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Introduction to Option Pricing

In the previous chapters we have prepared mathematical tools that allow us
to model in continuous time the dynamics of financial securities, for instance,
stocks. Now, we shall study prices of derived financial securities. A derivative
security, for instance an option, is a financial instrument whose value is de-
pendent upon the values of an underlying more fundamental security. In this
chapter we give an introduction into derivatives, in particular, European op-
tions. For simplicity, we focus our discussion on options under the BS model.
Furthermore, we introduce at the end of the chapter important results on
squared Bessel processes because these will be crucial for the understanding
of the following chapters.

8.1 Options

Options have been introduced to provide some optionality to the buyer or
seller of a security. In the simplest case the holder of an option has the right
but not the obligation to buy or sell an underlying security for an agreed price
at a preset date. We discuss now options as a particular type of derivative to
highlight important general features of derivative securities.

European Call Option

Let us denote by St, the price of a security at time t ∈ [0,∞), measured in
units of the domestic currency. This can be, for instance, a stock index. We call
S = {St, t ∈ [0,∞)} the price process of the underlying security. A European
call option on an underlying security S gives the owner the right to buy the
security at a preset strike price K at the expiration date T ∈ (0,∞). The price
at time t for this right is the European call option price cT,K(t, St), which is
paid when the option contract is entered at time t. Note that there is an initial
payment at the time when the contract is signed. An American option has
the same payoff function as a European option. However, the holder has the
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Fig. 8.1.1. Payoff function of a European call option for K = 1

right to exercise it at any time before the maturity date. Figure 8.1.1 shows
the payoff function of a call option

H(S) = (S − K)+ (8.1.1)

with strike price K = 1, where we use the notation a+ = max(0, a).
A European call option with expiration date T ∈ (0,∞) is at time t ∈ [0, T ]

said to be in-the-money, at-the-money or out-of-the-money, if St > K, St = K
or St < K, respectively. The function

H(St) = (St − K)+ (8.1.2)

is called the intrinsic value of the call option at time t ∈ [0, T ].
As an example, consider a European call option at the beginning of 1995

on the S&P500 index, displayed in Fig. 3.1.1, with a strike price of K = 400
and expiration date at the end of 1995. Figure 3.1.1 shows that the S&P500
was at the end of 1995 approximately at $500. This means that the value of the
option was at the end of 1995 at a level of about $100. We shall see from the
theoretical pricing formulas presented in this chapter that the realized payoff
of about $100 would have considerably exceeded the original price of the
option at the beginning of 1995. Of course, if the S&P500 stayed below $400
during 1995, then the owner of the call option would have received nothing
and would have lost the original option price that he or she paid when the
option contract was written. This shows that there is substantial leverage
involved when using options.

European Put Option

For market participants who aim to sell an underlying security at a future
date, the purchase of a European put option might be of advantage. This
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Fig. 8.1.2. Payoff function of a European put option, K = 1

financial contract is similar to the European call option but gives the holder
the right to sell a security for a specified strike price K at an expiration
date T . We denote the European put option price by pT,K(t, St). Figure 8.1.2
displays the payoff function of a European put option

H(ST ) = (K − ST )+ (8.1.3)

with strike price K = 1. A European put option is at time t ∈ [0, T ] in-the-
money, at-the-money or out-of-the money if St < K, St = K or St > K,
respectively. The quantity

H(St) = (K − St)+ (8.1.4)

is called the intrinsic value of a put option at time t ∈ [0, T ].
It is important to specify whether someone is the owner of an underlying

security or derivative. A market participant is long in a security, if he or she
is the owner of that security. On the other hand, one is short in a security if
one borrows it, sells it and has the obligation of giving it back at a later date.
Owning a negative unit of a security is therefore possible through the practice
of short-selling.

Combinations of European Put and Call Options

To implement special hedging or speculative trading strategies it is common to
form portfolios that consist of combinations of European call and put options.
As an example, a butterfly spread is constructed by buying a call with strike
price K1, selling two calls with strike price K2 > K1 and buying another call
with strike price K3 > K2. Figure 8.1.3 shows the resulting payoff function
H(S) of a butterfly spread with K1 = 0.6, K2 = 1, K3 = 1.4. The butterfly
spread has zero payoff outside the interval [K1, K3]. It allows to create at
maturity a cash flow when the underlying security is near the strike price.
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Fig. 8.1.3. Payoff of a butterfly spread

Theoretically one can approximate almost any reasonable payoff function
at a given expiration date by portfolios of European calls and puts because a
corresponding portfolio of butterfly spreads can concentrate a desired payoff
close to each possible value of the underlying security.

Options

More generally, we call a derivative a European option if it gives the right to
realize a given payoff according to a given function H : [0,∞) → � of the
underlying ST at a specified expiration date T ∈ [0,∞). If the payoff can be
exercised on or before the expiration date, then the contract is called an Amer-
ican option. The call and put options, introduced previously, are examples of
European options. An American option is, in general, more expensive than
a corresponding European option because it provides additionally the right
to exercise early. One can show that the price of an American call option
on an underlying security that pays no dividend is the same as its European
counterpart.

In the following we denote by V (t, St) the value at time t ∈ [0, T ] of
a European option with payoff function H and maturity date T ∈ [0,∞).
Here H has to fulfill some integrability condition which we do not specify
at this stage. The pricing function V : [0, T ) × [0,∞) → � for a European
option can, in general, be shown to be differentiable with respect to time and
twice differentiable with respect to the underlying security. This smoothness
property will be exploited later for its computation. The efficient evaluation
of this function is of importance both for the pricing and the hedging of these
contracts. We shall show later that in certain cases explicit pricing formulas
are available. However, in general, one needs to apply numerical methods.
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8.2 Options under the Black-Scholes Model

We now consider options for the particular dynamics of the Black-Scholes
(BS) model for the underlying security.

Black-Scholes Model

For simplicity, let us use the BS model, see Sect. 7.5, as a description for the
dynamics of the underlying security. It has been established historically as the
standard market model for option pricing, see Black & Scholes (1973). This
model supposes that the underlying security price S = {St, t ∈ [0, T ]} follows
a geometric Brownian motion, see (6.3.6), with time dependent, determinis-
tic appreciation rate a = {at, t ∈ [0, T ]} and strictly positive, deterministic
volatility σ = {σt, t ∈ [0, T ]}, that is

dSt = at St dt + σt St dWt (8.2.1)

for t ∈ [0, T ] with given initial value S0 > 0. Here W denotes a standard
Wiener process W = {Wt, t ∈ [0, T ]}. Furthermore, there is a domestic savings
account B = {Bt, t ∈ [0, T ]}, which accrues the deterministic interest r =
{rt, t ∈ [0, T ]}. We assume

dBt = rt Bt dt (8.2.2)

for t ∈ [0, T ] with initial value

B0 = 1. (8.2.3)

The domestic savings account is also called the locally riskless asset since there
is no noise term in its differential equation (8.2.2). Typically, in the standard
BS model one sets the volatility σ, the appreciation rate a and the short
rate r to be constant, which yields the basic model for option pricing. In the
following analysis we typically allow these parameters to be time dependent.
We shall later show in Sect.10.6 that the savings account can be defined more
precisely as a limit of a roll-over short term bond account.

Hedge Portfolio

For the following let us fix the maturity date at T . From the practical point
of view it is most important to realize that the writer of a European option
can replicate the payoff H(ST ) at the expiration date T . To achieve this, a
hedge portfolio has to be established, which consists at time t of δ1

t units of
the underlying security St and δ0

t units of the domestic savings account Bt.
At time t ∈ [0, T ] the value of this portfolio is then set to the value V (t, St)
of the option. That is, the hedge portfolio has the value

V (t, St) = δ0
t Bt + δ1

t St (8.2.4)
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at time t ∈ [0, T ]. By the Itô formula (6.4.11) we obtain

dV (t, St) = δ0
t dBt + δ1

t dSt + Bt dδ0
t + St dδ1

t + d[δ1, S]t (8.2.5)

at time t ∈ [0, T ].

Self-Financing Portfolios

We assume that the hedge portfolio is self-financing. This means that all
changes in the value of the portfolio are caused by gains from trade, that is,
by changes in the savings account B and the underlying security S. We can
express the self-financing property of the portfolio V (t, St) in differential form
by assuming the SDE

dV (t, St) = δ0
t dBt + δ1

t dSt (8.2.6)

for t ∈ [0, T ]. Note that by (8.2.6) and (8.2.5) for the above hedge portfolio
to be self-financing we have to satisfy the condition

Bt dδ0
t + St dδ1

t + d[δ1, S]t = 0 (8.2.7)

for all time t ∈ [0, T ].
We call the process δ = {δt = (δ0

t , δ1
t )�, t ∈ [0, T ]} a self-financing strategy

if δ0 = {δ0
t , t ∈ [0, T ]} and δ1 = {δ1

t , t ∈ [0, T ]} are predictable processes
and both are such that the hedge portfolio, whose value is given in (8.2.4),
satisfies (8.2.6). We say that the hedge portfolio replicates the payoff H(ST )
at the expiration date T , if

V (T, ST ) = H(ST ). (8.2.8)

Furthermore, we need to assume the existence of the involved gains from trade
or, equivalently, the corresponding Itô integrals. For our setup it is sufficient to
assume that δ1(·)σ(·)S(·),

√
δ1(·) a(·)S(·) and

√
|δ0(·) r(·)B(·)| are in L2

T , see
(5.4.1). Note however, for other models one may require weaker integrability
conditions. Without further mentioning, we consider in the following only
self-financing portfolios and strategies and omit the phrase self-financing.

We allow the hedge portfolio to be rebalanced continuously. Furthermore,
we assume, for simplicity, that there are no additional costs, such as trans-
action costs, involved in hedging. One typically characterizes this setup as
continuous hedging in a frictionless market.

Discounted Value Function

To identify in a simple way an appropriate hedging strategy it is convenient
to consider the corresponding discounted value function V̄ : [0, T ]× [0,∞) →
[0,∞) given by



8.2 Options under the Black-Scholes Model 283

V̄ (t, S̄t) =
V (t, St)

Bt
(8.2.9)

and the discounted underlying security

S̄t =
St

Bt
(8.2.10)

for t ∈ [0, T ]. By the Itô formula (6.2.11) we obtain from (8.2.1) and (8.2.2)
the SDE

dS̄t = (at − rt) S̄t dt + σt S̄t dWt (8.2.11)

for t ∈ [0, T ] with S̄0 = S0. By discounting with the savings account one is
taking the time value of money into account. This is extremely important for
an investor who always can invest into the locally riskless asset, the savings
account B. In this sense it is understandable when investors prefer to denom-
inate a security in units of the savings account instead of denominating it in
units of the currency.

Profit and Loss Process

A hedger who has an option in her or his trading book faces at time t a profit
and loss (P&L) that is denoted by Ct for t ∈ [0, T ]. The ultimate goal of
the hedger is to achieve zero P&L throughout the hedge. Then the selling of
options and hedging these becomes ideally a riskless business.

To take for the P&L the time value of money into account, we consider
the discounted profit and loss

C̄t =
Ct

Bt
(8.2.12)

at time t. For a given strategy δ the discounted P&L C̄t at time t ∈ [0, T ] is
obtained as the corresponding discounted value of the hedge portfolio minus
the discounted gains from trade and minus the initial value of the discounted
portfolio. It can be written in the form

C̄t = V̄ (t, S̄t) − Iδ1,S̄(t) − V̄ (0, S̄0) (8.2.13)

for t ∈ [0, T ]. Here we use the gains from trade Iδ1,S̄ , see (5.3.11), with respect
to the discounted security S̄, which according to (8.2.11) is of the form

Iδ1,S̄(t) =
∫ t

0

δ1
u dS̄u =

∫ t

0

δ1
u (au − ru) S̄u du +

∫ t

0

δ1
u σu S̄u dWu (8.2.14)

for t ∈ [0, T ]. Obviously, with respect to the constant discounted domestic
savings account

B̄t = 1 (8.2.15)

there is zero gains from trade Iδ0,B̄(t) = 0 for t ∈ [0, T ].
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When the option contract is established at time t = 0, then the hedger
receives from the buyer of the option the payment V (0, S0). This is equivalent
to the discounted value

V̄ (0, S̄0) =
V (0, S0)

B0
,

see (8.2.9) and (8.2.3). Thus, we have according to (8.2.13) and (8.2.14) zero
initial discounted P&L

C̄0 = 0. (8.2.16)

The discounted P&L C̄t is then the actual discounted portfolio value that a
hedger holds at time t.

No-Arbitrage for P&L Process

Now, let us discuss some notion of arbitrage, which is fundamental for the
modeling of financial markets. If a market participant is able to generate by
her or his nonnegative total portfolio of investable securities some strictly pos-
itive wealth out of nothing, then this is interpreted as arbitrage. Any reason-
able financial market model should avoid the modeling of arbitrage. We shall
introduce a precise definition of arbitrage later in Sect. 10.2. At the present
introductory level we call it an arbitrage if the market model allows to form
a nonnegative portfolio that starts at zero and attains with strictly positive
probability a strictly positive value at some later date. The nonnegativity of
the portfolio reflects the limited liability of each investor for her or his total
portfolio of investable wealth.

By excluding arbitrage a hedger can run a nonnegative hedge book with
zero total initial value only such that its value remains always zero. This
means that the P&L process of this business starts at zero and remains at
zero all the time. Therefore, we aim to identify under no arbitrage a hedging
strategy δ for which the discounted P&L remains zero, that is,

C̄t = 0 (8.2.17)

for all t ∈ [0, T ]. We call this a perfect hedge and the corresponding hedge
portfolio V = {V (t, St), t ∈ [0, T ]} that returns the payoff at maturity T is
then a replicating portfolio.

Discounted P&L Increments

We shall now demonstrate how an appropriate hedging strategy δ can be
constructed. For this purpose we examine the increments of the discounted
P&L process C̄. With the definition of the discounted P&L given in (8.2.13)
its increments can be expressed in the form

C̄t − C̄s = V̄ (t, S̄t) − V̄ (s, S̄s) −
∫ t

s

δ1
u dS̄u (8.2.18)
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for t ∈ [0, T ] and s ∈ [0, t]. Assuming that the discounted pricing function
V̄ (·, ·) is differentiable with respect to time and twice differentiable with re-
spect to the discounted underlying security value, the Itô formula (6.2.11) can
be applied and we obtain from (8.2.18) the relation

C̄t − C̄s =
∫ t

s

[
∂V̄ (u, S̄u)

∂u
+

1
2

σ2
u S̄2

u

∂2V̄ (u, S̄u)
∂S̄2

+(au − ru) S̄u

(
∂V̄ (u, S̄u)

∂S̄
− δ1

u

)]
du

+
∫ t

s

σu S̄u

(
∂V̄ (u, S̄u)

∂S̄
− δ1

u

)
dWu (8.2.19)

for t ∈ [0, T ), s ∈ [0, t]. The formula (8.2.19) provides an explicit representa-
tion for the increments of the discounted P&L.

Discounted Black-Scholes PDE

Note that a strategy δ that minimizes the fluctuations of the discounted P&L
process C̄ is obtained if the second integral on the right hand side of (8.2.19)
vanishes for the choice of the hedge ratio δ1

t given by

δ1
t =

∂V̄ (t, S̄t)
∂S̄

(8.2.20)

for t ∈ [0, T ). It can be seen that when taking (8.2.20) into account, then the
first term in (8.2.19) disappears if the discounted value function V̄ satisfies
the PDE

∂V̄ (t, S̄)
∂t

+
1
2

σ2
t S̄2 ∂2V̄ (t, S̄)

∂S̄2
= 0 (8.2.21)

for t ∈ [0, T ) and S̄ ∈ (0,∞). The resulting PDE (8.2.21) is not sufficient
to determine fully the function V̄ (·, ·). However, it would keep by (8.2.19)
and (8.2.20) any discounted P&L constant. Additionally, some condition at
the terminal time T needs to be specified to make sure that we start from a
zero initial discounted P&L. To ensure this and, thus, the replication of the
payoff at the expiration date T , see (8.2.8) and (8.2.9), we have to satisfy the
terminal condition

V̄ (T, S̄) =
H(S̄ BT )

BT
=

H(S)
BT

(8.2.22)

for S̄ ∈ (0,∞). We call the PDE (8.2.21) together with its terminal condition
(8.2.22) the discounted Black-Scholes partial differential equation (discounted
BS-PDE). This PDE determines a discounted pricing function V̄ (·, ·) that
allows a perfect hedge for the corresponding European payoff.

For instance, for European call and put options it can be shown that the
discounted BS-PDE has a unique solution and, thus, determines uniquely the
option price. The uniqueness of the solution of a PDE in the above form is,
in general, not trivially established, as we shall see in Chap. 12.
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Black-Scholes PDE

By a transformation of variables, see (8.2.9) and (8.2.10), the above discounted
BS-PDE can be rewritten for the undiscounted option pricing function V (·, ·)
in the form

∂V (t, S)
∂t

+ rt S
∂V (t, S)

∂S
+

1
2

σ2
t S2 ∂2V (t, S)

∂S2
− rt V (t, S) = 0 (8.2.23)

for t ∈ [0, T ) and S ∈ (0,∞) with terminal condition, see (8.2.8),

V (T, S) = H(S) (8.2.24)

for S ∈ (0,∞). We call (8.2.23) together with (8.2.24) the BS-PDE. Note
that the BS-PDE and the discounted BS-PDE do not depend on the values of
the appreciation rate at of the underlying security. This is a remarkable fact,
which results from the choice of δ1

t in (8.2.20) that eliminated in (8.2.19) any
potential impact of at.

Option Price

In the formula (8.2.20) for the hedge ratio we describe the number δ1
t of units

to be held in the underlying security. By dividing equation (8.2.4) on both
sides by the savings account and using equations (8.2.10) and (8.2.9), we can
now determine the number of units that needs to be held in the domestic
savings account. It is given by the relation

δ0
t = δ0

t B̄t = V̄ (t, S̄t) − δ1
t S̄t (8.2.25)

for t ∈ [0, T ].
The option price obtained at time t is, of course, just V (t, St). The appro-

priate value of the hedge portfolio at time t in units of the domestic currency
can, therefore, be calculated, see (8.2.9), via the formula

V (t, St) = V̄ (t, S̄t)Bt (8.2.26)

for t ∈ [0, T ].

Numeraire Invariance

Let us now check whether the above construction of a hedge portfolio identifies
a self-financing strategy δ. As mentioned previously, this is a strategy that
changes the portfolio value only through changes in gains from trade, see
(8.2.6) and (8.2.7). For our discounted securities we have from (8.2.18) because
of zero discounted P&L C̄t = 0 for all t ∈ [0, T ] that

dV̄ (t, S̄t) = δ1
t dS̄t (8.2.27)
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for all t ∈ [0, T ]. This means that the portfolio V̄ (t, S̄t) is self-financing when
denominated in units of the savings account, because all changes in V̄ (t, S̄t)
are due to changes in S̄t. It is now of interest that the portfolio is also shown
to be self-financing when using other numeraires, for instance, if denominated
in units of the domestic currency. For this case we multiply V̄ (t, St) by the
savings account Bt and obtain from (8.2.26) and (8.2.27) by the integration-
by-parts formula (6.3.1) the SDE

dV (t, St) = d(V̄ (t, S̄t)Bt)

= Bt dV̄ (t, S̄t) + V̄ (t, S̄t) dBt + d[B·, V̄ (·, S̄·)]t

= Bt δ1
t dS̄t + (δ0

t + δ1
t S̄t) dBt + δ1

t d[B, S̄]t

= δ0
t dBt + δ1

t

(
Bt dS̄t + S̄t dBt + d[B, S̄]t

)

= δ0
t dBt + δ1

t d(Bt S̄t)

= δ0
t dBt + δ1

t dSt (8.2.28)

for t ∈ [0, T ]. This proves the condition (8.2.7), which ensures that the result-
ing portfolio is self-financing when expressed in units of the domestic currency.

Consequently, the changes in the portfolio value are only a result of gains
from trade in the underlying security S and the savings account B. The above
result in (8.2.28) is important, since it shows that a portfolio that is self-
financing in one denomination is also self-financing in another denomination.
Note that such a result holds more generally, as will be shown in (9.6.18) and
towards the end of Chap.14. This means that a change in numeraire does not
impact on the self-financing property. We could select any strictly positive
portfolio as numeraire and would see, similarly as above, that a portfolio,
which is self-financing in one denomination is also self-financing under this
numeraire.

The discounted P&L process C̄t starts at zero, see (8.2.16), and has zero
increments, see (8.2.19)–(8.2.21). Therefore, it is zero for the above identified
hedging strategy. The undiscounted P&L process C = {Ct, t ∈ [0, T ]} with

Ct = C̄t Bt = 0 (8.2.29)

for t ∈ [0, T ], see (8.2.12) and (8.2.17), equals then also zero. Consequently,
the resulting nonnegative P&L process does not permit arbitrage, as was
required.

The above hedging approach for determining the value of an option is
essentially based on the Itô formula. This fundamental tool allows us to obtain
in continuous time a perfect hedging strategy together with the corresponding
option price. Note that no expectation has been taken to determine the option
price.

We shall see later in Chap.10 that the above approach for finding a perfect
hedge and a corresponding price for a derivative security can be generalized to
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more complex payoff structures and more general asset price models. Certain
PDEs, similar to those given in (8.2.21) and (8.2.22), arise also for other
payoffs and security dynamics. What differs are the volatility specification
and the boundary conditions.

8.3 The Black-Scholes Formula

In this section we study the solution of the BS-PDE (8.2.23) with its terminal
condition (8.2.24) in the case of a European call option.

Black-Scholes Formula

Let us describe the price of a European call option for an underlying security
S = {St, t ∈ [0, T ]} that follows the SDE (8.2.1). The payoff is according to
(8.1.1) of the form

H(S) = (S − K)+ (8.3.1)

for S ∈ (0,∞) with strike price K > 0 and matures at the terminal date T .
In their Nobel prize winning work Black, Scholes and Merton provided

the explicit description of the price cT,K(t, St) at time t for the European call
option with expiry date T and strike price K, see Black & Scholes (1973) and
Merton (1973b). This result is widely known as the Black-Scholes formula
(BS formula). It takes the form

cT,K(t, St) = St N(d1(t)) − K
Bt

BT
N(d2(t)) (8.3.2)

with

d1(t) =
ln
(

St

K

)
+
∫ T

t

(
rs + 1

2 σ2
s

)
ds

√∫ T

t
σ2

s ds
(8.3.3)

and

d2(t) = d1(t) −

√∫ T

t

σ2
s ds (8.3.4)

for t ∈ [0, T ). Here Bt is again the domestic savings account at time t, see
(8.2.2). Furthermore, N(·) denotes the standard Gaussian distribution func-
tion, see (1.2.7), with density

N ′(x) =
1√
2π

exp
{
−x2

2

}
(8.3.5)

for all x ∈ �, see (1.2.8). It can be shown by direct calculation that the above
European call option pricing function cT,K(·, ·) solves the BS-PDE given in
(8.2.23) for the payoff function (8.3.1), see Exercise 8.1. One observes in the
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Fig. 8.3.1. Black-Scholes European call option price

BS formula that the option price does not depend on the specific choice of the
appreciation rate at of the underlying security, which we explained earlier.

Noting the form of the BS formula (8.3.2), a heuristic guess for the number
δ1
t of units of the risky asset to be held in the hedge portfolio would be

N(d1(t)). We show below that this is correct. However, this result is not as
obvious as it may seem because d1(t) and d2(t) depend on St.

For small values of St, the expressions d1(t) and d2(t) and also N(d1(t))
and N(d2(t)) are small, see Fig. 1.2.4. Thus, for small St the European call
option has almost no value. However, for large underlying security price St

the quantities d1(t) and d2(t) are both large so that N(d1(t)) and N(d2(t))
are approximately one, as can be seen in Fig. 1.2.4. Consequently, by (8.3.2)
the option value equals approximately St − K Bt

BT
in this case.

The BS formula (8.3.2) can be interpreted as being an analytical formula.
However, the Gaussian distribution function N(·) needs still to be approx-
imated by other more basic functions or obtained by numerical evaluation
of the integral of the Gaussian density N ′(·) given in (8.3.5). In (1.2.7) a
reasonably accurate and efficient approximation for the standard Gaussian
distribution function has been provided.

European Call Option Price

To give an idea about the shape of the pricing function cT,K we show in
Fig. 8.3.1 the European call option price as a function of time t and the un-
derlying security price S with volatility σ = 0.2, strike price K = 1, expiration
date T = 10 years and short rate r = 0.05. Figure 8.3.1 depicts prices for up
to ten years to display some long term features of the typical Black-Scholes
option price. Note that close to the expiration date T = 10 the option price
has approximately the value of the hockey stick like payoff function (8.3.1). As
previously mentioned, for small values of the underlying security the option
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price remains close to zero and for large security prices S the option has a
price close to S − K Bt

BT
.

8.4 Sensitivities for European Call Option

The pricing function cT,K , see (8.3.2), for the European call option depends
on several variables. These are the underlying security price St, the time to
maturity T − t, the volatility σ of the underlying security, the interest rate r
and the strike price K. Changes in any of these variables influence the option
price. Therefore, it is of practical importance to know how sensitive the pricing
function cT,K is with respect to these variables.

It is informative to use the classical Taylor formula to expand the in-
crements of the value of the derivative security over a small time interval
[t, t + h] in dependence on the above mentioned variables. By omitting higher
order terms one obtains

V (t + h, St+h) − V (t, St)

≈ ∂V (t, St)
∂S

(St+h − St) +
1
2

∂2V (t, St)
∂S2

(St+h − St)2

+
∂V (t, St)

∂t
h +

∂V (t, St)
∂σ

(σt+h − σt) +
∂V (t, St)

∂r
(rt+h − rt)

= Δ(St+h − St) +
1
2

Γ (St+h − St)2 − Θ h + V (σt+h − σt) + 	 (rt+h − rt),

(8.4.1)

where

Δ =
∂V (t, St)

∂S
, Γ =

∂2V (t, St)
∂S2

, Θ =
∂V (t, St)

∂t
,

V =
∂V (t, St)

∂σ
and 	 =

∂V (t, St)
∂r

for t ∈ [0, T ]. Here the letters Δ, Γ , Θ, V and 	 denote the corresponding par-
tial derivatives which are called sensitivities or greeks. The expansion (8.4.1)
shows how the above greeks influence the increments of the Black-Scholes op-
tion price. Note that for obtaining a first order approximation one needs to
include the second order derivative Γ since the conditional expectation

E
(
(St+h − St)2

∣∣At

)
≈ σ2

t S2
t h.

is of order h.
In the following we discuss some of the above greeks for the Black-Scholes

European call option price. In the figures displayed below, we choose as default
parameter the strike price K = 1 and maturity date T = 10. We consider the



8.4 Sensitivities for European Call Option 291

Fig. 8.4.1. Delta as a function of t and St

parameters a, σ and r to be constant and fix T and K, unless we study a
sensitivity with respect to such a parameter. This means, we study sensitivities
for the standard BS model.

Delta

The delta has been previously mentioned as hedge ratio, see (8.2.20). It mea-
sures the sensitivity of the option price with respect to changes in the price
of the underlying security St. We set

Δ =
∂V (t, St)

∂S
= δ1

t (8.4.2)

and obtain from (8.3.2) and (8.3.3) the expression

Δ = N(d1(t)), (8.4.3)

which can be shown to equal the partial derivative appearing in (8.2.20), see
Exercise 8.2.

Figure 8.4.1 shows for constant σ = 0.2 and r = 0.05 the delta for the
European call option as a function of time t and asset price St.

Note that the delta for a European call option is always positive and
bounded by one. Close to expiration and strike price K = 1, delta behaves
almost like a step function moving from level zero to one. This makes hedging
quite difficult in this situation.

Gamma

The sensitivity of the hedge ratio delta, with respect to the security price
St is called gamma. This greek is important for the length of re-balancing
intervals in practical hedging under transaction costs. A large gamma reflects
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Fig. 8.4.2. Gamma as a function of t and St

large changes in the hedge ratio and thus typically large transaction costs.
The gamma is set to

Γ =
∂Δ

∂S
=

∂2V (t, St)
∂S2

. (8.4.4)

Using (8.4.3) and (8.3.3), it can be shown that

Γ = N ′(d1(t))
1

St σ
√

T − t
(8.4.5)

for t ∈ [0, T ). Note that gamma is always positive. Figure 8.4.2 displays
gamma for the European call option as a function of time t and the un-
derlying security price St, using the same parameter values as in Fig. 8.4.1.

Close to maturity the gamma has a profile in spatial direction similar to
that of the bell shaped curve of the Gaussian density, see Fig.1.2.3. It becomes
extremely large close to expiration for security prices that are near the strike
price, which is here set to K=1.

Theta

The theta of a hedge portfolio measures the dependence of the option price on
the remaining time to expiration (T − t). The parameter theta, often called
the time decay of the portfolio, provides an estimate of the time sensitivity of
the option price and is given by the expression

Θ = −∂V (t, St)
∂(T − t)

. (8.4.6)

From (8.3.2) we obtain
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Fig. 8.4.3. Theta as a function of t and St

Θ = −N ′(d1(t))
St σ

2
√

T − t
− r K exp{−r(T − t)}N(d2(t)) (8.4.7)

for t ∈ [0, T ). Figure 8.4.3 displays theta for the European call option as a
function of time t and security price St for the same parameter values as used
in Fig. 8.4.1.

Vega

In the standard BS model a constant volatility σ is assumed. However, in
practice volatility is difficult to estimate and changes over time. It is important
to see how differences in volatilities influence derivative prices. The sensitivity
of the option price with respect to volatility is called vega, which is given by

V =
∂V (t, St)

∂σ
. (8.4.8)

Using (8.3.2), it can be shown that

V = N ′(d1(t))St

√
T − t (8.4.9)

for t ∈ [0, T ). Figure 8.4.4 shows vega as a function of the volatility σ and the
time t, where we have set r = 0.05, K = 1 and St = 1. Vega is positive and
decreases substantially close to expiration. Its maximum value can be found
for a volatility value that is close to

√
2 r.

Rho

In the standard BS model interest rates are assumed to be constant. However,
in practice interest rates vary. The sensitivity of the option price with respect
to the interest rate r can be analyzed through rho, which is defined as
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Fig. 8.4.4. Vega as a function of t and σ

Fig. 8.4.5. Rho as a function of t and r

	 =
∂V (t, St)

∂r
.

From (8.3.2), the rho can be derived as the expression

	 = N(d2(t)) (T − t)K exp{−r (T − t)} (8.4.10)

for t ∈ [0, T ). Note that rho is always positive for a European call option.
Figure 8.4.5 shows rho as a function of time t and interest rate r for σ = 0.2,
K = 1 and St = 1. Rho appears to be larger for large time to maturity and
largest for an interest rate close to 1

2σ2.
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8.5 European Put Option

In this section we present a key relationship between European put and call
options under the BS model. Additionally, the greeks of put options and their
properties will be discussed.

Put-Call Parity

Put-call parity provides a simple way to determine the price of a European put
option if the corresponding call option price for the same strike and maturity
has been already computed. For the BS model the put-call parity relation can
be expressed in the form

cT,K(t, St) = pT,K(t, St) + St − K
Bt

BT
(8.5.1)

for t ∈ [0, T ]. This relation can be derived from the fact that the payoff
function for the terminal value of the quantity on the left hand side of equation
(8.5.1) equals the payoff function of that on the right hand side, which is

(ST − K)+ = (K − ST )+ + ST − K. (8.5.2)

For a wide range of models a similar put-call parity holds. This property of
put and call prices is not restricted to the BS model because it reflects the
general relationship (8.5.2) between their payoffs.

European Put Option Price

Using put-call parity, the pricing function pT,K for a European put option for
the BS model with constant volatility σ and constant interest rate r is given
by the formula

pT,K(t, St) = St (N(d1(t)) − 1) − K
Bt

BT
(N(d2(t)) − 1)

= −St N(−d1(t)) + K
Bt

BT
N(−d2(t)), (8.5.3)

where d1(t) and d2(t) are given in (8.3.3) and (8.3.4). Figure 8.5.1 shows the
European put option price as a function of time t and security price St for
volatility σ = 0.2, strike price K = 1, expiration date T = 10 and interest
rate r = 0.05.

It is interesting to compare the European call option price in Fig. 8.3.1
with the corresponding put option price displayed in Fig. 8.5.1. Inspection of
both figures shows that, at the expiration date, the corresponding ramp like
payoff functions are matched by the pricing functions.
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Fig. 8.5.1. European put option price

Fig. 8.5.2. Delta for the European put as a function of t and St

Greeks for the European Put Option

As with European calls, the sensitivities of the Black-Scholes European put
option price (8.5.3) can be examined with respect to changes in various vari-
ables using the same notation. By using the put-call parity in (8.5.1) or the
European put price (8.5.3) one obtains easily the corresponding sensitivities.
The delta for the European put option is, according to (8.4.2) and (8.5.1),
given by

Δ =
∂pT,K

∂S
= N(d1(t)) − 1. (8.5.4)

Figure 8.5.2 shows the delta for the European put option as a function of time
t and security price St. Note for the European put option that delta is always
negative and bounded between −1 and 0. Comparing formulas (8.4.3) with
(8.5.4) reveals that the delta of the put equals that of the call minus one.

The sensitivity of the delta with respect to the underlying security price
St is again called gamma, which for European puts, see (8.4.4) and (8.5.4), is
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given by the expression

Γ =
∂2pT,K

∂S2
= N ′(d1(t))

1
St σ

√
T − t

. (8.5.5)

This is the same formula as that for the European call given in (8.4.5). Thus,
Fig. 8.4.2 also shows the shape of the gamma for the European put.

The other greeks for European puts, similar to those mentioned earlier,
are given by the relations:

Θ =
∂pT,K

∂(T − t)
= N ′(d1(t))

St σ

2
√

T − t
+ r K exp{−r (T − t)} (N(d2(t)) − 1),

(8.5.6)

V =
∂pT,K

∂σ
= N ′(d1(t))St

√
T − t (8.5.7)

and

	 =
∂pT,K

∂r
= (T − t)K exp{r (T − t)} (N(d2(t)) − 1). (8.5.8)

Bounds for European Calls and Puts

There exist some simple bounds for European call and put option prices on a
stock that pays no dividends. From the BS formula (8.3.2) it follows for the
European call

cT,K(t, St) ≤ St (8.5.9)

for t ∈ [0, T ]. By forming at time t a portfolio that consists of a European
call together with K Bt

BT
units of the savings account, the payoff at maturity

T will be
max(ST , K) ≥ ST .

Therefore, it follows that

cT,K(t, St) ≥
(

St − K
Bt

BT

)+

(8.5.10)

for t ∈ [0, T ]. This holds for all European call option prices. Any derivative
that gives the holder more rights is more expensive. Therefore, an American
call price CT,K(t, St) at time t with maturity T and strike K is larger than
the corresponding European call and by (8.5.10) we obtain

CT,K(t, St) ≥ cT,K(t, St) ≥
(

St − K
Bt

BT

)+

≥ (St − K)+ (8.5.11)

for t ∈ [0, T ]. This means, the American call price CT,K(t, St), see Sect. 8.1,
is always larger than the intrinsic value (St −K)+ and will therefore never be
early exercised. Thus, we have
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CT,K(t, St) = cT,K(t, St) (8.5.12)

for t ∈ [0, T ]. This interesting feature is not model dependent.
On the other hand, from (8.5.3) the upper bound

pT,K(t, St) ≤ K
Bt

BT
(8.5.13)

for t ∈ [0, T ] can be obtained. By put-call parity and the positivity of call
prices it also follows that

pT,K(t, St) ≥ K
Bt

BT
− St. (8.5.14)

for t ∈ [0, T ].
Note that the above bounds do, in principle, not depend on the choice of

the model for the underlying security dynamics if one substitutes Bt

BT
by the

corresponding zero coupon bond of the respective model. They hold gener-
ally because they are a consequence of the shape of the put and call payoff
functions.

8.6 Hedge Simulation

In Sect. 8.1 we identified by hedging arguments the discounted BS-PDE for
discounted option prices. This led in Sect. 8.3 to the BS formula, which pro-
vides the solution for the BS-PDE. By using a hedge simulation we show now
how a hedge portfolio works in detail. This type of continuous trading is called
delta hedging . In the following, we construct a hedge portfolio for a European
call option under the standard BS model with constant appreciation rate a,
volatility σ and short rate r. We examine the evolution of the hedge port-
folio for two different scenarios along an equidistant time discretization with
tk = k h, k ∈ {0, 1, . . .}, for some small time step size h > 0. In this sense
we shall perform an approximate hedge, which can be interpreted as a con-
tinuous hedge in a frictionless market. For each of the two scenarios we shall
check whether the payoff is replicated by the hedge portfolio and the P&L
remains approximately zero as predicted by the theoretical results presented
in Sect. 8.1.

Hedging Strategy

The hedge ratio, that is the delta δ1
t , has according to (8.2.20), (8.4.3) and

(8.3.3) the value

δ1
t = N(d1(t))

= N

(
ln
(

St

K

)
+
(
r + 1

2 σ2
)
(T − t)

σ
√

T − t

)

(8.6.1)
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for t ∈ [0, T ). For the number of units held in the domestic savings account
we obtain from (8.2.25), (8.2.26), (8.2.10), (8.3.2) and (8.6.1) the relation

δ0
t = − K

BT
N(d2(t))

= − K

BT
N

(
ln
(

St

K

)
+
(
r − 1

2 σ2
)
(T − t)

σ
√

T − t

)

(8.6.2)

for t ∈ [0, T ]. Recall that the price of the call option at time t ∈ [0, T ), see
(8.2.4), is given by

cT,K(t, St) = δ1
t St + δ0

t Bt. (8.6.3)

Furthermore, from (8.2.13) the discounted P&L takes the form

C̄t = V̄ (t, S̄t) −
∫ t

0

δ1
s dS̄s − V̄ (0, S̄0) (8.6.4)

for t ∈ [0, T ). Let us now recall that the discounted P&L remains zero. This fol-
lows, for instance, by a straightforward application of the Itô formula (6.2.11)
for V̄ , where we obtain

V̄ (t, S̄t) = V̄ (0, S̄0) +
∫ t

0

δ1
s dS̄s (8.6.5)

and, thus, with (8.6.4) it must hold

C̄t = 0 (8.6.6)

for t ∈ [0, T ]. As previously explained, this is a consequence of the fact that
the terms on the right hand side of (8.2.19) vanish by the choice of the hedging
strategy.

In-the-Money Scenario

For illustration, let us generate linearly interpolated values of the underlying
security price St, say a stock index, from a sample path of a geometric Brow-
nian motion starting at S0 = 1 with appreciation rate a = 0.05 and volatility
σ = 0.2, using the time points ti = i h ∈ [0, 10] for i ∈ {0, 1, . . . , 500} with
time step size h = 0.02. This path is shown in Fig. 8.6.1 together with the
corresponding hedge ratio δ1

t , see (8.6.1), for the European call option with
expiration date T = 10, strike price K = 1 and interest rate r = 0.05. Note
that for the given sample path the security price ends up in-the-money, that is
we have ST > K. For this scenario we observe that the hedge ratio converges
to the value δ1

T = 1 as t tends to T . This is the correct value for the hedge
ratio since the security price ends up in-the-money and the option will be
exercised.
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Fig. 8.6.1. Underlying security and hedge ratio for in-the-money call

Fig. 8.6.2. Price, intrinsic value and P&L for in-the-money call

The evolution of the value of the corresponding hedge portfolio, which
equals the call option price cT,K(t, St), is shown in Fig. 8.6.2 in dependence
on time t. For comparison, Fig. 8.6.2 also displays the intrinsic value of the
call option, that is the value

H(St) = (St − K)+

for t ∈ [0, T ], see (8.1.2). Figure 8.6.2 shows for this sample path that the
hedge portfolio replicates the payoff of the option at the expiration date T =
10 since the option price converges to its intrinsic value for t approaching T .

For illustration, Fig.8.6.2 also displays for the obtained self-financing strat-
egy δ the P&L Ct of the hedge portfolio. According to (8.2.13), the discounted
P&L equals the value of the discounted portfolio minus the gains from trade in
the discounted security S̄ using the strategy δ minus the initial price. Note in
Fig.8.6.2 that the P&L remains almost perfectly zero over time as is expected
from equation (8.6.6).
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Fig. 8.6.3. Underlying security and hedge ratio for out-of-the-money call

Out-of-the-Money Scenario

The replication of the payoff through delta hedging does not depend on the
sample path of the underlying security, as can be seen from (8.2.19). To il-
lustrate this we change the sample path by assuming a zero appreciation rate
a = 0 in the above example. This brings the previous sample path of the
underlying security down, as is evident from Fig.8.6.3 and Fig.8.6.1. It shows
that the call option expires now out-of-the-money, that is ST < K = 1. Con-
sequently, the delta, that is the hedge ratio δ1

t , converges to zero for t tending
towards T . Figure 8.6.4 shows the corresponding sample path of the call option
price cT,K(t, St) and its intrinsic value

H(St) = (St − K)+

together with the P&L for the hedge portfolio. It is apparent that also in
this case the payoff is replicated at the expiration date T = 10 and the P&L
remains approximately zero over time, see (8.6.6).

We have used the same sample path of the driving Wiener process to
generate both the in- and out-of-the-money scenarios for a = 0.05 and a = 0,
respectively. The hedge simulations can be compared with each other via the
corresponding graphs in Figs. 8.6.1–8.6.4. Note that the initial option prices
cT,K(0, S0) at time t = 0 for both scenarios are the same. Changing the
appreciation rate a in the BS model has not altered any part of our formulas
and final hedging results. This striking phenomenon is a key feature of hedging.
Independently of the realized scenario and the underlying appreciation rate
the previously identified perfect hedge replicates the given payoff.

Hedging a European Call Option on the S&P500

Let us now apply the above Black-Scholes delta hedging to an S&P500 index
option. Figure 3.1.1 shows this index for the years from 1993 up until 1998
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Fig. 8.6.4. Price, intrinsic value and P&L for out-of-the-money call

Fig. 8.6.5. Normalized S&P500 and hedge ratio for K = 1.2

and Fig. 5.2.6 its logarithm and quadratic variation. To make the following
study similar to the above hedge simulation we divide the S&P500 data by
its value at January, 3, 1994 and use the 520 observations of the normalized
index for the years 1994 and 1995 as scenario of the underlying security.
Figure 8.6.5 depicts the normalized S&P500 values for these two years and
Fig. 8.6.6 the approximate quadratic variation, see (5.2.3), of the logarithm
of the normalized S&P500. The quadratic variation seems to be reasonably
linear for this period. According to formula (5.2.14), which provides some
definition of volatility, we can read off from the plotted graph of the quadratic

variation in Fig. 8.6.6 an average volatility of approximately σ ≈
√

0.016
2 ≈

0.09. Furthermore, we set the USD short rate to the constant value r ≈ 0.05,
which is reasonable for the period under consideration.

Now, let us consider a European call option on the normalized S&P500
sample path as underlying security, which expires at the end of the period,
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Fig. 8.6.6. Quadratic variation of log-S&P500

Fig. 8.6.7. Call price on S&P500, intrinsic value and P&L

that is in December 1995. We perform delta hedging according to what would
be obtained for the BS model with the above parameters and use the same pro-
cedure that was employed for the previous hedge simulation. To study an in-
the-money call option scenario we consider first a strike price of K = 1.2. Fig-
ure 8.6.5 shows the hedge ratio δ1

t for this European call option. Figure 8.6.7
displays the corresponding evolution of the call option price, intrinsic value
and P&L similar to Fig.8.6.2 and Fig.8.6.4. Note that the payoff is reasonably
well replicated at the expiration date. However, the P&L is not as close to
zero as was the case for the simulated BS model, previously examined. Note
from Fig. 8.6.6 that the volatility of the underlying security was not fluctu-
ating greatly during the chosen period. For longer dated options over longer
time periods changes in the P&L can be shown to be more dramatic and the
BS model is then not sufficient to provide an acceptable hedge. The nonzero
P&L is clearly a consequence of the fact that the S&P500 does not exactly
follow the BS model. The result can only be improved by using alternative
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asset price models which allow a volatility that is stochastic and reflects better
reality. A paper by Bakshi, Cao & Chen (1997) shows that for the hedging of
short dated options the BS model performs reasonably well. However, for the
prices of these options the authors pointed out that the BS model seems to
be not sufficiently accurate.

We shall later study various models that generate volatility which is
stochastic. Some of these models involve squared Bessel processes, which we
introduce in the following section.

8.7 Squared Bessel Processes (*)

As we shall see, many quantities that involve Bessel processes can be expressed
in terms of Bessel functions. This gives this class of processes its name. We
summarize in this section important results on squared Bessel processes be-
cause some of these will be crucial for the understanding of the following
chapters presenting the benchmark approach.

To facilitate the explicit computation of derivative prices and other quan-
tities under various models, including the CIR model, the CEV model and
the MMM, we list in this section properties of square root and squared Bessel
processes. Most of these properties are scattered in the literature. Some of
them can be found, for instance, in Karatzas & Shreve (1991), Revuz & Yor
(1999) or Jeanblanc, Yor & Chesney (2009).

The following results on time transformed squared Bessel processes will
also be important for the understanding of the typical dynamics of financial
markets. We shall give an example for a local martingale that is not a mar-
tingale. This example will turn out to be potentially closely linked to the real
market dynamics.

Squared Bessel Process (*)

Let us introduce the squared Bessel process (BESQδ
x) X = {Xϕ, ϕ ∈ [0,∞)}

of dimension δ ≥ 0 given by the SDE

dXϕ = δ dϕ + 2
√
|Xϕ| dWϕ (8.7.1)

for ϕ ∈ [0,∞) with X0 = x ≥ 0, where W = {Wϕ, ϕ ∈ [0,∞)} is a standard
Wiener process on (Ω,A,A, P ) starting at the initial ϕ-time, ϕ = 0, at zero.
This means for ϕ ∈ [0,∞) that

[W ]ϕ = ϕ

for all ϕ ∈ [0,∞). Here we assume that X is reflected at zero if it reaches the
level zero. It turns out that the absolute sign under the square root in (8.7.1)
can be removed. Xϕ remains nonnegative in this case and (8.7.1) has a unique
strong solution, see Revuz & Yor (1999).
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We have the following scaling property:
If X = {Xϕ, ϕ ∈ [0,∞)} is a BESQδ

x, then Z = {Zϕ, ϕ ∈ [0,∞)} with
Zϕ = 1

aXaϕ is a BESQδ
x
a

for all a > 0.
For δ ∈ N and x ≥ 0 the dynamics of a BESQδ

x X can be expressed as
the sum of the squares of δ independent standard Wiener processes W 1, W 2,
. . ., W δ, where

x =
δ∑

k=1

(wk)2. (8.7.2)

Here one sets

Xϕ =
δ∑

k=1

(wk + W k
ϕ)2 (8.7.3)

for ϕ ∈ [0,∞). Note that this construction is invariant with respect to the
particular choice of wk, k ∈ {1, 2, . . . , δ}, when (8.7.2) is satisfied. Clearly, the
function (8.7.3) is a function of components of the solution of a simple linear
system of SDEs, where each component represents a Wiener process. By an
application of the Itô formula we obtain

dXϕ = δ dϕ + 2
δ∑

k=1

(
wk + W k

ϕ

)
dW k

ϕ (8.7.4)

for ϕ ∈ [0,∞) with

X0 =
δ∑

k=1

(wk)2 = x. (8.7.5)

By setting

dWϕ = |Xϕ|−
1
2

δ∑

k=1

(
wk + W k

ϕ

)
dW k

ϕ (8.7.6)

we obtain the SDE (8.7.1). Note that we have for Wϕ the quadratic variation

[W ]ϕ =
∫ ϕ

0

1
Xs

δ∑

k=1

(
wk + W k

s

)2
ds = ϕ.

Thus, Wϕ in (8.7.6) forms by Lévy’s theorem, see Theorem 6.5.1, a Wiener
process in the ϕ time scale.

In Fig. 8.7.1 we show the path of a squared Bessel process of dimension
δ = 4 in the ϕ time scale, which starts at X0 = 100, where we set wk = 5 for
k ∈ {1, 2, 3, 4}. Note the tendency of the process to increase over time, which
is typical.

Squared Bessel processes have the following important additivity property,
see Shiga & Watanabe (1973):
Let X = {Xϕ, ϕ ∈ [0,∞)} be a BESQδ

x and Y = {Yϕ, ϕ ∈ [0,∞)} an
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Fig. 8.7.1. Squared Bessel process of dimension δ = 4 in ϕ-time

independent BESQδ′

y with x, y, δ, δ′ ≥ 0. Then the process Z = {Zϕ, ϕ ∈
[0,∞)} where Zϕ = Xϕ + Yϕ is a BESQδ+δ′

x+y .
It can be shown that a squared Bessel process BESQδ

x of dimension δ > 2
with X0 = x > 0 stays always strictly positive, that is

P

(
inf

0≤ϕ<∞
Xϕ > 0

)
= 1, (8.7.7)

see Karatzas & Shreve (1998). In this case Xϕ tends to infinity as ϕ goes to
infinity. For the case δ = 2 one has

P

(
inf

0≤ϕ<∞
Xϕ > 0

)
= 0.

Furthermore, for a BESQδ
x X process with δ ∈ [0, 2) and X0 = x > 0, there

is a strictly positive probability that X will hit zero before any fixed ϕ-time
ϕ′ ∈ (0,∞), that is

P

(
inf

0≤ϕ≤ϕ′
Xϕ = 0

)
> 0. (8.7.8)

This means Xϕ reaches zero in finite time with strictly positive probability.
For δ > 0 and x > 0 the transition density for a BESQδ

x process X starting
at the ϕ-time 	 ∈ [0,∞) in x being at time ϕ ∈ (	,∞) in y is given as

pδ(	, x; ϕ, y) =
1

2(ϕ − 	)

(y

x

) ν
2

exp
{
− x + y

2(ϕ − 	)

}
Iν

( √
x y

ϕ − 	

)
, (8.7.9)

see Revuz & Yor (1999), where Iν is the modified Bessel function of the first
kind, see (1.2.15), with index ν. Here the index is defined as

ν =
δ

2
− 1. (8.7.10)
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Fig. 8.7.2. Transition density of squared Bessel process for δ = 4

In Fig. 8.7.2 we show the transition density of a squared Bessel process of
dimension four, δ = 4, which means index ν = 1, starting at x = 100.

For small values of z one has

Iν(z) ≈ 1
ν Γ (ν)

(z

2

)ν

(8.7.11)

for ν > 0. Therefore, the transition density of a BESQδ
0 process X, which

starts at time zero at x = 0, is

pδ(0, 0; ϕ, y) = (2ϕ)−
δ
2

y
δ
2−1

Γ ( δ
2 )

exp
{
− y

2 ϕ

}
. (8.7.12)

From (8.7.9) and (1.2.14) one notices that for fixed δ > 2, x, y ≥ 0 and
ϕ > 0 the transition density pδ(0, x; ϕ, y) is the density of a non-central chi-
square distributed random variable Y = Xϕ

ϕ , see (1.2.13) with dimension δ,
and non-centrality parameter 
 = x

ϕ . Consequently, by (1.2.13) we obtain

P

(
Xϕ

ϕ
< u

)
=

∞∑

k=0

exp
{
− �

2

} (
�
2

)k

k !

(

1 −
Γ
(

u
2 ; δ+2k

2

)

Γ
(

δ+2k
2

)

)

, (8.7.13)

where Γ (·; ·) is the incomplete gamma function, see (1.2.12).
Furthermore, for α > − δ

2 , ϕ ∈ (0,∞) and δ > 2 one can show that

E
(
Xα

ϕ

∣∣A0

)
=

⎧
⎨

⎩
(2 ϕ)α exp

{
−X0
2 ϕ

}∑∞
k=0

(
X0
2 ϕ

)k Γ(α+k+ δ
2 )

k ! Γ(k+ δ
2 )

for α > − δ
2

∞ for α ≤ − δ
2 ,

(8.7.14)
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see Exercise 8.8. By (8.7.1) it follows that

E
(
Xϕ

∣∣A0

)
= X0 + δ ϕ (8.7.15)

for ϕ ∈ [0,∞). Thus, for α ∈ (− δ
2 , 0], ϕ ∈ (0,∞) and δ > 2 it follows by the

monotonicity of the gamma function

E
(
Xα

ϕ

∣∣A0

)
≤ (2ϕ)α exp

{
−X0

2ϕ

}(
Γ
(
α + δ

2

)

Γ
(

δ
2

) + exp
{

X0

2ϕ

})

< ∞, (8.7.16)

see Exercise 8.8. Let us remark, by using the property Γ (k+1)
Γ (k+2) = 1

k+1 of the
gamma function and an expansion of the exponential function, that one ob-
tains from (8.7.14) for δ = 4 the explicit expression

E
(
X−1

ϕ

∣∣A0

)
= X−1

0

(
1 − exp

{
−X0

2 ϕ

})
(8.7.17)

for ϕ ∈ (0,∞).
If one absorbs a squared Bessel process with dimension δ ∈ [0, 2) at zero,

the transition density (8.7.9) changes, see Borodin & Salminen (2002), such
that I|ν| appears in the formula instead of Iν . That is, one has for x > 0 and
ϕ ∈ [0,∞)

pδ(0, x; ϕ, y) =
1

2 ϕ

(y

x

) ν
2

exp
{
−x + y

2 ϕ

}
I|ν|

(√
x y

ϕ

)
. (8.7.18)

Let P δ
x denote the law of a BESQδ

x process X = {Xϕ, ϕ ∈ [0,∞)} of
dimension δ with initial value X0 = x > 0 at time ϕ = 0. In Revuz & Yor
(1999) one can find the following important result. If we introduce the stopping
time τ = inf{ϕ ∈ [0,∞) : Xϕ = 0}, then for δ > 2 the relation holds:

P 4−δ
x

∣∣
∣∣
Aϕ∩{ϕ<τ}

=
(

x

Xϕ

) δ
2−1

P δ
x

∣∣
∣∣
Aϕ

(8.7.19)

for all ϕ ∈ (0,∞). In principle, on the left hand side of the above relation-
ship we consider squared Bessel processes with absorption at zero and on
the right hand side squared Bessel processes that never reach zero. The same
relationship (8.7.19) yields for δ < 2 the equation

P δ
x

∣∣∣
∣
Aϕ∩{ϕ<τ}

=
(

x

Xϕ

)1− δ
2

P 4−δ
x

∣∣∣
∣
Aϕ

, (8.7.20)

see also Exercises 8.9 and 8.10.
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Fig. 8.7.3. Inverse of a squared Bessel process of dimension δ = 4 in ϕ-time

Examples of Strict Local Martingales (*)

We now present an example of a local martingale that is not a martingale,
see Definition 5.1.1 and Definition 5.2.1. We consider the inverse Z = {Zϕ =
X−1

ϕ , ϕ ∈ [0,∞)} of a squared Bessel process X = {Xϕ, ϕ ∈ [0,∞)} of
dimension four, as given in (8.7.1), with X0 > 0. Then it follows by the Itô
formula that

dZϕ = −2 Z
3
2
ϕ dWϕ (8.7.21)

for ϕ ∈ [0,∞), where
Z0 = X−1

0 . (8.7.22)

By the driftless SDE (8.7.21) the process Z turns out to be a local martingale
in ϕ time, see Sect.5.2 and Sect.5.5 or Protter (2004). From (8.7.17) it follows
that

E
(
Zϕ

∣∣A0

)
= E

(
X−1

ϕ

∣∣A0

)

= Z0

(
1 − exp

{
−1

2 Z0 ϕ

})
< Z0 (8.7.23)

for ϕ ∈ (0,∞). This relation is not consistent with Z being an (A, P )-martin-
gale. It actually proves that Z cannot be a martingale according to equation
(5.1.2). Thus, the inverse Z of a squared Bessel process of dimension four
is a continuous local martingale that is not a martingale. We say that such
a local martingale is a strict local martingale. This observation will be very
important for realistic financial modeling and derivative pricing, as we shall
see later. Similarly, from relations (5.1.7) and (8.7.23) we can conclude that
Z is a strict supermartingale.

In Fig. 8.7.3 we exhibit the inverse of the path of a squared Bessel process
of dimension four in ϕ-time, which refers to the example with the path in
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Fig. 8.7.4. Expectation of the inverse of the squared Bessel process for δ = 4 in
ϕ-time

Fig. 8.7.1. Note that this path is typical of that of a strict supermartingale.
Here its current observation is larger than the best forecast of its future values.

In Fig. 8.7.4 we plot for the above example, by using formula (8.7.23), the
expectation at time 0 of the inverse of the four dimensional squared Bessel
process for varying ϕ-time. We clearly see the decline in this expectation over
ϕ-time as was already indicated by the sample path in Fig. 8.7.3.

More generally, see Göing-Jaeschke & Yor (2003), for real valued dimen-
sion δ > 2 one can show that the process

Z = {Zϕ = X
1− δ

2
ϕ , ϕ ∈ [0,∞)} (8.7.24)

is a strict local martingale if X = {Xϕ, ϕ ∈ [0,∞)} is a BESQδ
x process of

dimension δ > 2 with X0 = x > 0. One can see this from the relationship
(8.7.19) since the expectation of Zϕ is strictly less than one, because of the
possible absorption of a squared Bessel process of dimension 4 − δ < 2, see
(8.7.8). Alternatively, by application of the transition density (8.7.9) it follows
that

E
(
Zϕ

∣∣A0

)
= E

(
X

1− δ
2

ϕ

∣∣∣A0

)
=
∫ ∞

0

y1− δ
2 pδ(0, x; ϕ, y) dy

= x1− δ
2

∫ ∞

0

p4−δ(0, y; ϕ, x) dy

= x1− δ
2

(

1 −
Γ ( δ

2 − 1; x
2 ϕ )

Γ ( δ
2 − 1)

)

< x1− δ
2 (8.7.25)

for ϕ ∈ (0,∞). Here Γ (·) is again the gamma function, see (1.2.10), and Γ (·; ·)
is the incomplete gamma function, see (1.2.12). Note that for the special case
δ = 4 we obtain from (8.7.25) and (1.2.12) the relation (8.7.23). Furthermore,
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the inequality in (8.7.25) is strict for ϕ > 0, which shows that Z is a strict
supermartingale.

Time Transformation (*)

Using a squared Bessel process we can derive by transformations more general
processes. These include, for instance, the square root (SR) process that was
mentioned previously in (4.4.6).

Let b : [0,∞) → � and c : [0,∞) → (0,∞) be given deterministic func-
tions of time. We introduce the exponential

st = s0 exp
{∫ t

0

bu du

}
(8.7.26)

and the ϕ-time

ϕ(t) = ϕ(0) +
1
4

∫ t

0

c2
u

su
du (8.7.27)

for t ∈ [0,∞) and s0 > 0 in dependence on time. Note that by (8.7.27) and
(8.7.26) we have for constant b < 0 and c 
= 0 that

ϕ(t) = ϕ(0) +
c2

4 b s0
(1 − exp{−b t}) (8.7.28)

for t ∈ [0,∞) and the time

t(ϕ) = −1
b

ln
(

1 − 4 b s0

c2
(ϕ − ϕ(0))

)
(8.7.29)

for ϕ ∈ [ϕ(0),∞). For illustration we plot in Fig. 8.7.5 the time in units of
ϕ-time, when we set ϕ(0) = 0, c = 1, b = −0.05 and s0 = 0.2.

In Fig. 8.7.6 we show the path Xϕ(t) of the squared Bessel process X in
dependence on time t. It will be suggested in Sect. 13.2 under the MMM that
such a time transformed squared Bessel process of dimension δ = 4 is closely
matching the dynamics of the discounted market portfolio. For comparison
we plot for the previous example of a squared Bessel process in Fig. 8.7.7 the
expected value E(Xϕ(t)|A0) of Xϕ(t), see (8.7.15), in dependence on time t
when using the above default parameters.

Let us visualize for the above example in Fig.8.7.8 also the expected value
of the squared Bessel process of dimension δ = 4 with respect to time t. If one
compares the Figs. 8.7.4 and 8.7.8, then one notes that after about five years,
that is t = 5, the expected value of the inverse of the squared Bessel process
starts to decline noticeably in our example.

We then show in the case of our example for comparison the inverse of
the squared Bessel process of dimension δ = 4, which we plotted in Fig. 8.7.3
in ϕ-time, in Fig. 8.7.9 in dependence on time t. One observes the typical
systematic decline of a strict supermartingale.
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Fig. 8.7.5. Time t(ϕ) against ϕ time

Fig. 8.7.6. Squared Bessel process in dependence on time t

Square Root Process (*)

We shall now demonstrate the close relationship of a square root (SR) pro-
cess with a squared Bessel process X. Given a squared Bessel process X of
dimension δ > 0 and using our previous notation we introduce then the SR
process

Y =
{
Yt = st Xϕ(t), t ∈ [0,∞)

}

of dimension δ > 0 in dependence on time t, by the transformation

Yt = st Xϕ(t) (8.7.30)

for t ∈ [0,∞), see also Delbaen & Shirakawa (1997). Using (8.7.1), (8.7.26),
(8.7.27), (8.7.30) and applying the Itô formula (6.2.11), the SDE for the SR
process Y follows as
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Fig. 8.7.7. Expectation of a squared Bessel process in dependence on time t

Fig. 8.7.8. Expectation of the inverse of a squared Bessel process in dependence
on time t

dYt = st dXϕ(t) + Xϕ(t) dst

= st δ dϕ(t) + st 2
√

Xϕ(t) dWϕ(t) + Xϕ(t) st bt dt

=
(

δ

4
c2
t + bt Yt

)
dt + ct

√
Yt

√
4 st

c2
t

dWϕ(t) (8.7.31)

for t ∈ [0,∞) and Y0 = s0 Xϕ(0) > 0. Note that W = {Wϕ, ϕ ∈ [ϕ(0),∞)}
is a Wiener process in the transformed ϕ-time ϕ(t) ∈ [ϕ(0),∞), which is
linked to the time t by (8.7.27). The martingale U = {Ut, t ∈ [0,∞)} with
the stochastic differential

dUt =

√
4 st

c2
t

dWϕ(t) (8.7.32)
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Fig. 8.7.9. Inverse of squared Bessel process in dependence on time t

Fig. 8.7.10. Sample path of a square root process in dependence on time t

has the quadratic variation

[U ]t =
∫ t

0

4 sz

c2
z

dϕ(z) = t. (8.7.33)

By Lévy’s theorem, see Theorem 6.5.1, the process U = {Ut, t ∈ [0,∞)} is
then a Wiener process with respect to t ∈ [0,∞) on (Ω,A,A, P ). Thus, we
have from (8.7.31) and (8.7.32) the SDE

dYt =
(

δ

4
c2
t + bt Yt

)
dt + ct

√
Yt dUt (8.7.34)

for t ∈ [0,∞) for the SR process Y with Y0 = s0 Xϕ(0). For an appropriate
choice of b, c and δ the process Y expresses the SR process mentioned in
(4.4.6) and (7.5.15). Figure 8.7.10 displays for our example the path of the
corresponding SR process of dimension δ = 4 in dependence on time t. For the
visualization of the transition density of an SR process we refer to Fig. 4.4.1.
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For δ > 2 the transformation (8.7.30) allows us to reduce the character-
ization of the probability density for Yt, see (8.7.43), to that of determining
pδ(ϕ(0), Y0

s0
; ϕ(t), Yt

st
), which is given in (8.7.9). It follows from (8.7.27), (8.7.14)

and (8.7.16) for α > − δ
2 , t ∈ (0,∞) and δ > 2 the αth moment

E
(
Y α

t

∣∣A0

)
= (2 ϕ̄t s̄t)α exp

{
− Y0

2 ϕ̄t

} ∞∑

k=0

(
Y0

2 ϕ̄t

)k Γ (α + k + δ
2 )

k! Γ (k + δ
2 )

(8.7.35)

and if additionally α ∈ (− δ
2 , 0) the estimate

E
(
Y α

t

∣∣A0

)
≤ (2 ϕ̄t s̄t)α exp

{
− Y0

2 ϕ̄t

}(
Γ (α + δ

2 )
Γ ( δ

2 )
+ exp

{
Y0

2 ϕ̄t

})

< ∞, (8.7.36)

where

s̄t =
st

s0
= exp

{∫ t

0

bu du

}
(8.7.37)

and

ϕ̄t = s0 (ϕ(t) − ϕ(0)) =
1
4

∫ t

0

c2
u

s̄u
du (8.7.38)

for t ∈ [0,∞). Note that ϕ̄t and the above moments do not depend on the
choice of the parameter s0, which cancels due to the structure of the functions
ϕ(t) and st.

By using the SDE (8.7.34) the first moment of the SR process value Yt

can be shown to have the form

E
(
Yt

∣∣A0

)
= E

(
Y0

∣∣A0

)
exp
{∫ t

0

bs ds

}
+
∫ t

0

δ

4
c2
s exp

{∫ t

s

bz dz

}
ds

(8.7.39)
for t ∈ [0,∞).

For the special case δ = 4 and α = −1 we obtain from (8.7.17) and
(8.7.27)–(8.7.30) the first order negative moment of Yt in the form

E
(
Y −1

t

∣∣A0

)
=

1 − exp
{
− Y0

2 ϕ̄t

}

Y0 s̄t
. (8.7.40)

For δ > 2, c2
t = c2 > 0 and bt = b < 0 the resulting SR process Y =

{Yt, t ∈ [0,∞)} with SDE (8.7.34) is ergodic, see Sect. 4.5. For the case δ = 4
it has linear mean reversion with speed of adjustment parameter −b and
reference level − c2

b . Thus, we obtain by (8.7.39) for an ergodic SR process Y
the long term mean

lim
t→∞

E
(
Yt

∣∣A0

)
= −c2

b
(8.7.41)
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and the first order negative moment

lim
t→∞

E
(
Y −1

t

∣∣A0

)
= −2

b

c2
. (8.7.42)

We have for the SR process Y = {Yt, t ∈ [0,∞)} an analytical transition
density p(s, Ys; t, Yt) that follows from (8.7.9) and (8.7.30) in the form

p(s, Ys; t, Yt) =
pδ

(
ϕ(s), Ys

ss
; ϕ(t), Yt

st

)

st
(8.7.43)

for 0 ≤ s < t < ∞. In the case when δ > 2, bt = b < 0 and ct = c 
= 0 the
ergodic SR process Y has the transition density

p(0, x; t, y) =
1

2s̄t ϕ̄t

(
y

x s̄t

) ν
2

exp

{

−
x + y

s̄t

2 ϕ̄t

}

Iν

⎛

⎝

√
x y

s̄t

ϕ̄t

⎞

⎠ (8.7.44)

for 0 < t < ∞ and x, y ∈ (0,∞), where ν = δ
2 − 1, s̄t = exp{b t} and

ϕ̄t = c2

4 b (1 − 1
s̄t

). It has then as stationary density a gamma density, which
can be obtained via (4.5.20) in the form

pY∞(y) =

(−2 b
c2

) δ
2 y

δ
2−1

Γ ( δ
2 )

exp
{

2 b

c2
y

}
. (8.7.45)

The variance equals in this case

E
(
(Yt − E(Yt))2

∣∣A0

)
= Y0

c2

b
(exp{2 b t} − exp{b t}) +

δ c4

8 b2
(1 − exp{b t})2

(8.7.46)
for t ∈ [0,∞).

Affine Process (*)

Let us now further transform the above SR process given by (8.7.30) to cover
the class of affine processes, see Duffie & Kan (1994) and Sect.4.5. These pro-
cesses have affine, that is linear, drift and linear squared diffusion coefficient
functions. Here, we simply shift the SR process by a nonnegative, differen-
tiable, deterministic function of time a : [0,∞) → [0,∞) defined through its
derivative

a′
t =

dat

dt
(8.7.47)

for t ∈ [0,∞) with a0 ∈ [0,∞). More precisely, we define the process R =
{Rt, t ∈ [0,∞)} with

Rt = Yt + at (8.7.48)



8.8 Exercises for Chapter 8 317

for t ∈ [0,∞). Since Y is nonnegative also R remains nonnegative. By the Itô
formula we obtain from (8.7.48) and (8.7.47) the SDE

dRt =
(

δ

4
c2
t + a′

t − bt at + bt Rt

)
dt + ct

√
Rt − at dUt (8.7.49)

for t ∈ [0,∞) with R0 = Y0 + a0. This means that the transform

Rt = st Xϕ(t) + at (8.7.50)

of a squared Bessel process X of dimension δ yields an affine diffusion process,
see (4.5.14) and (4.5.15), which satisfies the SDE (8.7.49).

8.8 Exercises for Chapter 8

8.1. Show for the BS model that the discounted European call option price
of the discounted Black-Scholes formula satisfies the discounted Black-Scholes
partial differential equation with corresponding terminal condition.

8.2. Derive the expression for the hedge ratio of the European call option in
the BS model using the discounted BS-PDE.

8.3. Derive the gamma of a European put option for the BS model.

8.4. Compute, for a European put option under the BS model, the number
of units δ0

t to be held at a given time t in the domestic savings account.

8.5. Transform the discounted BS-PDE for a discounted European option
price into a corresponding BS-PDE for the corresponding undiscounted option
price as a function of time and undiscounted underlying security.

8.6. Show for the European put option under the BS model that the corre-
sponding P&L process is zero.

8.7. Derive the first moment of a square root process with constant parameters
c > 0, b < 0 and dimension δ > 2 satisfying the SDE

dYt =
(

δ

4
c2 + b Yt

)
dt + c

√
Yt dWt

for t ∈ [0,∞) and Y0 > 0, where W is a Wiener process.

8.8. (*) Derive the moments for the squared Bessel process with dimension
δ > 2 including moments of negative order, as long as they exist, and show
estimates of the type (8.7.16).
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8.9. (*) Show by using the transition density pδ of a squared Bessel process
of dimension δ > 2 that

∫ ∞

0

y1− δ
2 pδ(0, x; ϕ, y) dy = x1− δ

2

∫ ∞

0

pδ(0, y; ϕ, x) dy.

8.10. (*) Show with the transition density pδ of a squared Bessel process of
dimension δ > 2 that

∫ ∞

0

pδ(0, y; ϕ, x) dy =

⎛

⎝1 −
Γ
(

δ
2 − 1, x

2ϕ

)

Γ ( δ
2 − 1)

⎞

⎠ .
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