groups of activities, navigation activities and significant 
activities. Activities related to navigation are walking, driving a car, or riding a 
bus. Significant activities are typically performed while a user stays at a location, 
such as work, leisure, sleep, visit, drop off / pickup, or when the user switches 
transportation modes, such as getting on/off a bus, or getting in/out of a car. 
To determine activities, our model relies heavily on temporal features, such as 
duration or time of day, extracted from the GPS readings associated with each 
activity node. 

Significant places are those locations that play a significant role in the activities of a 
person. Such places include a person's home and work place, the bus stops and 
parking lots the person typically uses, the homes of friends, stores the person 
frequently shops in, and so on. Note that our model allows different activities 
to occur at the same significant place. Furthermore, due to signal loss and noise 
in the GPS readings, the same significant place can comprise multiple, different 
locations. 

Our activity model poses two key problems for probabilistic inference. First, the 
model can become rather complex, including thousands of probabilistic nodes with 
non-trivial probabilistic constraints between them. Second, a person's significant 
places depend on his activities and it is therefore not clear how to construct the model 
deterministically from a GPS trace. As we will show in Section 3.3, we solve the 
first problem by applying efficient, approximate inference algorithms for conditional 



490 L. Liao, D. Fox, and H. Kautz 

random fields. The second problem is solved by constructing the model as part of this 
inference. We do this by generating the highest level of the activity model (significant 
places) based on the outcome of inference in the lower level (activity sequence). 
Inference is then repeated using both levels connected appropriately. 

3 Conditional Random Fields for Activity Recognition 

3.1 Preliminaries 

Our goal is to develop a probabilistic temporal model that can extract high-level 
activities from sequences of GPS readings. One possible approach is to use generative 
models such as hidden Markov models (HMM) or dynamic Bayesian networks. 
However, discriminative models such as conditional Random fields (CRF), have 
recently been shown to outperform generative techniques in areas such as natural 
language processing [10, 23], web page classification [24], and computer vision [9, 
21]. We therefore decided to investigate the applicability of such models for activity 
recognition. 

CRFs are undirected graphical models that were developed for labeling sequence 
data [10]. Instead of relying on Bayes rule to estimate the distribution over hidden 
states from observations, CRFs directly represent the conditional distribution over 
hidden states given the observations. Unlike HMMs, which assume that observa­
tions are independent given the hidden state, CRFs make no assumptions about the 
dependency structure between observations. CRFs are thus especially suitable for 
classification tasks with complex and overlapped observations. 

Similar to HMMs and Markov random fields, the nodes in CRFs represent a 
sequence of observations (e.g., GPS readings), denoted as x = (xi, X2,. . . , XT), and 
corresponding hidden states (e.g., activities), denoted as y = (^i, ^2, • • •, VT)- These 
nodes, along with the connectivity structure imposed by undirected edges between 
them, define the conditional distribution p(y |x) over the hidden states y. The fully 
connected sub-graphs of a CRF, called cliques, play a key role in the definition of 
the conditional distribution represented by a CRF. Let C be the set of all cliques 
in a given CRF. Then, a CRF factorizes the conditional distribution into a product 
of clique potentials (pd^c^ Yc), where every c G C is a clique of the graph and Xc 
and Yc are the observed and hidden nodes in such a clique. Clique potentials are 
functions that map variable configurations to non-negative numbers. Intuitively, a 
potential captures the "compatibility" among the variables in the clique: the larger 
the potential value, the more likely the configuration. Using clique potentials, the 
conditional distribution over the hidden state is written as 

where Z(x.) = ^ Ylcec ^c{^cj Yc) is the normalizing partition function. The com­
putation of this partition function is exponential in the size of y since it requires 
summation over all possible configurations of hidden states y. Hence, exact infer­
ence is possible for a limited class of CRF models only. 
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Without loss of generaUty, potentials (l)c{^cj Yc) are described by log-linear com­
binations of feature functions fc(), i.e., 

(pci^c^ Yc) = exp(wj • fc(xc, Yc)), (2) 

where w^ is the transpose of a weight vector Wc, and fc(xc, yc) is a function that 
extracts a vector of features from the variable values. The feature functions, which 
are often binary or real valued, are typically designed by the user (combinations of 
such functions can be learned from data [15]). As we will show in Section 3.3, the 
weights are learned from labeled training data. Intuitively, the weights represent the 
importance of different features for correctly identifying the hidden states. The log-
linear feature representation (2) is very compact and guarantees the non-negativeness 
of potential values. We can write the conditional distribution (1) as 

P(y I x) = -^T-. Yl exp{wf • fc(xc,yc)} (3) 
^ ^ cec 

= - ^ e x p < ^ w f . fe(Xe, Yc) \ (4) 

(4) follows by moving the products into the exponent. Before we describe how to 
perform efficient inference and learning in CRFs, we will now show how CRFs can 
be used to implement our hierarchical activity model. 

3.2 Application to Activity Recognition 

GPS to street map association 

As mentioned above, we segment GPS traces by grouping consecutive GPS readings 
based on their spatial relationship. Without a street map, this segmentation can be 
performed by simply combining all consecutive readings that are within a certain 
distance from each other (10m in our implementation). However, it might be desirable 
to associate GPS traces to a street map, for example, in order to relate locations to 
addresses in the map. Street maps are represented by graph structures, where one edge 
typically represents a city block section of a street, and a vertex is an intersection 
between streets [12]. 

To jointly estimate the GPS to street association and the trace segmentation, we 
associate each GPS measurement to a 10m patch on a street edge ^ As shown in 
Fig. 5(a) in Section 4, GPS traces can deviate significantly from the street map, mostly 
because of measurement errors and inaccuracies in street maps. One straightforward 
way to perform this association is to snap each GPS reading to the nearest street patch. 
However, such an approach would clearly give wrong results in situations such as 
the one shown in Fig. 5(a). To generate a consistent association, we construct a CRF 

^ In [12], we showed how to perform such an association using Rao-BlackwelHsed particle 
filters with multiple Kalman filters moving through the street graph. Since the focus of this 
work is on high level activities and places rather than accurate tracking, we use this more 
straightforward and efficient approach to trace segmentation. 
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Fig. 2. CRF for associating GPS measurements to street patches. The shaded areas indicate 
different types of cliques. 

that takes into account the spatial relationship between GPS readings. The structure 
of this CRF is shown in Figure 2. The observed, solid nodes correspond to GPS 
readings gt, and the white nodes represent the street patches St, which correspond to 
the hidden state y in Section 3.1. The values of each St range over the street patches 
in the map that are within a certain distance of the GPS reading gt. The lines in 
Figure 2 define the clique structure of the CRF. We distinguish three types of cliques, 
for which potentials are defined via the following feature functions: 

• Measurement cliques (dark grey in Figure 2): GPS noise and map uncertainty 
are considered by cliques whose features measure the squared distance between 
a GPS measurement and the center of the patch it is associated with: 

imeas (gt^st) 
\9t -st\ 

where gt is the location of the t-th GPS reading. With slight abuse of notation, 
we denote by St the center of one of the street patches in the vicinity of gt (st 
and gt are instantiated to a value), a is used to control the scale of the distance 
(note that this feature function corresponds to a Gaussian noise model for GPS 
measurements). Obviously, when combined with a negative weight, this feature 
prefers associations in which GPS readings are snapped to nearby patches. The 
feature fmeas is used for the potential of all cliques connecting GPS readings and 
their street patches. 

Consistency cliques (light grey): Temporal consistency is ensured by four node 
cliques that compare the spatial relationship between consecutive GPS readings 
and the spatial relationship between their associated patches. The more similar 
these relationships, the more consistent the association. This comparison is done 
via a feature function that compares the vectors between GPS readings and 
associated patches: 

ftemp idt,9t+i,st , st+i) 
\\{9t+i -9t)-{st+i St) 

Here, St and 5^+1 are the centers of street patches associated at two consecutive 
times. 
Smoothness cliques (medium grey): These cliques prefer traces that do not 
switch frequently between different streets. For instance, it is very unlikely that a 
person drives down a street and switches for two seconds to another street at an 
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Place type 

Activity 

Local evidence 

Fig. 3. CRF for labeling activities and places. Activity nodes ai range over activities, and 
place nodes pi range over types of places. Each activity node is connected to E observed local 
evidence nodes e] to ef. Local evidence comprises information such as time of day, duration, 
and motion velocity. Place nodes are generated based on the activities inferred at the activity 
level. Each place is connected to all activity nodes that are within a certain range. 

intersection. To model this information, we use binary features that test whether 
consecutive patches are on the same street, on neighboring streets, or in the same 
direction. For example, the following binary feature examines if both street and 
direction are identical: 

fsmooth("^t' "^t+i) = ^(^t.street, 5^+1.street) • S{st.dir, 5t+i.dir) (5) 

where (5(ix, v) is the indicator function which equals lif u = v and 0 otherwise. 

Using the feature functions defined above, the conditional distribution of the CRF 
shown in Figure 2 can be written as 

P(s|g) 
f ^ 

Z(x) 
exp < y^v^m-fmeas(^t,gt) + 

Lt=i 
1—1 

Yl (wfftemp(^t,^t+i,st ,st+i) + v^s-fsmooth(^*'^*+i) (6) 

where wm, w^ and ws are the corresponding feature function weights. The reader 
may notice that the weights and feature functions are independent of the time index. In 
the context of parameter learning, this independence is often referred to as parameter 
sharing, which we will discuss briefly in Section 3.4. Figure 5(a) illustrates the 
maximum a posteriori association of a GPS trace to a map. Intuitively, this sequence 
corresponds to the MAP sequence that results from tracking a person's location on 
the discretized street map. Such an association also provides a unique segmentation 
of the GPS trace. This is done by combining consecutive GPS readings that are 
associated to the same street patch. 

Inferring activities and types of significant places 

Once a GPS trace is segmented, our system estimates the activity performed at each 
segment and a person's significant places. To do so, it generates a new CRF that 
contains a hidden activity node for every segment extracted from the GPS trace. This 
CRF consists of the two lower levels of the one shown in Figure 3. Each activity node 
is connected to various features, summarizing information resulting from the GPS 
segmentation. These features include: 
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• Temporal information such as time of day, day of week, and duration of the stay. 
These measures are discretized in order to allow more flexible feature functions. 
For example, time of day can be Morning, Noon, Afternoon, Evening, or Night. 
The feature functions for the cliques connecting each activity node to one of the 
solid nodes in the CRF shown in Figure 3 are binary indicator functions, one 
for each possible combination of temporal feature and activity. For instance, one 
such function returns 1 if the activity is work and the time of day is morning, and 
0 otherwise. 

• Average speed through a segment, which is important for discriminating different 
transportation modes. The speed value is also discretized and indicator features 
are used, just as with temporal information. This discretization has the advantage 
over a linear feature function that it is straightforward to model multi-modal 
velocity distributions. 

• Information extracted from geographic databases, such as whether a patch is on 
a bus route, whether it is close to a bus stop, and whether it is near a restaurant or 
grocery store. Again, we use indicator features to incorporate this information. 

• Additionally, each activity node is connected to its neighbors. These features 
measure compatibility between types of activities at neighboring nodes in the 
trace. For instance, it is extremely unlikely that a person will get on the bus at 
one location and drive a car at the neighboring location right afterwards. The 
corresponding feature function is f(a^,a^+i) = 6{ai^OnBus) • (5(a^+i, Car), 
where â  and a^+i are specific activities at two consecutive activity nodes. The 
weight of this feature should be a negative value after supervised learning, thereby 
giving a labeling that contains this combination a lower probability. 

Our model also aims to determine those places that play a significant role in the activi­
ties of a person, such as home, workplace, friends' home, grocery stores, restaurants, 
and bus stops. The nodes representing such significant places comprise the upper 
level of the CRF shown in Figure 3. However, since these places are not known a 
priori, we must additionally detect a person's significant places. To incorporate place 
detection into our system, we use an iterative algorithm that re-estimates activities 
and places. Before we describe this algorithm, let us first look at the features that 
are used to determine the types of significant places under the assumption that the 
location and number of these places is known. In order to infer place types, we use 
the following features for the cliques connected to the place nodes pi in the CRF: 

• The activities that occur at a place strongly indicate the type of the place. For 
example, at grocery stores people mainly do shopping, and at a friends' home 
people either visit or pick up / drop off someone. Our features consider the 
frequency of the different activities occurring at a place. This is done by generating 
a clique for each place that contains all activity nodes in its vicinity. For example, 
the nodes pi,ai, and aN-2 in Figure 3 form such a clique. The model then counts 
the different activities occurring at each place. In our experiments, we discretize 
the counts into four categories: count = 0, count = 1, 2 < count < 3, and count 
> 4. Then for each combination of type of place, type of activity, and frequency 
category, we have an indicator feature. 
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Table 1. Algorithm for jointly inferring significant places and activities. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

Input: GPS trace {gi,g2,... ^gr) 

i:=0 

// Generate activity segments and evidence by grouping GPS readings 
({a i , . . . , ttiv), {e l , . . . , ef, 62 , . . . , e^)) := spatial_segmentation({^i,...,gr)) 

// Generate CRF containing activity and local evidence nodes 
CRFo := instantiate_crf({), {a i , . . . , OAT), {e i , . . . , e^)) 

//Determine MAP sequence of activities 
a*o := MAPJnference( CRFo) 

do 

i :=i + l 

// Generate places by clustering significant activities 
{pi , . . . ,pK)i '-= generate_places(a*^_i) 

// Generate complete CRF with instantiated places 
CRFi := instantiate_crf({pi,... ,pK)i, { a i , . . . , OAT), {e l , . . . , e^)) 

//Perform MAP inference in complete CRF 
{af, pf) := MAPJnference( CRF^) 

until af = af_ ̂  

return {af,pf) 

• A person usually has only a limited number of different homes or work places. To 
use this knowledge to improve labeling places, we add two additional summation 
cliques that count the number of different homes and work places. These counts 
provide soft constraints that bias the system to generate interpretations that result 
in reasonable numbers of different homes and work places. The features are 
simply the counts, which make the likelihood of labelings decrease exponentially 
as the counts increase. 

Note that the above two types of features can generate very large cliques in the CRF. 
This is because we must build a clique for all the activities at a place to count the 
frequencies of activities, and connect all the place nodes to count the number of homes 
or workplaces. In [13] we show how such features can be computed efficiently, even 
for large cliques. 

Place Detection and Labelling Algorithm 

The CRF discussed so far assumes that the location and number of a person's signif­
icant places is known in advance. Since these places are not known, it is necessary 
to additionally infer the structure of the hierarchical CRF shown in Figure 3. Table 1 
summarizes our algorithm for efficiently constructing this CRF. The algorithm takes 
as input a GPS trace. In Step 3, this trace is segmented into activity nodes a .̂ Each 
such node is characterized by local evidence e^, which is extracted from the GPS 
readings associated to it. As discussed above, segmentation of a trace is performed 
by either clustering consecutive GPS readings that are nearby or associating the GPS 
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trace to a discretized street map using the CRF shown in Figure 2. The activity nodes 
and their evidence are then used in Step 4 to generate a CRF such as the one shown 
in Figure 3. However, since significant places are not yet known at this stage, CRFQ 

contains no place nodes. Maximum a posteriori inference is then performed in this 
restricted CRF so as to determine the MAP activity sequence a*o, which consists of 
a sequence of locations and the activity performed at that location (Step 5). Within 
each iteration of the loop starting at Step 6, such an activity sequence is used to 
extract a set of significant places. This is done by classifying individual activities in 
the sequence according to whether or not they belong to a significant place. For in­
stance, while walking, driving a car, or riding a bus are not associated with significant 
places, working or getting on or off the bus indicate a significant place. All instances 
at which a significant activity occurs generate a place node. Because a place can be 
visited multiple times within a sequence, we perform clustering and merge duplicate 
places into the same place node. This classification and clustering is performed by 
the algorithm generate_places(), which returns a set of K place nodes pk in Step 8. 
These places, along with the activity nodes â  and their local evidence ej are used to 
generate a complete CRF. Step 10 performs MAP estimation in this new CRF. Since 
this CRF has a different structure than the initial CRFQ, it might generate a different 
MAP activity sequence. If this is the case, then the algorithm returns to Step 6 and 
re-generates the set of places using this improved activity sequence. This process 
is repeated until the activity sequence does not change, which is tested in Step 11. 
Finally, the algorithm returns the MAP activity sequence along with the set of places 
and their MAP types. In our experiments we observed that this algorithm converges 
very quickly, typically after three or four iterations. Our experiments also show that 
this algorithm is extremely efficient and robust. 

3.3 Inference 

In this section we will provide an overview of inference techniques for CRFs. We will 
use X to denote observations and y to denote hidden states. Given a set of observations, 
inference in a CRF can have two tasks: to estimate the marginal distribution of each 
hidden variable, or to estimate the most likely configuration of the hidden variables 
(i.e., the maximum a posteriori, or MAP, estimation). Both tasks can be solved under 
a framework called belief propagation (BP), which works by sending local messages 
through the graph structure of the model. The BP algorithm was originally proposed 
in the context of Bayesian networks [20], and was formulated equivalently in models 
such as factor graphs [8] and Markov networks (including CRFs) [25]. BP generates 
provably correct results if the graph has no loops, such as trees or polytrees [20]. If 
the graph contains loops, in which case BP is called loopy BP, then the algorithm is 
only approximate and might not converge to the correct probability distribution [16]. 

Without loss of generality, we only describe the BP algorithm for pairwise CRFs, 
which are CRFs that only contain cliques of size two. We will briefly discuss how 
to use BP in non-pairwise CRFs in the last paragraph of this section. Before running 
the inference algorithm in a pair-wise CRF, it is possible to remove all observed 
nodes x by merging their values into the corresponding potentials; that is, a potential 
(^(x, y) can be written as (j){y) because x is fixed to one value. Therefore, the only 



Hierarchical Conditional Random Fields for GPS-Based Activity Recognition 497 

potentials in a pair-wise CRF are local potentials, (^(^^), and pair-wise potentials, 
(j){yi^ yj). Corresponding to the two types of inference problems, there are two types 
of BP algorithms: sum-product for marginal estimation and max-product for MAP 
estimation. 

Sum-product for marginal estimation 
In the BP algorithm, we introduce a "message" mij{yj) for each pair of neighbors 
yi and yj, which is a distribution (not necessarily normalized) sent from node i to 
its neighbor j about which state variable yj should be in. The messages propagate 
through the CRF graph until they (possibly) converge, and the marginal distributions 
can be estimated from the stable messages. A complete BP algorithm defines how to 
initialize messages, how to update messages, how to schedule the message updates, 
and when to stop passing messages. 

• Message initialization: All messages mij{yj) are initialized as uniform distri­
butions over yj. 

• Message update rule: The message rriij {yj) sent from node i to its neighbor j is 
updated based on local potentials (j){yi), the pair-wise potential (j){yi^ yj), and all 
the messages to i received from f s neighbors other than j (denoted as n(i) \j). 
More specifically, for sum-product, we have 

rriij 

Vi ken(i)\j 

• Message update order: The algorithm iterates the message update rule until it 
(possibly) converges. At each iteration, it usually updates each message once, 
where the update order might affect the convergence speed. 

• Convergence conditions: To test whether the algorithm converged, BP measures 
the difference between the previous messages and the updated ones. The con­
vergence condition is met when all the differences are below a given threshold 
e. 

In the sum-product algorithm, after all messages are converged, it is easy to calculate 
the marginals of each node and each pair of neighboring nodes as 

b{yi) oc (j){yi) Y[ ^jiiVi) (8) 
jen{i) 

Kvi^Vj) ^Hyi)Hyj)Hyi^yj) H ^^^(^^) 11 ^^^(^i) ^̂ ^ 
kenii)\j lenij)\i 

The above algorithm can be applied to any topology of pair-wise CRFs. When the 
network structure does not have a loop (for example, when it is a tree), the obtained 
marginals are guaranteed to be exact. When the structure has loops, the BP algorithm 
usually cannot obtain exact marginals, or it may even not converge. Fortunately, 
empirical experiments show that loopy belief propagation often converges to a good 
approximation of the correct posterior. 
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Max-product for MAP estimation 
We denote the messages sent in the max-product algorithm as m^"^(i/j). The whole 
algorithm of max-product is very similar to sum-product, except that in the message 
update rule summation is replaced by maximization. The new rule becomes 

max { 
''Hj '{yj)=m^^c^{y,)c^{y,,y,) f ] m^''{y^)• (10) 

Hi 

kenii)\j 
We run the max-product algorithm in the same way as for sum-product. After the 
algorithm converges, we calculate the MAP belief at each node yi as 

b{y^)^Hy^) n ^r'(^0- (11) 
jenii) 

If there is a unique MAP configuration y*, then the components of y* are simply the 
most likely values according to the MAP belief (11). 
So far, we explained the two BP algorithms in the context of pairwise CRFs. For 
non-pairwise CRFs, there is a standard way to convert them to pairwise ones [25]. 
Intuitively, this conversion generates a new node for each clique of size greater than 
two. The state space of the new node consists of the joint state of the nodes it was 
generated from. Thus, the complexity of belief propagation is exponential in the 
number of nodes in the largest clique of the CRF. 

In our application, the summation (or counting) features could introduce large 
cliques containing up to 30 nodes. Standard belief propagation would be intractable 
for such cliques. Fortunately, it is posbbile to convert cliques generated for summation 
features to tree-structured CRFs. In such structures, BP inference can be done in 
polynomial time, and for sum-product it is even possible to apply the Fast Fourier 
Transform (FFT) to further speed up message passing (see [13] for details). 

3.4 Parameter Learning 

The goal of parameter learning is to determine the weights of the feature functions 
used in the conditional likelihood (4). CRFs learn these weights discriminatively, that 
is, the weights are determined so as to maximize the conditional likelihood p(y |x) of 
labeled training data. This is in contrast to generative learning, which aims to learn 
a model of the joint probability p(y,x). Ng and Jordan [17] present a discussion 
and comparison of these two learning regimes, concluding that discriminative learn­
ing asymptotically reaches superior performance but might require more training 
examples until its performance converges. 

Maximum Likelihood (ML) Estimation 
As can be seen in (4), given labeled training data (x, y), the conditional likelihood 
p(y|x) only depends on the feature weights Wc. In the derivation of the learning 
algorithm it will be convenient to re-write (4) as 

P(y I X, w) = ^ - - - exp < ^ w j • fc(xc, Yc) > (12) 

^ exp{w^.f(x ,y)) , (13) 
Z(x,w) 
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where w and f are the vectors resulting from "stacking" the weights and the feature 
functions for all cliques in the CRF, respectively. In order to make the dependency 
on w more explicit, we write the conditional likelihood as p(y|x, w). A common 
parameter estimation method is to search for the w that maximizes this likelihood, or 
equivalently, that minimizes the n^gaf/v^ log-likelihood, — logp(y|x, w) [10,24,14]. 
To avoid overfitting, one typically imposes a so-called shrinkage prior on the weights 
to keep them from getting too large. More specifically, we define the objective function 
to minimize as follows: 

T 
w w 

L(w) = - logp(y I X, w) + -^^ (14) 
T 

= - w ^ . f (x, y) + log Z(x, w) + ^ (15) 

The rightmost term in (14) serves as a zero-mean, Gaussian prior with variance a'^ 
on each component of the weight vector. (15) follows directly from (14) and (13). 
While there is no closed-form solution for maximizing (15), it can be shown that (15) 
is convex relative to w. Thus, L has a global optimum which can be found using 
numerical gradient algorithms. It can be shown that the gradient of the objective 
function L(w) is given by 

w 
VL(w) = - f (x, y) + ^P(y'|x,w) [f (x, y')] + ^ (16) 

where the second term is the expectation over the distribution P(y ' | x, w). There­
fore, the gradient is the difference between the empirical feature values f (x, y) and 
the expected feature values ^p(y/|x,w) [f (x, y')], plus a prior term. To compute the 
expectation over the feature values it is necessary to run inference in the CRF us­
ing the current weights w. This can be done via belief propagation as discussed in 
the previous section. Sha and Pereira [23] showed that numerical optimization algo­
rithms, such as conjugate gradient or quasi-Newton techniques, typically converge 
reasonably fast to the global optimum. 

Maximum Pseudo-Likelihood (MPL) Estimation 
Maximizing the likelihood requires running an inference procedure at each iteration 
of the optimization, which can be very expensive. An alternative is to maximize the 
pseudo-likelihood of the training data [3], which is the sum of all the local likelihoods, 
p{yi I MB(y^)), where MB(y^) is the Markov blanket of variable y^ containing the 
immediate neighbors of y^ in the CRF graph (note that the value of each node is 
known during learning). The pseudo-likelihood can be written as 

n n ^ 

J2piyi I MB(y,),w) = ^ ^ ^ ^ ^ ^ ^ ^ _ ^ e x p { w ^ .f(yi,MB(y,))}, (17) 

where f (y^, MB(y^)) are the local feature values involving variable y^, and 
tion. Computing pseudo-likelihood is much more efficient than computing likelihood 
Z(MB(y^),w) = Xly'^^P{w • f(y^,MB(y9)} is the local normalizing func-
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p(y|x, w), because pseudo-likelihood only requires computing local normalizing 
functions and avoids computing the global partition function Z(x, w). 

As with ML, in practice we minimize the negative log-pseudo-likelihood and a 
shrinkage prior, and the objective function becomes 

n T" 

PL(w) = -Yl logP(y» I MB(yi), w) + ^ ^ (18) 
i=l 

= E ( - ^ ^ • f(yi>MB(y,)) + Z(MB(y,),w)) + ^ (19) 

Again, PL(w) is a convex function and it is possible to use gradient-based 
algorithms to find the w that minimizes PL{w). The gradient can be computed as 

n 

VPL{w)=J2 (-f(yi,MB(yi)) +^p(y,|MB(y.).w)[f(yi'MB(yi))]) + ^ . (20) 
i=l 

As we can see, (20) can be expressed as the difference between empirical feature 
values and expected feature values, similar to (16). However, the key difference is 
that (20) can be evaluated very efficiently without running a complete inference 
procedure. Learning by maximizing pseudo likelihood has been shown to perform 
very well in several domains [9, 22]. In our experiments we found that this type 
of learning is extremely efficient and consistently achieves good results. The reader 
may notice that this technique cannot be used for inference, since it assumes that the 
hidden states y are known. 

Parameter Sharing 
The definition of the weight vector and its gradient described above does not support 
parameter sharing, which requires the learning algorithm to learn the same parameter 
values (weights) for different cliques in the CRF. For instance, the conditional like­
lihood (5) of the CRF described in Section 3.2 only contains three different weights, 
one for each type of feature. The same weight wm is used for each clique containing 
a street patch node St and a GPS reading node gt. To learn such kinds of models, 
one has to make sure that all the weights belonging to a certain type of feature are 
identical. As it turns out, the gradients with respect to such shared weights are almost 
identical to the gradients (16) and (20). The only difference lies in the fact that the 
gradient for a shared weight is given by the sum of all the gradients computed for the 
individual cliques in which this weight occurs [24, 14]. 

Parameter sharing can be modeled conveniently using probabilistic relational 
models such as relational Markov networks [24, 14]. These techniques allow the 
automatic specification and construction of CRF models using so-called clique tem­
plates, which enable the specification of parameter sharing for inference and learning. 

4 Experimental Results 
In our experiments we evaluate how well our system can extract and label a person's 
activities and significant places. We also demonstrate that it is feasible to learn models 
from data collected by a set of people and to apply this model to another person. 



Hierarchical Conditional Random Fields for GPS-Based Activity Recognition 501 

We collected GPS data traces from four different persons, approximately six 
days of data per person. The data from each person consisted of roughly 40,000 
GPS measurements, resulting in about 10,000 10m segments per person. We then 
manually labeled all activities and significant places in these traces. We used leave-
one-out cross-validation for evaluation, that is, learning was performed based on the 
data collected by three persons and the learned model was evaluated on the fourth 
person. We used pseudo-likelihood for learning, which took (on a 1.5 GHz PC) about 
one minute to converge on the training data. Pseudo-likelihood converged in all our 
experiments. We did not use loopy belief propagation for learning since it did not 
always converge (even after several hours). This is most likely due to the fact that 
the approximation of this algorithm is not good enough to provide accurate gradients 
for learning. However, we successfully used loopy BP as inference approach in all 
our evaluation runs. For each evaluation, we used the algorithm described in Table 1, 
which typically extracted the MAP activities and places from one week's trace within 
one minute of computation. When a street map was used, the association between 
GPS trace and street map performed in Step 3 of the algorithm took additional four 
minutes (see also Section 3.2). 

Example analysis 

The different steps involved in the analysis of a GPS trace are illustrated in Figure 4. 
The second panel (b) shows the GPS trace snapped to 10m patches on the street map. 
This association is performed by Step 3 of the algorithm given in Table 1, using the 
CRF shown in Figure 2. The visited patches, along with local information such as 
time of day or duration, are used to generate the activity CRF. This is done by Step 
4 in Table 1, generating the activity level of Figure 3. MAP inference in this CRF 
determines one activity for each patch visit, as shown in panel (c) of Figure 4 (Step 5 
of the algorithm). Note that this example analysis misses the get-off-bus activity at the 
left end of the bus trip. The significant activities in the MAP sequence are clustered 
and generate additional place nodes in a new CRF (Steps 8 and 9 in Table 1). MAP 
inference in this CRF provides labels for the detected places, as shown in Figure 4(d). 
The algorithm repeats generation of the CRFs until the MAP activity sequence does 
not change any more. In all experiments, this happens within four iterations. 

Figure 5(a) provides another example of the quality achieved by our approach 
to snapping GPS traces to street maps. Note how the complete trace is snapped 
consistently to the street map. Table 2 shows a typical summary of a person's day 
provided by the MAP sequence of activities and visited places. Note that the system 
determines where the significant places are, how the personx moves between them, 
and what role the different places play for this person. 

Extracting significant places 

In this experiment we compare our system's ability to detect significant places to 
the results achieved with a widely-used approach that applies a time threshold to 
determine whether or not a location is significant [1,7, 12, 14]. Our approach was 
trained on data collected by three people and tested on the fourth person. For the 
threshold method, we generated results for different thresholds from 1 minute to 10 
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Fig. 4. Illustration of inference on part of a GPS trace, which visited this 4km x 2km area 
several times, (a) The raw GPS data has substantial variability due to sensor noise, (b) GPS 
trace snapped to 10m street patches, multiple visits to the same patch are plotted on top of each 
other, (c) Activities estimated for each patch, (d) Places generated by clustering significant 
activities, followed by a determination of place types. 
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Table 2. Summary of a typical day based on the inference results. 
Time 

8:15am-8:34am 
8:34am-5:44pm 
5:44pm - 6:54pm 
6:54pm - 6:56pm 
6:56pm- 7:15pm 
7:15pm-9:01pm 
9:01pm - 9:20pm 
9:20pm - 9:21pm 
9:21pm - 9:50pm 
9:50pm - 8:22am 

Activity and transportation 

Drive from homei to parking lot2, walk to workplacei; 
Work at workplace!; 

Walk from workplacei to parking lot2, drive to friends's place; 
Pick up/drop off at friends's place; 

Drive from friends's place to other place2; 
Other activity at other place2; 

Drive from other place2 to friendi 's place; 
Pick up/drop off at friendi's place; 

Drive from friendi's place to homei; 
Sleep at homei. 

| - (oooo 0 o o o o o o c f l M o o o o o o 0 

/ 1 

o 

8 

(a) 

10 min 

5 min 

O 

^<-Threshold method 
O Our model 

»3 min 

1 min 

10 20 30 
False positive 

40 
(b 

Fig. 5. (a) GPS trace (gray circles) and the associated grid cells (black circles) on the street 
map (Hues), (b) Accuracy of extracting significant places. 

minutes. The data contained 51 different significant places. Figure 5(b) shows the 
false positive and false negative rates achieved with the two approaches. As can seen, 
our approach clearly outperforms the threshold method. Any fixed threshold is not 
satisfactory: low thresholds have many false negatives, and high thresholds result in 
many false positives. In contrast, our model performs much better: it only generates 
4 false positives and 3 false negatives. 

Labeling places and activities using models learned form others 

Table 3 and Table 4 summarize the results achieved with our system on the cross-
validation data. Table 3 shows activity estimation results on the significant activities 
only. An instance was considered a false positive (FP) if a significant activity was 
detected when none occurred, and was considered false negative (FN) if a significant 
activity occurred but was labeled as non-significant such as walking. The results are 
given for models with and without taking the detected places into account. More 
specifically, without places are results achieved by C R F Q generated by Step 5 of 
the algorithm in Table 1, and results with places are those achieved after model 
convergence. When the results of both approaches are identical, only one number is 
given; otherwise, the first number gives results achieved with the complete model. 
The table shows two main results. First, the accuracy of our approach is quite high, 
especially when considering that the system was evaluated on only one week of 
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Table 3. Activity confusion matrix of cross-validation data with (left values) and without (right 
values) considering places for activity inference. 

Truth 

Work 
Sleep 

Leisure 
Visiting 
Pickup 

On/Off car 
Other 

FP 

Inferred labels 
Work 

12/11 
0 
2 
0 
0 
0 
0 

0 

Sleep 

0 
21 
0 
0 
0 
0 
0 

0 

Leisure 

0 / 1 
1 

20/ 17 
0 / 2 

0 
0 
0 

0 

Visit 

0 
2 

1 / 4 
7 / 5 

0 
0 
0 

0 

Pickup 

0 
0 
0 
0 
1 
1 
0 

2 

On/off car 

0 
0 
0 
0 
0 

13/12 
0 

2 

Other 1 
i 
0 
3 
2 
0 
0 
37 

3 

] FN 

0 
0 
0 
0 
2 

2 / 3 
1 

-

data and was trained on only three weeks of data collected by different persons. 
Second, performing joint inference over activities and places increases the quality of 
inference. The reason for this is that a place node connects all the activities occurring 
in its spatial area so that these activities can be labeled in a more consistent way. 

These results were generated when taking a street map into account. We also 
performed an analysis of the system without using the street map. In this case, the 
GPS trace was segmented into 10m segments solely based on the raw GPS values. 
We found that the results achieved without the street map were consistently almost 
identical to those achieved when a street map is available. In both cases, our system 
achieved above 90% accuracy for navigation activities such as car, walk, or bus, and 
above 85% accuracy in estimating significant activities. 

Truth 

Work 
Home 
Friend 
Parking 
Other 

FP 

Table 4. Place confusion matrix. 
Inferred labels 

Work 

5 
0 
0 
0 
0 

0 

Home 

0 
4 
0 
0 
0 

0 

Friend 

0 
0 
3 
0 
0 

i 

Parking 

0 
0 
0 
8 
0 

i 

Other 

0 
0 
2 
0 
28 

2 1 

JFN 
ro" 

0 
0 
2 
1 

Y^ 

The confusion matrix shown in Table 4 summarizes the results achieved on 
detecting and labeling significant places. As can be seen, the approach commits zero 
errors in labeling the home and work locations of the persons (one person had two 
work places). The overall accuracy in place detection and labeling is 90.6%. The 
place detection results were identical with and without using a street map. 

5 Conclusions 

We provided a novel approach to performing location-based activity recognition. 
In contrast to existing techniques, our approach uses one consistent framework for 
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both low-level inference and the extraction of a person's significant places. This is 
done by iteratively constructing a hierarchical conditional random field, where the 
upper level is generated based on MAP inference on the lower level. Once a complete 
model is constructed, we perform joint inference in the complete CRF. Discriminative 
learning using pseudo-likelihood and inference using loopy belief propagation can be 
performed extremely efficiently in our model: The analysis of a GPS trace collected 
over a week takes approximately one minute on a standard desktop PC. 

Our experiments based on traces of GPS data show that our system significantly 
outperforms existing approaches. In addition to being able to learn a person's signif­
icant locations, it can infer low level activities such as walking, working, or getting 
into a bus. We demonstrate that the model can be trained from a group of persons and 
then applied successfully to a different person, achieving more than 85% accuracy in 
determining low-level activities and above 90% accuracy in detecting and labeling 
significant places. Our model achieves virtually identical accuracy both with and 
without a street map. The output of our system can also be used to generate textual 
summaries of a person's daily activities. 

The system described here opens up various research directions. For instance, our 
algorithm constructs the hierarchical CRF using MAP estimation. We are currently 
investigating a technique that generates multiple models using an MCMC or a k-best 
approach. The different models can then be evaluated based on their overall data 
likelihood. We expect this more flexible model searching approach to generate better 
results especially in more complex scenarios. We are currently adding more types of 
sensors to our model, including data collected by a wearable multi-sensor board [11]. 
This sensor device collects measurements such as 3-axis acceleration, audio signals, 
barometric pressure, and light. Using the additional information provided by these 
sensors, we will be able to perform extremely fine-grained activity recognition. 
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1 Introduction 

Scientific study of animals in situ requires vigilant observation of detailed 
animal behavior over weeks or months. When animals live in remote and/or 
inhospitable locations, observation can be an arduous, expensive, dangerous, 
and lonely experience for scientists. Emerging advances in robot cameras, 
long-range wireless networking, and distributed sensors make feasible a new 
class of portable robotic "observatories" that can allow groups of scientists, 
via the internet, to remotely observe, record, and index detailed animal activ­
ity. As a shorthand for such an instrument, we propose the acronym CONE: 
Collaborative Observatory for Natural Environments. 

One challenge is to develop a mathematical framework for collaborative 
observation. Collaborative observation includes (1) collaboration between hu­
mans of different backgrounds, skill sets, and authority/permission levels and 
(2) collaboration between humans and automated agents whose behavior 
arises from sensor inputs and/or computation. As illustrated in Figure 4, 
our framework uses a panoramic image and set of activity frames to provide 
a unified representation for output and for input from both human observers 
and sensors. 

2 Related Work 

Since Nikola Tesla demonstrated the first radio-controlled boat in 1898 and 
Goertz demonstrated a bilateral manipulator in 1954 [7], remotely operated 
machines have been widely desired for use in inhospitable environments such 
as radiation sites, undersea [1] and space exploration [3, 24, 33]. Today, tele-
operation is being developed for medical diagnosis [2], manufacturing [6] and 
micromanipulation [27]. See Sheridan [28] for an excellent review of the ex­
tensive literature on teleoperation and telerobotics. Most of these systems 
require fairly complex hardware at the human interface: exoskeleton master 

S. Thmn , R. Brooks, H. Durrant-Whyte (Eds.): Robotics Research, STAR 28, pp. 510-519, 2007. 

© Springer-Verlag Berlin Heidelberg 2007 
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linkages are operated by highly trained specialists. In contrast, the Internet 
can provide public access by using only the interface available in s tandard 
browsers. 

The hypertext transfer protocol developed at CERN in 1992 [4], provides 
a low-cost and publicly available network interface. In the Spring of 1994, we 
conjectured tha t we could use it to offer public access to a teleoperated robot 
via the Internet. 

{i ^ • • " • - i . 

Non-Registered Otiser' 

ikjoj 
OBSERVATION AREA 

CURRENT OPERATOR NONE 

!—! Regist.ered OperaLor Login 

•1—I New Operator Orientation and Registration 

' I View the Operators' Log 

..!—!• Go to the Project Home Page 

Fig. 1. Mercury Project (1994-1995). Above: Robot, camera and air nozzle above 
sandbox filled with buried artifacts. Below: Browser Interface using vanilla HTTP 
1.0. 

As illustrated in Figure 1, we set up an IBM SCARA robot arm over a 
semi-annular workspace containing sand and buried artifacts. We attached a 
CCD camera to the end of the arm along with a nozzle to direct air bursts 
into the sand. We then developed a H T T P 1.0 (Mosaic) browser interface to 
the hardware. The Mercury Project was operated by over 10,000 people and 
is widely regarded as the first Internet robot [11, 10]. 

Our subsequent project, the Telegarden, allowed users to view and interact 
with a remote garden filled with living plants. We incorporated a much faster 
Adept-1 industrial robot arm and allowed the robot to be multi-tasked to 
eliminate the user queue. The Telegarden was installed at a museum in Austria 
where it operated around the clock for nine years was operated by over 100,000 
people online. 

In 1994, working independently, a team led by K. Taylor and J. Trevelyan 
at the University of Western Australia demonstrated a remotely controlled 
six-axis telerobot in September 1994 [5, 17]. There are now dozens of Internet 
robots online, a book from MIT Press [12], and an IEEE Technical Committee 
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Fig. 2. The Tele-Garden (1995-2004). (with Joseph Santarromana, George Bekey, 
Steven Gentner, Rosemary Morris Carl Sutter, Jeff Wiegley, Erich Berger, and 
Thomas Steindl). 

on Networked Robots that has over 200 members. See [18, 26, 20, 19, 21, 23, 
15, 25, 22] examples of recent projects. 

3 The Tele-Actor and ShareCam 

In 1999 we began exploring other models of access control, where user 
inputs are combined rather than sequenced. In [9, 8], we describe an Internet-
based Multiple Operator Single Robot system that use vector averaging to 
combine multiple mouse inputs to simultaneously control a single industrial 
robot arm. In [13, 14], we describe a Java-based "Spatial Dynamic Voting" 
(SDV) interface that collects, displays, and analyzes a sequence of spatial 
votes from multiple online operators at their Internet browsers. The votes can 
drive the motion of a single mobile robot or, for increased mobility and agility, 
a human "Tele-Actor". 

4 The Collaborative Frame Selection Problem 

We are now developing systems based on robotic pan, tilt, zoom cameras 
controllable by many simultaneous viewers over the Internet. Since there is 
one camera and many viewers, the challenge is to resolve contention about 
where to point the camera. 
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Fig. 3. Spatial Dynamic Voting Interface and the Tele-Actor (2001-2004). 
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frame 

Requested 
frames 

Fig. 4. Panoramic image and user or machine-requested "activity frames". 

Collaborative observation includes (1) collaboration between humans of 
different backgrounds, skill sets, and authority/permission levels and (2) col­
laboration between humans and automated agents whose behavior arises from 
sensor inputs and /or computation. We propose using a panoramic image and 
set of activity frames to provide a unified representation for output and for 
input from both human observers and sensors. On the output (display) side, 
the wide-field panoramic image provides a relative spatial context for close-up 
camera views. 

On the input side, each activity frame is a rectangular region with the 
aspect ratio of the camera. As illustrated in Figure 4, human users specify 
activity frames of interest by drawing them with s tandard mouse over the 
panoramic image; the boundaries of the frame intuitively match each desired 
camera view. Below we review algorithms we've developed tha t efficiently 
process a set of activity frames to compute optimal frames for the camera. 
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Each activity frame is a rectangular region with the aspect ratio of the 
camera. As illustrated in Figure 4, human users specify activity frames of 
interest by drawing them with standard mouse over the panoramic image; the 
boundaries of the frame intuitively match each desired camera view. 

Let c = [x^y^z] define a rectangular camera frame (the camera has a fixed 
aspect ratio of 4:3). User i requests a desired frame r^. Given requests from n 
users, the system must compute a single global frame c* that will best satisfy 
the set of requests. Clearly simple averaging will work poorly as it can produce 
centered camera frames that satisfy none of the users. 

We define the "Coverage-Resolution Ratio (CRR)" as a reward, or "satis­
faction" metric s{c^ri) based on how closely the requested frame r̂  compares 
with a candidate camera frame c. One sample CRR metric is described below. 

Equation 1 characterizes the intuition that satisfaction has to be an increasing 
function of coverage ratio ^A^^a(r) ' •'•̂  ^^^ definition, larger z or Zi means 
larger in frame size but lower in resolution. Therefore, an extremely large 
camera frame can increase coverage ratio but will decrease the resolution 
ratio —. 

z 

Each of n users submits a request. In the collaborative camera control, we 
want to find c*, the value of c that maximizes overall satisfaction based only 
on the current set of requests: 

V^ / N A A r e a ( r ^ n c ) . (Zi . 
max > sAri.c) = > — ;—^—mm —,1 . (2) 

In each motion cycle, we servo the camera to the computed position and zoom 
level. 

Since the reward metric is non-concave and non-differentiable, efficiently 
computing the optimal solution for Equation 2 is non-trivial as illustrated 
in Figure 5. In [31], we show that the shape of the objective function for a 
single user has a plateau-like shape. To efficiently compute the summation of 
a set of plateaus, we developed an 0{mn'^) exact algorithm based on idea of 
sweeping and incremental computation. Since the camera may have a contin­
uously variable zoom and user requests are not necessarily rectangular, we 
have developed a series of algorithms as summarized in Table 1. 

Activity frames can also provide a natural representation for input from 
sensors. For example, pyroelectric motion sensors respond to activity within a 
convex spatial region that can be projected onto the image plane and conser­
vatively bounded by a rectangular activity frame. The same is true for optical 
beam sensors, pressure pads, and directional microphones. 

For example, consider a set of commercial pyroelectric motion sensors con­
figured to detect animal motion (eg. motion of warm bodies > 50 lbs). Each 
sensor has an associated field of view and responds with different quantitative 
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Fig. 5. Shape of reward metric for a fixed camera zoom level. For each user, their 
specified activity frame gives rise to an objective function that is plateau-like as 
illustrated in (c). The function consists of 5 planar and 4 quadratic surfaces at the 
corners. The overall objective function is the summation of plateaus generated by 
activity frames from all users. 

levels based on mass and velocity of movement. When several sensors go off si­
multaneously, a series of camera positions may be selected as proposed above. 
It is also important not to "starve" any sensor tha t may indicate a crucial 
observation. Similar "starve" effect can also happen to a minority user, whose 
observing interests may be different from the majority. 

We can augment the frame selection model in Equation 2 by introducing 
time variable t and, for each sensor, a linear gain function Ui. The gain is a 
function of camera motion history, sensor reliability, and scientific observation 
priorities. 
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Table 1. Algorithms developed for Collaborative Frame Selection, where n is num^ber 
of activity frames specified, and m is the number of camera zoom levels. 

No. 
1 

2 

3 

4 
5 

6 

Type 
Centralized 

Centralized 

Distributed 

Centralized 
Centralized 

Distributed 

Zoom 
m levels 

m levels 

m levels 

Continuous 
Continuous 

Continuous 

Request 
Rectangle 

Rectangle 

Rectangle 

Rectangle 
Polygon 

Polygon 

Solution 
Exact 

Approximation 

Exact 

Exact 
Approximation 

Approximation 

Complexity 
0{mn^) 

0{mn^ logn) 
Server: 0{mn) 
Client: 0{n) 

O(n^) 
0 ( ( n + l / e ^ ) l o g " n ) 

Sever: 0{n) 
Client 0(l/e^) 

Pub. 
[31] 

[16] 

[32] 

[30] 

[30] 

[29] 

n 

max V ^ uji (t) Si{ri{t), cit)) Y^iOiit) 
Areair.it) n cit)) z ^ 

Areainit)) zit) 
(3) 

We propose a gain function based on camera history as follows. We define 
a "dissatisfaction" value for each user (in this case each sensor) based on how 
poorly the last camera frame was aligned with the sensor's last activity frame 
request: Ui{t) = 1 — 5^(r^(t), c(t)). This "dissatisfaction" gain can accumulate 

over time: cj^(t) = Xl/c=o 2^-1-fc ^ ^^ ^^^^ when other sensors are satisfied with 
consistent camera motion, the neglected sensor gradually gains in infiuence. 
This can be defined in a recursive format, 

cj,(t) = i x , ( t - l ) + c j , ( t - l ) / 2 . 

Effectively, the weight of the un-observed region will increase until it is ob­
served. Preliminary experiments suggest tha t this approach is robust, insuring 
tha t all sensors contribute and preventing the system from having observation 
driven by only a small number of dominating sensors (or users!). 

5 Conclusion and Future Work 

This paper reviews a series of prototype networked robotic systems and asso­
ciated algorithms for collaborative observation. 

We are currently extending our framework to consider resource limited ob­
servation, heterogenous user groups, optimizing camera trajectory, temporal 
modeling, sensor modeling, sensor monitoring and fault detection, and robotic 
actuation. We will develop automated agents based on sensors, robotic cali­
bration for rapid deployment, and a video database for archiving, indexing, 
and query of observed scientific data. 
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The main focus on this section is "Interfaces and Interaction". Computer 
display is an interface showing the information to human visually. For pro­
viding with information from human to computer (or robots), there are many 
interface devices, such as force sensor, acceleration sensor, velocity sensor, 
position sensor, tactile sensor, vision and so forth. EMG and EEG signals 
are also utilized as an interface signal from handicapped people to robots. 
By utilizing these interfaces, interactive motion between human and robot 
can be achieved. Interaction with variety is extremely important for enter­
tainment robots, amusement robots, and social robots. Since the capability of 
these robots strongly depends upon the reaction and the expression, both sen­
sors and actuators are key components for advancing them. Three papers are 
presented in this section. The first is concerned with haptic based communica­
tion between human and robots. The second deals with the vestibular sensor 
tha t can detect head motion of human. The final paper deals with diagnosing 
autism through the interaction between human and robot. While these three 
papers are largely unrelated to each other in the purpose, the common key 
word is interaction between human and robot. Especially, in the first and the 
third paper, the interaction between human and robot is strongly intended. 

In the paper "Haptic Communication between Humans and Robots," the 
authors present a detailed design of tactile sensor and utilization of haptic 
da ta for a robot to estimate human position and posture. They are eventu­
ally interested in obtaining a map describing the relationship between the 
tactile information and human posit ions/postures from the records of haptic 
interaction taken by tactile sensors and a motion capturing system composed 
of plural number of cameras installed in the environment. They first develop 
tactile sensors where each sensor element is film-type piezoelectric polymer 
sensors inserted between the thin and thick silicone rubber layers. The film-
type sensor, consisting of polyvinylidene fluoride (PVDF) and sputtered silver, 
outputs a high voltage proportional to the pressure applied. The tactile sen­
sor covers the entire robot body, so tha t any contact between human and 
robot can be detected. A couple of makers are at tached to human body, so 
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tha t the motion capturing system can take human posit ions/postures. At the 
same time, tactile information is captured so tha t the correlation map between 
tactile and visual information can be generated. Once the map is obtained, 
the robot can estimate the position and posture of human by using tactile 
information. 

In the second paper "A Vestibular Interface for Natural Control of Steering 
in the Locomotion of Robotic Artifacts: Preliminary Experiments," the au­
thors develop a novel interface capable of detecting human's motion intention 
obtained from anticipatory movements tha t naturally accompany more com­
plex motor behaviors. To validate the idea, they develop a prototype vestibular 
interface tha t can detect head linear accelerations and angular velocities along 
three axes. In order to investigate the principle of a vestibular interface based 
on head anticipatory movements, head motions with the interface are com­
pared with the actions on traditional input interface, during driving tasks. 
Preliminary experiments are executed to confirm whether the head anticipa­
tory movements associated with steering is observed or not. An interesting 
observation is tha t head motion always is slightly in advance compared with 
steering command time when subjects are executing a driving game. The sim­
ilar tendency is also observed in right-left steering in case of a mobile robot. 

The paper "How Social Robots will Help Us to Diagnose, Treat, and Un­
derstand Autism" intends to diagnose and understand autism through the 
interaction between a candidate (or a patient) and social robots. The ESRA 
robot with the capability of three facial expressions is used with a playtest bot-
ton. The robot has no sensory capabilities and does not respond to anything 
tha t the child does. ESRA is programmed to perform a short script with both 
a set of actions and an accompanying audio file. The robot performs behav­
iors from this same repertoire with the initiation of these behaviors triggered 
by an experimenter. Even with the extremely limited capabilities of ESRA, 
the children seemed to thoroughly enjoy the session. An interesting observa­
tion is tha t while children are universally engaged with the robot and often 
spend the majority of the session touching the robot, vocalizing at the robot, 
and smiling at the robot, these positive proto-social behaviors are rarely seen 
for the children with autism. The authors point out tha t quantitative and 
objective evaluation for diagnosis can be accomplished through both passive 
observation of the child and active interactions with robots. Chasing gaze di­
rection during a picture observing is a good example of passive sensing and 
observation during interaction with robot by using the playtest bot ton is a 
good example of the latter case. 
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Summary . This paper introduces the haptic communication robots we developed 
and proposes a method for detecting human positions and postures based on haptic 
interaction between humanoid robots and humans. We have developed two types of 
humanoid robots that have tactile sensors embedded in a soft skin that covers the 
robot's entire body as tools for studying haptic communication. Tactile sensation 
could be used to detect a communication partner's position and posture even if the 
vision sensor did not observe the person. In the proposed method, the robot obtains 
a map that statistically describes relationships between its tactile information and 
human positions/postures from the records of haptic interaction taken by tactile 
sensors and a motion capturing system during communication. The robot can then 
estimate its communication partner's position/posture based on the tactile sensor 
outputs and the map. To verify the method's performance, we implemented it in 
the haptic communication robot. Results of experiments show that the robot can 
estimate a communication partner's position/posture statistically. 

1 Introduction 

Haptic communication is as important as vision and voice. It allows blind 
people to acquire a certain autonomy in their everyday life, since it is largely 
redundant with vision for the acquisition of spatial knowledge of the environ­
ment and object properties [1]. Moreover, people who are familiar with each 
other often pat each other 's back or hug each other; such haptic interaction 
reinforces their familiarity. 

If a communication robot equipped with tactile sensors over its entire body 
could have the same capability of haptic interaction as human do, we would 
feel greater familiarity with the robot, thus shortening its communicative dis­
tance from people. There has been much research on developing tactile sensors 
tha t cover the entire body of a robot [2, 3, 4, 5, 6]. Pan et al. [2] and Inaba 
et al. [4] proposed tactile sensor suits made of electrically conductive fabric. 
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Hakozaki et al. [5] proposed telemetric robot skin based on sensor chips tha t 
consist of an LC resonance circuit. In particular, Inaba et al. developed a 
full-body sensor suit to detect binary touching information for their remote-
brained small humanoid robot. Iwata et al. [3] also proposed force-detectable 
surface-cover systems for humanoid robots and developed an actual humanoid 
robot, named WENDY, with the systems. Their systems are based on a six-
axis force torque sensor and force sensing registers (FSR sensors) used to 
measure the external force vector and contact positions on the cover accu­
rately. Regarding haptic communication, Naya et al. collected da ta of tactile 
information from a pet-like robot and proposed a method tha t could classify 
several human touching motions based on the tactile sensor values [7]. By 
using tha t method, a robot can classify human touching motion and establish 
a relationship with a person by giving appropriate responses to the person. 

Let us consider some other aspects of haptic interaction. An infant is 
hugged by or plays with a caretaker. During tha t interaction, the caretaker 
acquires the infant's body geometry information in order to carefully control 
his or her motions. People often pat a communication partner on his/her body 
instead of calling him/her . In this case, since the partner is able to easily turn 
his/her face to the pat t ing person directly, the partner can roughly estimate 
the position and the posture of the pat t ing person without looking. This esti­
mation makes human haptic interaction natural and safe. If we could realize 
such estimation for humanoid robots, the haptic interaction between humans 
and the robots would thus become more natural and safer. The previous re­
searches, however, have focused on sensing the contact locations on the robot, 
and no method has been proposed to estimate position and posture by using 
only tactile information. In the field of computer vision, several methods have 
been developed to estimate position and posture [8, 9]. Under the situation 
of haptic interaction between a human and a robot, however, the distance 
between the human and the robot will be short, and images taken from the 
robot 's cameras will only include a part of the human's body. Thus, it is 
difficult to use these methods for haptic interaction. 

This paper proposes a method for a robot to detect human positions and 
postures by using tactile sensor da ta while the person is touching the robot. 
The key idea for handling tactile information is tha t the possible combina­
tions of tactile information and human posit ion/posture are quite limited 
in the above situations. In this method, the robot acquires a map tha t de­
scribes the correspondences between the tactile information and human po­
sitions/postures from the records of haptic interaction taken in situations of 
communication with humans. Using the map, it is possible to estimate po­
sition and posture based only on the information provided from the tactile 
sensors. We demonstrate the validity of the method in experiments on a robot 
covered with tactile sensors. 
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2 Tactile Sensors Covering an Entire Robot Body 

2.1 R o b o v i e - I I S 

This section introduces the architecture of the tactile communication robot 
named Robovie-IIS. We have been developing communication robots, each 
named Robovie, for the study of communication between individual humans 
as well as between humans and robots. Robovie-IIS is designed to study tactile 
communication used in friendly relationships. This robot is based on Robovie-
II [10], with tactile sensor elements embedded in a soft skin tha t covers the 
robot 's entire body. Figure 1 shows overall views of two types of Robovie-IIS 
and scenes of its communication with a human. 

(c) Haptic Interaction between 
(a) First version (b) Second version Robovie-IIS and chidren 

Fig. 1. Two types of tactile communication robot "Robovie-IIS" 

2.2 Tac t i l e Sensor E l e m e n t s E m b e d d e d in Soft Skin 

Figure 2 shows the hardware architecture of a tactile sensor element embedded 
in the soft skin. As the figure clearly illustrates, the soft skin consists of three 
layers. The outside layer is made of thin silicone rubber (thickness: 5 mm), and 
the middle layer is made of thick silicone rubber (thickness: 10 mm) . We use 
these silicone rubber layers to achieve human-like softness. Moreover, the sense 
of touch and friction of the surface of the silicone rubber are similar to tha t 
of human skin. The thickness of the silicone rubber also absorbs the physical 
noise made by the robot 's actuators. The inner layer is made of urethane foam, 
which insulates against heat from inside the robot and has a different surface 
friction from human skin. Its density is lower than tha t of the silicone rubber; 
the densities of the urethane foam and the silicone rubber are 0.03 g/cm^ and 
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1.1 g/cm^, respectively. The total density of the soft skin consisting of all layers 
is 0.6 g/cm^. The tactile sensor elements are film-type piezoelectric polymer 
sensors inserted between the thin and thick silicone rubber layers. The film-
type sensor, consisting of polyvinyhdene fluoride (PVDF) and sputtered silver, 
outputs a high voltage proportionate to changes in applied pressure. Figure 3 
shows the arrangement of the sensor elements for the first type of Robovie-IIS, 
of which there are 48 in its soft skin. The second type of Robovie-IIS has 276 
sensor elements in the skin. 

Thin silicone rubber (5 mm) 

Thick sihcone rubber (10 mm) 

Urethane foam (15 mm) 

Piezo film sheet (PVDF) 

F i g . 2 . Archi tecture of Soft Skin Sensor 

Although the sensor element outputs a high voltage, the signal is weak 
compared to electric noise disturbance since its electric current is weak. There­
fore, we distribute A/D converters (ADCs) with sensor-signal amplifiers to 
each body part. The ADCs are installed next to the sensor elements to con­
vert the analog sensor signals to digital data. We developed two types of 
ADC, which are shown in Fig. 4. The dimensions of the first type of ADC are 
23 X 137 X 8 mm. On this board, there are four A/D converters (each channel 
has six bits) to obtain the outputs of four sensor elements. We also use a 
microcomputer (PIC) to convert the digital data to a serial signal (RS-232c). 
By adding other boards' serial signals to it, we can realize a daisy-chain con­
nection between the boards, as shown in Fig. 5 (a). These boards allow us to 
sense all sensor elements embedded in the soft skin from a serial port of the 
host computer. 

As for the second type of ADC, its dimensions are 22 x 76 x 10.2 mm. This 
board has 16 A/D converters (each channel has 16 bits) and a micro-processor 
(SII2, Renesas Technology Corp.). We can connect 16 sensor elements to the 
board and preprocess the raw data of tactile sensor outputs, such as low-
pass-filtering on the processor. The preprocessed data are converted to serial 
signals and sent to the host computer via a serial bus (RS-485), as shown in 
Fig. 5 (b). 
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Fig. 4. Distributed A/D Converters 

3 Human Position and Posture Detection 

In this section, we describe a method to estimate human position and posture 
from the tactile sensor outputs . 
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(a) First type (b) Second type 

Fig. 5. Architecture of A/D Converters 

3.1 M e a s u r i n g P o s i t i o n and P o s t u r e of H u m a n s 

We employed an optical motion capturing system (VICON, Vicon Motion 
Systems Ltd.) to measure body movements. The motion capturing system 
consists of 12 pairs of infrared cameras and infrared lights and markers tha t 
reflect infrared signals. These cameras were set around the environment of 
the experiment as shown in Figure 6 (a). The system calculates each marker 's 
3-D position from all of the camera images, and it features high resolution in 
both time (60 Hz) and space (accuracy is 1 mm in the room). In this paper, 
we use three markers to describe the position and the posture of humans with 
respect to the coordinates fixed to the robot. These markers are at tached to 
the waist and the left and right fingertips of the human. 

3.2 M a p p i n g B e t w e e n Tac t i l e Sensor O u t p u t s a n d P r o b a b i l i t y 
D i s t r i b u t i o n of H u m a n P o s i t i o n s / P o s t u r e s 

We calculate probability distributions of posit ions/postures of humans tha t 
correspond to tactile sensor outputs and build a map between them. The 
mapping process is carried out as follows. Figure 6 shows an outline of the 
process. 

(i) Record time series data of the robot 's tactile sensor outputs and posi­
t ions/postures of subjects simultaneously while they communicate with 
each other. In this paper, we used 46 tactile sensors along with three 
markers tha t were at tached to the waist and both hands of the sub­
ject for the motion capture system as posit ions/postures of the sub­
ject. Hence, the tactile sensor outputs and the marker positions of the 
waist, the left hand, and the right hand are described as ti G 9^^^, 

^L — hand ^R—hand p^u^.ao^ p^ ,.^,.^^ ^ . . ,.^,.^ ^ s^3^ respectively, where i denotes time. 
(ii) From all tactile sensor da ta {t^}, select the tactile sensor da ta {tj} tha t 

are greater than a threshold for use while touching. The threshold is de­
termined by preliminary experiments. 
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(iii) Classify selected data {tj} into typical clusters {Ck} by using the ISO-
DATA clustering method [12]. 

(iv) Calculate distributions of marker positions {^p*} that correspond to the 
tactile sensor data {^tj} at each cluster Ck by the following steps. 
a) Classify the marker position data {^p*} into clusters {^D^} by us­

ing the ISO-DATA. We first classify the waist marker position data 
^kpwaistj j^|.Q clusters {^Df^^^stj^ j^^ ^^^^i kjjwaist^ ^^ assume that 
the distribution of the marker position data conforms to a normal 
distribution N{/j.,a'^). Under this assumption, we calculate a mean /i 
and a standard deviation a of {fpj^'^^*}, which are the elements of 
the cluster ^jjwaist^ 

b) Calculate probabilities for the existence of the marker position at each 
cluster {^Df} when the tactile sensor data belong to the cluster C^. 
If the number of the elements ^^pj^'^^*^ is rn, and the total number 
of the waist marker positions that correspond to the tactile sensor 
outputs in the cluster Ck is n, we obtain the probability, Pk^-waist, as 
m ^ 
n * 

c) Label the cluster '^Df effective if PDI becomes greater than threshold 
tp and a becomes less than threshold t^; tp and t^ are determined by 
premliminary experiments. 

d) Iterate these steps from (iv)-a) to (iv)-c) for the data of the left-
and right-hand marker positions, {kpj-hand^ ^^^ ^k^R-hand^^ ^^_ 
spectively. 

(v) Label the cluster Ck effective if the clusters {^Df} that corresponded to 
Ck have more than one effective cluster. 

3.3 Using the map 

Once the map is obtained, the robot can use it as follows. 

(i) Obtain tactile sensor data vector t G 9̂ ^̂  during communication with a 
human. 

(ii) Calculate the distance between t and each cluster {Ck} in the map, and 
select the cluster Cg for which the distance is shortest. Abandon the esti­
mation if the distance is longer than a threshold. 

(iii) Obtain the probabihty distributions of the waist, the left- and right-hand 
positions that correspond to Cg if the cluster is effective. 

4 Experiment 

4.1 Acquiring Human Position and Posture 

Figure 6(a) illustrates the system used to acquire the data of tactile sensor 
outputs and positions of the markers. The tactile sensor outputs were recorded 
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Motion Capture System 

) Record tactile sensor outputs and marker positions (step (i)) (b) Select tactile sensor data {tj} from {tj} (step (ii)) 

(c) Classify {tj} into clusters {Q} (step (iii)) 

^ 

Waist positions 

© ^"^ 

L-hand positions 

(d) Calculate distribution of marker positions (step (iv)) 

Fig. 6. Outline of Mapping process 

on a hard-disk drive mounted on the robot 's body. In this experiment, we used 
the first type of ADC described in Section 2.2 to obtain the outputs . The 
markers were at tached to the waist and left/right fingertips of bo th the robot 
and a human subject. The motion capturing system was arranged to measure 
their motions representing haptic interaction. The sampling rate of the tactile 
sensor was 20 Hz, and the sampling rate of the positions of the markers was 
60 Hz. In the experiments, Robovie-IIS continuously moved its joints, aside 
from its wheels, and communicated with the subject. The program used for 
its communication behavior was almost the same as tha t of Robovie-II [10], 
consisting of a behavior network based on situated modules tha t describe 
communication behaviors according to the situation. There are approximately 
100 communication behaviors in Robovie's present behavior network. 

The subjects of our experiment were 40 university students (males: 12, 
females: 28). An experimenter explained the purpose of the experiments as 
collecting haptic interaction da ta from the subjects and asked each of them 
to communicate with the robot for three minutes. 
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4.2 R e s u l t s of M a p p i n g B e t w e e n Tac t i l e Sensor O u t p u t s a n d 
P r o b a b i l i t y D i s t r i b u t i o n of H u m a n P o s i t i o n s / P o s t u r e s 

Table 1 shows the results of clustering the tactile sensor outputs and the 
evaluation of each cluster. The total number of da ta from the tactile sensor 
output , which was described as ti G 3^^^ in section II-B, was 247,622. We used 
the first half of the da ta (123,811 data) for building the map between tactile 
sensor outputs and posit ions/postures of humans. The latter half of the da ta 
were used to verify the map. 

First, we selected 14,265 touching da ta from the first-half da ta by employ­
ing the threshold of each tactile sensor. We then obtained 150 clusters using 
ISO-DATA. In this experiment, we set the threshold tp to 0.1, t^ for waist to 
300 mm, and tcr for bo th hands to 150 mm. Finally, we obtained 137 effective 
clusters for use in estimating human position and posture. Figure 7 describes 
in detail the number of effective clusters in a Venn diagram. We obtained 110 
clusters for the waist position estimation, 90 clusters for left-hand position 
estimation, and 88 clusters for right-hand position estimation. As the figure 
shows, the robot can also estimate all positions, i.e. waist and both hand 
positions, from 54 clusters. 

Table 1. Results of Clustering and Evaluation of each cluster 

total # of skin sensor data 
# of touching data 
total # of clusters 

# of effective clusters 

123,811 
14,265 

150 
137 

waist 

left hand right hand 

Fig. 7. Venn diagram of effective clusters 

To verify the performance of the map, we used tactile sensor outputs of 
the latter-half da ta (123,811 data) as inputs of the robot and compared the 
estimation results of marker positions and the actual positions taken from the 
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motion capturing system. In this paper, we decided that the estimation would 
be successful if the actual marker position fell within the area from // — 2cr 
to /x + 2cr at the estimated distribution conforming to a normal distribution, 
A^(/x,cr^). We obtained 14,314 touching data from the latter-half data, and 
there were 12,711 data (89%) that belonged to the tactile sensor cluster in 
the map. Success rates of the estimations for the waist, the left hand, and the 
right hand were 87%, 63%, and 72%, respectively. 

To verify the effectiveness of the estimation based on the map, we applied 
reflexive behaviors to the robot so that it would look at the subject's face based 
only on the tactile sensor outputs and the map. This behavior is diflicult to 
achieve for robots that do not have such a map. The photographs in Figs. 
8 (a) and (b) show these reflexive behaviors. In these figures, the bar charts 
denote the tactile sensor outputs obtained during the haptic interaction shown 
in the photographs. The figures of the robot model show the distributions of 
waist and hand positions that correspond to the bar chart. As can be seen in 
these figures, the robot is able to estimate the positions of waist and hands 
statistically as information on human position and posture. The robot can look 
at the subject's face by utilizing the tactile sensor outputs, as the photographs 
indicate. 

30 
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(b) Subject touches waist of Robovie-IIS 

Fig. 8. Estimation results of human position and posture 

5 Discussion and Conclusion 

We proposed a method to estimate human position and posture by utilizing 
tactile information. In our method, the robot first acquires a relationship 
between its tactile information and human positions and postures from the 
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history of haptic interaction. In our experiments, we obtained the success 
rates of the estimation for the waist, the left hand, and the right hand as 
marker positions. The success rate for the left hand turned out to be the 
lowest because almost all of the subjects were right-handed persons. They 
used mainly their right hand for touching the robot. Thus the position of the 
left hand became unstable while touching with the right hand. If the robot 
obtained more da ta of haptic interaction with left-handed persons, the success 
rate of the estimation for the left hand would increase. This implies tha t the 
success rates depend on the robot 's experiences of haptic communications. 

In this paper, we used the communication partner 's position and posture 
based on a 3-D motion capture system. If the robot could sense more infor­
mation from the partner by accessing its passive-type sensors and correlating 
their da ta to tactile information, it would estimate the partner 's state more 
precisely based only on the tactile information. In future work, we will use the 
information described above to estimate the par tner 's state more precisely. 
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This work addresses the problem of developing novel interfaces for robotic 
systems tha t can allow the most natural transmission of control commands 
and sensory information, in the two directions. A novel approach to the devel­
opment of natural interfaces is based on the detection of the human's motion 
intention, instead of the movement itself, as in traditional interfaces. Based 
on recent findings in neuroscience, the intention can be detected from antici­
patory movements tha t naturally accompany more complex motor behaviors. 

This work is aimed at validating the hypothesis tha t head movements 
can be used to detect, slightly in advance, a person's intention to execute 
a steering during locomotion, and tha t a natural interface can be developed 
for controlling the navigation of a robotic artifact, based on this principle. 
A prototype 'vestibular' interface has been developed to this purpose, based 
on a 3-axial artificial vestibular system, developed by part of the authors for 
humanoid robotics applications. Three different experimental sessions have 
been carried out by using: (1) a driving video-game; (2) a robotic endoscope, 
with a 2-DOF steering tip; and (3) a mobile robot with a camera on-board. 

The experiments showed tha t anticipatory head movements occur even 
when the person is driving a device, like those used in the experiments, and 
tha t such head movements always anticipate commands to the input device. 
The results indicate tha t the proposed hypothesis is valid and tha t a further 
research effort is worthwhile in the direction of using this novel principle to 
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develop natural interfaces, which in fact can be very useful in many tasks, 
with different devices. 

1 Introduction 

Robotics Technology is becoming more and more pervasive in human envi­
ronments [1]. Robots are getting closer to human life in a variety of ways 
and shapes: not only as humanoids [2], but also as task-specific robotic tools, 
as smart robot appliances [3], and even as bionic robotic parts to be con­
nected to the human brain and body [4]. This is in fact one of the front-edge 
challenges of robotics, which poses novel and critical problems not only in 
the design and development of human-like components, but also in the study 
and development of natural ways of interaction and interfacing between the 
natural body, especially the brain, and the robotic parts [5]. The main scien­
tific problem in interfacing natural and robotic systems is to understand how 
the human brain can perceive the artificial parts as own parts and to what 
extent they can be controlled in a natural way by the brain. It is therefore 
crucial that the interfaces for bionic systems allow the most natural transmis­
sion of control commands and sensory information, in the two directions. This 
requires a novel approach and design method, which integrates multidiscipli-
nary expertise and starts from models of human sensory-motor coordination 
for modeling and developing interfacing mechanisms that exploit them at the 
best, to obtain natural perception and control. 

Traditional interfaces are based on user's motor actions, typically mapped 
onto a different geometry and kinematics, i.e. those of the input devices. Such 
cortical re-mapping between the motor areas involved in the use of the in­
terface and those involved in the motor task at hand requires some learning 
and introduces an additional cognitive burden onto the users. Many authors 
suggest the adoption of multimodal devices to reduce the users' effort to com­
municate the intended commands, thus letting them more free to focus on 
the tasks and goals [6]. Furthermore, detecting the users' motor action on the 
input device and transmitting it to the robot introduce a delay from when the 
movement is planned in the human brain to when it is accomplished by the 
robot. 

A more suitable approach to the development of interfaces is based on 
the detection of the human's motion intention. This can be detected as it 
originates in the brain, by means of brain-machine interfaces [7, 8] or when the 
control signal is transmitted in the nervous system to peripheral districts. On 
the other hand, it could also be suggested that anticipation of complex motor 
behaviour can de detected by recording anticipatory movements. In humans, 
simple movements anticipate, to some extents, other complex sensory-motor 
behaviors during postural and arm movements [9, 10, 11]. Such anticipatory 
movements may be used in a context-dependent manner for building natural 
and intuitive interfaces. The two main advantages of this approach are: (1) 
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the detected movements are naturally associated with motor behaviors and 
as such they would not put any additional cognitive burden on the person; 
(2) the detected movements occur well in advance of motor behaviors and 
therefore they would help obtain a timely reaction in the controlled robotic 
system. 

This work is based on the demonstration tha t head movements can be used 
to detect, slightly in advance, a person's intention to execute a steering during 
locomotion. It has been shown that , during locomotion, the head anticipates 
the locomotor trajectory along simple trajectories like around a corner, and 
in more complex trajectories like triangles or circles or even more complex 
forms. This anticipation develops in the child after 4 /5 years of age and can 
reach values as high as several hundred milliseconds. [22, 23, 24, 25, 26] 

In our experiments, head movements are investigated to be used as a nat­
ural interface to control and to trigger steering in the navigation tasks per­
formed by 3 different robotic artifacts. The experiments are aimed at iden­
tifying: (1) if head motion actually anticipates steering, even when driving 
different devices, instead of walking; (2) if the timely detection of head mo­
tion can be used to enhance the interface in driving. 

2 Methods and Tools 

2.1 N e u r o s c i e n c e B a c k g r o u n d 

In many everyday activities, humans carry out more than one motor task si­
multaneously, even when the motor behavior appears relatively simple. Move­
ment sequences, defined by both the component movements and the serial 
order in which they are produced, are the fundamental building blocks of the 
motor behavior. It is known tha t the serial order of sequence production is 
strongly encoded in medial motor areas even if understanding to what ex­
tent sequences are further elaborated or encoded in the primary motor cortex 
still remains controversial [12]. Over the last decades, several efforts were dedi­
cated to understand how the central nervous system manages the serialization 
of movements and a consolidate finding is the existence of anticipatory move­
ments tha t are likely to be acquired during developmental age [13]. Broadly 
speaking, anticipatory movements are motor activities tha t support the pro­
duction of the main motor activity and tha t occur before likely sensory events. 
These movements are in contrast to reflexive actions and are necessary to com­
pensate for delays present in sensory and motor systems. Smooth pursuit eye 
movements are often used as a paradigmatic example for the study of antici­
pation [14, 15]. Many authors have investigated various types of anticipation. 
For example. Land et al. [9] reported tha t during everyday activities, gaze 
fixations are always close to the object being manipulated, and very few fixa­
tions are irrelevant to the task occurred. Moreover, gaze arrives at the object 
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to be manipulated some 0.5 seconds before any indication of manipulation. Jo­
hansson et al. [10] demonstrated tha t gaze in manipulation tasks consistently 
fixates future object contact points well before the hand reaches these loca­
tions and anticipates reaching trajectory via-points. In a similar way, head 
movements are believed to anticipate body motions, such as turning while 
walking [11, 16]. It has been shown in these later papers tha t the head an­
ticipation is in fact preceeded, and probably coupled to, a gaze anticipation. 
Therefore head anticipation is an interesting measure when gaze recording 
is not available. Some neuroscientific bases tha t may explain the anticipatory 
triggering of orienting reactions may lie in the neural networks governing head 
direction in space during navigation. For instance, head direction neurons in 
the brain also show anticipatory activity [27] In this case, it is suggested tha t 
anticipatory orienting synergies belong to the behavioral repertoire of human 
navigation and may refiect the mental simulation of the desired trajectory 
o r / and the need to prepare a stable reference frame for the intended action. 
In our work, we make use of some acquired findings of neuroscience research 
in order to provide a motivated novel approach to the design of innovative 
natural interfaces. 

2.2 T h e Ves t ibu lar Interface 

This work has been carried out by using a 3-axial artificial vestibular system, 
developed by the authors for humanoid robotics applications, to be mounted 
on anthropomorphic robotic heads [17]. The artificial vestibular system is in­
spired by the main functional characteristics of the human vestibular system 
and, in analogy with the latter one, it detects linear accelerations and angular 
velocities along 3 axes; to this purpose it integrates 1 tri-axial accelerometer 
and 3 mono-axial gyroscopes. All the electronic components are mounted on 
a single surface, thus limiting the total system dimension and weight and al­
lowing a suitable mounting both on robotic and human heads. The sensors 
used for the design of the vestibular interface are: 2 GYROSTAR mono-axial 
Piezoeletric Vibrating Gyroscopes by muRata , 1 XV-3500CB mono-axial ul­
t ra small Vibration Gyro sensor by Epson and 1 H48C ultrasmall tri-axial 
accelerometer module by Hitachi, as shown in Fig. 1. 

All the sensors used are extremely small and lightweight and provide move­
ment information tha t are adequate to the requested application. The gyro­
scopes working principle is based on the detection of the Coriolis force, which 
is generated when a rotational angular velocity is applied to a vibrator in­
side the sensor. The Piezoeletric Vibrating Gyroscopes by muRata are used 
for the angular velocity detection around the Pitch and the Roll axis, while 
the mono-axial gyroscope XV-3500CB is employed for detecting the angular 
velocity around the Yaw axis. The latter device is a complete angular rate 
sensor with all of the required electronics on one chip and it has the partic­
ular feature of measuring the angular velocity around an axis orthogonal to 
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Fig. 1. Prototype of Artificial Vestibular System and signal conditioning electronic 
board 

1 ^ 

% 

Fig. 2. CAD 
bottom view 

drawing of prototype artificial vestibular system: (left) top and (right) 

its mounting surface. In this way, all the 3 gyroscopes can be integrated on a 
single plane, as shown in the CAD drawing (Fig.2). 

The tri-axial accelerometer module H48C is composed of a MEMS tech­
nology sensor chip and of a CMOS-IC chip with the op-amplifiers. As for the 
3 mono-axial gyroscopes even the tri-axial accelerometer can be placed on the 
same plane thus allowing a strong miniaturization of the total system. 

The A / D conversion, amplification and filtering of the different signals are 
processed by an elettronic board tha t was designed and developed purposively. 
This is composed of 14 operational amplifiers for the filtering and the ampli­
fication of the signals and by a 20 MHz PIC 16F877 microcontroller for the 
conversion of the signals from analog to digital. The board is connected to the 
P C by means of a s tandard RS-232 port using serial codification information. 

All the channels are filtered by a high-pass filter, with a cut-off frequency of 
approximately 0.3 Hz in order to reduce the effect of temperature drift, while 
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a low-pass filter with a cut-off frequency of approximately 6 Hz, is used to 
suppress the output noise component. The filtered signals are then amplified 
with a two-stage operation amplifier, allowing to modulate the total gain 
of amplification according to the operating range of the specific application. 
Table 1 shows the ranges of total amplification gain for all the suitable sensor 
outputs and their corresponding values of full scale and resolution. 

Table 1. Electronic board total amplification gain 

Total gain Full Scale Sensitivity 
Min Max Min Max Min Max 

[rad/s] 5 . 1 T 0 ~ [rad/s; 

[rad/s] 5 . 1 T 0 ~ [rad/s 

-2^ 2.9 -10-2^ 

Moreover, a dedicated software, with a graphical user interface (GUI), 
has been developed for the further steps of signal processing and integration. 
Signal processing consists of two subsequent steps of elaboration: filtering and 
amplification. In the first step, in order to suppress high-frequency noise, a 
real-time fourth-order single-pass Butterworth low-pass filter, with a cut-off 
frequency of 6 Hz, is applied to all the sensor outputs (voltage measures). In 
the second phase, the voltage measures are amplified according to the sensor 
scale factor, converted into the respective physical values (angular velocities 
for the gyroscopes; accelerations for the accelerometers) and filtered again 
with the same filter. 

In this application, the system calibration was performed according to 
existing procedures [18]. Finally, the static angles of the artificial vestibular 
system on the pitch and roll axes were calculated from the accelerometer 
outputs, while the dynamic angles were obtained from the gyroscopes outputs 
by means of numerical trapezoidal integration. 

3 Experimental Validation 

3.1 Exper imenta l Methodology 

In order to investigate the principle of a vestibular interface based on head 
anticipatory movements, experimental trials were set-up in which head mo­
tion were compared with the actions on a traditional input interface, during 
driving tasks. The experimental validation was organized in three sessions. 
The common set-up for the three experimental sessions consists of a number 
of subjects wearing the prototype vestibular interface, on top of their heads, 
and a binocular wearable display (I-Glasses by Video Pro 3D), for visual feed­
back. In all the sessions, the subjects were asked to perform a driving task. 
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but different devices were driven in the three sessions, with different input 
interfaces: 

1. driving video game: a commercial video game was used in this session, 
where a car is driven by a using a gamepad by Logitech, along a rally 
circuit. This experiment was conceived in order to investigate the working 
hypothesis when the subjects are asked to drive a virtual artifact, and 
receive images of a simulated environment; 

2. robotic endoscope: the navigation trials were performed by using a robotic 
endoscope with a 2-DOF steering tip and a bent tube simulating the 
exploration space. A joystick was used as input interface, and the image 
from the endoscope tip was sent to the subject as visual feedback. In this 
case, the device to be controlled is a real system, though the environment 
is not familiar for the subject, and so the feedback images; 

3. mobile robot: a small mobile robotic platform with wheels and a camera 
on-board was set-up for this session. The subjects were asked to drive the 
mobile robot in a doorway passage task and the images from the on-board 
camera were fed back to the subjects. In this case, the robotic platform 
performed a real navigation in a real environment that was natural for 
human locomotion and familiar to the subjects. 

3.2 Experimental Trials with the Driving Game 

Eight subjects were involved in the experimental trials with the driving video 
game, and each of them was asked to perform three full laps in a circuit with 
7 turns. The subjects were given a view of the circuit from inside the car 
and they could give the following commands: (1) steer right; (2) steer left; (3) 
speed up; (4) slow down. 

The input interface, i.e. the gamepad, was modified so as to record the 
actions selected by the subjects. Specifically, the left and right steering com­
mands were recorded. At the same time, the 6 signals generated by the vestibu­
lar interface worn by the subjects were recorded and synchronized with those 
coming from the gamepad by means of an audio trigger. The signals from the 
vestibular interface were compared with those from the input interface. 

The signal corresponding to the angular velocity of the head during ro­
tation (yaw axis) resulted to have a good correlation with the signals corre­
sponding to right and left steering. Typical results are depicted in Fig.3 that 
shows the two signals as recorded in one of the trials. 

If looking at the zero-crossing of the head velocity (i.e. the local minima of 
the head position) it is clear how they always anticipate a steering command. 
The time of anticipation is in average close to 0.5 sec. Also, the versus of 
the head rotation is coherent with the corresponding steering command, even 
if the amplitude of the two signals is not always proportional. Additional 
actions on the input interface can be observed, which are not anticipated by 
a head rotation. These usually correspond to adjustments of the car heading, 
especially after side-slips. 
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Fig. 3. Compared angular velocity of head rotation (blue solid line) and movement 
of the input device (red dotted line) in right-left steering, in the case of the driving 
game. 

3.3 E x p e r i m e n t a l Tria ls w i t h t h e R o b o t i c E n d o s c o p e 

The robotic endoscope used in the second experimental session was designed 
and developed for spinal neuroendoscopy, a minimally invasive technique 
aimed at exploring the subarachnoid space inside the spine. Due to the narrow 
dimensions of the lumen (i.e. the cavity filled with t rasparent fiuid tha t is free 
from anatomical structures), its thickness ranges from 2 up to 8mm in hu­
mans, and to the presence of fragile nerve roots and blood vessels, unassisted 
manual neuroendoscopy is impossible in practice. For this reason, a robotic 
endoscope for neuroendoscopy has been proposed [19]. It consists of three 
main units: the end effector is a fiexible multi-material multi-lumen catheter, 
whose external diameter is 2.7mm, housing 10 longitudinal channels: the en­
doscope (0.5mm of diameter, 6000 pixels of resolution) is hosted in the central 
one, while the steering capabilities are ensured by 3 pulling cables (hosted in 
three lateral channels), actuated by the Intelligent Drive Unit: it interprets 
the driving commands from the surgeon, tests their safety by means of a 
vision-based software module, the Cognitive Unit, and transfers them to a 
set of two stepper motors, pulling the steering cables. The Cognitive Unit 
processes all the information coming from the endoscopic camera and from 
the sensory system attached to the patient. It co-operates with the surgeon. 
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implementing a shared control strategy during the intervention, for example 
by preventing him from performing too dangerous maneuvers: a segmentation 
module recognizes fragile structures (e.g. blood vessels and nerve roots) in the 
image from the camera; a navigation module keeps trace of their position and 
structure even when they go out the field of view of the endoscope. A more 
detailed description of these two vision-related sub-systems was presented in 
[20]. The combined action of the Cognitive Unit and the Drive Unit is in­
tended to overcome erroneous maneuvers of the surgeon, so as to ensure safe 
navigation. 

The experimental task consisted in the navigation inside a curved white 
plastic tube, where the lumen appeared as a black circular spot in the endo­
scope image, which was fed back to the subjects through the wearable display. 
The subjects were asked to navigate towards the end of the tube, by keeping 
the black spot in the center of the image field. They used a joystick as input 
device. The signals coming from the vestibular interface and from the input 
joystick interface were synchronized and compared. Fig.4 shows the signal 
corresponding to the angular velocity of the head during rotation (along the 
yaw axis) and the signal corresponding to right-left steering, for one of the 
trials. 

In this experimental session, the movements of the head during the experi­
mental task were negligible. We envisage two main possible reasons explaining 
the lack of anticipatory movements of the head in this experimental scenario: 
first of all, the smaller dimensions of the image, as well as the narrow field 
of view of the endoscope are such tha t the subject could not have a real 
'immersive' perception. It is also known tha t up to about 10/15 degrees the 
brain triggers mainly eye movements to orient in the horizontal plane [21] 
and therefore no head movements were needed in this restricted visual field. 
Secondarily, this task could have been perceived as a precision pointing task, 
i.e. heading towards the black spot of the lumen, rather than as a navigation 
task. 

3.4 E x p e r i m e n t a l Tria ls w i t h t h e M o b i l e R o b o t 

A Pioneer I mobile robot by RWI was equipped with a digital video camera, 
as an experimental platform for the third session of experiments. A joystick 
was setup as the input interface for driving the robot. The image from the 
on-board camera was fed back to the subject through the wearable display, 
equipped with the vestibular interface, as in the other experimental sessions. 
The task asked to the subjects was to pass through a door, located at a 
distance of approximately 30 cm from the robot start ing position, and to turn 
left in a corridor just after the doorway passage. A typical example of the task, 
with the real pa th and the superimposed velocity vectors during the path, is 
reported in Fig.5. 

During the task, the robot was remotely operated by moving a mouse 
on a fiat desk. The forward-backward movement of the mouse controlled the 
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Fig. 4. Compared angular velocity of head rotation (blue solid line) and movement 
of the input device {red dotted line) in right-left steering, right-left steering, in the 
case of the robotic endoscope. 

direction of motion whereas the amplitude of the movement controlled the 
velocity of the robot tha t was set between -400 m m / s (backward direction) 
and +400 m m / s (forward direction). A polynomial relation between mouse 
movements and robot velocity was implemented in order to avoid abrupt 
velocity variations possibly related to small movements of the input device 

The steering of the robot was controlled using the left-right movements 
of the (joystick). In this case, in order to achieve a more reactive behavior of 
the robot, the central plateau of the previous control curve was avoided in 
favor of a sinus-like relation between the steering command and the steering 
velocity. Both curves are reported in Fig.6. 

During each experiment, the odometric da ta of the robot (i.e. position, ori­
entation and velocities) were recorded together with the da ta coming from the 
vestibular interface and from the input device. All the da ta were synchronized 
using an audio signal trigger. 

The synchronized signals from the vestibular interface and from the input 
device are compared in Fig.7, for one of the experimental trials. 

In this case, too, the signal corresponding to the angular velocity of the 
head in rotation (yaw axis) resulted to have the best correlations with the 
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Fig. 5. Example of the robot path (red dotted line) with superimposed velocity 
vectors {blue solid lines) along the path. 

signals corresponding to right-left steering. In this experiment the only re­
markable event is the one occurring immediately after the passage of the door 
when a rapid steering command is issued to the robot in order to tu rn the 
corner. This happens approximately 7 to 8 seconds after the task start ing. 
Then the steering command is kept constant for about 1 second and then 
another corrective steering is issued in order to adjust the alignment of the 
robot with the corridor. It is worth noticing tha t in both cases the steering 
command is anticipated by a coherent rapid movement of the head in the 
same direction tha t s tar ts about 0.6 s before the steering command. More­
over, by looking at the zero-crossing of the head velocity it may be noticed 
tha t the head movement is almost completed at the very beginning of the 
steering command. 

4 Results 

This work has investigated for the first t ime the hypothesis tha t natural in­
terfaces can be developed, based on anticipatory movements tha t are demon­
strated to be involuntarily associated with more complex motor behaviors, in 
humans. This is in fact a novel principle for natural interfaces, deriving from 
a joint investigation by roboticists and neuroscientists, which integrates mul-
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Fig. 6. Relation between joystick displacement and corresponding translational 
velocity {left panel) and steering velocity(n^/i^ 

tidisciplinary expertise. The proposed approach star ts from models of human 
sensory-motor coordination for modeling and developing interfacing mecha­
nisms tha t exploit them at the best to obtain natural perception and control. 
Preliminary experiments have been conducted for the case of the head antic­
ipatory movements associated with steering, during locomotion. 

The results obtained with three different experimental set-ups show tha t 
anticipatory head movements occur even when the person is driving a device, 
like those used in sessions 1 and 3 of the experiments, instead of being walking. 
Actually, for one of the experimental scenario this result was not obtained. A 
comparative analysis of the three cases induces to think tha t a critical role is 
played by the perception tha t the person can have of navigation/locomotion. 
This was in fact reduced in the second scenario, due to the smaller dimensions 
of the image, the narrow field of view and the reduced steering angles. This 
interpretation may be further confirmed by some preliminary results tha t we 
obtained when the feedback was given to the user by mean of a traditional 
monitor rather than using a wearable display. In these cases, we were not 
able to detect any significant movement of the head in none of the above 
reported scenarios. This circumstance was in fact perceived by the user not 
as a fully-immersive navigation but rather as a precision pointing task of an 
external artifact. Experimental results also show tha t head movements always 



A Vestibular Interface for Natural Control of Steering in the Locomotion 550 

11 

ID 

D 

1 
I-1D 
m 

< 
-33 

-30 

-40 

1 1 1 
Aig(liriieloc(Votte3d &te BI DtHoi 

^ ^ ^ S t e r t t g 

1 

Dcimmaid 

__ ^ ^^^^ 

1 1 

1 1 1 1 1 

A 

1 \ w \\ 
J \ \ • / ^A 1 

\ 

[J 
1 1 1 1 1 

1 1 

-

1 1"' " L. / / \r' 

1 1 

tnsp] 

Fig. 7. Relation between joystick displacement and corresponding translational 
velocity {left panel) and steering velocity(rz^/i^ panel) 

anticipate commands to the input device: though steering commands may be 
issued even without an anticipatory head movement, when a head movement 
is detected a related action on the input device can always be detected as 
well. Also, the head movements occurred visibly in advance with respect to 
the steering command, e.g. up to 0.5 sec, which is a significant anticipation 
in case it is used for controlling a robotic device. 

In conclusion, the results obtained with this first experimental work indi­
cate tha t the proposed hypothesis is valid and tha t a further research effort 
is worthwhile in the direction of using this novel principle to develop nat­
ural interfaces, which in fact can be very useful in many tasks, with different 
devices. 

Further developments will concern the use of the signals from the vestibu­
lar interface for controlling a robotic device, thus realizing a real interfacing 
mechanism. An evaluation of the improvement of the control of the device, as 
well as of the perceived friendliness and easiness of use of the interface will be 
then possible and needed. 
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How Social Robots Will Help Us to Diagnose, 
Treat, and Understand Autism 

Brian Scassellati 

Yale University, 51 Prospect Street, New Haven, CT, 06520, scaz@cs.yale.edu 

Autism is a pervasive developmental disorder that is characterized by social 
and communicative impairments. Social robots recognize and respond to hu­
man social cues with appropriate behaviors. Social robots, and the technology 
used in their construction, can be unique tools in the study of autism. Based 
on three years of integration and immersion with a clinical research group, 
this paper discusses how social robots will make an impact on the ways in 
which we diagnose, treat, and understand autism. 

1 Introduction 

For the past three years, our robotics group has been immersed in one of 
the premiere clinical research groups studying autism, led by Ami Klin and 
Fred Volkmar at the Yale Child Study Center. This paper outlines our ini­
tial attempts to apply technology from social robotics to the unique clinical 
problems of autism. 

Section 2 provides an introduction to autism which highlights some of the 
difficulties with current diagnostic standards and research techniques. Section 
3 describes attempts to use robots as therapeutic aids and discusses the as 
yet unfulfilled promise of these methods. Section 4 describes how diagnosis 
can be improved through the use of both passive social cue measurement and 
interactions with a social robot to provide quantitative, objective measure­
ments of social response. Section 5 speculates on how the use of social robots 
in autism research might lead to a greater understanding of the disorder. 

2 What We Know About Autism 

Autism was first identified in 1943 by Kanner who emphasized that this con­
genital condition was characterized by an inability to relate to other people 
from the first days of life. Over the past 6 decades considerable work has been 
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done to refine the concept and identify important aspects of the condition. 
Current research suggests that 1 in every 300 children will be diagnosed with 
the broadly-defined autism spectrum disorder (ASD), but studies have found 
prevalence rates that vary between 1 in every 500 to 1 in every 166. For com­
parison, 1 in every 800 children is born with Down syndrome, 1 in every 450 
will have juvenile diabetes, and 1 in every 333 will develop cancer by the age 
of 20. Furthermore, the rate of diagnosis increased six-fold between 1994 and 
2003. It is unclear how much of this increase is a result of changes in the diag­
nostic criteria, increases in awareness, or a true increase in prevalence. Early 
intervention is critical to enabling a positive long-term outcome, but even with 
early intervention, many individuals will need high levels of support and care 
throughout their lives [fDCP06]. 

The social disability in autism is a profound one affecting a person's ca­
pacity for understanding other people and their feelings, and for establishing 
reciprocal relationships. To date, autism remains a behaviorally specified dis­
order [VLB+04]; there is no blood test, no genetic screening, and no functional 
imaging test that can diagnose autism. Diagnosis relies on the clinician's in­
tuitive feel for the child's social skills including eye-to-eye gaze, facial expres­
sion, body postures, and gestures. These observational judgments are then 
quantified according to standardized protocols that are both imprecise and 
subjective (e.g. [SBC84, Mul95]). The broad disagreement of clinicians on 
individual diagnoses creates difficulties both for selecting appropriate treat­
ment for individuals and for reporting the results of population-based studies 
[KLCVOO, VCK05]. 

The need for improved characterization of the core social disorder in autism 
that underlies the broad spectrum of syndrome manifestations has been high­
lighted by genetic and neuro-functional research [VLB+04, SR05]. It is clear 
that autism is a brain-based disorder with a strong genetic basis. Approxi­
mately 25% of children with autism develop seizures and the recurrence risk 
for siblings is between 2 and 10% (a 50-100 fold increase over the general pop­
ulation). Genetic studies have underscored the importance of understanding 
both the broader phenotype of autism and the remarkable heterogeneity in 
syndrome expression. However, the causes and etiology of the disorder are 
still unknown [VLB+04]. A more precise characterization and quantification 
of social dysfunction is required to direct neurobiological research in autism 
is still lacking [BPR96, KJS+02a]. 

3 Robots Provide Motivation and Engagement in Therapy 

A few projects world-wide seek to include robots as part of the therapeutic 
regimen for individuals with autism [WD99, MTT02, DauOO, KNY]. Each of 
these studies has demonstrated that robots generate a high degree of moti­
vation and engagement in subjects, including subjects who are unlikely or 
unwilling to interact socially with human therapists. The great hope of this 
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line of research is the development of a "social crutch," a robot tha t motivates 
and engages children, teaches them social skills incrementally, and assists in 
the transfer of this knowledge to interactions with humans. Since the be­
havior of a robot can be decomposed arbitrarily, turning off some behaviors 
while leaving others intact, we can selectively construct complex social abili­
ties through layers of social responses, sometimes in combinations tha t cannot 
be performed by humans. This layering of response allows the therapist to fo­
cus on single behaviors while ignoring all other social factors or maintaining 
their response at a constant. This type of isolation of cues and responses is dif­
ficult to train human therapists to perform. The as yet unfulfilled promise of 
this line of research is tha t learning skills with a robot will be simpler because 
of the ability to isolate particular responses, thus allowing a unique form of 
incremental therapy. In a different domain, but using a similar principle, we 
have preliminary da ta suggesting tha t computerized face perception training 
leads to therapeutic benefits for individuals with autism [SK05]. 

However, the design criteria for what makes individuals with autism likely 
to respond to these devices are not understood. The robots used in these 
studies include four-wheeled rovers, anthropomorphic robotic dolls, a spheri­
cal robot ball with eyes, and an expressive snowman-like device. These robots 
show a wide range of anthropomorphic characteristics, behavioral repertoires, 
aesthetics, and sensory and interactive capabilities. While there are many 
studies of the effects of these interaction variables on typical adults, very 
little is known about how individuals with autism respond to these design 
dimensions. While we have many expectations for why children with autism 
respond so positively to these robots, we have no direct experimental da ta 
tha t provide an analysis of the design criteria tha t are important to pro­
ducing this response. We would expect tha t one reason tha t children (both 
autistic and typically developing) would respond so positively to robots (as 
seen in the studies mentioned above) is tha t the robots offer simple, contin­
gent, predictable responses to the child's actions. The preference for things 
tha t interact with us, tha t respond directly to our actions, is well known for 
typical adults and children. However, our expectations derived from studies 
with typical adults and children often do not carry over to adults and children 
with autism. 

As an example of how our expectations regarding these design criteria are 
misplaced, we conducted a simple pilot study tha t looked tha t the effects of 
social contingency. Using an extremely simple commercial robot called ESRA 
(see Figure 1) which generates a small set of facial expressions using five ser­
vos, we compared children's attentiveness to the robot in two experimental 
conditions. In the non-contingent condition, ESRA was programmed to per­
form a short script which included both a set of actions and an accompanying 
audio file tha t was played from speakers hidden near the robot. The robot had 
no sensory capabilities and did not respond to anything tha t the child did. 
In the contingent condition, the robot performed behaviors from this same 
repertoire, but the initiation of these behaviors was triggered by an experi-
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Fig. 1. Three facial expressions from the ESRA robot. 

menter sitting behind a one-way mirror. The experimenter triggered behaviors 
tha t they deemed to be socially appropriate based on the actions of the child. 
13 subjects (mean age 3.4 years) including 7 children with autism spectrum 
disorders and 6 typically developing children were positioned across a table 
from ESRA for a period of 3-5 minutes. Even with the extremely limited ca­
pabilities of ESRA, the robot was well tolerated by all of the children and 
many of them (including many of those within the autism spectrum) seemed 
to thoroughly enjoy the session. 

In the contingent condition, typical children were universally engaged with 
the robot, and often spent the entire session touching the robot, vocalizing at 
the robot, and smiling at the robot. In the non-contingent condition, typically 
developing children were initially a t t racted to the robot but tended to lose 
interest quickly, preferring instead to a t tend to other (non-robotic) toys tha t 
were in the room. In contrast, the children with autism did not differ signifi­
cantly in their interactions between these two experimental conditions. They 
tended to spend almost all of the session at tending to the robot, regardless of 
whether or not it was responding contingently to them. In both conditions, 
children with autism often generated behavior similar to their typically devel­
oping peers, including smiling at the robot, making eye contact, and vocalizing 
to the robot. For many of the children with autism in this pilot study, these 
positive proto-social behaviors are rarely seen in a naturalistic context. 

These results are only preliminary, but they point out tha t the severe social 
deficits tha t accompany this disorder do not respond in accordance with the 
interaction dynamics tha t have been observed with typical adults by research 
in human-robot interaction. These results should also not be interpreted to 
show tha t children with autism fail to respond to any form of social contin­
gency. Because of the very wide range of functional capacities of children and 
adults who receive the diagnosis of autism (see the following section), these 
types of generalizations are notoriously dangerous. This simple study does 
demonstrate tha t further detailed study of these design variables are neces­
sary to begin to delineate the factors tha t cause this remarkable response from 
children with autism. 
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4 Quantitative Objective Metrics for Diagnosis 

Many of the diagnostic problems associated with autism would be alleviated 
by the introduction of quantitative, objective measurements of social response. 
We believe tha t this can be accomplished through two methods: through pas­
sive observation of the child at play or in interactions with caregivers and 
clinicians, and through structured interactions with robots tha t are able to 
create standardized social "presses" designed to elicit particular social re­
sponses. While the information gathered from both passive and interactive 
systems will not replace the expert judgment of a trained clinician, providing 
high-reliability quantitative measurements will provide a unique window into 
the way in which children with autism a t tempt to process naturalistic social 
situations. These metrics provide both an opportunity to compare popula­
tions of individuals in a standardized manner and the possibility of tracking 
the progress of a single individual across time. Because some of the social cues 
tha t we measure (gaze direction in particular) are recorded in greater detail 
and at an earlier age than can occur in typical clinical evaluations, one possi­
ble outcome of this work is a performance-based screening technique capable 
of detecting vulnerability for autism in infants and toddlers. 

4.1 P a s s i v e Sens ing 

Passive sensors record information on social response without directly engag­
ing in interactions. In many cases, the perceptual systems of a social robot 
can act as a passive social cue sensor. To evaluate the usefulness of this idea, 
we have outfitted some of our clinical evaluation rooms with cameras and mi­
crophones and software similar to tha t used on the social robots Nico, Cog, 
and Kismet [Sca03, ScaOl, BEF+00]. Most of these passive sensors record 
and interpret da ta while the subjects are actively engaged in s tandard clinical 
evaluations and do not require any specific protocol to be employed. Cur­
rently, three cue recognition systems have been developed: (1) detecting gaze 
direction, (2) tracking the position of individuals as they move throughout a 
room, and (3) measuring aspects of prosody from human voices. 

G a z e d irect ion and focus of a t t e n t i o n 

For several years, we have used commercial eye-tracking systems which re­
quire subjects to wear a baseball cap with an inertial tracking system and 
camera/eyepiece assembly which allows us to record close-up images of one 
eye. In addition to this commercial system, we have developed computational 
systems tha t give much less accurate recordings but do not require the sub­
ject to be instrumented. When viewing naturalistic social scenes, adolescents 
and adults with autism display gaze pat terns which differ significantly be­
tween control populations (see Figure 2) [KJS+02a, KJSV03, KJS+02b]. Fix­
ation time variables predicted level of social competence (e.g., at an average 
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Fig. 2. Gaze patterns differ significantly between typical adolescents and adolescents 
with autism. This spatio-temporal plot shows 10 scan paths of individuals with 
autism (red lines) and the bounding volume (in blue) for 10 typical individuals. The 
typical group shows very similar, structured gaze patterns. The group with autism 
shows less structure, but is far from random. (Figure adapted from [KJS^02a]). 

r= .63) . This was the first experimental measure to successfully predict level 
of social competence in real life for individuals with autism. Visual fixation 
da ta related to viewing of naturalistic scenes of caregivers' approaches reveals 
markedly different pat terns. Toddlers with autism fixate more on the mouth 
region rather than on eye regions of faces. Combined with experiments probing 
these children's capacity for mentally representing human action, it has been 
suggested tha t these children are treating human faces as physical contingen­
cies rather than social objects (they fixate on mouths because of the physical 
contingency between sounds and lip movements). Although visual fixation on 
regions of interest are sensitive measures of social dysfunction, moment-by-
moment scan-paths are even more sensitive and offer further insight into the 
underlying dysfunction (see section 5 for an example) [KJS+02a]. 

P o s i t i o n tracking 

Some of the most basic information on social response can be derived from the 
relative positioning of individuals. How close a child stands in relation to an 
adult, how often the child approaches an adult, how much time is spent near 
an adult, and whether or not the child responds when an adult approaches 
are a few of the relatively simple statistics tha t can be derived from positional 
information. These social cues, especially the concept of "personal space," 
are often deficient in individuals with autism and are part of the diagnostic 
criteria [VLB+04]. 

Using a pair of calibrated stereo cameras and a computational vision sys­
tem developed in part by our team, we have been able to successfully track the 
position of individuals as they move about in our clinical space. Computed dis­
parity information is used in conjunction with information on color, direction 
of motion, and background pixels to segment the moving objects in the scene. 
A multi-target tracking system (similar to the system developed in [Sca02]) 
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Fig. 3 . Two tracking images from the left camera of a calibrated stereo cameras 
rig. Individuals are tracked as they move throughout one of our clinical evaluation 
rooms during an interview session. 

is then used to predict relative motion and identify motion trajectories of in­
dividuals. Figure 3 shows two images obtained during a s tandard diagnostic 
interview. Note tha t the recording and computation performed by this system 
impact the diagnostic interview no more than other video recording devices 
would. 

Our initial experiments with this technique were able to successfully track 
the positions of toddlers during a s tandard behavioral assessment. This in­
cluded instances when individuals left the field of view, were occluded com­
pletely by objects or other individuals, and changed postures dramatically 
(moving from a standing position to crouched in a corner to lying down hor­
izontally). However, the range of motion of these children during the assess­
ment is limited; in order to allow the completion of the evaluation, both the 
parent and the experimenter act to t ry to keep the child on-task at the table. 
We are currently deploying this system in a larger space tha t is used for social 
skills training sessions for adolescents with autism. We anticipate tha t the 
da ta obtained in this environment will be more indicative of natural social 
response. 

Vocal p r o s o d y 

Individuals with autism often have difficulty both generating and recogniz­
ing vocal prosody and intonation [SPM+01]. (Simply put , prosody refers to 
not what is said, but how it is said.) There are no standardized measures of 
prosody in the clinical li terature [Pau05], and the only research instrument 
available [SKR90] is very laborious and thus seldom used in diagnostic evalu­
ation or experimental studies. 

We recently constructed a multi-stage Bayesian classifier capable of dis­
tinguishing between five categories of prosodic speech (prohibition, approval, 
soothing, attentional bids, and neutral utterances) with an accuracy of more 
than 75% on a difficult set of vocal samples taken from typical adults (both 
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male and female). In comparison, human judges were able to correctly clas­
sify utterances 90% of the time within this data set [RMS04]. To develop this 
technique to the point where it can be used as a diagnostic tool in the clinic 
will require us to develop two different forms of classifier based on our initial 
system design. First, we would like to have a very selective system with a low 
false-positive rate that can be used continuously on microphone arrays in our 
clinical evaluation rooms. This system would mark portions of the recorded 
audio/video streams when extreme prosodic utterances occurred. Second, a 
system that can be used under more controlled conditions (during experimen­
tal protocols) would be developed that was more sensitive to prosodic cues 
but would suffer from higher rates of both false positives and false negatives. 
Both of these systems can be obtained by altering a small set of parameters 
in our initial multi-stage classifier design, but these systems have yet to be 
evaluated in the clinic. 

4.2 Interactive Social Cue Measurement 

While there is a vast array of information that can be obtained by passive 
sensing technologies, the use of interactive robots provides unique opportuni­
ties for examining social responses in a level of detail that has not previously 
been available. These advantages include the following: 

1. By generating a social press designed to elicit a particular social response 
from the subject, the interactive system can selectively probe for infor­
mation on low-occurrence social behaviors or on behaviors that may not 
easily emerge in diagnostic sessions in the clinic. 

2. The robot provides a repeatable, standardized stimulus and recording 
methodology. Because both the production and recognition are free from 
subjective bias, the process of comparing data on social responses between 
individuals or for a single individual across time will be greatly simplified. 
As a result, the interactive system may prove to be a useful evaluation 
tool in measuring the success of therapeutic programs and may provide a 
standard for reporting social abilities within the autism literature. 

3. Because a robotic system can generate social cues and record measure­
ments autonomously, simple interactive toys can be designed to collect 
data outside of the clinic, effectively increasing both the quantity and 
quality of data that a clinician can obtain without extensive field work. 

We have developed one simple device, called Playtest (see Figure 4), for 
determining auditory preferences that can be used in the clinic or in the home. 
When a button is pressed, the device plays one of two audio clips, produces a 
series of flashing lights to entice attention, and records the time, date, button 
pressed and audio clip played to non-volatile memory. This device can be 
sent home with a family to collect information on typical play patterns. This 
method has been shown to have important diagnostic value [Kli91] since it 
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Fig. 4. External view (left) and internal view (right) of the Playtest device for 
measuring auditory preferences in the home. See section 4.2 for a description. 
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Fig. 5. Results of linear discriminant analysis of autistic (au) and normal (nc) gaze 
patterns. Linear filters F(x) are trained to reproduce the gaze pattern G(x) of each 
individual x. Filters can then be applied to predict the gaze patterns of any other 
individual. For example, F(A)*G(self) indicates a filter trained on an individual with 
autism is tested on that same individual while F(NC)*G(A) indicates a filter trained 
on a control individual is tested on data from an individual with autism. At left, 
the mean performance of this data (y-axis) is a function of the response percentile 
of individual pairings. At right, significant differences (all piO.Ol for a two-tailed 
t-test) are seen between the following classes: (1) F(NC)*G(self), (2) F(A)*G(self), 
(3) F(NC)*G(NC), and (4) the three other conditions. See section 5 for a discussion. 

can measure listening preferences to speech sounds, abnormalities of which are 
among the most robust predictors of subsequent diagnosis of autism [Lor95]. 

5 Robots as Tools of Understanding 

The fine-grained analysis of social capabilities tha t result from work on ther­
apeutic and diagnostic applications have the potential to enhance our un­
derstanding of autistic disorders. We have already encountered one example 
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of this potential in our pilot studies of gaze detection. Based on our earlier 
observations on the differences in gaze direction between typically develop­
ing individuals and individuals with autism and in response to our need to 
characterize potential looking patterns for a robot, we have begun to generate 
predictive models that show not only the focus of an individual's gaze but also 
provides an explanation of why they choose to look at particular locations. 
A simple classifier (a linear discriminant) was trained to replicate the gaze 
patterns of a particular individual (see Figure 5). The performance of this 
predictor for a single frame is evaluated by having the filter rank-order each 
location in the image and selecting the rank of the location actually chosen 
by a particular individual. Thus, random performance across a sequence of 
images results in a median rank score of 50th percentile, while perfect perfor­
mance would result in a median rank score of 1.0 (100th percentile). Trained 
filters predict the gaze location of the individual they were trained upon with 
good accuracy (median rank scores of 90th -92nd percentile). By applying a 
filter trained on one individual to predict the data of a second individual, we 
can evaluate the similarity of the underlying visual search methods used by 
each individual. In a pilot experiment with this technique, typically devel­
oping individuals were found to all use similar strategies (median rank score 
in the 86th percentile). Significantly, autistic individuals failed to show sim­
ilar visual search strategies both among other individuals with autism (73rd 
percentile) and among the typically developing population (72nd percentile). 
Filters trained on our control population were similarly unsuccessful at pre­
dicting the gaze patterns of individuals with autism (71st percentile). These 
preliminary results suggest that while our control population all used some 
of the same visual search strategies, individuals with autism were both not 
consistently using the same strategies as the control population nor were they 
using the strategies that other individuals with autism used. 
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Abs t rac t . This paper overviews a robotics project at the Expo 2005. The 
project consists of long term experimental evaluation of practical robots at the 
Expo site simulating the society in the future and short term demonstration 
of prototype robots. The long term evaluation can let robots advance from the 
demonstration level to the practical use one, and the short term demonstration 
from the single shot experiment level to the demonstration one. 

1 Introduct ion 

The 2005 World Exposition (Expo 2005) has taken place at Aichi, Japan from 
Mar. 2005 for half a year. Though "Nature's wisdom" is the message of Expo 
2005, Expo 2005 has shown many kinds of advanced technologies as Human's 
wisdom. Robots are one of major display at many pavilions. For example, 
music playing robots at Toyota pavilion is one of most popular attractions at 
Expo 2005. 

New Energy and Industrial Technology Development Organization (NEDO 
for short), a funding agency of the Japanese Government, runs a robotics 
project at Expo 2005. The project consists of long term experimental evalu­
ation of practical robots and short term demonstration of prototype robots, 
where the practical robots are expected to be used in the society before 2010 
and the prototype ones before 2020. 

The applications of the practical robots are the cleaning and security of 
the Expo site, autonomous wheelchairs, clerks at the information desks, and 
children sitters. The practical robots are used every day for the whole period of 
Expo 2005, i.e. 185 days. The Expo site is supposed to be a simulated society 
in the near future. The long term evaluation could let the robots advance from 
the demonstration level to the practical use one. 

Sixty-five kinds of prototype robots have been developed, whose applica­
tions diverge widely. The demonstrations of the prototype robots had been 
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shown for two weeks in a simulated town of 2020 at the Expo cite, where peo­
ple and robots live together. Most of the prototype robots were developed by 
universities and the demonstration of two weeks let the robots advance from 
the single shot experiment level to the demonstration level, where the single 
shot experiment level means the level of a robot which can work properly only 
once for taking a champion video segment. 

This paper overviews Expo 2005 Robotics Project of NEDO. Section 2 
presents the details of the practical robots, and section 3 those of the prototype 
robots. Section 4 concludes the paper. 

2 Long Term Evaluation of the Practical Robots 

2.1 Mobile Robots 

The first category of the practical robots include mobile robots that consist 
of cleaning robots, security robots and an autonomous wheelchair. The key 
technology of the robots is autonomous navigation in the open air. The navi­
gation is implemented by combinations of dead reckoning, laser measurement 
sensor, RTK-GPS and RF-ID. More details of the robots are described in the 
following. 

Cleaning robots 

The missions of the cleaning robots include the cleaning of the main pedestrian 
loop of the Expo site, called Global Loop, whose diameter is about 1 km. The 
Global Loop has many curves and slopes as well as many obstacles like benches 
and bending machines, and the robots can not see enough number of the GPS 
satellites at some places. Though the cleaning is done at night to avoid a 
crowd of visitors, a small number of employees may walk on the Global Loop. 
A map of the Global Loop is shown in Fig.l and a photograph of the Global 
Loop in the daytime in Fig.2. 

The cleaning robots consist of Subaru Robohiter RSI developed by Fuji 
Heavy Industries Ltd. and SuiPPi by Matsushita Electric Works Ltd., whose 
picture are shown in Fig.3. The size of RSI is l^OSOmmW x l,600mmD x 
1,160mmH and the weight is about 360 kg. RSI can clean about 3, 600m^ per 
an hour when it travels at Skm/h, and continue to work more than 3 hours. 
The size of SuiPPi is a bit larger than that of RSI, that is, l,200mmW x 
l,513mmD x l,233mmH and the weight is about 500 kg. SuiPPi does not 
use GPS, and its localization is calibrated by a laser measurement sensor. 
The required infrastructure for the navigation of the robots are two RTK-
GPS stations at the Expo site and refiectors for the laser along the Global 
Loop. The refiector is mounted every 20 meters on the loop, which is shown 
at the lower-left corner of Fig.4. 
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Fig. 1. Map of the Global Loop 
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Fig. 2. A photograph of the Global Loop 

RSI and SuiPPi had been successfully applied to the cleaning of the Global 
Loop for half a year. Though the robots are designed safe enough to be oper­
ated at the Expo site, it was not possible for the robots to meet all the related 
regulations for the safety. Therefore the robots had been operated under the 
supervision of a human. A photograph of RSI working at night is shown in 
Fig.5. Fuji Heavy Industries Ltd. also developed Subaru Robohiter T l tha t 
can exchange garbage cans. 
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Fig. 3. Cleaning robots RSI [Fuji Heavy Industries] and SuiPPi[Matsushita Electric 
Works] ©NEDO 

If imi 
m imi . 

Fig. 4. Reflector for the laser on the Global Loop 

Secur i ty r o b o t s 

Though security robots are expected to watch the Expo site, report suspicious 
events and remove them if possible, the current abilities of security robots are 
still limited. For example, it is very difficult to judge if a person is suspicious 
and if an object is unat tended. Instead, ALSOK GuardRobo i, 190kg weight, 
developed by Sohgo Security Services Co.Ltd. can go around and send live 
pictures to a security center, find a human around the robot when nobody 
should be there, and report an object exists where nothing should be there. 
Mujiro/Ligurio, about 300 kg weight, developed by tmsuk Co.Ltd. can pick up 
an object by two manipulators via teleoperation. Photographs of the security 
robots are shown in Fig.6. 

A u t o n o m o u s whee lcha ir 

An autonomous wheelchair is an enhanced electronic wheelchair with navi­
gation ability. TAO Aide, 40 kg weight, developed by Aisin Seiki Co.Ltd., 
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Fig. 5. RSI working on the Global Loop in the night 

^ r. 

Fig. 6. ALSOK GuardRobo i[Sohgo Security Services] and Mujiro-Ligurio[tmsuk] 
©NEDO 

Fujitsu Ltd. and AIST can travel autonomously while avoiding obstacles[4]. 
The maximum speed of TAO Aide is 2 km/hour and the maximum operat­
ing time is 3 hours. Each wheel is driven by a DC motor of 90 W, and the 
maximum weight of the passenger is 100 kg. The navigation of TAO Aide de­
pends on RTK-GPS and RF-ID embedded in the working environment. The 
wheelchair can know its position from the RF-IDs which are embedded in the 
floor. The RF-IDs are put with the interval of 15cm in a belt, and the belts 
are arranged every four meters. The visitors to the Expo could try to use 
TAO Aide in the experimental environment. A photograph of TAO Aide in 
the environment is shown in Fig.7. TAO Aide can communicate with a traflic 
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Fig. 7. Autonomous wheelchair TAO Aicle[Aisin, Fujitsu, AIST] ©NEDO 

signal via a wireless LAN, and stops when a traffic signal is red. Though the 
navigation of TAO Aide should depend on the infrastructure significantly, the 
requirements for it can be considered realistic in the near future and the long 
term experiments at the Expo have proved tha t it can be operated reliably 
when it is available. 

The user interface of TAO Aide is implemented by a PDA and is designed 
to be friendly even to senior people. For example, the user can specify the 
destination by touching its panel. 

2.2 I n t e r a c t i v e R o b o t s 

The second category of the practical robots includes interactive robots tha t 
consist of clerk robots at the information desks in the Expo site, receptionist 
robots, and children sitter robots. The key technology of the robots is the 
understanding of spoken languages. The clerk robots can understand spoken 
Chinese, English, Japanese and Korean in a specific domain. The four lan­
guages were chosen since the Expo expects most visitors from the countries 
in which the languages are spoken. 

Clerk robot at an in format ion desk 

The mission of the clerk robots is to answer questions about the Expo. The 
information desks are located near three gates of the Expo site, and the robots 
can understand spoken Chinese, English, Japanese and Korean in a noisy 
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Fig. 8. Clerk robot Actroid [Kokoro and Advanced Media] c 

environment. Usually the information desks are surrounded by several tens of 
people and a cloud of people may walk around them. 

Actroid developed by Kokoro Co.Ltd. and Advanced Media, Inc. has served 
as the clerk robot. Actroid is a concatenation of an actor and^m^g^^oroid, 
and is supposed to stand for a robot actor whose picture is shown in Fig.8. 
As you can see from the picture, Actroid has a realistic appearance of a 
human female. The behavior of Actroid are also designed to emulate those of 
a human. The appearance and behavior can make the visitors feel to interact 
with a real human. In fact, most visitors seem to be very happy when they 
asked questions to Actroid. The hardware and the behavior of Actroid were 
developed by Kokoro. 

It is very difficult to understand the questions when Actroid does not 
know which language is spoken. So we ask the user of Actroid to start from 
hello or the equivalent in four languages. Then Actroid can be ready for the 
selected language. The noise and echo in the working environment of Actroid 
are reduced by a cancellation technique to realize the understanding. More 
than twenty responses are prepared to single question to realize a natural 
discourse. The speech recognition software was developed by Advanced Media. 
Actroid has been operated for the whole period of the Expo, and a huge 
number of people have enjoyed it. 

Receptionist robot 

The missions of the receptionist robot are to call a person specified by a visitor 
at a reception and to answer questions about a daily life like today's weather 
or hot topics. The receptionist robot can also understand spoken Chinese, 
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Fig. 9. Receptionist robot wakamaru [Mitsubishi Heavy Industries] ©NEDO 

English, Japanese and Korean in a specific domain. The receptionist robot is 
wakamaru developed by Mitsubishi Heavy Industries Ltd., whose picture is 
shown in Fig.9. wakamaru has 1 meter height, 30 kg weight and 13 d.o.f. The 
robot can be operated for 2 hours by battery, and can go to a charge station 
autonomously. 

wakamaru can also find how many human faces are around it and where 
they are. Then wakamaru can look at the speaking person and interact with 
the person more friendly. 

wakamaru may hit a nearby user because it has two arms to express his 
feeling. So the tips of its arms are covered by soft material. A hand of a user 
may be caught by one arm and the body too. The related joints of wakamaru 
has mechanical stoppers to avoid the accident. Such safety design is very 
important to run wakamaru for 185 days in a cloud of people. 

Chi ldcare robot 

The missions of the childcare robot is to interact with a child and make 
h im/her enjoy. The childcare robot is PaPeRo developed by NEC Corporation[l , 
2], whose picture is shown in Fig. 10. PaPeRo has three kinds of ability to sit 
children. PaPeRo can recognize a human face when it is registered in advance. 
Ten faces can be registered at most. PaPeRo can understand Japanese spoken 
by children, which had been considered more difficult than tha t by Adults. 
PaPeRo is equipped with noise canceller software so tha t it can recognize voice 
even in very noisy environment like exhibition rooms. When PaPeRo fails to 
understand some words, PaPeRo analyzes why the understanding failed and 
suggests the user to speak in a bet ter way. For example, PaPeRo may say 
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Fig. 10. Childcare robot PaPeRo [NEC] ©NEDO 

"Please speak in a smaller voice". The last ability of PaPeRo is to provide 
entertainment. PaPePo can dance when requested, and react when touched. 
The robot can provide quiz to a kid and teach h im/her how to give greetings. 

PaPeRo has been used to play with children, and the performance of the 
robot has been evaluated from various viewpoints. A photograph of PaPeRo 
playing with a child is shown in F i g . l l . 

Fig. 11 . PaPeRo playing with a child 
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2.3 Biped Robot 

The last category of the practical robots is a biped robot. The biped robot is 
not a humanoid but a biped dinosaur robot, developed by AIST and NEDO. 
Two types of the dinosaur robot were developed, one is Tyrannosaurus Rex 
and another Parasaurolophus, whose pictures are shown in Fig. 12 and Fig. 13 
respectively. The length of the robots is about 3.5 meters and the weight 
is about 86 kg. The structure of the dinosaur robot is an endoskeleton type, 
which is covered by soft material. The soft cover can reduce the impact when 
the robot fall down, and realize a realistic appearance as well. 

The biped walking is implemented by the software used for humanoid robot 
HRP-2. The dinosaur robot has shown its demonstration of fifteen minutes 
more than 1,500 times and fell down four times so far. The long term operation 
of the robot is also a very nice evaluation of biped robot technologies. 

Fig. 12. Tyrannosaurus Rex [AIST and NEDO] ©AIST and NEDO 

Fig. 13. Parasaurolophus [AIST and NEDO] ©AIST and NEDO 
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3 Short Term Demonstration of the Prototype Robots 

Sixty-five kinds of prototype robots were developed and embedded in a sim­
ulated town in 2020. The message of the demonstration is "We live together 
with robots in 2020". A perspective picture of the simulated town is shown in 
Fig. 14 and a snapshot of the real counterpart is in Fig. 15. 

^4^-' 
^ w 

Fig. 14. Simulated town in 2020 

Fig. 15. Snapshot of the simulated town in 2020 

The prototype robots can be categorized into service robots, medical 
and welfare robots, outdoor robots, robots for special environments, part­
ner robots, and humanoid robots. The list of the selected prototype robots is 
shown in Table 1. 
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Table 1. Selected List of the Prototype Robots for Expo 2005 

Service robots 
Life Pod (Fuji Electric Sys.) 
COOPER (Yoshikawa Kikai et al.) 
Picture Robot (Gifu Ceramics RI et al.) 
TELEsarPHONE (U of Tokyo et al.) 
EMIEW (Hitachi) 
Momochi (Kyushu U. et al.) 
SmartPal (Yaskawa Electric) 
Cyber Assist Meister Robot (Saitama U.) 
Power Effector (Ritsumeikan U.) 
ApriAlpha (Toshiba) 

a smart vending machine for security services 
a robot caricaturist 
a ceramics painting robot 
a robot making people feel in a remote place 
a robot that acts as a work mate 
a contents-driven companion robot 
an autonomous mobile robot with dual arms 
an interactive robot 
a power effector directly operated by a human 
a robot that recognizes spoken language 

Medical and Welfare Robots 
MM-1 (NHK Eng. Services et al.) 
Surgery Robot (Nagoya U. et al.) 
EVE (Nagoya U.) 
HAL (U. of Tsukuba) 
Optical-tongue Robot (NEC Sys. Tech. et al.) 

a microsurgery robotic system | 
a surgical robot for remote micro surgery | 
a high-precision patient robot | 
a robotic power suit | 
a robot that analyses taste of foods | 

Outdoor Robots 
WallWalker (Miraikikai et al.) 
M0IRA2 (Kobe U.) 
IMR-Type 1 (IHI) 
Dr.Impact (Gifu U. et al.) 
Batting Robot (Hiroshima U.) 
WOODY-1 (Waseda U.) 

a wall cleaning robot 
a mobile inspection robot for rescue activity 
a leg-wheeled mobile robot 
a pipe inspection robot 
a high-speed batting robot 
a robot woodcutter 

Robots for Special Environments 
ACM-R5 (TITech et al.) 
Kinshachi Robot (Ryomei Eng.) 
UMRS-NBCT (Int. Rescue Sys.) 

an amphibious snake-like robot 
a real fish robot 
a mobile robot for NBC pollution 

Partner Robots 
DAGANE (Business Design Lab. et al.) 
Repliee Qlexpo (Osaka U. et al.) 
Inter Animal (Okayama U. et al.) 
Robovie & wakamaru (Yoshimoto et al.) 
Dress-up Robot (Future U. Hakodate et al.) 
PBDR (Tohoku U. et al.) 

a verbal and nonverbal communication robot 
an android that looks like a human 
an interactive animal-like robot 
comedian robot-duo 
an authoring robot 
a parner ballroom dance robot 

Humanoid Robots 
HRP-2 with Human Supervision (AIST) 
HRP-2 that interacts people (NAIST) 
WIND Robot System (Chiba IT et al.) 
UT-^2: magnum (U of Tokyo) 
WABIAN-2 (Waseda U.) 

a humanoid robot that can investigate objects 
a humanoid robot that uses spoken dialog 
a small humanoid robot driven by a SIP 
an animatronic humanoid robot 
a biped humanoid robot 
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One of the service robots is SmartPal developed by Yaskawa Electric Cor­
poration, which can serve drinks at a cafe, and one of outdoor robots is 
WOODY-1 developed by WABOT-HOUSE which can cut branches of a wood 
while climbing it. Pictures of SmartPal and WOODY-1 are shown Fig. 16. 

mSmm 
Fig. 16. SmartPal [Yaskawa Electric] and WOODY-1 [WABOT-HOUSE] ©NEDO 

Figure 17 shows dance parter robot PBDR [Tohoku University], HRP-2 
[AIST], Nagara [Gifu], Robovie and Wakaramu [ATR]. 

Fig. 17. PBDR, HRP-2, Nagara, Robovie and wakamaru ©NEDO 

The demonstrations of the prototype robots had been shown for two weeks, 
and attracted more than 100,000 visitors during the exhibition. It was amaz­
ing that the robots developed by laboratories of universities can show the 
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demonstrations for two weeks without serious problems, and the exhibition 
offered a nice opportunity to train the robots. 

4 Conclusions 

The Expo site was a simulated society in 2010 to evaluate the practical robots 
for 185 days, and could let the robots advance from the demonstration level 
to the practical use one. 

The exhibition site of the prototype robots was a simulated town in 2020 
in which we live together with robots. The demonstration of two weeks let the 
robots advance from the single shot experiment level to the demonstration 
level. 

From the results. Expo 2005 could train the robotics in Japan significantly, 
and we believe it can promote more applications of the robots to the society. 
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1 Introduction 

Robotics as a subject of inquiry has had from its beginning an identity prob­
lem. Questions such as: 

Is Robotics a science or engineering? Is it an application of certain disci­
pline or does it have a core of problems, tools, methodologies which are unique 
to robotics? 

Is robotics a multidiscipline or are there enough unique problems, method­
ologies, theories to stand as a single discipline on its own right? 

Some researchers who are more pragmatic say: does it matter? 
My answer is that indeed it matters, especially when one competes for 

national and international resources of support. It does matter, when one is 
concerned what training is needed to produce the professionals who could 
pursue and advance the field of robotics. It does matter, when one needs to 
clearly define what is robotics as a discipline, what are its objectives, what is 
the basic knowledge upon which robotics is build on and what are the criteria 
of success. 

2 What Is Robotics? 

Robotics has both the analytical and synthetic component, hence is both 
science and engineering, just like Computer Science is. 

The difference between biology however is that we first must build artifacts 
(complex artifacts. Biology analyses the living nature) which then we analyze 
their behavior, their interaction with other artifacts and the environments 
including humans. 

We use all the observations and data analysis as our counterparts in psy­
chology, and sociology use. Think of robot behavior in any environment, or a 
swarm of robots interacting with each other. 
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The synthetic part of robotics brings us closer to the engineering disciphne 
though robots are typically more complex than most of engineering artifacts. 
During the design process we have to employ all the engineering tools and 
methodologies in order to achieve the desired performance and behavior. The 
difficulty here for robotics is the complexity of interaction amongst the compo­
nents within robots, the uncertainty and unpredictability of the environment 
in which they live, which leads to at best nondeterministic performance within 
some bounds. 

So why I believe robotics is science? 
Because it has to address, develop theoretical foundation of interactive 

complex physical and dynamic systems. 
Just as chemists cannot claim tha t they understand a complex molecule 

until the can synthesize it, we cannot rest until we have foundation (tools, 
theories, methodologies) tha t will enable us to design (synthesize) complex 
robots with predictable behavior and guaranteed performance in a given en­
vironment within given bounds. 

Let us remember tha t in the living world animals are adjusted (their body, 
perceptual and mobile capabilities) to their environment. Yet they are adap­
tive within some bounds. In turn we have to adhere to good and proven 
analytical methodologies to verify the predicted behavior of the robots. 

3 Robotic System Science 

It has been established for some times tha t Robots are made of physical 
components (sensors, motors, manipulators, hands legs, wheels, and of course 
computers). 

Robotics science is also segmented into sub disciplines tha t utilizes the 
intellectual power from: 

Perception, control, action and planning. Kinematics, dynamics, mobility, 
mechanisms of adaptat ion and learning, knowledge organization, behaviors 
and decision making: cooperative and competitive, and so on. 

It is only natural tha t researchers feel more comfortable to study each of 
these sub-disciplines in isolation, especially if one accepts tha t each of these 
sub-disciplines is intellectually demanding. Nevertheless, I believe tha t one 
cannot make true progress in robotic science if one does not consider the 
system as the whole. 

This is of course extremely demanding both intellectually but also ma­
terially, it requires a larger group of people with different skills, a proper 
infrastructure and it requires long term sustained funding. 

The good news is tha t progress is being made both at the theoretical level 
as well as at the technological level. 

At the technological level, we are benefiting from the miniaturization of 
computers, sensors, actuators, from new materials which are lighter, sturdier, 
more flexible and less energy hungry. 
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At the theoretical level, we have made great advances in control, non­
linear control, hybrid control, distributed control, adaptive control, modeling 
complex systems, understanding multidimensional signals and geometry of 
space, da ta reduction without much loss of information, modeling uncertainty 
and making decision under uncertainty. 

Finally, great progress has been in the development of learning mecha­
nisms. 

4 Conclusion and W h a t Needs to Be Done 

There are several implications following from the above analysis: 
We need good models of the task tha t the robotic system is expected to 

perform. 
We need models of the environment and context in which the task must 

be accomplished. 
The robotic systems must be adaptive to unexpected changes though the 

variations must be bounded Under these conditions we must have theories 
and methodologies tha t guarantee performance. 

If we take lessons from biology, we do not have universal living organism 
but rather organism tha t are adapted to their environments to accomplish 
task of survival. Different environments provide constraints on design and 
functionality of the organism. 

Hence our aim should be understand these constraints and design robotic 
systems in a systematic way so tha t they can exist and perform the given 
task. I believe this is possible. 
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