
On the Lai-Massey Scheme

Serge Vaudenay�

Ecole Normale Supérieure — CNRS
Serge.Vaudenay@ens.fr

Abstract. Constructing a block cipher requires to define a random per-
mutation, which is usually performed by the Feistel scheme and its vari-
ants. In this paper we investigate the Lai-Massey scheme which was used
in IDEA. We show that we cannot use it “as is” in order to obtain results
like Luby-Rackoff Theorem. This can however be done by introducing a
simple function which has an orthomorphism property. We also show
that this design offers nice decorrelation properties, and we propose a
block cipher family called Walnut.

Designing a block cipher requires to build a random permutation from a ran-
dom key. In most of block cipher constructions, we distinguish two approaches.
First we use a fixed network with parallel permutations which are modified at
their inputs or outputs by subkey values. This was used for instance in Safer [11]
and Square [3]. Second we use the Feistel scheme [4] (or one of its variants)
which starts from a random function (see Fig. 1). This was used for instance in
DES [1] and Blowfish [14]. The literature gives an extra construction which is
not in these categories and which was used in the IDEA cipher [9,8]. It uses a
simple scheme which we illustrated on Fig. 2 and which we call the “Lai-Massey
scheme” throughout the paper. As for the Feistel scheme, this structure relies
on a group structure.
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Fig. 1. The Feistel Scheme.
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Fig. 2. The Lai-Massey Scheme.

For the Feistel scheme, Luby and Rackoff [10] proved that if the round func-
tions are random, then a 3-round Feistel cipher will look random to any chosen
plaintext attack when the number of chosen plaintexts d is negligible towards
2

m
4 (where m is the block length). In this paper, we show a similar result for the

Lai-Massey scheme if we add a simple function σ which has the orthomorphism
property: it must be such that σ and x �→ σ(x)− x are both permutations.

The Luby-Rackoff result however holds when the round functions are random.
This has been extended by the decorrelation theory [18,19,20,21,22] when the
round function have some decorrelation property. This was used to define the
Peanut construction family in which the DFC cipher [2,5,6] is an example. We
show that we can have similar results with the Lai-Massey scheme and propose
a similar construction.

1 Notations

1.1 Feistel and Lai-Massey Schemes

Let (G,+) be a group. Given r functions F1, . . . , Fr on G we can define an r-
round Feistel scheme which is a permutation on G2 denoted Ψ(F1, . . . , Fr). It is
define by iterating the scheme on Fig. 1. If r > 1, we let

Ψ(F1, . . . , Fr)(x, y) = Ψ(F2, . . . , Fr)(y, x+ F1(y))

and
Ψ(F1)(x, y) = (x+ F1(y), y).

(The last swap is omitted.)
Similarly, given a permutation σ on G, we define an r-round Lai-Massey

scheme as a permutation Λσ(F1, . . . , Fr) by

Λσ(F1, . . . , Fr)(x, y) = Λσ(F2, . . . , Fr)(σ(x + F (x− y)), y + F (x− y))
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and
Λσ(F1)(x, y) = (x+ F (x− y), y + F (x− y))

in which the last σ is omitted.
For more convenience, if x ∈ G2, we let xl and xr denote its two halves:

x = (xl, xr).

1.2 Advantage of Distinguishers and Best Advantage

A distinguisher A is a probabilistic Turing machine with unlimited computation
power. It has access to an oracle O and can send it a limited number of queries.
At the end, the distinguisher must output 0 or 1. We consider the advantage for
distinguishing a random function F from a random function G defined by

AdvA(F,G) =
∣∣Pr [AO=F = 1

]− |Pr [AO=G = 1
]∣∣ .

Given an integer d and a random function F from a given set M1 to a given
set M2, we define the d-wise distribution matrix [F ]d as a matrix in RMd

1×Md
2

by
[F ]d(x1,...,xd),(y1,...,yd) = Pr[F (x1) = y1, . . . , F (xd) = yd].

For a matrix A in RMd
1×Md

2 , we define

||A||a = max
x1

∑
y1

max
x2

∑
y2

. . .max
xd

∑
yd

|A(x1,...,xd),(y1,...,yd)|.

It has been shown that ||.||a is a matrix norm which can compute the best
advantage. Namely we have

max
A limited to d queries
chosen plaintext attack

AdvA(F,G) =
1
2
||[F ]d − [G]d||a. (1)

(See [24].)
Similarly, we recursively define the ||.||s norm by

||A||s = max

(
max

x1

∑
y1

πx1,y1(A),max
y1

∑
x1

πx1,y1(A)

)

(the norm of a matrix reduced to one entry being its absolute value) where
πx1,y1(A) denotes the matrix in RMd−1

1 ×Md−1
2 such that

(πx1,y1(A))(x2,...,xd),(y2,...,yd) = A(x1,...,xd),(y1,...,yd).

Then we have

max
A limited to d queries

chosen plaintext and ciphertext attack

AdvA(F,G) =
1
2
||[F ]d − [G]d||s. (2)

(See [24].)
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1.3 Decorrelation Biases

We also use the decorrelation bias of order d of a function in the sense of a given
norm ||.|| defined by

DecFd
||.||(F ) = ||[F ]d − [F ∗]d||

where F ∗ is a random function uniformly distributed, and the decorrelation bias
of order d of a permutation defined by

DecPd
||.||(C) = ||[C]d − [C∗]d||

where C∗ is a random permutation uniformly distributed. (See [18,20,23,24].)

2 On the Need for Orthomorphisms

Let us first consider the Λσ construction when σ is the identity function. Ob-
viously if (z, t) = Λσ(F1, . . . , Fr)(x, y) we have z − t = x − y. Thus, for any
random round functions, Λσ(F1, . . . , Fr) is fairly easily distinguishable with only
one known plaintext. This is why we have to introduce the σ permutation.

Let us consider a one-round Lai-Massey scheme with σ:

(z, t) = (σ(x + F (x− y)), y + F (x− y)).

We have

z − t = (σ(x + F (x− y))− (x+ F (x− y))) + (x − y)
= σ′(x+ F (x− y)) + x− y

where σ′(u) = σ(u) − u. Thus, if F is uniformly distributed and σ′ is a permu-
tation, then z− t is uniformly distributed. Ideally we thus require that σ and σ′

are permutations, which means that σ is an orthomorphism of the group.
Unfortunately, the existence of orthomorphisms is not guaranteed for ar-

bitrary groups. Actually, Hall-Paige Theorem [7] states that an Abelian finite
group has an orthomorphism if and only if its order is odd or Z2

2 is isomorphic to
one of its subgroups. In particular, Z2m has no orthomorphism. In odd-ordered
groups G, with multiplicative notations, the square σ(x) = x2 is an orthomor-
phism since σ′ is the identity permutation and σ is a permutation (its inverse
is the 1+#G

2 -power function). In Zm
2 with m > 1, Schnorr and Vaudenay [15,16]

exhibited
σ(x) = (x AND c) XOR ROTLi(x)

which is an orthomorphism when the AND of all ROTLij(c) values is zero and the
OR is 11. . .1.1 For instance, i = 1 and c = 00 . . .01 leads to an orthomorphism.
Stern and Vaudenay used a similar construction in CS-Cipher [17].

We thus relax the orthomorphism properties by adopting the following notion
of α-almost orthomorphism.
1 Throughout this paper OR, AND and XOR denote the usual bit-wise boolean op-

erators on bitstrings of equal length, and ROTLi denotes the left circular rotation
by i positions.
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Definition 1. In a given group G of order g, a permutation σ is called an α-
almost orthomorphism if the function σ′(x) = σ(x)− x is such that there are at
most α elements in G with no preimage by σ′.

This definition fits to Patarin’s notion of “spreading” [12,13]. We prefer here to
emphasis on the approximation of orthomorphism properties.

We notice that since (σ−1)′(x) = −σ′(σ−1(x)), then σ−1 is also an α-almost
orthomorphism when σ is an α-almost orthomorphism.

Here is an useful lemma.

Lemma 2. If σ is an α-almost orthomorphism over the group G, then

∀δ ∈ G\{0} Pr
(X,Y )∈U G2

[σ′(X)− σ′(Y ) = δ] ≤ max(α, 1)g−1 (3)

∀δ ∈ G\{0} Pr
X∈U G

[σ′(X) = σ′(X + δ)] ≤ αg−1 (4)

∀δ ∈ G Pr
X∈U G

[δ − σ′(X) �∈ σ′(G)] ≤ 2αg−1. (5)

Proof. It is straightforward that for any set A, the number of preimages x such
that σ′(x) ∈ A is at most α+#A. Let ny denote the number of preimages of y.
We have

Pr
(X,Y )∈U G2

[σ′(X)− σ′(Y ) = δ] = g−2
∑

u

nunu+δ.

First, if α = 1, for δ �= 0, the number of (x, y) pairs such that σ′(x)−σ′(y) = δ
is at most g which is equal to αg.

Let us now consider α ≥ 2. If there exists one y such that ny = α+ 1, then
for all other ys we have ny ≤ 1. Hence

Pr
(X,Y )∈UG2

[σ′(X)− σ′(Y ) = δ] ≤ α+ 1
g2

− g−2 + g−2
∑

u

nu+δ

= αg−2 + g−1

≤ αg−1.

In the other cases, we have ny ≤ α hence

Pr
(X,Y )∈U G2

[σ′(X)− σ′(Y ) = δ] ≤ g−2α
∑

u

nu+δ = αg−1.

Therefore, in all cases this inequality holds.
We have

Pr
X∈UG

[σ′(X) = σ′(X + δ)] ≤
∑

y;ny≥2

nyg
−1 = 1− g−1#{y;ny = 1}.

The number of ys such that ny = 1 is greater than g − 2α, thus the probability
is less than 2αg−1.

The number of xs such that δ − σ′(x) �∈ σ′(G) is at most α + g − #σ′(G)
which is at most 2α. ��
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As an example of almost orthomorphism in Z2m (which has no orthomor-
phism), we claim that the simple rotation ROTL is a 1-almost orthomorphism.
Actually, it is a permutation, and ROTL′(x) is equal to x + MSB(x) where
MSB(x) denotes the most significant bit of x. The 0 value is taken twice by this
function (by x = 0 and x = 11 . . .1), the value 100. . .0 is never taken, and all
the other values are taken once.

3 Extending the Luby-Rackoff Theorem

In order to extend Luby-Rackoff Theorem to the Lai-Massey scheme, we
need the following lemma, which corresponds to Patarin’s “coefficient H tech-
nique” [12,13].

Lemma 3. Let F ∗
1 , F

∗
2 , F

∗
3 be three independent random functions on a group G

with uniform distribution, and let d be a positive integer. Let σ be an α-almost
orthomorphism on G. For any family of G2 elements (x1, . . . , xd, y1, . . . , yd) such
that the xi values are pairwise different as well as the yl

i − yr
i values, we have

Pr[Λσ(F ∗
1 , F

∗
2 , F

∗
3 )(xi) = yi; i]

Pr[C∗(xi) = yi; i]
≥ 1− d(d− 1)

2
(g−1 + g−2)− f(α)

where g denotes the cardinality of G and C∗ is a random permutation of G2

uniformly distributed, provided that d < g2, and f(α) is a function such that
f(0) = 0 and

f(α) = d
d(α − 1) + 3α− 1

2g
for α > 0.

Proof. We let Ui, Vi,Wi denote the values after the first, second and final round
of Λσ(F ∗

1 , F
∗
2 , F

∗
3 )(xi) respectively. For any value t in G2, we let ∆t denote tl−tr.

The probabilistic event [Wi = yi] is equivalent to [∆Vi = ∆yi and W l
i = yl

i]. Now
we have

∆Vi = σ′(U l
i + F ∗

2 (∆Ui)) +∆Ui

W l
i = V l

i + F ∗
3 (∆Vi).

The [Wi = yi] event is thus equivalent to

ei = [F ∗
2 (∆Ui) ∈ σ′−1(∆yi −∆Ui)− V l

i and F ∗
3 (∆yi) = yl

i − U l
i ].

When the ∆Ui are pairwise different, as well as the ∆Vi, it is thus easy to
compute the probability that we have Wi = yi for all i because it relies on
independent F2(∆Ui) and F3(∆Vi) uniformly distributed random variables. In
addition we need all ∆yi −∆Ui to have preimages by σ′.

We have

Pr[Wi = yi; i = 1, . . . , d]
= Pr[ei; i = 1, . . . , d]
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≥ Pr[ei, ∆Ui �= ∆Uj , ∆yi −∆Ui ∈ σ′(G); i �= j]
= Pr[ei/∆Ui �= ∆Uj , ∆yi −∆Ui ∈ σ′(G); i �= j]×
Pr[∆Ui �= ∆Uj, ∆yi −∆Ui ∈ σ′(G); i �= j]

= g−2d(1− Pr[∃i < j ∆Ui = ∆Uj or ∃i ∆yi −∆Ui �∈ σ′(G))])

which is greater than g−2d times

1− d(d− 1)
2

.max
i<j

Pr[∆Ui = ∆Uj ]− d.max
i

Pr[∆yi −∆Ui �∈ σ′(G)].

We notice that
∆Ui = σ′(xl

i + F (∆xi)) +∆xi.

The probability of having collisions with σ′ with two different uniformly dis-
tributed inputs is less than max(α, 1)g−1 for ∆xi �= ∆xj from Equation (3). If
we have∆xi = ∆xj , then we will have∆Ui = ∆Uj with probability at most αg−1

from Equation (4) since xi �= xj and thus xl
i �= xl

j . In addition, Pr[∆yi −∆Ui �∈
σ′(G)] is less than 2αg−1 from Equation (5). Therefore Pr[Wi = yi; i = 1, . . . , d]
is greater than

g−2d

(
1− d(d− 1)

2
max(α, 1)g−1 − 2dαg−1

)
.

We have

Pr[C∗(xi) = yi; i = 1, . . . , d] =
1

g2(g2 − 1) . . . (g2 − d+ 1)
.

Since
g2(g2 − 1) . . . (g2 − d+ 1)

g2d
≥ 1− d(d− 1)

2g2

when g2 > d, we obtain the result. ��
We can now state our result.

Theorem 4. Let F ∗
1 , F

∗
2 , F

∗
3 be three independent random functions on a group

G with a uniform distribution. Let σ be an α-almost orthomorphism on G. For
any distinguisher limited to d chosen plaintexts (d < g2) between Λσ(F ∗

1 , F
∗
2 , F

∗
3 )

and a random permutation C∗ with a uniform distribution, we have

Adv(Λσ(F ∗
1 , F

∗
2 , F

∗
3 ), C

∗) ≤ d(d− 1)
(
g−1 + g−2

)
+ f(α)

where g is the cardinality of G and f(α) is defined as in Lemma 3.

Proof. We can assume without loss of generality that the distinguisher never
request the same query twice. Let ω denote the random tape of the distinguisher
A, and A be the set of all (ω, y) entries which leads to the output 1. We have

pO = Pr
[AO = 1

]
=

∑
(ω,y)∈A

Pr[ω] Pr[C(xi) = yi; i = 1, . . . , d]
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where x = (x1, . . . , xd) in which xi depends on ω and (y1, . . . , yi−1). We let
C = Λσ(F ∗

1 , F
∗
2 , F

∗
3 ). Thus we have

pC − pC∗
=

∑
(ω,y)∈A

Pr[ω](Pr[C(xi) = yi; i]− Pr[C∗(xi) = yi; i]).

We split the sum between the y entries for which the ∆yi are pairwise different,
and the others. From the previous lemma we have

pC − pC∗ ≥ −
∑

(ω,y)∈A
∆yi �=∆yj

Pr[ω]p∗ε− Pr[∃i < j ∆C∗(yi) = ∆C∗(yj)]

where ε = d(d−1)
2 (g−1 + g−2) + f(α) and p∗ is the probability that C∗(xi) = yi

for i = 1, . . . , d. The first sum is less than ε, and the last probability is less than
d(d−1)

2 g−1, thus

pC − pC∗ ≥ −ε− d(d− 1)
2

g−1.

We can then apply the same result to the symmetric distinguisher, and obtain
the result. ��

4 Inheritance of Decorrelation in the Lai-Massey Scheme

We can use the same proof as in [24] for proving that the decorrelation bias of
the round functions of a Lai-Massey scheme is inherited by the whole structure.
The following lemma is a straightforward application of a more general lemma
from [24].

Lemma 5. Let m be an integer, and F1, . . . , Fr be r independent random func-
tions on a group G. Let σ be a permutation on G. We have

||[Λσ(F1, . . . , Fr)]d − [Λσ(F ∗
1 , . . . , F

∗
r )]

d||a ≤
r∑

i=1

DecFd
||.||a(Fi)

where F ∗
1 , . . . , F

∗
r are uniformly distributed random functions.

Following [24], this lemma and Lemma 3 enables to prove the following corollary.

Corollary 6. If F1, . . . , Fr are r (with r ≥ 3) independent random functions
on a group G of order g such that DecFd

||.||a(Fi) ≤ ε and if σ is an α-almost
orthomorphism on G, we have

DecPd
||.||a(Λ

σ(F1, . . . , Fr)) ≤
(
3ε+ d(d − 1)

(
2g−1 + g−2

)
+ 2f(α)

)� r
3�

where f(α) is defined in Lemma 3.
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5 On Super-Pseudorandomness

Super-pseudorandomness corresponds to cases where attacks can query chosen
ciphertexts as well. We extend Lemma 3 in order to get results on the super-
pseudorandomness.

Lemma 7. Let F ∗
1 , F

∗
2 , F

∗
3 , F

∗
4 be four independent random functions on a group

G with uniform distribution, and let d be an integer. Let σ be an α-almost or-
thomorphism on G. For any set of x1, . . . , xd, y1, . . . , yd values in G2 such that
the xi values are pairwise different, we have

Pr[Λσ(F ∗
1 , F

∗
2 , F

∗
3 , F

∗
4 )(xi) = yi; i]

Pr[C∗(xi) = yi; i]
≥ 1− d(d− 1)

(
g−1 + g−2

)− f ′(α)

where g denotes the cardinality of G and C∗ is a random permutation of G2

uniformly distributed, provided that d < g2, and f ′(α) is a function such that
f ′(0) = 0 and

f ′(α) = dg−1(d(α − 1) + α− 1) for α > 0.

Proof. Λσ(F ∗
1 , F

∗
2 , F

∗
3 , F

∗
4 )(xi) = yi) is equivalent to

Λσ(F ∗
1 , F

∗
2 , F

∗
3 )(xi) = Λσ−1

(F ∗
4 )(yi).

We can focus on the probability that all ∆Λσ−1
(F ∗

4 )(yi) are pairwise different.
Similarly as in the proof of Lemma 3, this holds but for a probability less than
d(d−1)

2 max(α, 1)g−1. We can then apply Lemma 3 to complete the proof. ��
This extends Theorem 4.

Theorem 8. Let F ∗
1 , F

∗
2 , F

∗
3 , F

∗
4 be four independent random functions on a

group G with a uniform distribution. Let σ be an α-almost orthomorphism on
G. For any distinguisher limited to d chosen plaintexts or ciphertexts (d < g2)
between Λσ(F ∗

1 , F
∗
2 , F

∗
3 , F

∗
4 ) and a random permutation C∗ with a uniform dis-

tribution, we have

Adv(Λσ(F ∗
1 , F

∗
2 , F

∗
3 , F

∗
4 ), C

∗) ≤ d(d− 1)
(
g−1 + g−2

)
+ f ′(α)

where g denotes the cardinality of G and f ′(α) is defined in Lemma 7.

The proof is the same as in Theorem 4, but with no consideration on the
∆yi �= ∆yj cases.

This shows that a 4-round random Lai-Massey scheme with an α-almost
orthomorphism is a super-pseudorandom permutation when it is used less than√
g/max(α, 1) times. This also extends to the following decorrelation bias upper

bound.

Corollary 9. If F1, . . . , Fr are r (with r ≥ 4) independent random functions
on a group G of order g such that DecFd

||.||a(Fi) ≤ ε and if σ is an α-almost
orthomorphism on G, we have

DecPd
||.||s(Λ

σ(F1, . . . , Fr)) ≤
(
4ε+ d(d− 1)

(
2g−1 + g−2

)
+ 2f ′(α)

)� r
4�

where f ′(α) is defined in Lemma 7.
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6 A New Family of Block Ciphers

In this section we construct a new family of block ciphers called Walnut (as
for “Wonderful Algorithm with Light N-Universal Transformation”) Walnut is a
Lai-Massey scheme which depends on four parameters (m, r, d, q) where m is the
message-block length (must be even), r is the number of rounds, d is the order
of decorrelation and q is an integral prime power at least 2

m
2 . It is characterized

by having round function Fi with the form

Fi(x) = πi(ri(Ki,1) + ri(Ki,2)ri(x) + . . .+ ri(Ki,d)ri(x)d−1)

where the Ki,j are independent uniformly distributed bitstrings of length m/2,
ri is an injective mapping from {0, 1}m

2 to GF(q), and πi is a surjective map-
ping from GF(q) to {0, 1}m

2 . This is a straightforward extension of the Peanut
construction. It has been shown in [24] that DecFd(Fi) is less than

ε = 2
(
(1 + δ)d − 1

)
where q = (1+δ)2

m
2 . We use σ = ROTL as a 1-almost orthomorphism. Therefore

by approximating the upper bounds of Corollaries 6 and 9 we have

DecPd
||.||a(Walnut(m, r, d, q)) ≤∼ (6dδ + 2d22−

m
2
)� r

3�

DecPd
||.||s(Walnut(m, r, d, q)) ≤∼ (8dδ + 2d22−

m
2
)� r

4� .

With m = 64, d = 2 and p = 232 + 15, we obtain

DecPd
||.||a(Walnut(64, r, 2, 232 + 15)) ≤ 2−24� r

3�

DecPd
||.||s(Walnut(64, r, 2, 232 + 15)) ≤ 2−24� r

4�.

This provides sufficient security against differential and linear attacks for r ≥ 12.

7 Conclusion

We have shown that adding a simple orthomorphism (or almost orthomorphism)
enables the Lai-Massey scheme to provide randomness on three rounds, and
super-pseudorandomness on four rounds, like for the Feistel scheme. We have
shown that we can get similar decorrelation upper bounds as well and propose
a new block cipher family.
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13. J. Patarin. How to Construct Pseudorandom and Super Pseudorandom Permuta-
tions from One Single Pseudorandom Function. In Advances in Cryptology EURO-
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