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Foreword

Robotics is undergoing a major transformation in scope and dimension. From
a largely dominant industrial focus, robotics is rapidly expanding into human
environments and vigorously engaged in its new challenges. Interacting with,
assisting, serving, and exploring with humans, the emerging robots will
increasingly touch people and their lives.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing
to the research community the latest advances in the robotics field on the
basis of their significance and quality. Through a wide and timely dis-
semination of critical research developments in robotics, our objective with
this series is to promote more exchanges and collaborations among the re-
searchers in the community and contribute to further advancements in this
rapidly growing field.

As one of robotics pioneering symposia, the International Symposium on
Robotics Research (ISRR) has established over the past two decades some of
the fields most fundamental and lasting contributions. Since the launching of
STAR, ISRR and several other thematic symposia in robotics find an
important platform for closer links and extended reach within the robotics
community.

This twelfth edition of Robotics Research, edited by Sebastian Thrun,
Rodney Brooks, and Hugh Durrant-Whyte, offers in its 14-part volume a
collection of a broad range of topics in robotics. The content of these
contributions provides a wide coverage of the current state of robotics
research: the advances and challenges in its theoretical foundation and
technology basis, and the developments in its traditional and novel areas of
applications.

In addition to the collection of papers presented in the diverse technical
areas, this volume reports on a panel discussion on the theme of robotics
science, and on a major robotic exhibit that took place during the 2005
World Exposition (Expo 2005) in Aichi, Japan. The diversity and span of
the unfolding work reveal the increased maturity and expanded scope of the
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robotics field. This twelfth edition of ISRR culminates with this important
reference on the current developments and new directions in the field of
robotics — a true tribute to its contributors and organizers!

Stanford, Oussama Khatib
November 2006



Preface

This volume contains a collection of papers presented at the 12th International
Symposium of Robotics Research (ISRR). ISRR is the premiere meeting of the
International Foundation of Robotics Research (IFRR) that covers all aspects
of robotics. The 12th ISRR. took place October 12-15, 2005, in San Francisco,
near Fisherman’s Wharf.

The 12th ISRR was attended by 70 researchers from all major geographic
regions, representing many different research areas within robotics. The tech-
nical program featured 38 regular papers, which were carefully selected to
cover some of the most important ongoing research in robotics. The presen-
tations of these papers were organized into twelve thematic sessions, each of
which was chaired by members of the Program Committee or officers of the
IFRR. Five invited overview talks by Henrik Christensen, Hirohisa Hirukawa,
Vijay Kumar, Bruno Siciliano, and Alex Zelinski informed the audience about
special activities and events in the field. As is now tradition with ISRR, one
evening was dedicated to an open video session chaired by Oussama Khatib, in
which participants showed brief videos about their work. An open discussion
on the topic of Robotics Science, organized by Ruzena Bajcsy, addressed im-
portant challenges for the field of robotics. The technical program of the 12th
ISRR was complemented by a rich social program, which included a dinner
cruise through the San Francisco Bay, and an excursion to nearby Alcatraz
Island.

The scientific program was composed with the help of two committees:
the Program Committee (PC) and the Selection Committee (SC). The PC
consisted of Antonio Bicchi, Hirohisa Hirukawa, Andrew Howard, Hiroshi
Ishiguro, Makoto Kaneko, Alonzo Kelly, Jean-Pierre Merlet, Paul Michael
Newman, Nicholas Roy, Tomomasa Sato, Claire Jennifer Tomlin, Louis Whit-
comb, and Alex Zelinsky. This committee recruited all reviewers and solicited
submissions from key researchers in the field. It met at Stanford University
on July 1, 2005, to make its selection from a pool of 79 submissions. The ac-
ceptance rate for submitted papers was approximately 25%. One day later, on
July 2, the SC met at Stanford. This committee was comprised of Bob Bolles,
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Raja Chatila, Hirochika Inoue, Oussama Khatib, and Bernie Roth. The SC
finalized all selection decisions and added a number of invited speakers to the
technical program. The result of this selection process was a truly outstanding
technical program which, we believe, featured some of the very best work in
the field.

The meeting would not have been possible without the diligent work of a
great number of people, including the various committee members and tech-
nical reviewers. Special thanks go to Jennifer Hodges and Debbie Barros for
assisting with the organization of the meeting and for running the registration
desk. Also, Chieh-Chih (Bob) Wang organized the Web site and oversaw the
submission process, which is gratefully acknowledged. Oussama Khatib, Pres-
ident of the IFRR, provided helpful advice all along, as did John Hollerbach
and Raja Chatila. And finally, we thank all the participants of the 12th ISRR
for making the meeting what it was: a premiere event in the field of robotics.

Stanford, Cambridge, and Sydney Sebastian Thrun
August 2006 Rodney A. Brooks
Hugh Durrant- Whyte
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Session Overview
Physical Human-Robot Integration and
Haptics

Antonio Bicchi' and Yoshihiko Nakamura?

! Centro Interdipartimentale di Ricerca

“E. Piaggio”

Universita di Pisa
http://wuw.piaggio.ccii.unipi.it

Department of Mechano-Informatics

University of Tokyo http://www.ynl.t.u-tokyo.ac.jp

Machines and robots in the near future will share environments, and often
come directly in touch with humans. This is to happen in several applica-
tions domains, including domestic applications (domotics}, entertainment, as-
sistance, cooperative manipulation tasks, teleoperation, human augmentation,
haptic interfaces and exoskeletons. Physical Human-Robot Interaction (pHRI)
poses many challenges, which can be summarized by the dichotomy safety vs.
performance. The first and foremost concern, indeed, is that the robot must
not, hurt humans, directly nor indirectly, in regular operations nor in failures.
Second, the machine is expected to perform swiftly and effectively its tasks in
the service to humans.

As a consequence of this priority inversion, machines interacting with
humans have different requirements than those currently met in industrial
robots: while accuracy is less demanding, safety of operations is a must. Fur-
thermore, the definition of performance is to be rethought, being sometimes
the machine intended for quite different tasks than conventional industrial
robots.

This session was designed to explore the safety and performance aspects
of pHRI. The first paper, A Unified Passivity Based Conirol Framework for
Position, Torque and Impedance Control of Flexible Joint Robots by Alin Albu-
Schaffer, Christian Ott and Gerd Hirzinger, discusses how to effectively control
a high-performance robot arm designed to minimize risks of impact with hu-
mans by reducing its inertia, and allowing joint compliance. Compare this with
the traditional approach of controlling stiff and heavy arms so as to appear
compliant, and consider the degree of fault tolerance of the two approaches.

S. Thrun, R. Brooks, H. Durrant-Whyte (Eds.): Robotics Rescarch, STAR. 28, pp. 3 4, 2007.
© Springer-Verlag Berlin Heidelberg 2007



4 A. Bicchi and Y. Nakamura

The focus of three papers in this session was on design and control of high-
performance haptic devices. Here, performance is to be intended at a broader,
“system” level than coventionally done in robotics: indeed, the system includes
both the machine and the human. The goal of haptics is that of stimulating
tactile perceptions of the operator so as to provide a realistic and compelling
sensation of being in touch (literally) with a remote or virtual environment.

In Wave Haptics: Encoderless Virtual Stiffnesses, by G. Niemeyer, N. Dio-
laiti, and N. Tanner, the difference between specifications of a haptic interface
from those of classical servomechanisms is considered. Accordingly, a control
scheme that exploits some physical behaviours of the actuation system, rather
than counteracting them by imposing the controller authority, is shown to
provide definite advantages. In Reality-based Estimation of Needle and Soft
Tissue Interaction for Accurate Haptic Feedback in Prostate Brachytherapy
Stmulation, by J. T. Hing, A. D. Brooks, and Jaydev P. Desai, an interesting
application to medical training is reported where the need for an objective
interaction performance evaluation is preheminent. Finally, in Haptic Virtual
Fiztures for Robot-Assisted Manipulation, by J. J. Abbott, P. Marayong, and
A. M. Okamura, it is shown how software-generated force and position signals
are applied to human operators to improve the safety, accuracy, and speed of
robot-assisted manipulation tasks.



A Unified Passivity Based Control Framework
for Position, Torque and Impedance Control of
Flexible Joint Robots

Alin Albu-Schéffer, Christian Ott, and Gerd Hirzinger

Institute of Robotics and Mechatronics, German Aerospace Center (DLR)
A1in.Albu-Schaeffer@dlr.de, Christian.0tt@dlr.de, Gerd.Hirzinger@dlr.de

Summary. In this paper we describe a general passivity based framework for the
control of flexible joint robots. Herein the recent DLR results on torque-, position-
, as well as impedance control of flexible joint robots are summarized, and the
relations between the individual contributions are highlighted. It is shown that an
inner torque feedback loop can be incorporated into a passivity based analysis by
interpreting torque feedback in terms of shaping of the motor inertia. This result,
which implicitly was already included in our earlier works on torque- and position
control, can also be seized for the design of impedance controllers. For impedance
control, furthermore, potential shaping is of special interest. It is shown how, based
only on the motor angles, a potential function can be designed which simultaneously
incorporates gravity compensation and a desired Cartesian stiffness relation for the
link angles.

All the presented controllers were experimentally evaluated on the DLR light-weight
robots and proved their performance and robustness with respect to uncertain model
parameters. Herein, an impact experiment is presented briefly, and an overview of
several applications is given in which the controllers have been applied.

1 Introduction

The currently growing research interest in application fields such as service
robotics, health care, space robotics, or force feedback systems has led to an
increasing demand for light robot arms with a load to weight ratio comparable
to that of human arms. These manipulators should be able to perform compli-
ant manipulation in contact with an unknown environment and guarantee the
safety of humans interacting with them. A major problem which is specific to
the implementation of light-weight robot concepts is the inherent flexibility
introduced into the robot joints. Consequently, the success in the above men-
tioned robotics fields is strongly dependent on the design and implementation
of adequate control strategies which can:

S. Thrun, R. Brooks, H. Durrant-Whyte (Eds.): Robotics Rescarch, STAR 28, pp. 5 21, 2007.
© Springer-Verlag Berlin Heidelberg 2007



6 A. Albu-Schiffer, C. Ott, and G. Hirzinger

s compensate for the weakly damped elasticity in the robot joints in order
to achieve high performance motion control,
provide a desired Cartesian compliant behaviour of the manipulator,
enable robust and fast manipulation in contact with unknown, passive
environments,

e provide safety and dependability in interaction with humans.

It is commonly recognized that these control goals require measurement capa-
bilities which clearly exceed the classical position sensing of industrial robots.
The solution chosen in the case of the DLR light-weight, robots (Fig. 1) was
to provide the joints with torque sensors in addition to motor position sensors
[12]. Additionally, a 6 dof force-torque sensor was mounted on the robot wrist.
The position control problem for flexible joint robots was extensively treated
in the robot control literature [17, 19, 8, 10, 14]. However, the problem of com-
pliant motion control for interaction with unknown environments and with
humans is addressed only recently under consideration of robot flexibility.
The relevance of the topics becomes clear by looking at latest hardware devel-
opments, where elasticity is deliberately introduced into the joints in order to
increase the interaction performance and the safety of robots [18, 21, 7]. Due
to the fact that the model structure is slightly more complex than for rigid
robots, there was still a gap between theoretical solutions (which often require
very accurate models and the measurement or estimation of high derivatives
of the joint position) and the practical solutions commonly chosen, which are
not always based on firm theoretical background.

Fig. 1. The DLR light-weight robot II1
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In this paper we give an overview of the controller structures for the DLR
robots, sketch the passivity based theoretical framework on which the actual
controllers are based, go into some detail with the Cartesian impedance con-
troller, and shortly describe some typical applications.

2 Controller Overview

The first stage in the controller development was a joint state feedback con-
troller with compensation of gravity and friction [2, 1]. The state vector con-
tains the motor positions, the joint torques, as well as their first derivatives. By
an appropriate parameterization of the feedback gains, the controller structure
can be used to implement position, torque or impedance control. Based on this
joint control structure, three different strategies for implementing Cartesian
compliant motion have been realized: admittance control, which accesses the
joint position interface through the inverse kinematics; Cartesian impedance
control, which is based on the joint torque interface; and Cartesian stiffness
control, which accesses the joint impedance controller (Fig.2).

[ Cartesian Compliant Behavior ‘
|
— ‘ n L
|Admiuanee control | |S&ﬂheu control I | Impedance control ]
Force Controller 4 y
: Pro_;e;tmn of' . Cartesi
Inverse kinematics for ’mcw“’im mdanmjommg. > stiffcss & damping
Slow Cartesian Variable gains for Operational space EEE—
Task joint stiffness contro ‘ Robot dynamics ‘ Jacobian
(6-10ms) vibration dampi —F Jomtepace St llm
r Y :
Fast Cartesian fast stiffness Direct | |Desired Torqueu
Task (1ms) module | |kinematics ~ computation |
— | Jimsbus T [
Joint v Y v v
Tk Position k=max Impedance k=0 Torque
0.33ms control control control

Fig. 2. Controller architecture for DLR’s light-weight robots
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The latest developments focused on strategies for impedance control based on
a passivity approach under consideration of the joint flexibilities [16, 5, 4]. A
physical interpretation of the joint torque feedback loop has been given as the
shaping of the motor inertia, while the implementation of the desired stiff-
ness can be regarded as shaping of potential energy. Therefore, the Cartesian
impedance controller can be designed and analyzed within a passivity based
framework in the same manner as the previously mentioned state feedback
controller.

The following model structure based on [17] is assumed for the flexible joint
robot:

M(q)g+C(q,q)q+9(q@) =7+ DK '% + Tex

(1
Bf+1+DK v =1, (2)
T=K(0-q) )

The vectors ¢ € ®” and 8 € R” contain the link and motor side positions
respectively. M(q) € " | C(q,q)q, and g(q) € R" are the components of
the rigid body dynamics: inertia matrix, centripetal and Coriolis vector, and
gravity vector. The vector 7 € R™ represents the joint torques, Texs € R”
the external torques acting on the robot, and 7, € R" the motor torques.
K = diag(K;) € "™ and B = diag(B;) € R™*" are the diagonal, positive
definite joint stiffness, and motor inertia matrices, respectively, and D =
diag(D;) € R**" is the diagonal positive semi-definite joint damping matrix.

3 Passivity Based Framework for Torque, Position
and Impedance Control

In the following we summarize the approaches finally adopted for the DLR
robots for torque, position, and impedance control and give a unified, passiv-
ity based view to these problems. Of course, the control literature for flex-
ible joint robots contains various different other possible approaches to the
problem. The best performance is theoretically given by decoupling based ap-
proaches, which provide a partially or even fully linearized closed loop system
and ensure asymptotic stability also for the tracking case [17, 8, 14, 11, 15].
These controllers, however, require as a state vector the link side positions up
to their third derivative and a very accurate robot model. For the DLR robots
these approaches resulted in only moderate performance and robustness. The
situation with back-stepping based controllers is similar to that of decoupling
based approaches. On the other hand, singular perturbation based controllers
are easy to implement, but their performance is theoretically and practically
limited to the case of relatively high joint stiffness.
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For the DLR light-weight robots, we preferred the passivity based approach
described below, because it is based only on the available motor position and
joint torque signals, as well as their first order derivatives and it provides a
high degree of robustness to unmodeled robot dynamics and in contact with
unknown environments. It provides a framework which is both theoretically
sound and also practically feasible, as demonstrated by the various applica-
tions realized so far using these controllers.

3.1 Passivity Based Joint Position Control

The starting point in the control development was a joint state feedback con-
troller given by

Tm = —Kpé - KDB
+Kr(g(q,) — 1) — KsT +g{q,) 4)

with Kp, Kp, K7, and Kg being positive definite diagonal matrices and
with a gravity compensation g(q,) based on the desired position. This con-
stitutes an extension of the PD controllers from [19] to a full state feedback.
Under some conditions related to the minimal eigenvalues of Kp and Kp
[2, 1], the controller together with the motor side dynamics (2) can be shown
to provide a passive subsystem, what in turn leads to passivity of the entire
closed loop system!, as sketched in Fig.3. In [1] it was exemplified that by ad-

passive
KT ;
controller ;D—m— cvironiuet
Tm
D-,.v “Text
K ;
-oller > : B’B
controller T b ator 7 §
> A 4 i B D -
& 1 | / :q.; r .
Tz't I - “Ta
6,6 D rigid robot
passive controlled actuator 1~ dynamics

Fig. 3. Representation of the robot as a connection of passive blocks

! Passivity is given in this case, e.g. with respect to the variables {T.,q}, with
T.=T+ DK 't
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equately designing the controller gains Kp, Kp, K1, and K g, the structure
can be used to implement a torque, position or impedance controller on joint
level.

3.2 Joint Torque Control: Shaping the Actuator Kinetic Energy

In order to be able to generalize the joint level approach also to Cartesian
coordinates, the idea of interpreting the joint torque feedback as the shaping
of the motor inertia plays a central role [16]. It enables to directly use the
torque feedback within the passivity framework and conceptually divides the
controller design into two steps, one related to the torque feedback and the
other to the position feedback. However, in contrast to singular perturbation
approaches, the analysis does not require the two loops to have different time
scales, which would imply very high bandwidth for the torque controller.
Consider a torque feedback of the form

Tm =BB;'u+ (I - BB;")(t+ DK '1). (5)

Herein v € R™ is an intermediate control input. In [5] a more general form
of this torque controller was presented, in which the feedback gain of + is an
additional independent design parameter, giving the possibility to optimize
the performance and the vibration damping effect of the controller. Due to
lack of space, the presentation will be restricted here to the simpler case given
by (5). The torque controller leads together with (2) to

B0+7+DK 't =u (6)

Comparing (2) with (6) it is clear that the effect of the torque controller is
that of changing the motor inertia to By for the new subsystem with input
u.

3.3 Motor Position Based Feedback: Shaping the Potential Energy

First notice that for the joint control case, a controller of the form
u=—Ko8— D0 +g(8,) (7)

with @ = 8 — 8, is passive with respect to the variables (@, u). Taking into
consideration the passivity of all other subsystems, this enables the conclu-
sion of passivity for the entire closed loop system. Actually, the controller
can be shown to be equivalent to the formulation (4), with Kp = BBg_lK 0,
Kp=BB;'D¢, Kr = BB;' — I, and Ks = (BB;' - I)DK". While
the structure can be effectively used for position control, it has two major
drawbacks when used for impedance control. First, as mentioned before, in
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order to prove the asymptotic stability, some minimal values for Ky (or Kp)
have to be ensured. This is related o the fact that the gravity compensation
is done based on the desired position. For impedance control, however, the
desired stiffness may be arbitrary close to zero, making gravity compensation
based on desired position not meaningful. Second, the desired stiffness relation
is satisfied only locally by controllers of the type give by (7), due to additional
variation of the gravity term and, in the Cartesian version, of the Jacobian.
In the next subsection an approach is presented, which overcomes the men-
tioned shortcomings. The main idea is to design the outer loop by introducing
a new control variable g, which is a function of the collocated (motor) posi-
tion 8 only, but is equal to the noncollocated position g (link side) in every
static configuration. An iterative computation method based on the contrac-
tion mapping theorem is used to calculate this variable. A passive outer loop
controller can be designed in this way, while exactly fulfilling all the steady
state requirements for the system. These include not only the desired equilib-
rium position, but also the exact stiffness relationship between the tip position
and the external force. The approach can be interpreted as a shaping of the
potential energy of the robot.

3.4 The Cartesian Case: Implementing Exact Desired Stiffness

In this section, the more general case of Cartesian impedance control is
treated. The joint level impedance controller can be easily derived from it.
In analogy to rigid robot impedance control [13], a first choice for the outer
loop controller would be:

u=-J(q)" (K.&(q) + D,%(q)) + g(q) , (8)
z(q) = flq) — zs. 9)

Herein, x, is the desired tip configuration and z(q) = f(q) is the tip con-
figuration computed by the direct kinematics map f. J{q) = %E;’) is the
manipulator Jacobian. K, and D, are positive definite matrices of desired
stiffness and damping. The equilibrium conditions? are then given by

K (00— qo) = 9(qo) — J((IO)TFext (10)
K (80 — qo) + J(q0)" K4&(q0) = 9(q0), (11)
where the relation Texy = J (qO)TFext between the external torque and the

external tip force Fey was used. Obviously, this leads to the desired stiffness
relation Foyy = K& in any equilibrium position as long as J(g,) is invert-
ible (what means that also f is locally invertible). The following analysis is
restricted to configurations in which this assumption is fulfilled.

2obtained for a constant Te.t from (1),(3),(6),(8) by setting all derivatives to zero .
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It is well known that the system (1) is passive with respect to the input-
output pair {74 + Text,q}. This can be shown with the storage function
S, = 2" M(q)q + V,(q), where V,(q) is a potential function for g(g). In
order to ensure the passivity of the complete system, we are now looking for a
control law for v which determines (6) to be passive in {g, —7,}. Obviously,
(8) does not satisfy the required passivity condition. It can be observed from
[19, 2, 22, 16, 5] that it is possible to ensure the passivity in {q, —7,} fu isa
function of @ and its derivative only. The basic idea for the solution proposed
in this paper uses the fact that, at equilibrium points, there is a one to one

mapping Bg = h{q,) (in our case through (11)) between 6y and g,:

60 = h(qy) = gy + K 'l(qy), (12)
with® 1(qy) = —J(go)" K.2(q0) + 9(q0) - (13)

Furthermore, the inverse mapping h™" can be solved iteratively with arbitrary
accuracy (see Remark 1).

The proposed solution consists in replacing ¢ in (8) with g(8) = h™'(8) and
obtaining the following controller, which is statically equivalent to (8):

~J (@)Y (K,%(q) + D, J(@)8) + 9(@) (14)
z(g) = f(@) — . (15)

Since @(6y) = g, holds at rest, it follows that the equilibrium (10},(11) and
thus the desired static relation Fey = K,&{q,) is still valid for this new
controller. This basic idea was introduced in [16, 5] for the case of gravity
compensation only and was generalized in [4] in order to provide an exact
link side Cartesian stiffness. The closed loop dynamics of the system results
from (1), (6), and (14):

M(q)q + C(q7 q)q + 9(9) = Tq + Toext (16)
By -1(q)+J (@) "D, J@8+7,=0 (17)

S
I

Remark 1. While in general the inverse function § = h™(8) can not be com-
puted analytically, it is possible to approximate it with arbitrary accuracy by
iteration in case that the mapping T(q) := 8 — K~ '1(q) is a contraction. The
mapping T{q) has then an unique fized-point g* = T{q*) = q. The iteration

converges thus for every starting point {e.g. 4, = @) to this fized-point, as
follows from the contraction mapping theorem (see e.g. [20]):

lim ¢, =q"=q. (19)

n—oo

In order for T(q) to be a contraction, it is sufficient to show that there exists
an o € R satisfying:

? In [16, 5], l(q,) is simply U(q,) = g(qy)-
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R,
|5l <o < ey vae 0
This implies the following two inegualities:
12{gy) — UHao)ll < allgy — @, Va,, g, € R” (21)
[Vi(g:) — Vi(gs) — (g1 — (I2)Tl((I2)l (22)

<allgy — |, Vay,q, € R"

with Vi(q) being a potential function for 1(q). As a consequence of (21) it
follows that

IT1(q)) — T1(gs)|| = 1K~ [[[E(g:) — Hga)l
<|lg; — .||

The condition (20) can always be fulfilled for a sufficiently small || K,||. A
physical interpretation can be given as follows: ignoring gravity, the condition
states that the desired Cartesian stiffness, transformed to joint space [9, 3] may
not exceed the joint stiffness. On the other hand, in absence of external forces,
the condition states that the joint stiffness should be high enough to sustain
the robot in the gravity field. In the following it is therefore assumed that g
is known exactly. In practice, good results are obtained already by the first or
second iteration step. In particular notice that by a first order approzimation
with o = g, one would obtain the second version of the controller from [22].

4 Passivity Analysis

The passivity of (17) with respect to {¢, —7,} can be shown using the follow-
ing storage function:

1,r_ . 1
Sp =56 By +5(0—q) K(0—q) - Vi(6), (23)
where V() is a potential function for 1(8) = 1(g(8)). It should be mentioned

that a potential function for 1{g(8)) with 8 as an argument is required in (23),
satisfying 8‘/’(9) =107 = 1(g(#))T. A potential function Vi(g) in g, (with

8‘35{” =1(g )T) can easily be found:
Vl(fl)z—%:c (@) K,2(q) + V,(a) .- (24)

In [4] it is then shown that the required potential function V;(8) is related to
V(@) through

Vi(8) = Vi(a(9)) + %IT(?J(G))K_V(FJ(B)) (25)
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For robots with rotational joints, —V,(g) is lower bounded. By substituting
(25) and (24) into (23), it follows that Sy is bounded from below since all other
terms are positive (quadratic). Thus Sy represents an appropriate storage
function.

The time derivative of (23) along the solutions of (17) is:

S5 =—0" TT(@D,J@)6 - (0 -a)" DO -q)
—gtr,.

The last term represents the exchanged power of the subsystem and the other
terms are negative definite dissipation terms. This shows that the subsystem
is indeed passive with respect to {q, —7,}. If the robot is contacting an envi-
ronment which is also passive (with respect to {q, —Text }), then the passivity
of the entire system is given as a parallel and feedback interconnection of pas-
sive subsystems (Fig. 4).

Asg already mentioned before, the results of the passivity analysis have im-
portant implications for the robot interaction with the environment. Without
going into details it should be mentioned that the storage functions from the
passivity analysis can be used also as a Lyapunov function for the proof of
asymptotic stability in the case of free motion [4].

¢ impedance passive

law ]
A -Texl

@[ [e@ ([ v

h

environment

kinematics
dynamics e -
(a A L) SEORtral S O—
x(q) coni T,
qe)| [G] = =
) q rigid robot
passive subsystem dynamics

Fig. 4. Representation of the closed loop system as parallel and feedback intercon-
nection of passive systems.

5 Experimental Evaluation

A typical impact experiment with the seven-dof DLR-light-weight-robot-II is
shortly described in this section, in order to illustrate the controller perfor-
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Table 1. Chosen values for the diagonal Cartesian stiffness matrix.

x |y z |roll|pitch|yaw
4000|4000|4000{300( 300 300
N N N Nm | Nm | Nm
m m m lrad |l rad | rad

15

mance. For the experiment a diagonal form of the Cartesian stiffness matrix
K, with the values of Table 1, was chosen. In the experiment a desired trajec-
tory z4(t) along the vertical z-axis of the end-effector frame was commanded
such that the robot hit a wooden surface. During this impact, the Cartesian
contact force was measured by a six-dof force-torque-sensor?. The measure-
ment of the external forces was done here only for the evaluation, but is not
needed for the implementation of the controller. Furthermore, the end-effector
coordinate z(q) was computed from the link side angles ¢ = 8+ K ~'7. The re-
sulting motion z(q) and the contact force F, of the end-effector in z-direction
are shown in Fig. 5. In order to evaluate the resulting impedance relationship,

360 !

- — commanded Position

—— measured Position

320 \

z,z [mm]

Force [N]
|
S &
(=] (=]

-250

1
0 0.05

0.1

1
0.15
time [s]

0.2

1
0.25

Fig. 5. The upper plot shows the desired and measured end-effector motion in
z-direction during the impact experiment. In the lower plot the contact force in

z-direction is displayed.

4 A JR3-sensor was used for this.
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the ratio z(if% was computed as an estimation of the stiffness®. This estima-
tion is of course only valid in the steady state. The result is shown in Fig. 6.
At the steady state the estimated stiffness reaches nearly the desired value of
4000N /m. The remaining difference lies in the range of known stiction effects
for this robot.

9000_...........§ NS SRR N
w000k :

3000 W e

2000 e ; TP PP TS P

Estimated Stiffness [N/m]

1000k : P R P I

1 1 1
0 0.05 0.1 0.15 0.2 0.25
time [s]

Fig. 6. Stiffness Estimation during the impact experiment.

6 Applications

In this section, some applications based on the presented controllers are
shortly presented.

Piston insertion

Teaching by demonstration is a typical application for the impedance con-
troller structure. A practical example was given with the task of teaching and
automatic insertion of a piston into a motor block. Teaching is realized by
guiding the robot with the human hand (Fig.7). It was initially known that
the axes of the holes in the motor block were vertically oriented. In the teach-
ing phase, high stiffness components for the orientations were commanded,

% beginning at time 0.5s, when the robot movement started
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while the translational stiffness was set to zero. This allowed only transla-
tional movements to be demonstrated by the human operator. In the second
phase, the taught trajectory has been automatically reproduced by the robot.
In this phase, high values were assigned for the translational stiffness, while
the stiffness for the rotations was low. This enabled the robot to compen-
sate for the remaining position errors. In this experiment, the assembly was
executed automatically four times faster than by the human operator in the
teaching phase. For two pistons, the total time for the assembly was 6s. The
insertion task has been implemented before by using an industrial robot and a
compliant force-torque sensor. Despite a well tuned Cartesian force controller,
the insertion process had to be performed much slower, because of the well
known control problems which occur in the case of hard contacts with conven-
tional robots. Thus, the advantage of a compliant manipulator with stiffness
control in assembly tasks became obvious.

Fig. 7. Teaching phase for the automatic piston insertion using the light-weight
robot II.

Wiping the table

Here the demand for a compliant behaviour of the robot also arise from reasons
of safety for humans interacting with it, while the contact to the environment
(table) was quite soft due to the cloth and hence not as challenging as in the
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case of piston insertion. The whole task was split up into similar guiding and
impedance control phases as in the piston insertion application. Fig. 8 shows
a demo at the Hanover fair where the robot’s elbow is deflected within its null
space, while the robot continues wiping the table and applying a constant
force in vertical direction.

Fig. 8. Table wiping with null space movement.

Opening a Door

In another service robotics application we used the Cartesian impedance con-
trol of the DLR light-weight robot II in order to open a door. Here the arm
was used in combination with a mobile platform and the DLR-hand-II, Fig.
9.

In this application, first, the door handle was manipulated by a sequence
of impedance controlled movements in order to open the door. During these
motions the measurements of the joint torques provided an estimate of the
contact force and thus of the current contact state.

When the mobile platform finally moved through the door hinge, the door
was kept at a distance by impedance control of the arm. Therefore, instead of
using the stiffness term from Section 3.4, in this stage the desired impedance
was based on an appropriate potential function which has its minimum all
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Fig. 9. DLR light-weight robot II while opening a door.

along a circularly shaped path with respect to a platform fixed frame. Ad-
ditionally, the rotational stiffness was set to zero such that the end-effector
orientation automatically adjusted.

7 Conclusions

In this paper, a unified, passivity based perspective was given to the prob-
lem of position, torque and impedance control of flexible joint robots, both
on joint and Cartesian level. These methods are especially relevant for light-
weight, compliant robots designed for service applications or for human-robot
interaction. A physical interpretation was given for the torque controller and
an energy shaping method was designed, which is based only on motor position
(collocated controller), but which satisfies the static requirements formulated
in terms of the robot tip. Without going into details, it is worth noting that
the proposed energy shaping method can be generalized to a broader class of
underactuated Euler-Lagrange systems [6], namely to such systems which can
be stabilized by shaping of the potential energy only. An important advantage
of these passivity-based controllers is the robustness with respect to uncer-
tainties of the robot or load parameters, as well as to contact situations with
unknown but passive environments. These properties were validated during
numerous applications with the DLR light-weight robots.
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Summary. Haptic rendering commonly implements virtual springs using DC mo-
tors with current amplifiers and encoder-based position feedback. In these schemes,
quantization, discretization, and delays all impose performance limits. Meanwhile
the amplifiers try to cancel the electrical motor dynamics, which are actually bene-
ficial to the haptic display.

We present an alternate approach that fully embraces and utilizes all electri-
cal dynamics, following two insights: First, the electrical inductance L can serve
as a stiffness, providing a natural sensor-less coupling between the virtual environ-
ment and the user. Second, the electrical resistance R can serve as part of a wave
transformation. Implementing virtual objects in a wave domain provides complete
robustness to servo delays or discretization.

The resulting system requires only a simple voltage drive circuit. Built upon the
physical behaviors, if can outperform traditional approaches achieving higher virtual
stiffness. Encoder feedback is only required for absolute position information, with
damping and velocity information inherently available from back-EMF effects. A
prototype system has been implemented and confirms the promise of this novel
paradigm.

1 Introduction

Stable implementation of stiff virtual environments remains a challenge for
kinesthetic force feedback devices with impedance causality. In particular,
the traditional approach consists of a digital control loop using discretized
and quantized position readings, as seen in Fig. 1. Force is actuated by means
of a DC motor controlled by a current amplifier, in turn fed by a constant
force command during each servo cycle.

It has been recognized that the maximum achievable stiffness with such
an approach is limited by the lack of information to the controller caused
by time discretization [1,2] and position quantization [3,4] related to the
use of encoders as position sensors. Therefore the intrinsic friction of the
device and possibly the damping added by user’s grasp become essential in

S. Thrun, R. Brooks, H. Durrant-Whyte (Eds.): Robotics Rescarch, STAR 28, pp. 22 33, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. The traditional implementation of stiff virtual environments

stabilizing the haptic rendering. In effect, the virtual environment can only
be rendered for a limited frequency range. Alternatively, the use of analog
position measurements and time continuous feedback has been explored in
[5]. The electrical current amplifiers include their own internal feedback to
regulate the motor current. They aim to reject back-EMF while speeding up
the L-R dynamics.

In the following we adopt a different perspective. We use the electrical
resistance and back-EMF to implicitly obtain velocity information and enable
appropriate viscous damping. We also use the electrical inductance to create
a stiffness. Built out of natural dynamics, these effects are always available at
high frequency together with the controlled lower frequencies, creating per-
formance beyond traditional approaches. Furthermore, using a wave variable
description borrowed from telerobotics, the implementation is entirely insen-
sitive to servo delays.

2 Exploiting the Motor Dynamics

Though generally ignored under the assumptions of an ideal actuator and
perfect current amplification, the electrical motor dynamics are well known
to be:

ealt) = Ri(t) 1 Ldil(f) tenp(l)

(1)
€BE(Zf) = k‘Ti’(t)
where e 4 is the applied voltage to the armature circuit consisting of the resis-

tance R, the inductance L and the back-EMF voltage egg. The mechanical
dynamics are given as:

3
83
~~
o~
~—

I

F(t) —e((t) — Fu(l)
(2)
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Fig. 2. The electrical and mechanical DC motor dynamics

where m is the rotor inertia, ¢ is the (nonlinear) friction and Fg is the user
torque opposing the motion & of the rotor. The torque constant and back-
EMF constant are the same physical parameter and are both denoted by k.
The equations are illustrated in Fig.2 and represented in block diagram form
in Fig. 3.

The actuator converts electrical into mechanical energy and thus the ele-
ments R and L can be easily mapped into the mechanical domain. For exam-
ple, it is well known that the back-EMF voltage together with the resistance
can be used to increase the apparent viscous friction [6] or to obtain an ac-
curate measurement of the velocity. The resistance R maps into a mechanical
viscous damper

B b1 3
R="r 3)

Similarly, the inductance L provides energy storage and can be interpreted as
a spring of stiffness:

kp?
Ky, = — 4
i7 (4)
= — ERF T
L e kr e a o [
| :
i J
- |
R <[)
. \ L
I' 1
i A
i i I 1. L & I
« v » Ky " e Oe B

Fig. 3. Block diagram of the DC motor dynamics
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The equivalent spring and damper are connected in series between the rotor
inertia and the energy conversion element, as seen in Fig. 4. Because of the
series connection, the damper dominates the low frequency behavior and the
stiffness is often overlooked.

Bnr Ky, . . _
: F Fg _S
eA 0 [ — m e %
H i |
c

Fig. 4. Rotor inductance L and resistance R can be interpreted as series connection
of a spring (K1 = kr”°/L) and a viscous damper (Br = kr°/R)

With low inductance motors commonly used in haptics, K, creates a very
high stiffness. For example, for the Maxon RE 25 motors found in the PHAN-
ToM 1.0 with values of kr = 43.8 mNm/A and L = 0.83 ml, we have
K; = 2.31 Nm/rad. With an approximate 8 : 1 gear ratio and lever arm
of 14 c¢m the corresponding tip stiffness reaches 7500 N/m. For comparison,
the maximum stable value of a virtual spring implemented according to the
scheme of Fig. 1 has been found to be approximately 1100 N/m [4].

Therefore, it is worthy to develop a control scheme that takes advantage
of the built-in spring present in each motor for the haptic rendering of stiff
virtual environments. Since K7y, is a physical element of the system, it is not
affected by the non-idealities of the digital control loop that cause energetic
inconsistencies and lead the system to instability. Moreover the force feedback
it provides does not require any position sensing at all and operates at high
frequencies.

3 Wave Variables for Haptic Rendering

For the purpose of designing a controller we consider the inductor as a series
spring, retaining the resistance in the electrical domain as seen in Fig. 5. The

controller imposes motion
. 1
Zq(t) = e (5)
T

on the spring corresponding to a voltage e. The controller represents a voltage
drive and the current ¢ indicates a measurement of the torque F.

We interpret the dissipative element as part of a natural wave transform (7,
8], as shown in Fig. 6. A wave transform encodes the normal power variables of
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Fig. 5. Motor dynamics interpretation used in the controller design

velocity & and force F' into wave variables v and v, without loss of information
or change in power flow. The wave quantities inherently describe both signal
and power flow and are thus unaffected by delays or lags. In this context,
according to the notation defined in [8], the wave variables are given as:

o(t) = ¢~ Ri BgiqF
" V2R  2Bpg

e+ Ri Briq+F
V2R  /2Bpg

where z4(t) is the desired spring motion and F' denotes the spring force. The
equivalent viscous damping By serves as the wave impedance. The overall
instantaneous power P(t) flowing from the virtual environment to the motor
is:

(6)

1 1
P(t) = e(t)i(t) = 2a(t)F(t) = Ju*(t) — 5v*(1) (7)
so that a wave variable has units of square root of Watt.
To complete the wave transform, the dark shaded area of Fig. 6 showing
the two V2R gains and the summing junction is realized by means of an analog
circustry. This implements:

L €A +/__\ €
> » V2R W= >
F'y
VE R
'y A
+ -
- (e 2R ¢

Fig. 6. Wave Transform connecting Virtual Environment VE to electrical domain
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Fig. 7. Block diagram of a DC motor with the wave controller

The complete system is depicted in Fig. 7. The wave variables u(t) and
v(t) encode the power exchanged with the motor by the simulated virtual
environment. Since each wave variable carries its own power, the passivity
of the interconnection is guaranteed as long as the modulus of the transfer
function

(9)

representing the virtual environment in wave space is at most the unity.

Because the wave variable u(t) and v(t) exist as real signals in the circuit,
the virtual environment can be implemented in several ways. Simple transfer
functions D(s) can be realized in analog hardware. Alternatively, v(¢) and
u(t) can be digitized and the virtual environment implemented on a computer
either in wave space or in traditional power variables by use of a second de-
coding digital wave transformation. In either case, any time delays or phase
lags due to the discretization are guaranteed not to affect the stability of the
overall system.

4 Interpretation

As discussed in detail in [7], wave variables can by used to describe an intercon-
nection of elements. This gives us the ability to implement any passive virtual
environment, with which the user interacts through the natural dynamics of
the mechanical device and equivalent spring K. The latter can therefore be
interpreted as a coupling element, resembling the virtual coupling concept
of [9]. This coupling has the advantage of being a physical element and is not
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affected by the stability issues of a digital implementation. This interpretation
leads to the conceptual scheme of Fig. 8.
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Fig. 8. The inductance acts as physical coupling with the virtual environment

The two most extreme passive environments are free motion and rigid con-
tact. Both imply an infinite frequency response, as motion occurs immediately
for any force in the former and forces are immediately created for any motion
in the latter. Causality of an impedance device clearly favors free motion and
challenges rendition of rigid contact.

In the wave domain, both of these environments are easily expressed. Free
motion avoids all forces (£ = 0) and reflects all power carried by the incoming
wave v(t) back by means of u(t) as:

u(t) = v(t) — 1=0 Ve or F=0 Viy (10)

where (6) converts the wave relation into the power variable description.
Dually, a rigid contact also reflects all power by suppressing any motion
(£q = 0) as:

u(t) = —v(t) Se e=0 Vi or 4q=0 VF (11)

Note this does not hold the applied voltage e4 at zero, but only cancels
the voltage across the inductor and back-EMF. It does not short the motor,
instead effectively sets e4 = Ri. Illustrated in Fig. 9, it implies that K, is the
maximum stiffness that can be rendered to the user.
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Fig. 9. Haptic interaction with a rigid virtual wall
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A haptic simulation where the user experiences interactions with stiff bod-
ies or unconstrained motion can be implemented as:

—1 in contact

+1 in free motion (12)

u(t) = nu(t) where n= {
To switch between these two values, a collision detection algorithm should
take advantage of direct position measurements. An encoder is thus required
to detect the collision with a unilateral constraint, but is not used to compute
the force fed back to the user.

5 Implementation

Incorporating and utilizing the electrical dynamics, K, is the maximum stiff-
ness that can be rendered by means of a passive wave-haptic approach. Distur-
bances may stem from the unmodeled high frequency dynamics of the power
transistors used to achieve the desired voltage input e 4, as well as from other
sources of electrical noise in the control loop. These phenomena occur at much
higher frequency (several hundred kilohertz) than the perceptual bandwidth
of the human operator (about one kilohertz). To address these limitations, a
high frequency low-pass wave filter

A

H(s) = s+ A

(13)

can then be included in series with the virtual environment without signifi-
cantly affecting the perceived transients [10]. Indeed such a filter retains pas-
sivity and adds a further series stiffness of
kr?
Kfilter - ? A (14)
which is significantly stiffer than the existing coupling of K. The transfer
function D(s) of the overall controller dynamics in the wave domain becomes:

A
s+ A

D(s)=n W(s) (15)
where the magnitude of 1 can be further tuned in the interval —1 <n <1 to
remove power and introduce damping. Finally W(s) may incorporate other
dynamics into the simulated virtual environment.

We have implemented a simple prototype system using (12) and (15) with
A=10,000 rad/sec, n = +1, W{(s) = 1. In particular, we use a Maxon RE25-
118743 motor that features K7 = 2.2815 Nm/rad with the control electronics
realized by means of analog circuitry. Power amplification is performed by a
couple of complementary MOSFET transistors in a push-pull configuration
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and an analog switch alternates between free space (n=1) and rigid contact
(n=—1). Power supply limits the current provided to the motor to 1 A., Data
is collected at 5 kHz using A /D conversion and a high resolution encoder (10*
counts per revolution) to measure the motor shaft position.

Consider contact against a stiff virtual wall located at zw = 0. From
the encoder reading, we derive a simple binary signal indicating penetration
into the wall. This logic signal commands the analog switch and selects the
appropriate behavior. Preliminary results are shown in Fig. 10 and 11. In
Fig. 10 we see the circuit correctly renders the behavior of free space, since
when x <0 the feedback torque F' is zero. The voltage e adjusts slightly to
counter the back-EMF voltage. As contact is experienced, current and torque
quickly rise to their maximum value before saturation intervenes at about
F ~0.021 Nm. Better viewed in Fig. 11, the stiffness rendered during the
compression phase is approximately K ~1.9 Nm/rad, in good agreement with
the expectations from the previous analysis.
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T T T T
1 1 1 1 1 1
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Fig. 10. Repeated contacts with the virtual wall: position, force and voltage dia-
grams

We note that the compression and the restitution phases appear asymmet-
ric. This behavior is a direct consequence of voltage saturation, which is not
yet included in the simple dynamics (1). When the drive voltage hits a fixed
saturation limit, the back-EMF effects can not be properly canceled and the
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Fig. 11. Behavior of the feedback torque F' during contact with the virtual wall

current is affected by motion. As the compression slows, the resisting force
drops to its steady state value and, as motion begins during restitution, the
restoring force drops accordingly. Effectively the spring forces are overlayed
with the back-EMF’s viscous damping.

As a second effect, the voltage modification caused by the saturation also
shifts the endpoint x4 of the spring K. Recall from (5) that voltage implies
motion, such that the desired behavior depicted in Fig. 9 reverts back to
Fig. 4. Fortunately, as contact is broken, the behavioral switch via n resets
the system for the next collision.

Finally, we find two issues that may require study for future implementa-
tions: First, knowledge of the motor resistance R is necessary to implement (8)
and create the wave transformation (6) in a passive fashion. Inaccuracies lead
to errors in the command voltage e4 and, as above, to drift. In particular, the
resistance varies with temperature and adjustable circuitry may be required
to compensate for this effect. Fortunately thermal dynamics are much slower
than the dynamics involved in haptic rendering, so their influence on the sta-
bility of the overall scheme is marginal and drift may be negated by encoder
feedback at a higher level. Finally, commutation in brushed DC motors intro-
duces discontinuities into the simple dynamics (1) and may be perceived by
the user. Application to brushless motors promises smoother operation.
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6 Conclusions

In this paper we propose to exploit the electrical dynamics of the DC motor
used to render the force feedback in virtual reality applications. For the motors
commonly used in this context, the equivalent stiffness of the motor inductance
is higher than the stiffness that can be achieved by means of a classical digital
control loop.

We propose to take advantage of this physical spring to render stiff vir-
tual objects, avoiding the problems related to position quantization and time
discretization. In this way, the usually neglected electrical dynamics are ef-
fectively used to improve performance. Realization by means of a reliable
analog circuitry is possible entirely within the electrical domain. The required
components include only a sense resistor to acquire 4, two gain stages, and
a summation stage depicted in Fig. 6. The voltage command e is applied
directly to the motor via a power stage, replacing the more complex current
amplifiers typically used.

The virtual environment is interfaced to the motor by means of wave
variables and in this domain the time delays and phase lags caused by a
discrete-time implementation do not affect the energy balance and therefore
the stability of the overall system.

This approach is very appealing with its intrinsic simplicity and the bet-
ter use it makes of the physical components of the haptic device. It does not
require assumptions on the mechanical friction to obtain stability and pas-
sivity. Conversely, the passivity is obtained constructively and the effects of
non-idealities are confined behind the wave variables transform, guaranteeing
intrinsic robustness to servo delay.
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Abstract — Prostate Brachytherapy is the implantation of radioactive seeds
into the prostate as a treatment for prostate cancer. The success rate of the
procedure is directly related to the physician’s level of experience. In
addition, minor deviations in seed alignment caused by gland
compression/retraction, gland edema (swelling) and needle deflections can
create significant areas of over or under dosage to the gland and/or injury to
surrounding nerves and organs, leading to increased morbidity. Therefore,
reductions in brachytherapy complication rates will be dependent on
improving the tools physicians use for training to improve the accuracy of
needle guidance and deployment of ‘seeds’ within the prostate gland.
Through our novel approach of using two C-ARM fluoroscopes, we
propose a reality-based approach for estimating needle and soft tissue
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interaction for the purpose of eventually developing an accurate seed
placement training simulator with haptic feedback for prostate
brachytherapy. By recording implanted fiducial movement and needle-soft
tissue interaction forces, we can: extract the local effective modulus during
puncture events, quantify tissue deformation, obtain an approximate cutting
force, and build a finite element model to provide accurate haptic feedback
in the training simulator for needle insertion tasks.

Index Terms - Surgical Simulation, Soft-tissue Modeling, Prostate
Brachytherapy, Local Effective Modulus.

1 Introduction

Prostate cancer is the most common cancer in men in the United States and
it is the second leading cause of cancer deaths in men (Jemal 2004). The
prevalence is about 10 to 20 times the incidence because the vast majority
of affected men will not die of prostate cancer. This identifies an important
issue regarding the treatment of prostate cancer: the quality of life for what
amounts to a normal remaining life span becomes extremely important (Hall
2003). Patients have three main choices for treatment of prostate cancer:
surgical excision, radiation therapy, and expectant management/hormone
therapy (Leak 2002), and each approach is associated with acceptable long-
term survival. The difference between these therapies lies in the associated
outcomes of treatment, i.e. acute and chronic complications/side effects that
can limit one’s enjoyment of life and even lead to chronic conditions
requiring medical intervention, medications, surgical procedures,
hospitalizations, and even death (Hall 2003). Since there are so many
prostate cancer survivors at risk for chronic disabilities and decreased
quality of life, reduction of complications and avoidance of adverse
outcomes becomes a national health issue. Among the three main treatment
options for localized prostate therapy, prostate brachytherapy has emerged
as an excellent alternative for patients who meet specific criteria because it
offers the benefits of a higher gland specific dose of radiation therapy
without the side effects of external beam therapy (Potters 2003). The
procedure is completed in one session either on an outpatient basis, or
requiring an overnight hospital stay. There is no significant blood loss,
making this an attractive alternative to surgery. Recent studies have
indicated a disease specific survival equal to prostatectomy (Langley and
Laing 2004, Sharkey 2000). All of these factors point to a potential for
equal survival with lower morbidity than surgical excision or external beam
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therapy. For prostate brachytherapy, the success rate of the procedure is
directly related to the clinician’s level of experience. Therefore,
improvements in brachytherapy complication rates will be dependent on
improving the tools clinicians use for training to improve the accuracy of
needle guidance and deployment of ‘seeds’ within the prostate gland.

From the surgical simulation viewpoint, most tissue response modeling
efforts in the literature are targeted towards assuming mechanical properties
and developing methods to efficiently solve the tissue simulation problem
for robot-assisted surgery/training. Several simulations have developed
very sophisticated virtnal environments that allow for plastic deformations
of the material and interactions in multiple dimensions (Forest, et al. 2002,
Picinbono, et al. 2001). However, it has been difficult to populate these
models with data from real tissues. Simulation and modeling of needle
insertions have been conducted by a number of researchers (Alterovitz, et
al. 2003, Brett, et al. 2000, DiMaio and Salcudean 2002, Hong, et al. 2004,
Kataoka, et al. 2002, Magill, et al. 2004, Nienhuys and van der Stappen
2003, Simone and Okamura 2002, Smith, et al. 2001, Stoianovici, et al.
1998). However, most assume linear elastic properties, homogenous
tissues, and no needle deflection. Only a few groups have modeled and
studied the measurement of forces during needle insertion into soft tissue
and the effects of needle geometry on the deflection during needle insertions
into homogenous tissues (Kataoka, Washio, Chinzei, Mizuhara, Simone and
Okamura 2002, O'Leary, et al. 2003). Needle deflection is an important
part of our study because it has been observed during surgical procedures of
prostate brachytherapy that the needle can deflect from the initial insertion
point as it is being inserted through the body by more than 10mm
(Cormack, et al. 2000).
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Fig. 1. Schematic of the proposed reality-based modeling approach for
accurate needle and soft-tissue interaction in a training simulator for prostate
brachytherapy.

To the author’s knowledge, there has been no work on measuring in real
time the 3-D movement of fiducials (beads) in non-homogeneous soft tissue
during needle insertion. Our method of tracking beads using two C-ARMS
facilitates the extraction of necessary parameters for accurate estimation of
needle and soft tissue interaction. This type of reality based modeling is
critical for providing accurate haptic feedback in surgical simulation. The
findings in this study will be used to further the development of an accurate
haptic feedback simulator for prostate brachytherapy training. Figure 1
shows a schematic of the proposed reality-based modeling approach.

2 Materials and Methods

Table 1 demonstrates our proposed approach for modeling needle and
soft-tissue interaction during a needle insertion and withdrawal task in
prostate brachytherapy. Each task is broken down into the experimental
tools needed, data acquired during the experiment and computational tools
used for analysis. This paper presents: a) the computation model for task 1
to estimate the local tissue stiffness prior to puncture and b) reality-based
estimation of needle and soft tissue interaction for tasks 2 and 3.

Needle insertion device: The needle apparatus was designed to
measure the forces on a surgical needle during insertion into soft tissue.
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The insertion and withdrawal speeds varied from 1.14 mm/sec to
25.4 mm/s. The needle insertion device consisted of a geared DC motor, an
incremental encoder and a JR3 precision 6 axis force/torque sensor. The
JR3 sampled the force at 1000 Hz. For our experiments, we used an 18-
gauge prostate seeding needle (Mick Radio Nuclear Instruments, Inc.) of
length 20 cm. This is consistent with the type of needle typically used by
surgeons when performing prostate brachytherapy (Figure 2).

Cannula\‘ Needle 'y

- —— e ——

Fig. 2. Various components of a typical prostate brachytherapy seeding
needle.

Soft Tissue Markers: To view the internal tissue movement during
needle insertion, forty 1mm diameter stainless steel beads were inserted

into the soft tissue. These beads were chosen because their size was
small enough to not affect the properties of the soft tissue or impede the
needle insertion path. They also show up well under X-ray imaging. The
beads are placed in a grid pattern spaced approximately Smm apart from
one another. The grid was meticulously placed to avoid occlusion between
beads during imaging. FEach bead was inserted perpendicular to the
experiment needle path using an 18 gauge needle to an approximate depth of
10 to 20 mm from the tissue surface.
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Table 1. Modeling needle and soft-tissue interaction during needle insertion and withdrawal

Tasks Tools Data Acquired
1. Needle Puncture Exp.Tools -Fiducial movement on skin

Soft Tissue

Cannula + Neadle [~ =

-External Vision Sys.
-IR3

-Fiducials on perineum

-DSpace 1103

surface
-Force vs. displacement prior
to skin puncture

MQVMZ/A Comp. Tools
- N ,‘ -ABAQUS

Surface Fiducials -MATLAB
2. Soft-tissue and needle Exp.Tools -Force vs. displacement
interaction (needle -2 C-ARMS -Fiducial movement
insertion) -JR3 -lLocal tissue motion

-Fiducials inside tissue
-DSpace 1103
Comp. Tools

-Global tissue movement

i -ABAQUS
et MATLAB
3. Tissue relaxation Exp.Tools -Force decay over time
-2 C-ARMS -Fiducial movement
Soft Tissue -IR3 -Local tissue movement

Cannuta + Needle

(Stationary) M Fiducial
- 4— Movement

Tk

-Fiducials inside tissue
-DSpace 1103

Comp. Tools
-ABAQUS
-MATLAB

-Global tissue movement

4. Cannula + Seed applicator
removal

-Seed recoil

-Cannula-tissue friction
force

Soft Tissue

Exp.Tools

-2 C-ARMS

-JR3

-Fiducials inside tissue
-Seed insert

-DSpace 1103

Comp. Tools
-ABAQUS
-MATLAB

-Force vs. disp.

-Fiducial / seed movement
-Local fiducial movement vs,
relaxed state

-Global tissue movement
-Cannula and needle friction
force
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Dual C-arm Fluoroscopes for bead tracking: Two C-ARM

Fluoroscopes were used to image the fiducial markers and the needle during
insertion. C-ARM Fluoroscopy allows for real time X-ray imaging where
X-rays are generated at the transmitter and photographed at the receiver.
The C-ARMs were positioned so that their imaging planes were orthogonal
to each other, allowing for real time imaging of the side and top views of the
soft tissue fiducial markers and needle during insertion (Figure 3a). The
video images of each C-ARM were captured onto a hard disk using a video
capture device (Pinnacle Systems) at 30 frames per second at a resolution of
720 x 480 pixels.
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Marker Registration: Once the soft tissue was in place for the
experiment, a 1mm graduation radiopaque ruler (Lightek Corporation) was
imaged in side view and top view to obtain the conversion for image length
in pixels to length in millimeters. Using the two C-ARM configuration, we
were able to correlate the beads in the top view with the beads in the side
view because of the C-ARM ability to continually image as it is rotated
from 90 to 180 degrees. Each bead could then be tracked as it moved in the
image from the top view to the side view. This was done before inserting
the needle for each soft tissue sample.

After bead registration, the needle was moved into place and inserted
approximately 90 mm into the soft tissue at three different speeds, namely:
1.14, 12.7, and 25.4 mm/s. During the insertion, the JR3 force sensor
captured the forces acting on the needle while the side view C-ARM and top
view C-ARM continually recorded X-ray images of the needle position and
the movement of beads inside the tissue (Figure 3b). After each insertion,
the needle was moved to a different position in the soft tissue to minimize
the chance of following a previous insertion path.

a) b)

Top View C-Arm Motor / Encoder

=

Soft Tissue

TOP

Needle VIEW

Fiducial

Maﬁrers I

SIDE "-

VIEW v

Fig. 3. a) C-ARM fluoroscope setup and b) Images acquired from both C-
ARM’s during needle insertion and withdrawal.

Needle

MATLAB image processing toolbox combined with standard kinematic
transformations was used to extract the bead and needle coordinates in the
global frame from the top and side view X-ray images. The videos from the
top and side views for each insertion were loaded separately into MATLAB
as .avi files. An image difference algorithm was then applied from an image
of the soft tissue with no beads to the frame being analyzed. The new
difference image highlighted the bead and needle movement between the
frames.
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3 Results and Discussion

3.1 Needle-Soft Tissue Interaction Forces

Based on needle and soft-tissue interaction during puncture events, the
three graphs in Figure 4a represent insertion of the needle into 3 different
soft tissue samples. Needle insertion consists of 4 events as shown in Table
1, namely: puncture, insertion, relaxation, and withdrawal. The forces
acting on the needle are: the force at the tip of the needle required for cutting
the tissue, the friction force of the tissue sliding along the needle shaft, and
the clamping force of the tissue on the needle (Kataoka, Washio, Chinzei,
Mizuhara, Simone and Okamura 2002). As the needle inserts farther into
the soft tissue, it undergoes a series of micro punctures where the force rises
a small amount and then drops down. Once the needle is inside the tissue,
the force increases relatively linearly; with the exception of a few major
puncture events along its path resulting from significant change in tissue
stiffness due to its non-homogeneity. A puncture event comprises of initial
deformation (leading to a rise in the force reading in the force sensor)
followed by puncture (sudden drop in the force reading). The force
increases linearly during insertion due to the increased surface area of the
needle inside the tissue (friction force along the cannula length) and
clamping force of the tissue around the needle. Based on our experimental
observations, we hypothesize that in a typical puncture event the tissue is
deformed at the same rate as the velocity of the needle tip. This causes a
quick increase in force until puncture occurs. Based on this rationale,
Figure 4b illustrates ten major puncture events for a sample of soft tissue.
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Fig. 4a) Total needle forces during insertion and withdrawal and b) Major
puncture events
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Fig. 5. Plot of the approximate cutting
force during needle insertion

We found that separating
the cutting tip force from the
friction force on the needle is a
challenging experimental task.
Our approach for estimating the
needle-tissue interaction force
purely due to cutting was to
subtract the force data during
the withdrawal portion of the
experiment from the force data

during the insertion part of the experlment Figure 5 shows the approximate

cutting force based on this approach.

3.2 Estimating Needle Trajectory, Bead Movement, and

Tissue Relaxation

Figure 6 shows the trajectory of the needle through the soft tissue during
insertion and withdrawal. Deflection of the needle tip from the straight line

trajectory was observed during the experiment.

Needle deflection is

important to measure and predict for training radiation oncologists to place
seeds accurately in the prostate. In a typical prostate

3D View of Needle Insertion and Bead Movement
(Limited number of beads shown for clarity)
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(Cormack,  Tempany
and D'Amico 2000)
which requires

recomputation of the
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Fig. 6. 3-D bead movement during needle

insertion and withdrawal

90

placement. In our
studies, the needle was
shown during some
insertions to deflect

approximately 9.75 mm away from the straight line trajectory. Most of the
deflection was caused during the initial puncture due to the force produced
by tissue deformation although deflection was also caused by the
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inhomogeneity of the soft tissue, generating asymmetric forces on the
needle.

Figure 6 also illustrates the movement of the beads during a typical
needle insertion and withdrawal in soft tissue. Each cluster in Figure 6
represents the area covered by the movement of a bead with the surrounding
tissue. For clarity, we have only shown a small subset of beads actually
used in the experiment. The needle was inserted at 12.7 mm/sec to a depth
of approximately 9.5 cm. Each bead has a corresponding blue color for its
position during insertion and red color for its position during withdrawal.
Beads closest to the needle path showed the largest range of movement
while the movement of beads farther away from the needle path was less.
The estimated movement of the beads is used to validate a finite element
model to predict soft tissue deformation during needle insertion and
withdrawal task.

Tissue relaxation is a very important parameter to understand when
simulating seed placement for prostate brachytherapy. Relaxation can
cause a seed to be placed in an inaccurate location. Tissue relaxation can
be observed by analyzing the force data as the needle is held in its full
insertion position. Figure 7a illustrates the relaxation of the tissue
occurring based on the force data. Figure 7b represents the top view of the
tissue sample for the movement of one bead inside the tissue close to the
needle path during both needle insertion and withdrawal task. Both needle
insertion and withdrawal contribute to tissue relaxation, namely relaxation
after the needle reaches its final position in the tissue and relaxation after
the needle is completely withdrawn from the tissue. Tissue relaxation based
on movement can be seen from the difference in the position of the bead
after full insertion and the position of the bead after tissue relaxation has
occurred while holding the needle in place.

Based on our experimental data, we can initially model the tissue
relaxation process at the end of an insertion task as an exponentially
decaying curve given by:

y =0.5689 7% +1.5149 (1
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Fig. 7a) Tissue relaxation after needle insertion and b) Bead movement during
relaxation of the tissue after needle insertion and withdrawal.
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Fig. 8a) 2D FEM model of initial puncture through the perineum and b) 3D
FEM model of initial puncture.

3.3 Modeling Needle Puncture

Based on our experimental data, we have recently modeled step 1 of
Table 1, namely tissue puncture. A plane stress finite element model, using
4 node quadrilateral elements was built using the ABAQUS software
(Version 6.3) as shown in Figure 8a. Figure 8b shows a 3D model of tissue
deformation prior to puncture.

We conducted a linear elastic FEM analysis with a Poisson’s ratio of
0.3 and an initial local effective modulus of arbitrary magnitude E;. The tip
of the needle was modeled as a node located at points corresponding to the
position of the puncture events shown in Figure 6. For each event, the node
was given an experimentally measured displacement AU, The computed
AF™ from the displacement at that node was compared with the AF™"
measured experimentally.  Using the initial effective modulus E;, we
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performed iterations to obtain the AF"™ equal to AF™*". The final E value
determined is the local effect modulus, ES™ of the tissue during the
puncture event (see Table 2). Figure 9 illustrates this

computation procedure.

Table 2. Local Effective
— Modulus of Puncture Events
" for Lew Puncture Event LEM*10°

[N/m’]

: - Initial Puncture 9.575

o [2] 13.975

[3] 23.833

E.= B Nomaized Force [4] 34.263
W [5] 11.798
[6] 23.325

[7] 30.459

[8] 8.291

Yes [9] 11.541

[10] 21.422

Fig. 9. Flow chart for determination of
the local effective modulus (LEM).

The 3D FEM model has been developed and will also be used to predict
soft tissue movement and forces under needle insertion and will be verified
with that of experimental data. Figure 8b is an initial three dimensional
model with a global mesh of 0.5 x 0.5 x 0.5 cm’, 8-node, solid linear brick
element with incompatible modes. Nodes of elements closest to fiducial
marker locations are placed at the coordinates of the fiducial markers. The
tip of the needle was modeled as a node similar to that of the two
dimensional model.

4 Conclusion and Future Work

This study demonstrates a unique approach for estimating needle and
soft tissue interaction for the simulation of accurate seed placement in
prostate brachytherapy. We have shown through the use of 2 C-ARM
Fluoroscopes that we can obtain in real time 3D needle trajectory and
internal global and local tissue deformation during needle insertion into soft
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tissue. From this we can extract important parameters for modeling tissue
puncture and tissue relaxation. The internal tissue movement can also be
used to verify predictions of soft tissue finite element models. Also, we
have shown by using the force and displacement data from puncture events
that we can quantify the local resistance of the soft tissue to puncture,
through the computation of the LEM. Additionally, by subtracting the
friction and clamping force during needle withdrawal from the total needle
force during insertion, we can obtain the tissue cutting force during needle
insertion.

We propose to develop a three dimensional finite element model for
simulating the needle insertion and withdrawal task in prostate
brachytherapy. Based on 3D fiducial movement estimated from our current
work, we can compute the “strain field” for each fiducial in the image and
determine the local effective modulus of the tissue during a needle insertion
and withdrawal task.

The work presented in this paper is to our knowledge the first of its kind
for modeling needle deflection and soft tissue movement during needle
insertion and withdrawal task in prostate brachytherapy. This work will be
the basis for developing a reality-based training simulator for training
radiation oncologists in prostate brachytherapy.
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Summary. Haptic virtual fixtures are software-generated force and position signals
applied to human operators in order to improve the safety, accuracy, and speed of
robot-assisted manipulation tasks. Virtual fixtures are effective and intuitive because
they capitalize on both the accuracy of robotic systems and the intelligence of human
operators. In this paper, we discuss the design, analysis, and implementation of
two categories of virtual fixtures: guidance virtual fixtures, which assist the user
in moving the manipulator along desired paths or surfaces in the workspace, and
forbidden-region virtual fixtures, which prevent the manipulator from entering into
forbidden regions of the workspace. Virtual fixtures are analyzed in the context
of both cooperative manipulation and telemanipulation systems, considering issues
related to stability, passivity, human modeling, and applications.

1 Introduction

Haptic virtual fixtures are software-generated force and position signals ap-
plied to human operators via robotic devices. Virtual fixtures help humans
perform robot-assisted manipulation tasks by limiting movement into re-
stricted regions and/or influencing movement along desired paths. By cap-
italizing on the accuracy of robotic systems, while maintaining a degree of
operator control, human-machine systems with virtual fixtures can achieve
safer and faster operation. To visualize the benefits of virtual fixtures, con-
sider a common physical fixture: a ruler. A straight line drawn by a human
with the help of a ruler is drawn faster and straighter than a line drawn free-
hand. Similarly, a robot can apply forces or positions to a human operator
to help him or her draw a straight line. However, a robot (or haptic device)
has the additional ability to provide assistance of varying type, level, and
geometry.
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Fig. 1. Models of robots of the (a) impedance and (b) admittance types. For the
impedance-type robot, Fy is the actuator force and F. is the sum of all externally
applied forces. For the admittance-type robot, F; is the component of the externally
applied force that is sensed. V' is the robot velocity, and 1" is sampling period of the
control system.

Virtual fixtures show great promise for tasks that require better-than-
human levels of accuracy and precision, but also require the intelligence pro-
vided by a human directly in the control loop. Human-machine manipulation
systems make up for many of the shortcomings of autonomous robots (e.g.,
limitations in artificial intelligence, sensor-data interpretation, and environ-
ment modeling), but the performance of such systems is still fundamentally
constrained by human capabilities. Virtual fixtures, on the other hand, provide
an excellent balance between autonomy and direct human control. Virtual fix-
tures can act as safety constraints by keeping the manipulator from entering
into potentially dangerous regions of the workspace, or as macros that assist
a human user in carrying out a structured task. Applications for virtual fix-
tures include robot-assisted surgery, difficult assembly tasks, and inspection
and manipulation tasks in dangerous environments.

Virtual fixtures can be applied to two types of human-machine robotic ma-
nipulation systems: cooperative manipulators and telemanipulators. In coop-
erative manipulation, the human uses a robotic device to directly manipulate
an environment. In telemanipulation, a human operator manipulates a master
robotic device, and a remote slave robot manipulates an environment while
following the commands of the master. In general, the robots used in these
systems can be of the impedance or the admittance type [6]; basic models for
these robot types are shown in Fig. 1.
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Robots of the impedance type,
such as typical haptic devices,
are backdrivable with low fric-
tion and inertia, and have force-
source actuators. An example of
an impedence-type robot familiar
to many is the PHANToM® from
SensAble Technologies, Inc. [32].
Robots of the admittance type,
such as typical industrial robots,
are modeled as being nonback-
drivable with velocity-source actu-
ators. This is due to either large
inertia and joint friction from gear
reduction in electric-motor sys-
tems, or valves and incompressible
fluid in hydraulic systems. The ve-
locity is controlled with a high-
bandwidth low-level controller, and
is assumed to be independent of
applied external forces. This model
loses validity when the admittance-
type robot interacts with a very
stiff environment.

Figure 2(a) shows the Johns
Hopkins University Steady-Hand
Robot [33], an admittance-type co-
operative manipulator designed for
microsurgical procedures. Figure
2(b) shows the da Vinci® Surgical
System (Intuitive Surgical, Inc.)
[12,13], an impedance-type telema-
nipulator designed for minimally
invasive surgical procedures. The
virtual fixtures created and stud-
ied in our lab are designed explic-
itly for systems such as these.

(b)

Fig. 2. (a) The Johns Hopkins Univer-
sity Steady-Hand Robot [33]. (b) The da
Vinci® Surgical System [12, 13] (image
used with the permission of Intuitive Sur-
gical, Inc.).

2 Prior Work on Virtual Fixtures

“Virtual fixtures” [1,17,26-29] (also appearing under the name of “synthetic
fixtures” [31], “virtual mechanisms” [15,24], “virtual tools” [14], “virtual paths
and surfaces” [25], and “haptically augmented teleoperation” [34]) have been
applied to robotic manipulators using a variety of methods, though they can
generally be categorized as either guidance virtual firtures or forbidden-region
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Fig. 3. (a) Guidance virtual fixtures assist in guiding the robot along desired paths.
{b) Forbidden-region virtual fixtures help keep the robot out of forbidden regions.

virtual firtures. As their name implies, guidance virtual fixtures (GVFs) help
keep the manipulator on desired paths or surfaces. Alternatively, forbidden-
region virtual fixtures (FRVFs) [28] help keep the manipulator out of forbidden
regions of the workspace. These virtual fixture types are illustrated in Fig. 3.

The majority of prior work on virtual fixtures has been applied to tele-
manipulation. Rosenberg [29] implemented FRVFs as impedance surfaces on
the master device to assist in peg-in-hole tasks. Joly et al. [15] introduced
a proxy-based [36] GVF method where the proxy is constrained to move on
the virtual fixture, and the master and slave both servo to the proxy position
and affect its movement along the virtual fixture. Micaelli et al. [24] extended
this method to allow for multiple proxies, each on its own virtual fixture and
with its own dynamics. Itoh et al. [14] developed a task-assistance tool that
connects admittance-type robots to virtual fixtures with impedance control
methods. Park et al. [26] implemented FREVs on the remote slave by reject-
ing master commands into the forbidden region. In their method, the slave
manipulator servos to a proxy, and the proxy follows the master when outside
the FRVF, but will not follow the master into the forbidden region. Turro et
al. [34] implemented GVFs on a system with an impedance-type master and
admittance-type slave. The master is bound to a proxy, which is constrained
to move on the virtual fixture, and the slave then tracks either the master
or the proxy, depending on the desired level of user control. Payandeh and
Stanisic [28] implemented virtual fixtures on both the master and slave manip-
ulators, using a variety of geometries, to help guide the remote manipulator in
a predetermined task. Kuang et al. [17] then applied this research to difficult
assembly tasks. The virtual fixtures above were implemented with penalty-
based or potential-field methods. These are impedance-type virtual fixtures
that act in an active way, in that stored potential energy in the virtual fixture
may potentially be released in an undesirable fashion.

Virtual fixtures have also been implemented on passive cooperative manip-
ulation systems known as Cobots [25]. Park et al. [27] extended these methods
to telemanipulation systems where the master device is a Cobot, for assistance
in nuclear deactivation and decommissioning tasks. These virtual fixtures act
in a passive way in the sense that the virtual fixtures are only able to re-
strict, and not generate, motion. These so-called passive virtual fixtures work
much like methods developed for autonomous robots, such as “passive veloc-
ity field control” [21]. It is also possible to implement passive virtual fixtures
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using admittance-type systems. Since these nonbackdrivable robots move in
a highly-controlled fashion, one can passively restrict movement in any given
direction by simply not commanding any movement in that direction. This
type of virtual fixture has been implemented on the Johns Hopkins Univer-
sity Steady-Hand Robot [33] by Bettini et al. [7] and Li et al. [18]. In [18],
an optimization-based approach is used to construct motion constraints from
known task geometries and instantaneous robot kinematics that can be ap-
plied independent of the manipulator type (cooperative manipulation or tele-
manipulation, admittance or impedance type). Research on this type of virtual
fixture has also been recently been extended to admittance-type telemanipu-
lators by Aarno et al. [1].

Prior work on virtual fixtures has been largely ad hoc, with significant re-
liance on particular applications. Thus, in this paper, we attempt to unify the
past and present research in the field by considering the design, analysis, and
application of virtual fixtures to various system types. In Sections 3 and 4,
we discuss how guidance virtual fixtures and forbidden-region virtual fixtures,
respectively, can be used for task assistance in both cooperative manipulation
and telemanipulation. Then, in Section 5, we discuss in detail the issues in-
volved with safe and functional implementation of virtual fixtures. Finally, in
Section 6, we present a set of interesting topics for future work in this field of
research.

3 Guidance Virtual Fixtures

Guidance virtual fixtures (GVF's) assist the user in moving the robot manipu-
lator along desired paths or surfaces in the workspace. GVF's can be of either
the impedance or admittance type [6]. Impedance-type GVF's act as potential
fields, actively influencing the movement of the robotic manipulator. These
impedance methods can lead to unexpected and undesirable movements of
the manipulator, so we have chosen to focus on GVFs of the admittance type.

Admittance control typically takes the form v = K, f, where f is the user’s
applied force vector, K, is an admittance gain matrix, and v is the output
velocity vector. This control scheme is sometimes referred to as proportional-
velocity control. Admittance control has the desirable property that the veloc-
ity of the manipulator is proportional to the applied force, so the manipulator
does not move if the user does not apply a force. In addition, slow robot
movement is achieved with a soft touch. Admittance-type GVFs are very nat-
ural with admittance-type cooperative systems, but can also be implemented
on impedance-type telemanipulation systems with a novel Pseudo-admittance
control law [2,4].

3.1 GVFs for Cooperative Manipulation

In an admittance-type cooperative manipulation system, the robot motion is
proportional to the user’s applied force, which is measured by a force sensor.
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To create GVFs, an instantaneous preferred direction is defined based on the
position of the robot relative to the desired path or surface. The applied force
is then decomposed into components in the preferred direction and in other,
non-preferred directions. By eliminating the commanded motion due to the
applied force in the non-preferred directions, we create a passive guidance
along the preferred direction. Implementing GVFs in this fashion essentially
makes the admittance gain matrix K, both state and input dependent. Details
of this GVF method can be found in [7].

Varying the response to the non-preferred force component creates differ-
ent levels of guidance. Hard guidance refers to GVFs where none or almost
none of the non-preferred force component is permitted, leaving the user with
no or little freedom to deviate from the preferred path. Alternatively, soft
GVFs give the user the freedom to move away from the path by allowing
some motion in the non-preferred directions. We conducted an experiment
with the JHU Steady-Hand Robot to evaluate the effect of GVF admittance
on user performance, including accuracy and execution time [23]. Three tasks
(Path Following, Off-path Targeting, and Avoidance) were selected to repre-
sent a broader class of motions that can occur in a real task execution. GVFs
were used with varying admittance to keep the user on the preferred path, in
this case a sine curve on a horizontal plane.

Figure 4 shows the robot trajectories during the Off-path Targeting and
Avoidance tasks, with three levels of guidance. In the Targeting task, the
users were instructed to reach the target located on the perimeter of the circle
outlined in gray. In the Avoidance task, the users avoided the area by trying
to follow along the circle perimeter. Robot trajectories in the Path Following
task were similar to the portions seen outside the circular area in the two off-
path tasks shown in Fig. 4. In the Path Following task, the users performed

Tasks Hard Guidance Soft Guidance No Guidance

Fig. 4. Robot trajectories in the Targeting task (top) and the Avoidance task
(bottom) with JHU Steady-Hand Robot.
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the task more accurately (with statistical significance) with GVFs, though
not significantly faster. In the off-path tasks, the users had to fight against
the GVF guidance to complete the desired motion. This represents situations
where the virtual fixture is incorrectly placed and the user wishes to override
the guidance. As expected, users take significantly longer to perform off-path
tasks with increased guidance. Error also increases slightly. The experiment
shows that GVFs can improve both time and accuracy simultaneously, while
still allowing some independent user motion. More detailed descriptions of
the experiment and the results can be found in [23]. GVF implementation for
tasks in 3-D were also explored in Dewan et al. [9], where the tool was guided
along a user-defined desired surface. In this experiment, stereo cameras were
used to reconstruct the workspace and track the tool position and orientation.

3.2 GVFs for Telemanipulation

In telemanipulation, good position correspondence between the master and
slave robots is desirable to create a sense of telepresence for the user. How-
ever, it is actually the slave manipulator that we wish to guide using GVFs,
and master movements in its corresponding workspace are somewhat less im-
portant.

The GVFs developed for admittance-type cooperative manipulators could
trivially be extended to telemanipulation systems where both the master and
slave are of the admittance type. However, unlike cooperative manipulation
systems, telemanipulation systems are typically designed as impedance-type
systems (that is, the master is an impedance-type haptic device, while the
slave manipulator can be of either the impedance or admittance type). For
these systems, we do not control the velocity of the system directly (due to
force-source actuation), so we cannot implement admittance control directly.
We have developed a novel telemanipulation control algorithm called Pseudo-
admittance control [2,4] that mimics admittance control on impedance-type
telemanipulators, and extends the GVFs described in Section 3.1 and [7] to
telemanipulation. Pseudo-admittance makes use of a proxy [36], which exists
only in software, that can be commanded to move under admittance control.

Under Pseudo-admittance control, the master servos to the slave position,
while the slave servos to the proxy position, as illustrated in Fig. 5. The
proxy moves under admittance control, using the force of the master’s servo
controller as its input force. GVFs are then implemented by attenuating the
commanded velocity in non-preferred directions, as described in Section 3.1.
Figure 5 shows the experimental results from two PHANToM® robots [32]
configured for Pseudo-admittance control. Using different levels of guidance
(i.e., modifying the calculation of the preferred direction and the attenuation
of velocities in the non-preferred directions), the slave is guided to a preferred
plane in the workspace, but the user retains ultimate control to move the slave
anywhere in the workspace.
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Master Slave

R S . Fig. 5. Guidance virtual
fixtures  implemented on
two PHANToM®  robots
{top) configured for Pseudo-
admittance Bilateral Telema-
nipulation [2, 4]. The robots
are shown superimposed on
the same workspace to aid in
visualization.  Experimental
data {bottom), with master
(—) and proxy (---) trajecto-
ries, are shown for two levels
of guidance. The slave servos
to the proxy. The GVF is on
the plane x = 0. The user
applies a force approximately
in the positive y direction,
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4 Forbidden-Region Virtual Fixtures

Forbidden-region virtual fixtures (FRVFSs) prevent the robot manipulator from
entering into forbidden regions of the workspace. They have an on/off nature,
such that they have no effect on the robot when it is outside of the forbidden
region. As with GVFs, FRVFs can be of either the impedance or admit-
tance type. Impedance-type FRVFs take the form of “virtual walls,” which
are commonly employed and studied for haptic virtual environments, and are
typically implemented as simple spring-damper surfaces. These are penalty-
based methods, so the force generated by the FRVF is proportional to the
manipulator’s penetration of the FRVF (i.e., some penetration is necessary to
engage the FRVF). Admittance-type FRVFs are simply implemented by not
commanding any manipulator motion into the forbidden region.

4.1 FRVFs for Cooperative Manipulation

FRVFs can be viewed as a subclass of GVF for an admittance-controlled co-
operative manipulator. The FRVFs are trivial to implement, by simply elim-
inating any commanded motion into the forbidden region. Inherently, the
forbidden region is the non-preferred direction defined in the GVFs.
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Examples of FRVFs in cooperative systems are highlighted in [9] and [20].
In Dewan et al. [9], the virtual fixtures constrained the user to move along
the shortest path between the current tool position and a predefined target
on the surface. The robot admittance gain was turned to zero once the target
was reached. Li and Taylor [20] combined both GVFs and FRVFs in creating
anatomy-based motion constraints for a path-following task in a constrained
workspace. The algorithm uses the robot kinematics, the user’s force input,
and a 3-D geometric model of the workspace to generate virtual fixtures and
an optimal set of joint displacements to guide the tool tip along a path while
preventing the tool shaft from entering into forbidden regions.

The user may want the option to intentionally move past the FRVF if it
is deemed necessary. The GVF's implemented in Section 3.1 left the user with
ultimate control to move the manipulator away from the desired path, but it
is not clear if it makes sense to create admittance-type FRVFs that allow some
motion into the forbidden region. In one sense, an admittance-type FRVF that
acts in this way is not a FRVF at all. It may be possible though, through state-
and-input-dependent adaptation of the admittance-gain matrix, to implement
FRVFs that allow some penetration into the forbidden region while retaining
their functional purpose.

4.2 FRVFs for Telemanipulation

As with the GVF's of Section 3.2, in telemanipulation we are only really con-
cerned with penetration of the slave manipulator into the forbidden region.
Penetration of the master device into the corresponding region of its workspace
is somewhat inconsequential.

Impedance-type FRVFs can be implemented on telemanipulators by over-
laying a penalty-based virtual wall on the existing telemanipulation controller.
It is possible to implement the virtual wall on either the master or the slave
side (or both simultaneously). Both have the effect of reducing movement of
the slave into the forbidden region. However, each presents a different haptic
experience for the user, depending on the underlying telemanipulation con-
troller, and each provides different levels of disturbance rejection, depending
on the location of the disturbance. In [2], we found that slave-side FRVFs are
most effective at rejecting disturbances on the slave, while maintaining a sense
of telepresence for the user (i.e., minimizing position error between the master
and the slave). However, we found that master-side FRVFs are most effective
at rejecting (un)intentional user commands into the forbidden region, while
maintaining a sense of telepresence. The choice of FRVF architecture is likely
to be task dependent.

It is also possible to implement admittance-type FRVF's through the use
of a proxy. If the slave manipulator servos to a proxy, rather than directly
servoing to the master, then we can influence slave movement in forbidden
regions by adapting the dynamic properties of the proxy. When the master is
not interacting with the FRVF, the proxy is made to follow the master exactly.
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When the master moves beyond the FRVF, we attenuate the movement of the
proxy past the FRVF (including removing the penetration completely).

Both types of FRVF act by attenuating slave movement into the forbidden
region, while allowing the user to move the slave into the forbidden region if
desired. The amount of attenuation, and consequently user control, is governed
by system gains. Admittance-type FRVFs implemented on admittance-type
slaves can be made to be infinitely stiff. The stiffness of an admittance-type
FRVF with an impedance-type slave is limited by the stability of the virtual
coupling between the slave and the proxy [6]; however, this FRVF can still be
made to appear infinitely stiff to the user commands. The performance of an
impedance-type FRVF is also ultimately limited by stability constraints. The
stability of impedance-type FRVFs, under stability and passivity considera-
tions, is explored in detail in [2].

5 Virtual Fixture Design Considerations

Prior work in virtual fixtures has focused primarily on application-specific
virtual-fixture geometries and user performance of specific tasks. This section
highlights a number of additional design considerations that are important for
progress in this field; researchers have only recently begun to examine these
issues.

One fundamental design problem is to determine the best type of un-
derlying system for a virtual-fixture application. Cooperative manipulation
systems are intuitive to use, due to the natural hand-eye coordination that
comes from directly manipulating the tool. The sense of telepresence felt with
a telemanipulator is limited by the position error in the system, as well as the
quality of the visual and haptic feedback provided to the user. Admittance-
type cooperative systems also have desirable “steady-hand” properties; the
user’s hand is literally steadied by holding onto the rigid, slow-moving robot.
This behavior must be mimicked on an impedance-type telemanipulator; the
slave manipulator can be controlled to move slowly, but a backdrivable master
device is not as capable of steadying the hand of the user. However, telemanip-
ulators provide not only the ability to manipulate distant environments, but
also the ability to provide scaling in both position and force. Force scaling is
also possible with cooperative manipulation [30], although an additional force
sensor or accurate environmental model is needed to obtain the contact force.
It is important, in general, to consider whether force sensing is necessary and
practical in terms of size, cost, and environment compatibility.

System performance also depends on the accuracy of the task geometry
definition. For example, a computer vision system can be used to reconstruct
the workspace and define the geometry of the virtual fixtures. The accuracy
of the virtual fixtures defined depends on the resolution of the vision system,
calibrations, and the accuracy of the tracking algorithm, which can be sensitive
to changing light conditions and occlusions. The designer of a virtual fixture
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Fig. 6. I-DOF experimental systems. (a) Admittance-type cooperative manipulator
for the study of the effect of link compliance on virtual-fixture performance. (b)
Impedance-type telemanipulator for the study of FRVF stability.

must be able to predict the sensitivity of system performance to inaccuracies
in virtual-fixture geometry definition and develop mechanisms to correct for
errors. It may be necessary to build in enough user control to compensate for
inaccuracies in the virtual-fixture geometry, as was discussed in Section 3.1.
In cooperative systems, unmodeled robot dynamics, such as joint and
link compliance, can introduce significant tool positioning error, especially
for micro-scale tasks. Joint and link flexibility add unactuated degrees of free-
dom to the robot. A human actively and directly manipulating the tool ex-
acerbates the difficulty of error correction. A hand dynamic model could be
added to better predict the system response near a virtual fixture, and adjust
the controller appropriately to compensate for the error. This issue is heing
investigated on a I-DOF admittance-type system (Fig. 6(a)) where the FRVF
was implemented as a virtual wall. Joint compliance was simulated with a
physical spring added between the tool and the stage. Two methods were
proposed to create a dynamic virtual fixture, with its location determined
based on the system dynamics, that prevents the user from entering the true
forbidden region. The experimental results shown in Fig. 7 indicate that ac-
counting for both the dynamic properties of the hand and the effects of robot
momentum are effective in preventing FRVF penetration. The description of
the methods and the complete experimental results can be found in [22].
Another major concern in the design of virtual fixtures for impedance-
type telemanipulators is stability. Because of their backdrivable force-source
actuators, these systems are prone to instability if the control-system gains
are too high. This makes stable and effective virtual fixtures conflicting goals.
We have investigated the stability of FRVFs, considering effects of friction,
sampling, and quantization, using both equilibrium stability analysis [2, 5]
and passivity analysis [3]. We used a 1-DOF system, shown in Fig. 6(b),
for this purpose. It is possible to design a FRVF to be passive, with the
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Fig. 7. Experimental results indicating that the effects of robot compliance on
FRVF functionality can be mitigated through dynamic modeling of the robot and
the human hand [22]. Mean values of the penetration into the forbidden region
and standard deviation bars collected from eight users are shown. Negative error
indicates no penetration into the forbidden region.

additional assumption of human passivity being sufficient for system stability.
However, as shown in Fig. 8, we found that including an explicit model of
potential human users can lead to stability predictions that are significantly
less conservative than simply requiring passivity of the FRVF. The description
of the methods and the complete experimental results can be found in [2,5].
It is tempting to model the human user as an exogenous input to the
system, for the purpose of stability analysis, but in general, the dynamics of
the human user are part of the closed-loop feedback system. However, it is
also reasonable to assume that for certain slow-moving systems, the human
user is essentially unaffected by the movement of the system. An initial study
in our lab shows that, for an admittance-type cooperative manipulator, it is
the velocity of the robot, and not the admittance gain, that directly affects
human force control precision [35]. Thus, by restricting the velocity of the
manipulator, it may be possible to consider the human user as an exogenous
input, greatly simplifying system stability analysis. More research is needed
to better understand the role of the human user in the total system response.
As illustrated above, it is not always obvious when dynamic modeling of
the human user is necessary or desirable in virtual-fixture design and anal-
ysis. Most of the prior work on virtual fixtures has excluded modeling of
the human user. In addition to mechanical modeling, experimental results of
GVFs in cooperative systems suggest that human intent and psychophysics
may also affect GVF performance. Selecting an appropriate level of guidance
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Fig. 8. Experimental stability limits on master FRVF stiffness on a unilateral tele-
manipulator, for large- and small-handed malicious users, compared to predicted
stability limits based on models of the “worst-case” user [2,5]. Passivity of the
FRVF based on [8] is also shown. For each data point, the users found the stiffest
virtual fixture for which instability could not be experimentally generated.

is required for optimal performance, and the selection is task dependent. Hav-
ing a high level of guidance increases error and time for tasks that require
off-path motions, though it significantly improves both time and error during
path-following. An optimal GVF selection was explored in [23]. Artificial in-
telligence can also be added to adjust the GVF based on the user’s intent. For
example, Li and Okamura [19] and used Hidden Markov Models to recognize
user motions and provide appropriate GVF assistance in a combined curve-
following and object-avoidance task in cooperative manipulation. Aarno et
al. [1] took a similar approach with telemanipulation. Kragic et al. [16] broke
a complex microsurgical task into subtasks, each of which benefited from dif-
ferent types of virtual-fixture assistance.

6 Summary and Future Work

This paper described methods for design and implementation of haptic vir-
tual fixtures on a number of different underlying platforms. Through analysis
and experiments, we show that virtual fixtures can improve human-machine
performance, while allowing the user to maintain ultimate control over the
task execution.
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There are a number of critical questions that provide important topics
for future research in this field. For example, what is the best virtual-fixture
geometry for a given task? How does the human user interpret the combina-
tion of haptic cues coming from the manipulated environment and the virtual
fixture? Does this lead to haptic confusion, affecting the user’s sense of im-
mersion in the task? If the virtual-fixture geometry and/or gains vary in time,
not only could it lead to confusion on the part of the user, but it also com-
plicates stability analysis. Can virtual fixtures be used as training devices for
complicated tasks, and then eventually be removed, much like training wheels
on a bicycle [10,11]? To what extent does the human need to be included in
the analysis of these systems? It is desirable to say as much as possible about
the robotic system itself, without needing to consider human dynamics. Is it
possible to apply what we have learned thus far to the design of force virtual
fixtures, which assist the user in applying the proper force to the manipulated
environment?

It is important that we generalize the research in this field across sys-
tems and tasks, so that knowledge gained in individual research efforts can
advance the field as a whole. Virtual fixtures will no doubt facilitate robot-
assisted tasks that were previously impossible, but this nascent field is still rich
with interesting research topics that must be explored before human-machine
systems can capitalize on the full benefit of virtual fixtures.
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When we discuss autonomous robots, we think of robots that move around,
interacting with people and making changes in the world. The problem of
actually choosing motor commands to achieve high level goals — such as
moving to a desired destination or answering a query from a human — typi-
cally involves planning. Planning is of course one of the central questions of
artificial intelligence, and the planning field has moved a long way from the
early days when planning meant searching for a sequence of abstract actions
that satisfied some symbolic predicate. Robots can now learn their own repre-
sentations through statistical inference procedures, they can now reason using
different representations and they can reason in worlds where action can have
stochastic outcomes.

However, despite the successes of robots that use machine learning and
statistical inference in such different areas as mapping, speech recognition,
computer vision, etc., there remain open questions to be addressed before we
will see ubiquitous, useful, mobile robots, and some of the most interesting
problems are in the planning domain. Consider a mobile robot deployed in
some populated environment such as the home. A human operator typically
drives the robot around in order to collect sensor data. This data is then
used to build a “good” map that is largely static. The robot planner then
computes good paths through this map, assuming that the map is correct
and complete. The planning system rarely has the ability to reason about the
robot’s position within the map and how different plans may lead to better
or worse localization. The planner almost never has ability to reason about
the quality of the map itself and plan to gather more data in order to get a
better map. In contrast, a planner that can reason about how much it knows
about the world, and can plan to learn more when necessary, is likely to be a
much more robust and general system.

What is becoming clear as robots become increasingly sophisticated is that
there are three key issues in planning for mobile robots. Firstly, robots must
be able to reason about uncertainty at all levels, both in the current state but
also in the current representation. Secondly, robots must be able to plan in
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extremely high dimensional spaces. Thirdly, robots must be able to plan in
populated and dynamic spaces. Each of these three issues is addressed by the
papers in the planning section of ISRR; these papers shed new light on these
problems and provides new tools for autonomous robots.

Planning with uncertainty Pineau & Gordon’s paper describes the
PEMA algorithm for solving large Partially Observable Markov Decision Pro-
cesses (POMDPs), in which planning decisions are made with respect to the
full probability distribution over the state space. POMDPs in particular have
been considered computationally intractable for any real world problems, but
this paper demonstrates that good approximation techniques can be used to
generate plans that lead to overall more robust performance for robots in
uncertain worlds. Additionally, the PEMA algorithm addresses a fairly im-
portant problem of how a planning algorithm should reason about its model.
PEMA uses sampled beliefs, or probability distributions, in the planning pro-
cess; PEMA demonstrates an approach to choosing these samples intelligently,
improving the overall plan.

Planning in high-dimensional spaces In order to find plans in high-
dimensional problems, conventional discretization techniques have been su-
perseded by techniques that sample configurations from the world and then
retain only those samples that are useful configurations. Hsu, Latombe and
Kurniawati address some important questions at the heart of stochastic sam-
pling planners, in particular why these techniques work well, and they describe
theoretically why some variants of the sampling techniques have not repre-
sented improvements. The critical issue is to recognize that the the closer the
sampling measure is to the desired plan, the better the performance. Most
sampling techniques are a long way from achieving this goal, but this paper
points the way to developing even more efficient planners.

Planning in populated worlds Finally, Alami et al.’s presentation on
planning in human environments highlighted the need to start building human
models into autonomous systems. For example, being able to deal with unpre-
dictable people safely is a critical issue, and one of the results in this paper
describes a motion planning algorithm with the objective of safety around
people. Additionally, knowing how to behave reasonably around people in
highly ambiguous situations is also essential.

It is worth pointing out that all three of these topics are highly related.
Planning under uncertainty inevitably leads to planning in high-dimensional
information spaces. Planning around people inevitably requires planning un-
der uncertainty. These ideas will be essential for furthering the field of au-
tonomous robots.
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POMDPs provide a rich framework for planning and control in partially ob-
servable domains. Recent new algorithms have greatly improved the scalability
of POMDPs, to the point where they can be used in robot applications. In
this paper, we describe how approximate POMDP solving can be further im-
proved by the use of a new theoretically-motivated algorithm for selecting
salient information states. We present the algorithm, called PEMA, demon-
strate competitive performance on a range of navigation tasks, and show how
this approach is robust to mismatches between the robot’s physical environ-
ment and the model used for planning.

1 Introduction

The Partially Observable Markov Decision Process (POMDP) has long been
recognized as a rich framework for real-world planning and control problems,
especially in robotics. However exact solutions are typically intractable for all
but the smallest problems. The main obstacle is that POMDPs assume that
world states are not directly observable, therefore plans are expressed over
information states. The space of information states is the space of all beliefs a
system might have about the world state. Information states are easy to calcu-
late from sensor measurements, but planning over them is generally considered
intractable, since the number of information states grows exponentially with
planning horizon.

Recent point-based techniques for approximating POMDP solutions have
proven effective for scaling-up planning in partially observable domains [5, 10,
11]. These reduce computation by optimizing a value function over a small
subset of information states (or beliefs). Often, the quality of the solution de-
pends on which beliefs were selected, but most techniques use ad-hoc methods
for selecting beliefs.

In this paper, we describe a new version of the point-based value ap-
proximation which features a theoretically-motivated approach to belief point
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selection. The main insight is to select points which minimize a bound on the
error of the value approximation. This allows us to solve large problems with
fewer points than previous algorithms, which leads to faster planning times.
Furthermore because a reachability analysis is used to select candidate points,
we restrict the search to relevant dimensions of the belief, thereby alleviating
the curse of dimensionality.

The new algorithm is key to the successful control of an indoor mobile ser-
vice robot, designed to seek and assist the elderly in residential environments.
The experiments we present show the robustness of the approach to a variety
of challenging factors, including limited sensing, sensor noise, and inaccurate
models.

2 Background

The Partially Observable Markov Decision Process (POMDP) provides a gen-
eral framework for acting optimally in partially observable domains. It is well-
suited to a great number of robotics problems where decision-making must
be robust to sensor noise, stochastic controls, and poor models. This section

first establishes the basic terminology and essential concepts pertaining to
POMDPs.

2.1 Basic POMDP Terminology

We assume the standard formulation, whereby a POMDP is defined by the
n-tuple: {S, A, Z,bg, T, O, R}. The first three components, S A and Z denote
finite, discrete sets, where S is the set of states, A is the set of actions, and Z
is the set of observations. In general, it is assumed that the state at a given
time t, s¢, is not observable, but can be partially disambiguated through the
observation z;. The next three quantities, by, T, and O define the probabilistic
world model that underlies the POMDP: by describes the probability that
the domain is in each state at time t = 0; T'(s, a, s’) describes the state-to-
state transition probabilities (e.g. robot motion model); O(s,a, z) describes
the observation probability distribution (e.g. sensor model). And R(s,a) :
S x A — Ris a (bounded) reward function quantifying the utility of each
action for each state.

2.2 Belief Computation

POMDPs assume that the state s; is not directly observable, but instead the

agent perceives observations {z1, ..., z;} which convey information about the
state. From these, the agent can compute a belief, or probability distribution
over possible world states: b,(s) = Pr(s; = s | z¢,0¢-1, 2t—1, .- ., ag). Because

POMDPs are instances of Markov processes, the belief b; at time ¢ can be
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calculated recursively, using only the belief one time step earlier, b; 1, along
with the most recent action a;_; and observation z;:

> 0 ar-1,2) T(s,01-1,8") b1 ()
S/

PT(Zt|bt—1aat—1)-

bt(S) :T(bt,l,at,l,zt) = (1)
This is equivalent to the Bayes filter, and in robotics, its continuous generaliza-
tion forms the basis of the well-known Kalman filter. In many large robotics
applications, tracking the belief can he computationally challenging. How-
ever in POMDPs, the bigger challenge is the generation of an action-selection
policy. We assume throughout this paper that the belief can be computed
accurately, and focus on the problem of finding good policies.

2.3 Policy Computation

The POMDP framework’s primary purpose is to optimize an action-selection
policy, of the form: m(b) — a, where b is a belief distribution and a is the
action chosen by the policy m. We say that a policy n*(b;) is optimal when
the expected future discounted reward is maximized:

T

E ,ytft() Ty

t=to
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Computing an optimal policy over all possible beliefs can be challenging [2],
and so many recent POMDP approximations have been proposed which gain
computational advantage by applying value updates at a few specific belief
points [7, 5, 10, 11]. These techniques differ in how they select the belief
points, but all use the same procedure for updating the value over a fixed set
of points. The key to updating a value function over a fixed set of beliefs,
B = {bg,b1,...,by}, is in realizing that the value function contains at most
one a-vector for each belief point, thus yielding a fixed-size solution set: I'; =
{ao,01,..., 04}

The standard procedure for point-based value update is the following. First
we generate intermediate sets 7" and I7"%,Va € A,Vz € Z:

"« {a®*}, where a®*(s) = R(s,a) (3)

I e (o oy € i), where 08 (s) =7 Y T(s,0,)0(s", 0, 2)ou(s).
s’eS

Next, we take the expectation over observations and construct [ tb, Vb € B:

;}zxz a(s)b(s). (4)

seS

I'? — {a®® | a € A}, where o®® = '™ + E argm
ez Q€LY
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Finally, we find the best action for each belief point:

I, « {a® | b€ B}, where o® = argmax ¥ a(s)b(s). (5)
acry s
Because the size of the solution set I} is constant, the point-based value
update can be computed in polynomial time. And while these operations
preserve only the best a-vector at each belief point b € B, an estimate of the
value function at any belief in the simplex (including b ¢ B) can be extracted
from the set I}:

Vi(b) = max » a(s)b(s). (6)

2.4 Error Bound on Point-Based Value Updates

The point-based value update operation is an integral part of many approxi-
mate POMDP solvers. As shown in [5], given a fixed belief set B and planning
horizon ¢, the error over multiple value updates is bounded by?:

(Rmax - Rmin) maXpcA mianB ||b - bl”l'
(1—=7)?

where 0’ € A is the point where the point-based update makes its worst
error in value update, and b € B is the closest (1-norm) sampled belief to &'
Now let « be the vector that is maximal at b, and o be the vector that would
be maximal at &’. Then, we can show equivalently that

IV = Villoo <

e)y<a b —a-t
<(a'—a)-(b'—b)
(R — )6, — ) b > by
<3, v
= Z’L { (Ifmin _ Oéz)(b; — bl) b/ < bi'

-

3 Error-Minimization Point Selection

Many recent point-based value approximations, which show good empirical
success, use poorly informed heuristics to select belief points. We now describe
a new algorithm for selecting provably good belief points. The algorithm di-
rectly uses the error bound above to pick those reachable beliefs b € A which
most reduce the error bound. Figure la shows the tree of reachable beliefs,
starting with the initial belief (top node). Building the tree (to a finite depth)
is easily done by recursively using Equation 1.

* The error bound proven in [5] depends on the sampling density over the belief
simplex A. But when the initial belief by is known, it is not necessary to sample
all of A densely. Instead, we can sample the set of reachable beliefs A densely;
the error bound holds on A.
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b b
A A

(a)

(b)

Fig. 1. (a) The set of reachable beliefs. Each node corresponds to a specific be-
lief, and increasing depth corresponds to an increasing plan horizon.(b) Pearl the
Nursebot interacting with patients in a nursing facility.

Applying point-based value updates to all reachable beliefs would guar-
antee optimal performance, but at the expense of computational tractability:
a planning problem of horizon ¢ has O(|A||Z|!) reachable beliefs. So we select
from our reachable beliefs those most likely to minimize the error in our value
function. Given the belief tree in Figure la, we consider three sets of nodes.
Set 1 includes all points already in B (in this example by and by, ). Set
2 contains the set of candidates from which we will select new points to be
added to B. We call this set the fringe (denoted B). Set 3 contains all other
reachable beliefs.*

Now we need to decide which belief b should be removed from the fringe B
and added to the set of active points B. Every new point added to B should
improve our estimate of the value function as much as possible. To find the
point most likely to do this, we consider the theoretical analysis of Section 2.4.
Consider b € B, a belief point candidate, and b € B, some belief which we
have already selected. While one could simply pick the candidate b’ € B
with the largest error bound, e(d’), this would go against the most useful
insight from earlier work on point-based approaches: namely that reachability
considerations are important. So we need to factor in the probability of each
candidate belief point occurring. We first note that the error bound at any
given belief point b in the tree can be evaluated from that of its immediate
descendants:

g(by = max » O(b,a,z) e(r(b,a,z)) (7)

acA
z€Z

* In Figure la, the fringe (B) is restricted to the immediate descendants of the
points in B. The rest of the paper proceeds on this assumption, but we could
assume a deeper fringe.
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where 7(b, a, z) is the belief update equation (Eqn 1), and e(7(b, a, 2)) is eval-
uated as in Section 2.4 (unless 7(b,a,2) € B, in which case €(7(b,a, z)) = 0).
So we use Equation 7 to find the existing point b € B with the largest error
bound, then pick as a new point its descendant 7(b, a, z) which has the largest
impact on &(b). Points on the fringe are picked one a time, allowing us to look
deep in the tree; in the experiments presented below, beliefs at 40+ levels are
in fact selected.

This concludes the presentation of our new error-minimization point se-
lection technique. In practice, the addition of new points is always interleaved
with the point-based value updates described in Section 2.3 to form a full
POMDP solution. The complete approach, called PEMA (Point-based Error
Minimization Algorithm), is now evaluated empirically in a series of robot
control experiments.

4 Empirical Evaluation

We begin our empirical evaluation with a few well-studied maze navigation
domains. Most have been used strictly in simulation, but feature robot-like
assumptions, such as non-deterministic motion and noisy sensors. The Tiger-
grid, Hallway and Hallway2 problems are described in [3]. The Tag domain
was introduced in [5]. The goal of these preliminary experiments is simply to
compare the performance of PEMA with earlier POMDP approximations on
standard problems. More extensive robot navigation domains are presented
in the following section.

Error estimates. A first set of results on PEMA'’s performance are shown
in Figure 2. For each problem domain, we first plot PEMA’s reward perfor-
mance as a function of the number of belief points (top graphs), and then plot
the error estimate of each point selected according to the order in which points
were picked (bottom graphs). As shown in these, PEMA is able to solve all
four problems with relatively few beliefs (sometimes fewer than the number
of states).

Considering the error bound graphs, we see that overall there seems to
be reasonably good correspondence between an improvement in performance,
and a decrease in the error estimates. We can conclude from these plots that
the error bound used by PEMA is quite informative in guiding exploration of
the belief simplex.®

5 While the decrease in error over a fixed point {e.g. bo) is monotonic, the decrease in
error over each new points (in the order it was added) is not necessarily monotonic,
which explains the large jumps in the bottom graphs. These jumps suggest that
PEMA could be improved by maintaining a deeper fringe of candidate belief
points, in which case the time spent selecting points would have to be carefully
balanced with the time spent planning. Currently, we spend less than 1% of
computation time selecting belief points; the rest is spent estimating the value
function.
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Fig. 2. Policy performance (top row) and estimate of the bound on the error (bottom
row) for selected belief points

Comparative analysis. While the results outlined above show that
PEMA is able to handle a wide spectrum of large-scale POMDP domains,
it is also useful to compare its performance to that of alternative approaches,
on the same set of problems. Figure 3 compares both reward performance and
policy size® (# of nodes in controller) for a few recent POMDP algorithms,
on the three larger problems (Hallway, Hallway2, and Tag). The algorithms
included in this comparison were selected simply based on the availability of
published results for this set of problems.

As is often the case, these results show that there is not a single algorithm
that is best for solving all problems, so it is difficult to draw broad generaliza-
tions. But we can point out a few salient effects. First, the baseline QMDP [3]
approximation is clearly outclassed by other more sophisticated methods. We
also observe that some of the algorithms achieve sub-par performance in terms
of expected reward: BPI [9] (on Hallway2 and Tag)”, PBVI [5] (on Tag) and
BBSLS [1] (on Tag). While each of these is theoretically able to reach opti-
mal performance, they would require larger controllers (and therefore longer
computation time) to do so.

The remaining algorithms—HSVTI [10], Perseus [11], and PEMA—offer
comparable performance. HSVI offers good control performance on the full
range of tasks, but requires bigger controllers. HSVI and PEMA share many

5 The results were computed on different platforms, so time comparisons are diffi-
cult. The size of the final policy is often a useful indicator of computation time,
but should be considered with care.

" Better results for BPT have since been published in [8].
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Fig. 3. Results for standard POMDP domains. Top row: Hallway problem. Middle
row: Hallway?2 problem. Bottom row: Tag problem.

similarities: both use an error bound to select belief points. HSVI’s upper-
bound is tighter than PEMA’s, but requires costly LP solutions. PEMA solves
problems with fewer belief points, we believe this is because it updates all belief
points more frequently, thus generalizing better in poorly explored areas of
the belief simplex.

Between Perseus and PEMA, the trade-offs are less clear: the planning
time, controller size and performance quality are quite comparable. These
two approaches in fact share many similarities. Perseus uses the same point-
based backups as in PEMA (see Section 2.3), but it differs in both how the
set of belief points is selected (Perseus uses random exploration traces), and
the order in which it updates the value at those points (also randomized). The
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effect of these differences is hard to narrow. We did experiment informally with
Perseus-type random updates within PEMA, but this did not yield significant
speed-up. It is likely that randomizing value updates is not as beneficial when
carefully picking a small set of essential points. We speculate that PEMA will
scale better to higher dimensions because of the selective nature of the belief
sampling. This is the subject of ongoing work.

5 Robotic Applications

Much of the algorithmic development described in this paper is motivated
by our need for high-quality robust planning for interactive mobile robots. In
particular, we are concerned with the problem of controlling a nursing assis-
tant robot. This is an important technical challenge arising from the Nursebot
project [6]. This project aims to develop personalized robotic technology that
can improve the level of personal care and services for elderly individuals. The
robot Pearl (Fig. 1b) is the main experimental platform used in this project.
It is equipped with standard indoor navigation abilities and is programmed
with the CARMEN toolkit [4]. An important task for this robot is to provide
timely cognitive reminders (e. g. medications to take, appointments to attend,
etc.) to its target population. It is therefore crucial that the robot be able to
find the person whenever it is time to issue a reminder. We model this task as
a POMDP, and use PEMA to optimize a strategy with which the robot can
robustly find the person, even under very weak assumptions over the person’s
initial location and ease of mobility.

We begin by considering the environment in which the robot operates.
Figure 5 shows a 2D robot-generated map of its physical environment. The
goal is for the robot to navigate in this environment until it finds the patient
and then deliver the appropriate reminder. To successfully find the patient,
the robot needs to systematically explore the environment, while reasoning
about both its spatial coverage and the likely motion pattern of the person.

5.1 POMDP Modeling

To model this task as a POMDP, we assume a state space consisting of two fea-
tures: RobotPosition, and PersonPosition. Each feature is expressed through
a lixed discretization of the environment (roughly 25 cells for each feature, or
625 total states.) We assume the person and robot move [reely, constrained
only by walls and obstacles. The robot’s motion is deterministic (as a function
of the action={North, South, Fast, West}). A fifth action (DeliverMessage)
concludes the scenario if applied when the robot and person are in the same
location. We assume the person’s motion is stochastic, and in one of two
modes: (1) whenever the person is far from the robot, s/he moves according
to Brownian motion (i. e. in each cardinal direction with Pr = 0.1 or stays in
place), this corresponds to a random walk and is a conservative assumption
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regarding people’s motion; or (2) whenever the robot is within sight (< 4m),
the person tries to avoid the robot and moves away from it (with noise}, which
makes the task more challenging.

The observation function has two parts: what the robot senses about its
own position, and what it senses about the person’s position. First we assume
that the robot’s position is fully known; this is reasonable since planning is
done at a much coarser resolution (2m), than the typical localization precision
(10cm). When testing policies however, probabilistic localization is performed
by the CARMEN toolkit, and the robot’s belief incorporates any positional
uncertainty. For the person’s position, we assume that the robot perceives
nothing unless the person is within 2 meters. This is plausible given the robot’s
sensors. Even at short-range, there is a small probability (Pr = 0.01) that the
robot will miss the person.

The reward function is straightforward: B = —1 for any motion, R = 10
when the robot decides to DeliverMessage and is within range (<2m) of the
person, and R = —100 when the robot decides to DeliverMessage in the
person’s absence. The task terminates when the robot successfully delivers the
message. We assume a discount factor proportional to the map’s resolution
(v =0.98).

With these POMDP parameters, we can run PEMA to optimize the robot’s
control strategy. Given the complexity of POMDP planning we do assume that
PEMA will be used as an off-line algorithm to optimize the robot’s perfor-
mance prior to deployment. The results presented below describe the per-
formance of an optimized control policy when tested onboard the CARMEN
simulator.

5.2 Experimental Results

We first consider PEMA’s performance on this task, as a function of planning
time. As shown in Figure 4, PEMA is in fact able to solve the problem within
1800 seconds, using only 128 belief points. In comparison, an MDP-type ap-
proximation (in this case the QMDP technique [3]) proves to be inadequate
for a problem exhibiting such complex uncertainty over the person’s position.
Using PEMA, the patient was found in 100% of trials, compared to 35% for
QMDP.

Figure 5 shows PEMA’s policy through five snapshots from one run. The
policy is optimized for any start positions (for both the person and the robot);
the execution trace in Figure 5 is one of the longer ones since the robot searches
the entire environment before finding the person. In this scenario, the person
starts at the far end of the left corridor. The person’s location is not shown in
the figure since it is not observable by the robot. The figure instead shows the
belief over person positions, represented by a distribution of point samples
(grey dots). We see the robot starting at the far right end of the corridor
(Fig. 5a), moving towards the left until the room’s entrance (Fig. 5b), and
searching the entire room (Fig. 5¢). Once sufficiently certain that the person
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Fig. 4. Find-the patient domain - Performance results.

is not there, it exits the room (Fig. 5d), and moves towards the left until it
finally finds the person at the end of the corridor (Fig. 5e).

It is interesting to compare snapshots (b) and (d). The robot position in
both is practically identical. Yet in (b) the robot chooses to go up into the
room, whereas in {d) the robot chooses to move toward the left. This is a
direct result of planning over beliefs, rather than over states.

These results show that PEMA is able to handle realistic domains. In
particular, throughout these experiments, the robot simulator was in no way
constrained to behave as described in our POMDP model. For example the
robot’s actions often had stochastic effects, the robot’s position was not always
fully observable, and belief tracking had to be performed asynchronously (i. e.
not a straight alternation of actions and observations). Despite this mismatch
between the model assumed for planning and the execution environment, the
control policy optimized by PEMA successfully completed the task.

5.3 Robustness to Modeling Errors

Like most POMDP solvers, PEMA assumes exact knowledge of the POMDP
model. In reality, this model is often hand-crafted and may bear substantial
error. In our experience, such a mismatch between model and the real system
does not necessarily render our solution useless. The robustness built in to
POMDPs to overcome state uncertainty often goes a long way towards over-
coming model uncertainty. Nonetheless, there are cases where a poor model
can be catastrophic. In this section, we try to gain a better understanding of
the impact of errors in the model we used for the Find-the-patient domain.
Our model assumes that the robot can see the patient with Pr = 0.99,
whenever s/he is within 2m. We use this parameter both for solving and
tracking. But it could be that in fact the person is only detected with Pr = 0.8.
What would be the loss in performance, compared to if we had planned and
tracked with the correct parameter? Table 1 examines the effects of this type
of modeling error. It shows the performance (avg. sum of rewards over 1000
trajectories) when applying PEMA and tracking the belief with the sensor
accuracy in the left column, but testing with the accuracy in the top row.
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Fig. 5. Find-the patient domain - Sample trajectory.
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Table 1. Sensitivity analysis over observation probabilities. (CI for all: [0.7,1.4]}

Prreal(z)
Pryoder(2)[0.99 0.90 0.80 0.70
0.99 -9.7 -11.3 -13.2 -155
090 |-12.0-13.1 -15.6 -19.0
0.80 -9.7 -11.5 -13.1 -14.5
0.70  |-17.8 -19.4 -22.0 -22.6

The main diagonal contains cases where the model is correct. These results
suggest two things. First, as expected, performance degrades as the real noise
level increases (i.e. left-to right effect for any given row.) Second, and this was
not anticipated, the dominating performance factor is in fact the noise in the
assumed model: regardless of what conditions are used for testing, results are
better for some values of Pry,oqe; (0.99 and 0.8) and worse for others (0.9 and
0.7). We hypothesize that this happens because in some models, PEMA did
not have sufficient belief points to perform well (all policies were optimized
with |B|=512). When we repeated experiments for Pry,,401(2)=0.9 with more
beliefs points, the performance improved (for all Pr,.qi(2)) to the level of the
top row. This suggest that in some domains it may be best to optimize policies
assuming false models (e. g. low sensor noise), because an equally good policy
can be obtained with fewer belief points. We are currently investigating this,
as well as the impact of modeling errors in the transition model.

6 Conclusion

This paper describes a new algorithm for planning in partially observable do-
mains, which features a theoretically-motivated technique for selecting salient
information states. This improves the scalability of the approach, to the point
where it can be used to control a robot seeking a missing person. We also
demonstrate that the algorithm is robust to noise in the assumed model.
Future work focuses on improving performance under even weaker modeling
assumptions.
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Summary. Why are probabilistic roadmap (PRM) planners “probabilistic”? This
paper tries to establish the probabilistic foundations of PRM planning and re-
examines previous work in this context. It shows that the success of PRM plan-
ning depends mainly and critically on the assumption that the configuration space
C of a robot often verifies favorable “visibility” properties that are not directly
dependent on the dimensionality of C. A promising way of speeding up PRM
planners is to extract partial knowledge on such properties during roadmap con-
struction and use this knowledge to adjust the sampling measure continuously.
This paper also shows that the choice of the sampling source—pseudo-random or
deterministic—has small impact on a PRM planner's performance, compared to
that of the sampling measure. These conclusions are supported by both theoretical
arguments and empirical results.

1 Introduction

Probabilistic roadmap (PRM) planners [3, Chapter 7] solve seemingly difficult
motion planning problems such as the one in Fig. 1, where the robot’s configura-
tion space C is 6-D and the environment consists of tens of thousands of triangles.
While an algebraic planner would be overwhelmed by the high cost of computing
an exact representation of the free space F, defined as the collision-free subset of
C, a PRM planner builds only an extremely simplified representation of F, called
a probabilistic roadmap. The nodes of a roadmap R are configurations sampled
from F with a suitable probability measure. The edges of R are simple collision-
free paths, e.g., straight-line segments, between the sampled configurations. PRM
planners work surprisingly well in practice. Why?

Previous work has partially addressed this question by identifying and for-
malizing free space properties that provide sufficient conditions to guarantee that
a PRM planner using a uniform sampling measure works well. However, the un-
derlying question “Why are PRM planners probabilistic?” has received little at-
tention so far, and consequently the role of non-uniform sampling measures in

* Part of this work was completed while the author was at the National University of Sin-
gapore, supported by the Kwan Im Thong Hood Cho Temple Professorship.

S. Thrun, R. Brooks, H. Durrant-Whyte (Eds.): Robotics Rescarch, STAR 28, pp. 83 97, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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PRM planning remains poorly understood. Since no inherent randomness or un-
certainty exists in the classic formulation of motion planning problems like the
one depicted in Fig. 1, one may wonder why probabilistic sampling helps to solve
them.

Fig. 1. A practical motion planning problem.

In this paper, we attempt to fill this gap, with the intent of identifying promis-
ing directions to improve future PRM planners. We introduce the probabilistic
foundations of PRM planning (Section 2). We then examine previous work in this
context and argue that the empirical success of PRM planning tells us as much
about the nature of motion planning problems encountered in practice as about
PRM planning itself (Section 3). We emphasize the important distinction between
the sampling measure, a notion firmly rooted in probability theory, and the sam-
pling source, and show that the source has small impact on a planner’s perform-
ance compared to the measure (Sections 4 and 5).

The main questions addressed in this paper are summarized below:

e Why is PRM planning “probabilistic”’? A foundational choice in PRM
planning is to avoid computing an exact representation of £. So the planner never
knows the exact shape of F, in particular, its connectivity. It works very much like
a robot exploring an unknown environment to build a map. At any moment during
planning, many hypotheses on F are consistent with the configurations sampled so
far. The probability measure for sampling F reflects this uncertainty. Hence, PRM
planning trades the cost of computing F exactly against the cost of dealing with
uncertainty. This choice is beneficial only if a small roadmap can represent the
shape of F well enough to answer motion-planning queries correctly.

e  Why does PRM planning work well? One can think of the nodes of a
roadmap as a network of guards watching over F. To guarantee that a PRM plan-
ner finds a solution quickly whenever one exists, F should satisfy favorable “visi-
bility” properties. A key contribution of PRM planning is to reveal that in prac-
tice, many free spaces satisfy such properties, despite their high algebraic
complexity. Since visibility properties can be defined in terms of volume ratios
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over certain subsets of F, they do not directly depend on dim(C), the dimensional-
ity of C. This explains why PRM planning scales up reasonably well when dim(C)
increases.

e How important is the sampling measure? In every PRM planner, a prob-
ability measure prescribes how sampled configurations are distributed over F.
Since visibility properties are in general not uniformly favorable over F, this
measure plays a critical role in the efficiency of PRM planning by allocating a
higher density of samples to regions with poor visibility properties. Existing PRM
planners use mostly simple, heuristic estimates of visibility properties, but ex-
periments show that they dramatically improve the performance of PRM plan-
ning.

e How important is the sampling source? A PRM planner needs a source S
of uniformly distributed pseudo-random or deterministic numbers for sampling C.
Usually, it calls S to pick a point uniformly from [0,1]%™ and then maps the
point into C according to a given probability measure. The source .S has only a
limited effect on the efficiency of PRM planning. When dim(C) is small, low-
discrepancy or low-dispersion deterministic sources achieve some speedup over
pseudo-random sources [13]; however, the speedup is very modest compared to
that achieved by good sampling measures and fades away quickly, as dim(C) in-
creases.

This paper does not introduce any new PRM planner or sampling strategy.
Instead, its contribution is to articulate a coherent framework centered on the
probabilistic foundations of PRM planning and evaluate several ideas, considered
separately before, in this framework. [t brings new understanding of what makes
PRM planning effective, which in turn may help us to design better planners in
the future.

2 Why Is PRM Planning ‘‘Probabilistic”?

For many robots, computing an exact representation of the free space F' takes pro-
hibitive time, but fast, exact algorithms exist to test whether a given configuration
or path is collision-free [16]. PRM planners use two probes based on such algo-
rithms to access geometric information from the configuration space C:

e Forany q € C, FreeConf(g) is true if and only if g € F.

e Forany pair q, g’ C, FreePath(q,q’) is true if and only if ¢ and g’ can be
connected with a straight-line path lying entirely in F.

The choice of using only these two probes is foundational for PRM planning.
Since a PRM planner does not compute the exact shape of F, it never gains this
information. At any moment, many hypotheses on F are consistent with the in-
formation gathered so far by the probes, and each hypothesis has some probability
of being correct. The probabilistic nature of PRM planners comes from the fact
that this uncertainty is modeled implicitly by a probability measure over the set of
hypotheses.
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In this paper, we use the following scheme, which we call Basic-PRM, as a
reference planner. Like the original PRM planner [12], it operates in two stages,
roadmap construction and roadmap query.

e Roadmap construction. The procedure below takes a single input argument
N, the number of nodes for the roadmap R to be constructed. The nodes of R are
collision-free configurations sampled from F. The edges represent collision-free
straight-line paths between the nodes.

Procedure Roadmap-Construction(N)

1. repeat until N nodes have been generated

2 Sample a configuration g from C uniformly at random.
3 if FreeConf(q) is true then add ¢ as a new node of R.
4. for every node ¢’ of R such that ¢’ ¢ do
5

6

if FreePath(q, ¢°) is true then add (g, ¢°) as a new edge of R.
return R.

Most PRM planners use better sampling strategies than the uniform random one
in Line 2, as well as better connection strategies in Lines 4-5.

A sampling strategy (7, S) is characterized by a probability measure = that
prescribes how sampled configurations are distributed over C and a source S of
uniformly distributed pseudo-random or deterministic numbers. We will show in
Sections 4-5 that designing good sampling measures is one of the most promising
ways to speed up PRM planning.

e Roadmap query. A query is defined by two configurations ¢; and ¢, in F.
Given a roadmap R, the procedure Roadmap—-Query tries to connect each ¢q;,
i=1,2, to a node of R. For each g¢;, it samples uniformly at random K configura-
tions so that for each such configuration q, FreePath(q,q) is true. It then checks
whether there is a node v; of R such that FreePath(g,v)) is true. If so, ¢; and v,
can be connected via g. If either ¢, or g, cannot be connected to a node of R,
Roadmap-Query returns FAILURE. Otherwise, it searches for a path in R be-
tween v; and v,. If one is found, it returns a path between ¢, and ¢,. Otherwise, it
returns NO PATH.

If Roadmap—-Query returns a path, the answer is always correct, but the NO
PATH answer may not be correct, as disconnected components of R may lie in the
same connected component of F. The answer FAILURE means that R is insuffi-
cient to answer the query.

Let us now return to the question “Why is PRM planning probabilistic?”.
Suppose that while constructing a roadmap, Roadmap-Construction could
maintain a representation (H,7), where H is the set of all hypotheses over the
shape of F and 7 is a probability measure that assigns to each hypothesis in H the
probability of it being correct. Suppose further that we can define what a good
roadmap is (see Section 3). Then, in each iteration of Roadmap-
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Fig. 2. The experimental convergence rate of Basic—PRM. The plot shows the per-
centage of unsuccessful outcomes out of 100 independent runs for the same query in the
environment shown on the right, as the number of roadmap nodes increases.

Construction, the optimal sampling measure 7* is the one that minimizes the
expected number of remaining iterations until a good roadmap is reached, and 7*
can be inferred from (H, 7). However, maintaining (H, ) explicitly is expensive.

So existing PRM planners use heuristics to select the sampling measure 7 (see
Section 4).

3 Why Does PRM Planning Work Well?

In general, Basic-PRM may return an incorrect NO PATH or FAILURE an-
swer with some probability y, but the efficiency of PRM planners in practice indi-
cates that y is usually small. Experiments show that even in complex geometric
environments, y often converges to 0 quickly, as N, the number of roadmap
nodes, increases (Fig. 2). Yet one can also easily construct apparently simple en-
vironments where PRM planners perform terribly (Fig. 3). Together, these two
examples suggest that many environments encountered in practice satisfy favor-
able properties that PRM planners exploit well. What are these properties?

We now review results from [9, 11], showing that if F satisfies a rather general
visibility property, called expansiveness, then Basic-PRM answers planning que-
ries correctly with high probability. In the following, the phrase “with high (low)

probability in #” means that the probability converges to 1 (0) at an exponential
rate, as » increases.

3.1 Visibility in the Free Space

We say that two points g and ¢’ in F see each other if FreePath{g, q’) is true.
The visibility set of ge F is the set V(q) = { ¢’€F | FreePath(q, ¢q’) is true}. The
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Fig. 3. A difficult example for PRM planning. F consists of two rectangular chambers
connected by a narrow corridor. The plot shows the average running time for Basic-
PRM to connect the two query configurations, as the corridor width decreases.

definition of a visibility set is extended to any subset M of points in F by defining
VM) = Ugers V(q)-

The first two theorems below say that if F satisfies a property called &
goodness, then Basic-PRM generates a roadmap that provides good coverage of
F so that FATLURE rarely occurs.

Definition 1. Given a constant £ € (0,1], a point geF is &good if it sees at
least an e-fraction of F, ie., if 1V (q)) = exgF), where 4S) denotes the volume
of S forany S < C. F'is e-good if every point ge F is &-good.

Definition 2. A roadmap R provides adequate coverage of an &good free
space F'if the subset of F not seen by any node of R has volume at most (&/2)(F).

Theorem 1. If F is &good, then with high probability in N, Roadmap-
Construction(N) generates a roadmap that provides adequate coverage of F
[11].

Theorem 2. If a roadmap provides adequate coverage of F, then Roadmap-
Query returns FAILURE with low probability in K [11].

(Recall that K is the number of configurations sampled randomly in the
neighborhood of each of the query configurations. See Section 2.)

Adequate coverage only protects us from FAILURE, but does not prevent an
incorrect NO PATH answer, because s-goodness is too weak to imply anything

on roadmap connectivity. A stronger property is needed to “link” a visibility set to
its complement in F.

Definition 3. Let 7’ be a connected component of F, G be any subset of F”,
and S be a number in (0,1]. The FLOOKOUT of G is the set of all points in G
that see at least a Sfraction of the complement of G in £

BLOOKOUT(G) = {q € G | t((q)\G) = xifF\G)}.
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Suppose that the volume of FLOOKOUT(G) is at least axg(G). If either
or Sis small, then it would be difficult to sample a point in G and another in F\G
so that the two points see each other, hence to build a roadmap that represents the
connectivity of £’ well. This happens in the free space of Fig. 3 when the corridor
is very narrow. These considerations lead to the concept of expansiveness.

Definition 4. Let &, «, and S be constants in (0,1]. A connected component F~’
of Fis (g, P)-expansive if (i) every point ge F’ is e-good and (ii) for any set M of
points in £, ((SFLOOKOUT(H(M))) = axpl(V(M)). F is (&, p)-expansive, if its
connected components are all (& ¢, f)-expansive.

Theorem 3. If F is (& a,p)-expansive, then with high probability in N, Road-
map-Construction generates a roadmap whose connected components have
one-to-one correspondence with those of £ [9].

Expansiveness guarantees that the visibility set }(M) of any set M of points in
a connected component F’ of F has a large lookout. So it is easy to sample at ran-
dom a set of configurations and construct a roadmap that both provides good cov-
erage of F and represents the connectivity of £ well. The values of & ¢, and S
measure the extent to which F is expansive. For example, if F is convex, then
e=a=p~1. The larger these values are, the smaller N needs to be for Basic-PRM
to answer queries correctly. Although for a given motion planning problem, we
often cannot compute these values in advance, they characterize the nature of free
spaces in which PRM planning works well.

3.2 What Does the Empirical Success of PRM Planners Imply?

In practice, a small number of roadmap nodes are often sufficient to answer que-
ries correctly. This frequent success suggests that the main reason for the empiri-
cal success of PRM planners is that free spaces encountered in practice often sat-
isfy favorable visibility properties, such as expansiveness. If a connected
component F’ of F" had very small values of & «, and f, then a planner would
likely encounter a set M of sampled nodes such that ¥{M) has a small lookout. It
would then be difficult to sample a node in this lookout and eventually create a
connected roadmap in F’. PRM planners scale up well when dim(C) increases,
because visibilities properties can be defined in terms of volume ratios over sub-
sets of £ and do not directly depend on dim(C). So, the empirical success of PRM
planning says as much about the nature of motion-planning problems encountered
in practice as about the algorithmic efficiency of PRM planning. The fact that
many free spaces, despite their high algebraic complexity, verify favorable visibil-
ity properties is not obvious a priori. An important contribution of PRM planning
has been to reveal this fact.
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Fig. 4. Comparison of three strategies with different sampling measures. The plot
shows the average running times over 30 runs on the problem in Fig. 3 as the corridor
width decreases.

According to Theorems 1-3, expansiveness provides a sufficient condition
for Basic-PRM work well. One can also prove that expansiveness is necessary
in the following sense: if F is not expansive for large enough values of &, ¢, and
B, then it is always possible to choose a query in F so that Basic-PRM fails to
succeed with high probability. This indicates that expansiveness is a good charac-
terization of the complexity of the free space for PRM planning. We do not have a
proof that expansiveness is the minimal property that F must satisfy for PRM
planners to work well, but few alternatives exist (e.g., path clearance and &
complexity) and they are more specific. However, since the values of &, ¢, and
are determined by the worst configurations and lookouts in F, they do not reflect
the variation of visibility properties over F. This is precisely what non-uniform
sampling measures described below try to exploit.

4 How Important Is the Sampling Measure?

In the previous section, we have analyzed the performance of Bagic-PRM when
the uniform sampling measure is used. However, most PRM planners employ
non-uniform sampling measures that dramatically improve performance. To illus-
trate, Fig. 4 compares the average running times of three versions of Basic—PRM
using sampling strategies with different measures: the uniform strategy, the two-
phase connectivity expansion strategy [12], and the Gaussian strategy [2]. The last
two strategies perform much better than the uniform one. How can such im-
provement be explained? What information can a PRM planner use to bias the
sampling measure to its advantage?
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If nothing is assumed on F, all hypotheses on the shape of F are equally
likely. There is no reason to sample one region of C more densely than another,
and the uniform sampling measure is the best that a PRM planner can use. More
generally, with no prior assumptions, there is little that we can say about the ex-
pected performance of PRM planners. If we persist in using PRM planners, the
reason must be that F is expected to satisfy certain favorable properties. Note here
the analogy with the theory of PAC learning, where one can expect to learn a con-
cept from examples only if the concept is assumed to have a simple representa-
tion. Similarly, we can expect a PRM planner to work well — i.e., to “learn” the
shape of F from sampled configurations — only if we assume that F satisfies fa-
vorable visibility properties, which allow it to be adequately represented by a
small roadmap.

Now, if F'is expansive, can non-uniform sampling measures work better than
the uniform one? Since visibility properties are not uniformly favorable over F, a
PRM planner should exploit the partial knowledge acquired during roadmap con-
struction to identify regions with poor visibility properties and adjust the probabil-
ity measure to sample these regions more densely. Now not only is the sampling
measure non-uniform over F, but also it changes over time. In each sampling op-
eration, the optimal measure is the one that minimizes the expected number of
remaining sampling operations needed to reach a good roadmap.

The problem of constructing good sampling measures is still poorly under-
stood. Existing strategies mostly rely on simple, heuristic estimates of visibility
properties, for instance:

e The two-phase connectivity expansion strategy [12] builds an initial roadmap
by sampling C uniformly at random. While doing so, it identifies the nodes that
frequently fail to connect to other nodes nearby. Then the strategy samples more
configurations around these identified nodes. The final distribution of sampled
configurations is denser in regions having poor visibility. See the circled region in
Fig. S5a around the corridor.

s In each sampling operation, the Gaussian strategy [2] samples a pair of con-
figurations, whose distance between them is chosen according to the Gaussian
measure. [f exactly one configuration lies in F, this configuration is retained as a
roadmap node. Otherwise, both configurations are discarded. This strategy yields
a distribution of sampled configurations that is denser near the boundary of F
(Fig. 5b). The rationale is that points inside narrow passages, which have poor
visibility, often lie near the boundary. Focusing on the boundary may increase the
sampling density inside narrow passages.

Fig. 4 shows that these two strategies are effective in exploiting the non-
uniformity of visibility properties in 7. When the corridor width is small, regions
near the corridor have poor visibility, and the non-uniform strategies achieve huge
speedup over the uniform one. As the corridor width increases, visibility proper-
ties become more uniformly favorable. The benefit of non-uniform sampling then
decreases.
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(a) (b)

Fig. 5. Sampled configurations generated by (@) the two-phase connectivity expansion
strategy and (b) the Gaussian strategy.

The above two non-uniform strategies are chosen here only for illustration.
Other strategies have been proposed, and some of them achieve even greater
speedup. They use various techniques to increase sampling density in subsets of
expected to have poor visibility. For instance, the bridge test extends the Gaussian
strategy and samples three configurations, instead of two, to better identify nar-
row passages [7]. Other techniques identify narrow passages in a robot’s work-
space (e.g., by computing the medial axis) and use this information to sample
more densely in regions of F' likely to contain narrow passages [4, 5, 20]. For a
robot manipulator arm, it has been shown that over-sampling near singular con-
figurations improves performance [14]. Indeed, at a singular configuration ¢, the
arm’s end-effector loses some degrees of freedom. Thus the region of F near g
has a flattened shape, resulting in poor visibility. Instead of using heuristics to lo-
cate regions with poor visibility, an alternative is to check directly the definition
of visibility to prune a roadmap and avoid wasting effort in regions with good
visibility [19], but this may involve high computational cost. A quite different ap-
proach is to slightly dilate 7 [8, 18]. As visibility in dilated F is more favorable,
planning becomes easier. A path found in the dilated space is then deformed into
onein F.

5 How Important Is the Sampling Source?

We have mentioned in Section 2 that a sampling strategy (@, S) is characterized by
a probability measure « and a source S. The most commonly used source in PRM
planning is the pseudo-random source S,,,. Given a fixed seed, S,,, generates a se-
quence of numbers that closely approximate the statistical properties of true ran-
dom numbers. In particular, a pseudo-random sequence is slightly irregular to
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Fig. 6. Comparison of six sampling strategies on the problem of Fig. 3 when (a) the cor-
ridor width is set to 0.03 and (b) the width decreases.

simulate the effect that each number is chosen independently. Note that if we fix
the seed of a pseudo-random source, the numbers generated are in fact determinis-
tic. To get multiple independent runs of a PRM planner, we must use a different
seed for each run. In the proofs of Theorems 1-3, this independence guarantees
that samples spread evenly over F according to the uniform measure. However,
deterministic sources can achieve the same goal, sometimes even better [13]. A
familiar deterministic source is a grid. In this section, we compare pseudo-random
and deterministic sources. We also compare the impact of sampling sources with
that of sampling measures on the overall efficiency of PRM planning.

In our experiments, we use a pseudo-random source S, as well as two deter-
ministic sources, the Halton sequence Sy [17] and the incremental discrepancy-
optimal sequence Sqy [15], both of which have been reported to often outperform
Sran [6, 13, 15]. We then pair each source with two probability measures, the uni-
form measure 7 and the measure 75 used in the Gaussian strategy. This leads to
six sampling strategies {7y, 7} *{Sran-Shai Sopt}» €ach embedded in a distinct ver-
sion of Basic—PRM to be tested experimentally.

e The sampling measure versus the sampling source. Fig. 6a compares the
six strategies on the example in Fig. 3, when the corridor width is set to 0.03.
Each table entry gives the ratio of the running time of the uniform random strat-
egy (my,Swn) versus that of the strategy of the entry. So, the table reports the
speedup over (7y,S:m). The running times for (7y,S:m) and (76,5.,) are averaged
over 30 independent runs. The second column (77y) shows that Syy and Soy indeed
achieve some speedup over S, but far greater speedup is achieved by switching
to 7g. Furthermore, the advantage of Syy and S,y over Sy, observed with 7y van-
ishes when we switch to a. These results are reinforced in Fig. 65, which plots
the running times of the six strategies, as the corridor width decreases. The three
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Fig. 7. Comparison of six sampling strategies on a more realistic problem.

curves bundled together at the bottom of the plot all correspond to strategies using
7, demonstrating the importance of the sampling measure on the overall effi-
ciency of the planner. Similar results have been obtained on more realistic prob-
lems, e.g., the one in Fig. 7, in which a 6-degrees-of-freedom robot manipulator
needs to access the bottom of a car through the narrow space between the lift sup-
ports.

e Dependence on dimensionality. The main basis for deterministic sources is
that they minimize criteria such as discrepancy or dispersion. However, the com-
putational cost of maintaining a fixed discrepancy or dispersion increases expo-
nentially with dim(C) [17]. The samples generated by a deterministic source dis-
tribute evenly and regularly over [0,1]%™%, and so they roughly correspond to a
grid with N4 discretized intervals per axis, where N is the number of samples.
In typical PRM planning problems, N is relatively small, while dim(C) could be
large (greater than 6). This leads to large discrepancy and dispersion, even when a
deterministic source is used. Hence, the advantage that deterministic sources can
possibly achieve over pseudo-random sources fades away as dim(C) increases.
Fig. 8 gives an example, showing the running times of the six strategies as dim(C)
increases from 3 to 8. The robot is a planar linkage with a mobile base. We in-
crease dim(C) by adding more links Fig. 8 shows that the running time of
(7u,Sopt) increases quickly with dim(C). The increase is slower with (77,Sha) and
even slower with (7my,S.,). It is interesting to observe that (my,Syy) performs
slightly better than (7,S,4;) when dim({(C) < 6, but worsens afterwards (see the in-
set in the plot). The three strategies using 7z all have only moderate increases in
running times. As dim(C) increases, visibility properties become less uniformly
favorable over F, and the advantage of ; over i, grows.
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6 Conclusion

The success of PRM planning depends mainly and critically on the assumption
that, in practice, free spaces often verify favorable visibility properties. Non-
uniform sampling measures dramatically improve the efficiency of PRM planning
by exploiting these properties. In contrast, the choice of sampling sources has
only small impact.

To speed up PRM planning, one promising research direction is to design
better sampling strategies {and perhaps connection strategies as well) by exploit-
ing the partial knowledge acquired during roadmap construction to adjust the
sampling measure 7 continuously. Initial work along this line has appeared re-
cently [1, 10]. In [1], an approximate model of the configuration space is built and
used to sample configurations so that the expected value of a utility function is
maximized. A crucial issue here is to define a utility function that closely ap-
proximates the expected cost of reaching a good roadmap. In [10], the sampling
measure 7 is constructed as a linearly weighted combination of component meas-
ures with complementary strengths. To adjust =, the weights are updated after
each sampling operation during roadmap construction to favor the component
measures that give the most promising results. An important issue here is then to
develop good criteria to assess the performance of component measures.
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An epoch of humanoid robotics started from the astonishing reveal of Honda P2
in 1996, and the focus of interest in the field has been the motion control of
humanoid robots as well as the development of the hardware in the beginning
of the decade. A reliable hardware with the minimum level of the mobility
can be a research platform of humanoid robotics as well as mobile robot plat-
forms like Nomad. Several research platforms are available currently including
HRP-2 with software platform OpenHRP and HOAP series, and the interests
in humanoid robotics can spread over various topics; that is, intelligence, in-
teractions with humans and a tool of cognitive science. The state of the art of
humanoid robotics has arrived at the level of the beginning of mobile robot
technologies in 1980s, and every aspect of robotics is now expected to be
integrated on humanoid robots.

The paper by Satoshi Kagami et al. extends the autonomy of humanoid
robots. They developed an enhanced version of humanoid robot HRP-2, called
HRP2-DHRC, equipped with three d.o.f. hands, three d.o.f. wrists, one d.o.f.
toes, higher resolution stereo cameras and laser range fingers. The autonomy
embedded on the robot includes a footstep planning with mixed reality with
an online motion capture system, a vision guided footstep planning, an object
localization from a depth matching, a navigation from 3D localization, and
that among movable obstacles. HRP2-DHRC should be one of most advanced
humanoid robots from the viewpoint of autonomy.

The paper by Hiroshi Ishiguro proposes android science as a new cross-
interdisciplinary framework. He found that the appearance of the robot should
have a significant influence on the impression of a humanoid robot as well as its
behaviors. He developed humanoid robots that look like humans and executed
a cognitive experiment in which subjects are asked to judge if a figure should
be an android or a real human in two seconds. The result of the experiment
told that the subjects should judge the figure is a real human in more chance
when the figure has a real appearance with some human-like behavior. We had
intensive discussions on his talk, especially on the significance of his work. It
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was claimed out that the objective of the research may not be clarified, but
Ishiguro tried to defend his approach.

The paper by Yoshihiro Nakamura et al. investigated the interaction be-
tween a human and a humanoid. They introduced a meta proto-symbol which
is an abstract analogy of the proto-symbol. The meta proto-symbol is applied
to recognize and generate the relationship of a human and a humanoid. They
applied the proposed concept to a fight hetween a humanoid robot and a sub-
ject in a virtual world. The robot was able to recognize the human behariors
and generate the responses through mimetic communications with the human.

The papers contributed to the session showed the three directions in which
humanoid robotics should be enriched in the coming decade, that is, auton-
omy, cognitive science and interaction with humans.
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1 Introduction

Recently, research on humanoid-type robots has become increasingly active,
and a broad array of fundamental issues are under investigation. However,
in order to achieve a humanoid robot which can operate in human environ-
ments, not only the fundamental components themselves, but also the suc-
cessful integration of these components will be required. At present, almost
all humanoid robots that have been developed have been designed for bipedal
locomotion experiments. In order to satisfy the functional demands of loco-
motion as well as high-level behaviors, humanoid robots require good me-
chanical design, hardware, and software which can support the integration of
tactile sensing, visual perception, and motor control. Autonomous behaviors
are currently still very primitive for humanoid-type robots. It is difficult to
conduct research on high-level autonomy and intelligence in humanoids due
to the development and maintenance costs of the hardware. We believe low-
level autonomous functions will be required in order to conduct research on
higher-level autonomous behaviors for humanoids.

This paper describes our research efforts aimed at developing low-level
autonomous capabilities required for moving & manipulation tasks involv-
ing humanoid-type robots. In that purpose, Humanoid HRP2-DHRC(Fig.1)
is designed by improved from original HRP2[1] to have extra joints and sen-
sors, and it is manufactured by Kawada Industries Inc. On this platform,
sense-plan-act loop is implemented for autonomous moving & manipulation.
Augmented reality based humanoid robot experiment system is also developed
to help developing each functions.
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Fig. 1. Humanoid HRP2-DHRC

i ~

Fig. 2. Hand postures of HRP2-DHRC

2 Humanoid HRP2-DHRC Hardware Improvements

2.1 Additional Joints

Original HRP2 has 30 DOF in total (6 DOF for arm & leg, 2 DOF for neck &
waist, 1 DOF for gripper). There are three part that joints added for HRP2-
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Fig. 3. DHRC-ADRS&04848: PCI half size IO board

DHRC: 1) wrist, 2) hand and 3) toe. HRP2-DHRC has 38 DOF in total and
it is 158cm in height & 58kg in weight(Fig.1).

As for 1) arm, in order to increase high manipulability region, 1 DOF is
added at wrist joint. As for 2} hand, 3 DOF hand that can grasp objects in
several different ways is designed by Prof. Inoue and attached to Humanoid
JSK-H7[2]. We adopted the same mechanisms to HRP2-DHRC(Fig.2). As for
3) foot, 1 DOF is added at toe in order to improve walking motion as like H7.

2.2 Control Board

An PCI I/O board is newly developed to achieve current sensor based torque
control(Fig.3). The board has 80ch AD(14bit), 48ch DA(12bit} & encoder
counter, 32ch DIO. It can achieve up to 10khz sampling for all input/output
usage situation (up to 48 joints) by using DMA data transmission through
32bit/64bit PCI bus. Current sensor signal of motor driver is connected to
AD input, so that torque control is possible. Board has almost 1 slot PCI half
size.

2.3 Head Sensor

Original HRP2 has three synchronized mono cameras at head. Firewire
(IEEE1394) stereo camera Videre design STH-DCGS is adopted together with
time of flight type laser range sensor Hokuyo URG-04LX at head. Videre de-
sign STH-DCGS has global shuttered VGA stereo camera and has about 90
degrees view angle in horizontal.

URG-04LX is a small (160g) range sensor that measures up to 4m and
covers 270 degrees in 0.36 degrees resolution.

2.4 Experimental Sensor

Foot force distribution sensor and HD resolution stereo camera are under
developing functions for humanoid robots.
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Fig. 4. Electrode part of the sensor, its sensing area close up and 10 board

Foot Force Distribution Sensor
Scanning Circuit

A 32 x 32 matrix scan type high-speed pressure sensor for the feet of humanoid
robots that has 1[kHz| sampling rate is developed(Fig.4). This sensor has
matrix scan circuit. The matrix scan method has a problem of interference by
bypass current. In order to resolve this problem, a novel method is proposed.

We adopted very thin(0.6[mnm]) force sensing conductive rubber sheet for
high speed sensing. Each sensing area is 4.2 x 7.0[mm] and can measure
vertical force of approximately 0.25-20[N]. Walking cycle of humanoid robot
as well as human being is about 0.4-0.8[s] and dual leg phase is about 0.1-
0.15[s]. The target of the sensor is biped walk stabilization so that high-speed
input is important. Matrix scan type circuit is connected to sensor, and the
system runs 1[kHz] with 14|bit] resolution at 4.2 x 7.0[mm]| grid for 32 x 32
points, and the sensor size is the same as humanoid robot foot 135 x 228[mm].
The system is running high-speed because of very thin conductive rubber and
simultaneous measurement.

Electrodes which are shown in Fig.4 are arranged in the shape of a grid.
There is a flexible cable part which has connector at the left side of electrode
part to avoid collision to the ground and robot itself is important. The control
circuit board is attached to the shank link of our humanoid robot H7, and
only USB2 cable goes through the joints to the controlling PC mounted on
the torso.

Thin force sensing rubber

Thickness of developed force sensing rubber is 0.6[mm)] (Inaba Instries Inc.).
Conductive carbon composite grain are mixed in the rubber. Thinness is better
to achieve small time constant and sensitivity, so that system can realize higher
scan rate. Table.1 shows a specification of our rubber sheet.

With no load, resistance on a surface and on a volume are both about
107[£2]. As the pressure is exerted, rubber deforms and conductive path aug-
ments, so that relationship in between pressure and registance changes mono-
tonic and smooth.
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Fig. 6. Humanoid robot foot with pressure sensor grid and human foot pressure
result

The usual matrix scan method is equipped with AD converters on the
column lines. The system in this paper is equipped AD converters both on
the column lines and row lines of the sensor matrix(Fig.5). When the column
line 1 is applied the voltage, the following formula is led from Kirchhoff’s
current rule at the top row:

VW=
;T

Similarly, the following formula is led also about the i-th row and k-th
column line:
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Table 1. Force Sensing Rubber Resister

Max. Voltage 30V
Recomm. Voltage | 6V
Max. Current 20mA

Recomm. Current | 5mA
No-load Resistance|20M (2
Maximum Load 100N
Recomm. Load 40N

Wiy W=
R_j Tij '

Let z;; be —=:

Tij
"V k k
fZZ( Wj = Vi) - .
J
This formula means simultaneous equation. When
i = 1, the formula is expressed with the following matrix:

Vi = M X;.
Here, V¢, My, X are as follows:

W, /R
Vl - s
"Vi/R
O R
Ml = : t. )
nWl _ n‘/l an _ n‘/l
T11
X, =
Tin

Therefore X is led by using inverse matrix of M:
X, = MMV
11 1/ ™11
X = = :

Tin 1/7'1n
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Similarly, i-th X; is calculated.

1/7“1'1
X, =M 'Vv,=| :
1/7”1'71

Value of resistance r;; is found by taking the reciprocal of each element of
vector X;.

Experimental results

Dynamic pressure was applied to the sensor(Fig.6(right)). As the dynamic
pressure, the subject(male, weight:65kg, foot size:27cm} run on the sensor.
Scanning rate was 300[Hz].

The pressure sensor is attached to our humanoid robot H7 foot(Fig.6.
Distributed pressure is measured and COP trajectory is calculated.

Developed thin force sensing conductive resistance rubber has about 1500-
1[42] at 0.25-20[N]. Matrix scan is achieved with a novel method. Resistance at
each sensing point is calculated by solving the simultaneous equations from
column and row lines voltage. Interference by bypass current is suppressed
by this method. The result of load and output voltage is monotonic, and
doesn’t have large hysteresis. The high-speed(1[kHz|) sensor was realized by
measuring voltage simultaneously and thin(0.6[mm]) force sensing conductive
rubber.

HD Stereo Camera

Humanoid vision sometimes requires to have multi-resolution or zooming func-
tion. For example, avoiding obstacles, looking for a path to given goal, detect-
ing human posture, such tasks requires to have wide view angle. However,
finding face, detecting grasping position of target object, measuring distance
to next step, such tasks requires to have narrow view angle to measure precise
accuracy.

There exists several humanoid systems that have two (or more) stereo
camera sets which has different lenses. However, alignment of those multi-
ple stereo camera causes difficult problem. Also data bus speed is another
limitation.

In order to overcome these problem, we developed stereo camera that has
HD resolution CMOS, and simultaneously captures use whole image (but
subsampled) and dense image at desired position {such as center) (Fig.7).

Imager is Altasens ProCamHD3560 (2/3” CMOS) that has 1920 x 1080
in 60P global shutter. We also developed C-mount HD resolution lens of
f=4.8mm (about 90deg). This lens has HD resolution at fringe. This camera is
connected to PC by using USB2 bus. Bandwidth of USB2 bus is not sufficient
to handle HD 60P raw color image. Therefore, we prepare dual CIF/VGA
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Fig. 7. HD stereo camera, whole image, and 320x240 left upper corner image

resolution stereo mode that captures two stereo pair of 1) full screen (sub-
sampled) and 2) dense partial image (about 15 degrees). In CIF mode, the
camera, achieves 60Hz capturing. The camera size is 195x85x65[mm]|, weight
is 225[g] and consumes about 10[W].

3 Augmented Reality Based Development System

In order to develop more sophisticated autonomous humanoid behaviors, thor-
ough testing of various interconnected hardware and software components for
sense, plan and control becomes increasingly difficult. Many software tools
are available for dynamic simulation and visualization in simulation stage.
However, when robots are put to the test in real environments these tools are
only used offline for processing the data of an experiment. We encountered
difficulty to achieve real-world autonomy even after developing each sense-
plan-act functions. There are problems such as follows: a) perception error
(accuracy, repeatability) is hard to examine because of the lack of global in-
formation such as relationship between robot and environment, b) planning
and control software error caused by particular perception are hard to found
because of lack of repeatability, ¢} planning and control software tuning are
also difficult.

We propose an alternate paradigm for real-world experimentation that uti-
lizes a real-time optical tracking system to form a complete hybrid real/virtual
testing environment.

Our proposed system has two objectives: to present the researcher with
a ground truth model of the world and to introduce virtual objects into ac-
tual real world experiments. Conceptually it is real bi-directional augmented
reality.

To see the relevance of these tools, consider an example of how the pro-
posed system is used in our laboratory. A humanoid robot with algorithms
for vision, path planning and ZMP stabilization is given the task of naviga-
tion in a field of obstacles. During an online experiment, the robot unexpect-
edly contacts one of the obstacles. Did our vision system properly construct a
model of the environment? Did the navigation planner find an erroneous path?
Was our controller properly following the desired trajectory? A ground truth
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model helps resolve ambiguities regarding the source of experimental failures
by precisely identifying the locations of the obstacles and the robot. Just as in
simulation, we can immediately determine whether the vision algorithm iden-
tified the model, or whether the controller followed the trajectory designed by
the planner. In some cases, we can avoid the undesired interaction entirely.
Having established a correspondence between virtual components such as en-
vironment models, plans, intended robhot actions and the real world, we can
then visualize and identify system errors prior to their occurrence.

In this section, we describe the implementation of the hybrid experimental
environment. We develop tools for constructing a correspondence between real
and virtual worlds. Using these tools we find substantial opportunities for
experimentation by introducing virtual obstacles, virtual sensors and virtual
robots into a real world environment. We describe how adding such objects
to an experimental setting aids in the development and thorough testing of
vision, planning and control[3].

3.1 System Configuration

To construet a hybrid real/virtual environment, we instrumented our lab space
with the Eagle-4 Motion Analysis motion capture system. The environment
also contains cameras and furniture objects. Our experiments focused on high
level autonomous tasks for the humanoid robot HRP-2. For instance, the robot
navigated the environment while choosing foot locations to avoid obstacles and
manipulated obstacles to free its path. We partitioned these experiments ac-
cording to the subsystems of vision, planning and control to provide a general
groundwork for how a hybrid real/virtual testing environment can be used in
a larger context of research objectives.

The Eagle-4 system consists of 12 cameras, covering a space of 5 x 5 x 1.8
meters. Distances between markers that appear in this space can be calculated
to 0.3% accuracy. In our experiments, the motion capture estimate of the
distance between two markers at an actual distance of 300mm has less than
lmm error.

In terms of processing speed, we employ a dual Xeon 3.6GHz processor
computer to collect the motion capture information. The EVa Real-Time Soft-
ware (EVaRT) registers and locates 3D markers at maximum rate of 480Hz
with an image resolution of 1280 x 1024. When larger numbers of markers
are present, the maximum update speed decreases. Still, when tracking ap-
proximately 60 markers the lowest acquisition rate we used was 60Hz. Marker
localization was always performed in real-time.

EVaRT groups the markers attached to an object. We refer to this set of
points as the object template. Under the assumption that a group of markers
is attached to a rigid object, any displacement of the object corresponds to a
rigid transformation T of the markers.

During online execution, EVaRT uses distance comparisons to identify
groupings of markers, as well as the identities of markers in these groupings.
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Fig. 8. (a) Real chair with retroreflective markers illuminated. (b) 3D model of
chair as recoverd by a laser scanner. (c¢) Virtual chair is overlayed in real-time. Both
the chair and the camera are in motion.

We are then interested in the inverse problem of finding a transform 7' that
aligns the template marker locations with those found in the scene by motion
capture.

3.2 Geometry Reconstruction

The transformation of a rigid body’s coordinate frame tells us the displace-
ment of all points associated with the body. To reconstruct the geometry of a
scene, we need to establish the geometry of each object in its local reference
frame.

In our work, we have chosen to use 3D triangular surface meshes to repre-
sent environment objects. We constructed preliminary meshes using a Minolta
VIVID 910 non-contact 3D laser digitizer. The meshes were manually edited
for holes and automatically simplified to reduce the number of vertices.

Fig.8 demonstrates the correspondence between a chair in the lab envi-
ronment and its 3D mesh in our visualization. We are able to continuously
re-compute the transformation of a lab object at a rate of 30Hz. The virtual
environment can then be updated in real-time to provide a visualization of
the actual object’s motion in the lab.

3.3 Real and Virtual Cameras

In this section we consider the latter case of placing a camera in the viewable
range of motion capture. We show that tracking a camera lets us to establish
a correspondence between objects in the ground truth model and objects in
the camera frustum.

As with other rigid bodies, the camera is outfitted with retro-reflective
markers that are grouped in EVaRT and then tracked using our algorithm.
The position and orientation of the camera computed from motion capture
form the extrinsic camera parameters. The translation vector ¢ corresponds
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Fig. 9. Environment reconstructions overlaid onto the world. (a) Occupancy grid
generated from image-based reconstruction using the robot’s camera. (b) planar
projection of an obstacle recovered from range data.

to the world coordinates of the camera’s optical center and the 3 x 3 rotation
matrix R represents the direction of the optical axis. Offline camera calibration
using Tsai’s camera model is performed once to recover the the 3 x 3 upper
triangular intrinsic parameter matrix K. Incoming camera images can then
be rectified on the fly. The extrinsic and intrinsic parameters allow us to
recover the full camera projection matrix M. M uniquely maps a scene point
P = (z,y,2,1)T to a point on the image plane p = (u,v, 1) T via the standard
homogeneous projection equation.

Therefore, we can recover not only the locations of motion capture markers
but also any points that compose the surface mesh of a tracked object.

We can use existing 3D display technology such as OpenGL to efficiently
compute surface models as they would appear in the camera projection. Over-
laying the virtual display on the camera display creates the a correspondence
between the camera view and the ground-truth motion capture view.

3.4 Examination of Humanoid Sensing

Given a representation of the robot environment reconstructed by image warp-
ing or from range data, we can visually evaluate the accuracy of our perception
algorithms and make parameter adjustments on the fly by overlaying the en-
vironment maps generated back onto a camera view of the scene. This enables
us to verify that obstacles and free space in our environment reconstructions
line up with their real-world counterparts, as illustrated in Fig.9.

3.5 Examination of Humanoid Planning

Fig.9(left) and Fig.10 (left) show examples of control system visualization
during online robot experiments. The system has planned out the sequence of
footsteps it wishes to take to reach some goal configuration. For each step, it
has computed the 3D position and orientation of the foot. Through the use
of augmented reality, the planned footsteps can be overlaid in real-time onto
the environment.
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Fig. 10. Augmenting reality for visualization of planning and execution. {a) Foot-
step plan displayed onto the world. (b) Augmented reality with a simulated robot
amongst real obstacles.

The red and blue rectangles represent the steps for the right and left
feet that the robot intends to take. This path is constantly updated as the
robot replans while walking. This display helps expose the planning process
to identify errors and gain insight into the performance of the algorithm.

Temporal Projection: Virtual Robot

One of the components of our overall system that we would like to replace
for testing purposes is the robot itself. One solution to is to build a simulated
environment for experimentation. However, we would like to continue to use
the real world as much as possible, rather than using a completely fabricated
environment. Within our framework, we can continue to use real-world ob-
stacles and sensors, and merely replace the robot with a simulated avatar.
Fig.10 (right) shows the augmented reality of our simulated robot traversing
a real environment. Note that for this navigation task, the robot is not manip-
ulating the environment. The obstacles themselves can be moved during the
experiments, but we do not need to close the loop on robotic manipulation.

Objects and the Robot’s Perception

In addition to complete replacement of all sensing with perfect ground truth
data, we can simulate varying degrees of realistic sensors. We can slowly in-
crease the realism of the data which the system must handle. This approach
can isolate specific sources of error, and determine to which the control sys-
tem is most sensitive. For example, by knowing the locations and positions of
all objects as well as the robot’s sensors, we can determine which objects are
detectable by the robot at any given point in time. Hence, simulated sensors
can be implemented with realistic limits and coverage.
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Fig. 11. Automatic following gantry & HRP2-DHRC with markers

3.6 Gantry

During any task of locomotion or manipulation, a humanoid robot is at risk of
falling. Typically, a small gantry is used to closely follow and secure the robot.
However, the physical presence of the gantry and its operator prevent us from
testing fine manipulation or navigation that requires the close proximity of
objects.

To overcome this problem, our laboratory implements a ceiling suspended
gantry (10 x 7.5[m]) that can follow the robot throughout the experimental
space. It is controlled by standard PC with Timesys Linux realtime operating
system (as like HRP2-DHRC). Having acquired the absolute positioning of
the robot from motion capture, this gantry is PD controlled to follow the
robot as it autonomously explores the space. This final component not only
lets us to test the robot in arbitrary cluttered environments, but also enables
experiments that typically require four or five operators to be safely performed
by a single researcher.

4 Concluding Remarks

HRP2-DHRC humanoid robot is developed as a research platform for hu-
manoid autonomy research (as like previous our H7 humanoid robot). Us-
ing HRP2-DHRC, we conducted research on sense-plan-act based humanoid
autonomy as shown in Fig.12. As for “Sense” part, plane segmentation &
3D labeling[4], 6D visual odometory & world reconstruction[5], particle filter
based localization[6], foot distributed force sensor[7] are studied. As for “Plan”
part, footstep planning[8], arm motion planning by RRT[9], NAMO[10], ma-
nipulatibily maximization arm trajectory planning[11] are studied. As for
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Fig. 12. Sense-Plan-Act Functions for HRP2-DHRC Low-level Autonomy

“Act” part, whole body cooperated reaching motion generation[12], whole
body coordinated hand manipulation[13] are studied.

One fundamental achievement in this paper is augmented reality based
development system. It is a novel experimental paradigm that leverages the
recent advances in optical motion capture speed and accuracy to enable si-
multaneous online testing of complex robotic system components in a hybrid
real-virtual world. We believe that this new approach enabled us to achieve
rapid development and validation testing on each of the perception, plan-
ning, and control subsystems of our autonomous humanoid robot platform.
We hope that this powerful combination of vision technology and robotics
development will lead to faster realization of complex autonomous systems
with a high degree of reliability.
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1 Android Science

Appearance and Behavior

In the evaluation of interactive robots, the performance measures are sub-
jective impression of human subjects who interact with the robot and their
unconscious reactions, such as synchronized human behaviors in the interac-
tions and eye movements.

Obviously, both the appearance and behavior of the robots are important
factors in this evaluation. There are many technical reports that compare
robots with different behaviors. However nobody has focused on appearance
in the previous robotics. There many empirical discussions on very simplified
static robots, say dolls. Designing the robot’s appearance, especially to give it
a humanoid one, was always a role of the industrial designer. However we con-
sider this to be a serious problem for developing and evaluating interactive
robots. Appearance and behavior are tightly coupled with both each other
and these problems, as the results of evaluation change with appearance. In
our previous work, we developed several humanoids for communicating with
people [3][4][5], as shown in Figure 1. We empirically know the effect of appear-
ance is as significant as behaviors in communication. Human brain functions
that recognize people support our empirical knowledge.

Android Science

To tackle the problem of appearance and behavior, two approaches are nec-
essary: one from robotics and the other from cognitive science. The ap-
proach from robotics tries to build very humanlike robots based on knowl-
edge from cognitive science. The approach from cognitive science uses the
robot for verifying hypotheses for understanding humans. We call this cross-
interdisciplinary framework android science.
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Fig. 1. From humanoids to androids
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Fig. 2. The framework of android science

Previous robotics research also used knowledge of cognitive science while
research in cognitive science utilized robots. However the contribution from
robotics to cognitive science was not enough as robot-like robots were not
sufficient as tools of cognitive science, because appearance and behavior can-
not be separately handled. We expect this problem to be solved by using an
android that has an identical appearance to a human. Robotics research uti-
lizing hints from cognitive science also has a similar problem as it is difficult to
clearly recognize whether the hints are given for just robot behaviors isolated
from their appearance or for robots that have both the appearance and the
behavior.

In the framework of android science, androids enable us to directly ex-
change knowledge between the development of androids in engineering and
the understanding of humans in cognitive science. This conceptual paper dis-
cusses the android science from both viewing points of robotics and cognitive
science.
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2 Development of Androids

Very Humanlike Appearance

The main difference between robot-like robots and androids is appearance.
The appearance of an android is realized by making a copy of an existing
person.

The thickness of the silicon skin is 5mm in our trial manufacture. The
mechanical parts, motors and sensors are covered with polyurethane and the
silicon skin. Figure 3 shows the silicon skin, the inside mechanisms, the head
part and the finished product of a child android made by painting colors on
the silicon skin. As shown in the figure, the details are recreated very well so
they cannot be distinguished from photographs of the real child.

Fig. 3. The silicon skin and inside mechanisms

Mechanisms for Humanlike Movements and Reactions

Very humanlike movement is another important factor for developing an-
droids. For realizing humanlike movement, we developed an adult android
because the child android is too small. Figure 4 shows this developed android.
The android has 42 air actuators for the upper torso except fingers. We de-
cided the positions of the actuators by analyzing movements of a real human
using a precise 3D motion tracker. The actuators can represent unconscious
movements of the chest from breathing in addition to conscious large move-
ments of the head and arms. Furthermore, the android has a function for
generating facial expression that is important for interactions with humans.
Figure 5 shows several examples of facial expression. For this purpose, the
android uses 13 of the 42 actuators.

The air actuator has several merits. First, it is very silent, much like a hu-
man. DC servomotors that require several reduction gears make un-humanlike
noise. Second, the reaction of the android as against external force becomes
very natural with the air dumper. If we use DC servomotors with reduction
gears, they need sophisticated compliance control. This is also important for
realizing safe interactions with the android.



Android Science 121

The next issue is how to control the 42 air servo actuators for realizing
very humanlike movements. The simplest approach is to directly send angular
information to each joint by using a simple user interface termed a motion
editor. However we need to specify 42 angles for creating a posture, which
takes a long time. Therefore we added a function to generate smooth motions
based on sinusoidal signals. This is the same idea as Perlin noise [8] used
in computer graphics. This function helps especially well in making partial
movements; however it is still time-consuming.

Fig. 4. Adult android developed in cooperation with Kokoro Co. Ltd.

Fig. 5. Facial expressions of the android

In addition to this problem, another difficulty is that the skin movement
does not simply correspond to the joint movement. For example, the android
has more than five actuators around the shoulder for humanlike shoulder
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movements, with the skin moving and stretching according to the actuator
motions. For solving this problem, a mapping table was required that corre-
lates the surface movement to the actuator motions.

Our idea for solving this problem is to train a neural network. The neu-
ral network memorizes a mapping between actuator command patterns and
marker 3D positions based on a large number of examples of android postures.

Toward Very Humanlike Movement

The next step after obtaining the mapping between the surface movements
and actuators is implementing humanlike motions in the android. A straight-
forward approach for this challenge is to imitate real human motions in coop-
eration with the master of the android. By attaching markers of the precise
3D motion tracker on both the android and the master, the android can au-
tomatically follow human motions.

Humanlike Perception

The android requires humanlike perceptual abilities in addition to a human-
like appearance and movements. This problem has been tackled in computer
vision and pattern recognition in rather controlled environments. However,
the problem becomes seriously difficult when applied to the robot in other
situations, as vision and audition become unstable and noisy.

Ubiquitous/distributed sensor systems solve this problem. The idea is to
recognize the environment and human activities by using many distributed
cameras, microphones, infrared motion sensors, floor sensors and 1D tag read-
ers in the environment. We have developed distributed vision systems [2] and
distributed audition systems in our previous work. For solving this problem
this work must be integrated and extended.

3 Cognitive Studies Using Androids

Total Turing Test

As discussed in the Introduction, android science has two aspects, the en-
gineering approach and the scientific approach. The most vivid experiment
where the two approaches meet is the total Turing test. The original was de-
vised to evaluate the intelligence of computers under the assumption that
mental capacities could be abstracted from embodiment [10]. The approach
invoked many questions about the nature of intelligence. We consider intelli-
gence as subjective phenomena among humans or between humans and robots.
Obviously, the original Turing test does not cover the concept of total intelli-
gence [1]. In contrast, the android enables us to evaluate total intelligence.
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As did the original Turing test, the Total Turing test uses a time com-
petition. We have checked how many people in preliminary experiments do
not become aware within 2 sec. that they are dealing with an android. Fig-
ure 6 displays the scene. A task is given to the subject to find the colors of
the cloth. The screen between the android and the subject opens for 2 sec.
The subject then identifies the color. At the same time, the subject is asked
whether he/she became aware the other is an android. We have prepared two
types of android, one a static android and the other an android with the micro
movements we call unconscious movements. Because a human does not freeze,
he/she is always slightly moving even when not doing anything, such as just
sitting on a chair.

Fig. 6. Total Turing test

As the result of the experiment with 20 subjects, 70% of the subjects
did not become aware they were dealing with an android when the android
had micro movements, but 70% became aware with the static android. This
result shows the importance of the micro movements for the appearance of
humanlike reality.

The 2-second experiment does not mean the android has passed the total
Turing test. Nevertheless, it shows significant possibilities for the android
itself and for cross-interdisciplinary studies between engineering and cognitive
science.

Uncanny Valley

Why do 30% of the subjects become aware of the android? What happens if
the time is longer than 2 sec.? In the experiment, the subjects felt a certain
strangeness about the android’s movements and appearance. Mori [7] pre-
dicted that as robots appear more human, they seem more familiar, until a
point is reached at which subtle imperfections create a sensation of strangeness
as shown in Figure 7. He referred to this as the uncanny valley.
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Extension of the Uncanny Valley
Why does this uncanny valley exist? We have two hypotheses:

e Ifits appearance is very humanlike, the subject attempts to understand the
android as being human. Therefore the subtle difference creates a strong
strangeness as the uncanny valley.

e Humans expect balance between appearance and behaviors when they
recognize creatures.

The second hypothesis means familiarity increases for well-balanced ap-
pearance and behavior. We refer to this as the synergy effect. For example, a
robot should have robot-like behaviors and a human should have humanlike
behaviors [9]. This differs from the uncanny valley because humans do not
have sensitive mental models for recognizing robots and other toys.

Human

Uncanny valley

Bunrakn puppet

Toy robot

sssssssssssssessssshonnas

Similarity 1000

Moving corpse

Fig. 7. Uncanny valley

Synergy effect Uncanny valley

Familiarity

g : arance
2y, — . of app®
'z,,r Gimilarity

Fig. 8. The extended uncanny valley

Based on these hypotheses, we have extended the graph depicted by Mori
as shown in Figure 8, which was obtained by fusing the uncanny valley pro-
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vided by the first hypothesis with the synergy effect provided by the second
hypothesis. This 3D graph is not exact, but rather conceptual as is Mori’s
graph. Nevertheless it is still a significant guide for our research. Our im-
portant role is to verify the structure of the graph through development of
androids and cognitive experiments with them and obtain a more precise
graph.

Age-Dependent Uncanny Valley

There is also an age-dependent relationship. One-year-old babies were at-
tracted to the child android and were unperturbed by even jerky, robotic
movements. However children between the ages of three and five were afraid
of the android and refused to face it. We found this phenomenon with prelim-
inary experiment using infants.

We consider the reasons to be as follows. If the baby’s model of others is
not so well-developed, the android may be able to pass itself off as human.
Adults know the android is not human, so they do not expect it to fit closely
a human model. However young children seem to be in the middle ground of
applying a human model to the android, but finding it mismatches. This is
a kind of uncanny valley. We expect to learn more about the developmental
process of human recognition models of infants by verifying this age-dependent
uncanny valley.

Conscious and Unconscious Recognition

Another important viewing point for the evaluation criteria is whether it is
conscious or unconscious. The SD method evaluates conscious recognition of
the subjects. In contrast, our previous approach evaluates the unconscious
recognition. Which is more significant? In the evaluation of an android, this
question is difficult to answer. In our experience, the subjects react with it as
if it is a human even if they consciously recognize it as an android.

We have observed the eye movement of subjects. Figure 9 shows eye move-
ments between a child and the child android. The child android is very eerie
because of the jerky movements. As shown in the figure, the subject cannot
keep gazing on the face of the human child and often looks at the upper right
corner. In contrast, the subject keeps gazing at the face of the android.

Previous works in psychology suggest the following two reasons why the
subject cannot keep gazing at the human face.

e Arousal reduction theory: Humans shift their gazing direction to create
barriers against external signals for concentration

e Differential cortical activation theory: The eye movements are caused by
brain activities.

However these theories do not fit our experiment. We consider there is the
third reason as follows
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Fig. 9. Eye movements as to a human child and the android

e Social signal theory: The eye movement is a way of representing thinking
[6]

We consider a human indicates he/she is social by not continually gazing
at the face of another.

Possibility of an Android as a Human

Then, we have another experiment with the adult android that has humanlike
behaviors. After 5 min. habituation, the subject answered questions posed by
the android. During the habituation, the android talked while using humanlike
body movements. Of course, the subject became aware that it was an android
because 5 min. is enough long to observe the details.

We have prepared two tasks for the subject. One is to respond with either
lies or the truth to questions posed by the android. The other is to answer
seriously both easy and difficult questions posed by the android.

When we humans, tell a lie, it is hard to keep gazing at the face of the
person to whom we are lying. For the first task, many subjects shift their
gaze when they tell a lie. For the second task, almost all subjects shift their
gaze when difficult questions are involved. With respect to the second task,
we have compared human-human interaction and human-android interaction.
Figure 10 shows the results that subjects shift their gaze in the same way for
both humans and androids.

Human-Human Human-android

interaction interaction

2.2 |83 3011|3120
10.8 | 30.2 43 [18.2] 8.2
4.4 |22.7 20.7 (19.9 | 20.5

Fig. 10. Comparison between human-human interaction and human-android inter-
action. The gazing directions are represented by 9 areas with the numbers repre-
senting percentages.
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Obviously the subjects consciously recognized the other as an android.
However they unconsciously recognized it as a human and dealt with it as
a social partner. Although we have discussed evaluation criteria, this finding
suggests the evaluation process looks more complicated.

Through the experiment, we have reached at the following hypothesis. If
a human unconsciously recognizes the android as a human, he/she will deal
with it as a social partner even if he/she consciously recognizes it as a robot.
At that time, the mechanical difference is not significant; and the android can
naturally interact and attend to human society. Verification of this hypothesis
is not easy and will take a long time. However it is an important challenge
that contributes to developing deeper research approaches in both robotics
and cognitive science.

This paper has been proposed android science as a new cross- interdisci-
plinary framework. Our purpose is not to develop the androids as commercial
products, but rather to study principles of human-robot interaction. The au-
thor believes android science will contribute for it.
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Mimetic Communication Theory for Humanoid
Robots Interacting with Humans
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Summary. The theory of behavioral communication for humanoid robots that in-
teract with humans is discussed in this paper. For behavioral communication, it is
fundamental for a humanoid robot to recognize the meaning of the whole body mo-
tion of a human. According to the previous works, it can be done in the symbolic level
by adopting the proto-symbol space defined by the Hidden Markov Models based on
the mimesis theory. The generation of robot motions from the proto-symbols is also
to be done in the same framework. In this paper, we first introduce the meta proto-
symbols that stochastically represent and become signifiants of the interaction of a
robot and a human. The meta proto-symbols are a little more abstract analogy of
the proto-symbols and recognize/generate the relationship of the two. A hypothesis
is then proposed as the principle of fundamental communication. The experimental
result follows.

Key words: Mimetic Communication, Humanoid Robot, Human Robot In-
teraction, Mimesis Theory, Proto Symbol Space, Hidden Markov Model.

1 Introduction

Communication is defined as a process of information exchange between social
creatures through common systems such as gestures, signs, symbols or lan-
guages. Gesture or behavioral communication has much longer history than
that of language for the human beings. Mimesis hypothesis suggests that the
humans started the use of signs and symbols in communication through be-
havioral imitation [1]. The importance of behavioral communication lies in
the fact that it always stays behind and enables physical interactions between
two humans.

The link between a sender and receiver of messages is a necessary condi-
tion for any communication [2]. The discovery of mirror neurons [3] [4] was an
epoch-making event in neuroscience. The mirror systems enabled the link be-
tween a subject and the others through gesture messages. Namely, the mirror
systems are related to the development of communication [5].

S. Thrun, R. Brooks, H. Durrant-Whyte (Eds.): Robotics Rescarch, STAR. 28, pp. 128 139, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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In this paper, we focus on behavioral communication to support inter-
actions between humanoid robots and humans. We discuss the fundamental
theory of behavioral communication for humanoid robots that interact with
humans. For behavioral communication, it is essential for a humanoid robot
to recognize the meaning of the whole body motion of a human. According
to the previous works [6]-[9], it can be done in the symbolic level by adopting
the proto-symbol space defined by the Hidden Markov Models based on the
mimesis theory. The generation of robot motions from the proto-symbols is
also to be done in the same framework.

We first introduce the meta proto-symbols that stochastically represent
and become signifiants of the interaction of a robot and a human. The meta
proto-symbols are a little more abstract analogy of the proto-symbols and
recognize/generate the relationship of the two. A hypothesis is then proposed
as the principle of fundamental communication. Namely, the communication
is to recognize the relationship of the two and try to maintain it, whether it is
cooperative or competitive. Technical implementation of the hypothesis can
be done by simply short-circuiting the output of recognition and the input of
generation of the meta-proto-symbols. The experimental result follows using
a 20 DOF small-size humanoid robot, UT-y2 magnum [18].

For interaction between robots and humans, Canamero et al [10] discussed
the interface of humanoid robot named Feelix that showed various kinds of
facial expression in response to touch stimulus from a human. Breazeal [11]
studied a model of social interaction between an infant and a caretaker, and
then developed a robot named Kismet with the social model. Imitation learn-
ing is also an active field of robotics research and various kinds of approaches
have been presented [12]. Samejima et al [13] [14] reported that a two-link
robot could symbolize, recognize motion patterns using predicting modules,
and generate motion patterns using controlling modules. Morimoto et al [15]
proposed a hierarchical reinforcement learning in order to acquire motion
dynamics. Not many works have been done to bridge communication and im-
itation learning. Billard et al [16] presented a very interesting approach to
acquisition of communication skill based on the child-mother model of imi-
tation learning. This architecture was named DRAMA, the general control
Dynamic Recurrent Associate Memory Architecture [17].

2 Mimetic Communication Model of Interaction

The proto symbol space [9] [8] is a vector space approximately structured for
the set of the Hidden Markov Models. A HMM is acquired from a motion
pattern and to be used to recognize and generate it. In the proto symbol
space, we can handle continuous transition of motion patterns. Fig.1 shows
the image of bidirectional computation using the HMMs.

The recognition of transition of motion patterns or the generation of mo-
tion pattern that smoothly changes from one motion pattern to another is
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Fig. 1. Proto symbol space. Stochastic parameters of Hidden Markov Models are
used for bidirectional computation of recognition and generation of motion patterns.
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Fig. 2. Mimetic communication. A behavioral communication model for robots
interacting with humans.

represented as a moving point in the proto symbol space. For the motion
patterns of the point, we can define the second proto symbol space, which is
called the meta proto symbol space since it represents the motion patterns of
symbols.

In this paper, we propose to use the meta proto symbol space to represent
the communication/interaction between a robot and a human or between the
self and the partner.

Fig..2 explains the principle of mimetic communication model for interac-
tion proposed using the meta proto symbol space.

In Fig..2 (1), a proto symbol space executes bidirectional computation of
the self (robot) as well as that of the partner (human) of interaction. A meta
proto symbol space is set in the second hierarchy and takes the sequences
of proto symbols of the self and the partner as its behavior and executes
bidirectional computation. The two recognition outputs of the self and the
partner from the ptoto symbol space become the recognition input of the
meta proto symbol space. The generation output of the meta proto symbol
space separates into two and become the generation inputs of the proto symbol
space. The recognition output of the meta proto symbol space implies for the
self (robot) the estimated state of interaction, while the generation input of the
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meta proto symbol space implies the control strategy for the interaction. The
essence of interaction is in the process of computing the control strategy from
the estimated states of interaction. The process should vary and be designed
depending on whether the interaction is purposeful, emotional, contingent, or
naturally drifting.

A hypothesis for designing fundamental interaction, namely naturally
drifting interaction is to short-circuit the recognition output and the gen-
eration input of the meta proto symbol space as shown in Fig..2 (2). Because
the naturally drifting interaction can be modeled to estimate the states of
interaction and attempt to maintain and generate the states. Note that the
naturally drifting interaction model can represent not only cooperative or
friendly interactions, but also competitive or hostile interactions..

The technical implementation was done in the form of Fig..2 (3) by elimi-
nating generation processes of the partner (human) and approximating recog-
nition processes of the self (robot).

3 General Algorithms of Recognition and Generation

3.1 Computational Problems

For both the proto symbol space and the meta proto symbol space, the com-
putational problems are common. In the literature [9] the computation of
recognition and generation were discussed in the simplest case, namely, as an
interpolation between two proto symbols. The norm of the vector space was
defined by the Kullback-Leibler information modified to satisfy the symmetry
property. The proto symbol space was then constructed through the multi
dimensional scaling.

For the continuous recognition of motion patterns, we use stepwise moving
recognition. Fig.3 shows the stepwise moving recognition for the meta proto
symbol space, where W, ,q, is the time width of the moving window, and
Wstep 18 the moving time step of the window.

3.2 Motion Recognition

We represent the observation through the moving window by Oi(t)‘ where
i = {H, R} is used to indicate human (H) and robot (R). Then, P(O*(¢)|A;)
shows the likelihood that observation Oi(t) is generated by the proto symbol
j-

Motion recognition is to find the coordinates in the proto symbol space
that is appropriate for the observation. We propose the single Gaussian model
for motion recognition as shown in Fig.4. We define a Gaussian that has value
P(O'(t)|\;) at the coordinates of proto symbol j of i, a:,,sé.. The mean vector,

pi(t), and the covariance matrix, X°(t), of the Gaussian are computed as
follows:
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where Nps® is the number of proto symbols. The coordinates for the obser-

vation is given by x*(t) = u'(t).
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Fig. 5. Image of clustering analysis for compensating the sparseness of the proto
symbols.

3.3 Likelihood of a Point in the Space

Computation of likelihood for observation is done in the previous subsection.
We also need computation of likelihood of a point in the proto symbol space
being associated with a proto symbol. This computation will be used for
motion generation. The proto symbols are rather sparse in the proto symbol
space and cannot provide a meaningful likelihood for a point distant from
them.

We apply cluster analysis for the history of observations and use the result
to compensate the sparseness of the proto symbols. For each observation O° (t),
we have a point in the proto symbol space, z'(t) = ui(t). We also compute
the proto symbol that provides the maximum likelihood. Namely,

R’ = argmaxP(O'(1)|A;) 3)

where R shows an integer indicating the proto symbol of the highest likeli-
hood. Fig.5 shows the image of cluster analysis for compensating the sparse-
ness of the proto symbols. The Gaussian of the proto symbol j of i is then
obtained as follows:

s = —SUM{a!(9[RI(9) = /) 8

Zpsi = SSUM{(@ (1) — pps )@ (0) — pps) R =) ()

J

where n; denotes the number of observations that are recognized as associated
with proto symbol j.
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3.4 Motion Generation

Using the Gaussian computed in the previous subsection, we can generate a
motion pattern of the robot indicated by point x*(¢) in the proto symbol
space as follows:

H
Nps

oa(t) = > wrogk(t) (6)
k=1

P(xH ()| AH)
o 7
V2t P& ()| ) @

w;(t) =

where P(x (1)[Af) is the likelihood of a point ¥ (t) with respect to the j-th
proto symbol. 0gi(t) means a generated motion pattern by the k-th proto
symbol.

In order to use the generated motion patterns for the motion of humanoid
robot, we will have to consider dynamical consistency, discontinuity at switch-
ing motion patterns, and the other constraints such as work space of joints
and self-collision and appropriately modify them in realtime.

4 Experiments

The experiments of mimetic communication theory were conducted. Small-
size humanoid robot, UT-mu magnum [18] was used. The realtime motion
capture system was used to measure the whole body motion of a human and
their interaction was investigated. The proto symbols and the proto symbol
space were developed to model the motion patterns of the humanoid robot.
The same proto symbol space was used for recognition of the human subject.

The meta proto symbol space was developed by showing the typical fight-
ing scenes of two human subjects. The fights of the humanoid robot and the
human subject were demonstrated at AICHI EXPO2005 in June 2006. They
did not make physical contacts, rather they fought only in the virtual screen.

The sampling time for the motion capture is 30ms. We used the model
of a humanoid robot [20] with 4 active joints in each arm, 6 active joints in
each leg. The motion patterns are therefore represented by sequences of 46
dimensional vectors. The window span of motion data for the recognition is
180ms, which means that the motion data includes only 6 frames of captured
data.

The output motion patterns of humanoid robots were modified in realtime
to consider dynamical consistency, discontinuity at switching motion patterns,
and the other constraints.

The stage at the EXPO is shown in Fig.??. The overall experimental
system was set up as shown in Fig.??.
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Fig. 6. Realtime virtual fight between a humanoid robot and a human subject at
EXP02005.

nind fighters in the cispiny

Fig. 7. Overall experimental setup for realtime virtual fight.

Fig.6 shows the virtual fighting scene between the humanoid robot and
the human subject. In this figure, we see that the robot bends down against
the human’s punch and takes a punch at the human, and that the robot
tries to protect with a leg against the human’s kick and then give a kick
to the human. The robot was capable of recognizing the human’s behaviors
and generating the suitable behaviors corresponding to the situation. These
experimental results, we claim that the mimetic communication model is valid
for acquiring primitive communication ability.

5 Conclusion

The mimesis model bridges the continuous motion patterns of the body of
robot and the system of symbols. In this paper, we developed a fundamen-
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Fig. 8. Experimental result of interaction between the robot and the human.

tal theory to enable behavioral interactions between humanoid robots and
humans. The interaction is supported by mimetic communication.

A hypothesis for designing fundamental interaction, namely naturally
drifting interaction was established. It was to short-circuit the recognition
output and the generation input of the meta proto symbol space. Because
the naturally drifting interaction can be modeled to estimate the states of
interaction and attempt to maintain the flow of states.

The mimetic communication theory was integrated into the realtime fight-
ing demonstration of a humanoid robot and a human subject in the virtual
screen. The experimental results showed the effectiveness of the theory.
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Appendix
Mimesis Model [9]

The mimesis model consists of a set of proto-symbols that allow bidirectional
computation of recognition and generation of the whole-body motions, just
like the mirror system. A set of the stochastic parameters of a Hidden Markov
Model (HMM) acquired for a segmented whole-body motion is considered a
proto-symbol. In the literature [9], the pseudo-distance is defined between the
proto-symbols, that allows to form an Euclidean space to interpolate and ex-
trapolate the proto-symbols. The Euclidean space is named the proto-symbol
space.

The left-to-right model for state transition and the continuous HMMs were
adopted to construct the mimesis model as shown in Fig.9. A HMM is defined
by a set of stochastic parameters A\ = {A, B,IT}, where A = {q;;} is a
matrix of state transition probability {rom node i to node j, B = {b;} is a
vector of output probability, and IT = {m1,7a,---,7,} is a set of initial node
probability. The probability desity functions are assumed Gaussian as follows:

1 -1
bi(z) = Wexp{g(w — )" ET (e - )} (8)
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where p, and ¥; denote the mean vector and the covariance matrix of node 4.
x is an m-dimensional input vector. The parameters of HMM are computed by
the Baum-Welch algorithm [19]. For computational efficiency the covariance
matrix was approximated by a diagonal matrix with its diagonal elements.

Motion recognition is to find one among all the HMMs whose probability
P(OJ)) to generate the observed motion pattern O is maximum.

Triple Averaging for Motion Generation

Motion generation is to recover the motion patterns encoded by the proto
symbols. This paper proposes the triple averaging method for motion gener-
ation, which is explained as follows:

stepl Compute a sequence of state transition @, using the transition proba-
bility A and random variables.
step?2 Repeat stepl for n, times and obtain Qqq, Qago, - - ~,QGnq. Compute

the mean state transition Q. by simply averaging them.

_ 1 &
Qo =1{¢}  sx=int( Z Sk:) (9)

where Q¢, = {¢s,, }. sk represents the state number at time k. If the state
at time k is g;, then sp = j and sp41 = j or j + 1. If 54 = n or null, then
Sgr1 = null.. NV is the number of s, that are not null.

step8 Compute a sequence of output vector O according to the mean state
transition nodes Q, using the output vector probability B and random
variables.

step4 Repeat stepd for n, times and obtain output vector sequences OG1,
Oco, ...’OAG%_ Taking their average, compute the mean output vector
sequence Og.

step5 Repeat stepl through stepd for n; times and obtain the mean output
vectors Og1, Oga, -+ +,0cn,. Taking their average, finally compute the
generated motion pattern Og.

Inamura’s generation process [9] included double averaging of step2 and
step. The third averaging in steps was effective to deliver a smooth out-
put vector sequence even when the total cost of averaging was maintained
constant.
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Robot mechanisms science must be understood as acquiring an in-depth un-
derstanding of the mechanical behavior of a robot and involve domains such as
kinematics, dynamics and singularity analysis. Two issues must be addressed:

e analysis: determine all the mechanical properties of a given robot that are
necessary to control it and to verify that its behavior will satisfy a given
set of requirements

e synthesis: being given a set of requirements determine what should be the
mechanical arrangement and the dimensioning of the robot. Synthesis is
in general a much more complex issue than analysis

The study of robot mechanisms and of their design is a fundamental and
exciting part of robotic science as the mechanical part of the robot will, at
the end, condition what the robot can performed in term of tasks and will
drastically influence control issues.

It may be believed that this part of robotics is well mastered now, espe-
cially for serial industrial robots. Even in that case they are still many open
issues. For example for the analysis part, a consequence of manufacturing
tolerances is that a real robot will always differ from its theoretical model:
managing these uncertainties to certify some robot properties is a complex
problem that is far from being solved and involves sophisticated mathemat-
ics. It may then be understood that the synthesis of serial industrial arm is
also an open problem, especially if manufacturing tolerances are taken into
account.

Robotics is also a rapidly evolving field in which new application fields
and materials renew and enlarge the mechanisms that must be studied. For
example recent moves in robotics toward closed-chain mechanism and nano-
robots must be emphasized. In the first case the closed structure allows to
reach very good performance level for load, accuracy and stiffness, that open
loop mechanisms cannot rival. As for micro-robot the change of scale implies
that some mechanical effects, that are usually neglected at the macro scale,
become preponderant: it is hence necessary to completely revisit the analysis

S. Thrun, R. Brooks, H. Durrant-Whyte (Eds.): Robotics Rescarch, STAR 28, pp. 143 144, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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and synthesis of such mechanism. Furthermore new materials with astounding
properties (e.g. Ghz motion) may be used, although their use and integration
in a rohotic system is still an open problem.

The papers presented in this session illustrates perfectly such evolution:

1. the paper presented by M. Uchiyama and co-authors describes the use of
a closed-loop mechanism for a 6-dof haptic device. Here the stiffness and
force/torque capacities of such type of mechanism is a key advantage for
the application but requires a careful analysis of the dimensioning

2. B.J. Nelson and co-authors address the building of nanoelectromechanical
systems (NEMS). They combine the top-down (direct fabrication) and
bottom-up (assembly) approaches to design actuators and sensors with
carbon nanotubes and Si nanocoils and present experimental, theoretical
and design perspectives

3. in the last paper of the session J-P. Merlet investigates performance indices
based on the Jacobian matrix that are used for design purposes and shows
that they are not appropriate for closed-loop chains.
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Summary. We present design of a compact haptic device in which parallel mecha-
nisms are utilized. The design realizes a large workspace of orientational motion in a
compact volume of the device. The device is a parallel-serial mechanism consisting of
a modified DELTA mechanism for translational motion and a spatial five-bar gimbal
mechanism for orientational motion. We derive an analytical model of stiffness for
the modified DELTA mechanism which we utilize for the design of a stiff platform
for translational motion. The model shows that the compliance matrix is a function
of kinematic parameters as well as elastic parameters of each mechanical element.
Configuration dependency of the compliance matrix is therefore an important point
to be noticed.

1 Introduction

A device to make a bridge between human haptic sense and data space is called
a haptic device. It displays the sense of touch to a human. It transfers human
haptic sense in the real world to signals in data space. Those devices include
a tactile display, a force/torque display, etc. A master arm in a master/slave
system is a type of haptic device that displays force/torque information at a
slave arm. This paper discusses on the design of such a haptic device of master
arm type.

For a haptic device of master arm type, PHANTOM of SensAble Technolo-
gies, Inc. [1] is well known. But this has not sufficient force/torque capacity
and is unable to display a very rigid feeling. A non-holonomic haptic device
to display a rigid contact using a wheel has been proposed [2]. However, it
is difficult to realize a haptic device of six DOF (Degrees Of Freedom). Fast
six-DOF motion is realize by a haptic device of magnetic levitation type [3].
However, the workspace of the device is limited. A parallel wire system [4]
may realize fast motion but requires a large place for itself.

S. Thrun, R. Brooks, H. Durrant-Whyte (Eds.): Robotics Rescarch, STAR 28, pp. 145 162, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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To solve those problems, this paper proposes to apply parallel mechanisms
to the design. The target is to realize a compact six-DOF device with large
workspace for orientational motion and with capability of high-frequency mo-
tion. A compact six-DOF parallel mechanism like [5] may be used as a haptic
device. However, the haptic device built by such a parallel mechanism only,
will have limitation in orientational workspace. It is difficult to realize a large
orientational workspace by such a parallel mechanism. A redundant paral-
lel mechanism [6] may enlarge the workspace to some extent but need extra
motors.

A stiff and light-weight mechanism is needed to increase the bandwidth of
frequency response. For this purpose, a parallel mechanism is a good selection.
Stiffness analysis of a parallel mechanism has been studied by, for example,
Gosselin [7]. However, he considers only the stiffness of each actuator. Huang
[8] proposed a method of stiffness analysis for a parallel mechanism, in which
elastic components are considered. However, his analysis does not deal with
bearings at free joints that are often used in the parallel mechanism.

We present a design of a compact haptic device in which parallel mecha-
nisms are utilized and a large orientational workspace is realized in a compact
volume of the device [9]. The device is a parallel-serial mechanism consisting of
a modified DELTA mechanism for translational motion and a spatial five-bar
gimbal mechanism for orientational motion. We derive an analytical model
of stiffness for the modified DELTA mechanism to design a stiff platform for
translational motion [10].

The paper is organized as follows: In Section 2, the design of a mechanism
for the haptic device is presented. In Section 3, a model for stiffness analysis
is derived, based on which the design is elaborated in Section 4 to yield a
mechanism with well-balanced stiffness. The paper is concluded in Section 5

2 Synthesis of a Compact 6-DOF Mechanism

In this section, we present synthesis of a compact six-DOF mechanism for
a haptic device of a master arm type. Design requirements and a six-DOF
mechanism to meet the requirements are presented.

2.1 Design Requirements

Design requirements for a mechanism of the targeted haptic device are listed
as follows:

1. Capability of six-DOF motion,

2. Capability of high-frequency motion,
3. Compact space for placing, and

4. Large workspace.
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To meet the requirements 1, 2, and 3, the parallel mechanism [11], [12] will be
a good candidate. However, the requirement 4 for orientational motion will
not be met by a parallel mechanism only, since orientational workspace of the
parallel mechanism is usually very limited. In this paper, we solve the prob-
lem by applying two parallel mechanisms connected serially to translational
motion and to orientation motion, separately.

2.2 A Compact 6-DOF Mechanism

The overview of the mechanism that we synthesize is shown in Figure 1.
Architecture of the mechanism is shown in Figure 2, diagrammatically. As
shown in the figure, the mechanism consists of three parts, two of which
are parallel mechanisms, connected serially. The remaining one is a serial
mechanism of one DOF. Thus, the mechanism is a parallel-serial mechanism.
The root of the mechanism is for three-DOF translational motion. Its
overview is shown in Figure 3. It is a type of the DELTA mechanism invented
by Clavel [13]. However, it is slightly different from the Clavel’'s DELTA.
Difference is shown in Figure 4. The conventional DELTA uses ball joints
to connect the rod to the arm on one end and to the traveling plate on the
other, while the mechanism proposed in this paper uses ball bearings for those
connections. We call this mechanism a modified DELTA mechanism. With the
modification in the mechanism, we have larger movable range for the joints
between arm and rod and between rod and traveling plate, respectively. This
is shown in Figure 5. A similar mechanism has been proposed by Tsai [14].
The middle and the top parts of the mechanism are for orientational mo-
tion. The middle part is a five-bar gimbal mechanism [15] as shown in Figure 6.
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Fig. 4. Arrangement of DOF of the modified DELTA mechanism

This realizes two orientational motions, that is roll 8, and pitch 8,. Yaw mo-
tion 8, is realized by the top part of the mechanism. An assembly drawing of
the gimbal mechanism is shown in Figure 7. The axes for roll and pitch mo-
tions are supported by two bearings grounded on the rigid frame. It is noted
that a parallel mechanism to implement the three orientational motions si-
multaneously has been proposed in [16], but we do not employ this mechanism
because its movable range for yaw is small.

To meets the design requirements, the modified DELTA mechanism at
the root has to be sufficiently stiff because it has to carry the mechanism for
orientational motion. In the following sections we present procedure to design
a stiff mechanism for this part.
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3 Stiffness Analysis of the Modified DELTA Mechanism

In this section, we present a model for the analysis of stiffness of a parallel
mechanism. Then, we apply this model to the modified DELTA mechanism
presented in the previous section, and point out that the stiffness depends on
the kinematic parameters, and therefore on the configuration of the mecha-
nism, even when the same mechanical components are used.

3.1 A Stiffness Model of a Parallel Mechanism

A parallel mechanism is a closed-loop mechanism consisting of a base plate, a
traveling plate and elementary chains that connect the two plates. Its stiffness
is determined by the stiffness of each elementary chain. We assume the base
and traveling plates are rigid. We begin with the analysis of the elementary
chain and derive a compliance matrix of the target mechanism.
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Tip Compliance of an Elementary Chain

The stiffness of each elementary chain is represented by its tip compliance
[17], which we are going to derive here. Svinin and Uchiyama [18] studied the
static compliant motion of a serial manipulator with elastic deformations in
its structure. Let us suppose that the elementary chain consists of m elastic
elements and n joints as shown in Figure 8. Forces and moments at each elastic
element cause its elastic deformations of translation and rotation:

€; = [5302 5yz 02 ¢m ¢yz ¢21]T (1)

where e; is an elastic deformation vector of the ith element. 644, 6y and d.;
are the translational deformations, and ¢z, ¢y: and ¢,; are the orientational
deformations, respectively. Assembling the all ¢; for i =1, 2, ---, m, we have
an elastic deformation vector for the elementary chain:
T T 71T

e=|el el - el ] (2)
which is determined by forces and moments on each element. If we suppose
linear elasticity, we have

T
e=Ce[f{ 2 fm] ®)
where

C. = diag [061 Ce -+ Cem] (4)

is the compliance matrix of the all elastic elements, C'; is the local compliance
matrix of the ith elastic element, and f, is the forces and moments acting on
the ¢th element. The tip compliance matrix C'; of the elementary chain which
relates the tip deformations of the elementary chain to the forces and moments
applied at the tip is given by

Cy=J.(6,0)C.J; (6,0) (5)

assuming that the elastic deformation e is small, namely e = 0 in J, (8, e),
where J. (8, e) is the Jacobian matrix consisting of the Jacobian matrices for
each elastic element defined by

Je(0,e)=[Jc1(0,€) Jez(0,€) -+ Jern (0, €)] . (6)

J¢i (8, e) is the Jacobian matrix for each elastic element. .J, (8, e) is a func-
tion of both 8 and e. 0 is a joint angle vector.

Tip Compliance of a Parallel Mechanism

Using the compliance matrix of the elementary chain given by Equation (5) we
derive a tip compliance matrix of the parallel mechanism shown in Figure 9.
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This parallel mechanism consists of t elemental chains. The point O is the
origin of the base plate and the point P on the traveling plate is the output
point of the mechanism. Fach elementary chain connects the points O and P.
The tip compliance matrix of the parallel mechanism is given by

C,'=Ci +Cy +--+C (7)

where Cy; (j =1, 2, ---, t) is the compliance matrix of the jth elementary
chain. It should be noted that the elastic deformations of both traveling plate
and base plate are ignored.

Now, we have an equation to calculate the tip compliance matrix of the
parallel mechanism. To calculate C, by Equation (7), we need to have Cl;
in Equation (4), that is a model for the ith elastic element. Typical elastic
elements in a parallel mechanism are a link and a bearing. We present models
for them in the following sections.

Modeling of a Link

Suppose that the ith elastic element is a link of a slender beam. Forces and
moments on the beam cause elastic deformations. The relation between the
forces and moments and the elastic deformations at the end of the beam is
well known. It is expressed by
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where L is the link length, F is the modulus of the longitudinal elasticity, G
is the modulus of the transverse elasticity. I, I, and I, are the geometrical
moments of inertia. I, is the polar moment of inertia.

Modeling of a Bearing

A bearing is a machine element often used in the parallel mechanism. When
the ith element is a bearing, the compliance matrix is given by

1
— 0 0 0 0 0
ko )
0 — 0 0 0 0
Ky
1
0 0 — 0 0
Ce = kr (9)
0 0 1] 0 0
0 0 0 L 0
km .
0 0 0 0 0 —
L km

where k, is the coefficient of elasticity in the axial direction, &, is the coefficient
of elasticity in the radial direction, 1/® is the coeflicient of rotational elasticity
in the axial direction, and k,, is the coefficient of rotational elasticity in the
radial direction. The direction of the z axis is chosen to be the rotation axis.

If the axial rotation is free, which is usually the case for a bearing, the
coefficient of rotational elasticity 1/@ is nearly zero and @ is close to infinity.
However, if @ is chosen close to infinity, the numerical calculation becomes
unstable. Therefore, @ should be chosen large enough but not close to infinity.
In this paper, the value of 10% rad/Nm is used. This value is much larger than
any other matrix elements.
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Fig. 10. An assembly drawing of the modified DELTA mechanism

3.2 Application of the Model to the Modified DELTA Mechanism

We apply the stiffness model derived in the previous section to the modified
DELTA mechanism in order to obtain a compliance matrix for the mechanism.
A schematic diagram of this mechanism is shown in Figure 10. This mechanism
is made of a base, bearings 0, three arms, bearings 1 and 2, three rod parts,
bearings 3 and 4 and a traveling plate. The output shaft of the motor is
supported by the bearings 0. The rod part which consists of a planar parallel
mechanism is made of the bearings 2, two parallel rods and the bearings 3
(see also Figures 3 and 4). The passive joints are equipped with conventional
ball bearings that are mounted in pairs. We derive the compliance matrix for
this mechanism, first deriving a model of the bearing pair, then a model of
the rod part, and finally assembling those models.

Modeling of a Pair of Bearings

The connection between the rod part and the arm and between the rod part
and the traveling plate is through a pair of bearings as shown in Figure 11.
The coeflicients of elasticity in the axial and radial directions of this part are
obtained as those for a bearing multiplied by two. The coefficient of rotational
elasticity in the axial direction is also obtained by the same way. However, the
coefficient of rotational elasticity in the radial direction cannot be obtained
simply by this way. This is obtained using a model of deformation shown in
Figure 12. The moment M in the figure is obtained by
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2{km+ (%>2kr}9 (10)

where dz is the elastic deformation in the radial direction, € is the rotation
angle, and « is the distance between the two bearings as shown in the figure.
k. and k. are elastic coefficients. Therefore, we have the compliance matrix
of the pair of bearings as follows:

. _
— 0 0 0 0 0
%
0 0 0 0 0
%
0 0 0 0 0
%,
®
Co=| 0 0 0 = (1) 0
o 0 0 o0 — 0
Q{km+(§) k}
1
o 0 0 o0 0 —
Q{km+(§> k}

(11)

Modeling of the Rod Part by a Parallel Mechanism

The rod part is made of a planar parallel mechanism. This parallel mechanism
consists of two parallel rods and the bearings 2 and 3 as shown in Figure 10
(see also Figures 3 and 4). We consider the two rods (Rod L and R) sepa-
rately as shown in Figure 13 and calculate the compliance matrix of each rod,
first, and then, the compliance matrix of the whole rod system. According to
Equation (4), the compliance matrices C.r, and C.g for the rods L and R,
respectively, shown in Figure 13, are given by

C.p, = diag [Char Crr ChsL | (12)
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Fig. 13. Modeling of the rod part

and
C.r = diag | Crar Crr Chisr | (13)

where Chyor, Crar, Cpsr, and Cpzgr are the compliance matrices of the bear-
ings 2L, 2R, 3L and 3R, respectively. C,; and C g are the compliance matri-
ces of the rods L and R, respectively. The Jacobian matrices J.r (8, 0) and
Jer (0, 0) for the rods L and R are written as

Jer (9, 0) E [JbgL (97 0) Jrr (97 0) Juar, (97 0)] (14)
and
JeR(O, 0): I:JbQR(07 0) JTR(G, O) J533(07 O)] , (15)

respectively, where Jpap (0, 0), Jpor (0, 0), Jusy, (0, 0) and Jy3r (0, 0) are
the Jacobian matrices of the bearings 2L, 2R, 3L and 3R, respectively.
J.(0,0) and J,r (0, 0) are the Jacobian matrices of the rods L and R,
respectively. Therefore, the compliance matrices Cloqr, and Croqr for the
rods L and R can be written as

Croar = Jer (0, 0)Cerd; (6, 0) (16)
and
CrodR = JeR (07 0) CeR JZR (07 O) > (17)

respectively. Consequently, the compliance matrix of the rod part Ca3 is
obtained as

Coly =Crony + Crohig - (18)

rod

Stiffness of the Modified DELTA Mechanism

The modified DELTA mechanism consists of three elementary chains as shown
in Figure 3. Each elementary chain is connected to the same traveling plate
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which does not deform elastically. A point on the traveling plate can be a
common tip for the three elementary chains. Therefore, we first derive the
compliance matrices Cq; (j = 1, 2, 3) for the jth elementary chain using
Equation (5). Then, using Equation (7), we obtain the compliance matrix C,,
of the whole mechanism.

The compliance matrix C; (j = 1, 2, 3) defined by Equation (4) for each
elementary chain is given by

C.; = diag [ Croy Caj Cr1j Corsy Chay | (19)

where Chg;, Cp1; and Chpg; are the compliance matrices of the bearings 0,
1, and 4, respectively. C; is the compliance matrix of the arm. Car3; is the
compliance matrix of the rod part. The Jacobian matrix J.; (6, 0) is written
as

Jej (97 0) = [JbOj (07 O) Jaj (07 0) Jblj (07 O) J27’3j (97 0) Jb4j (07 O)]
(20)

where Jy; (0, 0), Jp1; (0, 0) and Jp4; (6, 0) are the Jacobian matrices of the
bearings 0, 1 and 4, respectively. Jg; (8, 0) is the Jacobian matrix of the arm.
Jor3; (0, 0) is the Jacobian matrix of the rod part. Therefore, the compliance
matrix of the jth elementary chain Cj; is obtained by

Cyj=Jej (0,0)Ce;JL(0,0) . (21)

Combining the three matrices for the three elementary chains, the compliance
matrix of the whole mechanism C}, is obtained by

c,'=Cci+Cl+Cq. (22)

As has been seen in the derivation, the compliance matrix C}, is a func-
tion of the joint angles 8, kinematic parameters of the structure, and elastic
parameters of the components such as links, bearings, etc. The model ob-
tained here in this section gives a tool to optimize those parameters through
evaluation of the matrix C,,.

4 Detailed Design of the Modified DELTA Mechanism

We discuss on the design of a modified DELTA mechanism utilizing the stiff-
ness model derived in the previous section. Using this model we elaborate
the stiffness of the modified DELTA mechanism to decide its parameters in
details. We assume a specification that the workspace be around a sphere of
75 mm radius. The procedure of the design is listed as follows:

1. First, we consider the singular configuration to obtain a set of kinematic
parameters and realize a singularity-free workspace. This part does not
use the stiffness model but uses only a kinematic model.
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Fig. 14. Singular configurations

2. We discuss how each elastic element influences the tip stiffness and identify
the elastic elements having a large influence on the reduction of the tip
stiffness. Then, we use the results to improve the tip stiffness.

3. We discuss on kinematic parameters that influence on the tip stiffness and
that may be used as a design index for a well-balanced tip stiffness.

4. Finally, we propose an index for the design of a modified DELTA mecha-
nism and give a design example.

4.1 Singular Configuration

Two types of singular configuration are considered. They are undermobility
and overmobility singularities [12]. Figure 14 shows the two types of singularity
for the modified DELTA mechanism, diagrammatically on a plane. This figure
suggests that the case where the base radius R is equal to or larger than
the traveling plate radius r be more recommendable than the case where
r > R because the former case does not have overmobility singularity in the
workspace.

In the following discussion, we set both the traveling plate radius and
the base radius equal to 40 mm. Also, since the workspace is given around a
sphere of 75 mm radius, we set the sum of the arm length and of the rod length
220 mm, the minimum height 50 mm in order to avoid the undermobility, and
the maximum height 200 mm in order to avoid the overmobility.

4.2 Parameters of the Modified DELTA Mechanism

Kinematic parameters of the modified DELTA mechanism are shown in Fig-
ure 15. Point O is the origin and point T is the tip position. L is the arm
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Fig. 15. Kinematic parameters of the modified DELTA mechanism

Table 1. Values of kinematic parameters

| Parameter [|[mm]|
Rod length M 110
Arm length L 110
Base radius R 40
Traveling plate radius r || 40

length, M is the rod length, R is the base radius, r is the traveling plate
radius and z is the traveling plate height which is the distance between points
O and S. Here, we deal with the case where the distance between points S
and T is 15mm, the distance between points T and U is 63.5 mm, and the
distance between the two parallel rods at the rod part is 31 mm. The values
of M, L, R, and r are given in Table 1.

It is assumed that the arms, rods, motor axes, bearings 0, 1, 2, 3 and 4
deform elastically. More specific details on the parts of the modified DELTA
mechanism are given below:

e The arm is a hollow pole, made of A7075 material, with an internal diam-
eter of 8 mm and an external diameter of 12 mm.

e The rod is a prismatic solid beam, made of SUS304 material, one side
measure of which is 5 mm and the other 6 mm.

e Bearing 0 is an NSK model F688A. Bearings 1 and 4 are NSK model
MR128.
Bearings 2 and 3 are NSK model F684.
The motor is a Maxon model A-max 26.

From the values of Table 1 and the elastic parameters of the above parts,
we calculate the compliance matrices: Cg; for the arms, C,r and C, g for
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the rods, Cpoj, Cp1j, Cror, Cr2r, Cosr, Cosr, and Cpy; for the bearings. All
bearings are used in pairs.

The stiffness at the tip position (point U, see Figure 15) of the modified
DELTA mechanism changes largely depending on the traveling plate position.
Therefore, it is necessary to design the mechanism taking into consideration
the tip stiffness at all points in the workspace. However, it is very difficult
to evaluate all the 6x6 elements of the tip compliance matrix at all points.
Therefore, we simplify the evaluation by limiting the point only in the z
direction, with no motion in the (z, y) plane. In this case, C, is given by

A 0 0 0 B 0
0 A 0 -B 0 0
0O 0 C 0 0 0
Cr»=109 B o D 0 o0 (23)
B 0O 0 0 D 0
0 0 0 0 0 E

where A, B, C, D and E are non-zero elements determined by kinematic and
elastic parameters.

It should be noted that the value of @ for bearing 0 is measured directly
in the real setup and made 0.0058 rad/Nm. In the bearing 0 a motor axis is
inserted. Therefore, the compliance around this axis depends on the perfor-
mance of the motor, control law, etc.

4.3 Influence of Each Elastic Element on the Tip Stiffness

Evaluating C, in Equation (23) for each of the compliance matrices Cy; for
the arms, C,z, and C,g for the rods, Cro;, Cp1j, Crar, Co2r, Chrsr, Ch3r,
and Cha; for the bearings, with the rest of them being zero, we know influences
of each elastic element on the tip compliance matrix. Through this numerical
analysis we find that the influence on the element A and B of the bearings
2 and 3 is large, and we decrease the influence by replacing the bearings by
ceramic bearings. Also, to decrease the influence of the arm on the elements
C, D and FE, we change the arm internal diameter to 10 mm and its external
diameter to 14 mm. Like this way, the compliance matrix is improved.

4.4 Relation Between Tip Stiffness and «

The changes of the compliance matrix for the tip (point U) under elastic
deformation of all the elements together (arms, rods, motor axes, bearings
0, 1, 2, 3, and 4) are shown in Figure 16, where « is the angle between the
traveling plate and the rod as has been shown in Figure 15. According to
Figure 16, when « increases, each of the elements A, B, C, D and E of
Equation (23) changes as follows:

e The compliance in the direction of z- and y-axes (element A) increases.
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Fig. 16. Elements of the tip compliance matrix as a function of the parameter «

e The compliance of rotation around z- and y-axes against y and x forces,
respectively, (element B) decreases for the most part of «, although it
increases for a while at about 50 degrees.

e The compliance in the direction of z- and y-axes against ¥ and £ moments,
respectively, (element B ) changes in the same manner.
The compliance in the direction of z-axis (element C') increases.
The compliance of rotation around x- and y-axes (element D) decreases.
The compliance of rotation around z-axis (element F) increases.

Therefore, in order to obtain a well-balanced stiffness, it is necessary to limit
the value of a properly in the workspace.
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4.5 A Design Index for the Modified DELTA Mechanism

From the above results, we find that the tip stiffness of the modified DELTA
mechanism changes largely depending on the configuration, represented by
the parameter «, even if elastic parameters are fixed. Therefore, we may use
« as a design index. We should notice that the value of a depends on the
base radius, the traveling plate radius, the arm length and the rod length.
According to the results of numerical calculation, the value of « in the range
from 40 to 70 degrees is best for realizing a well-balanced tip stiffness. If the
value of « is outside this range, the stiffness of many elements decreases.

Based on the discussion, we decide that both the traveling plate and the
base radii are 40 mm, the arm length is 93 mm and the rod length is 127 mm, in
order to obtain a good balance of stiffness in the specified workspace (around
a sphere of 75 mm radius).

5 Conclusions

We have presented a design of a compact haptic device in which parallel mech-
anisms are utilized and a large workspace of orientational motion is realized.
The device is a parallel-serial mechanism consisting of a modified DELTA
mechanism for translational motion and a spatial five-bar gimbal mechanism
for orientational motion. We have derived an analytical model of stiffness for
the modified DELTA mechanism, which we have utilized for the design of stiff
platform for translational motion. The model shows that the compliance ma-
trix is a function of kinematic parameters as well as elastic parameters of each
element. Configuration dependency of the compliance matrix is an important
point to be noticed. Key points newly proposed in the stiffness model are:

e TExploitation of stiffness analysis method for a flexible arm (manipulator)
to obtain stiffness of the elementary chains in deriving the tip stiffness of
the parallel mechanism.

e Modeling of the free motion around the axis of rotation in a bearing using
a very small value of the elasticity coefficient.

We have obtained the following results regarding the design of the modified
DELTA mechanism:

e The angle o can be a design index to optimize the stiffness of the modified
DELTA mechanism.
e The stiffness of the bearings 2 and 3 should be sufficiently large.

From these results, we have found that « be restricted within the value be-
tween 40 to 70 degrees in order to obtain a well-balanced stiffness.

Future research will be directed to design of a more compact haptic device
with higher frequency response using an actuator with faster response and
with less friction.
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Robotic manipulation at the nanometer scale is a promising technology for
structuring, characterizing and assembling nano building blocks into nanoelec-
tromechanical systems (NEMS). Combined with recently developed nanofab-
rication processes, a hybrid approach to building NEMS from individual car-
bon nanotubes (CNTs) and SiGe/Si nanocoils is described. Nanosensors and
nanoactuators are investigated from experimental, theoretical, and design per-
spectives.

1 Introduction

Despite the claims of many ”futurists,” the form nanorobots of the future
will take and what tasks they will actually perform remain unclear. However,
it is clear that nanotechnology is progressing towards the construction of in-
telligent sensors, actuators, and systems that are smaller than 100nm. These
nanoelectromechanical systems (NEMS) will serve as both the tools to be
used for fabricating future nanorobots as well as the components from which
these nanorobots may be developed. Shrinking device size to these dimen-
sions presents many fascinating opportunities such as manipulating nanoob-
jects with nanotools, measuring mass in femto-gram ranges, sensing forces at
pico-Newton scales, and inducing GHz motion, among other new possibilities
waiting to be discovered. These capabilities will, of course, drive the tasks
that future nanorobots constructed by and with NEMS will perform.

The design and fabrication of NEMS is an emerging area being pursued
by an increasing number of researchers. Just as with MEMS, NEMS design is
inextricably linked to available fabrication techniques. However, though the
development of microfabrication processes has become somewhat stable over
the past decade, nanofabrication processes are still being actively pursued,
and the design constraints generated by these processes are relatively unex-
plored. Two approaches to nanofabrication, top-down and bottom-up, have
been identified by the nanotechnology research community, and the topic of
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this paper is how these trends can be integrated through robotics resulting in
new classes of NEMS devices.

Manipulation Characterization

Materials NEMS

Fabrication : Assembly

Fig. 1. A nanorobotic manipulation approach to NEMS

Top-down and bottom-up nanofabrication strategies are being indepen-
dently investigated by various researchers. Top-down approaches are based
on microfabrication and include technologies such as nano-lithography, nano-
imprinting, and chemical etching. Presently, these are 2D fabrication processes
with relatively low resolution. Bottom-up strategies are assembly-based tech-
niques. Currently these strategies include techniques such as self-assembly,
dip-pen lithography, and directed self-assembly. These techniques can gener-
ate regular nano patterns at large scales. With the ability to position and
orient nanometer scale objects, nanorobotic manipulation is an enabling tech-
nology for structuring, characterizing and assembling many types of nanosys-
tems {shown in Fig. 1) [1]. By combining top-down (Fig. 2(a)) and bottom-up
processes (Fig. 2(b)), a hybrid nanorobotic approach (Fig. 2(c)) based on
nanorobotic manipulation provides a third way to fabricate NEMS by struc-
turing as-grown nanomaterials or nanostructures. In this system, nanofabrica-
tion based top-down processes and nanoassembly based bottom-up processes
can be performed in an arbitrary order. Consider nanofabrication processes
in which nanomaterials or nanostructures can be fabricated into nano build-
ing blocks by removing unwanted parts. These building blocks can then be
assembled into NEMS. Conversely, nanoassembly can be performed first and
nanomaterials or nanostructures can be assembled into higher-level (i.e. more
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complex, 3D, arrays, etc.) structures, and then the high-level structures can
be further modified into NEMS by nanofabrication.

- NF (nano-lithography,
Nanomaterials ( glapi

/
»|  nano-imprinting, chemical NEMS
structures .

etching, etc.)

(a) Top-down approach

NA (self-assembly, dip-pen

N terials/ ) 7
anoaterials lithography, directed NEMS
structures

self-assembly, etc.)

(b) Bottom-up approach

l______::::::_::::_l.__1

Nanomaterials I | I
/structures t | NF/NA NANF | NEMS
PC
= i
|
|

I
I
I Nanomampulanon |
I
I

(c) Hybrid approach

Fig. 2. Approaches to NEMS (PC: Property Characterization, NF: Nano Fabrica-
tion, NA: Nano Assembly)

Nanorobotic manipulation enables this hybrid approach for creating NEMS
that can attain a higher functionality because they possess more complex
structures. Moreover, property characterization can be performed after inter-
mediate processes, and in situ active characterization can be performed using
manipulation rather than conventional static observations. The impact of the
hybrid approach on robotics is twofold: it expands the lower limit of robotic
exploration further into the nanometer scale, and it will provide nanoscale sen-
sors and actuators and assembly technology for building nanorobots. Nanoma-
terial science, bionanotechnology, and nanoelectronics will also benefit from
advances in this new nanomanufacturing technique from the perspectives of
property characterization, fabrication and assembly. This paper introduces
carbon nanotubes (CNTs) and nanocoils in Section 2. In Sections 3 and 4,
the assembly of individual nanotubes and nanocoils into NEMS are presented
along with characterization results.
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2 Carbon Nanotubes and Nanocoils for NEMS

Carbon nanotubes [2] and nanocoils have been used as base materials and
structures because of their exceptional properties and unique structures. For
NEMS, some of the most important characteristics of nanotubes include their
nanometer diameter, large aspect ratio (10-1000}), TPa scale Young’s modulus,
excellent elasticity, ultra-small interlayer friction, sensitivity of conductance to
various physical or chemical changes, and charge-induced bond-length change.
Helical 3-D nanostructures, or nanocoils, have been synthesized from different
materials including helical carbon nanotubes [3] and zinc oxide nanobelts [4].
A new method of creating structures with nanometer-scale dimensions has
recently been presented [5] and can be fabricated in a controllable way [6].
The structures are created through a top-down fabrication process in which a
strained nanometer thick heteroepitaxial bilayer curls up to form 3-D struc-
tures with nanoscale features. Helical geometries and tubes with diameters
between 10nm and 10um have been achieved. Because of their interesting mor-
phology, mechanical, electrical, and electromagnetic properties, potential ap-
plications of these nanostructures in NEMS include nanosprings [7], electrome-
chanical sensors [8], magnetic field detectors, chemical or biological sensors,
generators of magnetic beams, inductors, actuators, and high-performance
electromagnetic wave absorbers. NEMS based on individual single- or multi-
walled carbon nanotubes (SWNTs, MWNTs) and nanocoils are of increasing
interest, indicating that capabilities for incorporating these individual build-
ing blocks at specific locations on a device must be developed.

Random spreading [9], direct growth [10], self-assembly [11], dielectro-
phoretic assembly [12] and nanomanipulation [13] have been demonstrated
for positioning as-grown nanotubes on electrodes for the construction of these
devices. However, for nanotube-based structures, nanorobotic assembly is still
the only technique capable of in situ structuring, characterization and assem-
bly. Because the as-fabricated nanocoils are not free-standing from their sub-
strate, nanorobotic assembly is virtually the only way to incorporate them
into devices at present.

3 Individual Nanotube Based NEMS

Basic techniques for the nanorobotic manipulation of carbon nanotubes are
shown in Fig. 3 [1]. These serve as the basis for handling, structuring, charac-
terizing and assembling NEMS. Configurations of nanotools, sensors, and ac-
tuators based on individual nanotubes that have been experimentally demon-
strated are summarized as shown in Fig. 4.

For detecting deep and narrow features on a surface, cantilevered nan-
otubes (Fig. 3(a), [15]) have been demonstrated as probe tips for an atomic
force microscope (AFM) [16], a scanning tunneling microscope (STM) and
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Fig. 3. Nanorobotic manipulation of CNTs. The basic technique is to pick up an
individual tube from CNT soot (as in (a)) or from an oriented array; (b) shows a
free-standing nanotube picked up by dielectrophoresis generated by a non-uniform
electric field between the probe and substrate, (c) (from [14]) and (d) show the same
manipulation by contacting a tube with the probe surface or fixing (e.g. with EBID)
a tube to the tip. Vertical manipulation of nanotubes includes bending (e), buckling
(f), stretching/breaking (g), and connecting/bonding (h). All examples with the
exception of (¢} are from the authors’ work.

other types of scanning probe microscopes (SPM). Nanotubes provide ultra-
small diameters, ultra-large aspect ratios, and excellent mechanical properties.
Manual assembly, direct growth and nanoassembly have proven effective for
their construction. Cantilevered nanotubes have also been demonstrated as
probes for the measurement of ultra-small physical quantities, such as femto-
gram mass [17], mass flow sensors [18], and pico-Newton order force sensors
[18] on the basis of their static deflections or change of resonant frequencies
detected within an electron microscope. Deflections cannot be measured from
micrographs in real-time limiting the application of these types of sensors.
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Fig. 4. Configurations of individual nanotube-based NEMS. Scale bars: {a) luym
(inset: 100nm), {(b) 200nm, (c) lpm, (d) 100nm, (e) and (f)1pm, (g) 10um, and (h)
300nm. All examples are from the authors’ work.

Inter-electrode distance changes cause emission current variation of a nan-
otube emitter and may serve as a candidate to replace microscope images
[18].

Bridged individual nanotubes (Fig.3(b), [19]) have been the basis for elec-
tric characterization. A nanotube based gas sensor design has adopted this
configuration [20].

Opened nanotubes (Fig.3(c), [21]) can serve as an atomic or molecular
container. A thermometer based on this structure has been demonstrated by
monitoring the height of the gallium inside the nanotube using transmission
electron microscopy (TEM) [22].

Bulk nanotubes can be used to fabricate actuators based on charge injec-
tion induced bond-length change [23], and, theoretically, individual nanotubes
also work on the same principle. Electro-static deflection of a nanotube has
been used to construct a relay [24]. A new family of nanotube actuators can
be constructed by taking advantage of the ultra-low inter-layer friction of a
multi-walled nanotube. Linear bearings based on telescoping nanotubes have
been demonstrated [25],[18]. Recently, a micro actuator with a nanotube as
a rotation bearing has been demonstrated [26]. A preliminary experiment on
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a promising nanotube linear motor with field emission current serving as po-
sition feed back has been shown with nanorobotic manipulation (Fig. 3(d),
21).

Cantilevered dual nanotubes have been demonstrated as nanotweezers [27]
and nanoscissors (Fig. 3(e)) [13] by manual and nanorobotic assembly, respec-
tively.

Based on electric resistance change under different temperatures, nanotube
thermal probes (Fig. 3(f), [18]) have been demonstrated for measuring the
temperature at precise locations. These thermal probes are more advantageous
than nanotube based thermometers because the thermometers require TEM
imaging. The probes also have better reproducibility than devices based on
dielectrophoretically assembled bulk nanotubes [28]. Gas sensors and hot-wire
based mass/flow sensors can also be constructed in this configuration rather
than a bridged one.

The integration of the above mentioned devices can be realized using the
configurations shown in Fig. 3(g) [29] and (h) [12]. The arrays of individual
nanotubes can also be used to fabricate nanosensors, such as position encoders
[30].

Nanotube based NEMS remains a rich research field with a large number
of open problems. New materials and effects at the nanoscale will enable
a new family of sensors and actuators for the detection and actuation of
ultra-small quantities or objects with ultra-high precision and frequencies.
Through random spreading, direct growth, and nanorobotic manipulation,
proto-types have been demonstrated. However, for integration into NEMS,
self-assembly processes will become increasingly important. Among them, we
believe that dielectrophoretic nanoassembly will play a significant role for
large scale production of 2D regular structures [31].

4 NEMS Made from Nanocoils

The construction of NEMS using nanocoils involves the assembly of as-grown
or as-fabricated nanocoils, which is a significant challenge from a fabrica-
tion standpoint. Focusing on the unique aspects of manipulating nanocoils
due to their helical geometry, high elasticity, single end fixation, and strong
adhesion of the coils to the substrate for wet etching, a series of new pro-
cesses is presented using a manipulator (MM3A, Kleindiek) installed in an
SEM (Zeiss DSM962). As-fabricated SiGe/Si bilayer nanocoils are shown in
Fig. 5. Special tools have been fabricated including a nanohook prepared by
controlled "tip-crashing” of a commercially available tungsten sharp probe
(Picoprobe T-1-10-1mm and T-1-10) onto a substrate, and a ”sticky” probe
prepared by tip dipping into a double-sided SEM silver conductive tape (Ted
Pella, Inc.). As shown in Fig. 6, experiments demonstrate that nanocoils can
be released from a chip by lateral pushing, picked up with a nanohook or
a "sticky” probe, and placed between the probe/hook and another probe or
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an AFM cantilever (Nano-probe, NP-S). Axial pulling/pushing, radial com-
pressing/releasing, and bending/buckling have also been demonstrated. These
processes have shown the effectiveness of manipulation for the characteriza-
tion of coil-shaped nanostructures and their assembly for NEMS, which have
been otherwise unavailable.

.
Hes

(a) Nanocoils (b) Model

Fig. 5. As-fabricated nanocoils (Thickness: t=20nm (without Cr layer) or 41nm
(with Cr layer). Diameter: D=3.4um)

_WLHI_

O] ® ® ()

Fig. 6. Nanorobotic manipulation of nanocoils (a) original state, (b) compress-
ing/releasing, (c) hooking, (d) lateral pushing/breaking, (e) picking, (f)} plac-
ing/inserting, (g) bending, and (h) pushing and pulling



Hybrid Nanorobotic Approaches to NEMS 171

Support / Electrodes : Electrodes
1 | I | : :

(a) Cantilevered (b) Bridged (fixed) (c) Bridged (moveable)
0.18 .
0.6 4 |+ Linear Deformation '

F=0018e"#0."
0.14 1 1 » Non-Linear Deformation | 5

012 —

— Linear Curve Fit

z o
= 0 Exponential Curve Fit
o
5 0.08 4 g
w
0.06
F=00233d
0.04
0.02 ——=—
0 += = T T T T
0 1 2 3 4 5 6
Defarmation [1m]
(d) Stiffness characterization of nanocoils
0.16 1 T
| n L
014 i ?:
0.12 2
= * -~ A
! - S N T S
E O a b
- ” i
E 008 #
]
3 00 -;’"ﬂ
Fasad
0.04 e
002 4 _,..w"/‘
0 .&...--M“'".M s -
0 2 4 6 8 10
Voltage [V]

(e) I-V curve of a 11-turn nanocoil

Fig. 7. Nanocoil based devices. Cantilevered nanocoils (a) can serve as nanosprings.
Nanoelectromagnets, chemical sensors, and nanoinductors use nanocoils bridged be-
tween two electrodes (b). Electromechanical sensors can use a similar configuration
but with one end connected to a moveable electrode. Mechanical stiffness (d) and
electric conductivity (e) are basic properties of interest for these devices.

Configurations of nanodevices based on individual nanocoils are shown in
Fig. 7. Cantilevered nanocoils as shown in Fig. 7(a) can serve as nanosprings.
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Nanoelectromagnets, chemical sensors and nanoinductors involve nanocoils
bridged between two electrodes as shown in Fig. 7(b). Electromechanical sen-
sors can use a similar configuration but with one end connected to a moveable
electrode as shown in Fig. 7(c). Mechanical stiffness and electric conductivity
are fundamental properties for these devices that must be further investigated.

As shown in Fig. 6(h), axial pulling is used to measure the stiffness of a
nanocoil. A series of SEM images are analyzed to extract the AFM tip dis-
placement and the nanospring deformation, i.e. the relative displacement of
the probe from the AFM tip. From this displacement data and the known stiff-
ness of the AFM cantilever, the tensile force acting on the nanospring versus
the nanospring deformation was plotted. The deformation of the nanospring
was measured relative to the first measurement point. This was necessary be-
cause the proper attachment of the nanospring to the AFM cantilever must
be verified. Afterwards, it was not possible to return to the point of zero de-
formation. Instead, the experimental data as presented in Fig. 7(d) has been
shifted such that with the calculated linear elastic spring line begins at zero
force and zero deformation. From Fig. 7(d), the stiffness of the spring was es-
timated to be 0.0233 N/m. The linear elastic region of the nanospring extends
to a deformation of 4.5 um. An exponential approximation was fitted to the
nonlinear region. When the applied force reached 0.176 uN, the attachment
between the nanospring and the AFM cantilever broke. Finite element simu-
lation (ANSYS 9.0) was used to validate the experimental data [8]. Since the
exact region of attachment cannot be identified according to the SEM images,
simulations were conducted for 4, 4.5, and 5 turns to obtain an estimate of the
possible range according to the apparent number of turns of the nanospring
of between 4 and 5. The nanosprings in the simulations were fixed on one end
and had an axial load of 0.106 uN applied on the other end. For the simulation
results for the spring with 4 turns, the stiffness from simulation is 0.0302 N/m.
For the nanospring with 5 turns it is 0.0191 N/m. The measured stiffness falls
into this range with 22.0% above the minimum value and 22.8% below the
maximum value, and very close to the stiffness of a 4.5-turn nanospring that
has a stiffness of 0.0230 N/m according to simulation.

Fig. 7(e) shows the results from electrical characterization experiments on
a nanospring with 11 turns using the configuration as shown in Fig. 6(g).
The I-V curve is non-linear, which may be caused by the resistance change
of the semiconductive bilayer due to ohmic heating. Another possible reason
is the decrease in contact resistance caused by thermal stress. The maximum
current was found to be 0.159 mA under an 8.8 V bias. Higher voltage causes
the nanospring to "blow off.” From the fast scanning screen of the SEM, an
extension of the nanospring on probes was observed around the peak current
so that the current does not drop abruptly. At 9.4 V, the extended nanospring
is broken down, causing an abrupt drop in the I-V curve.

From fabrication and characterization results, the helical nanostructures
appear to be suitable for inductors. They would allow further miniaturization
compared to state-of-the-art micro inductors. For this purpose, higher dop-
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ing of the bilayer and an additional metal layer would result in the required
conductance. Conductance, inductance, and quality factor can be further im-
proved if, after curling up, additional metal is electroplated onto the helical
structures. Moreover, a semiconductive helical structure, when functionalized
with binding moleculeg, can be used for chemical sensing under the same prin-
ciple as demonstrated with other types of nanostructures [32]. With bilayers
in the range of a few monolayers, the resulting structures would exhibit very
high surface-to-volume ratio with the entire surface exposed to an incoming
analyte.

5 Conclusions

A hybrid nanofabrication approach based on nanorobotic manipulation has
been investigated for building NEMS. Processes for manipulating carbon nan-
otubes and SiGe/Si bilayer nanocoils have been developed, demonstrating
their effectiveness for handling, structuring, and characterizing nanomateri-
als and nanostructures, and for assembling them into NEMS. An overview of
NEMS made from individual nanotubes and nanocoils has been presented.
A hybrid approach based on nanorobotic manipulation provides the possibil-
ity for in situ active property characterization, structuring and assembly of
nanomaterials and nanostructures. The approach enables the construction of
NEMS sensors and actuators and, eventually, nanorobots.
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1 Introduction

Parallel robots are nowadays leaving academic laboratories and are finding
their way in an increasingly larger number of application fields such as tele-
scopes, fine positioning devices, fast packaging, machine-tool, medical appli-
cation. A key issue for such use is optimal design as performances of parallel
robots are very sensitive to their dimensioning. Optimal design methodolo-
gies have to rely on kinetostatic performance indices and accuracy is clearly
a key-issue for many applications. It has also be a key-issue for serial robots
and consequently this problem has been extensively studied and various ac-
curacy indices have been defined. The results have been in general directly
transposed to parallel robots. We will now review how well these indices are
appropriate for parallel robots.

2 Jacobian and Inverse Jacobian Matrix

Let X, denotes the generalized coordinates of the end-effector composed of
parameters describing the available n d.o.f. of the end-effector while X de-
notes all the generalized coordinates of the end-effector. We will impose no
constraints on the choice of X (e.g. for a Gough robot with a planar platform
the pose may be represented by the 9 coordinates of 3 particular points on
the end-eflector).

The geometry of the robot is described by its joints variables vector ©.
The twist W of the end effector is composed of its translational and angular
velocities and the restricted twist W, is defined as the restriction of W to
the available d.o.f. of the robot. It is well known that for robot having at
least 2 rotational d.o.f. W is not the time-derivative of X as there is no
representation of the orientation whose derivatives corresponds to the angular
velocities. However there exists usually a matrix H such that

S. Thrun, R. Brooks, H. Durrant-Whyte (Eds.): Robotics Rescarch, STAR. 28, pp. 175 184, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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W = HX (1)

In the usual approach the jacobian matrix Ji linearly relates the actuated
joint velocities @, to Wy: )
W, =0, (2)

In this paper we consider only non-redundant robots so that matrix Ji is
square and we will call it the kinematic jacobian. A feature of parallel robots
is that it is usually easy to establish an analytical form for J_ U while it is
often impossible to obtain Jy.

But we may also define other jacobian matrices by first changing the pa-
rameters in ©. Indeed parallel robots differ from their serial counterpart by
a larger number of passive joints and it may thus be interesting to include
the m passive joints variables @,. If @ is defined as (O, @p) we may then
define write the [ inverse kinematics equations as F(©,X,) = 0 from which
we derive oF 5F

%@ + 8_XaXa =U0+V,X,=0 (3)
where U is (I x (n 4+ m)}) and V, is ({ x n}. This relation allows to quantify
the influence of the measurement errors on the passive and actuated joints
variables on the positioning errors AX, on the n d.o.f. of the end-effector by
using (1).

Although we say that some robot have n < 6 d.o.f., still the end-effector is
a 6 d.o.f. rigid body and positioning errors on all d.o.f. should be examined.
It is thus interesting to determine an inverse jacobian that involves the full
twist W of the end-effector. In that case we write the kinematics equations
as G(©,X) = 0. If we fix X we know that these kinematics equations have a
finite number of solutions, which implies that the number of equations in G
should be n + m. By differentiation we get:

89@—I—8XX_A@—§—BX—O (4)
where A is a square n +m X n+m matrix while B is n+m x 6. Provided that
H is square and not singular we may now derive an inverse jacobian such that

® = -A"'BH'W = J"'W (5)

where J7! is n +m x 6 In most cases however a velocity analysis allows one
to obtain a simpler inverse jacobian matrix through a relation that involves

only Bg: .
O, _
< o) ) = Jfklw (6)

where J f_kl is n+m x 6 and will be called the full inverse kinematics jacobian.
We may further extend this approach to take into account the design
parameters P of the robot (e.g. the location of the anchor points of the legs
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in a Gough platform). For that purpose the kinematics equations will be
written as G(P,©,X) = 0 and the matrix of the partial derivatives of G
with respect to P will allow one to quantify the influence of the errors on P
on the positioning error of the end-effector.

As may be seen there is not a single inverse jacobian matrix but a multi-
plicity of them. Note however an important property of the inverse jacobian
J~1 of (5) with respect to Jf_klz the rank of Jf_k1 is the same than the rank of
J-L

It is also important to note that any inverse jacobian involving the full
twist of the end-effector W will not be homogeneous in terms of units. This
will be true also for the inverse kinematic jacobian for robot involving both
translation and rotational d.o.f. for the end-effector. Consequently many ma-
trix properties (such as the trace, determinant) will not be invariant under a
change of units.

In this paper we will focus on the influence of A®, on the positioning
errors of the end-effector through J f_kl. The necessity of using the full inverse
kinematic jacobian will be emphasized on an example.

2.1 Example: The 3 — UPU Robot

Tsai [10] has proposed this robot as a 3 d.o.f. translation robot (figure 1).
Fach leg of this robot is constituted, starting from the base, by a U joint
followed by an extensible leg terminated by another U joint whose axis are
the same than the U joint on the base. This constraint allows theoretically
to obtain only translation for the end-effector. This example will allow us to
establish a methodology for determining the full inverse kinematic jacobian.
But it will also enable to show the importance of this matrix. The story is that
such a robot was designed at Seoul National University (SNU) and that is was

Fig. 1. The 3 — UPU robot
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exhibiting a strange behavior: although the prismatic actuators were locked,
the end-effector was exhibiting significant orientation motion. This phenom-
ena was explained by Bonev and Zlatanov [1] and later in [2, 11]. Furthermore
motion sensitivity to manufacturing tolerances has been studied [5, 8] and has
shown that this robot was very sensitive.

We will denote by B, Bs, Bs the center of the U joints on the platform
and will now calculate the full inverse kinematic jacobian matrix. The velocity
Vg of the B points is Vg =V + BC x §2. Let us define n as the unit vector
of the leg and compute the dot product of the right and left terms of the
previous equation:

Vepn=pn=Van+(BCx 2)n=V.n+ (CB x n).f2 (7)

Now let us define uj, vi the unit vectors of the two joint axis of the U joint
at B;. These vectors are the same for the base and platform. The angular
velocity of the leg wy with respect to the base and the angular velocity of the
platform wp with respect to the leg are

Wy = éfaui + o'&vi wp = éiBui + d%vi
The angular velocity of the platform is
2 = Wi —f—wI, = K%ui + Kévi

where K}, K% can be obtained from the previous equations. Now define s; =
u; X v and compute the dot product of the right and left terms of the previous
equation by s;i:

Si..Q =0 (8)

Combining equations (7, 8) we get the full velocities equations involving the
twist W as ( )
ﬁi _ n; CBi X 1y

R LA

which establish the full inverse kinematic jacobian. The inverse kinematic
jacobian may be extracted from J ;kl as the 3 x 3 matrix whose rows are the
n; vectors. But an important point for accuracy analysis is to consider the
lower part of Jf_k1 which shows that if s;.(s2 x s3) = 0 the platform may
exhibit orientation motion that may be infinitesimal or finite according to the
geometry of the U joint. It happens that the design of the SNU robot was in
the later category.

3 Manipulability

It is realistic to assume that the joint errors are bounded and consequently so
will be the positioning errors. The norm of the bound may be chosen arbitrary
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as (6) is linear so that a simple scaling will allow to determine the positioning
error from the errors obtained for a given bound. A value of 1 for the bound
is usually chosen:

|lae| <1 (10)

which leads to
AXTI T 1AX <1 (11)

A classical geometrical interpretation of this relation is presented for the 2D
case in figure 2. If the Euclidean norm is used (10) represents a circle in the
joints errors space. This circle is mapped through matrix J-TJ~! into an
ellipse in the generalized coordinates error space. More generally the mapping
transform the hyper-sphere of the joints errors space into an ellipsoid, usually
called the manipulability ellipsoid.

In fact the use of the Euclidean norm is not realistic: it implies for exam-
ple that if one of the joint error is 1, then by some mysterious influence all
the other joint errors are 0. The appropriate norm is the infinity norm that
states that the absolute value of the joint errors are independently bounded
by 1. With this norm (10) represents a n-dimensional square in the joints
errors space that is mapped into the kinematics polyhedron, that includes the
manipulability ellipsoid, in the generalized coordinates errors space. Figure 2
illustrates this mapping in the 2D case. It must be noted that, apart of be-
ing more realistic, the previous mapping leads to geometrical object that can

A@l JfTJfl Ax
1
/\ Omin
1 1
Ab, Ay
- Omax
AQQ 1 7 Ay Omazx
/\
1 1 /<
A01 >/O-min Az
-1

Fig. 2. The mapping between the joints errors space and the generalized coordinates
error space induced by J~TJ according to the norm: on top the Euclidean norm and
on bottom the infinity norm.
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be more easily manipulated than the ellipsoid. For example assume that one
want to determine what are all the possible end-effector velocities that can
be obtained in 2 different poses of the end-effector. For that purpose we will
have to calculate the intersection of the 2 polyhedra obtained for the 2 poses,
a well known problem of computational geometry, that can be much more
easily solved than computing the intersection of 2 ellipsoids.

4 Condition Number

A large dimension along a given axis of the kinematics polyhedron indicates a
large amplification error. It is therefore necessary to quantify this amplification
factor. Let us consider the linear system:

J7IAX =A@,

where J~! is a n xn inverse kinematic jacobian matrix. The error amplification
factor in this system expresses how a relative error in & gets multiplied and
leads to a relative error in X. It characterize in some sense the dexterity of
the robot and will be used as a performance index. We now use a norm such
that
—1 —1

[IJ7AX|] < [I[1AX]]
and obtain

1AX]| A0]|

7
X e

The error amplification factor, called the condition number k, is therefore
defined as

I
<IN S5

AT = I

The condition number is thus dependent on the choice of the matrix norm.
The most used norms are:

e the 2-norm defined as the square root of the largest eigenvalue of matrix
J=TJ~1: the condition number of J=! is thus the square root of the ratio
between the largest and the smallest eigenvalues of J=TJ~1,

e the FEuclidean (or Frobenius) norm defined for the m x n matrix A by:

[JA]| = \/Z ;jf lai;|? or equivalently as /tr(ATA): if A; denotes
the eigenvalues of J=TJ~1, then the condition number is the ratio between

> A% and [ A;. Note that sometime is also used a weighted Frobenius norm
in which ATA is substituted by ATWA where W is the weight matrix

In these two cases, the smallest possible value of the condition number is 1.
The inverse of the condition number, which has a value in [0,1], is also often
used. A value of 0 will indicate that the inverse jacobian matrix is singular.
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The condition number is quite often used as an index to describe first the
accuracy /dexterity of a robot and, second, the closeness of a pose to a singu-
larity. For the later point it is in general not possible to define a mathematical
distance to a singularity for robots whose d.o.f. is a mix between translation
and orientation: hence the use of the condition number is as valid an index
than any other one. But it has the advantage of being a single number for
describing the overall kinematic behavior of a robot.

The definition of the condition number makes clear that we cannot cal-
culate its analytical form as a function of the pose parameters except for
very simple robot. But robust linear algebra software allows to calculate it
numerically for a given pose.

But for robot having both translation and orientation d.o.f. there is a ma-
jor drawback of the condition number: the matrix involved in its calculation
are not homogeneous in terms of units. Hence the value of the condition num-
ber for a given robot and pose will change according to the unit choice, while
clearly the kinematic accuracy is constant. Ma and Angeles [6] suggested to
define a normalized inverse jacobian matriz by dividing the rotational ele-
ments of the matrix by a length such as the length of the links in a nominal
position, or the natural length defined as that which minimizes the condition
number for a given pose. Still the choice of the length remains arbitrary as it
just allows to define a correspondence between a rotation and a translation
and as mentioned by Park [9] "this arbitrariness is an unavoidable consequence
of the geometry of SE(3)”.

To evaluate the efficiency of the condition number for accuracy evaluation
we just use our Gough robot and chooses three reference poses defined hy
the coordinates of the center and the Fuler angles as Pi=x = y = 0, 2=53
cm, ¥ = 0,0 = 0, ¢ = 0 (roughly the pose obtained for the mid-stroke of
the actuator), Po=z = y = 0,2=53 c¢cm, ¢ = 30°, § = 0, ¢ = 0 (whose
orientation is roughly 1/3 of the possible rotation around the z axis) and
Py=x =y = 10,2=53 cm, ¢» = 0, 8§ = 0, ¢ = 0.(close to the border of the
translation workspace for this orientation). We then computed the absolute
value of the maximal positioning error at these poses, obtained as the sum of
the absolute value of the elements of the rows of the kinematic jacobian, as
indicated in the following table.

Pose AXQC AXy AXZ IAX@W AX@U AX@Z
P, |0.1184|0.1268]0.010087(0.1185]0.1184(0.697
P, (0.1189(0.1274|0.01266 |0.1333]0.1429(0.808
Ps; (0.123 |0.1309]|0.0372 |0.15 ]0.1663]0.7208

It can be seen in this table that the positioning errors are significantly
larger for P, and P53 compared to P;. As for P3 the errors are usually larger
compared to P, except for the rotation around z. Hence as far as accuracy
is concerned the ordering of the poses from the most to the least accurate is
Py, Py, P; and we expect to obtain a similar ordering for the condition number.
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For this robot we define the normalized inverse jacobian matrix J. ! ob-
tained by dividing the orientation components of the J. ! by 53 ie. roughly
the legs lengths at pose P;. The considered accuracy indices will be

Cg: the determinant of J, 1

Cy,C¥: the 2-norm condition number of J,_*, J=*

Cr,C%: the Frobenius-norm condition number of J,_ 1 -t

C3,C%: the 2-norm and Frobenius norm condition number of the inverse
jacobian matrix obtained when the inverse kinematics equations are based
on the coordinates of 3 points of the end-effector. The chosen points will
be all possible triplets in the set B;: hence we will provide ranges for these
indices.

The results are presented in the following table:

Cq [C2 [CF[Crp [CRC3 %
P1|-29.22(75.14|63.9|152.870.2{[9.55,55.47] ([258.8,3204.9]
P»|-24.64|75.16|73.8|154 |80.9([9.62,43.84] [[218.8,2383.6]
P5(-23.93(80.65|68.4|158.3|74.7([10.06,58.95] | [286.5,3618)]

For Cs it may be seen that the difference is surprisingly very small between
P1, P> and significant between Ps, P5. The ordering between Ps, Ps is not
respected for CF,C% although these indices are coherent when considering
Py. For Cr,Cy the ordering is respected although the changes in the index
are relatively small for Cr . On the other hand there is a surprisingly decrease
of CS, C’% between P, and P; while there is a significant increase between P;
and Ps. Hence none of this condition numbers exhibits a completely coherent
behavior with respect to the accuracy of this robot.

This simple example shows clearly that the concept of condition number
has to be carefully considered when talking about optimal design for robot.

5 Isotropy

An isotropic pose of a robot is defined as a pose where & is equal to 1 and a
robot which has only isotropic poses in its workspace is coined an isotropic
robot. Designing an isotropic parallel robot is often considered as a design ob-
jective [3, 12]. A trivial example of isotropic robot is a serial Cartesian X-Y-7
robot whose kinematic jacobian matrix is the identity. But this is a surprising
denomination as stricto sensu isotropy indicates that the performances of a
robot should be the same whatever is the motion direction. Now if we assume
that all the actuator velocities of a X-Y-Z robot are bounded to 1, then the
maximal velocity of the end-effector lie in the range [1,/3]: as far as veloc-
ity is considered such robot is far from isotropy. Still the concept may have
some interest: for example any Cartesian robot whose actuator axis are not
mutually orthogonal will exhibit a ratio between its maximal velocities over
its workspace that will be larger than /3. Hence, instead of using the name
?isotropic robot” we may consider using the name ”"maximally regular robot”.
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6 Global Conditioning Index

The condition number is a local indication for the dexterity of a robot. To
evaluate the dexterity of a robot over a given workspace W Gosselin [4] has
introduced the global conditioning index (GCI) as:
LYy aw
v

which correspond to the average value of 1/k. Clearly this concept makes
sense for the optimal design of robot for which the extremal and average
value of any performance are important design factors. But apart of the va-
lidity of the condition number that has been discussed in a previous section
the problem with the GCI is its calculation. Clearly we cannot expect to ob-
tain its closed-form and we must rely on a numerical evaluation. The usual
method is to sample the workspace using a regular grid, compute 1/x; at
each node N; and approximate the GCI as GCIL,, the sum of the 1/x; divided
by the number of nodes. This calculation may be computer intensive as its
complexity is exponential with respect to the number of d.o.f. of the robot.
Furthermore this method does not allow to get a bound on |GCI — GCI,|. To
deal with this error problem it is sometimes assumed that if the result with m
sampling points is close to the result obtained with msy points, msy being sig-
nificantly larger than my, then the later result is a good approximation of the
index. This assumption will be true only if the condition number is smooth
enough, a claim that is difficult to support. Consider for example a simple
planar serial 2R robot: its GCI can be computed almost exactly as it depends
only on a single parameter. We sample this parameter using 10, 20, ..., mq,
me = m1 + 10 points and stop the calculation when the relative error between
GCI,(m1), GCl,(my2) is lower than 0.5% and assumes GCI = GCI,(mz). For
m1 = 50 the relative error is 0.377% while the relative error on the GCI is
still 1.751%. It may be assumed that such error will even be larger for more
complex robot.

A better evaluation will probably be obtained by using Monte-Carlo in-
tegration (with an error that decreases as 1/+/n where n is the number of
sampling nodes) or quasi-Monte Carlo. In the previous example (which is not
favorable for Monte-Carlo method as there is only one parameter) we found
out that by using the same stop criteria the relative error on the GCI was
reduced to 0.63%. A certified evaluation of the global conditioning index is
therefore an open problem but nevertheless the calculation of such index will
probably be computer intensive.

7 Conclusion

Classical dexterity indices such as the condition number are not very adequate
for parallel robots. In our opinion the most appropriate accuracy indices are
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the determination of the maximal positioning errors, their average values and
their variance. We have presented in a recent paper a a computer intensive
method for finding the largest maximal positioning errors, up to an arbitrary
accuracy, of a 6 d.o.f. robot [7]. A real challenge is to design algorithms for
calculating the average and variance of the maximal positioning errors over a
given workspace. An important point is that there is no need to calculate these
values exactly as soon as it is possible to impose a bound on the calculation
error. Indeed for comparison purposes an approximate value with a guaranteed
error will be sufficient.

References

1. Bonev LLA. and Zlatanov D. The mystery of the singular SNU translational
parallel robot.
www.parallemic.org/Reviews/Review004.html, June, 12, 2001.

2. Di Gregorio R. and Parenti-Castelli V. Mobility analysis of the 3-UPU parallel
mechanism assembled for a pure translational motion. ASME J. of Mechanical
Design, 124(2):259-264, June 2002.

3. Fattah A. and Hasan Ghasemi A.M. Isotropic design of spatial parallel manip-
ulators. Int. J. of Robotics Research, 21(9):811-824, September 2002.

4. Gosselin C. Kinematic analysis optimization and programming of parallel robotic
mantpulators. Ph.D. Thesis, McGill University, Montréal, June, 15, 1988.

5. Han C. and others . Kinematic sensitivity analysis of the 3-UPU parallel ma-
nipulator. Mechanism and Machine Theory, 37(8):787—798, August 2002.

6. Ma O. and Angeles J. Optimum architecture design of platform manipulator.
In ICAR, pages 1131-1135, Pise, June, 19-22, 1991.

7. Merlet J-P. and Daney D. Dimensional synthesis of parallel robots with a guar-
anteed given accuracy over a specific workspace. In IEEE Int. Conf. on Robotics
and Automation, Barcelona, April, 19-22, 2005.

8. Parenti-Castelli V. and Di Gregorio R. Influence of manufacturing errors on the
kinematic performance of the 3-UPU parallel mechanism. In 2nd Chemnitzer
Parallelkinematik Seminar, pages 8599, Chemnitz, April, 12-13, 2000.

9. Park M.K. and Kim J.W. Kinematic manipulability of closed chains. In ARK,
pages 99-108, Portoroz-Bernadin, June, 22-26, 1996.

10. T'sai L-W. Kinematics of a three-dof platform with three extensible limbs. In
ARK, pages 401-410, Portoroz-Bernadin, June, 22-26, 1996.

11. Wolf A., Shoham M., and Park F.C. Investigation of singularities and self-
motions of the 3-UPU robot. In ARK, pages 165-174, Caldes de Malavalla,
June 29- July 2, 2002.

12. Zanganeh K.E. and Angeles J. On the isotropic design of general six-degree-of-
freedom parallel manipulators. In J-P. Merlet B. Ravani, editor, Computational
Kinematics, pages 213-220. Kluwer, 1995.



SLAM



Session Overview
Simultaneous Localisation and Mapping

Paul Newman® and Henrik I. Christensen?

! University of Oxford pnewman@robots.ox.ac.uk
2 Royal Institute of Technology, Sweden hic@nada.kth.se

1 Introduction

The Simultaneous Localisation and Mapping (SLAM) problem remains a
prominent area of research in the mobile robotics community. The ISRR sym-
posia have borne witness to marked progress of the field since its conception
almost 20 years ago. This year, once again, the question ”is the SLAM prob-
lem now solved?” was posed. Well the answer to that question probably lies in
the definition of “solved”. We still do not have the persistent SLAM-enabled
machines that we strive for, so in that sense, perhaps it isn’t solved, but we do
have a firm understanding of the problem now. We do appreciate the limits of
performance, we can handle uncertainties in a principled way and recognize
the penalties for failing to do so. We also have several solutions to the scal-
ing problem that so dogged the field for several years. To these probabilistic
frameworks we are able to attach any of several representational schemes to
represent both maps and vehicle trajectories. We run these ”solutions” on
vehicles equipped with various sensors, cameras, radars, sonars and of course
the ubiquitous laser range finder.

One crucial missing component is that of operational robustness. Broadly,
the issue can be split into two categories: firstly robustness in the face of er-
roneous manipulation and insufficient representations of the underlying pdfs
and secondly robustness in presence of perceptual ambiguity. The later prob-
lem is receiving substantial attention under the guise of the “data association”
and “loop closing” problems within the SLAM context. Failing to obtain per-
sistent, long-term SLAM deployments because of accumulating errors in pdf
representations is, of course, a closely related problem (bad data association
can be caused by incorrect probabilistic representations). A common, although
not blanket, criticism of contemporary SLAM techniques is their lack of intro-
spection, they tend to be passive both in data acquisition and data processing.
There seems to be a significant scope for planning, acting, and perceiving to
aid the SLAM estimation process itself and be more pro-active in assessing
the quality of the estimation results.

S. Thrun, R. Brooks, H. Durrant-Whyte (Eds.): Robotics Rescarch, STAR 28, pp. 187 189, 2007.
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Perhaps the greatest challenges to contemporary SLAM techniques become
clear when trying to apply them in the great outdoors. The benign, distinct
surfaces of the flat indoor domain are no more, the world is now truly 3D
and single-plane laser scanners are inadequate. The local scene is frequently
orders of magnitude larger and may need multiple sensor modalities to access
it - cameras, radar, 3D laser and in the underwater domain, beam-steerable
sonars. Then there is the issue of performing SLAM in highly dynamic envi-
ronments that outdoor settings typically demand. The overwhelming majority
of SLAM research has relied upon the static world assumption - with vary-
ing but typically small degrees of tolerance to scene dynamics. This begs the
question how should a principled SLAM system cope with substantial and
unexpected scene changes - how can it differentiate this from a catastrophic
estimation failure?

2 Summary of Papers Presented at ISRR

The paper by Bowling et al. addresses the problem of localisation without an
a-priori choice of representation or specification of process and observation
models. The paper hinges on the concept of Action Respecting Embedding
a technique similar to Local Linear Embedding, that learns a low dimension
manifold within a high dimensional measurement input space. Crucially this
operation preserves the local topology originally present when the measure-
ment sequence was gathered. While not addressing the SLAM problem in
a familiar way, the paper does illustrate the opportunities that techniques
being established in the machine learning domain offer the SLLAM research
community.

The paper by Wang et al. is a presentation of decoupling in SLAM. Tra-
ditionally there is a correlation between robot motion and sensory readings
which results in a correlation of all data in a SLAM model. The correlation
results in an overall complexity of SLAM which is O(N?), where N is the
number of map features. Various approaches to address the scalability prob-
lem have presented in the literature, including the C-EKF by Nebot et al
[3], FastSLAM by Montemerlo [2] and the Atlas framework by Bosse et al
[4]. In this paper it is demonstrated how a careful relative formulation of the
problem, combined with the information filter framework allows decoupling of
mapping and localisation — providing a SLAM algorithm with good scaling
properties that still allows each feature estimate to be improved with each
observation.

Another approach which addresses the scaling problem is presented by
Walter et al. The paper again uses the information formulation of the SLAM
problem and, like the SEIF proposal [1] manages the scaling problem by main-
taining an active set of features with substantial correlations to the vehicle.
The suggestion here is to use the act of deleting and re-initialising the vehi-
cle states to create and manage this active subset of features in a consistent
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fashion. The paper analyses the new proposal (ESEIF) and compares it to
the SEIF formulation concluding with a side by side comparison of the two
algorithms working on two well known data sets.

3 Wrap-Up

So it seems that while it is indisputable that the state of the art SLAM has
moved on substantially over the past decade there is still interest research
going on, much to do and many interesting questions left un-answered. It is
not a solved problem but we do know what questions we should be asking.
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Summary. Robot localization is the problem of how to estimate a robot’s pose within an ob-
jective frame of reference. Traditional localization requires knowledge of two key conditional
probabilities: the motion and sensor models. These models depend critically on the specific
robot as well as its environment. Building these models can be time-consuming, manually
intensive, and can require expert intuitions. However, the models are necessary for the robot
to relate its own subjective view of sensors and motors to the robot’s objective pose. In this
paper we seek to remove the need for human provided models. We introduce a technique for
subjective localization, relaxing the requirement that the robot localize within a global frame
of reference. Using an algorithm for action-respecting non-linear dimensionality reduction,
we learn a subjective representation of pose from a stream of actions and sensations. We then
extract from the data natural motion and sensor models defined for this new representation.
Monte Carlo localization is used to track this representation of the robot’s pose while execut-
ing new actions and receiving new sensor readings. We evaluate the technique in a synthetic
image manipulation domain and with a mobile robot using vision and laser sensors.

1 Introduction

A key problem in mobile robotics is localization: estimating a robot’s pose while it
moves and senses in the world. Knowledge of a robot’s position in its environment
is one of the most basic requirements for many autonomous tasks. The majority of
localization techniques focus on objective localization, where the pose is estimated
in terms of a human defined global frame of reference. For example, pose may be
defined as the position and orientation on a two-dimensional Cartesian map with
units in meters. In this paper, we seek to relax this notion of localization.

One of the most successful approaches to objective localization uses probabili-
ties to model all aspects of a robot’s uncertainty, including the current pose estimate,
the effect of actions, and the information provided by sensors. Rules of probabilistic
inference can then be applied in a straightforward fashion to maintain an estimate
of the robot’s location. Approaches of this type often restrict the form of the models
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(e.g., Gaussian distributions in Kalman filters [Kal60]) or use various approximation
techniques (e.g., sampling in Monte Carlo localization [FBDT99]), to allow infer-
ence, and thus localization, to be computationally feasible.

A key prerequisite for all probabilistic approaches are models of the uncertainty
in the robot’s motion and sensors. Classical kinematics defines the expected global
motion of the robot when a particular control is applied to it. But kinematics requires
many assumptions in its deterministic calculations (e.g., infinite friction) that do not
hold in practice. Hence, robot motion is uncertain. Likewise, there are many uncon-
trollable and unpredictable factors (e.g., acoustic reflectance of a surface with sonar,
or ambient lighting with vision) that effect readings from sensors. Hence, robot sens-
ing is also uncertain. Probabilistic models of these uncertainties form the basis for
inference (which drives the localization). Unfortunately, these models are often not
easy to build. They can require extensive knowledge of the robot’s kinematics or sen-
sors, which may not be known or easily described. They may require time-consuming
manual measurements to estimate characteristics of noise or to build a map of sensor
readings over the environment. Finally, by definition, a well constructed model must
be specific to the particular hardware used. Modifying the robot platform invalidates
these laboriously constructed models and new models must be created. For example,
changing from a wheeled robot to a legged robot obviously invalidates the motion
model. Changing from a sonar to a laser, or from a laser to a camera will require
replacement of the sensor model. Even minor changes, such as inflating the tires
on the robot, or replacing its camera with one of a different model, will require ex-
pert modifications to the various models. Recent work has examined techniques for
automatically calibrating some of these models (e.g., [RT99], IMTKWO02], [EP0O4],
[SS05]), but no current method exits to calibrate these models for objective localiza-
tion without considerable expert knowledge.*

This paper examines the problem of subjective localization. We relax the require-
ment that the robot must estimate its pose in terms of a global frame of reference.
Instead, the choice of representation is left as part of the localization problem. This
relaxation allows the robot to learn both motion and sensor models as the models
can be defined purely in terms of its own subjective motor and sensor values. Al-
though objective localization may be necessary for certain tasks, not all tasks require
knowledge of an objective position. Delivery tasks, for example, need only recognize
location with respect to locations visited in the past. A robot can be given a guided
tour of its environment (“getting its bearings™) and informed of salient locations
along the tour which can then be labeled in its subjective map.

The problem of subjective localization will be tackled with a four-step process.
We first gather data of the robot moving and sensing in its world. We then use this
data to learn both an appropriate frame of reference for localization as well as the ac-
tual trajectory the robot followed during the data gathering. We then learn motion and

4 Special mention should be made of the work of Stronger and Stone [SS05], which learns
motion and sensor models starting with only an inaccurate motion model. Their approach
is still quite knowledge intensive, using a human-defined preprocessing step to simplify the
complex image sensor down to a single estimate of distance to a beacon.
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sensor models in this frame of reference from the training data and the learned tra-
jectory. Finally, we incorporate these models into Monte Carlo Localization (MCL),
a probabilistic localization technique. The cornerstone of this approach is extracting
a subjective frame of reference from a trace of sensorimotor data. This is solved with
Action Respecting Embedding (ARE) [BGWO5], a technique for non-linear dimen-
sionality reduction which finds low-dimensional descriptions of the robot’s pose in a
frame where actions correspond to simple transformations.

The rest of this paper is organized as follows. Section 2 provides an overview
of Monte Carlo localization. Section 3 summarizes the Action Respecting Embed-
ding algorithm, which extracts the subjective representation. Section 4 describes the
learning of motion and sensor models in this new frame of reference, which can then
be used in MCL. Section 5 demonstrates the effectiveness of this approach, both in
a synthetic image manipulation domain and with a mobile robot using first a camera
and then a laser as the primary sensor. Section 6 concludes.

2 Monte Carlo Localization

Monte Carlo Localization (MCL) [FBDT99] is a method for estimating the poste-
rior distribution of the robot’s pose conditioned on the robot’s actions and sensor
readings. It relies on the Markovian assumption that the past and the future are con-
ditionally independent given the present. MCL is an implementation of a recursive
Bayes filter. If x; is the location at time ¢, z; is the sensor data at time ¢, and uy is the
motion data at time ¢ then the posterior distribution becomes:

Bel(z;) = p(zi|zr, ur) (D

where zr = z1,...,2 and, similarly, ur = uq,...,u;_1. For objective localiza-
tion the sensor data is usually in the form of range data, such as laser range-finder
readings, however any type of sensor for which the proper kind of model exists is
admissible. The motion data is usually the report from the robot’s odometers, but
again, any data with an appropriate model will satisfy the equation.

For a recursive Bayes’ filter, a recursive formula is necessary, so Equation 1 is
converted, using a combination of Bayes’ rule and the Markovian assumption, into:

Bel{xy) = (1/Z) p(z¢| ) /p(a:t|xt_1,ut)Bel(xt_1) dzs_1, 2)

where Z is a normalization term. p(x;|us, z¢—1) is called the motion model, the
probability of a resulting pose given a starting pose and an action. p(z;|z;) is called
the sensor model, the probability of receiving a particular sensor reading given the
robot’s pose. If these two models exist then MCL can be performed.

Unfortunately, virtually all robots operate in a continuous space, so the integral
in Equation 2 is impossible to compute directly. In order to solve the problem, MCL
approximates the continuous space with a finite set of samples or “particles”. At
each time-step the set of samples is moved probabilistically according to the mo-
tion model. The samples are then annotated with a weight determined by the sensor
model. The weight of each sample is the probability of receiving the observed sensor
reading given that the robot is at the location represented by the particle. Finally, the
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particles are resampled according to their weight. Resampling generates the new set
of samples by choosing a particle with probability proportional to its weight with
replacement. Although MCL is obviously only correct as the number of samples
approaches infinity, it is often accurate for a relatively small number of samples.

MCL is a common technique for objective localization, where the motion model
and sensor model are constructed by hand or through experimentation. It can be used
equally well for subjective localization if one has appropriate motion and sensor
models in a subjective frame of reference. Section 3 deals with finding such a frame
of reference, while Section 4 details the learning of the required models.

3 Action Respecting Embedding

High-dimensional data sets, such as a sequence of images or scans from a laser range-
finder, can usually be characterized by a low-dimensional representation that is re-
lated to the process generating the data. For example, one low-dimensional repre-
sentation for image data might correspond to the degrees of freedom of the platform
moving the camera which gathered the data. Such a low-dimensional representation
of the sensor readings might be an ideal frame of reference for subjective localiza-

tion. The goal, then, is to take a temporal sequence of sensor readings 21, . . ., 2, With
associated control actions, us, . . ., Uy, and find a low-dimensional representation for
Z1, ..., Zn that would be appropriate for localization.

Recently, non-linear manifold-learning techniques have been used to map high-
dimensional datasets, such as sensor readings, into smaller dimensional spaces.
Semidefinite Embedding (SDE) [WS04] is one such technique. SDE learns a ker-
nel matrix, which represents a non-linear projection of the input data into a more
linear representation. It then uses Kernel PCA [SS02], a generalization of princi-
ple components analysis to feature spaces represented by kernels, to extract out a
low-dimensional representation of the data. The kernel matrix, K, is learned in SDE
by solving a semidefinite program with a simple set of constraints. The most impor-
tant constraints encode the common requirement in dimensionality reduction that the
non-linear embedding should preserve local distances. In other words, nearby points
in the original input space should remain nearby in the resulting feature representa-
tion. Therefore, SDE requires a distance metric || - || on the original input space, and
uses this metric to construct a k-nearest neighbors graph. It then adds constraints into
the semidefinite program to ensure that the distance between neighbors is preserved.
The optimization maximizes the trace of K, i.e., the variance of the learned feature
representation, which should minimize its dimensionality.

SDE, though, ignores two important pieces of knowledge about our data: the
temporal ordering of the input vectors z;, and the action labels u;. Therefore, SDE
doesn’t require temporally nearby input points to be spatially nearby in the feature
representation. Also, SDE won’t enforce the extracted space to be one where the
robot’s actions have a simple interpretation. The recent Action Respecting Embed-
ding (ARE) algorithm uses the aforementioned knowledge to address these issues.

Formally, ARE takes a set of D-dimensional input vectors, z1, ..., z, (i.e., sen-
sor readings, in temporal order) along with associated discrete actions %1, ..., Unp—1
(where action u; was executed between input z; and input z;41), and computes a
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set of d-dimensional output vectors x1,...,x, in one-to-one correspondence with
the input vectors that provide a meaningful embedding in d < D dimensions. ARE
is similar to SDE but extends it in two key ways. First, it exploits the knowledge
that the sensor readings are given in a temporal sequence by building an improved
neighborhood graph based on each input’s distances to its temporal neighbors using
an arbitrary local distance metric’. Second, it constrains the embedding to respect
the action labels that are associated with adjacent pairs of observations. This ensures
that the actions have a simple interpretation in the resulting feature space.

This second enhancement of ARE is the critical feature for subjective localiza-
tion. ARE constrains the learned manifold to be a space where the actions correspond
to transformations consisting only of rotation and translation in that space—in other
words, every action is required to be a distance-preserving transformation for all in-
puts in the learned feature space. Letting ®(z;) denote input z;’s representation in
this learned feature space, we require u’s transformation, f,, to satisfy:

Vi, j 1ful@(z:)) — fu(@(2))]] = |@(2:) — B(z5)]]- 3

Now, let u = u; = uy, s0 fu(P(2)) = P(z;41) and fo,(P(2;)) = P$(2;41). Hence,
constraint 3 becomes:

[18(zi41) — P(zj41)|| = [|1D(2:) — P(z5)]]. )
In terms of the kernel matrix, this can be written as:

Vi, i ous = uy = Kapnirn — 2Ka40) 6+ + Ko+
— Ky — 2K + Kj;. (5)

Add constraint 5 to the SDE optimization problem to get the ARE algorithm shown
in Table 1.

Table 1. Algorithm: Action Respecting Embedding (ARE).

Algorithm: ARE(|| - ||, (z1,. .., 2n), (U2, ..., Un))
Construct neighbor graph, N, according to [BGW05].

Maximize Tr( K) subject to K = 0, ZU K;; =0,
Yij Ny >0V [NTN]y; > 0=
Kii — QK” =+ ij S ||Zl — Zj||2 . and
Vij ui=u; = Kgryery — 2Kengen + Kginge
= Ku — 2Ky + Kj;

Run Kernel PCA with learned kernel, K.

® We have found that ARE is fairly robust to the choice of distance metrics, and use simple
Euclidean distance for all of the experiments in this paper.

5 Notice this is not requiring the actions in the objective space to be rotations and translations,
since ARE is learning a non-linear feature representation.
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4 Subjective Localization

Recall that the subjective localization problem involves both determining an appro-
priate subjective frame of reference for localization and then tracking the robot’s
position in that representation. In the work presented in this paper, ARE is used to
learn the frame of reference. A completely unsupervised stream of data from a robot
acting in the world (consisting of a stream of sensor readings, 21, . . ., 25, and associ-
ated actions, ug,. .., U, 1, which are elements of some set of discrete actions) will
be used as input to ARE in order to learn an appropriate subjective representation.
In order to perform localization with this representation, a motion model and
sensor model must be computed. ARE, though, provides more than just a coordinate

system. It also provides the actual d-dimensional embedded points, x1, ..., x,, that
correspond to the trajectory the robot followed in the data-gathering phase. This
trajectory—along with the robot’s sensations, 21, ..., 2, and actions, 41, ..., Up—

can be used to learn the models from the training data. Both models will be learned
in a similar fashion. We will first estimate the expectation of the model and then use
the error to estimate a noise component. We begin with the motion model.

4.1 Motion Model

The motion model is the posterior distribution p(x¢|us, z:—1). Since this model will
be used in a particle filter, it is only necessary to be able to draw a sample, Z, from
the model, given a u; and z_1, i.e.:

&~ p(xelug, 1)
First, separate the model into an expectation plus a noise component.
&~ E(welug, Te—1) + 0(Te|ug, 2-1)

Now make the simplifying assumption that the noise depends only on the action and
not on the previous pose. This gives the form:

T~ B(xg|ue, ve—1) + n(re|ug) (6)

We can now learn the model by learning the expectation component, then using the
sample errors to estimate the noise component.

Consider some action u. Every ¢ where u; = u gives one sample, z; and z;_1,
from the distribution p(x¢|u,z:_1). Using these sample points, a function of x; 1
is desired that gives a close estimate of x;. ARE explicitly includes constraints that
ensure such a function exists and is a simple rotation plus a translation in the learned
representation. We can recover these functions by solving an optimization problem
to find the corresponding rotation matrix A4, and translation vector b, such that
fulz) = Ayx + by. Formally,

Min )", . [[Auzi1 + by — 24])* s.t. ATA, =1 (ie., Ais arotation)

This problem is similar to the extended orthonormal Procrustes problem [SC70] and
has a closed form solution. Let X, be a matrix whose columns are x;_1 for all ¢
such that u; — u, and let Y, be a matrix whose columns are x; for the same ¢. The
following is the solution to this optimization problem:
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d
by = (Yu - AuXu)Te/da (8)

T
A, = VWT where VSWT =svd ( (I - ) Xu> D

where svd(-) is the singular value decomposition and e is a column vector with d
ones. Now the expected motion can be defined as:

E($t|ut,xt,1) ZAu,,l't—l +bu1 (9)

Since we only included the top d principal components of the output of ARE,
this model of the expected motion won’t be exact. The errors in the learned transfor-
mation can be used to build a model of the motion noise. Consider again some action
u, let & be the residual error for action u on x:

& = Aym—1+ by — x4 where Z & =0.
tur=u

The motion noise can be modeled as a zero-mean multivariate Gaussian, where the
covariance matrix can be estimated directly from the samples &;. Formally:

n($t|ut) ~ N(O,Zul’% (10)
where:
S (i d) = Y &)
tu,=u

Combining Equations 6, 9, and 10 gives the complete motion model.
4.2 Sensor Model

The sensor model is the probability distribution p(z;|x;). In the context of a parti-
cle filter, the density of the distribution at z; must be provided for a given z;. In
estimating this model from the data a few assumptions must be made. Notice that
ARE doesn’t take the images directly as its input, but rather uses an image’s dis-
tance to every other image as a kind of feature representation. We will use the same
representation for new observations, computing a feature vector:

z(i) =l —zll Vi=1...n

The best way to view this feature vector is that it provides a crude estimate of the
“distance” of the robot’s pose to the previous poses, 21, .. .,Z,. The additional as-
sumption is required that each of the components of the feature vector are inde-
pendently distributed’. That is, each is an independent estimate of the “distance” to
a past pose. The final assumption is that this probability only depends upon the dis-
tance to the specific past pose in the subjective representation®, i.e., ||z; — z;||. These
assumptions combine to give the following form for the model. Let dy; = ||z: —x4][:

7 This assumption, while almost certainly incorrect, is similar to the common MCL assump-
tion (often necessary for tractability) that sensor readings are independent.

& This is not an unreasonable assumption, since ARE explicitly constrains distances in the
subjective representation ||x; — x;|| by observed image distances ||z; — z;]|.
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plztlre) = p(Zlae) = I p(Ze(i)|xe) = I p (Z(0)]di) - (1)

Now to estimate a Gaussian model for the conditional random variable z;(i)|dy;.
Consider again the training trajectory, each x; gives one sample for this joint distribu-
tion: Z;(¢) and dy;. To build a Gaussian model, for each landmark, 4, use regression
to fit a low-degree polynomial determining the distribution mean as a function of
distance (/Li(dm‘))9. Then take the mean of the squared errors to estimate distribution
variance (o). This gives the following Gaussian density function:

Z(i)ldei ~ N(pi(dui), o7)- (12)
Combining Equations 11 and 12 gives the sensor model.

4.3 Using the Models

The final step of the technique is to use the motion and sensor models with Monte
Carlo localization to track the robot’s position in the learned subjective space. The
only detail left to be addressed is the initial distribution for localization. Since we
processed the data after a single training run, we know our exact position in the
subjective representation, x,,. All the samples in MCL are initialized to this point.
In the end, the subjective localization procedure has three configurable parame-
ters: the dimensionality of the subjective representation, d, the degree of polynomial
used in the sensor model, and the number of particles used by MCL. Overall, the pro-
cedure has a small number of parameters and, as seen in the next section, can actually
localize in a number of different situations with a variety of parameter settings.

5 Results

Here, the algorithm from Section 4 is applied to two different domains. The first is
IMAGEBOT a synthetic image manipulation domain. The second is a mobile robot,
demonstrating localization with first a camera, then a laser range-finder as the pri-
mary sensor. First the domains are described followed by the experiments with the
results of localization. Then a measure of accuracy is presented that is appropriate
for subjective localization, showing accuracy across a variety of experiments. Finally,
we show the robustness of the algorithm to the choice of its few parameters.

5.1 The Domains
We explored subjective localization in two different domains.
Image based (IMAGEBOT).

Given an image, imagine a virtual robot that observes a small patch on that image and
takes actions to move this patch around the larger image. This “image robot” provides
an excellent domain in which subjective localization can be rigorously tested while
having obvious corollaries to mobile robotics.

For these experiments, IMAGEBOT will always be viewing a 100 by 100 patch
of a 2048 by 1536 image. All the experiments use the image from Figure 1. IMAGE-
BOT has four translation actions and two zoom actions. The allowed translations are
forward, backward, left and right, each by 25 pixels. The zoom changes the scale of

® This is very similar to the sensor model construction by Stronger and Stone [SS05].
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~1/8

the underlying image by a factor of 21/8 or 2 Since we are interested in noisy

actions, zero-mean Gaussian noise is added to the magnitude of the change of any of
the actions with a standard deviation of one-tenth of the mean change.

Fig. 1. IMAGEBOT’s world. Fig. 2. A 45-action IMAGEBOT trajectory.

Mobile Robot.

Experiments were performed on an ActivMedia Pioneer 3 DX8 robot equipped with
an ordinary web camera and a laser range-finder. A series of predefined actions were
used to move the robot up and down a a corridor with data being collected after
each action. Additionally, after each action was performed the robot’s position was
manually measured to discover actual error. We performed experiments using the
camera as the only sensor, then using the laser as the only sensor.

5.2 Experiments

In all experiments, a dataset is gathered by executing a sequence of actions and re-
ceiving the associated sequence of sensor readings. After each action, measurement
of objective location is taken—used later to compute a measure of accuracy. The
sequence is split into two sets, training and test. The training set is used by ARE
to extract a subjective representation and associated trajectory. Motion and sensor
models are learned as described in Section 4. Finally, the models are used in MCL
to localize given the test set. The mean of the particles after every given action and
observation is used as the estimated position in the subjective frame of reference.

In order to extract a model of noise, the training data needs to contain examples
of executing the same action from approximately the same location. Since the points
after taking this action will be in various locations, the noise of the motion model
can then be reconstructed. Therefore, each dataset begins by taking repeated short
sequences of actions (such as going forward three steps then backward three steps),
ensuring the training data includes a representation of noise in the robot’s actions.

Image Based (IMAGEBOT).

In the IMAGEBOT domain three different paths were examined, each path was gen-
erated three times, each different due to noise. The first path was a simple line, where
IMAGEBOT executed forward and backward actions. The second was an “A” shaped
path using forward, backward, left, and right (an example of this trajectory is shown
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Figure 2). The last was the same “A” shaped path where the right and left actions
were replaced by zoom-in and zoom-out actions, respectively. In all cases, the test
data involved retracing IMAGEBOT’s steps back over its path. This involves different
observations, though, as the actions are noisy.

Figure 3 shows an example “A” shaped path (the “A” is tilted to the right) in
objective coordinates. The dotted line shows the training data with the trajectory
starting in the upper left. The solid line shows the test data, a reversed “A” starting
from the bottom left. Note that noise prevents the two paths from exactly lining up.

A

Fig. 3. IMAGEBOT’s “A” shaped trajectory in Fig. 4. Subjective localization on the “A”

objective coordinates. The dotted line is the trajectory. Dotted line is ARE’s trajectory

training data, the solid line is the test data. on training data, solid line is predicted lo-
cation using MCL on test data.

Figure 4 shows the results of using the data from Figure 3 with our subjective
localization technique. The dotted line shows the trajectory that resulted from run-
ning ARE on the training data in the learned frame of reference. The solid line is the
predicted points from MCL while receiving images and actions from the test data.
The circled cloud of points point shows the set of 100 particles in MCL at that point
in the trajectory. The learned trajectory corresponds strongly with the objective tra-
jectory, and the localized trajectory follows along appropriately. In the next section
we investigate a quantitative measure of localization accuracy showing the results on
this and the other trajectories.

Mobile Robot.

There was one simple path studied with the Pioneer robot, but two experiments were
performed with it. In the first, observations were 160x120 pixel images from the
camera. In the second, observations were the 180 distance estimates from the laser
range-finder. Training and test paths were the same as the first path of IMAGEBOT:
a simple forward and backward trajectory. Figure 5 shows the consecutive images
taken as the robot traversed this path. The top row (left to right) shows images as
the robot moves forward down its path. The bottom row (right to left) shows the
continuation of the trajectory as the robot moves back up the path.

Figure 6 shows ARE’s learned trajectory (dotted line) and the predicted trajec-
tory from localization on the test set (solid line) using the camera as sensor input.
The objective space corresponds to a single primary dimension, and the trajectories
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Fig. 5. Images gathered from the robot moving forward (top) then backward (bottom).

correctly capture this as the x dimension in the plot. The learned and predicted tra-
jectories look qualitatively similar when the laser is used as sensor input and so are
not shown here.

Fig. 6. Subjective localization of the robot using the camera. Dotted line is ARE’s trajectory
on training data, solid line is predicted location using MCL on test data.

5.3 Accuracy

Accuracy is a measure for evaluating localization performance. In objective localiza-
tion, this amounts to comparing the predicted position to hand-measured objective
positions and reporting the mean error. For subjective localization, this is not pos-
sible as the robot’s location is only known in a subjective frame of reference. This
makes it difficult to measure the accuracy of an algorithm. As mentioned in the intro-
duction, one use for a subjective representation is for recognizing locations visited
in the past. In particular, a new position in the subjective frame of reference can be
compared to previous training points. Distance in the subjective space can be used to
estimate which training point we expect to be closest to in objective space.

A method for evaluating subjective localization now becomes clear. For a given
predicted subjective location, find the closest point in the training data to this lo-
cation and consider this an objective prediction. The error is simply the distance in
objective coordinates between the robot’s true (measured) location and this predic-
tion from the training set. This gives a measure of accuracy in objective terms (Note,
it is generally impossible to achieve zero error). For comparison, an oracle score can
also be computed. Look at the actual objective positions of each point in the test data
and determine the closest training point, using this distance as the oracle error. Any
measure of accuracy can be compared to this oracle’s accuracy. As another baseline,
compute the error of a random subjective localization algorithm that chooses a ran-
dom training point as the prediction of its location. These two baselines, oracle and
random, can be used to evaluate the accuracy of any subjective localization method.

Table 2 shows the accuracy results for all three paths in IMAGEBOT averaged
over three datasets each with ten complete runs of MCL. Table 3 shows the accuracy
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results for both camera and laser-based robot experiments, averaged over ten com-
plete runs of MCL. In IMAGEBOT, the accuracies are within approximately 10 pixels,
a vast improvement over the random baseline and not far from the oracle’s accuracy.
With the mobile robot, the accuracy with the camera is approximately 150mm, an or-
der of magnitude improvement over random and about an order of magnitude behind
the oracle performance. The performance with the laser range-finder is not quite as
strong, but still demonstrates effective localization.

Table 2. IMAGEBOT accuracy. Table 3. Mobile robot accuracy.
Mean Error (Pixels) Mean Error (mm)
Oracle| ARE|Random Oracle| ARE|Random
Straight line 4.82110.39| 86.83| |Robot with camera| 14.25|149.10| 1482.83
“A” with translation| 3.62|14.81| 104.56| |Robot with laser 16.25|287.93| 1450.50

“A” with zoom 1.71{19.58| 84.67

5.4 Robustness

Finally, we consider the robustness of this technique. The results in the previous
section demonstrate one aspect of robustness—the ability to subjectively localize in
two very different domains. Even more compelling, the primary sensor was switched
from camera to laser and the robot was still able to successfully localize. The algo-
rithm, entirely unchanged, found a new subjective representation, and new motion
and sensor models without requiring time-consuming manual creation of these new
models.

Parameters.

Another aspect is the robustness of the algorithm to the setting of its various param-
eters. There was no tuning of the parameters for any of the results presented here.
All results used simple Euclidean distance as ARE’s local distance metric over ob-
servations. All used a degree three polynomial when computing the sensor model.
The final two parameters are the choice of the number of dimensions d in the sub-
jective representation and the number of particles used in MCL. Varying the choice
of d from two to eight dimensions in the IMAGEBOT line example affects the re-
sulting accuracy by no more than 2 pixels. Varying the number of particles used in
MCL from 50 to 500 caused no difference in the resulting trajectories. In summary,
the presented technique has surprisingly few parameters and is quite robust to their
choice.

Leaving the Map.

As a final consideration of robustness, an IMAGEBOT trajectory was examined where
the test data included objective locations far outside the gathered training data. This
means that the synthetic robot left its map for portions of its trajectory. The accuracy
measure on the trajectory, averaged over ten runs, was 57 pixels, where the oracle
was 37, and random was 158. The high errors for all techniques is due to the fact
that for many test points no point in the training data was objectively close. Despite
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this, the subjective localization based on ARE continues to perform only marginally
worse than the oracle.

6 Conclusion

In summary we examined the problem of subjective localization, where the algorithm
can choose an appropriate frame of reference in which to localize. We proposed a
technique for solving this problem by (i) extracting a subjective representation from
training data using Action Respecting Embedding, (ii) learning a motion model and
sensor model for this representation, and (iii) using these models with Monte Carlo
localization to track the robot’s location in the subjective frame of reference. We
evaluated this technique in both a synthetic image manipulation domain and with
a mobile robot. The algorithm successfully extracted subjective representations and
localized on new test data with substantial accuracy. These results were consistent,
with no changes to the algorithm, across a variety of different experiments, including
changing the robot’s primary sensor from camera to laser. We also showed that the
algorithm was robust to the few parameters that it depends upon.
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Summary. The main contribution of this paper is the reformulation of the simultaneous
localization and mapping (SLAM) problem for mobile robots such that the mapping and
localization can be treated as two concurrent yet separated processes: D-SLAM (decoupled
SLAM). It is shown that SLAM can be decoupled into solving a non-linear static estimation
problem for mapping and a low-dimensional dynamic estimation problem for localization. The
mapping problem can be solved using an Extended Information Filter where the information
matrix is shown to be exactly sparse. A significant saving in the computational etfort can
be achieved for large scale problems by exploiting the special properties of sparse matrices.
An important feature of D-SLAM is that the correlation among landmarks are still kept and
it is demonstrated that the uncertainty of the map landmarks monotonically decrease. The
algorithm is illustrated through computer simulations and experiments.

1 Introduction

Simultaneous localization and mapping (SLAM) has been the subject of extensive
research in the past few years with a number of robotics research groups contributing
to make substantial progress in this area (see for example, [1], [2], [3], [4], [5],[6], [7]
and the references therein). Traditionally, SLAM uses a state vector incorporating the
location of the robot, all the landmarks and maintains the associated full covariance
matrix. This, however, leads to a heavy computational burden when solving large
scale SLAM problems.

Many researchers have exploited the special structure of the covariance matrix in
order to reduce the computational effort required in SLAM. One notable result in the
recent past has been that of Thrun et al. [7] which uses the Extended Information Filter
to exploit the relative sparseness of the information matrix to reduce the computational
effort required in SLAM. Frese [8] provided a proof for the approximate sparseness
of the information matrix. However, Eustice et al. [9] demonstrated that the process
of sparsification proposed in [7] leads to inconsistent estimates.

In a recent development, Eustice et al. [10] show that the inclusion of the robot
trajectory in the form of past robot poses in the state vector leads to an exactly
sparse information matrix. The resulting Exactly Sparse Delayed State Filter (ESDSF)

S. Thrun, R. Brooks, H. Durrant-Whyte (Eds.): Robotics Rescarch, STAR 28, pp. 203 213, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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provides clear computational advantages when a view-based map representation is
used. In the example presented the “map” is not represented within the state vector
and is therefore not directly updated.

Another way to reduce the computation complexity is to delete the robot in the
map state vector. A variety of attempts have been made to achieve this by constructing
relative maps using the observation information. For example, Newman [3] introduced
a relative map in which the map state contains the relative locations among the
landmarks. Csorba et al. [11] and Martinelli et al. [12] have used relative maps
where the map state contains distances (and angles) among the landmarks, which are
invariants under shift and rotation. The structure of the covariance matrix is kept sparse
by maintaining a state vector with redundant elements. As the relationships between
these elements are not enforced, for large scale problems the map becomes complex
and difficult to use. However, if the constraints that enforce these relationships are
applied, the simple structure of the covariance matrix is destroyed, leading to an
increased computational complexity [3].

This paper presents an extension of the decoupled SLAM algorithm, D-SLAM,
proposed by the authors in [15] [16], where SLAM is reformulated as a static estima-
tion problem for mapping and a three dimensional dynamic estimation problem for
localization. The landmark locations are maintained using either a compact relative
map [15] or an absolute Cartesian map [16]. The new formulation retains the signif-
icant advantage of being able to improve the location estimates of all the landmarks
from one local observation, yet results in an exactly sparse information matrix with
the number of nonzero elements related to the range of the sensor on board the robot.
The main assumption in [15] [16] is that the robot can observe at least two previously
seen landmarks in each observation. This paper provides a strategy to relax the above
assumption by merging a set of observations to construct admissible measurements.
An improved localization process based on a local SLAM is also presented.

The paper is organized as follows. The mapping and the localization algorithms in
D-SLAM are stated in Sections 2 and 3, respectively. The computational complexity
is addressed in Section 4. Section 5 provides simulation and experiments results of
D-SLAM algorithm. Section 6 concludes the paper by providing a discussion and
addressing future research directions.

2 Mapping in D-SLAM

In D-SLAM, the robot location is not included in the state vector in the mapping
process. The state vector only contains the Cartesian coordinate of the locations of
all the observed landmarks:

X - (le" '7Xn)T - (x17y17x27y27" '7xn7yn)T' (1)

In order to generate estimates of the landmark locations the following two pro-
cesses are necessary. (1) A method of recasting the observation vector such that the
information about the landmarks that is independent of the robot location can be
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extracted. (2) A new landmark initialization and update method that does not require
the robot location. The following sections provide details of these two processes.
2.1 Recasting the Measurement Vector

Suppose robot observes m > 2 landmarks f1,---, fi, at a particular time where
f1, fo are landmarks that have been previously seen. The raw measurement and the
associate Gaussian measurement noise covariance matrix are given by

Zold = [rlaeh T 7rm79m]T ) Rold = dia'g[RlaR27 T, Rm] (2)

This measurements can be recast to contain two parts as follows:

[ atan2 (:—%) — atan2 332:321> ]
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The physical meaning of z,. is the relative angles and distances from the robot
to landmarks f1, fo. The physical meaning of 2,4y, 18 the distance between fi and f2,
dy2, together with the relative angles and distances from the landmarks fs3,- -, fm
to landmarks f1, fo.

Itis clear that 2,4, contains information about distances and angles among land-
marks that are independent of the robot location and the coordinate system. The two
measurement vectors Zpqp and 2,y are correlated and the associated measurement
noise covariance matrices, 2., and I2,,,, respectively, are not diagonal although
these matrices can be easily computed.

2.2 Mapping Using Information Relating Landmark Locations

The idea for mapping in D-SLAM is the following. (i) When robot is stationary at
the starting point, the raw measurement and the robot starting location are used to
initialize and update the landmarks location estimates. (ii) Once the robot moves, two
previously seen landmarks and the recast observation z,,p Will be used to initialize
and update landmarks.
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After the robot moves, the measurement model is (assume f1, fo are previously
seen landmarks, recall that the state vector X is given in (1))

Zmap = [d127a3127 d13, C, 0ml2, dlm]T = Hmap(X) + Wmap 5)

where H ., (X) is given by the last 2m — 3 formulas in equation (3) by substituting
Z;, J; with the absolute locations of the landmarks z;,y; (¢ = 1,- -+, m). Wmep 18
the new measurement noise whose covariance matrix R, can be computed by (2),
(3), and (4).

The mapping problem can now be solved as a linearized minimum mean square
error problem. Let i(k) represent information vector and I(k) be the associated
information matrix. The state vector and the information vector are related through

i(k) = I(k)X (k). ©®)

The procedure for using the measurements z,,,, to update the information vector
and the information matrix is as follows:

Ik+1)=Ik)+ VH,EQPR;L%VH,MP
ik +1) =i(k) + VHrEapRr_n}zp[zmap(k +1) = Hiap(X(k)) + VHmapX(kz%

where VH,,, is the Jacobian of the function H,,,, with respect to all the states
evaluated on the current state estimation X (k).

2.3 Construction of Admissible Measurements

To be admissible in the mapping algorithm outlined in the previous section, observa-
tion vectors need to satisfy the following condition.

Definition. An observation made at a particular point is called admissible if it
contains at least two previously seen landmarks.

Figure 1 shows an example where robot observes two old landmarks f1, fo and
two new landmarks f3, f4 at point Pp, but it only observes one landmark f5 at point
P5 and one other landmark fg at point Ps. Later on at point Py, it observes landmarks
fs, f6, fr. Thus the observations at P, and P3 are not admissible. It is, however,
possible to combine the measurements made from different points to generate new
admissible measurements as follows. Once it is detected that the observation at point
P is not admissible, the update to the map using the observation information from
P will be removed. Then a virtual observation from P to f1, fo, f3, f4 will be
constructed using the observation from Py to f1, f2, f3, f4 and an estimate of the
relative motion of the robot from P, to P (Figure 1). The uncertainty associated
with this composite observation can be computed using the relevant observation
equations and the process and observation uncertainties. The mapping process will
proceed as if landmarks f1, f2, f3, f4, f5 are observed from P, and no observation
is made at P;. This process is repeated wherever an inadmissible observation is
encountered, for example at P3. This strategy allows D-SLAM to function where a
cluster of landmarks are separated from another cluster of landmarks by a region of
"featureless" terrain.
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Fig. 1. Construct admissible measurement from the raw measurements

3 Localization in D-SLAM

In the localization process of D-SLLAM, estimates from two approaches are combined
to obtain an estimate for the robot location (and local landmark locations). One
approach is to use a local traditional SLAM. The other is to use the current observation
and the map generated in the previous step to solve the kidnapped robot problem.
Figure 2 shows a flow-chart illustrating the localization process.

X, (k-1) Local SLAM X, S(k) Cl X, (k)
X, (k-1) (Observation X S(k) X, (k)
+ odometer) [

X[M (k)
X" (k)
Z.nap » Map(k)

— Map(k-1)

Fig. 2. Flow chat of localization and mapping process in D-SLAM

Suppose that robot observes landmarks fi,---, f, at time k, among which
Sfi,-++y fm., m1 < m are landmarks that have been previously seen. The state vector
in D-SLAM localization contains the location of the robot and these previously seen

landmarks f1,- -, fm,-
Xpoe(k) = (Xr(k), X1, -+, Xm )T ®)
An estimate of X, -, X, and the associated covariance matrix are available

from the map obtained at time k — 1. These together with the part of the measurement
vector z,;4 that involves landmarks f1, -, fm,,
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Zloe = (7"1,917 T armpeml)T = HlOC(XT(k)7X17 T 7Xm1) + Wioe, (9)

can be used to estimate Xj,.(k). Here Hj,. contains 2m typical range and bearing
observation functions. The estimate of X;,.(k) is a low dimensional linearized mini-
mum mean square error estimation problem. This approach does not make use of the
process model and therefore is clearly sub-optimal.

The alternative is to use a local traditional SLAM process to estimate X;,.(k),
where only the landmarks in the vicinity of the robot are retained in the state vector.
Landmarks are removed from the state vector once they are not visible from the robot.
When a previously deleted landmark is re-observed, the landmark is reinitialised and
is treated as a new landmark. This is effectively a SLAM-aided dead reckoning
process which provides a much better robot location estimate than that obtained
using dead-reckoning alone.

Which of the two estimates is more accurate depends on the prevailing circum-
stances. Local SLAM estimate is optimal, until the robot closes a loop by revisiting a
previously traversed region of the map. The kidnapped robot solution will be superior
when loop closures are present. Fusing the outcomes of the two localization processes
will result in a better estimate. However, these two estimates for the robot location are
correlated. Therefore, it is necessary to combine these estimates using a strategy, for
example covariance intersection (CI) [14], that facilitates combining two correlated
pieces of information, when the extent of correlation itself is unknown (see Figure
2).

The robot location computed is sub-optimal and is correlated to the map. These
correlations do not affect the mapping process as the observation used for mapping,
Zmap- 15 Independent of the robot location. However, as information about the robot
location is not exploited in the mapping process, estimate of the map will also be
suboptimal.

4 Computational Complexity

A key feature of D-SLAM is that the information matrix in the mapping process is
exactly sparse, and this reduces the computation cost significantly.

Since the measurement 2,4, only involves a small fraction of the total number of
landmarks, the matrix V H, gapR%épVHmap in (7) is sparse with the elements relating
to the landmarks that are not present in the measurement vector being exactly zero.
OHyayp OHmop (... 0}

,0[.

ax; T TEX,, 0

In a typical sensor where the sensor range is finite, the observations only relate
landmarks that are close to each other. Therefore, if landmark ¢ and landmark j are
not visible simultaneously from the robot, the measurement zy,,, Will never contain
both f; and f;. As the information matrix update involves a simple addition, the
elements relating to ¢ and 7 in the information matrix will remain exactly zero. Thus,
in a large scale map, a significant portion of the information matrix will be exactly
zero, resulting in an exactly sparse information matrix.

This can be easily seen by the fact VH,,,p, = [
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Let N be the size of the map. The storage requirement is O(N) because the
information matrix is sparse with non-zero elements O(/N). Localization step in D-
SLAM requires updating a state vector containing only constant number of elements,
thus computational cost is O(1). Mapping in D-SLAM is formulated in the informa-
tion form where the update step is a O(1) time process and the prediction step, the
computationally demanding stage of an information filter, does not exist. For data
association, locations as well as the uncertainty of the landmarks in the vicinity of
the robot are required. The vicinity here is defined in terms of the range of the sensor
used and contains only O(1) landmarks.

The major computational cost of D-SLAM is due to the need for recovering the
state vector containing the landmark locations and the related parts of the covariance
matrix. The state vector can be recovered by solving a sparse linear equation (6). The
desired columns of the covariance matrix can also be obtained by solving a constant
number of sparse linear equations. Since good initial guesses are available for the
linear equations (the previous estimation is a good initial guess for state vector, zero
vectors are good initial guesses for the columns of covariance matrix), few iterations
are enough for iterative method (for example, Preconditional Conjugate Gradient
method) to converge to the solutions. Thus the computation cost for the recovery is
O(N). The multigrid algorithm proposed in [13] may also be an efficient method for
the recovery. Overall cost of D-SLAM is, therefore, O(N).

5 Evaluation of D-SLAM

5.1 Experimental Evaluation with a Pioneer Robot in an Office Environment

The Pioneer 2 DX robot was used for the experimental implementation. This robot is
equipped with a laser range finder with a field of view of 180 degrees and an angular
resolution of 0.5 degree. Twelve laser reflectors were placed in a 8 x 8m? area and
the Player software was used to control the robot and collect sensor data.

Matlab implementation of D-SLLAM was used to process the data and compute
the robot and landmark locations. Nearest neighbour algorithm was used for data
association and for comparison, robot and landmark locations were also obtained
using the traditional full SLAM algorithm. The results are presented in Figure 3.
Although the robot localization estimates are conservative compared to traditional
SLAM, the new algorithm provided a much superior estimate to that presented in
[16].

5.2 Evaluation of D-SLAM in Simulation with a Large Number of Landmarks

A more complex simulation experiment with larger number of landmarks was con-
ducted to further evaluate D-SLAM and demonstrate its properties. The environment
used is a 40 meter square with 196 landmarks arranged in uniformly spaced rows
and columns. The robot starts from the left bottom corner of the square and follows
a random trajectory, revisiting many landmarks and closing many loops as seen in
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(a) (b)

(c) (d)

Fig. 3. D-SLAM implementation: (a) Map obtained by D-SLAM; (b) Robot location estimation
error; (¢) 20 bounds of robot location estimation (solid line is from D-SLAM; dashed line is
from traditional SLAM); (d) 2 bounds of landmark 9 estimation (solid line is from D-SLAM;
dashed line is from traditional SLAM).

Figure 4(a). A sensor with a field of view of 180 degrees and a range of 5 meters
is simulated to generate relative range and bearing measurements between the robot
and the landmarks.

Figure 4(b) shows the estimation error and the associated 95% confidence levels
for one landmark far away from the robot initial location. It is clear that the estimates
are consistent. Figure 4(c) shows all the non-zero elements of the information matrix
in black after reordering. It is clear that this matrix is sparse as there are 7312
non-zero elements and 68864 exactly zero elements. The blocks diagonal terms are
due to landmarks in close vicinity observed together and the off diagonal terms are
due to loop closures where a previously seen landmark is re-observed some time
later. Reordering the information matrix, so that indices of the nearby landmarks are
adjacent, results in the banded matrix. This matrix demonstrates the fact that only the
nearby landmarks are linked in the information matrix.
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(a) (b) (c)

Fig. 4. D-SLAM simulations: (a) Map obtained by D-SLAM; (b) Estimation error of a landmark
far away from robot starting location, and its 95% confidence limit; (¢) Sparse information
matrix obtained by D-SLAM after reordering (7312 non-zero elements and 68864 exactly zero
elements).

6 Discussion and Conclusions

In this paper, a new decoupled SLAM algorithm: D-SLAM, is described. While the
localization and mapping are performed simultaneously, mapping and localization are
separated processes. The significant advantages gained are that there is no prediction
step for the mapping, the information matrix associated with mapping is exactly
sparse and only the landmarks that are in the close vicinity are linked through the
information matrix. This results in an O (N} SLAM algorithm where N is the number
of landmarks.

Although the robot location is not incorporated in the state vector used in mapping,
correlations between the landmarks are still preserved. Thus the location estimates
of all the landmarks are improved using information from one local observation.

In D-SLAM, however, the knowledge about the robot location is not exploited
in the mapping process and this results in some information loss. An analysis based
on a linear one-dimensional model as well as 2-D simulations demonstrated that the
information loss depends on the ratio between the sensor noise and the process noise.
The smaller the ratio, the less amount of information lost. Further analytical work to
quantify the extent of information loss is currently underway.

Additional work is necessary to further reduce the computation effort by exploring
the possibilities of using D-SLAM in conjunction with the submap idea (e.g. [5]).
Investigations in these directions together with a large scale experiment using Victoria
Park data set [17] are currently in progress. Further work is required to compare
D-SLAM with the recent developments in view-based SLAM [10]. In view-based
SLAM the state vector consists of robot poses whereas the map is obtained through
registration of successive observation sets. In D-SLAM, the map is represented in the
state vector and one localization estimate is generated by registering the robot in the
map. Both approaches result in significant computational advantages at the expense
of some information loss. Examination of the relationship between D-SLAM with
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the FastSLAM algorithm where particles are used to represent the possible robot
trajectories will also be interesting.
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Summary. An open problem in Simultaneous Localization and Mapping (SLAM)
is the development of algorithms which scale with the size of the environment. A
few promising methods exploit the key insight that representing the posterior in the
canonical form parameterized by a sparse information matrix provides significant
advantages regarding computational efficiency and storage requirements. Because
the information matrix is naturally dense in the case of feature-based SLAM, addi-
tional steps are necessary to achieve sparsity. The delicate issue then becomes one
of performing this sparsification in a manner which is consistent with the original
distribution.

In this paper, we present a SLAM algorithm based in the information form in
which sparseness is preserved while maintaining consistency. We describe an intuitive
approach to controlling the population of the information matrix by essentially ig-
noring a small fraction of proprioceptive measurements whereby we track a modified
version of the posterior. In this manner, the Exactly Sparse Extended Information
Filter (ESEIF) performs exact inference, employing a model which is conservative
relative to the standard distribution. We demonstrate our algorithm both in simula-
tion as well as on two nonlinear datasets, comparing it against the standard EKF as
well as the Sparse Extended Information Filter (SEIF) by Thrun et al. The results
convincingly show that our method yields conservative estimates for the robot pose
and map which are nearly identical to those of the EKF in comparison to the SEIF
formulation which results in overconfident error bounds.
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1 Introduction

A skill which plays an integral role in achieving robot autonomy is the ability
to operate in a priori unknown environments. Viewed as a coupled problem of
simultaneously performing localization and mapping, SLAM is further com-
plicated by the stochastic nature of vehicle motion and observations. Most
effective SLAM algorithms address these issues by posing the problem in a
probabilistic framework with the goal then being the estimation of the joint
distribution over the map and vehicle pose.

Beginning with the seminal work of Smith et al. [14], the Extended Kalman
Filter (EKF) SLAM formulation has proven to be particularly popular. In
large part, this is due to its relative simplicity, requiring that one only maintain
the first two moments of the distribution to account for the coupling between
the robot and map. From knowledge of the correlation, the EKF is able to
exploit feature observation data to update the pose and map estimates. At the
same time, this capability comes at the cost of complexity which is quadratic
in the number of state elements. As a result, SLAM algorithms relying upon
an EKF have traditionally been limited to relatively small environments.

Representing the joint Gaussian distribution in the dual canonical form,
recent work has given rise to algorithms capable of scaling with the environ-
ment. Pivotal insights by Thrun et al. [15] and Frese et al. [8] have revealed
that, in the context of SLAM, many of the off-diagonal elements in the in-
verse covariance (information) matrix are inherently near zero. Considering
the graphical model represented by the information matrix [12], the implica-
tion is that a majority of the links in the Markov network are relatively weak.
By essentially breaking these weak links, Frese [7] and Paskin [12] are able to
approximate the graphical model by a sparse tree structure which provides
for scalable SLAM algorithms. Alternatively, the Sparse Extended Informa-
tion Filter (SEIF) by Thrun et al. [15] relies upon a version of the Extended
Information Filter, the dual to the EKF. In the case where the information
matrix is sparse, the authors demonstrate that state estimation can be per-
formed in near-constant time. While a majority of the links in the information
matrix are weak, though, they are nonetheless nonzero. SEIF's then employ a
strategy by which the posterior is approximated with an information matrix
having the desired sparse structure. The algorithm has efficiently been applied
to large, real-world datasets with a priori unknown data association [10].

Together with the intuitive characteristics of the canonical representation
noted in [15], the success of SEIFs has brought a lot of attention to the
information filter formulation of the SLAM problem. The one issue which
has, up to now, largely gone unnoticed is the implication of approximating the
posterior to achieve the necessary sparseness. A close look at the sparsification
strategy reveals that the resulting posterior is prone to overconfidence. In [5],
the authors show that, while the state estimates are only slightly overconfident
when expressed in a local reference frame, they suffer from an exaggerated
global inconsistency. The paper presents a modified sparsification rule which
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yields a posterior which is both locally and globally consistent relative to the
full Kalman solution but is no longer computationally tractable.

Our objective in this paper is to present an information-based formulation
to the SLAM problem which achieves exact sparseness while being computa-
tionally efficient. Rather than relying upon an approximation to remove links
from the information matrix, the algorithm adopts a new strategy which ac-
tively controls the population of the matrix by relocalizing the robot within
the map. The filter then maintains an estimate of the state which is both
globally and locally conservative relative to the full Kalman solution. We
demonstrate the algorithm alongside the EKF and SEIF on a linear Gaussian
simulation as well as two real-world experiments, including a benchmark non-
linear dataset. The results reveal that while the SEIF is globally inconsistent,
our algorithm yields estimates nearly identical to those of the EKF which are
globally and locally conservative.

2 Information Filter

2.1 Canonical Form

Let &, be a random vector having a Gaussian probability density, §, ~
N (£t; [T Et) described completely by its mean, p,, and covariance matrix,
Y. An expansion of the exponential term defining the multivariate normal
distribution, p(&,) o exp {—%(&, — ) e, — )}, yields an equivalent
representation for the probability density function, A/ ! (Et; Ny, At)7 parame-
terized by the information vector and information matrix, n, and A;, respec-
tively.

Ae=3570 m =37, (1)

The canonical representation for the multivariate Gaussian is the dual of the
standard form in the sense of the fundamental processes of marginalization
and conditioning, as exemplified in Table 1. While marginalization is hard in
the information form, requiring a matrix inversion, it is easy in the covariance
form. The opposite is true in regards to the conditioning operation. Further
details regarding this duality in the context of filtering can be found in [11].

One quality of the canonical form is its relationship with Gaussian Markov
random fields in which nodes in the graph represent individual state variables
and edge structure describes their conditional independence relationships. The
information matrix effectively serves as an adjacency matrix for the graph
[12], with the strength of constraints between pairs of variables proportional
to the corresponding elements of the matrix. Off-diagonal components which
are zero then denote the absence of links in the Markov network. Thus, the
information matrix has the particular advantage of explicitly representing the
conditional independence of state variables.
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Table 1. Summary of Marginalization and Conditioning Operations on a Gaussian
Distribution Expressed in Covariance and Information Form
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ple) = [pla,8)dB | pla | B)=p(c,B)/p(B)
COVARIANCE = B = o+ SasDs5(8 — pg)
FoRM 5 = s 5 = Yaa — Nap¥pisa
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2.2 Feature-Based SLAM

The goal of any SLAM algorithm is to concurrently perform navigation and
map-building in the presence of uncertainty in vehicle motion and environmen-
tal observations. With feature-based SLAM formulations, the map is described
as a collection of stationary primitives, e.g. lines, points, etc. The robot pose,
Xy, together with the set of map elements, M = {my, ms,...,m,}, are repre-
sented together by the state vector, &, = [x, MT]T. The coupling between the
pose and map is addressed by considering the joint probability distribution
for the state. Adopting a Bayesian framework, a model of the joint poste-
rior is tracked as it evolves as a result of the uncertainty in vehicle motion
and measurement data. Typical SLAM implementations make the assumption
that this uncertainty is a result of independent white Gaussian noise which
corrupts the motion and measurement models. One can then show that the
posterior obeys a Gaussian distribution.

p <£t|ztaut) = N(&;un&) = N_1<£t577t7At) (2)

The belief function is traditionally represented in the standard form which
can be tracked relatively easily with the EKF. Modifying the posterior to re-
flect the effect of vehicle motion is a constant-time process as it involves a
combined process of state augmentation and marginalization, both of which
are easily performed in the covariance form. On the other hand, it is well
known that incorporating new measurement data requires a conditioning step
which is quadratic in the size of the state. Furthermore, maintaining the cor-
relation among state estimates leads to a dense covariance matrix which must
be stored. For small scale environments, these problems are surmountable, but
as the map size becomes increasingly large, implementing a full EKF quickly
becomes intractable.
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Alternatively, employing the canonical representation of the posterior, the
filtering process reflects the duality between the two forms. Performing mea-
surement updates (conditioning) is constant-time, while the marginalization
component of the projection step, in general, is quadratic in the state di-
mension, at best. Furthermore, recovering the estimate of the mean requires
the O(n®) inversion of the information matrix per (1). As a result of these
limitations, the information filter has had relatively limited use in SLAM.

Recently, Thrun et al. [15] and Frese et al. [8] have made the pivotal ob-
servation that, when normalized, the information matrix tends to be nearly
sparse. The matrix is dominated by a small percentage of terms which are sig-
nificantly larger than the remaining elements. In general, the links between the
robot and the map are stronger for nearby, recently observed features while the
constraints are weak for distant features. The same is true for inter-landmark
terms which tend to decay exponentially with the distance traversed by the
robot between observations [6]. Referring to the graphical interpretation of
the information matrix, these weak links then imply that, given relatively few
features, the robot is nearly conditionally independent of much of the map.

Though many of the terms in the normalized information matrix are very
small, the SLAM process naturally leads to the full population of the matrix.
To get a better understanding of why this is, consider a simple example in
which the map consists of five features. Suppose that the off-diagonal terms in
the information matrix corresponding to the robot, x;, are non-zero for four
of the features and that the remaining landmark, my4, has shared information
with another feature. These links between the robot and the map are created
when features are observed. The graphical model along with the information
matrix are illustrated in the left-hand side of Figure 1(a). The time projection
step can be viewed as an initial augmentation of the state with the new
robot pose, X;41, which, evolving by a Markov process, is linked only to the
previous pose as indicated in the middle figure. At this point, the information
matrix remains sparse. Subsequently marginalizing out x¢, though, creates
links between all states which share constraints with the previous pose. The
result is a fully connected subset of nodes and, correspondingly, a population
of the information matrix. The only remaining zero entries correspond to
the lone feature, my, which will become linked to the robot upon the next
observation. The time projection step will then lead to a fully connected graph
and, correspondingly, a dense information matrix.

Hence, with online SLAM implementations in which only the current pose
of the robot is estimated, the marginalization of the previous pose in the
projection step naturally results in a dense information matrix. Alternatively,
by retaining an entire trajectory history, exact sparsity can be maintained [3]
at the cost of storage requirements which become significant for large datasets.

Returning to the example pictoralized in Figure 1(a}, note that while the
time projection step populates the information matrix, the strength of the off-
diagonal links decays with time. This behavior is the reason why a majority
of the elements in the normalized matrix are very small. The authors show
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in [15, 8, 12] that if the posterior can be represented by an exactly sparse
approximation, it is possible to achieve significant gains when it comes to both
storage and time requirements. In particular, a bound on the number of links
between the robot and the map allows for near constant-time performance of
the time projection step and also controls the fill-in of the information matrix
resulting from marginalization.

3 Exactly Sparse Extended Information Filters

Map elements having shared information with the robot are said to be active.
In feature-based SLAM implementations, a feature becomes active when it
is first observed. With time, the strength of the link with the robot decays
and is strengthened only upon being re-observed. Thus, while the off-diagonal
terms may become arbitrarily small, they will never become zero. In order for
a landmark to become passive (i.e. no shared information), the link with the
robot must explicitly be broken.

3.1 Problem Formulation

In describing the desired sparsity of the information matrix, we adopt the
two measures utilized by Thrun et al. [15]. Denote the maximum allowable
number of active features as I, and the number of inter-landmark links in
the matrix by I,. Let us then partition the map into two sets of features,
M = {m*,m™}, where m™ represents the active features for which the off-
diagonal terms for the robot pose are non-zero, and m~ denotes the passive
landmarks, having no direct constraint to the vehicle.

Controlling the sparsity of the information matrix is, in large part, a direct
consequence of maintaining the I, bound. By regulating the number of active
features, it is possible to limit the population of the matrix. Consider, for
example, the situation depicted in the left-hand side of Figure 1(b) in which
four of the five features are active. At this point, if x; were marginalized
out, the four active features in m* would become fully connected, potentially
violating the I}, bound. Instead, if one of landmarks, m,, were first made
passive, the number of non-zero elements created as a result of marginalization
could be controlled. Thus, enforcing the desired sparsity pattern corresponds
to maintaining a bound on the number of active features. Since features do not
naturally become passive, a sparsification routine which deliberately breaks
the links is necessary.

3.2 SEIF Sparsification

The SEIF breaks a link between the robot and a feature by approximating the
posterior with a distribution in which the robot is conditionally independent of
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Fig. 1. A graphical explanation of SEIF’s methodology for controlling sparsity
in the information matrix. (a} A sequence of illustrations depicting the evolution
of the Markov network and corresponding information matrix resulting from time
projection when viewed as a two-step process of state augmentation followed by
marginalization. Darker shades imply larger magnitudes with white indicating zero
values. From left to right we have: (1) the robot x; connected to four active features,
m.3 and ms; (2) state augmentation of the time-propagated robot pose x:11; (3)
marginalized distribution where the old pose, x;, has been eliminated. (b} A sequence
of illustrations highlighting the concept behind sparsification. If feature m; can first
be made passive by eliminating its link to the old pose, x¢, then marginalization over
x; will not link it to the other active features. This implies that we can control fill-in
of the information matrix by bounding the number of currently active features.

the landmark. The map is broken into three disjoint sets, M = {m® m* m~},
where m~™ refers to the passive landmarks which will remain passive and,
in a slight abuse of notation, m™ is the set of active features which will
remain active, and m® are the active features which will be made passive.
The sparsification routine proceeds from a decomposition of the posterior



A Provably Consistent Method for Imposing Sparsity 221

p(Xt7mO7m+7m_) :p(xt | m07m+7m_)p(m07m+7m_)

3)

= plx; | m®,m*,m~ = ST_p,) p(m’,m*,m")

where setting the passive elements to their mean, S;r'—rut, in the last line is
valid due to their conditional independence with respect to the robot. SEIFs
then deactivate the landmarks by replacing (3) with an approximation to the
posterior which drops the dependence upon m?:

ﬁSEIF(Xt7m07m+7mi) - p(xt | m+7m7 - Sr—l;l*l‘l’t)p(m()’m‘F’mi) (4)

While the decomposition in (3) is theoretically sound, it is no longer valid
to condition on a particular value for the passive features while simultaneously
ignoring the dependence upon m°. Given only a subset of the active features,
the robot pose is no longer conditionally independent of the passive map.

By enforcing the conditional independence between the robot and the de-
activated features, SEIF's rely upon approximate inference on an approximate
posterior and, as a result, are prone to inconsistency [5]. In particular, the
authors show that sparsifying in this manner leads to a global map which is
significantly overconfident while the local relationships are preserved.

3.3 ESEIF Sparsification

Rather than deliberately breaking constraints with the robot to maintain a
bound on the number of active features, ESEIFs take the approach of essen-
tially controlling the initial formation of links. As soon as a feature is first
observed, it is linked to the current robot pose. As noted earlier, the strength
of this constraint will decay with time but never truly disappear, leading to
a growing number of links between the robot and the map.

Noting the nature of this link formation, ESEIFs control the number of
active features by deliberately marginalizing out the robot pose. The vehicle
is relocated within the map using observations of a few known landmarks.
The new pose is then conditionally independent of the rest of the map, and
the robot is linked only to the features used for relocalization.

For a more detailed description of the ESEIF sparsification strategy, we
consider a situation which would give rise to the representation in Figure 1
which consists of both active and passive features. Suppose that the robot
makes four observations, Z, = {z1, 22, 23,25}, three being of active features
and one of a passive feature:

+ +

zz = h(x,,ms3), ms € m z5 = h(x,, ms), ms € m

z; = h(x,,m;), m; € m°

z3 = h(x,, mg), m3 € m~

Updating the posterior based upon all four measurements would result in
the strengthening of the off-diagonal entries in the matrix pairing the robot
with the three observed active features. Additionally, a link would be created
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with the currently passive map element, ms, leading to the graph structure
depicted in the left-hand side of Figure 1(a). In the case where this would
lead to a violation of the I, bound, one strategy would be to disregard the
observation of the passive feature entirely. With ESEIFs, though, it is possible
to incorporate all measurement data while maintaining the desired sparsity
pattern.

In the ESEIF sparsification step, the measurement data is partitioned into
two sets, z, and zg, where the first set is used for updating the filter and the
second is reserved for performing relocalization. Of the four measurements
available in our example, group that of the passive feature together with one
active measurement as z, = {2z1,23}, leaving zg = {z2,25}. To sparsify, we
first apply the update step followed by the combined process of marginaliza-
tion and relocalization.

Posterior Update

A Bayesian update is performed on the joint posterior, p(¢, | z'~1,ut) =
NL (ét; s At) based upon the z, measurements:

p&, | 271 ut) 22 (e, | {2t ) )

where p1 (€, | {2071, 20}, ut) = N71(&,;9,A) follows from the standard up-
date process for the information filter. Note that we can perform this step
in constant-time with, in the nonlinear case, access to the mean estimate for
the robot as well as m; and ms. The information matrix, A,, is modified as
depicted in Figure 2 with the strengthening of the constraints between the
vehicle and the active feature, m; and importantly, the creation of shared
information with the previously passive feature, ms.

Marginalization and Relocalization

The addition of a new constraint between the robot and a map element results
in a violation of, Iy, the bound on the number of active features. The ESEIF
sparsification routine then proceeds by first marginalizing out the vehicle pose

P (7 7)) = [ (6| ) ) )

Xy

= N_l(Mt§77taAt)

Following the representation of the marginalization process presented in Table
1, the canonical parameterization of the marginal is calculated as
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P2 (Mt | {Zt_17 Za}7 ut) = N_l (Mt7 771% At)
At = SL()7m+,mf Atsm(’,m+,m*
—s] A4S (ST ASx) ST At mt me
f’t = SrTn“,m*,m*,r_’t - S;“,er,m* ‘/_\thlr (S;(rl ‘/_\thlr) _1811,7_” (5b)

m? mt m
where S0 m+ m— and Sy, are projection matrices mapping the state space to
the {mo,m+,m_} and x; subspaces, respectively.

The inverse term involves the block diagonal of the information matrix
corresponding to the vehicle pose, SEL A;Sy,, which is of fixed size. Meanwhile,
the Sg“,m#mf Atht matrix corresponds to the shared information between
the map and the vehicle pose and, taken as an outer product over the vehicle
sub-block, yields a matrix having nonzero values only for the active feature
indices. It is a result of this term that marginalization establishes the connec-
tivity among the active features shown in the right-hand side of Figure 2. The
computational complexity of this matrix outer product is limited by the I,
bound and the order of the matrix inversion is fixed. Thus, the marginalization
can be performed in constant-time.

We complete sparsification in ESEIFs by relocalizing the vehicle within
the map using the remaining zs measurements. The new pose estimate is,
in general, given by a nonlinear function of measurement data and corre-
sponding feature estimates of the form in (6a) where w; ~ N (Wt; O,R) is
white Gaussian noise. Equation (6b) corresponds to the linearization about
the mean of the marginal distribution, A/ ™! (Mt; s A) in (5). The Jacobian,
G, is sparse as the only non-zero columns are those corresponding to the map
elements used for relocalization. Subsequently, only the mean estimates for
these features are necessary for the linearization.

(52)

Xy = g(mg,ZB) + wy (6a)
R §(fm,y 25) + G(m — fi,) + wy (6D)

Augmenting the map distribution (5) with the new pose estimate yields a
state which can be shown to have the following canonical parameterization:

pesrir (€, | 2, u’) = Nfl(ét;ﬁtvﬁt)

y R~ (g(ftyn,» 2p) — Gity) }

= |. AT . 7
M L?t - GTR 1(g(lu’m/.,7 Zﬁ) - Giu’t) ( a)
» R “R-IG
At - {—GTR_l (At + GTR—lG):| (7b)

Due to the sparsity of G, most terms in —R™'G of the information matrix
in (7b) that link the robot to the map are zero, except for those correspond-
ing to the landmarks used for relocalization. The new instantiation for the
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robot pose is then conditionally independent of the rest of the map. As a
result, ESEIF sparsification leads to the joint posterior having the desired
factorization:

peser(€, | 25 ut) = p(x; | mg,zg) p2(M; | {271, 24}, 1)

As reflected by the resulting information matrix depicted in Figure 2, the
active features are then limited to those used for relocalization.

In this manner, ESEIFs control the size of the active map and, in turn, the
sparseness of the information matrix. Like the full EKF, the ESEIF performs
exact inference on an approximate model, albeit on a different posterior. When
we first marginalize out (kidnap) and subsequently relocalize the robot, we
are performing the dual of kidnapping and relocation for the standard EKF.
Essentially, we are ignoring the odometry data which links the current and
previous poses. Hence, whereas the full EKF tracks the Gaussian approxima-
tion to the posterior, p(&, | Z'), ESEIFs and the relocated EKF maintain
the Gaussian model of an alternate distribution, p(¢, | Z' ). In this way,
the ESEIF employs exact inference on an approximate model for which the
information matrix is exactly sparse.

3.4 Recovering the Mean

A drawback of representing the posterior in the canonical form is that we no
longer have access to the mean vector or covariance matrix. When the system
equations are nonlinear, a subset of the mean is required to perform lineariza-
tions. Naively, we could recover the entire mean vector as p, = A; 'n,, though
this operation is cubic in the dimension of the state and quickly becomes in-
tractable. Instead, we can pose the problem in terms of solving a set of linear
equations

Agpy =y (8)

and take advantage of the sparseness of the information matrix. There are a
number of techniques which iteratively solve such sparse, symmetric positive
definite systems including conjugate gradient descent [13] and, more recently,
the multilevel method proposed by [9]. Aside from loop closures, the mean
vector evolves rather slowly in SLAM and, thus, the optimization can be
performed over the course of multiple time steps. This then allows us to bound
the number of iterations required per time step [2].

3.5 Data Association

Traditionally, the problem of data association is addressed by evaluating the
likelihood of a measurement for different correspondence hypothesis. The dis-
tribution follows from marginalizing out all state elements except for the vari-
ables we are interested in, x; and x;. From the duality indicated in Table 1,
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Z

Fig. 2. Sparsification as performed by ESEIFs during the measurement update step.
At time ¢, three of the mapped features are active, m* = {mi, mz, ms} and two
are passive, m~ = {mg, m4} as indicated by shaded off-diagonal elements of the
information matrix. The robot makes three observations of active features, z1, zs2,
and zs5, and one of a passive feature, zs. The first step of the ESEIF sparsification
algorithm, as shown in the left-most diagram, is to update the posterior based upon
a subset of the measurements, z. = {z1,2z3}, resulting in a stronger constraint
with m; as well as the formation of a link with ms, as depicted in the middle
figure. Sparsification then proceeds with the marginalization of the vehicle pose and
subsequent relocation of the robot based upon the remaining measurements, zg. The
implication on the information matrix is the connectivity of the initial set of active
features and a desired restriction on the number of constraints with the vehicle pose.

this operation is easy in the standard form but difficult with the canonical
parameterization where a large matrix inversion is necessary. Instead, Thrun
et al. [15] first compute the conditional distribution for the Markov blanket for
x; and x;, p(X;, X, Xk | X;), which involves simply extracting a sub-block of
the information matrix. They then invert this matrix and take the covariance
sub-block corresponding to p(x;,x; | x;) which they use for data association.
While the authors have had success using this conditional covariance, it can
be shown to yield overconfident estimates for the likelihood [4].
Alternatively, FEustice et al. [4] propose a method which solves for con-
servative estimates for the marginal covariance. The technique stems from
posing the relationship, A;X; = I, as a sparse system of linear equations,
AT, = e;, where &, and e; denote the i*® columns of the covariance and
identity matrices, respectively. To determine the robot pose covariance, the
iterative algorithms previously presented for mean recovery can be used to
solve the set of equations formed from the robot pose columns. Combining
the estimate for robot pose covariance with a conservative estimate for the
covariance of any map element gives rise to a joint covariance which is it-
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self conservative. The joint covariance is then used to represent the marginal
distribution for data association.

4 Results

To better understand the effectiveness of the two different sparse information
filters, we compare the performance of ESEIFs and SEIFs to the standard
EKF when applied to different forms of the SLAM problem. In the first case,
we take a look at a controlled linear Gaussian simulation for which the KF, the
optimal Bayesian estimator, is the “gold standard”. We then follow with ex-
periments using real-world nonlinear datasets including a benchmark outdoor
data set widely popular in the SLAM community.

4.1 Linear Gaussian Simulation

To systematically analyze the two information-based filters, we first apply the
three estimators in a controlled simulation. The environment consists of a set
of point features, uniformly distributed to achieve a desired density of 0.10
features per unit area. The vehicle moves translationally according to a linear,
constant velocity motion model and, at any time step, is able to observe the
relative position to a limited number of neighboring features. Both the vehicle
motion as well as the measurements are corrupted by additive white Gaussian
noise.

As a basis for comparison, we apply the Kalman Filter, the optimal esti-
mator for linear Gaussian problems. The ESEIF and SEIF are implemented
with a limit of I, = 10 active features. When sparsifying the ESEIF, we re-
serve as many of the observations for relocalizing the robot as possible, to the
extent that we do not violate the I, bound.

In the LG case, sparse information filters have already been shown to
be computationally efficient [15]. Instead, we are interested in evaluating the
effect that the different sparsification strategies have on the estimation accu-
racy. To that end, we perform a series of Monte Carlo simulations, using the
normalized estimation error squared (NEES) [1] to measure filter consistency
using a pair of metrics. As one measure, we use the Euclidean distance be-
tween the state estimates and the ground truth which corresponds to the global
error. To get a local/relative measure of error, we first reference the robot and
map positions relative to the first observed feature, x,, using the standard
compounding operation, X,,; = ©X;, @ x;. We then compute the second error
metric as the distance to the root-shifted representation of the ground truth.
We plot the global normalized errors for the estimated vehicle position as
well as for one of the map elements in Figures 3(a) and 3(b), respectively.
Comparing these errors with the 97.5% chi-square upper bound indicated by
the horizontal line, we see that the ESEIF yields consistent position estimates
with errors similar to those of the KF. The normalized errors attributed to
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Fig. 3. The time history of the (a), (b) global and (¢), (d) local normalized errors for
the LG results, estimated from a series of Monte Carlo simulations. Plotted in (a)
and (c) are the two errors for the vehicle. In (b) and (d) we show the errors for one of
the features which is representative of the other elements in the map. The horizontal
threshold denotes the 97.5% chi-square confidence bound. The local ESEIF and SEIF
estimation errors are similar in magnitude to that of the Kalman Filter. The global
error attributed to the SEIF, meanwhile, is noticeably larger, exceeding the chi-
square bound. This indicates that the SEIF preserves local relationships but leads
to estimates which are globally overconfident while the ESEIF maintains both global
and local consistency.

the SEIF, on the other hand, are noticeably larger, frequently exceeding the
chi-square bound. The local errors shown in Figures 3(c) and 3(d) are simi-
lar for all three filters, generally smaller than the confidence threshold. This
behavior indicates that, in the linear Gaussian case, ESEIFs maintain a state
estimate which is both globally and locally consistent while the SEIF leads to
errors which are consistent locally but inconsistent in the absolute sense.

As a related consequence of the ESEIF sparsification strategy, the filter
maintains conservative uncertainty estimates. In Figure 4(a) we compare the
global map uncertainties for the two information filters to those of the Kalman
Filter. In particular, from the inverse of the information matrices, we compute,
for each feature, the log of the ratio of the covariance sub-block determinant
to the determinant of the sub-block for the KF. Since the KF solution repre-
sents the true distribution, values larger than zero correspond to conservative
estimates for a feature’s position while values less than zero are a sign of over-
confidence. As the histogram demonstrates, the ESEIF is conservative in its
estimate for the absolute position of each feature while each of the marginals
represented by the SEIF are overconfident. When we transform the maps rela-
tive to the first observed feature, we see in Figure 4(b) that the overconfidence
of the SEIF is less severe while the ESEIF remains conservative. As a conse-
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Fig. 4. The LG simulation estimates of map uncertainty maintained by the ESEIF
and SEIF compared with that of the KF. For each feature, we consider the log of
the ratio of the covariance sub-block determinant for the information filters to the
determinant for the KF. Values equal to zero indicate an exact estimate for the
uncertainty. Log ratios greater than zero imply conservative estimates while values
less than zero correspond to overconfidence. In {a) we show a histogram describing
the global measure of uncertainty determined directly from the inverse of the in-
formation matrices. The SEIF yields map estimates which are largely overconfident
while the ESEIF leads to estimates which are conservative. Depicted in (b), the
overconfidence of the SEIF is less severe when we consider the relative map uncer-
tainty which follows from root-shifting the state to the first feature added to the
map. The one outlier corresponds to the original world origin as represented in the
new reference frame. Meanwhile, the histogram shows that the ESEIF maintains
conservative estimates for the relative map covariance matrix.

quence of the overconfidence of its global map, the one exception in the case of
the SEIF is the representation of the original world origin in the root-shifted
reference frame.

4.2 Experimental Validation

The linear Gaussian simulations allow us systematically analyze the accuracy
of the sparsified filters when we are able to perform inference on an exact
model. Unfortunately, for most real-world applications, both the vehicle mo-
tion and observation models are nonlinear and are corrupted by noise which
is not Gaussian. To demonstrate the application of ESEIFs to typical SLAM
problems, we implement the algorithm along with the SEIF and the EKF on
two nonlinear datasets.

For the first real-world application of SLAM, we consider the benchmark
Victoria Park dataset, widely used as a testbed for SLAM algorithms. A truck
equipped with dead-reckoning sensors and a laser scanner drives in a series
of loops within Victoria Park, Sydney. Using a simple perceptual grouping
implementation, we are able to detect tree trunks located throughout the
park among the laser data which is cluttered with spurious returns. We solve
the data association problem offline to ensure that the correspondences are
the same for each filter.

We implement the ESEIF and SEIF estimators together with the EKF
which has been successfully applied to this dataset in the past. We limit
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the number of active features to a maximum number of I, = 10 for the
information filters. When we perform sparsification in the ESEIF, our priority
is again on relocation in that we reserve as many tree observations as possible
(i.e. no more than I';, = 10) for the purpose of adding the vehicle back into the
map. Remaining measurements, if any, are used to update the ESEIF prior
to marginalization. This helps to minimize the influence of spurious data on
the relocated vehicle pose.

We plot the ESEIF and SEIF estimates of the map together with the
three sigma uncertainty bounds in Figures 5(a) and 5(b), respectively. The
estimates of the 3 km trajectory for the car are superimposed on the plot. As a
basis for comparison, the plots include the feature locations resulting from the
EKF which are nearly identical to those published elsewhere. Both sparsified
filters yield similar maps though the deviation from the EKF estimates is
noticeably larger for the SEIF than it is for the ESEIF. Furthermore, the
global confidence bounds for the ESEIF are conservative, yet comparable to
the feature uncertainties maintained by the EKF while they are significantly
overconfident for the SEIF. While not ground truth, the EKF represents the
baseline which the information filters strive to match and, yet, many of the
EKF estimates lie outside the three sigma uncertainty bounds for the SEIF.
This is especially evident in the periphery as we indicate in the inset plot.
As we saw in the LG simulation, all three algorithms seem to equivalently
represent the local map relationships given by the transformation of the map
into the vehicle’s reference frame at its final pose. Both the ESEIF relative
map shown in Figure 5(c) and the SEIF relative map in Figure 5(d) are almost
identical to the corresponding EKF results. In this case, the relative ESEIF
and SEIF uncertainty bounds now capture the EKF estimate for the feature
locations. The SEIF algorithm allows us to achieve results which are similar
to the standard EKF in the local but not global sense while ESEIFs provide a
conservative map estimate which is nearly identical to the EKF both globally
and locally.

We have seen from the plots of the two SLAM maps that SEIFs are much
more confident in their state estimates. In Figure 6(a) we compare the global
uncertainty of each feature for the ESEIF and SEIF to the EKF, again using
the log of the ratio of the determinant of the feature covariances. As with
the linear Gaussian simulations, the ESEIF log ratios are all greater than
zero, indicating that ESEIFs maintain conservative estimates for the global
uncertainty of each state element. On the other hand, those of the SEIF
are largely overconfident. Expressing the state in the vehicle reference frame,
the histogram in Figure 6(b) reveals that the SEIF remains overconfident,
although to a lesser extent. The one exception is again the representation of
the global origin in the vehicle frame and is a direct consequence of the global
inconsistency of SEIFs. The ESEIF, meanwhile, remains conservative in the
relative frame.

In the second experiment, a wheeled robot drives around a gymnasium in
which 64 track hurdles are positioned at known locations along the baselines of
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Fig. 5. Map and vehicle trajectory estimates for the Victoria Park dataset. In
each, we include the final EKF map which agrees with previous results published
in the literature. The top two plots represent the global state estimate while the
two at the bottom are the result of root-shifting the map into the vehicle frame via
compounding: X,; = X, ® X;. The plot in (a) presents the results of the ESEIF,
including the three sigma confidence bounds for each of the features. The ESEIF
produces feature estimates which are nearly identical to those of the EKF and, while
it is omitted to make the plot readable, the uncertainty ellipses are very similar for
the two filters. In (b), we see that while the SEIF and EKF maps are alike, the
difference between the two estimates is noticeably larger for the SEIF algorithm.
Additionally, the inset reveals that the SEIF yields global error estimates which
are significantly overconfident. Looking at the maps expressed in the vehicle frame,
though, we see that both (¢) the ESEIF and (d) SEIF preserve the relative map
structure.
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Fig. 6. Histograms of the ESEIF and SEIF uncertainty estimates as compared to
the EKF results for the Victoria Park dataset. We again use the log of the ratio of
the covariance sub-block determinants for each feature. The histogram in (a) corre-
sponds to the direct filter estimates and is representative of the global uncertainty.
The ESEIF maintains conservative estimates for the uncertainties while the SEIF
estimates are overconfident when compared to the EKF. Expressing the map in the
vehicle’s reference frame, (b) demonstrates that SEIFs remain overconfident but are
better able to capture the relative uncertainty. Due to the global overconfidence,
there is an outlier corresponding to the representation of the global origin in the
robot’s frame. Meanwhile, the ESEIF local estimates remain conservative relative
to the EKF.

four adjacent tennis courts. Wheel encoders provide the input to the kinematic
motion model while observations of the environment are made using a SICK
laser scanner. Data association is again performed offline and is the same for
each filter.

We perform SLAM on the data again using both the ESEIF and SEIF
alongside a standard EKF implementation. When necessary, we employ the
two sparsification strategies to maintain a bound of I, = 10 active features.
During ESEIF sparsification, we relocate the robot using a single feature ob-
servation which provides a measurement of the relative transformation (trans-
lation and rotation) between the vehicle and the hurdle.

In Figure 7(a), we show the final map estimated by the ESEIF, overlayed
onto a depiction of the ground truth. The ellipses drawn around each feature
correspond to the three sigma bound on the position of one of the hurdle
legs. The same plot is shown in Figure 7(b) for the map estimated using the
SEIF algorithm. Notice that the uncertainty bounds maintained by the SEIF
are significantly overconfident and, for many hurdles, do not include the true
feature position. While we are able to maintain an estimate of the state which
is both globally and locally conservative compared with that of the EKF using
ESEIFs, enforcing sparsity in the SEIF results in an estimate which suffers
from global inconsistency.



232 M. Walter, R. Eustice, and J. Leonard

; — ESEIF g SN i —sEF
# +— Ground Truth L 14 +— Ground Truth
50 50 + ' )
e
ol @ ; ) fa | @l
i b - :
|
— 30 = 30
E E 21
Es 24 =
{205
20 &
20 | )
! 19 120
a ‘195
10 2 4 0 1 ) 10 1 05
1 L3
;
0 1 0
25 20 15 - 8 0 & 10 15 20 2% 25 .20 -15 -0 -5 5 10 15 20 25
X {m) ®{m)

Fig. 7. The final maps generated by the (a) ESEIF and (b) SEIF algorithms. In-
cluded is an outline of the tennis courts overlayed with the ground truth hurdle
poses indicated by the black cross hairs. The ellipses centered at the base leg of each
feature represent the three sigma uncertainty bounds for position. Note the signif-
icant difference in magnitude between the confidence estimates maintained by the
two filters. While the true feature locations are captured by the ESEIF uncertainty
regions, a majority of the hurdles fall outside the SEIF ellipses. This overconfidence
is a result of the approximation employed by SEIFs to enforce sparseness and is
indicative of global inconsistency.

5 Discussion

We have shown both in simulation as well as with a pair of nonlinear datasets
that the ESEIF maintains error measures which are both globally and locally
conservative relative to the full Kalman estimates. In the linear Gaussian case,
the implication is that the ESEIF sparsification strategy preserves consistency
according to both metrics. On the other hand, as the ESEIF is formulated
upon the dual of the EKF, it is subject to the same convergence issues that
are attributed to the EKF for nonlinear applications [1]. As such, though the
ESEIF error estimates are relatively conservative, this does not guarantee con-
sistency in such cases. Nonetheless, the ESEIF algorithm is able to capitalize
upon the computational benefits of the sparse information form without the
cost of additional overconfidence. In this manner it provides an efficient means
of achieving estimates nearly identical to those of the EKF which has been
successfully applied in a number of real-world situations.
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6 Conclusion

Of late, many researchers in the robotics community have been interested in
developing solutions to the SLAM problem which scale with environments of
arbitrary size. One approach that is particularly promising follows from the
key insight that the information matrix is relatively sparse for feature-based
SLAM. In the case where the matrix is exactly sparse, state estimation can
be performed in near-constant time, irrespective of the number of landmarks
in the environment.

While a majority of the elements in the information matrix are relatively
weak, the matrix is naturally dense due to the effect of marginalizing out old
robot poses. To achieve the efficiency benefits, the SEIF algorithm enforces
sparsity by deliberately breaking weak links between the robot and the map.
As a consequence of this pruning strategy, the SEIF state estimate suffers
from global inconsistency.

In this paper, we have introduced an algorithm for feature-based SLAM
which achieves an exactly sparse information matrix while maintaining global
and local consistency, relative to the standard EKF. We have shown that, by
periodically marginalizing out the robot and then relocalizing it within the
map, we control the number of active landmarks and, in turn, the population
of the information matrix. The ESEIF is then able to benefit from the effi-
ciency of the sparse information form while yielding conservative estimates
for the robot pose and map.

We have demonstrated the performance of ESEIFs, both in a systematic
linear Gaussian simulation as well as on two different nonlinear datasets. In all
three, we have shown that ESEIFs maintain estimates nearly identical to those
of the EKF which, in comparison, are both globally and locally conservative.
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Field robots do not operate in factories or other controlled settings, but rather
operate outdoors, underwater, underground, or even on other planets. They
are characterized by a focus on real applications, and on operation in complex
terrain. Field robots are often large vehicles, and often have forceful interac-
tions with their workspace. Given their complex setting and complex (and
often dangerous) tasks, most field robots are not fully autonomous: a great
deal of effort goes into the user interface, providing mixed modes of human
and robot interaction.

Field Roboticsis a branch of robotics characterized by its domain: the
applications of robotics in the unstructured world to perform useful tasks.
The papers in this session illustrate well the breadth of concerns addressed
in building field robots. Some of earliest field robots were configured only
for mobility and data gathering to perform such missions as exploration and
mapping. Today, systems have been fielded which interact forcefully with the
environment in such applications as excavation, mining and sampling. Many
field robots are characterized by large scales (big machines, long distances
covered); forceful interaction (either with large loads or with difficult terrain);
complex machines (robots with many degrees of freedom); and complex en-
vironments (moving objects, soft and uneven terrain}; and difficult operating
environments (limited bandwidth, large distances between operator and ma-
chine).

Many of the applications that field robotics aspires to automate take place
outdoors, in fairly unstructured environments, because we would like to give
our robots the worst jobs; those that are difficult, dirty, and dangerous. Out-
door environments are complex due to their lack of predictable structure,
uncontrolled weather conditions, and the pervasiveness of hazards. Often, the
surface over which the robot moves is soft, or uneven, or difficult to sense.
Such complexity often leads us to either choose more benign environments
or to reduce the level of autonomy and involve humans: mixed-mode control,
with varying degrees of control shared between a human and a robot, is an
active area of field robotics research. Nonetheless, there are situations where
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higher levels of autonomy can still be argued to be prudent. In particular,
being productive outdoors is a dangerous business, for robots as for humans.
This session includes three papers which exploit autonomy to address ex-
tremes, respectively, in environmental complexity, remoteness, and danger to
humans.

Some rich environments are characterized by complicated topology and
many spatially-distributed degrees of mobility hazard. In these environments,
perception must often make up for characteristically inadequate prior infor-
mation. Yet, perception is only half the problem. Once something unexpected
is perceived, a new mobility plan must be generated, and it must be generated
in real-time if the vehicle is to move continuously during the process. The first
paper Field D*: An Interpolation Based Path Planner and Replannerdescribes
a version of the D* real-time replanning algorithm which is designed for such
environments. Field Dstar uses interpolation to remove the discretized heading
constraint under which most discrete motion planners operate. This leads to
smoother plans which can be superior to those generated by optimal discrete
planners.

Due to the well-known difficulties of teleoperation, many situations persist
where autonomy is the only effective option. Extraterrestrial environments are
so extremely remote that even the speed of light is a limitation. The Mars
Exploration Rovers named Spirit and Opportunity have recently achieved a
landmark in field robotics history. Kilometers of terrain on another planet
have now been successfully traversed under autonomous control. The second
paper in this session Tradeoffs Between Directed and Autonomous Driving on
The MER Roversdescribes the issues associated with controlling the rovers
and the graduated autonomy levels that arose to address them. The logistics
of communicating only twice daily with the rovers, combined with the need to
move quickly to the next science target, leads to the judicious use of autonomy
in order to optimize productivity while managing risk to the rover.

Many terrestrial applications also present a plain tradeoff between risk
and productivity and robotics can, of course, be used to redefine that trade-
off. Among commercial applications, mining is well-known to challenge our
capacity to remove risk while simultaneously addressing the need to get a
job done quickly and well. The third paper in this session is Surface Mining:
Challenges and Main Research Issues for Autonomous Operations. It surveys
the reasons for our present successes in mining automation as well as the re-
maining challenges to be addressed in order to increase the impact of field
robots on mining in the future.
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Summary. We present an interpolation-based planning and replanning algorithm
for generating direct, low-cost paths through nonuniform cost grids. Most grid-based
path planners use discrete state transitions that artificially constrain an agent’s mo-
tion to a small set of possible headings (e.g. 0, T, 5, etc). As a result, even ‘optimal’
grid-based planners produce unnatural, suboptimal paths. Our approach uses linear
interpolation during planning to calculate accurate path cost estimates for arbitrary
positions within each grid cell and to produce paths with a range of continuous head-
ings. Consequently, it is particularly well suited to planning low-cost trajectories for
mobile robots. In this paper, we introduce the algorithm and present a number of
example applications and results.

1 Introduction

In mobile robot navigation, we are often provided with a grid-based represen-
tation of our environment and tasked with planning a path from some initial
robot location to a desired goal location. Depending on the environment, the
representation may be binary (each grid cell contains either an obstacle or
free space) or may associate with each cell a cost reflecting the difficulty of
traversing the respective area of the environment.

In robotics, it is common to improve efficiency by approximating this grid
with a graph, where nodes are placed at the center of each grid cell and
edges connect nodes within adjacent grid cells. Many algorithms exist for
planning paths over such graphs. Dijkstra’s algorithm computes paths from
every node to a specified goal node [3]. A* uses a heuristic to focus the search
from a particular start location towards the goal and thus produces a path
from a single location to the goal very efficiently [5, 18]. D*, Incremental A*,
and D* Lite are extensions of A* that incrementally repair solution paths
when changes occur in the underlying graph [26, 7, 8, 9]. These incremental
algorithms have been used extensively in robotics for mobile robot navigation
in unknown or dynamic environments.
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Automated ATV GDRS XUV

Pioneers Automated E-Gator

Fig. 1. Some robots that currently use Field D* for global path planning. These
range from indoor planar robots (the Pioneers) to outdoor robots able to operate in
harsh terrain (the XUV).

However, almost all of these approaches are limited by the small, discrete
set of possible transitions they allow from each node in the graph. For instance,
given a graph extracted from a uniform resolution 2D grid, a path planned in
the manner described above restricts the agent’s heading to increments of 7.
This results in paths that are suboptimal in length and difficult to traverse in
practice. Further, even when these paths are used in conjunction with a local
arc-based planner (e.g. as in the RANGER system [6, 25]), they can still cause
the vehicle to execute expensive trajectories involving unnecessary turning.

In this paper we present Field D*, an interpolation-based planning and
replanning algorithm that alleviates this problem. This algorithm extends D*
and D* Lite to use linear interpolation to efficiently produce low-cost paths
that eliminate unnecessary turning. The paths are optimal given a linear inter-
polation assumption and very effective in practice. This algorithm is currently
being used by a wide range of fielded robotic systems (see Figure 1).

We begin by discussing the limitations of paths produced using classical
grid-based planners and mention recent approaches that attempt to overcome
some of these limitations. We then present an interpolation-based method for
obtaining more accurate path cost approximations and show how this method
can be incorporated into existing planning and replanning algorithms. We
provide a number of example illustrations and applications of our approach
and conclude with discussion and extensions.

2 Limitations of Classical 2D Path Planning

Consider a robotic ground vehicle navigating an outdoor environment. We
can represent this environment as a uniform resolution 2D traversability grid,
in which cells are given a cost per unit of traverse (traversal cost) reflecting
the difficulty of navigating the respective area of the environment. If this
traversability grid encodes the configuration space costs (i.e. the traversal costs
have been expanded to reflect the physical dimensions of the vehicle), then
planning a path for the robot translates to generating a trajectory through this
grid for a single point. A common approach used in robotics for performing
this planning is to combine an approximate global planner with an accurate
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local planner [6, 25, 1, 23]. The global planner computes paths through the grid
that ignore the kinematic and dynamic constraints of the vehicle. Then, the
local planner takes into account the constraints of the vehicle and generates
a set of feasible local trajectories that can be taken from its current position.
To decide which of these trajectories to execute, the robot evaluates both the
cost of each local trajectory and the cost of a global path from the end of each
trajectory to the robot’s desired goal location.

To formalize the global planning task, we need to define more precisely
some concepts already introduced. First, each cell in the grid has assigned to
it some real-valued traversal cost that is greater than zero. The cost of a line
segment between two points within a cell is the Euclidean distance between
the points multiplied by the traversal cost of the cell. The cost of any path
within the grid is the sum of the costs of its line segments through each cell.
Then, the global planning task (involving a uniform resolution grid) can be
specified as follows.

The Global Planning Task: Given a region in the plane partitioned into
a uniform grid of square cells T, an assignment of traversal costs ¢ : T —
(0,400] to each cell, and two points Ssiare and Sgoqr within the grid, find the
path within the grid from Ssare 10 Sgoar With minimum cost.

This task can be seen as a specific instance of the Weighted Region Prob-
lem [17], where the regions are uniform square tiles. A number of algorithms
exist to solve this problem in the computational geometry literature (see [16]
for a good survey). In particular, [17] and [21] present approaches based on
Snell’s law of refraction that compute optimal paths by simulating a series
of light rays that propagate out from the start position and refract according
to the different traversal costs of the regions encountered. These approaches
are efficient for planning through environments containing a small number of
homogenous-cost regions, but are computationally expensive when the num-
ber of such regions is very large, as in the case of a uniform grid with varying
cell costs.

Because of the computational expense associated with planning optimal
paths through grids, researchers in robotics have focussed on basic approxi-
mation algorithms that are extremely fast. The most popular such approach
is to approximate the traversability grid as a discrete graph, then generate
paths over the graph. A common way to do this is to assign a node to each cell
center, with edges connecting the node to each adjacent cell center (node).
The cost of each edge is a combination of the traversal costs of the two cells
it transitions through and the length of the edge. Figure 2(a) shows this node
and edge extraction process for one cell in a uniform resolution 2D grid.

We can then plan over this graph to generate paths from the robot’s initial
location to a desired goal location. As mentioned previously, a number of
efficient algorithms exist for performing this planning, such as A* for initial
planning and D* and its variants for replanning [5, 18, 26, 8]. Unfortunately,
paths produced using this graph are restricted to headings of % increments.
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Fig. 2. (a) A standard 2D grid used for global path planning in which nodes reside
at the centers of the grid cells. The arcs emanating from the center node represent all
the possible actions that can be taken from this node. (b} A modified representation
used by Field D*, in which nodes reside at the corners of grid cells. (¢) The optimal
path from node s must intersect one of the edges {515z, 253, 354, 545, 3556, 5657,
— ——

8788, 5851 }

This means that the final solution path may be suboptimal in path cost,
involve unnecessary turning, or both.

For instance, consider a robot facing its goal position in a completely
obstacle-free environment (see Figure 3). Obviously, the optimal path is a
straight line between the robot and the goal. However, if the robot’s initial
heading is not a multiple of %, traditional grid-based planners would return
a path that has the robot first turn to attain the nearest grid heading, move
some distance along this heading, and then turn 7 in the opposite direction of
its initial turn and continue to the goal. Not only does this path have clearly
suboptimal length, it contains possibly expensive or difficult turns that are
purely artifacts of the limited representation. Such global paths, when coupled
with the results of a local planner, cause the robot to behave suboptimally.
Further, this limitation of traditional grid-based planners is not alleviated by
increasing the resolution of the grid.

Sometimes it is possible to reduce the severity of this problem by post-
processing the path. Usually, given a robot location s, one finds the furthest
point p along the solution path for which a straight line path from s to p
is collision-free, then replaces the original path to p with this straight line
path. However, this does not always work, as illustrated by Figure 4. Indeed,
for nonuniform cost environments such post-processing can often increase the
cost of the path.

A more comprehensive post-processing approach is to take the result of
the global planner and use it to seed a higher dimensional planner that in-
corporates the kinematic or dynamic constraints of the robot. Stachniss and
Burgard [24] present an approach that takes the solution generated by the
global planner and uses it to extract a local waypoint to use as the goal for a
5D trajectory planner. The search space of the 5D planner is limited to a small
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Fig. 3. A uniform resolution 2D grid-based path (e1 plus e2) between two grid nodes
can be up to 8% longer than an optimal straight-line path (eo). Here, the desired

straight-line heading is § and lies perfectly between the two nearest grid-based

headings of 0 and 7. This result is independent of the resolution of the grid.

k)

+ |ez| = 1.08|e|

€1

area surrounding the global solution path. Likhachev et al. [15, 14] present
an approach that uses the cost-to-goal value function of the global planner to
focus an anytime global 4D trajectory planner. Their approach improves the
quality of the global trajectory while deliberation time allows. However, these
higher dimensional approaches can be much more computationally expensive
than standard grid-based planners and are still influenced by the results of
the initial grid-based solution.

Recently, robotics researchers have looked at more sophisticated methods
of obtaining better paths through grids without sacrificing too much of the
efficiency of the classic grid-based approach described above. Konolige [10]
presents an interpolated planner that first uses classic grid-based planning
to construct a cost-to-goal value function over the grid and then interpolates
this result to produce a shorter path from the initial position to the goal. This
method results in shorter, less-costly paths for agents to traverse but does not
incorporate the reduced path cost into the planning process. Consequently,
the resulting path is not necessarily as good as the path the algorithm would
produce if interpolated costs were calculated during planning. Further, if we
are computing paths from several locations (which is common when combining
the global planner with a local planner) then this post-processing interpolation
step can be expensive. Also, this approach provides no replanning functionality
to update the solution when new information concerning the environment is
received.

Philippsen and Siegwart [20] present an algorithm based on Fast Marching
Methods [22] that computes a value function over the grid by growing a surface
out from the goal to every region in the environment. The surface expands ac-
cording to surface flow equations, and the value of each grid point is computed
by combining the values of two neighboring grid points. This approach incor-
porates the interpolation step into the planning process, producing low-cost,
interpolated paths. This technique has been shown to generate nice paths in
indoor environments [19, 20]. However, the search is not focussed towards the
robot location (such as in A*) and assumes that the transition cost from a
particular grid node to each of its neighbors is constant. Consequently, it is
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Fig. 4. 2D grid-based paths cannot always be shortened in a post-processing phase.
Here, the grid-based path from s to g (top, in black) cannot be shortened because
there are four obstacle cells (shaded). The optimal path is shown dashed.

not as applicable to navigation in outdoor environments, which are often best
represented by large grids with widely-varying cell traversal costs.

The idea of using interpolation to produce better value functions for dis-
crete samples over a continuous state space is not new. This approach has
been used in dynamic programming for some time to compute the value of
successors that are not in the set of samples [11, 12, 13]. However, as LaValle
points out [13], this becomes difficult when the action space is also continuous,
as solving for the value of a state now requires minimizing over an infinite set
of successor states.

The approach we present here is an extension of the widely-used D* fam-
ily of algorithms that uses linear interpolation to produce near-optimal paths
that eliminate unnecessary turning. It relies upon an efficient, closed-form so-
lution to the above minimization problem for 2D grids, which we introduce
in the next section. This method produces much straighter, less-costly paths
than classical grid-based planners without sacrificing real-time performance.
As with D* and D* Lite, our approach focusses its search towards the most
relevant areas of the state space during both initial planning and replanning.
Further, it takes into account local variations in cell traversal costs and pro-
duces paths that are optimal given a linear interpolation assumption. As the
resolution of the grid increases, the solutions returned by the algorithm im-
prove, approaching true optimal paths.

3 Improving Cost Estimation Through Interpolation

The key to our algorithm is a novel method for computing the path cost of
each grid node s given the path costs of its neighboring nodes. By the path
cost of a node we mean the cost of the cheapest path from the node to the
goal. In classical grid-based planning this value is computed as

o(s) =, min _(c(s,5) +9(s), )
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Fig. 5. Computing the path cost of node s using the path cost of two of its neighbors,
s1 and sz, and the traversal costs ¢ of the center cell and b of the bottom cell.
Nlustrations (ii) through (iv) show the possible optimal paths from s to edge s1s3.

where nbrs(s) is the set of all neighboring nodes of s (see Figure 2), ¢(s, s)
is the cost of traversing the edge between s and s’, and g(s’) is the path cost
of node s'.

This calculation assumes that the only transitions possible from node s
are straight-line trajectories to one of its neighboring nodes. This assump-
tion results in the limitations of grid-based plans discussed earlier. However,
consider relaxing this assumption and allowing a straight-line trajectory from
node s to any point on the boundary of its grid cell. If we knew the value of
every point s, along this boundary, then we could compute the optimal value
of node s simply by minimizing c(s, sp) + g(sp), where ¢(s, sp) is computed as
the distance between s and s, multiplied by the traversal cost of the cell in
which s resides. Unfortunately, there are an infinite number of such points s;
and so computing g(sp) for each of them is not possible.

It is possible, however, to provide an approximation to g(sp) for each
boundary point s, by using linear interpolation. To do this, we first mod-
ify the graph extraction process discussed earlier. Instead of assigning nodes
to the centers of grid cells, we assign nodes to the corners of each grid cell,
with edges connecting nodes that reside at corners of the same grid cell (see
Figure 2(b)).

Given this modification, the traversal costs of any two equal-length seg-
ments of an edge will be the same. This differs from the original graph ex-
traction process in which the first half of an edge was in one cell and the
second half was in another cell, with the two cells possibly having different
traversal costs. In the modified approach the cost of an edge that resides on
the boundary of two grid cells is defined as the minimum of the traversal costs
of each of the two cells.

We then treat the nodes in our graph as sample points of a continuous cost
field. The optimal path from a node s must pass through an edge connecting
two consecutive neighbors of s, for example s1s5 (see Figure 2(c)). The path
cost of s is thus set to the minimum cost of a path through any of these edges,
which are considered one at a time. To compute the path cost of node s using
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ComputeCost(s, s., sp)
01. if (s, is a diagonal neighbor of s)

02. 1 = 8b; 82 = Sa;
03. else
04. $1 = 843 82 = 8p;

05. ¢ is traversal cost of cell with corners s, s1, sz;

06. b is traversal cost of cell with corners s, s1 but not s3;
07. if (min(c, b) = o0)

08. v, = 00;

09. else if (g(s1) < g(s2))

10. v, = min{e, b) + g(s1);

11. else

2. f=g{s1) —gls2);

13, if(f<h)

14. if (¢ < f)

15. vy = V2 + g(s2);

16. else

17. y = min(ﬁ, 1);

18. vs = cy/ 14+ 42+ f(1—y) + g(s2);
19. else

20. if (c < b)

21. vy = V2 + g(s2);

22. else

23. z = 17min(ﬁ,1);

24. v, =cy/14+ (1 —2)2 4+ bz + g(s2);

25. return v,;

Fig. 6. The Interpolation-based Path Cost Calculation

edge 5155, we use the path costs of nodes s; and s, and the traversal costs ¢
of the center cell and b of the bottom cell (see Figure 5).

To compute this cost efficiently, we assume the path cost of any point s,
residing on the edge between s; and s, is a linear combination of g(s;) and
g(s2):

9(sy) = yg(s2) + (1 —y)g(s1), (2)

where y is the distance from s; to s, (assuming unit cells). This assump-

tion is not perfect: the path cost of s, may not be a linear combination of

g(s1) and g(sz), nor even a function of these path costs. However, this linear

approximation works well in practice, and allows us to construct a closed form
solution for the path cost of node s.

Given this approximation, the path cost of s given s1, s9, and cell costs ¢
and b can be computed as

minfoz + /(1= 2)2 + 42 +yg(s2) + (1 — y)g(s1)], (3)

where z € [0,1] is the distance traveled along the bottom edge from s
before cutting across the center cell to reach the right edge a distance of
y € [0,1] from s; (see Figure 5(i)). Note that if both = and y are zero in
the above equation the path taken is along the bottom edge but its cost is
computed from the traversal cost of the center cell.

Let {(z*,y*) be a pair of values for z and y that solve the above minimiza-
tion. Because of our use of linear interpolation, at least one of these values
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will be either zero or one. We formally prove this in an extended technical re-
port version of this paper [4]. Intuitively, if it is less expensive to partially cut
through the center cell than to traverse around the boundary, then it is least
expensive to completely cut through the cell. Thus, if there is any component
to the cheapest solution path from s that cuts through the center cell, it will
be as large as possible, forcing z* = 0 or y* = 1. If there is no component of
the path that cuts through the center cell, then y* = 0.

Thus, the path will either travel along the entire bottom edge to s; (Figure
5(ii)), or will travel a distance x along the bottom edge then take a straight-
line path directly to sy (Figure 5(iii}), or will take a straight-line path from
s to some point s, on the right edge (Figure 5(iv)). Which of these paths is
cheapest depends on the relative sizes of ¢, b, and the difference f in path cost
between s; and sa: f = g(s1) — g(s2). Specifically, if f < 0 then the optimal
path from s travels straight to s; and will have a cost of (min(c,b) + g(s1))
(Figure 5(i1)). If f = b then the cost of a path using some portion of the
bottom edge (Figure 5(iii})) will be equivalent to the cost of a path using
none of the bottom edge (Figure 5(iv)). We can solve for the value of y that
minimizes the cost of the latter path as follows.

First, let £ = f = b. The cost of a path from s through edge 5153 is

eV1+y?2 + k(1 —y)+g(sa). (4)

Taking the derivative of this cost with respect to y and setting it equal to

zero yields
* k2
V=g e (5)

Whether the bottom edge or the right edge is used, we end up with the
same calculations and path cost computations. So all that matters is which
edge is cheaper. If f < b then we use the right edge and compute the path cost
as above (with k = f), and if b < f we use the bottom edge and substitute
k =band y* = 1 — x2* into the above equation. The resulting algorithm for
computing the minimum-cost path from s through an edge between any two
consecutive neighbors s, and s, is provided in Figure 6. Given the minimum-
cost paths from s through each of its 8 neighboring edges, we can compute the
path cost for s to be the cost of the cheapest of these paths. The corresponding
path is optimal given our linear interpolation assumption.

4 Field D*

Once equipped with this interpolation-based path cost calculation for a given
node in our graph, we can plug it into any of a number of current planning
and replanning algorithms to produce low-cost paths. Figure 7 presents our
simplest formulation of Field D*, an incremental replanning algorithm that
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key (s)
01. return [min(g(s),rhs(8)) + h{Suiari, 8); min(g(s), rhs(s)));

UpdateState(s)
02. if s was not visited before, g(s) = oo;
03. if (s # Sgoat)
04. Ths(8) = MiN(1 11y e connbrs - ComputeCost(s, 5", s7);
05. if (s € OPEN) remove s from OPEN;
06. if (g(s) # rhs(s)) insert s into OPEN with key(s);

ComputeShortest Path() )
07. while (min.c oppn(key(s))< key(ssrart) OR 7h8(Ss1art) 7 9(Sstart))

08. remove state s with the minimum key from OPEN;

09. if (g(s) > rhs(s))

10. g(s) = rhs(s);

11. for all s € nbrs(s) UpdateState(s’);

12. else

13. g(s) = oo

14. for all s € nbrs(s) U {s} UpdateState(s’);
Main()

15. g(8start) = rhs(ssiart) = 00;g(8goal) = 00;
16. rhs(syea) = 0; OPEN = §;

17. insert s,,q; into OPEN with key(sgoai);
18. forever

19. ComputeShortestPath();

20. ‘Wait for changes in cell traversal costs;
21. for all cells @ with new traversal costs
22. for each state s on a corner of x

23. UpdateState(s);

Fig. 7. The Field D* Algorithm (basic D* Lite version).

incorporates these interpolated path costs. This version of Field D* is based
on D* Lite!.

In this figure, connbrs(s) contains the set of consecutive neighbor pairs
of node s: connbrs(s) = {(s1,s2), (52,83), (83,84), (84,85), (85,86}, (S6,57),
(s7,88), (ss,81)}, where s; is positioned as shown in Figure 2(c¢). Apart {rom
this construction, notation follows the D* Lite algorithm: g(s) is the current
path cost of node s (its g-value), rhs(s) is the one-step lookahead path cost
for s (its rhs-value), OPEN is a priority queue containing inconsistent nodes
(i.e., nodes s for which g(s) # rhs(s)) in increasing order of key values (line
1), Sstart is the initial agent node, and sgoq; is the goal node. A(sstare,s) is
a heuristic estimate of the cost of a path from s4r: to s. Because the key
value of each node contains two quantities a lexicographic ordering is used:
key(s) < key(s’) iff the first element of key(s) is less than the first element of
key(s’) or the first element of key(s) equals the first element of key(s’) and

! Differences between Field D* and D* Lite appear on lines 4 and 20 through 23.
As opposed to the original, graph-based version of D* Lite, lines 20 - 22 tailor
Field D* to grids. Also, because paths intersect edges and not just nodes, the
heuristic value A{Sstart, s) must be small enough that when added to the cost of
any edge incident on s it is still not greater than a minimum cost path from ss:qrt
to s.
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Fig. 8. A close-up of a path planned using Field D* showing individual grid cells.
Notice that the path is not limited to entering and exiting cells at corner points.

the second element of key(s) is less than the second element of key(s’). For
more details on the D* Lite algorithm and this terminology, see [8, 7]. Also,
the termination and correctness of the Field D* algorithm follow directly from
D* Lite and the analysis of the cost calculation provided in Section 3.

This is an unoptimized version of Field D*. In our extended technical
report [4] we discuss a number of optimizations that significantly improve the
overall efficiency of planning and replanning with this algorithm.

Once the cost of a path from the initial state to the goal has been calcu-
lated, the path is extracted by starting at the initial position and iteratively
computing the cell boundary point to move to next. Because of our interpo-
lation technique, it is possible to compute the path cost of any point inside
a grid cell, not just the corners, which is useful for both extracting the path
and getting back on track if execution is not perfect (which is usually the case
for real robots).

Figures 8 and 9 illustrate paths produced by Field D* through three
nonuniform cost environments. In each of these figures, darker areas represent
regions that are more costly to traverse. Notice that, unlike paths produced
using classical grid-based planners, the paths produced using Field D* are not
restricted to a small set of headings. As a result, Field D* provides lower-cost
paths through both uniform and nonuniform cost environments.

5 Results

The true test of an algorithm is its practical effectiveness. We have found
Field D* to be extremely useful for a wide range of robotic systems navigating
through terrain of varying degrees of difficulty (see Figure 1).

To provide a quantitative comparison of the performance of Field D* rel-
ative to D* Lite, we ran a number of replanning simulations in which we
measured both the relative solution path costs and runtimes of the opti-
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Fig. 9. (left) Paths produced by D* Lite (top) and Field D* (bottom) in a 150 x 60
nonuniform cost environment. (right) Field D* planning through a potential field
of obstacles.

mized versions of the two approaches. We generated 100 different 1000 x
1000 nonuniform cost grid environments in which each grid cell was assigned
an integer traversal cost between 1 (free space) and 16 {obstacle). With prob-
ability 0.5 this cost was set to 1, otherwise it was randomly selected. For each
environment, the initial task was to plan a path from the lower left corner to a
randomly selected goal on the right edge. After this initial path was planned,
we randomly altered the traversal costs of cells close to the agent (10% of
the cells in the environment were changed) and had each approach repair its
solution path. This represents a significant change in the information held by
the agent and results in a large amount of replanning.

During initial planning, Field D* generated solutions that were on average
96% as costly as those generated by D* Lite, and took 1.7 times as long to
generate these solutions. During replanning, the results were similar: Field
D* provided solutions on average 96% as costly and took 1.8 times as long.
The average initial planning runtime for Field D* on a 1.5 GHz Powerbook
G4 was 1.5s, and the average replanning runtime was 0.07s. In practice, the
algorithm is able to provide real-time performance for fielded systems.

6 Discussion

Although the results presented above show that Field D* generally produces
less costly paths than regular grid-based planning, this is not guaranteed. It
is possible to construct pathological scenarios where the linear interpolation
assumption is grossly incorrect (for instance, if there is an obstacle in the
cell to the right of the center cell in Figure 5(i) and the optimal path for
node ss travels above the obstacle and the optimal path for node s; travels
below the obstacle). In such cases, the interpolated path cost of a point on an
edge between two nodes may be either too low or too high. This in turn can
affect the quality of the extracted solution path. However, such occurrences
are very rare, and in none of our random test cases (nor any cases we have ever
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encountered in practice) was the path returned by Field D* more expensive
than the grid-based path returned by D* Lite. In general, even in carefully-
constructed pathological scenarios the path generated by Field D* is very
close in cost to the optimal solution path.

Moreover, it is the ability of Field D* to plan paths with a continuous
range of headings, rather than simply its lower-cost solutions, that is its true
advantage over regular grid-based planners. In both uniform and nonuniform
cost environments, Field D* provides direct, sensible paths for our agents to
traverse.

7 Conclusion

In this paper we presented Field D*, an extension of classical grid-based plan-
ners that uses linear interpolation to efficiently produce less costly, more nat-
ural paths through grids. We have found Field D* to be extremely useful for
mobile robot path planning in both uniform and nonuniform cost environ-
ments.

We and others are currently extending the Field D* algorithm in a number
of ways. Firstly, a 3D version of the Field D* algorithm has been developed
for vehicles operating in the air or underwater [2]. We are also developing
a version that interpolates over headings, not just path costs, to produce
smoother paths when turning is expensive. Finally, we are also working on
a version of the algorithm able to plan over nonuniform grids, for vehicles
navigating through very large environments.
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Summary. NASA’s Mars Exploration Rovers (MER) have collected a great di-
versity of geological science results, thanks in large part to their surface mobility
capabilities. The six wheel rocker/bogie suspension provides driving capabilities in
many distinct terrain types, the onboard IMU measures actual rover attitude changes
(roll, pitch and yaw, but not position) quickly and accurately, and stereo camera
pairs provide accurate position knowledge and/or terrain assessment. Solar panels
generally provide enough power to drive the vehicle for at most four hours each day,
but drive time is often restricted by other planned activities. Driving along slopes
in nonhomogeneous terrain injects unpredictable amounts of slip into each drive.
These restrictions led us to create driving strategies that maximize drive speed and
distance, at the cost of increased complexity in the sequences of commands built by
human Rover Planners each day.

The MER rovers have driven more than a combined 10 kilometers over Martian
terrain during their first 21 months of operation using these basic modes. In this
paper we describe the strategies adopted for selecting between human-planned di-
rected drives versus rover-adaptive Autonomous Navigation and Visual Odometry
drives.

Keywords: Mars Rover, MER, Space Robotics, Autonomy, Mission Planning

1 Background

NASA successfully landed two mobile robot geologists on the surface of Mars
in January 2004: the Spirit and Opportunity Mars Exploration Rovers (MER).
Their primary goal was to find evidence of past water at Gusev Crater and
Meridiani Planum, two geologically distinct sites on opposite sides of the
planet. Each rover was instrumented with a suite of tools for remote sens-
ing (multi-filter and stereo camera pairs and a thermal emission spectrometer)
and in situ measurement (5 DOF arm for deploying a grinding Rock Abrasion
Tool, Microscopic Imager, Alpha Particle X-ray Spectrometer, and Mossbauer
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Spectrometer). Although the achievement of their successful landings stands
out as a technological tour de force, it was their ability to traverse while on
the surface of Mars that enabled both rovers to succeed in their primary goals.
The MER rovers are typically commanded once per Martian solar day (or
sol). A sequence of commands sent in the morning specifies the sol’s activities:
what images and data to collect, how to position the robotic arm, and where to
drive. At the end of each sol, the rovers send back the images and data human
operators will use to plan the next sol’s activities. The next sol’s mobility
commands are selected based on what is known — and what is unknown —
about the terrain ahead.

1.1 Rover Mobility Commands

The rovers are driven using three primary modes: low-level commands that
specify exactly how much to turn each wheel and steering actuator, directed
driving primitives for driving along circular arcs {of which straight line driving
and turn-in-place are special cases}, and autonomous path selection.

Several types of potential vehicles hazards are checked reactively, most of
them during Real Time Interrupts (RTIs) which occur 8 times per second.
Available checks include Tilt/Pitch/Roll, Northerly Tilt, Rocker/Bogie Sus-
pension Angles,