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Various Approaches to Asset Pricing

A fundamental result of this chapter is that prices can be generally obtained
under the benchmark approach in situations where other approaches are not
available. This chapter also clarifies relationships between real world pricing
under the benchmark approach and the pricing by other means in the areas of
finance and insurance. Furthermore, it presents the Girsanov transformation,
the change of numeraire technique and the Feynman-Kac formula, which are
all highly relevant to derivative pricing.

9.1 Real World Pricing

Various Pricing Approaches

In the literature, pricing concepts for risky securities have been developed
in several seemingly different approaches. Often one determines the price of
an asset by reference to its underlying economic value. General equilibrium
based models, such as the intertemporal capital asset pricing model (ICAPM),
see Merton (1973a), provide examples of this approach. The actuarial pricing
approach, see Bühlmann (1970) and Gerber (1997), which is common in insur-
ance and accounting, provides another important example in this direction.
The above mentioned approaches aim to provide an economic explanation for
the value of prices and why asset prices move if changes in economic variables
occur.

A much less ambitious question is asked in pricing approaches which arise
when one is marking to market. Given the prices of some assets that se-
curitize uncertainty in the market, one analyzes under such approach what
consequences this has for the values of other securities in this market. The
securities to be priced are typically derivatives. The previously described op-
tion pricing methodology of Chap. 8 provides an example for such a pricing
approach, which is based on the assumption that there is no arbitrage, see
Ross (1976), Harrison & Kreps (1979) and Harrison & Pliska (1981). As we
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shall see in Sect. 9.4, within the arbitrage pricing theory (APT) the risk neu-
tral pricing approach has been developed that allows convenient numeraire
changes and corresponding changes of pricing measures.

It is a challenge to reconcile presently used different pricing approaches
and to highlight their specific features in a consistent framework. The bench-
mark approach uses the growth optimal portfolio (GOP) as reference unit or
numeraire. As we shall see, the GOP is the portfolio that maximizes expected
logarithmic utility from terminal wealth, see Kelly (1956) and Long (1990).
The GOP exists in all financial market models that we shall consider. In the
next chapter it will be made clear for a continuous market what is the com-
position of the GOP. Chapter 14 will generalize this result to jump diffusion
markets. For the purpose of this chapter we keep the market model as BS
model and, therefore, the GOP very simple. We shall unify in a natural way
some of the mentioned pricing methods under the benchmark approach by
using the concept of real world pricing. To illustrate the different asset pric-
ing methodologies we explore in this chapter various alternative ways to price
a future payoff. We discuss the different approaches typically in the context
of the BS model, which considerable simplifies our presentation. However,
most of the conclusions apply also for other models, as we shall see later in
Chaps. 10–14.

First, we introduce in the following the real world pricing concept that
allows prices for payoffs to be obtained as conditional expectations under
the real world probability measure. We then show in later sections how the
benchmark approach relates to other pricing concepts. The advantage of the
benchmark approach is that as soon as the GOP exists one can always perform
real world pricing. Other approaches may have extra conditions to satisfy
which may not allow to form derivative prices for certain models of interest.

Portfolios under the BS Model

In the previous chapter, we have identified via no-arbitrage and hedging ar-
guments a price for a European option under the BS model. If one wants to
exclude arbitrage, then there is no alternative to this price. We now translate
this result into a pricing concept that is based on some conditional expec-
tation. To achieve this we express this price as a conditional expectation of
the option payoff. The expectation will be taken under the real world prob-
ability measure P . This is the probability measure that models the market
as it evolves and as we can observe it by exploiting empirical evidence. Only
under this measure one can estimate model parameters historically. We shall
show later in Sect.10.6 how to obtain the GOP without reference to a specific
model and the estimation of particular parameters. The key question that has
to be resolved is: In the denomination of which numeraire should one express
the payoff to apply an expectation under the real world probability measure?

With this goal in mind, we ask whether there exists a strictly positive
process, for instance, a market index, which when used as numeraire or bench-
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mark, generates realistic benchmarked derivative price processes that are mar-
tingales with respect to the real world probability measure. This means that
benchmarked derivative prices then represent the best forecast of their future
benchmarked values. In this way a natural pricing method could be estab-
lished via conditional expectation under the real world probability measure.
The described use of the GOP as numeraire portfolio follows the line of argu-
ments in Long (1990), Bajeux-Besnainou & Portait (1997), Becherer (2001)
and Bühlmann & Platen (2003). Since in the case of a European option un-
der the BS model we have already identified the corresponding no-arbitrage
price, we now aim to identify the corresponding benchmark that, when used
as numeraire, yields this price that allows to replicate the given payoff.

As already indicated, for simplicity, we consider here a simple Black-
Scholes (BS) market. It contains an underlying security with price process
S = {St, t ∈ [0, T ]}, as given by (8.2.1), which satisfies the SDE

dSt = at St dt + σt St dWt (9.1.1)

for t ∈ [0, T ] with S0 > 0, where T ∈ [0,∞). Furthermore, our BS model
has a domestic savings account with value process B = {Bt, t ∈ [0, T ]}, see
(8.2.2), where

dBt = rt Bt dt (9.1.2)

for t ∈ [0, T ] and B0 = 1.
A self-financing strategy δ = {δt = (δ0

t , δ1
t )�, t ∈ [0, T ]}, see (8.2.4)–

(8.2.7), with δ0
t units held at time t in the domestic savings account and δ1

t

units invested in the underlying security, has the corresponding portfolio value

Sδ
t = δ0

t Bt + δ1
t St (9.1.3)

with

dSδ
t = δ0

t dBt + δ1
t dSt

= (δ0
t rt Bt + δ1

t at St) dt + δ1
t σt St dWt

= Sδ
t

(
(π0

δ (t) rt + π1
δ (t) at) dt + π1

δ (t)σt dWt

)
(9.1.4)

for t ∈ [0, T ]. Note that the SDE (9.1.4) is such that it guarantees the self-
financing property of the portfolio, where all changes of its value are due to
changes in the securities. Here we use the corresponding fractions

π0
δ (t) = δ0

t

Bt

Sδ
t

(9.1.5)

and
π1

δ (t) = δ1
t

St

Sδ
t

(9.1.6)

that are held in the respective securities. Obviously, these fractions add up to
one, that is,
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π0
δ (t) + π1

δ (t) = 1 (9.1.7)

for t ∈ [0, T ]. Note that the notion of a fraction makes only sense as long as
the portfolio value is not zero.

Growth Optimal Portfolio

Let us derive for the given BS market the growth optimal portfolio (GOP)
which will be shown in Chap. 10 to be the portfolio that maximizes the drift
of its logarithm, see Long (1990), Karatzas & Shreve (1998) or Platen (2002).
By the Itô formula we obtain from (9.1.4) and (9.1.7) for the logarithm ln(Sδ

t )
of a strictly positive portfolio the SDE

d ln(Sδ
t ) = gδ

t dt + π1
δ (t)σt dWt (9.1.8)

with growth rate

gδ
t = rt + π1

δ (t) (at − rt) −
1
2

(π1
δ (t))2 σ2

t (9.1.9)

for t ∈ [0, T ].

Definition 9.1.1. Under the BS model the GOP is the portfolio process
Sδ∗ = {Sδ∗

t , t ∈ [0, T ]} with optimal growth rate gδ∗
t at time t such that

gδ
t ≤ gδ∗

t (9.1.10)

almost surely for all t ∈ [0, T ] and strictly positive portfolio processes Sδ.

Let us now choose the fraction π1
δ (t) such that the growth rate gδ

t is maxi-
mized for each t ∈ [0, T ], which will give us the GOP. Note that the choice of
the reference unit is not relevant for the corresponding optimization problem.
By application of the first order condition to maximize the growth rate gδ

t in
(9.1.9) with respect to the fraction π1

δ (t) we obtain the condition

∂gδ
t

∂π1
δ (t)

= at − rt − π1
δ∗(t)σ2

t = 0 (9.1.11)

for t ∈ [0, T ]. Therefore, we obtain the optimal fraction in the underlying
security

π1
δ∗(t) =

at − rt

σ2
t

(9.1.12)

and, thus, by (9.1.7) the optimal fraction in the savings account

π0
δ∗(t) = 1 − π1

δ∗(t) (9.1.13)

for t ∈ [0, T ]. Because of (9.1.9) and (9.1.12) the optimal growth rate is then
of the form
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gδ∗
t = rt +

1
2

(
at − rt

σt

)2

(9.1.14)

for t ∈ [0, T ]. Now, we obtain from (9.1.4), (9.1.12) and (9.1.13) the GOP as
the wealth process Sδ∗ = {Sδ∗

t , t ∈ [0, T ]}, which satisfies the SDE

dSδ∗
t = Sδ∗

t

(
(rt + θ2

t ) dt + θt dWt

)
(9.1.15)

with initial value Sδ∗
0 > 0 and GOP volatility

θt = π1
δ∗(t)σt =

at − rt

σt
(9.1.16)

for t ∈ [0, T ]. The quantity θt in (9.1.16) is the, so-called, market price of risk
at time t.

According to (9.1.14) and (9.1.16) the optimal growth rate for the given
BS model equals

gδ∗
t = rt +

1
2

θ2
t (9.1.17)

for t ∈ [0, T ]. This reveals a close link between the squared volatility and the
optimal growth rate of the GOP. For the discounted GOP

S̄δ∗
t =

Sδ∗
t

Bt
(9.1.18)

we derive by the Itô formula with (9.1.15) and (9.1.2) the SDE

dS̄δ∗
t = S̄δ∗

t θt (θt dt + dWt) (9.1.19)

for t ∈ [0, T ], see (10.2.8). Note that the drift of the discounted GOP is
determined as the square of its diffusion coefficient. This observation is crucial
and holds also more generally for continuous financial markets, as we shall
see in Chap. 10. Within this chapter we keep our BS market very simple.
Therefore, the GOP is here only a composition of two securities.

Benchmarked Savings Account

Let us now introduce the notion of benchmarking. Any security when expressed
in units of the GOP we call a benchmarked security. For instance, the savings
account B, when denominated in units of the GOP, is called the benchmarked
savings account Ŝ0 = {Ŝ0

t , t ∈ [0, T ]}, where

Ŝ0
t =

Bt

Sδ∗
t

(9.1.20)

for t ∈ [0, T ]. By application of the Itô formula (6.2.11) to the inverse of S̄δ∗
t

in (9.1.19) or the relation (9.1.20), the differential equation (9.1.2) and the
SDE (9.1.15), it follows for the benchmarked savings account Ŝ0

t the SDE
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dŜ0
t = −θt Ŝ0

t dWt (9.1.21)

for t ∈ [0, T ]. This means that the benchmarked savings account is driftless.
Since the process Ŝ0 = {Ŝ0

t , t ∈ [0, T ]} is a geometric Brownian motion
it follows by (5.4.1) and (7.3.8) that Ŝ0 ∈ L2

T . Thus, the Itô integral on the
right hand side of the integral version of (9.1.21) is, by the martingale property
(5.4.3) of Itô integrals, a martingale. This means that the benchmarked savings
account process Ŝ0 is under the given BS model an (A, P )-martingale. We
shall see later that this is a particular property of the BS model and may not
hold for other models.

Benchmarked Underlying Security

Let us now benchmark in our BS market the underlying security S. That is,
we consider the benchmarked security price

Ŝ1
t =

St

Sδ∗
t

(9.1.22)

for t ∈ [0, T ]. Then by the Itô formula (6.2.11) together with (9.1.1), (9.1.15)
and equation (9.1.16) the SDE for Ŝ1

t becomes

dŜ1
t = Ŝ1

t

(
(at − rt − σt θt) dt + (σt − θt) dWt

)

= Ŝ1
t (σt − θt) dWt (9.1.23)

for t ∈ [0, T ]. Consequently, according to (9.1.23), the GOP when used as
benchmark, has the property that the resulting SDE for the benchmarked
security Ŝ1 is driftless. By similar arguments as above one can show that
the geometric Brownian motion Ŝ1 is in L2

T . The process Ŝ1 is, therefore, by
(5.4.3) an (A, P )-martingale.

Benchmarked Option Price

Consider a European option on the underlying security S under the BS model
with value for its hedge portfolio

V (t) = V (t, St), (9.1.24)

as determined in Sect. 8.2 by equation (8.2.4). Using (8.2.9) and (9.1.20), we
obtain for the benchmarked European option price the expression

V̂ (t) =
V (t)
Sδ∗

t

=
V (t, St)

Sδ∗
t

= V̄ (t, S̄t) Ŝ0
t (9.1.25)

for t ∈ [0, T ]. Here we have the benchmarked payoff
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V̂ (T ) =
H(ST )

Sδ∗
T

(9.1.26)

at maturity T . By application of the Itô formula (6.2.11) we obtain from
(8.2.11) and (8.2.21) for the discounted value V̄ (t, S̄t) = V (t,St)

Bt
of the option

with S̄t = St

Bt
the SDE

dV̄ (t, S̄t) =
(

∂V̄ (t, S̄t)
∂t

+ (at − rt) S̄t
∂V̄ (t, S̄t)

∂S̄
+

1
2

σ2
t S̄2

t

∂2V̄ (t, S̄t)
∂S̄2

)
dt

+σt S̄t
∂V̄ (t, S̄t)

∂S̄
dWt

=
∂V̄ (t, S̄t)

∂S̄
S̄t ((at − rt) dt + σt dWt) (9.1.27)

for t ∈ [0, T ]. On the other hand, by using the Itô formula (6.2.11) and also
the relations (9.1.25), (9.1.27), (8.2.9), (9.1.16) and (9.1.21) we obtain the
SDE

dV̂ (t) = d(V̄ Ŝ0
t )

= Ŝ0
t dV̄ + V̄ dŜ0

t + d[V̄ , Ŝ0]t

= Ŝ0
t (at − rt) S̄t

∂V̄

∂S̄
dt + Ŝ0

t σt S̄t
∂V̄

∂S̄
dWt

− θt V̄ Ŝ0
t dWt − σt S̄t

∂V̄

∂S̄
Ŝ0

t θt dt (9.1.28)

for t ∈ [0, T ), where, for simplicity, we have suppressed in our notation the
dependence of V̄ on (t, S̄t). By using (9.1.16) the SDE (9.1.28) can be rewritten
in the form

dV̂ (t) = Ŝ0
t

(
σt S̄t

∂V̄ (t, S̄t)
∂S̄

− θt V̄ (t, S̄t)
)

dWt (9.1.29)

for t ∈ [0, T ). Note that the SDE for the benchmarked option price is driftless.
Also here one can show that the diffusion coefficient in (9.1.29) is in L2

T .
Therefore, by (5.4.3), the benchmarked option price process V̂ = {V̂ (t), t ∈
[0, T ]}, is an (A, P )-martingale.

We have seen that the property of the GOP when used as numeraire or
benchmark, to convert benchmarked prices into martingales, seems to apply
quite generally under the BS model. In the literature the GOP is therefore
also known as the numeraire portfolio, see Long (1990).

Real World Pricing

Summarizing the above analysis, we conclude under the BS model that the
GOP is the numeraire portfolio for the domestic savings account B, the un-
derlying security price S and the option price V . When used as denominator
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it makes the corresponding benchmarked price processes Ŝ0, Ŝ1 and V̂ into
(A, P )-martingales. This implies, by the martingale property (5.1.2), that
these prices, when expressed in units of the GOP, are the best forecast of
their future benchmarked values. We obtain this remarkable fact as a conse-
quence of outstanding properties of the GOP, which we shall discuss in the
next chapter.

Intuitively, the martingale property of benchmarked prices relates to the
common notion of what constitutes a fair price. The following definition will
be applied generally throughout the book for all models and not only for the
BS model.

Definition 9.1.2. A security price process V = {Vt, t ∈ [0,∞)} is called
fair if its benchmarked value V̂t = Vt

Sδ∗
t

forms an (A, P )-martingale.

This leads by application of the martingale property of V̂ directly to the
following pricing formula.

Corollary 9.1.3. For any fair security price process V = {Vt, t ∈ [0,∞)}
one has for any time t ∈ [0,∞) and T ∈ (t,∞) the real world pricing formula

Vt = Sδ∗
t E

(
VT

Sδ∗
T

∣
∣
∣At

)

. (9.1.30)

It is most important to emphasize that the expectation in (9.1.30) is taken
under the real world probability measure P . The numeraire is here the GOP.
Note that by application of the optional sampling theorem, see (5.1.19), it
follows that T can also be a bounded stopping time in the real world pricing
formula (9.1.30).

Under the BS model the savings account, the underlying security and
European option price form fair price processes since their benchmarked price
processes are (A, P )-martingales. Note that a real world option price forms a
fair price process and is under the given BS model consistent with the hedging
arguments previously applied in Chap. 8. In this sense the real world or fair
option price is a no-arbitrage price.

As we shall see later in this chapter, real world pricing can be generally
applied and will turn out to be the natural pricing concept under the bench-
mark approach. It only requires the existence of a GOP, as can be seen from
the real world pricing formula (9.1.30).

A Martingale Representation

The SDE (9.1.29) for the benchmarked option price process V̂ can be rewritten
by using (9.1.20), (8.2.9) and (8.2.10) in the integral form

V̂ (T ) = V̂ (t) +
∫ T

t

(
σz

Sz

Sδ∗
z

∂V̄ (z, S̄z)
∂S̄

− θz V̂ (z)
)

dWz (9.1.31)
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for t ∈ [0, T ]. This provides a representation of the benchmarked option payoff

V̂ (T ) =
H(ST )

Sδ∗
T

.

Since V̂ is a martingale under the real world probability P , we call (9.1.31)
the real world martingale representation of H(ST )

Sδ∗
T

. By taking the conditional

expectation E(·
∣
∣At) on both sides of equation (9.1.31), it follows by the

martingale property of V̂ that

E
(
V̂ (T )

∣
∣At

)
= V̂ (t) (9.1.32)

for t ∈ [0, T ]. Now, when we multiply both sides of equation (9.1.32) by Sδ∗
t ,

then we obtain by (9.1.25) the fair option price V (t) at time t in the form

V (t) = Sδ∗
t V̂ (t) = Sδ∗

t E
(
V̂ (T )

∣
∣At

)
(9.1.33)

for t ∈ [0, T ]. Therefore, due to (9.1.25) and (8.2.24), we can express the
European option price with payoff H(ST ) at maturity T by

V (t) = Sδ∗
t E

(
H(ST )

Sδ∗
T

∣
∣
∣At

)

(9.1.34)

for all t ∈ [0, T ]. This recovers the real world pricing formula (9.1.30). It is
most important to emphasize that this pricing formula uses the conditional
expectation under the real world probability measure P and not under any
transformed measure.

The fair price V (t), when expressed in units of the domestic currency at
time t, is simply obtained by multiplying the fair benchmarked price V̂ (t) by
the GOP value Sδ∗

t , that is

V (t) = Sδ∗
t V̂ (t) (9.1.35)

for t ∈ [0, T ], as is described by the real world pricing formula (9.1.34), see
also (9.1.25) and (9.1.33).

We shall apply the real world pricing formula later quite generally when
determining the fair price of derivatives. Once the GOP is identified in a
model one can determine the fair value of any integrable benchmarked payoff
by the real world pricing formula. As we shall see, it is possible to derive from
this pricing formula several other common derivative pricing and asset pricing
rules.

Benchmarked Portfolios

For a given general portfolio Sδ we can also compute the SDE for its bench-
marked value
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Ŝδ
t =

Sδ
t

Sδ∗
t

(9.1.36)

for t ∈ [0, T ]. It follows from (9.1.4), (9.1.15), (9.1.16), (9.1.6) and by appli-
cation of the Itô formula that

dŜδ
t = Ŝδ

t

(
π1

δ (t)σt − θt

)
dWt =

(
δ1
t Ŝ1

t σt − Ŝδ
t θt

)
dWt (9.1.37)

for t ∈ [0, T ] with Ŝδ
0 = Sδ

0

Sδ∗
0

. Obviously, Ŝδ is an (A, P )-local martingale, see
Lemma 5.4.1. It follows by Lemma 5.2.3 that under the given BS model any
nonnegative benchmarked portfolio is an (A, P )-supermartingale.

In the case when Ŝδ is such that the conditions (ii) or (iii) of Lemma 5.2.2
are satisfied, then Ŝδ is also a true (A, P )-martingale and not just a super-
martingale. This indicates that there may exist portfolio processes that when
benchmarked are not martingales.

An Unfair Portfolio

The following simple example demonstrates that even in a simple BS market
there exist perfectly reasonable nonnegative portfolio processes that are un-
fair, which means that they are not fair. Since we have above observed that
nonnegative benchmarked portfolios are always supermartingales an unfair
portfolio is a supermartingale that is not a martingale.

To provide an example, let us introduce the inverse Z = {Zt, t ∈ [0, T ]} of
a squared Bessel process of dimension four, which we have shown in Sect. 8.7
to be a strict local martingale, see also Revuz & Yor (1999). It satisfies the
SDE

dZt = −2 (Zt)
3
2 dWt (9.1.38)

for t ∈ [0, T ], where we set Z0 = 1. The process Z is an (A, P )-local mar-
tingale but not an (A, P )-martingale. By Lemma 5.2.3 it is a strict (A, P )-
supermartingale.

We can now identify a strategy δ with initial benchmarked portfolio value

Ŝδ
0 = Z0 = 1 (9.1.39)

that matches in the SDE (9.1.37) the diffusion coefficient such that

Ŝδ
t

(
π1

δ (t)σt − θt

)
= −2 (Zt)

3
2 (9.1.40)

for all t ∈ [0, T ]. Then it follows for the fraction

π1
δ (t) =

(

θt −
2 (Zt)

3
2

Ŝδ
t

)
1
σt

(9.1.41)

of wealth that is invested in the underlying security that the resulting self-
financing portfolio Sδ has at time t the benchmarked value
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Ŝδ
t = Zt (9.1.42)

for all t ∈ [0, T ]. This means, Ŝδ equals the strict supermartingale Z, see
(8.7.21). Note by (9.1.42) and (9.1.41) that the fraction simplifies in this case
to the expression

π1
δ (t) =

1
σt

(
θt − 2

√
Zt

)
, (9.1.43)

for t ∈ [0, T ]. We emphasize that this yields a perfectly reasonable self-
financing portfolio. As we have pointed out in Sect. 8.7, the formula (8.7.17)
for the first negative moment of a squared Bessel processes of dimension four
yields

E
(
Ŝδ

t

∣
∣A0

)
= E

(
Ŝδ

t

)
= Ŝδ

0

(

1 − exp

{
−1

2 Ŝδ
0 t

})

< Ŝδ
0 (9.1.44)

for t ∈ (0, T ].
By the strict inequality (9.1.44) we see that the (A, P )-supermartingale

Ŝδ is here not a martingale. This example demonstrates that even under a
BS model not all integrable, nonnegative, benchmarked portfolios are (A, P )-
martingales.

We shall see later that generally under the benchmark approach all non-
negative benchmarked portfolios are supermartingales. This is a fundamental
property for the wide class of financial market models that we consider in this
book. There exist several popular pricing concepts that we shall discuss below.
For some of these we can show that they correspond to real world pricing in
the sense that their benchmarked price processes are martingales under the
real world probability measure.

9.2 Actuarial Pricing

In this section we show that the common actuarial pricing or net present value
pricing methodology, which is widely used in insurance and accounting, can
be derived from real world pricing.

Setup for the GOP

To illustrate the actuarial pricing method in a simple, familiar setting we
consider again a BS market. The underlying security St is not of relevance for
the following analysis since the payoff H that shall be priced, will be assumed
to be independent of the GOP. However, it will be essential for our arguments
that the financial market model has a GOP Sδ∗ = {Sδ∗

t , t ∈ [0, T ]} which, for
simplicity, we assume to be of the same form as in the SDE (9.1.15). Since the
GOP satisfies then a Black-Scholes dynamics of the type (7.3.12) we obtain
from (7.3.3) an explicit expression for the GOP value at time t in the form
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Sδ∗
t = Sδ∗

0 exp
{∫ t

0

(
rs +

θ2
s

2

)
ds +

∫ t

0

θs dWs

}
(9.2.1)

for t ∈ [0, T ].

Fair Zero Coupon Bond

To illustrate the actuarial pricing methodology let us at first determine at
time t the fair value of a zero coupon bond. This is the value at time t for
the payment of one monetary unit at time T , obtained under the real world
pricing formula (9.1.34). Obviously, this corresponds to a European payoff
H = 1. If we denote the fair value of this payoff at time t ∈ [0, T ] by P (t, T ),
then we obtain by (9.1.34) the fair zero coupon bond price in the form

P (t, T ) = Sδ∗
t E

(
1

Sδ∗
T

∣
∣
∣
∣At

)

. (9.2.2)

In the given case we can explicitly compute this value. Since r and θ are
deterministic, it follows from (9.2.2) and (9.2.1) that

P (t, T ) = E

(

exp

{

−
∫ T

t

rs ds − 1
2

∫ T

t

θ2
s ds −

∫ T

t

θs dWs

}∣
∣
∣
∣At

)

= exp

{

−
∫ T

t

rs ds

}

E

(

exp

{

−
∫ T

t

θ2
s

2
ds −

∫ T

t

θs dWs

}∣
∣
∣
∣At

)

(9.2.3)

for t ∈ [0, T ]. Using the Laplace transform (1.3.76) of a Gaussian random
variable it follows that the conditional expectation on the right hand side of
(9.2.3) equals the real value one. Alternatively, we can use the fact that the
exponential under the conditional expectation forms an (A, P )-martingale,
see Sect. 5.1. Therefore, we obtain as fair zero coupon bond price at time t
the value

P (t, T ) = exp

{

−
∫ T

t

rs ds

}

=
Bt

BT
. (9.2.4)

Note that the value exp{−
∫ T

t
rsds}, if invested at time t = 0 in a savings

account, has the value of one monetary unit at time T . Under the benchmark
approach it will be always possible to establish the fair price of a zero coupon
bond. However, if the exponential under the conditional expectation in (9.2.3)
is a strict supermartingale, then the conditional expectation is less than one
and P (t, T ) is less than the right hand side of (9.2.4). This is similar to the
effect that yielded inequality (9.1.44). We shall study such cases later in more
detail.
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Fair Price of an Independent Payoff

Now, let us consider at the fixed maturity date T a random AT -measurable
payoff H > 0, which is independent of the GOP value Sδ∗

T . For instance, this
could be a life insurance claim or a payoff based on a weather index. Such a
claim may be by its nature independent of the GOP. The payoff H at time
T could also model operational failures in a company during a period that
finishes at maturity T . Alternatively, it could, for instance, model the total
sum of insurance claims from a particular group of cars in the year prior to T .
The key assumption is here that the above random payoff H is independent
of the random value Sδ∗

T of the GOP at the maturity date T . To be precise,
we assume that H is independent of Sδ∗

T , see (1.1.13) and (1.4.22), and that
the expectation of the benchmarked payoff

E

(∣
∣
∣
∣
∣

H

Sδ∗
T

∣
∣
∣
∣
∣

)

< ∞ (9.2.5)

is finite.
Then we can compute the fair price UH(t) at time t ∈ [0, T ] for the payoff

H according to the real world pricing formula (9.1.30). We obtain its fair price
in the form

UH(t) = Sδ∗
t E

(
H

Sδ∗
T

∣
∣
∣
∣At

)

.

Recall that the expectation of a product of independent random variables is
the product of their expectations, see (1.4.25). Since we have assumed that H
is independent of Sδ∗

T we obtain by this property the expression

UH(t) = Sδ∗
t E

(
1

Sδ∗
T

∣
∣
∣
∣At

)

E
(
H

∣
∣At

)
.

By using now the fair zero coupon bond price P (t, T ) in (9.2.2), it follows the
widely used actuarial pricing formula

UH(t) = P (t, T )E
(
H

∣
∣At

)
. (9.2.6)

Under this formula one computes the conditional expectation of a future cash
flow at time T and discounts it back to the present time t by using the corre-
sponding fair zero coupon bond price. This takes into account the evolution
of the time value of money. The procedure is also known as net present value
calculation. It is widely used in practice. Thus, we recover from real world pric-
ing in the case of independence of payoff and GOP, the well-known formula
of actuarial and net present value pricing.

Note that in the actuarial pricing formula (9.2.6) we do not require the
knowledge of the dynamics of the GOP. We even do not need to observe the
GOP in this case. One only needs to know the expectation of the payoff under
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the real world probability measure and the fair price of a zero coupon bond,
which is given in the market.

In our simple BS model we obtain from (9.2.6) the following version of the
actuarial pricing formula

UH(t) =
Bt

BT
E

(
H

∣
∣At

)
(9.2.7)

for t ∈ [0, T ]. We see in formula (9.2.7) the simple discounting rule for the
expected future payoff, as is most common in actuarial and accounting prac-
tice. We emphasize that the conditional expectations in (9.2.6) and (9.2.7)
are taken with respect to the real world probability measure P and that these
formulas are derived for the case when the payoff H is independent of the
GOP value Sδ∗

T . The actuarial pricing formula (9.2.6) can be shown to hold
generally for payoffs independent of the GOP for the models that we con-
sider in this book. In this sense actuarial pricing turns out to be a particular
case of real world pricing. On the other hand, when starting from a bench-
marked actuarial price process ÛH = {ÛH(t) = UH(t)

Sδ∗
t

, t ∈ [0,∞)} with H

independent of Sδ∗
T , it follows from the actuarial pricing formula (9.2.6) that

the benchmarked actuarial price

ÛH(t) =
P (t, T )

Sδ∗
t

E
(
H

∣
∣At

)
(9.2.8)

is, as the product of independent martingales, an (A, P )-martingale.

9.3 Capital Asset Pricing Model

Risk Premium for the GOP

Later we shall derive for a general continuous financial market the influential
intertemporal capital asset pricing model (ICAPM), see Merton (1973a). It is
the continuous time generalization of the capital asset pricing model (CAPM),
due to Sharpe (1964), Lintner (1965) and Mossin (1966). In practice, the
ICAPM has been widely used for pricing securities in an approximate sense.
We illustrate in the context of the BS model how the ICAPM can be used for
pricing.

First, let us define what we mean by a risk premium. The risk premium
pV (t) at time t for a security price process V = {V (t), t ∈ [0, T ]} is defined
as the expected excess return above the short rate rt, which is given as the
almost sure limit

pV (t) a.s.= lim
h↓0

1
h

E

(
V (t + h) − V (t)

V (t)

∣
∣
∣
∣At

)
− rt (9.3.1)

for t ∈ [0, T ].
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The GOP value Sδ∗
t at time t satisfies according to (9.1.15) the SDE

dSδ∗
t = Sδ∗

t

(
(rt + pSδ∗ (t)) dt +

√
pSδ∗ (t) dWt

)
(9.3.2)

for t ∈ [0, T ] with risk premium

pSδ∗ (t) = θ2
t =

(
at − rt

σt

)2

, (9.3.3)

see (9.1.16). Note that the risk premium pSδ∗ (t) in the SDE (9.3.2) of the
GOP equals the square of its volatility.

Risk Premium of the Underlying Security

By using in the SDE (9.1.1) of the underlying security St the formula (9.1.16)
for the GOP volatility θt, we obtain the SDE

dSt = St (rt dt + σt (θt dt + dWt)) (9.3.4)

for t ∈ [0, T ]. It follows that the risk premium pS(t) of the underlying security
S equals according to (9.3.1) and (9.3.4) the product

pS(t) a.s.= lim
h↓0

1
h

E

(
St+h − St

St

∣
∣
∣
∣At

)
− rt

a.s.= σt θt (9.3.5)

almost surely for all t ∈ [0, T ]. Note that the risk premium of the underlying
security equals, as h → 0, the normalized covariance of the returns of the
underlying security and the GOP, that is,

pS(t) a.s.= lim
h↓0

1
h

E

((
St+h − St

St

)(
Sδ∗

t+h − Sδ∗
t

Sδ∗
t

)∣
∣
∣
∣At

)

a.s.= lim
h↓0

1
h

E

(∫ t+h

t

σs dWs

∫ t+h

t

θs dWs

∣
∣
∣
∣At

)
a.s.= σt θt (9.3.6)

almost surely for t ∈ [0, T ].
There is also an alternative way of characterizing the risk premium (9.3.5).

The risk premium can be obtained by forming the time derivative of the
covariation between the logarithm ln(St) of the underlying security and the
logarithm ln(Sδ∗

t ) of the GOP. More precisely, by the Itô formula and the
covariation property (5.4.5) of Itô integrals we can express the risk premium
of S in the form

pS(t) =
d

dt

[
ln(S), ln(Sδ∗)

]
t
= σt θt (9.3.7)

for t ∈ [0, T ]. We shall see later that such a result holds generally in a con-
tinuous financial market.



334 9 Various Approaches to Asset Pricing

Risk Premium of a Portfolio

Now, let us calculate risk premia for portfolios. It follows for a portfolio value
Sδ

t at time t from the SDE (9.1.4) and equation (9.1.7) and (9.1.16) the SDE

dSδ
t = Sδ

t

(
rt dt + π1

δ (t)σt (θt dt + dWt)
)

(9.3.8)

for t ∈ [0, T ]. As defined above in (9.3.1), its risk premium pSδ (t) at time t
equals the expected excess return

pSδ (t) a.s.= lim
h↓0

1
h

E

(
Sδ

t+h − Sδ
t

Sδ
t

∣
∣
∣
∣At

)

− rt (9.3.9)

for t ∈ [0, T ). It follows from (9.3.8) and (9.3.9) that we obtain for the fraction
π1

δ (t) the risk premium
pSδ (t) = π1

δ (t)σt θt (9.3.10)

at time t ∈ [0, T ]. The risk premium of a portfolio equals the product of
market price of risk and portfolio volatility. As in (9.3.7), it follows from the
form of the portfolio SDE (9.3.8) that this risk premium equals the normalized
covariance between the return of the portfolio and that of the GOP. We have
then

pSδ (t) a.s.= lim
h↓0

1
h

E

((
Sδ

t+h − Sδ
t

Sδ
t

)(
Sδ∗

t+h − Sδ∗
t

Sδ∗
t

) ∣
∣
∣
∣At

)
a.s.= π1

δ (t)σt θt

(9.3.11)
for t ∈ [0, T ). Alternatively, by the Itô formula and the covariation property
(5.4.5) of Itô integrals it also follows

pSδ (t) =
d

dt

[
ln(Sδ), ln(Sδ∗)

]
t
= π1

δ (t)σt θt (9.3.12)

for t ∈ [0, T ]. As we shall see later, this type of formula holds in a general
continuous financial market and not only under the BS model.

Note that it follows from the above formula (9.3.12) that the risk premium
pB(t) of the savings account is zero, as should be expected.

Portfolio Beta

The ICAPM uses the market portfolio (MP) as reference portfolio. One can
choose, for instance, the MP as the portfolio of all tradable securities. In
practice, this is convenient but difficult to specify explicitly. One can always
argue about the exact composition of the MP. In any case, in reality the
MP is a reasonably broadly diversified portfolio. The Morgan Stanley capital
weighted world stock accumulation index (MSCI) arises as a possible proxy
for the MP. We shall show later, see also Platen (2005b), that diversified
portfolios can be expected in reality to be close to each other and also close to
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the GOP. This means, under general assumptions we shall see that diversified
portfolios approximate the GOP. This fundamental fact is model independent.
In the following, we use the GOP as proxy for the MP. Its movements can be
interpreted to model the movements of the market as a whole, thus, modeling
general market risk or systematic risk. We shall later consider specific market
risk, which describes the movements of a portfolio that are not in line with
those of the market index, see Platen & Stahl (2003).

When using the ICAPM one aims to measure for a given portfolio Sδ
t its

systematic risk parameter βSδ(t), which is the, so-called, beta. The beta equals
the ratio of covariations

βSδ (t) =
d[ln(Sδ),ln(Sδ∗ )]t

dt

d[ln(Sδ∗)]t
(9.3.13)

for t ∈ [0, T ]. Obviously, the beta equals one if the portfolio Sδ moves similarly
to the market as a whole. If Sδ moves totally independent of the GOP, then
its beta is zero. By using (9.3.12) it follows that

βSδ(t) =
π1

δ (t)σt θt

θ2
t

=
pSδ(t)
pSδ∗ (t)

(9.3.14)

for t ∈ [0, T ]. This means that the portfolio beta is the normalized risk pre-
mium, where the normalizing quantity is the risk premium of the MP.

Obviously, the beta for the savings account is zero, that is

βB(t) = 0 (9.3.15)

for t ∈ [0, T ]. This expresses the fact that there is no systematic risk in the
savings account. Under the given BS model the beta of the underlying security
S is by (9.3.14) and (9.3.5) obtained as

βS(t) =
σt

θt
(9.3.16)

for t ∈ [0, T ]. This beta is close to one if the underlying security fluctuates
similarly to the GOP and, thus, the MP.

A portfolio has a small absolute value of beta if its fluctuations are al-
most independent of those of the GOP. This means that there is then little
systematic or general market risk in this portfolio.

ICAPM Pricing Rule

By using relation (9.3.14) we obtain for the risk premium pSδ (t) of a portfolio
Sδ the ICAPM formula

pSδ (t) = βSδ(t) pSδ∗ (t) (9.3.17)
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for t ∈ [0, T ]. The portfolio beta βSδ (t), as defined in (9.3.14), has in the given
case for a portfolio Sδ with fraction π1

δ (t) the value

βSδ(t) = π1
δ (t)

σt

θt
(9.3.18)

for t ∈ [0, T ].
Under the given BS model a portfolio beta is all that needs to be known

about the portfolio’s risk characteristics when using the ICAPM formula. The
formula (9.3.17) does not contain prices explicitly. It only refers to risk premia.
However, the ICAPM can be used in practice for approximate asset pricing.
To explain this, we go back to the definition of a return. By the ICAPM
formula (9.3.17) we have approximately for a portfolio Sδ with fraction π1

δ (t)
over a small period [t, t + h] the expected return

E

(
Sδ

t+h − Sδ
t

Sδ
t

∣
∣
∣
∣At

)

=
E

(
Sδ

t+h

∣
∣At

)
− Sδ

t

Sδ
t

≈ (rt + pSδ (t)) h = (rt + βSδ(t) pSδ∗ (t)) h.

Therefore, it follows for small h > 0 by (9.3.3) and (9.3.18) that approximately

E
(
Sδ

t+h

∣
∣At

)

Sδ
t

≈ 1 + (rt + βSδ(t) pSδ∗ (t)) h = 1 +
(

rt +
δ1
t St σt θt

Sδ
t

)
h.

This yields the ICAPM pricing rule

Sδ
t ≈

E
(
Sδ

t+h

∣
∣At

)

1 + (rt + βSδ(t) θ2
t ) h

(9.3.19)

or, similarly, by using the above relations and (9.1.16), the self-interpreting
pricing rule

Sδ
t ≈

E
(
Sδ

t+h

∣
∣At

)
− δ1

t St (at − rt)h

1 + rt h
(9.3.20)

for t ∈ [0, T ]. We emphasize that (9.3.19) and (9.3.20) are approximate for-
mulas. It is interesting to note that the ICAPM pricing rule (9.3.19) uses the
portfolio beta and the expected future value of the portfolio as main inputs.
Notice that the conditional expectation of the future portfolio value is taken
under the real world probability measure, as is the case under real world
pricing.

Via the benchmark approach we derive in Sect. 11.2 under general as-
sumptions the ICAPM for continuous financial markets. This means we shall
provide the basis for the ICAPM pricing rule (9.3.19). This approximate pric-
ing formula is, of course, not fully consistent with real world pricing. However,
it is a reasonable description of the fair price when h is small. The ICAPM
pricing rule (9.3.19) is widely applied in practice. It provides another example
where commonly accepted relationships in finance, insurance or accounting
can be naturally derived under the benchmark approach by using the GOP
as central building block.
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9.4 Risk Neutral Pricing

By referring to the results from Chap.8 on option pricing under the BS model,
we now illustrate the widely used standard risk neutral pricing methodology,
which one could interpret as the core of the arbitrage pricing theory (APT)
and its generalizations, see for instance, Black & Scholes (1973), Ross (1976),
Harrison & Kreps (1979), Harrison & Pliska (1981), Föllmer & Sondermann
(1986), Föllmer & Schweizer (1991) and Delbaen & Schachermayer (1994,
1998, 2006).

Drifted Wiener Process

In the classical literature on derivative pricing it has been standard to use the
domestic savings account B = {Bt, t ∈ [0, T ]} as reference unit or numeraire.
For obtaining an option price one introduces an appropriate probability mea-
sure, the risk neutral probability measure Pθ. It allows to interpret the Black-
Scholes pricing formula as a conditional expectation under this measure. As
we shall see, this method provides an elegant and compact description of op-
tion prices in the case of the BS model. We shall show that the change to
the risk neutral probability measure Pθ is equivalent to a change of variables
with a corresponding probabilistic interpretation. Most importantly, we shall
emphasize the fact that a number of assumptions have to be made to perform
this change of variables, which may not be satisfied for realistic models.

Let us reformulate the SDE (9.1.1) for the underlying security S under the
BS model, where we assume now, for simplicity, constant short rate r, constant
volatility σ, constant appreciation rate a and, therefore, also constant market
price of risk θ. We perform this change of variable in such a way that the
SDE (9.1.1) shows formally the same appreciation rate r as the domestic
savings account B, see (9.1.2). To achieve this it is necessary to introduce a
corresponding driving process Wθ that no longer equals the Wiener process
W . This is the, so-called, drifted Wiener process Wθ = {Wθ(t), t ∈ [0, T ]}
with

Wθ(t) = Wt + θ t (9.4.1)

for t ∈ [0, T ]. Recall that the market price of risk is for our BS model of the
form

θ =
a − r

σ
, (9.4.2)

see (9.1.16). This allows us to rewrite the SDE (9.1.1) for the underlying
security in the form

dSt = (a − σ θ)St dt + σ St dWθ(t) = r St dt + σ St dWθ(t) (9.4.3)

for t ∈ [0, T ]. According to (6.3.7), (6.3.6) and (9.4.1), the geometric Brownian
motion S = {St, t ∈ [0, T ]} has then the explicit representation
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St = S0 exp
{(

r − 1
2

σ2

)
t + σ Wθ(t)

}
(9.4.4)

for t ∈ [0, T ]. Note that for θ �= 0 the process Wθ is not a Wiener process
under the real world probability measure P .

Radon-Nikodym Derivative

We shall show that the process Wθ is a standard Wiener process under the
risk neutral measure Pθ. This measure is characterized by its Radon-Nikodym
derivative

Λθ(T ) =
dPθ

dP

∣
∣
∣
∣
AT

=
Ŝ0

T

Ŝ0
0

. (9.4.5)

Recall that
Ŝ0

T =
BT

Sδ∗
T

is the benchmarked domestic savings account at time T , see (9.1.22). The
Radon-Nikodym derivative Λθ(T ) defines the risk neutral measure Pθ, which
is given in the form

Pθ(A) =
∫

A

Λθ(T ) dP (ω) =
∫

A

dPθ(ω)
dP (ω)

dP (ω) (9.4.6)

for all subsets A ∈ Ω.
Note that the measure Pθ is not automatically a probability measure. For

risk neutral pricing to be useful in practice, we need the property that the risk
neutral measure Pθ is a probability measure. This is equivalent to the request
that a corresponding change of variables in an integration can be performed.

The following definition will be used generally throughout the book.

Definition 9.4.1. Two measures are equivalent if they have the same sets
of events of measure zero.

The equivalence of the risk neutral and the real world probability measure
is a fundamental requirement of the risk neutral approach. In the case of
the above BS model one is able to apply the risk neutral approach since the
measure Pθ is a probability measure and equivalent to P . The model generates
geometric Brownian motions on [0, T ] under P and under Pθ with the same
sets of events that have probability zero under both measures. However, there
is already a problem even under the BS model if one wants to extend the time
horizon T to infinity and aims to consider asymptotics for T → ∞. Details on
a construction allowing some risk neutral pricing in such a case can be found,
for instance, in Karatzas & Shreve (1998).

As discussed in Sect. 9.1, under the BS model the benchmarked savings
account Ŝ0 = {Ŝ0

t , t ∈ [0, T ]} is an (A, P )-martingale with initial value
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Ŝ0
0 =

1
Sδ∗

0

. (9.4.7)

Thus, for the BS model due to (9.4.5) the Radon-Nikodym derivative process
Λθ = {Λθ(t), t ∈ [0, T ]} with

Λθ(t) =
Ŝ0

t

Ŝ0
0

(9.4.8)

is an (A, P )-martingale that starts at Λθ(0) = 1.
We shall see later that the martingale property of the Radon-Nikodym

derivative process is crucial for the risk neutral approach. It makes sure that
the measure Pθ is having a total mass of one, allowing it to be a probability
measure.

We remark that the Radon-Nikodym derivative process is referred to in
the literature also as state price density, pricing kernel , deflator or stochas-
tic discount factor, see Hansen & Jagannathan (1991), Constatinides (1992),
Rogers (1997), Cochrane (2001) and Duffie (2001).

Later it will become clear that the just mentioned Radon-Nikodym process
simply expresses the benchmarked savings account when normalized to one.
The corresponding risk neutral pricing method can, thus, be derived from real
world pricing.

Risk Neutral Measure Transformation

To illustrate the measure transformation that is performed under the risk
neutral approach, let us demonstrate under the given BS model that Wθ is
a Wiener process under the risk neutral probability measure Pθ. The above
Radon-Nikodym derivative process Λθ, see (9.4.8), has the representation

Λθ(t) = exp
{
−1

2
θ2 t − θ Wt

}
(9.4.9)

for t ∈ [0, T ]. By using the Laplace transform (1.3.76) of a Gaussian ran-
dom variable we have by the martingale property of Λθ the total risk neutral
probability

Pθ(Ω) = E(Λθ(T )) = E(Λθ(T )
∣
∣A0) = Λθ(0) = 1. (9.4.10)

This shows that Pθ is a probability measure.
For fixed ỹ ∈ �, t ∈ [0, T ] and s ∈ [0, t) let A be the event

A = {ω ∈ Ω : Wθ(t, ω) − Wθ(s, ω) < ỹ}.

Here we indicate in the notation Wθ(t, ω) its dependence on the outcome
ω ∈ Ω. Using relation (9.4.1), this event can equivalently be written in the
form
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A = {ω ∈ Ω : W (t, ω) − W (s, ω) < ỹ − θ (t − s)} .

Since W is a Wiener process on (Ω,A,A, P ), then A ∈ At where A is indepen-
dent of As. Combining these facts, it follows by using the indicator function
1A, with Eθ denoting expectation under Pθ, that

Pθ(A) = Eθ(1A) = E(Λθ(T )1A)

= E

(
Λθ(t)1A

Λθ(T )
Λθ(t)

)
= E(Λθ(t)1A)

= E

(
Λθ(s)

Λθ(t)
Λθ(s)

1A

)
= E (Λθ(s)) E

(
Λθ(t)
Λθ(s)

1A

)

= E

(
Λθ(t)
Λθ(s)

1A

)
. (9.4.11)

We know that Wt −Ws is Gaussian distributed with mean zero and variance
(t − s). Therefore, we obtain for the event A with (9.4.9) the Pθ-probability

Pθ(A) =
∫ ỹ−θ(t−s)

−∞
exp

{
−θ2

2
(t − s) − θ y

}
1

√
2 π (t − s)

exp
{
− y2

2 (t − s)

}
dy

=
∫ ỹ−θ(t−s)

−∞

1
√

2 π (t − s)
exp

{
− (y + θ (t − s))2

2 (t − s)

}
dy

=
∫ ỹ

−∞

1
√

2 π (t − s)
exp

{
− z2

2 (t − s)

}
dz. (9.4.12)

This equation shows that Wθ(t)−Wθ(s) is Gaussian distributed under Pθ with
mean zero and variance (t − s). Note that we have only changed variables
for the integration in (9.4.12), which is permitted due to the properties of
the Gaussian density. From the properties (3.2.6) of the Wiener process W
and relation (9.4.1) we conclude under the given BS model that Wθ(0) = 0.
Using arguments similar to those applied in (9.4.11), it follows that Wθ has
independent increments. Therefore, by using (3.2.6), we can formulate the
following simple version of the following Cameron-Martin Girsanov Theorem
when applied to the BS model.

Theorem 9.4.2. (Cameron-Martin Girsanov) Under the BS model the
process Wθ is a standard Wiener process in the filtered probability space
(Ω,A,A, Pθ), which is defined under the risk neutral probability measure Pθ.

In the next section we shall provide a more general version of this theorem.

Risk Neutral Pricing Formula

As previously mentioned, the probability measure Pθ, which is called the
risk neutral probability measure, can be used for option pricing. This is the
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probability measure under which the process Wθ, see (9.4.1), becomes an
(A, Pθ)-Wiener process. Let us now obtain from the real world pricing formula
(9.1.34) the price of a European option with payoff H(ST ) under the given
BS model.

Using (9.4.5), (9.4.9) and the explicit expression (9.4.4) for the geometric
Brownian motion S, see (9.4.3), we can rewrite the real world pricing formula
(9.1.34) for t = 0 in the form

V (0, S0) = E

(
Sδ∗

0

Sδ∗
T

H(ST )
∣
∣
∣A0

)

= E

⎛

⎝
BT

Sδ∗
T

B0

Sδ∗
0

(
H(ST )

BT

) ∣
∣
∣A0

⎞

⎠

= E

(
Ŝ0

T

Ŝ0
0

(
H(ST )

BT

) ∣
∣
∣A0

)

= E

(
Λθ(T )
Λθ(0)

(
H(ST )

BT

) ∣
∣
∣A0

)

= E

(
exp

{
−θ2

2
T − θ WT

}
(
exp{−r T}H(ST )

) ∣
∣
∣A0

)

=
∫ ∞

−∞

[
exp{−r T}H

(
S0 exp

{(
a − 1

2
σ2

)
T + σ y

})]

× exp
{
−θ2

2
T − θ y

}
1√
T

N ′
(

y√
T

)
dy.

With the change of variables ỹ = y + θ T = y + (a−r
σ )T we then obtain

V (0, S0) = exp{−r T}
∫ ∞

−∞

[
H

(
S0 exp

{(
r − 1

2
σ2

)
T + σ ỹ

})]

× 1√
T

N ′
(

ỹ√
T

)
dỹ.

When written in the following form, the above result provides the risk
neutral pricing formula

V (0, S0) = exp{−r T}Eθ

(
H(ST )

∣
∣A0

)
= Eθ

(
H(ST )

BT

∣
∣
∣A0

)
. (9.4.13)

Here Eθ denotes the expectation with respect to the risk neutral probability
measure Pθ and N ′(·) is the standard Gaussian density, see (1.2.8).

The above derivation shows that the fair price at time t = 0 of an option
under the BS model can be rewritten as a conditional expectation Eθ under
the risk neutral probability measure Pθ of a savings account discounted payoff
H(ST )

BT
. The above risk neutral pricing formula has been widely used in deriva-

tive pricing. In the current literature the risk neutral pricing formula appears
to be the standard pricing tool. However, note that certain assumptions need
to be satisfied to apply this pricing formula.
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We exploited a number of mathematical properties that are automatically
guaranteed under the BS model. As we shall see later, for certain more realistic
asset price models, for instance the MMM, the martingale property of the
Radon-Nikodym derivative Λθ, does not hold and an equivalent risk neutral
probability measure does not exist. Since the real world pricing concept does
not require the existence of an equivalent risk neutral probability measure one
can always apply the real world pricing formula as long as the GOP exists
and the expectation of the benchmarked payoff is finite.

Risk Neutral SDEs

Note that under the risk neutral probability measure Pθ the discounted un-
derlying security price S̄, see (8.2.10), satisfies under the BS model according
to (9.4.3) and by application of the Itô formula the SDE

dS̄t = σ S̄t dWθ(t) (9.4.14)

for t ∈ [0, T ]. Thus, S̄ is driftless under Pθ and can be shown for the BS model
to be an (A, Pθ)-martingale, see Exercise 9.1. Furthermore, it follows by the
Itô formula, (8.2.21) and (9.4.1) that the SDE for the discounted option price
V̄ , see (8.2.9), is given by

dV̄ (t, S̄t) =
∂V̄ (t, S̄t)

∂S̄
σ S̄t dWθ(t) (9.4.15)

for t ∈ [0, T ]. This means that also the SDE for V̄ is driftless under Pθ. One
can show for the given BS model that V̄ is an (A, Pθ)-martingale, see Exer-
cise 9.2. Obviously, the discounted savings account B̄, see (8.2.15), is a con-
stant and, thus, trivially an (A, Pθ)-martingale. For both (A, Pθ)-martingales
V̄ and B̄ it is easy to see from Sect. 9.1 that their benchmarked values
V̂ (t) = V̄ (t,S̄t)

S̄δ∗
t

and Ŝ0
t = B̄t

S̄δ∗
t

form (A, P )-martingales.

Risk Neutral SDE for Portfolios

Generally, for the above BS model all discounted portfolio prices can be shown
to form (A, Pθ)-local martingales. This property follows from the SDE (9.1.37)
and Lemma 5.4.1 since by application of Itô’s formula

dS̄δ
t = d(S̄δ∗

t Ŝδ
t )

= S̄δ
t π1

δ (t)σ (θ dt + dWt)

= S̄δ
t π1

δ (t)σ dWθ(t) (9.4.16)

for t ∈ [0, T ]. By Lemma 5.2.3 any nonnegative discounted portfolio is, there-
fore, an (A, P )-supermartingale. If S̄δ is an (A, Pθ)-martingale, then the risk
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Fig. 9.4.1. A Radon-Nikodym derivative process for a BS model

neutral pricing formula (9.4.13) holds for S̄δ. Furthermore, since the Radon-
Nikodym derivative process Λθ is here an (A, P )-martingale, we shall see later
that in this case the benchmarked portfolio value Ŝδ

t = S̄δ

S̄δ∗
t

forms an (A, P )-
martingale.

We have seen that the real world pricing formula (9.1.34) does not hold
for an unfair portfolio as constructed in (9.1.38)–(9.1.43). Similarly, for such
a portfolio also the risk neutral pricing formula fails. Thus, one should not
expect all discounted portfolios to be automatically (A, Pθ)-martingales un-
der the risk neutral probability measure Pθ, even under a simple BS model.
Unfortunately, some literature gives the impression that this is the case.

Observe in the derivation of (9.4.13) that we have performed a change of
variables from Wt to Wθ(t) with the interpretation that W and Wθ are Wiener
processes under P and Pθ, respectively. The only variable that is random in
the risk neutral pricing formula (9.4.13) is ST , as compared to the real world
pricing formula (9.1.34), where also the random GOP value Sδ∗

T is involved.
Thus, the computation of option prices by using the risk neutral approach
is simplified for the case of the BS model. This simplification relies on the
existence of the equivalent risk neutral probability measure Pθ under the BS
model.

We shall see in the next chapter that the benchmark approach, with its
real world pricing concept, handles more general models than those permitted
under the risk neutral approach. An equivalent risk neutral probability mea-
sure need not exist under the benchmark approach. This freedom in modeling
will become important when we are going to model realistically the typical
market dynamics.

In Fig.9.4.1 we show a path of an exponential martingale from a geometric
Brownian motion with volatility θ = 0.2. We know that the path in Fig. 9.4.1
is that of a martingale. Here the actual value is the best forecast of future
values. Similar to equation (9.4.8) one can show that the candidate Radon-
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Fig. 9.4.2. Candidate Radon-Nikodym derivative of hypothetical risk neutral mea-
sure

Nikodym derivative process Λ = {Λt, t ∈ [0, T ]} for a hypothetical equivalent
risk neutral probability measure for a range of continuous financial markets is
given by the benchmarked savings account, see (9.4.8) and Karatzas & Shreve
(1998), normalized at the initial time to one. An indication for the potential
nonexistence of an equivalent risk neutral probability measure for the real
market is given by the following important observation:

If the GOP is proxied by a diversified world stock index, as we shall suggest
in the next chapter, then one can observe the benchmarked savings account for
the world market and, thus, the candidate Radon-Nikodym derivative of its
hypothetical risk neutral measure. We show in Fig.9.4.2 the candidate Radon-
Nikodym derivative of the hypothetical risk neutral measure of the world stock
market with respect to the US dollar as domestic currency when using the
Morgan Stanley capital weighted world stock accumulation index (MSCI) as
proxy for the GOP. The path of this process seems to trend systematically
downward, which is not typical for a martingale. However, for economic rea-
sons the graph in Fig. 9.4.2 is rather typical, as we shall discuss below. In the
long run the benchmarked savings account must be expected to decline sys-
tematically in reality. Otherwise, investors have no reason to invest in the stock
market. This has been empirically confirmed by Dimson, Marsh & Staunton
(2002), who showed that the market capitalization weighted world stock index,
when discounted by the US dollar savings account, showed an annually dis-
cretely compounded net growth rate of about 0.049 over the last century. From
economic reasoning it does not appear to be natural that the trajectory of the
benchmarked savings account should form in reality a martingale. However,
this martingale property is needed for the application of the Cameron-Martin
Girsanov Theorem.

The downward trending trajectory in Fig. 9.4.2 resembles more the path
of a strict supermartingale. Of course, a single path cannot prove that the
candidate Radon-Nikodym derivative of the hypothetical risk neutral measure
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is a strict supermartingale. However, based on the economic argument that
stock market investments grow in the long term faster than a savings account,
one should be prepared to acknowledge such possibility, when developing long
term market models. Of course, even if we agree that the benchmarked savings
account is not a martingale under the real world probability measure, this is
insufficient to infer that no equivalent risk neutral probability measure exists.
But it is certainly enough evidence for us to consider this possibility seriously,
which we acknowledge by working under the benchmark approach with its
real world pricing concept.

What we have just observed creates serious concerns about the practical
applicability of the risk neutral pricing methodology that has been the pre-
vailing approach in finance for several decades. Within this book we aim to
provide with the benchmark approach a framework that allows to handle not
only models that have an equivalent risk neutral probability measure but also
models for which this is not the case. The real world pricing concept makes
financial modeling, derivative pricing and calibration less complicated since a
measure transformation is not required.

Under the benchmark approach some potential model risk is removed
which could be caused by the fact that an equivalent risk neutral probability
measure may not exist for the existing financial market.

9.5 Girsanov Transformation and Bayes Rule (*)

In the previous section, an equivalent probability measure transformation
was applied, which is also known as Girsanov transformation. The following
section describes such transformation more generally. It will also introduce
Bayes’s Theorem, which is needed to interpret conditional expectations under
a given measure by using those defined under another measure. Both results
are important for equivalent probability measure changes.

Change of Probability Measure (*)

We denote by W = {W t = (W 1
t , . . . , Wm

t )�, t ∈ [0, T ]} an m-dimensional
standard Wiener process on a filtered probability space (Ω,A,A, P ), as given
in Sect. 5.1, with A0 being the trivial σ-algebra, augmented by the sets of
zero probability. For an A-predictable m-dimensional stochastic process θ =
{θt = (θ1

t , . . . , θm
t )�, t ∈ [0, T ]} with

∫ T

0

m∑

i=1

(θi
t)

2 dt < ∞ (9.5.1)

almost surely, we assume that the strictly positive Radon-Nikodym derivative
process Λθ = {Λθ(t), t ∈ [0, T ]}, where
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Λθ(t) = exp
{
−

∫ t

0

θ�
s dW s −

1
2

∫ t

0

θ�
s θs ds

}
< ∞ (9.5.2)

almost surely for t ∈ [0, T ] is an (A, P )-martingale. By the Itô formula (6.2.11)
it follows from (9.5.2) that

Λθ(t) = 1 −
m∑

i=1

∫ t

0

Λθ(s) θi
s dW i

s (9.5.3)

for t ∈ [0, T ]. Since Λθ is by the above assumption an (A, P )-martingale we
have

E
(
Λθ(t)

∣
∣As

)
= Λθ(s) (9.5.4)

for t ∈ [0, T ] and s ∈ [0, t] and, in particular,

E
(
Λθ(t)

∣
∣A0

)
= Λθ(0) = 1. (9.5.5)

Now, we define a measure Pθ via the Radon-Nikodym derivative

dPθ

dP
= Λθ(T ), (9.5.6)

by setting
Pθ(A) = E(Λθ(T )1A) = Eθ(1A) (9.5.7)

for A ∈ AT . Recall that 1A is the indicator function for A and Eθ means
expectation with respect to Pθ.

Note that Pθ is not just a measure but also a probability measure because

Pθ(Ω) = E(Λθ(T )) = E
(
Λθ(T )

∣
∣A0

)
= Λθ(0) = 1 (9.5.8)

due to the martingale property of Λθ. This indicates why the martingale
property of the Radon-Nikodym derivative is so important. It guarantees that
the resulting risk neutral measure is a probability measure.

If the Radon-Nikodym derivative for the candidate risk neutral measure
is a strict supermartingale, then the equality (9.5.8) does not hold and Pθ(Ω)
is strictly less than one. As we shall see, this case arises, for instance, under
the MMM, see Fig. 13.3.2.

Bayes’s Theorem (*)

As seen in the risk neutral pricing formula (9.4.13), it is useful to be able
to change the probability measure for conditional expectations. For a simple
case this is indicated by formula (9.5.7). There exists a general tool, which is
the following Bayes rule, that allows one to establish a relationship between
conditional expectations with respect to different equivalent probability mea-
sures.
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Theorem 9.5.1. (Bayes) Assume that a given strictly positive Radon-
Nikodym derivative process Λθ is an (A, P )-martingale determining a corre-
sponding equivalent probability measure Pθ. Then for any given stopping time
τ ∈ [0, T ] and any Aτ -measurable random variable Y , satisfying the integra-
bility condition

Eθ(|Y |) < ∞, (9.5.9)

one can apply the Bayes rule

Eθ

(
Y

∣
∣As

)
=

E
(
Λθ(τ)Y

∣
∣As

)

E
(
Λθ(τ)

∣
∣As

) (9.5.10)

for s ∈ [0, τ ].

Proof of Bayes’s Theorem (*)

We indicate here a proof of Bayes’s Theorem. For a stopping time τ ∈ [s, T ]
and given fixed time s ∈ [0, T ] one can prove Bayes’s theorem by using formula
(9.5.7) for the probability Pθ(A) together with the properties (1.3.63)–(1.3.66)
of conditional expectations and the martingale property of Λθ. Then for each
Aτ -measurable random variable Y and a set A ∈ As with some fixed time
s ∈ [0, T ] we can show that both sides of (9.5.10) are identical for any such
set A, that is,

1A Eθ
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∣
∣As

)
= Eθ
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1A Y

∣
∣As

)
= E

(
1A Y Λθ(T )
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)
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)
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1A E
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)
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E

(
Y Λθ(τ)
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∣
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∣As
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= Eθ

(

1A

E
(
Λθ(τ)Y
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(
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∣As

)
∣
∣
∣
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)

= 1A

E
(
Λθ(τ)Y

∣
∣As

)

E
(
Λθ(τ)

∣
∣As

) .

This proves Theorem 9.5.1. 
�

Girsanov Theorem (*)

The following important result is known as Girsanov Theorem for which we
shall indicate a proof at the end of the section. A simple version of the Girsanov
Theorem has been already given with the Cameron-Martin Girsanov Theorem,
see Theorem 9.4.2. The Girsanov Theorem allows us to perform a measure
transformation, which transforms an (A, P )-drifted Wiener process, as given
in (9.4.1), into a Wiener process under a new probability measure Pθ. Such a
transformation is called Girsanov transformation.
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Theorem 9.5.2. (Girsanov) If for T ∈ (0,∞) a given strictly positive
Radon-Nikodym derivative process Λθ is an (A, P )-martingale, then the m-
dimensional process W θ = {W θ(t), t ∈ [0, T ]}, given by

W θ(t) = W t +
∫ t

0

θs ds (9.5.11)

for all t ∈ [0, T ], is an m-dimensional standard Wiener process on the filtered
probability space (Ω,A,A, Pθ).

Note that certain assumption needs to be satisfied before one can ap-
ply the above Girsanov Theorem. The sole key assumption is that Λθ must
be a strictly positive (A, P )-martingale. For instance, if the Radon-Nikodym
derivative process is almost surely only a strictly positive local martingale,
then this does not guarantee that Pθ is a probability measure.

Novikov Condition (*)

As just mentioned, a key assumption of the risk neutral approach is that
Λθ has to be a strictly positive (A, P )-martingale. A sufficient condition for
the Radon-Nikodym derivative process Λθ to be an (A, P )-martingale is the
Novikov condition, see Novikov (1972), which requires that

E

(

exp

{
1
2

∫ T

0

θ�
s θs ds

})

< ∞. (9.5.12)

This condition is fulfilled for the BS model, as was given in (9.1.1), since the
market price of risk θ, given in (9.1.16), is a constant. For the case, when
Λθ is already known to be a strictly positive (A, P )-local martingale, then
some other sufficient conditions can potentially be applied. Some conditions
of this kind are given in Lemma 5.2.2. Further conditions can be found in
Revuz & Yor (1999).

Proof of the Girsanov Theorem (*)

For simplicity, we only indicate the proof of Theorem 9.5.2 for the one-
dimensional case, that is m = 1. Furthermore, we assume for simplicity that
Λθθ, Λθ, ΛθWθθ, Λθ(Wθ)2θ ∈ L2

T and that P is equivalent to Pθ. The general
case is obtained by similar arguments, see Karatzas & Shreve (1991).

1. First, let us show that Pθ is a probability measure. It follows by
application of the Itô formula (6.2.11) to the expression (9.5.2) that

dΛθ(t) = −Λθ(t) θt dWt (9.5.13)

with Λθ(0) = 1. For the strictly positive process Λθ we have a.s. the inequality
Λθ(t) > 0 and from equation (9.5.5) the property
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E(Λθ(t)) = 1 (9.5.14)

for all t ∈ [0, T ]. From equation (9.5.7) we conclude for any event A ∈ A that

Pθ(A) =
∫

Ω

1A(ω)Λθ(T ) dP (ω) ≥ 0, (9.5.15)

where 1A(ω) is the indicator function for ω being in A. This combined with
the property (9.5.14) shows that

Pθ(Ω) =
∫

Ω

Λθ(T ) dP (ω) = E(Λθ(T )) = 1. (9.5.16)

Therefore, Pθ(·) is a well-defined probability measure on (Ω,A).
2. We now consider the product Λθ(t)Wθ(t) and show that it forms a

martingale. By the Itô formula (6.2.11) and equations (9.5.11) and (9.5.13)
the SDE for ΛθWθ can be written in the form

d(Λθ(t)Wθ(t)) = Λθ(t) dWθ(t) + Wθ(t) dΛθ(t) + d[Λθ, Wθ]t

= Λθ(t) dWt + Λθ(t) θt dt − Wθ(t)Λθ(t) θt dWt − Λθ(t) θt dt

= Λθ(t) (1 − Wθ(t) θt) dWt (9.5.17)

for t ∈ [0, T ]. Thus, since Λθ(1 − Wθθ) ∈ L2
T it follows by the martingale

property (5.4.3) of Itô integrals that the process ΛθWθ is an (A, P )-martingale.
3. For t ∈ [0, T ] and s ∈ [0, t], using the equivalence of Pθ, we obtain

with Theorem 9.5.1 from the martingale property of ΛθWθ the conditional
expectation

Eθ

(
Wθ(t)

∣
∣As

)
= E

(
Λθ(t)Wθ(t)

∣
∣As

)

= E
(
Λθ(s)Wθ(s)

∣
∣As

)

= Eθ

(
Wθ(s)

∣
∣As

)
= Wθ(s). (9.5.18)

Note that Wθ is an (A, Pθ)-martingale. Note that it is not only a martingale
with respect to the filtration that it generates.

4. Let us now show that Wθ is under Pθ a continuous square integrable
martingale. Note that we obtain from (9.5.17) and (9.5.11) by the Itô formula

d
(
Λθ(t) (Wθ(t))2

)
= Λθ(t) dt + Λθ(t) (Wθ(t))2 θt dWt (9.5.19)

for t ∈ [0, T ]. Now, the square integrability of Wθ under Pθ follows, so
(Wθ)2 Λθ θ ∈ L2

T . From (9.5.19) we can conclude that Wθ is a continuous,
square integrable (A, Pθ)-martingale, see (5.1.2) with Wθ(0) = 0, see (9.5.11).

5. The quadratic variation process [Wθ] = {[Wθ]t, t ∈ [0, T ]}, see (5.2.2)
and (5.2.8), of the continuous (A, Pθ)-martingale Wθ is, according to (9.5.11),
of the form

[Wθ]t = t (9.5.20)

for t ∈ [0, T ]. It then follows by Lévy’s Theorem, see Theorem 6.5.1, that Wθ

is a standard Wiener process on the probability space (Ω,A,A, Pθ). 
�
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9.6 Change of Numeraire (*)

It became clear in our previous discussion on real world pricing and risk
neutral pricing that there exist equivalent ways of obtaining derivative prices
as conditional expectations under certain probability measures by using corre-
sponding numeraires. This has been formalized in Geman, El Karoui & Rochet
(1995). Each of these alternative choices of numeraires result in corresponding
SDEs for the prices. Often, different numeraires can be used to characterize the
same derivative price. Some numeraire choices can provide significant analytic
or computational advantages. The expectations involved are simply different
ways of representing the same integral value. What actually happens in a nu-
meraire change is a change of variables in an integration. We emphasize that
certain conditions have to be satisfied to perform a numeraire change. This is
analogous to the well-known fact that not all changes of variables are feasible
for certain integrations.

Benchmarked PDE (*)

To illustrate the change of numeraire technique, let us recall from the real
world pricing formula (9.1.34) that the benchmarked option price can be
expressed as conditional expectation of the benchmarked payoff. We shall
now show for the BS model, as introduced in Sect. 9.1, that the bench-
marked pricing function V̂ : [0, T ] × (0,∞) × (0,∞) → [0,∞), obtained as
V̂ (t, St, S

δ∗
t ) = V̂ (t), can be expressed as a PDE solution.

With a view on (9.1.32)–(9.1.34) let us determine whether there exists
a sufficiently often differentiable benchmarked pricing function V̂ (·, ·, ·) such
that

V̂ (t) = V̂ (t, St, S
δ∗
t ) = E

(
H(ST )

Sδ∗
T

∣
∣
∣
∣At

)

, (9.6.1)

for t ∈ [0, T ] with St and Sδ∗
t satisfying the SDEs (9.1.1) and (9.1.15), respec-

tively.
Application of the Itô formula to the function V̂ (t, S, Sδ∗) yields, as in

(9.1.31), the equation

H(ST )
Sδ∗

T

= V̂ (T, ST , Sδ∗
T )

= V̂ (t, St, S
δ∗
t ) +

∫ T

t

L̃0 V̂ (s, Ss, S
δ∗
s ) ds

+
∫ T

t

(
∂V̂ (s, Ss, S

δ∗
s )

∂S
σs Ss +

∂V̂ (s, Ss, S
δ∗
s )

∂Sδ∗
θs Sδ∗

s

)

dWs (9.6.2)

with operator
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L̃0 V̂ (t, S, Sδ∗) =
∂V̂ (t, S, Sδ∗)

∂t
+ at S

∂V̂ (t, S, Sδ∗)
∂S

+
1
2

σ2
t S2 ∂2V̂ (t, S, Sδ∗)

∂S2

+(rt + θ2
t )Sδ∗

∂V̂ (t, S, Sδ∗)
∂Sδ∗

+
1
2

θ2
t (Sδ∗)2

∂2V̂ (t, S, Sδ∗)
∂(Sδ∗)2

+σt θt S Sδ∗
∂2V̂ (t, S, Sδ∗)

∂S ∂Sδ∗
(9.6.3)

for t ∈ [0, T ) and S, Sδ∗ ∈ (0,∞).
Since the process V̂ = {V̂ (t, St, S

δ∗
t ), t ∈ [0, T ]} is an (A, P )-martingale,

see (9.6.1), it follows from (9.6.2) that we obtain the benchmarked PDE

L̃0 V̂ (t, S, Sδ∗) = 0 (9.6.4)

for (t, S, Sδ∗) ∈ (0, T )× (0,∞)× (0,∞) with benchmarked terminal condition

V̂ (T, S, Sδ∗) =
H(S)
Sδ∗

(9.6.5)

for (S, Sδ∗) ∈ (0,∞) × (0,∞). Note that we have linked the conditional ex-
pectation (9.6.1) to the PDE (9.6.4)–(9.6.5). Such a relationship is generally
known as a Feynman-Kac formula, which we shall describe in the next section.
In the above case the numeraire at time t is the GOP Sδ∗

t and the pricing
measure is the real world probability measure P .

Recovering the BS-PDE (*)

Now, we use a transformation of variables to confirm that the benchmarked
PDE (9.6.4)–(9.6.5) is for the given BS model simply a transformation of the
BS-PDE (8.2.23)–(8.2.24). Using the formula (9.1.25), we obtain

V̂ (t, S, Sδ∗) =
V (t, S)

Sδ∗
(9.6.6)

for (t, S, Sδ∗) ∈ (0, T )×(0,∞)×(0,∞). Then the PDE (9.6.4)–(9.6.5) becomes

1
Sδ∗

(
∂V (t, S)

∂t
+ at S

∂V (t, S)
∂S

+
1
2

σ2
t S2 ∂2V (t, S)

∂S2

− (rt + θ2
t )V (t, S) + θ2

t V (t, S) − σt θt S
∂V (t, S)

∂S

)
= 0 (9.6.7)

for (t, S, Sδ∗) ∈ (0, T ) × (0,∞) × (0,∞) with terminal condition

V (T, S) = H(S) (9.6.8)

for S ∈ (0,∞). Consequently, by (9.1.16) and (9.6.7), the function V (t, S)
must satisfy the PDE
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∂V (t, S)
∂t

+ rt S
∂V (t, S)

∂S
+

1
2

σ2
t S2 ∂2V (t, S)

∂S2
− rt V (t, S) = 0 (9.6.9)

for (t, S) ∈ (0, T ) × (0,∞) with terminal condition (9.6.8). This recovers the
BS-PDE (8.2.23) with terminal condition (8.2.24). It confirms that the bench-
mark approach provides an alternative way of obtaining the BS-PDE for the
pricing function of a European option.

Risk Neutral PDE (*)

By using the savings account B as numeraire in the BS model, let us now
recall what we obtained under the risk neutral probability measure Pθ. We
have established through the risk neutral pricing formula a link between the
conditional expectation (9.4.13) under Pθ and the BS-PDE (8.2.21)–(8.2.22).

By similar arguments that provided (9.4.13), it holds for the discounted
option price V̄ (t, S̄t) that

V̄ (t, S̄t) = Eθ

(
H(S̄T BT )

BT

∣
∣
∣
∣At

)
(9.6.10)

for t ∈ [0, T ]. On the other hand, we obtain for the discounted pricing function
V̄ (t, S̄) by (8.2.21)–(8.2.22) the, so-called, risk neutral PDE

∂V̄ (t, S̄)
∂t

+
1
2

σ2
t S̄2 ∂2V̄ (t, S̄)

∂S̄2
= 0 (9.6.11)

for (t, S̄) ∈ [0, T ) × (0,∞) with terminal condition

V̄ (T, S̄) =
H(S̄ BT )

BT
(9.6.12)

for S̄ ∈ (0,∞). As we shall see in Sect. 9.7, also the conditional expectation
(9.6.10) refers to a Feynman-Kac formula, here under the risk neutral proba-
bility measure Pθ. In the above case the numeraire is the savings account B
and the pricing measure is the risk neutral probability measure Pθ.

Change of Numeraire Technique (*)

The above discussed possibility to use various strictly positive portfolios as
numeraire to compute option prices, provides theoretical and computational
freedom for finding convenient ways of derivative pricing. This has been ob-
served by practitioners and researchers who realized that the risk neutral
probability measure is not necessarily the most convenient probability mea-
sure for pricing certain payoffs. Geman et al. (1995) developed this into a
general technique which is called the change of numeraire technique.

In general, a numeraire S δ̄ = {S δ̄
t , t ∈ [0, T ]} is in this book a strictly

positive portfolio process with a corresponding strategy δ̄ = {δ̄t, t ∈ [0, T ]}.
Intuitively, a numeraire is used as a reference to normalize all other portfolios
with respect to it. By choosing a numeraire S δ̄ one considers the relative price
of a portfolio Sδ

t

Sδ̄
t

.
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Self-Financing under Numeraire Change (*)

Now, we shall show that self-financing portfolios remain self-financing after
a numeraire change. This is a desirable but not obvious feature of continuous
time financial market models. We have seen an example of this kind in (8.2.28).
To illustrate this property more generally, consider under the given BS model
a numeraire S δ̄ and a portfolio Sδ. Then we have by (9.1.3)

Sδ
t = δ0

t Bt + δ1
t St (9.6.13)

and by (9.1.4)
dSδ

t = δ0
t dBt + δ1

t dSt (9.6.14)

and
dS δ̄

t = δ̄0
t dBt + δ̄1

t dSt (9.6.15)

for t ∈ [0, T ]. By the Itô formula it follows for the ratio Sδ
t

Sδ̄
t

that

d

(
Sδ

t

S δ̄
t

)
=

1
S δ̄

t

dSδ
t + Sδ

t d

(
1
S δ̄

t

)
+ d

[
1
S δ̄

, Sδ

]

t

. (9.6.16)

By (9.6.14) and (9.6.13) we obtain

d

(
Sδ

t

S δ̄
t

)
= δ0

t

(
1
S δ̄

t

dBt + Bt d

(
1
S δ̄

t

))

+ δ1
t

(
1
S δ̄

t

dSt + St d

(
1
S δ̄

t

)
+ d

[
1
S δ̄

, S

]

t

)
. (9.6.17)

Application of the Itô formula to the ratios Bt

Sδ̄
t

and St

Sδ̄
t

allows us to conclude
that

d

(
Sδ

t

S δ̄
t

)
= δ0

t d

(
Bt

S δ̄
t

)
+ δ1

t d

(
St

S δ̄
t

)
(9.6.18)

for t ∈ [0, T ]. This confirms that the portfolio Sδ, when denominated in units
of the numeraire S δ̄, is changing its value only due to the gains from trade
in B

Sδ̄ and S
Sδ̄ . Thus, the portfolio is also in the denomination of another

numeraire S δ̄ a self-financing portfolio. By using the Itô formula this property
can be shown to hold generally for any model that we consider.

Numeraire Pairs (*)

When presenting the above pricing rules we always have considered numeraire
pairs (S δ̄, Pθδ̄

). This means, when we selected a numeraire S δ̄, then there was
also a corresponding candidate for a related pricing measure Pθδ̄

. In the real
world pricing formula (9.1.34) this pair consists of the GOP Sδ∗ as numeraire
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and the real world probability measure P as pricing measure, thus, resulting
in the numeraire pair (Sδ∗ , P ). This is the only case where we are always sure
that the pricing measure is an equivalent probability measure because there
is no measure change involved.

In the derivation of the risk neutral measure Pθ in Sect. 9.4 we used the
savings account B as numeraire, which yields the numeraire pair (B, Pθ). This
is just another possible choice for a numeraire. Note that we have to make
sure that Pθ is an equivalent probability measure when using this numeraire
pair.

There can be also other numeraires that are convenient for the pricing of
certain classes of derivatives, for instance, for the computation of interest rate
term structure derivatives.

The following result provides a useful tool for the construction of numeraire
pairs. From the real world pricing formula (9.1.34) it follows that

V (t)
Sδ∗

t

= E

(
H(ST )

Sδ∗
T

∣
∣
∣
∣At

)

(9.6.19)

for all t ∈ [0, T ]. We now introduce a strictly positive portfolio S δ̄, which we
use as numeraire. The numeraire, when benchmarked and normalized to the
initial value one, has the form

Λθδ̄
(t) =

Ŝ δ̄
t

Ŝ δ̄
0

=
S δ̄

t

Sδ∗
t

Sδ∗
0

S δ̄
0

(9.6.20)

for t ∈ [0, T ]. Then we can write by using (9.6.19) and (9.6.20)

V (t)
S δ̄

t

= E

(
Sδ∗

t

S δ̄
t

S δ̄
T

Sδ∗
T

H(ST )
S δ̄

T

∣
∣
∣
∣At

)

= E

(
Λθδ̄

(T )
Λθδ̄

(t)
H(ST )

S δ̄
T

∣
∣
∣
∣At

)

. (9.6.21)

The benchmarked numeraire Λθδ̄
(t) satisfies by (9.1.37) the SDE

dΛθδ̄
(t) = d

(
Ŝ δ̄

t

Ŝ δ̄
0

)

= Λθδ̄
(t)

(
π1

δ̄ (t)σt − θt

)
dWt (9.6.22)

for t ∈ [0, T ]. Note by Lemma 5.4.1 that Λθδ̄
is an (A, P )-local martingale

because the SDE (9.6.22) is driftless. Assume now that we have chosen a nu-
meraire S δ̄ such that Λθδ̄

is an (A, P )-martingale. This allows us to show that
Pθδ̄

is a probability measure when defined via the Radon-Nikodym derivative

dPθδ̄

dP
= Λθδ̄

(T ). (9.6.23)

We then can introduce the drifted Wiener process Wθδ̄
= {Wθδ̄

(t), t ∈
[0, T ]} with
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dWθδ̄
(t) = dWt + θδ̄(t) dt, (9.6.24)

where
θδ̄(t) = θt − π1

δ̄ (t)σt (9.6.25)

for t ∈ [0, T ]. Now, we are in a position to apply Theorem 9.5.2 to conclude
that by the Girsanov transformation (9.6.24) Wθδ̄

is a standard Wiener process
under the probability measure Pθδ̄

. This provides us, rather generally, with
the numeraire pair (S δ̄, Pθδ̄

).
Obviously, there is no measure transformation involved if we choose the

GOP Sδ∗ as numeraire since in this case we have from (9.6.25)

θδ∗(t) = 0

for all t ∈ [0, T ].
If we use the savings account B as numeraire, then π1

δ̄
(t) = 0 and we

obtain from (9.6.25)
θδ̄(t) = θt.

This is the risk neutral measure change, where the probability measure Pθδ̄
=

Pθ equals the risk neutral probability measure.
We could also use, for instance, the underlying security S as numeraire,

where π1
δ̄
(t) = 1 and we obtain by (9.6.25)

θδ̄(t) = θt − σt.

This also would provide under the above BS model an appropriate measure
transformation.

Note however, the situation is different, if we choose the unfair portfolio
S δ̄

t = Sδ∗
t Zt given in (9.1.42)–(9.1.43). Obviously, by (9.1.44) this numeraire,

when benchmarked is not an (A, P )-martingale. By (8.7.23) it is a strict super-
martingale. The pricing measure Pθδ̄

is in this case not a probability measure.
In particular, we have

Pθδ̄
(Ω) = E

(
Λθδ̄

(T )
∣
∣A0

)
< Λθδ̄

(0) = 1.

Consequently, the Girsanov Theorem cannot be applied.

Change of Numeraire Pricing Formula (*)

Using a strictly positive numeraire S(δ) and noting that Λθδ̄
(0) = 1 we can

always rewrite the real world pricing formula (9.1.34) in the form

V (0, S0) = E

(
Sδ∗

0

Sδ∗
T

H(ST )A0

)

= E

(

Λθδ̄
(T )

H(ST )
S δ̄

T

∣
∣
∣
∣A0

)

. (9.6.26)

Note that the quantity
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Sδ∗
0

Sδ∗
T

=
Λθδ̄

(T )

S δ̄
T

(9.6.27)

remains numeraire invariant under all above discussed numeraire changes.
Let us compute the expectation on the right hand side of (9.6.26) by appli-
cation of Bayes’s Theorem and formula (9.5.10). The required corresponding
conditional expectation is of the form

E

(

Λθδ̄
(T )

H(ST )
S δ̄

T

∣
∣
∣
∣A0

)

= Eθδ̄

(
H(ST )

S δ̄
T

∣
∣
∣
∣A0

)

,

where Eθδ̄
denotes expectation under Pθδ̄

. For this formula to be valid it
is necessary that the assumptions of the Girsanov Theorem and the Bayes
Theorem can be verified. This requires Λθδ̄

to form an (A, P )-martingale to
guarantee that Pθδ̄

is an equivalent probability measure. If this is the case,
then we obtain the change of numeraire pricing formula

V (0, S0) = Eθδ̄

(
H(ST )

S δ̄
T

∣
∣
∣
∣A0

)

. (9.6.28)

We learned from our previous discussion and example (9.1.38)–(9.1.43) in
Sect. 9.1 that not all benchmarked numeraires form (A, P )-martingales. This
indicates that the change of numeraire pricing formula (9.6.28) may fail to
hold in certain cases. One needs to check carefully the assumptions that are
needed for choosing a numeraire pair. Otherwise, an inappropriate numeraire
choice, like the unfair portfolio in (9.1.42), may lead to wrong prices.

In the risk neutral case the Radon-Nikodym derivative process Λθ for the
candidate risk neutral measure Pθ needs to be an (A, P )-martingale to provide
the risk neutral pricing formula (9.4.13). Consequently, by (9.6.20) it is nec-
essary that the benchmarked savings account Bt

Sδ∗
t

forms an (A, P )-martingale
to allow the use of the standard risk neutral approach.

9.7 Feynman-Kac Formula (*)

As previously shown, several of the existing pricing approaches can be ex-
pressed via pricing formulas that have the form of conditional expectations.
These conditional expectations lead to pricing functions that satisfy certain
PDEs, which are usually Kolmogorov backward equations, as was shown for
real world pricing and for risk neutral pricing. The link between the condi-
tional expectations and respective PDEs can be interpreted as an applica-
tion of the, so-called, Feynman-Kac formula. In this section we formulate the
Feynman-Kac formula under rather general assumptions, allowing also first
exit times and jump diffusions. For a wide range of models this formula pro-
vides the Kolmogorov backward PDEs that characterize pricing functions of
derivatives.
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SDE for Factor Process (*)

At first we consider a fixed time horizon T ∈ (0,∞) and a d-dimensional
Markov process Xt,x = {Xt,x

s , s ∈ [t, T ]} describing some factors, which
satisfies the vector SDE

dXt,x
s = a(s,Xt,x

s ) ds +
m∑

k=1

bk(s,Xt,x
s ) dW k

s (9.7.1)

for s ∈ [t, T ] with initial value Xt,x
t = x ∈ �d at time t ∈ [0, T ], see (7.8.1)–

(7.8.4). The process W = {W t = (W 1
t , . . ., Wm

t )�, t ∈ [0, T ]} is assumed
to represent an m-dimensional standard Wiener process on the filtered prob-
ability space (Ω,A,A, P ). One can show, similarly as in the proof of Theo-
rem 7.8.2, that under appropriate assumptions, which will be described below,
the process Xt,x is a diffusion process with drift coefficient a(·, ·) and diffu-
sion coefficients bk(·, ·), k ∈ {1, 2, . . . ,m}. In general, a = (a1, . . . , ad)� and
bk = (b1,k, . . . , bd,k)�, k ∈ {1, 2, . . . ,m} represent vector valued functions on
[0, T ] × �d into �d, such that a pathwise unique solution of the SDE (9.7.1)
exists. Usually, the components of the SDE (9.7.1) are the factors in a financial
market model.

Terminal Payoff Function (*)

Let us describe the case for a European option, where we have a terminal
payoff H(Xt,x

T ) at the maturity date T with some given payoff function H :
�d → [0,∞) such that

E(|H(Xt,x
T )|) < ∞. (9.7.2)

We can then introduce the pricing function u : [0, T ] ×�d → [0,∞)

u(t, x) = E
(
H(Xt,x

T )
∣
∣At

)
(9.7.3)

for (t, x) ∈ [0, T ] × �d. The Feynman-Kac formula for this payoff structure
refers to the fact that under sufficient regularity of a, b1, . . . , bm and H the
function u : (0, T ) ×�d → [0,∞) satisfies the PDE

L0 u(t, x) =
∂u(t, x)

∂t
+

d∑

i=1

ai(t, x)
∂u(t, x)

∂xi

+
1
2

d∑

i,k=1

m∑

j=1

bi,j(t, x) bk,j(t, x)
∂2u(t, x)
∂xi∂xk

= 0 (9.7.4)

for (t, x) ∈ (0, T ) ×�d with terminal condition
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u(T, x) = H(x) (9.7.5)

for x ∈ �d. This type of European payoff will be covered by a general version
of the Feynman-Kac formula that we present later in this section. For instance,
it can be applied to determine the discounted pricing function for risk neutral
pricing with zero interest rate when the expectation is taken for the discounted
payoff with respect to the equivalent risk neutral probability measure. Under
the real world pricing of the benchmark approach the above version of the
Feynman-Kac formula would allow the calculation of the benchmarked pricing
function under the real world probability measure.

Discounted Payoff Function (*)

Let us now generalize the above payoff function by discounting it with a given
discount rate process r, which is obtained as a function of the given vector
diffusion process Xt,x, that is r : [0, T ] × �d → �. For instance, in a risk
neutral setting the discount rate is given by the short term interest rate.

Over the period [t, T ] we obtain for the discounted payoff

exp

{

−
∫ T

t

r(s,Xt,x
s ) ds

}

H(Xt,x
T )

the pricing function

u(t, x) = E

(

exp

{

−
∫ T

t

r(s,Xt,x
s ) ds

}

H(Xt,x
T )

∣
∣
∣
∣At

)

(9.7.6)

for (t, x) ∈ [0, T ]×�d. Under conditions that we shall specify below, it follows
that the pricing function u satisfies the PDE

L0 u(t, x) = r(t, x)u(t, x) (9.7.7)

for (t, x) ∈ (0, T ) ×�d with terminal condition

u(T, x) = H(x) (9.7.8)

for x ∈ �d, where the PDE operator L0 is given in (9.7.4). Also this version
of the Feynman-Kac formula is covered by a more general result that follows
later.

Terminal Payoff and Payoff Rate (*)

Now, we add to the above discounted payoff structure some payoff stream,
which continuously pays with a payoff rate g : [0, T ] × �d → [0,∞) some
amount per unit of time. This can model, for instance, an income stream in
a company, continuous dividend payments for a share or continuous interest
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payments. The corresponding discounted payoff with payoff rate is then at
time t ∈ [0, T ] of the form

exp

{

−
∫ T

t

r(s,Xt,x
s ) ds

}

H(Xt,x
T )+

∫ T

t

exp
{
−

∫ s

t

r(z,Xt,x
z ) dz

}
g(s,Xt,x

s ) ds.

This leads to the pricing function

u(t, x) = E

(

exp

{

−
∫ T

t

r(s,Xt,x
s ) ds

}

H(Xt,x
T )

+
∫ T

t

exp
{
−

∫ s

t

r(z,Xt,x
z ) dz

}
g(s,Xt,x

s ) ds

∣
∣
∣
∣At

)

(9.7.9)

for (t, x) ∈ [0, T ] × �d. As we show below, this pricing function satisfies the
PDE

L0 u(t, x) + g(t, x) = r(t, x)u(t, x) (9.7.10)

for (t, x) ∈ (0, T ) ×�d with terminal condition

u(T, x) = H(x) (9.7.11)

for x ∈ �d.

SDE with Jumps (*)

We consider now jump diffusions. Let Γ denote an open connected subset
of �d and T ∈ (0,∞) a fixed time horizon. We consider for a d-dimensional
process Xt,x = {Xt,x

s , s ∈ [t, T ]}, see (6.4.19), the vector SDE

dXt,x
s = a(s,Xt,x

s ) ds +
m∑

k=1

bk(s,Xt,x
s ) dW k

s

+
�∑

j=1

∫

E
cj(v, s−,Xt,x

s−) pj
ϕj

(dv, ds) (9.7.12)

for t ∈ [0, T ], s ∈ [t, T ] and x ∈ Γ with value

Xt,x
t = x (9.7.13)

at time t, see (7.6.23). Here W = {W t = (W 1
t , . . . , Wm

t )�, t ∈ [0, T ]} is
again an m-dimensional standard Wiener process on a filtered probability
space (Ω,A,A, P ) as introduced in Sect. 5.1. Furthermore, pj

ϕj
(·, ·) denotes

a Poisson measure, j ∈ {1, 2, . . . , }, as introduced in Sect. 3.5, satisfying
condition (3.5.14). Here a = (a1, . . . , ad)� and bk = (b1,k, . . . , bd,k)�, k ∈
{1, 2, . . . ,m}, are vector valued functions from [0, T ] × Γ into �d and cj =
(c1,j , . . . , cd,j)�, j ∈ {1, 2, . . . , }, is a vector valued function on E × [0, T ]×Γ ,
E = �\{0}.



360 9 Various Approaches to Asset Pricing

Feynman-Kac Formula with Jumps (*)

For the above payoff structure with discounted terminal payoff and a given
payoff rate, we can form the pricing function

u(t, x) = E

(

exp

{

−
∫ T

t

r(s,Xt,x
s ) ds

}

H(Xt,x
T )

+
∫ T

t

exp
{
−

∫ s

t

r(z,Xt,x
z ) dz

}
g(s,Xt,x

s ) ds

∣
∣
∣
∣At

)

(9.7.14)

for t ∈ [0, T ] × �d. It turns out under appropriate conditions, as will be de-
scribed below, that u satisfies the partial integro differential equation (PIDE)

L0 u(t, x) + g(t, x) = r(t, x)u(t, x) (9.7.15)

for (t, x) ∈ (0, T ) with terminal condition

u(T, x) = H(x) (9.7.16)

for x ∈ �d. Here the operator L0 is given in the form

L0u(t, x) =
d∑

i=1

ai(t, x)
∂u(t, x)

∂xi
+

1
2

d∑

i,k=1

m∑

j=1

bi,j(t, x) bk,j(t, x)
∂2u(t, x)
∂xi ∂xk

+
∂u(t, x)

∂t
+

�∑

j=1

∫

E

[
u(s, x1 + c1,j(v, s,x), . . . , xd + cd,j(v, s,x))

−u(s, x1, . . . , xd)
]

ϕj(dv), (9.7.17)

where we abuse slightly the notation by writing u(s, (x1, . . . , xd)�) =
u(s, x1, . . . , xd). Note that an extra integral term is generated by the jumps
as a consequence of the Itô formula with jumps, see (6.4.11) and (6.4.20).

Functional with First Exit Time (*)

Assume that there is a, so-called, continuation region Φ, which is an open
connected subset of [0, T ] × Γ . We continue to receive payments as long as
the process Xt,x stays in the continuation region in Φ. For instance, in the
case of a, so-called, knock-out-barrier option this would mean that Xt,x

s has
to stay below a given critical barrier to receive the terminal payment. Then
we define the first exit time τ t

Φ from Φ after t as

τ t
Φ = inf{s ∈ [t, T ] : (s,Xt,x

s ) �∈ Φ}, (9.7.18)

which is a stopping time, see (5.1.13).
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To characterize a general payoff structure we use a terminal payoff function
H : (0, T ]×Γ → [0,∞) for payments at time τ t

Φ, a payoff rate g : [0, T ]×Γ →
[0,∞) for incremental payments during the time period [t, τ t

Φ) and a discount
rate r : [0, T ] × Γ → �. These quantities are all assumed to be measurable
functions. Assume that the process Xt,x does not explode or leave Γ before
time T . We then define the pricing function u : Φ → [0,∞) by

u(t, x) = E

(

H(τ t
Φ,Xt,x

τt
Φ

) exp

{

−
∫ τt

Φ

t

r(s,Xt,x
s ) ds

}

+
∫ τt

Φ

t

g(s,Xt,x
s ) exp

{
−

∫ s

t

r(z,Xt,x
u ) dz

}
ds

∣
∣
∣
∣
∣
At

)

(9.7.19)

for (t, x) ∈ Φ.

General Feynman-Kac Formula (*)

For the formulation of the PIDE for the function u we use the operator L0

given in (9.7.17). Under sufficient regularity of Φ, a, b1, . . ., bm, c1, . . . , c�,
H, g, ϕ1, . . ., ϕ� and r one can show by application of the Itô formula (6.4.11)
that the pricing function u satisfies the PIDE

L0u(t, x) + g(t, x) = r(t, x)u(t, x) (9.7.20)

for (t, x) ∈ Φ with boundary condition

u(t, x) = H(t, x) (9.7.21)

for (t, x) ∈ ((0, T ] × Γ )\Φ. This result links the functional (9.7.19) to the
PIDE (9.7.20)–(9.7.21) and can again be called a Feynman-Kac formula.

The above Feynman-Kac formula also holds for a partly negative terminal
payoff function H and payoff rate g. One can split these payoffs into their
negative and positive parts, where each can be separately handled by the above
result. The Feynman-Kac formula can be conveniently derived by application
of the Itô formula (6.4.20). Due to the complexity of boundary conditions that
one has to deal with, such a derivation is useful, in principle, only for particular
classes of asset price models and functionals. Therefore, we do not state here an
extremely general and, consequently, very technical theorem that formulates a
fully general Feynman-Kac formula for SDEs with jump component. However,
it is clear that under similar conditions, as we formulate for the already rather
general case below, that one obtains the Feynman-Kac formula also in the case
with jumps by using the smoothness of the PIDE solution, the Itô formula
and the martingale property of the resulting functional.
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Conditions for the Feynman-Kac Formula (*)

For the case Φ = (0, T )×Γ and assuming no jumps, that is c1 = . . . = c� = 0
and τ t

Φ = T , let us now formulate some technical conditions that ensure that
the Feynman-Kac formula holds.

(A) The drift coefficient a and diffusion coefficients bk, k ∈ {1, 2, . . . ,m}, are
assumed to be on [0, T ] × Γ locally Lipschitz-continuous in x, uniformly
in t. That is, for each compact subset Γ 1 of Γ there exists a constant
KΓ 1 < ∞ such that

|a(t, x) − a(t, y)| +
m∑

k=1

|bk(t, x) − bk(t, y)| ≤ KΓ 1 |x − y| (9.7.22)

for all t ∈ [0, T ] and x,y ∈ Γ 1.
(B) For all (t, x) ∈ [0, T ) × Γ the solution Xt,x of (9.7.12) neither explodes

nor leaves Γ before T , that is

P

(
sup

t≤s≤T
|Xt,x

s | < ∞
)

= 1 (9.7.23)

and
P (Xt,x

s ∈ Γ for all s ∈ [t, T ]) = 1. (9.7.24)

(C) There exists an increasing sequence (Γn)n∈N of bounded, open and con-
nected domains of Γ such that ∪∞

n=1Γn = Γ , and for each n ∈ N the
PDE

L0un(t, x) + g(t, x) = r(t, x)un(t, x) (9.7.25)

has a unique solution un, see Friedman (1975), on (0, T )×Γn with bound-
ary condition

un(t, x) = u(t, x) (9.7.26)

on ((0, T ) × ∂Γn) ∪ ({T} × Γn), where ∂Γn denotes the boundary of Γn.
(D) The process bi,k(·,X ·)

∂u(·,X ·)
∂xi is from L2

T for all i ∈ {1, 2, . . . , d} and
k ∈ {1, 2, . . . ,m}.

For the following theorem, which is similar to a result in Heath & Schweizer
(2000), we shall give a proof at the end of the section.

Theorem 9.7.1. In the case without jumps under the conditions (A), (B),
(C) and (D), the function u given by (9.7.19) is the unique solution of the
PDE (9.7.20) with boundary condition (9.7.21), where u is differentiable with
respect to t and twice differentiable with respect to the components of x.

Condition (A) is satisfied if, for instance, a and b = (b1, . . . , bm) are dif-
ferentiable in x on the open set (0, T )×Γ with derivatives that are continuous
on [0, T ] × Γ .

To establish condition (B) one needs to exploit specific properties of the
process Xt,x given by the SDE (9.7.12).

Condition (C) can be shown to be implied by the following assumptions:
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(C1) There exists an increasing sequence (Γn)n∈N of bounded, open and con-
nected subdomains of Γ with Γn∪∂Γn ⊂ Γ such that ∪∞

n=1Γn = Γ , and
each Γn has a twice differentiable boundary ∂Γn.

(C2) For each n ∈ N the functions a and bb� are uniformly Lipschitz-
continuous on [0, T ] × (Γn ∪ ∂Γn).

(C3) For each n ∈ N the function b(t, x)b(t, x)� is uniformly elliptic on �d

for (t, x) ∈ [0, T ] × Γn, that is there exists a δn > 0 such that

y�b(t, x) b(t, x)�y ≥ δn |y|2 (9.7.27)

for all y ∈ �d.
(C4) For each n ∈ N the functions r and g are uniformly Hölder-continuous

on [0, T ]×(Γn∪∂Γn), that is there exists a constant K̄n and an exponent
qn > 0 such that

|r(t, x) − r(t, y)| + |g(t, x) − g(t, y)| ≤ K̄n |x − y|qn (9.7.28)

for t ∈ [0, T ] and x,y ∈ (Γn ∪ ∂Γn).
(C5) For each n ∈ N the function u is finite and continuous on ([0, T ] ×

∂Γn) ∪ ({T} × (Γn ∪ ∂Γn)).

Condition (D) is satisfied when

∫ T

0

E

((
bi,k(t, Xt)

∂u(t, Xt)
∂xi

)2
)

dt < ∞

for all i ∈ {1, 2, . . . , d} and k ∈ {1, 2, . . . , m}. This condition ensures that the
process u(·,X ·) is a martingale and the PDE (9.7.20)–(9.7.21) has a unique
solution.

On the Proof of Theorem 9.7.1 (*)

Let us now indicate the proof of Theorem 9.7.1. It follows from condition (A)
that (9.7.12) has a unique solution up to an explosion time, see Theorem II.5.2
in Kunita (1984). Due to (B) this explosion time has to be greater than T
almost surely so that the stochastic process Xt,x is well defined on [t, T ]. The
expectation in (9.7.19) is then also well-defined with values in [0,∞) because
H and g are nonnegative. Condition (C) implicitly contains the assumption
that for all n ∈ N and (t, x) ∈ ((0,∞) × ∂Γn) ∪ ({T} × Γn) the function
u(t, x) is finite, that is u(t, x) < ∞. For fixed (t, x) ∈ (0, T )×Γ the condition
(C) allows us then to find an n ∈ N such that x ∈ Γn.

Let us denote by

τ t
Γn

= inf{s ∈ [t, T ] : Xt,x
s �∈ Γn} (9.7.29)

the first exit time of (s,Xt,x
s ) from [t, T ) × Γn, see (9.7.18). Due to the con-

tinuity of Xt,x it is
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(
τ t
Γn

,Xt,x
τt

Γn

)
∈ ((0, T ) × ∂Γn) ∪ ({T} × Γn)

such that
u

(
τ t
Γn

,Xt,x
τt

Γn

)
< ∞.

We then have by application of the Itô formula (6.2.11) to un, condi-
tions (9.7.25) and (9.7.26) that

un(t, x) = E
(
u

(
τ t
Γn

,Xt,x
τt

Γn

) ∣
∣
∣At

)
, (9.7.30)

where the appearing Itô integral is, due to the boundedness of Γn, an (A, P )-
martingale.

Because of (A) and (B) it follows that Xt,x is a strong Markov process, see
Theorem IV.2.3 and the remark after Theorem IV.6.1 in Ikeda & Watanabe
(1989). This means that the Markov property still holds when the present
time is chosen to be a stopping time. These results are stated for a and b not
depending on t and x from �d, but the condition (B) allows us to replace �d

by Γ . Then the results can be shown to hold for time dependent a and b, as
in Chap. 6 of Stroock & Varadhan (1982). Therefore, by the strong Markov
property we obtain

E

(

H(T, Xt,x
T ) exp

{

−
∫ T

t

r(s,Xt,x
s ) ds

}

−
∫ T

t

g(s,Xt,x
s ) exp

{
−

∫ s

t

r(u, Xt,x
u ) du

}
ds

∣
∣
∣
∣Aτt

Γn

)

= u
(
τ t
Γn

,Xt,x
τt

Γn

)

and, thus, by (9.7.19) and (9.7.30)

u(t, x) = E
(
u

(
τ t
Γn

,Xt,x
τt

Γn

) ∣
∣At

)
= un(t, x).

Hence for all n ∈ N the functions u and un coincide on (0, T )×Γn. This implies
by (C) that u satisfies (9.7.20) on (0, T ) × Γ . From (9.7.12) and (9.7.19) we
obtain then the boundary condition (9.7.21) and also the uniqueness of u, if
we exploit the fact that u(·,X ·) is a martingale due to (D). 
�

9.8 Exercises for Chapter 9

9.1. Prove for the BS model with constant volatility σt > 0 appreciation rate
a and short rate r that the domestic savings account discounted stock price
process S̄ is an (A, Pθ)-martingale under the risk neutral probability measure
Pθ.
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9.2. Show that the discounted European call option price process for the
BS model with constant parameters is a martingale under the risk neutral
probability measure.

9.3. Formulate the SDE for the European put option price for the BS model
with constant parameters under the risk neutral probability measure Pθ and
under the original probability measure P .

9.4. Starting from the risk neutral SDE for the stock price verify that the
benchmarked stock price for the BS model is an (A, P )-martingale.

9.5. Compute the European call option price as an expectation under the risk
neutral probability measure for the BS model.

9.6. (*) Write down for the BS model the Itô SDE for the Radon-Nikodym
derivative process of the risk neutral measure.

9.7. (*) Use under the BS model with constant interest rate r the zero coupon
bond price P (t, T ) with maturity T as numeraire, t ∈ [0, T ]. Describe the
corresponding numeraire pair. What is the relationship of the resulting pricing
measure with the risk neutral probability measure?

9.8. (*) Apply for the BS model the Feynman-Kac formula to compute the
PDE for the price V (t, St) at time t of the payoff H(ST ) = S2

T of the square
of the underlying security at maturity T . Can you explicitly solve the corre-
sponding PDE?
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