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The Itô Formula

The price of a security, for instance, a zero coupon bond which generates some
future payoff at a maturity date, is often dependent on the value of an under-
lying process. In many applications, the effect of changes in the underlying
process on this price needs to be quantified. In deterministic calculus this type
of problem is handled by the chain rule. In stochastic calculus the correspond-
ing generalization of the chain rule is given by the Itô formula. This stochastic
chain rule contains terms reflecting the effect due to the stochastic processes
involved having non-zero quadratic variation. In this chapter we introduce,
apply and derive the Itô formula. It is widely regarded as the main tool in
stochastic calculus and is therefore highly important in quantitative finance.

6.1 The Stochastic Chain Rule

The Classical Chain Rule

First consider an example, where the classical deterministic chain rule applies.
Suppose we observe in the market the price of a savings account Bt = exp{r t},
where r denotes a constant continuously compounding interest rate. Then

dBt = r Bt dt (6.1.1)

for t ∈ [0,∞) with B0 = 1. Also suppose that we are interested in a financial
quantity u(Bt), where u : � → � is some differentiable function. For instance,
such a quantity could be the square of the value of the savings account, that
is, u(Bt) = (Bt)2. Furthermore, suppose that we need to express the evolution
of this quantity in terms of properties of u and B with respect to time. In
this case, by using the well-known chain rule of deterministic calculus, we can
write the equations

u(Bt) = u(B0) +
∫ t

0

u′(Bs) dBs = u(B0) +
∫ t

0

u′(Bs) r Bs ds (6.1.2)
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for t ∈ [0,∞). Note from the first line in (6.1.2) that the value of the quantity
u(Bt) can be interpreted as the gains from trade with integrand u′(Bt) and
integrator Bt for t ∈ [0,∞). This means for our simple deterministic example
that

(Bt)2 = (B0)2 + 2
∫ t

0

Bs dBs (6.1.3)

for t ∈ [0,∞).

A Stochastic Example

In Sect. 5.3 we considered the Itô integral

IW,W (t) =
∫ t

0

Ws dWs,

which is the double Wiener integral for a Wiener process W = {Wt, t ∈
[0,∞)}. This stochastic integral was interpreted as the gains from trade, where
the number of shares held in the asset whose price was W was equal to its
price. By rewriting equation (5.3.8) we obtain

(Wt)2 = 2
∫ t

0

Ws dWs + [W ]t = 2
∫ t

0

Ws dWs +
∫ t

0

ds (6.1.4)

for t ∈ [0,∞). Using the Itô differentials dWt and d(Wt)2 the equation (6.1.4)
can be expressed in the equivalent Itô differential form

d(Wt)2 = 2 Wt dWt + dt (6.1.5)

for t ∈ [0,∞) with initial value (W0)2 = 0. As previously explained, the equa-
tion (6.1.5) is nothing more than an abbreviated form of the stochastic integral
equation (6.1.4). This integral equation involves an Itô integral, which is well
defined, as discussed in the previous chapter. As a rule in stochastic calculus
we shall see later that one can treat (dWt)2 as d[W ]t = dt, see (5.4.5). Note
however that d(Wt)2 is different to (dWt)2. Another rule will suggest setting
(dt)2 = d[·]t = 0 and dWtdt = d[W, t]t = 0.

Heuristic Derivation of the Itô Formula

One of the key features of the Itô integral with respect to the Wiener process
is its martingale property, described in (5.4.3), which makes it an essential
tool for pricing in finance. However, as previously indicated, this fundamental
property does not come freely, namely the chain rule of classical calculus does
not apply when using Itô integrals. Instead, the stochastic chain rule, the Itô
formula, has to be applied. We now provide a heuristic derivation of the Itô
formula. In Sect. 6.6 a proof of this formula will be presented.
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Let X = {Xt, t ∈ [0,∞)} be a stochastic process that is characterized by
the Itô differential

dXt = et dt + ft dWt (6.1.6)

for t ∈ [0,∞) with initial value X0 = x0, see (5.3.15). Here e = {et, t ∈ [0,∞)}
and f = {ft, t ∈ [0,∞)} are two stochastic processes with appropriate measur-
ability and integrability properties. Consider a finite difference approximation
of the Itô differential (6.1.6) of the form

ΔXtk
= Xtk+1 − Xtk

≈ etk
h + ftk

(Wtk+1 − Wtk
) (6.1.7)

for tk from an equidistant time discretization {t� = � h, � ∈ {0, 1, . . .}} with
step size h > 0, as introduced in (5.2.1).

We focus our attention on changes in the value u(t, Xt) for a function
u : [0,∞)×� → �, resulting from changes in the time t and the value of the
underlying Xt. Assume that u is differentiable with respect to time t and twice
continuously differentiable with respect to the spatial component x, that is,
the functions ∂u

∂t , ∂u
∂x and ∂2u

∂x2 exist and are continuous.
To quantify the changes in u(t, Xt) caused by changes in Xt we consider

over small time intervals [tk, tk+1) the differences

Δu(tk, Xtk
) = u(tk+1, Xtk+1) − u(tk, Xtk

) (6.1.8)

for k ∈ {0, 1, . . .}. Since u is assumed to be sufficiently differentiable we can
apply a Taylor expansion to obtain the expansion

Δu(tk, Xtk
) =

∂u(tk, Xtk
)

∂t
h +

∂u(tk, Xtk
)

∂x
ΔXtk

+
1
2

∂2u(tk, Xtk
)

∂x2
(ΔXtk

)2 + Rtk
, (6.1.9)

where Rtk
is the corresponding remainder term.

If the quadratic variation of X were zero, then h → 0 would imply
(ΔXtk

)2 → 0 asymptotically and hence the corresponding term in (6.1.9)
would not influence the movements of u(t, Xt). However, in the given stochas-
tic setting this is not the case and, therefore, we need to consider the approx-
imation

(ΔXtk
)2 ≈ [X]h,tk+1 − [X]h,tk

≈ (ftk
)2 h, (6.1.10)

where [X]h,t denotes the approximate quadratic variation, see (5.2.3). Substi-
tuting this expression, together with (6.1.7) into (6.1.9) yields the relation

Δu(tk, Xtk
) =
(

∂u(tk, Xtk
)

∂t
+ etk

∂u(tk, Xtk
)

∂x
+

1
2
(ftk

)2
∂2u(tk, Xtk

)
∂x2

)
h

+ ftk

∂u(tk, Xtk
)

∂x
(Wtk+1 − Wtk

) + R̄tk
, (6.1.11)

where R̄tk
is the corresponding remainder term.
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Itô Formula

Letting the time discretization become finer and finer in (6.1.11), that is h →
0, results in the one-dimensional version of the Itô formula

du(t, Xt) =
(

∂u(t, Xt)
∂t

+ et
∂u(t, Xt)

∂x
+

1
2

(ft)2
∂2u(t, Xt)

∂x2

)
dt

+ ft
∂u(t, Xt)

∂x
dWt (6.1.12)

for t ∈ [0,∞). This formula will be derived rigorously towards the end of this
chapter.

Note again that the Itô differential in (6.1.12) is only a shorthand notation
for the integral representation of the Itô formula given as

u(t, Xt)=u(s, Xs) +
∫ t

s

(
∂u(z, Xz)

∂t
+ ez

∂u(z, Xz)
∂x

+
1
2

(fz)2
∂2u(z, Xz)

∂x2

)
dz

+
∫ t

s

fz
∂u(z, Xz)

∂x
dWz (6.1.13)

for t ∈ [0,∞) and s ∈ [0, t]. We remark that by using the notion of quadratic
variation, introduced in the previous chapter, we can write the Itô formula
(6.1.12) in the compact form

du(t, Xt) =
∂u(t, Xt)

∂t
dt +

∂u(t, Xt)
∂x

dXt +
1
2

∂2u(t, Xt)
∂x2

d[X]t (6.1.14)

for t ∈ [0,∞). One can read off the following rule

(dXt)2 = d[X]t

if X is a continuous process. This generalizes the rule that we mentioned
after equation (6.1.5). As shown in Föllmer (1981), the Itô formula holds very
generally in a pathwise sense requiring almost no technical assumptions.

Example for a Stochastic Exponential

Let us consider the one dimensional Itô differential

dXt = et dt + ft dWt (6.1.15)

for t ∈ [0,∞) with initial value X0 = x0. Note by (5.4.5) that

d[X]t = (ft)2 d[W ]t = (ft)2 dt.

The exponential
Yt = u(Xt) = exp{Xt} (6.1.16)
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has then by application of the Itô formula (6.1.12) the Itô differential

dYt = d(exp{Xt})

= exp{Xt}
(

et +
1
2

(ft)2
)

dt + exp{Xt} ft dWt

= Yt

(
et +

1
2

(ft)2
)

dt + Yt ft dWt (6.1.17)

for t ∈ [0,∞) with initial value Y0 = exp{x0}. In the case when et = e and
ft = f are constants, the process X = {Xt, t ∈ [0,∞)} is a transformed
Wiener process, see (3.2.7), and Y = {Yt, t ∈ [0,∞)} is a geometric Brownian
motion, as is employed under the BS model. One can interpret Y as a solution
of a stochastic differential equation (SDE) since here some feedback in the drift
and diffusion coefficient is built in. In the next chapter we shall study SDEs
of more general form.

Example for Powers of Processes

Let us give another example, where we start again from the Itô differential
(6.1.15) for the process X = {Xt, t ∈ [0,∞)}. Now we consider for some
exponent k �= 0 the power

Yt = u(Xt) = (Xt)k (6.1.18)

for t ∈ [0,∞). By application of the Itô formula (6.1.12) we obtain the Itô
differential

dYt = k (Xt)k−1 (et dt + ft dWt) +
1
2

k (k − 1) (Xt)k−2 (ft)2 dt

= k (Yt)
k−1

k (et dt + ft dWt) +
1
2

k (k − 1) (Yt)
k−2

k (ft)2 dt (6.1.19)

for t ∈ [0,∞) with Y0 = (x0)k.

6.2 Multivariate Itô Formula

In the context of financial modeling, the discussion of functionals of two or
more underlying stochastic processes, such as a stock price and a stochastic
interest rate, is often required. To enable us to treat such problems properly we
consider multi-dimensional stochastic processes or, equivalently, vector valued
Itô integrals. For this reason we introduce multi-component Itô differentials
with respect to multi-dimensional standard Wiener processes. These then will
appear in a multivariate version of the Itô formula to be formulated below.
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Multi-Dimensional Wiener Process

Definition 6.2.1. We call the vector process W = {W t = (W 1
t , W 2

t , . . .,
Wm

t )�, t ∈ [0,∞)} an m-dimensional standard Wiener process if each of its
components W j = {W j

t , t ∈ [0,∞)}, j ∈ {1, 2, . . . ,m} is a scalar A-adapted
standard Wiener process and the Wiener processes W k and W j are indepen-
dent for k �= j, k, j ∈ {1, 2, . . . ,m}.

This means that according to Definition 3.2.2 of a Wiener process, each
random variable W j

t is Gaussian and At-measurable with

E
(
W j

t

∣∣A0

)
= 0 (6.2.1)

and we have independent increments W j
t − W j

s such that

E
(
W j

t − W j
s

∣∣As

)
= 0 (6.2.2)

for t ∈ [0,∞), s ∈ [0, t] and j ∈ {1, 2, . . . ,m}. Moreover, we have here addi-
tionally the property that

E
((

W i
t − W i

s

) (
W j

t − W j
s

) ∣∣As

)
=
{

(t − s) for i = j
0 otherwise (6.2.3)

for t ∈ [0,∞), s ∈ [0, t] and i, j ∈ {1, 2, . . . ,m}.
Note that the covariation between different components of the above stan-

dard Wiener process is zero, see (5.4.5), that is

[W i, W j ]t =
{

t for i = j
0 for i �= j

(6.2.4)

for t ∈ [0,∞) and i, j ∈ {1, 2, . . . ,m}.
To illustrate the above notion in preparation of future examples, Fig. 6.2.1

shows the sample paths of the two components of a two-dimensional stan-
dard Wiener process. Each of these two components forms a standard one-
dimensional Wiener process and both Wiener processes are independent.

Figure 6.2.2 presents a different visualization of the same pair of trajec-
tories for the two-dimensional Wiener process. Here W 1

t and W 2
t represent

the x and y coordinates at time t, respectively, that generate a trace similar
to the motion of a pollen particle under the microscope. Recall that such a
motion was originally observed by Robert Brown, giving rise to it the name
Brownian motion. As indicated above, it can be modeled by two independent
Wiener processes.

Vector Itô Differentials

Consider a d-dimensional vector function e : [0,∞)×Ω → �d with predictable
components ek, k ∈ {1, 2, . . . , d}. We have to assume that the components
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Fig. 6.2.1. Components of a two-dimensional standard Wiener process

Fig. 6.2.2. Trace of a two-dimensional Wiener process

satisfy appropriate integrability and measurability conditions. These are sim-
ilar to those we introduced for the one-dimensional case. For simplicity, we
assume here that ∫ T

0

|ek
z | dz < ∞ (6.2.5)

almost surely for k ∈ {1, 2, . . . , d} and F : [0, T ] × Ω → �d×m to be a d × m
matrix valued function with

∫ T

0

(
F i,j

z

)2
dz < ∞ (6.2.6)

almost surely for i ∈ {1, 2, . . . , d}, j ∈ {1, 2, . . . ,m} and all T ∈ (0,∞),
see Protter (2004). This allows us to introduce a d-dimensional stochastic
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vector process X = {Xt = (X1
t , X2

t , . . . , Xd
t )�, t ∈ [0,∞)}, where the kth

component Xk is defined via the Itô integral equation

Xk
t − Xk

0 =
∫ t

0

ek
z dz +

m∑
j=1

∫ t

0

F k,j
z dW j

z (6.2.7)

for t ∈ [0,∞) and given A0-measurable initial value Xk
0 ∈ �, k ∈ {1, 2, . . . , d}.

Analogous to the scalar case we denote by et and F t for a given time
t ∈ [0,∞) the vector and matrix valued random variables, respectively. Then
we write the vector valued stochastic integral equation in the form

Xt − X0 =
∫ t

0

ez dz +
∫ t

0

F z dWz (6.2.8)

for any t ∈ [0,∞) with initial value X0 = (X1
0 , . . . , Xd

0 )�. This can be ex-
pressed equivalently as the d-dimensional vector Itô differential given by

dXt = et dt + F t dWt, (6.2.9)

for t ∈ [0,∞) with initial value X0 ∈ �d. Choosing the dimension d = 1,
leads to the case of a scalar Itô differential with respect to several independent
Wiener processes.

Multivariate Itô Formula

In the previous section it was noted that for the scalar case with one driving
Wiener process the Itô formula involves the quadratic variation of this Wiener
process. In the multivariate case, with a multi-dimensional driving Wiener
process, it turns out that the covariations between different components of the
vector stochastic differential appear in the following multivariate Itô formula.

Theorem 6.2.2. Assume that the function u : [0,∞) × �d → � has con-
tinuous partial derivatives ∂u

∂t , ∂u
∂xk and ∂2u

∂xk ∂xi for k, i ∈ {1, 2, . . . , d} and
x = (x1, x2, . . . , xd)�. Define a scalar stochastic process Y = {Yt, t ∈ [0,∞)}
by setting

Yt = u(t, X1
t , X2

t , . . . , Xd
t ), (6.2.10)

for t ∈ [0,∞), where the vector Xt = (X1
t , X2

t , . . . , Xd
t )� satisfies the vector

Itô differential (6.2.9). Then the Itô differential for Y is of the form

dYt = du(t, X1
t , X2

t , . . . , Xd
t )

=

⎧⎨
⎩

∂u

∂t
+

d∑
k=1

ek
t

∂u

∂xk
+

1
2

m∑
j=1

d∑
i,k=1

F i,j
t F k,j

t

∂2u

∂xi ∂xk

⎫⎬
⎭ dt

+
m∑

j=1

d∑
i=1

F i,j
t

∂u

∂xi
dW j

t , (6.2.11)
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for t ∈ [0,∞) with Y0 = u(0, X1
0 , X2

0 , . . . , Xd
0 ). Here the partial derivatives in

(6.2.11) are evaluated at (t, X1
t , X2

t , . . . , Xd
t ).

An informal derivation of this formula, similar to that for the scalar case
presented earlier in (6.1.12), provides a quick and insightful way to understand
where the various terms appearing in (6.2.11) come from. To see this easily
one has simply to apply the corresponding Taylor expansion for the function
u and use the rules

dW i
t dW j

t ≈
{

dt for i = j
0 for i �= j

(6.2.12)

and
dW i

t dt ≈ 0. (6.2.13)

As previously explained, these rules of stochastic calculus yield terms in ad-
dition to those usually observed in the deterministic chain rule because of the
effects of the covariations between the integrands and integrators involved.

Similar as in formula (6.1.14), by using the notion of covariation, we can
write the multivariate Itô formula (6.2.11) in the form

du(t, X1
t , X2

t , . . . , Xd
t ) =

∂u

∂t
dt +

d∑
i=1

∂u

∂xi
dXi

t +
1
2

d∑
i,k=1

∂2u

∂xi ∂xk
d[Xi, Xk]t

(6.2.14)
for all t ∈ [0,∞). Here the partial derivatives of u on the right hand side of
(6.2.14) are taken at (t, X1

t , X2
t , . . . , Xd

t ).

6.3 Some Applications of the Itô Formula

Integration-by-Parts Formula

Let us consider two continuous processes X1 = {X1
t , t ∈ [0,∞)} and X2 =

{X2
t , t ∈ [0,∞)} having an Itô differential and finite covariation. Suppose that

the Itô differential of the product

Yt = u(t, X1
t , X2

t ) = X1
t X2

t

is required. The Itô formula (6.2.14) can then be used to derive for the above
product the following integration-by-parts formula

d(X1
t X2

t ) = X1
t dX2

t + X2
t dX1

t + d[X1, X2]t. (6.3.1)

We consider as an example three cases, where X1 and X2 are standard Wiener
processes:

1. First assume that the two Wiener processes are the same, that is X1
t =

X2
t = W 1

t , where W 1
t is a standard Wiener process. This case was considered

in (6.1.5). By rewriting this equation we obtain
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Fig. 6.3.1. Product of two independent Wiener processes

dYt = d(W 1
t )2 = 2 W 1

t dW 1
t + dt (6.3.2)

for t ∈ [0,∞). Recall that Fig. 5.3.3 displayed a sample path for 1
2 Yt =

1
2 (W 1

t )2.

2. In the second case we assume that the two Wiener processes X1 = W 1

and X2 = W 2 are independent, that is W 1 and W 2 are two independent
standard Wiener processes. This then leads by application of the integration-
by-parts formula (6.3.1) to the Itô differential

dYt = d(W 1
t W 2

t ) = W 1
t dW 2

t + W 2
t dW 1

t (6.3.3)

for t ∈ [0,∞). Note that there is no drift on the right hand side of (6.3.3)
since the covariation between the two independent Wiener processes is zero.
The formula (6.3.3) coincides with the classic integration by parts formula
because there is zero covariation between W 1 and W 2. In Fig. 6.3.1 we use
the same sample path of the two-dimensional standard Wiener process that
was shown in Fig. 6.2.1 and Fig. 6.2.2 to generate a corresponding path for
the product Yt = W 1

t W 2
t .

3. The third case assumes that the two standard Wiener processes are
correlated, that is we set X1

t = �W 1
t +
√

1 − �2 W 2
t and X2

t = W 1
t , where

W 1 and W 2 are independent standard Wiener processes and � ∈ [−1, 1] is the
correlation coefficient, see (1.4.39). We then obtain by the formula (6.3.1) the
Itô differential

dYt = d(X1
t X2

t )

= X1
t dW 1

t + X2
t

(
� dW 1

t +
√

1 − �2 dW 2
t

)
+ � dt

= X1
t dX2

t + X2
t dX1

t + � dt (6.3.4)
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Fig. 6.3.2. Product of correlated Wiener processes and their approximate covaria-
tion

for t ∈ [0,∞). It is easy to see that both (6.3.2) and (6.3.3) are included in
formula (6.3.4) for the choices of � = 1 and � = 0, respectively. Note that for
the product of Wiener processes, the correlation coefficient � appears as the
drift coefficient in the resulting Itô differential.

Finally, to demonstrate the covariation of correlated Wiener processes,
we show in Fig. 6.3.2 the approximate covariation [X1, X2]h,t, see (5.2.15),
together with the product X1

t X2
t for the correlation coefficient � = 1

2 .

Example for Geometric Brownian Motion

Let us consider a one-dimensional Itô differential that uses two independent
standard Wiener processes and is given by

dXt = e1
t dt + F 1,1

t dW 1
t + F 1,2

t dW 2
t (6.3.5)

with initial value X0 = 0. The functional

Yt = exp{Xt} (6.3.6)

has by the Itô formula (6.2.11) the Itô differential

dYt = d (exp{Xt})

= Yt

(
e1

t +
1
2

((
F 1,1

t

)2
+
(
F 1,2

t

)2))
dt + Yt F 1,1

t dW 1
t + Yt F 1,2

t dW 2
t

(6.3.7)

for t ∈ [0,∞), with initial value Y0 = 1. Note that the process Y is a diffu-
sion process. More precisely, it is a generalized version of geometric Brownian
motion, introduced in (4.1.2). Here we have the drift coefficient



216 6 The Itô Formula

a(t, x) = x

(
e1

t +
1
2

((
F 1,1

t

)2
+
(
F 1,2

t

)2))
, (6.3.8)

that can be compared to (4.3.7). The diffusion coefficients corresponding to
W 1 and W 2 are given by

b1(t, x) = xF 1,1
t (6.3.9)

and
b2(t, x) = xF 1,2

t , (6.3.10)

respectively. These diffusion coefficients generalize what was obtained in
(4.3.8), where we had only one driving Wiener process.

For the above Itô differential both the drift and diffusion coefficients ap-
pear as products of the asset price with some constants, as was the case in
(6.3.7). The constant associated with the drift coefficient is often called the
appreciation rate or expected rate of return. Recall that the constant associated
with a diffusion coefficient is the volatility component for this diffusion term. If
appreciation rate and volatilities are constants, then the corresponding model
is called the Black-Scholes (BS) model.

If one looks at the stochastic differential (6.3.7), then a certain feedback
in the drift and diffusion term is modeled. We call an Itô differential that
involves some feedback from the state variable, here Yt, a stochastic differential
equation (SDE). It will be our focus in the next chapter to present results on
SDEs. However, within this chapter we continue to study the Itô formula
applied to stochastic differentials which cover also SDEs.

Product of Two Geometric Brownian Motions

Since the Black-Scholes model plays such a central role in asset price modeling,
we go in detail through a number of almost elementary applications of the Itô
formula. Consider two asset price processes X1 and X2 that are defined as
geometric Brownian motions by functionals of the type

Xi
t = exp

{
μi t + σi,1 W 1

t + σi,2 W 2
t

}

for i ∈ {1, 2} and t ∈ [0,∞), where W 1 and W 2 denote two independent
standard Wiener processes.

By the Itô formula (6.2.11) we obtain, similarly to (6.3.7), the Itô differ-
entials

dXi
t = Xi

t

(
μi +

1
2
(
(σi,1)2 + (σi,2)2

))
dt + Xi

t σi,1 dW 1
t + Xi

t σi,2 dW 2
t

(6.3.11)
for i ∈ {1, 2} and t ∈ [0,∞).

We compute the Itô differential of the product Yt = X1
t X2

t . Again, by
application of the Itô formula (6.2.11) we obtain
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dYt = d(X1
t X2

t )

= Yt

(
μ1 + μ2 +

1
2
(
σ1,1 + σ2,1

)2
+

1
2
(
σ1,2 + σ2,2

)2)
dt

+Yt

(
σ1,1 + σ2,1

)
dW 1

t + Yt

(
σ1,2 + σ2,2

)
dW 2

t (6.3.12)

for t ∈ [0,∞). Consequently, the product of two geometric Brownian motions
is a geometric Brownian motion, since the drift and diffusion coefficients in
(6.3.12) appear as products of Yt together with some constants. Note also
that the appreciation rates and the volatilities of the product of two geomet-
ric Brownian motions are obtained by summing the appreciation rates and
volatilities of their components.

Powers of Geometric Brownian Motion

We have seen that products of two geometric Brownian motions are also geo-
metric Brownian motions. We now show that the power of a geometric Brow-
nian motion is also a geometric Brownian motion.

Let X denote a scalar geometric Brownian motion characterized by the
Itô differential

dXt = Xt a dt + Xt σ dWt, (6.3.13)

for t ∈ [0,∞) with appreciation rate a, volatility σ and initial value X0 =
x, where W is a standard Wiener process. Then by application of the Itô
formula (6.2.11) we obtain for any real valued exponent k and

Yt = (Xt)k (6.3.14)

the Itô differential

dYt = d(Xt)k = Yt

(
k a +

1
2

k (k − 1)σ2

)
dt + Yt k σ dWt (6.3.15)

for t ∈ [0,∞). This shows that Y is again a geometric Brownian motion,
because the drift and diffusion coefficients in (6.3.15) are expressed as products
of constants and Yt.

Inverse of a Geometric Brownian Motion

An interesting phenomenon is observed when considering the dynamics of an
inverse of a given geometric Brownian motion, which follows for the exponent
k = −1 from equation (6.3.15). Taking the stochastic differentials (6.3.12) and
(6.3.15) into account, it is clear that not only powers and products but also
ratios of geometric Brownian motions are again geometric Brownian motions.
These convenient properties certainly had some influence on the historical
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Fig. 6.3.3. A geometric Brownian motion and its inverse

Fig. 6.3.4. Approximate covariation between 1
X

and X

development of quantitative finance. In particular, they helped to make the
BS model the standard market model.

Figure 6.3.3 shows a sample path of a geometric Brownian motion X =
{Xt, t ∈ [0,∞)} with X0 = 1, a = 0, σ = 0.2 together with its inverse 1

Xt
.

As is apparent from (6.3.15), in this case the inverse X−1
t has an appreciation

rate equal to σ2 and is negatively correlated to Xt. This negative correlation
is visualized in Fig. 6.3.4, which displays the covariation [X−1, X]t between
X−1

t and Xt. This covariation, see (5.4.5), is given by

[X−1, X]t = −σ2 t. (6.3.16)
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Fig. 6.3.5. Savings account

Black-Scholes Model for a Stock Market

Let us now model a stock market in continuous time with asset prices that
follow geometric Brownian motions. The fluctuations of stock prices in the
market are driven by continuous trading uncertainty, which is modeled by
d ∈ N independent standard Wiener processes W 1, W 2, . . . , W d.

For simplicity, we consider a deterministic, constant short rate r. We as-
sume that the interest is continuously accrued. To model the accumulation of
interest we form the savings account S0

t at time t as the exponential

S0
t = exp

{
X0

t

}
(6.3.17)

with
X0

t = r t (6.3.18)

for t ∈ [0,∞). Obviously,
dX0

t = r dt

and, therefore, by the Itô formula when applied to the exponential function
(6.3.17), we obtain the differential equation

dS0
t = S0

t r dt (6.3.19)

for t ∈ [0,∞) with S0
0 = 1. In Fig. 6.3.5 we plot the resulting savings account

for a period of T = 34 years when choosing a constant interest rate of r = 0.05.
Note that an initial investment of one dollar in the savings account would have
resulted over the given period in a value of about 5.5 dollars. The logarithm
X0

t = ln(S0
t ) of the savings account is a linear increasing function, see (6.3.18),

with slope equal to the short rate r.
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Fig. 6.3.6. Stock prices

Now we visualize in Fig.6.3.6 eight cum dividend stock price processes over
the period of 34 years. Here we reinvest all dividends. The jth stock price at
time t is denoted by Sj

t for t ∈ [0,∞) and j ∈ {1, 2, . . . , d}. For simplicity, we
have chosen the volatility matrix to be of the form b = σI, where σ = 0.2
is the volatility parameter and I the unit matrix. In this simple setting each
stock evolves independently from all the others. For the simulated scenario
we used the volatility parameter σ = 0.2, the short rate r = 0.05 and have set
the growth rates to gj = 0.1. As we shall see later, this is a rather poor stock
market model since no correlations between the log-returns are modeling the
example. Nevertheless such models have been used in practice. It is noticeable
in Fig. 6.3.6 that extreme differences in stock prices over the 34 year period
can occur. However, it is impossible to predict at any time which of the stocks
will outperform the others in the future. They all have in our example the
same appreciation rate and volatility.

One notes that the prices in Fig. 6.3.6 evolve quite differently. On average
they seem to increase. We constructed these stock prices as exponentials of
transformed Wiener processes Xj = {Xj

t , t ∈ [0,∞)}, j ∈ {1, 2, . . . , d}, where

Xj
t = gj t +

d∑
k=1

bj,k W k
t (6.3.20)

and the jth stock price is given as
Sj

t = exp{Xj
t } (6.3.21)

with Sj
0 > 0.

The log-price Xj
t of the jth stock at time t, j ∈ {1, 2, . . . , d}, is therefore

modeled by the Itô differential

dXj
t = gj dt +

d∑
k=1

bj,k dW k
t (6.3.22)
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Fig. 6.3.7. Logarithms of stock prices

for t ∈ [0,∞) with initial value Xj
0 = ln(Sj

0) ∈ �, j ∈ {1, 2, . . . , d}. The jth
growth rate gj and the j, kth volatilities bj,k are deterministic constants for
j, k ∈ {1, 2, . . . , d}. Here we have the jth growth rate

gj = r + pj − 1
2

d∑
k=1

(bj,k)2. (6.3.23)

This leads by application of the Itô formula to the function (6.3.21) for the
jth stock price to its Itô differential or SDE

dSj
t = Sj

t

(
(r + pj) dt +

d∑
k=1

bj,k dW k
t

)
(6.3.24)

for t ∈ [0,∞) and j ∈ {1, 2, . . . , d}. The appreciation rate of the jth stock
then equals the sum

aj = r + pj , (6.3.25)

where pj is the jth risk premium or jth expected excess return. The matrix
b = [bj,k]dj,k=1 denotes the volatility matrix. In Fig.6.3.7 we plot the logarithms
Xi

t of the eight stock prices over time.

Covariation between a Wiener Process and a Functional (*)

Let g denote a twice continuously differentiable function and W a standard
Wiener process. Then the covariation, see (5.2.16), between g(Wt) and Wt is
given by

[g(W ), W ]t =
∫ t

0

g′(Ws) ds (6.3.26)
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for t ∈ [0,∞). This can be easily derived by application of both the Itô formula
(6.1.12) together with the covariation property (5.4.5) of Itô integrals, which
yields

d(g(Wt)) =
1
2

g′′(Wt) dt + g′(Wt) dWt (6.3.27)

for t ∈ [0,∞). One can also formulate similar statements when the standard
Wiener process is substituted by more general processes.

6.4 Extensions of the Itô Formula

Let us mention in this section some extensions of the Itô formula that will
allow us to derive powerful results for models with jumps covering stochastic
processes that are needed for modeling event driven uncertainty in finance
and insurance.

Itô Formula for Jump Processes

The Itô formula can be easily generalized to the case of jump processes. Let
us use again our standard notation for the jump size

ΔZt = Zt − Zt− (6.4.1)

at time t ∈ [0,∞) of a given process Z = {Zt, t ∈ [0,∞)}. Here Zt− denotes,
as usual, the left hand limit of the process Z at time t. Then the value Xt of
a pure jump process X = {Xt, t ∈ [0,∞)} can be written at time t ∈ [0,∞)
as

Xt =
∑

s∈[0,t]

ΔXs (6.4.2)

if this sum converges almost surely for all t ∈ [0,∞). This then allows us to
formulate the Itô formula for the given pure jump process in such a simple
form that does not need any extra proof.

Lemma 6.4.1. For a pure jump process X and a measurable function u :
� → � we have the Itô formula

u(Xt) = u(X0) +
∑

s∈(0,t]

Δu(Xs) (6.4.3)

for t ∈ [0, T ], where Δu(Xt) = u(Xt) − u(Xt−).

One notes that almost no assumptions are imposed on the function u(·)
and the process X. What happens in (6.4.3) is that the jumps of X are simply
transferred through the function u as they arise.
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Fig. 6.4.1. Path of an exponential of a Poisson process

Exponential of a Poisson Process

Let us consider an example where a pure jump process plays a role. We denote
by N = {Nt, t ∈ [0,∞)} a Poisson process with intensity λ as introduced in
Sect.3.5. A path of such a process for λ = 20 is shown in Fig.3.5.1. Let us now
apply the Itô formula (6.4.2) to obtain for N the differential of the exponential
u(Nt) = exp{c Nt} with c > 0. Since N is a pure jump process that counts
the arrival of events we have only to transform its jumps into the jumps of the
exponential of N . Thus, at the kth jump time τk of N we have the identity

exp{c Nτk
} = exp{c Nτk−} + exp{c Nτk−}

(
exp{c Nτk

}
exp{c Nτk−}

− 1
)

. (6.4.4)

In Fig. 3.5.1 we showed a trajectory of a Poisson process N . In Fig. 6.4.1 we
plot now the corresponding exponential with c = 0.1.

By (6.4.4) we obtain the relationship

exp{c Nt} = exp{c N0} +
∫ t

0

(exp{c Ns} − exp{c Ns−}) dNs

= exp{c N0} +
∫ t

0

exp{c Ns−}
(

exp{c Ns}
exp{c Ns−}

− 1
)

dNs. (6.4.5)

Equivalently, with the notation (6.4.1) we can write the corresponding Itô
differential

d(exp{c Nt}) = Δ(exp{c Nt})

= exp{c Nt−} (ψexp(t−) − 1)ΔNt (6.4.6)

for t ∈ [0,∞) with jump ratio



224 6 The Itô Formula

ψexp(τk−) =
exp{c Nτk

}
exp{c Nτk−}

= exp{c Nτk
− c Nτk−} = exp{c} = ec (6.4.7)

with τk as kth jump time. Note that the use of the notion of a jump ratio for
the parametrization of the jump size is rather convenient.

Itô Formula for Semimartingales (*)

After having seen that the inclusion of jumps does not create major prob-
lems for an Itô formula, the Itô formula can now be generalized to the
case of semimartingales, see Definition 5.5.1. Assume that the vector pro-
cess X = {Xt = (X1

t , . . . , X�
t )

�, t ∈ [0,∞)} has as its ith component the
semimartingale Xi with the following decomposition

Xi
t = Xi

0 + Xi,c
t + Xi,d

t (6.4.8)

for t ∈ [0,∞), i ∈ {1, 2, . . . , �}. Here

Xi,c
t = Ai,c

t + M i,c
t (6.4.9)

denotes the ith component of the continuous part of Xi
t and Xi,d

t that of the
pure jump part. This means, we have all jumps absorbed in the term

Xi,d
t =

∑
s∈[0,t]

ΔXi
s (6.4.10)

for t ∈ [0,∞) and i ∈ {1, 2, . . . , �}. Furthermore, M i,c denotes in (6.4.9) a
continuous (A, P )-local martingale, see (5.2.26), and Ai,d a continuous process
of finite total variation, see (5.2.25).

Theorem 6.4.2. For a twice continuously differentiable function u : [0,∞)
×�� → �, with continuous first derivative with respect to time and second
continuous derivatives with respect to the spatial variables, we have the Itô
formula
u(t, X1

t , . . . , X�
t ) = u(0, X1

0 , . . . , X�
0)

+
∫ t

0

∂

∂t
u(s, X1

s , . . . , X�
s) ds +

�∑
i=1

∫ t

0

∂

∂xi
u(s, X1

s , . . . , X�
s) dXi,c

s

+
1
2

∫ t

0

�∑
i,k=1

∂2

∂xi ∂xk
u(s, X1

s , . . . , X�
s) d[M i,c, Mk,c]s

+
∑

s∈(0,t]

Δu(s, X1
s , . . . , X�

s) (6.4.11)

for t ∈ [0,∞). Here the jump size Δu of u at time s is defined as in (5.5.8),
namely

Δu(s, X1
s , . . . , X�

s) = u(s, X1
s , . . . , X�

s) − u(s−, X1
s−, . . . , X�

s−). (6.4.12)
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A proof of the general Itô formula (6.4.11) can be found, for instance, in
Protter (2004). We remark that in (6.4.11) the jumps are simply transferred
through the function u whenever they occur. The Itô formula is almost identi-
cal to that for diffusions if there were no jumps. The above general Itô formula
can be essential for situations where continuous and event driven uncertainty
arises in a model. Similarly to (6.2.14) we can write the Itô formula (6.4.11)
in the form

du(t, X1
t , . . . , X�

t ) =
∂

∂t
u(t, X1

t , . . . , X�
t ) dt +

�∑
i=1

∂

∂xi
u(t, X1

t , . . . , X�
t ) dXi,c

t

+
1
2

�∑
i,k=1

∂2

∂xi ∂xk
u(t, X1

t , . . . , X�
t ) d[Xi,c, Xk,c]t + Δu(t, X1

t , . . . , X�
t )(6.4.13)

for t ∈ [0,∞).

Exponential of Compensated Poisson Process (*)

Let us continue the example concerning the exponential of a Poisson process
by considering the compensated Poisson process q = {qt, t ∈ [0,∞)}, which
is a jump martingale, where

dqt = dNt − λ dt (6.4.14)

for t ∈ [0,∞). By the Itô formula (6.4.11) we obtain for u(qt) = exp{c qt} the
stochastic differential

d (exp{c qt}) = − exp{c qt−}λ dt + exp{c qt−} (ψexp(t−) − 1) dNt

= exp{c qt−}λ (ψexp(t−) − 2) dt

+ exp{c qt−} (ψexp(t−) − 1) dqt

= exp{c qt−}λ (ec − 2) dt + exp{c qt−} (ec − 1) dqt (6.4.15)

for t ∈ [0,∞). Here the jump ratio ψexp(t−) = ec remains as in the case of
the exponential of a Poisson process. Note that the last part of the sum on
the right hand side of (6.4.15) is a martingale differential.

Exponential for Wiener Process with Jumps (*)

To provide another example for the above Itô formula (6.4.11) let us add to
the dynamics of a Poisson process a Wiener process W = {Wt, t ∈ [0,∞)} and
a trend. We consider now the exponential of the process X = {Xt, t ∈ [0,∞)}
with Itô differential

dXt = g dt + σ dWt + c (dNt − λ dt) (6.4.16)
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for t ∈ [0,∞). Here we use as additional parameters the growth rate g, the
intensity λ and the volatility σ. The Itô formula (6.4.11) yields for the expo-
nential

u(Xt) = exp{Xt}
the stochastic differential

d (exp{Xt}) = exp{Xt}
(

g +
1
2

σ2 + λ (ψexp(t) − 2)
)

dt + exp{Xt}σ dWt

+ exp{Xt−} (ψexp(t−) − 1) dqt

= exp{Xt−}
((

g +
1
2

σ2 + λ (ec − 2)
)

dt + σ dWt + (ec − 1) dqt

)

(6.4.17)

for t ∈ [0,∞). We observe that besides the jump terms all other terms are as
in the earlier versions of the Itô differential for geometric Brownian motion, see
(6.1.17). Therefore, we could call the above exponential a geometric Brownian
motion with jumps. The jumps of Xt are transformed by the exponential
function, analogous as described already by the identity (6.4.4).

This example indicates that the Itô formula is a powerful tool that allows
us to determine the stochastic differential of a function of a given stochastic
differential even when jumps are present. We emphasize that the jumps are
directly transferred through the given function, which makes the jump part
in (6.4.17) very simple to interpret. The above jump diffusion dynamics in
(6.4.16) is a special case of the Merton model, see Merton (1976), which we
shall study later.

Itô Formula for Poisson Jump Measure (*)

A particular case of the Itô formula (6.4.11) is obtained when only Wiener
processes and Poisson jump measures are involved. Let us assume that W =
{W t = (W 1

t , . . . , Wm
t )�, t ∈ [0,∞)} is an m-dimensional standard Wiener

process and pr
ϕr

(dv, dt) denotes a Poisson measure on E× [0,∞) with intensity
measure

νr
ϕr

(dv, dt) = ϕr(dv) dt, (6.4.18)

r ∈ {m + 1, m + 2, . . . , �̄}, as introduced in Sect. 3.5 and used in Sect. 5.5.
Suppose that the ith component Xi

t at time t of the process X has the rep-
resentation

Xi
t = Xi

0 +
∫ t

0

ai
s ds +

m∑
k=1

∫ t

0

bi,k
s dW k

s +
�̄∑

r=m+1

∫ t

0

∫
E

ci,r(v, s−) pr
ϕr

(dv, ds)

(6.4.19)
for t ∈ [0,∞) and i ∈ {1, 2, . . . , �}, where ai, bi,j and ci,r are appropriately
chosen adapted processes and the mark space is given as E = �\{0}. Then
the following version of the Itô formula follows from (6.4.11).



6.5 Lévy’s Theorem (*) 227

Corollary 6.4.3. For a function u : [0,∞) × �� → �, which is assumed
to be differentiable with respect to t and twice differentiable with respect to x,
for the above process X the Itô formula has the form

u(t, X1
t , . . . , X�

t ) = u(0, X1
0 , . . . , X�

0) +
∫ t

0

(
∂u(s, X1

s , . . . , X�
s)

∂t

+
�∑

i=1

ai
s

∂

∂xi
u(s, X1

s , . . . , X�
s)

+
1
2

�∑
i,j=1

m∑
k=1

bi,k
s bj,k

s

∂2u(s, X1
s , . . . , X�

s)
∂xi ∂xj

⎞
⎠ ds

+
m∑

k=1

�∑
i=1

∫ t

0

bi,k
s

∂u(s, X1
s , . . . , X�

s)
∂xi

dW k
s

+
�̄∑

r=m+1

∫ t

0

∫
E

(
u(s, X1

s , . . . , X�
s)

−u(s, X1
s−, . . . , X�

s−)
)

pr
ϕr

(dv, ds) (6.4.20)

for t ∈ [0,∞).

By using (6.4.20) it is straightforward to handle problems which include
Lévy processes as underlying factors.

6.5 Lévy’s Theorem (*)

Identification of Martingales as Wiener Processes (*)

The Wiener process is a basic building block in financial modeling and plays
a central role in stochastic calculus. A definition of the Wiener process is
given via the properties (3.2.6). By (5.1.5) we saw that the Wiener process is
a martingale and from (5.2.5) it followed that its quadratic variation equals
time t. Note that the converse of this result can be shown, namely that a
continuous martingale with a quadratic variation that equals time, is a Wiener
process. Lévy’s Theorem provides this important result, which we formulate
below for multi-dimensional continuous martingales. Its derivation relies on
an application of the multivariate Itô formula.

Theorem 6.5.1. (Lévy) For m ∈ N let A be a given m-dimensional
vector process A = {At = (A1

t , A
2
t , . . . , Am

t )�, t ∈ [0,∞)} on a filtered prob-
ability space (Ω,A,A, P ). If each of the processes Ai = {Ai

t, t ∈ [0,∞)} is a
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continuous, square integrable (A, P )-martingale that starts at 0 at time t = 0
and their covariations are of the form

[Ai, Ak]t =
{

t for i = k
0 for i �= k

(6.5.1)

for i, k ∈ {1, 2, . . . , m}, t ∈ [0,∞), then the vector process A is an m-
dimensional standard Wiener process on [0,∞). This means that each pro-
cess Ai is a one-dimensional Wiener process that is independent of the other
Wiener processes Ak for k �= i.

In particular, one can show that this result implies that a continuous pro-
cess X = {Xt, t ∈ [0,∞)} is a one-dimensional Wiener process if and only
if both the process X and the process Y = {Yt = X2

t − t, t ∈ [0,∞)} are
martingales. Furthermore, if one is able to construct for an observed vector
process a transformation such that the transformed processes are square in-
tegrable continuous martingales with covariations of the form (6.5.1), then
one has found the basic building blocks of the given dynamics in the form of
a vector of independent Wiener processes. In this case one needs then only
to take the inverse of that transformation to arrive at a realistic model. It is
a challenge in financial modeling to construct a parsimonious market model
with the above property.

Proof of Lévy’s Theorem (*)

To indicate the proof of the above theorem we consider the characteristic
function

φAt−As(θ) = E

(
exp

{
ı

m∑
k=1

θk (Ak
t − Ak

s)

}∣∣∣∣As

)
(6.5.2)

for θ ∈ �m, t ∈ [0,∞) and s ∈ [0, t], with ı denoting the imaginary unit, see
(1.3.77).

By application of a complex valued version of the Itô formula (6.4.11) for
semimartingales we obtain

exp

{
ı

m∑
k=1

θk Ak
t

}
−exp

{
ı

m∑
k=1

θk Ak
s

}
=

m∑
k=1

∫ t

s

ı θk exp

{
ı

m∑
l=1

θl Al
u

}
dAk

u

+
1
2

m∑
k=1

∫ t

s

(
−(θk)2

)
exp

{
ı

m∑
l=1

θl Al
u

}
du. (6.5.3)

We have introduced the Itô integral with respect to general integrators in
(5.3.11). The martingale property for Itô integrals, which follows for inte-
grators that are Wiener processes and integrands that are from L2

T , when
considered on [0, T ] with T ∈ (0,∞), can be naturally extended to cover the
wider class of square integrable martingale integrators with integrands that
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appear in (6.5.3), see Protter (2004). This means that the terms in the first
sum on the right hand side of (6.5.3) are martingales and we have

E

(∫ t

s

exp

{
ı

m∑
l=1

θl Al
u

}
dAk

u

∣∣∣As

)
= 0. (6.5.4)

Let us now choose any event F ∈ As and denote by 1F the indicator function
that equals one if F occurs. Then multiplying both sides of (6.5.3) by

1F exp

{
−ı

m∑
k=1

θk Ak
s

}

and taking expectations yields

G(t) − P (F) = −1
2

m∑
k=1

(θk)2
∫ t

s

G(u) du,

where

G(u) = E

(
exp

{
ı

m∑
k=1

θk (Ak
u − Ak

s)

}
1F

)

for u ∈ [0, t]. The solution to this ordinary integral equation is given by

G(t) = P (F) exp

{
−1

2

m∑
k=1

(θk)2 (t − s)

}
.

Consequently, by the Bayes’s formula for conditional means, see (1.1.13) or
Karatzas & Shreve (1991), we obtain

E

(
exp

{
ı

m∑
k=1

θk (Ak
t − Ak

s)

}∣∣∣∣F
)

=
G(t)
P (F)

= exp

{
−1

2

m∑
k=1

(θk)2 (t − s)

}
.

Clearly, this result holds for any F ∈ As. Therefore, we have shown that for
all θ ∈ �m, t ∈ [0,∞) and s ∈ [0, t] the characteristic function of the vector
increment At − As is of the form

φAt−As(θ) = exp

{
−1

2

m∑
k=1

(θk)2 (t − s)

}
. (6.5.5)

It is known, see (1.4.58), that this is the characteristic function of a vector
of independent Gaussian distributed random variables, each with mean zero
and variance (t − s). Since the characteristic function of a random vector
identifies uniquely the joint distribution of this random vector, we see by
the Definition 6.2.1 that the process A is an m-dimensional standard Wiener
process. �	
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6.6 A Proof of the Itô Formula (*)

Since the Itô formula is extremely important in quantitative finance we
highlight in the following the main steps of a classical proof of this fun-
damental tool. For simplicity, we consider the scalar, continuous process
X = {Xt, t ∈ [0,∞)}, given in (6.1.6), that is

Xt = X0 +
∫ t

0

es ds +
∫ t

0

fs dWs (6.6.1)

for t ∈ [0,∞) with initial value X0 = x0, standard Wiener process W = {Wt,
t ∈ [0,∞)} and predictable processes e and f , where the second integral is an
Itô integral. The proof of the multi-dimensional Itô formula stated in (6.2.11)
is a straightforward generalization of what will be given below.

Theorem 6.6.1. If we assume that u : [0, T ]×� → � is a function of time
t ∈ [0, T ] and state variable x ∈ � such that the partial derivatives ∂u(t,x)

∂t ,
∂u(t,x)

∂x and ∂2u(t,x)
∂x2 exist and are continuous for all (t, x) ∈ [0, T ] × � and√

|e|, f ∈ L2
T , see (5.4.1), then the Itô formula can be written in the form

du(t, Xt) =
(

∂u(t, Xt)
∂t

+ et
∂u(t, Xt)

∂x
+

1
2

(ft)2
∂2u(t, Xt)

∂x2

)
dt

+ ft
∂u(t, Xt)

∂x
dWt (6.6.2)

for t ∈ [0, T ].

A Lemma (*)

Before we begin with the proof of the Itô formula given in Theorem 6.6.1 let
us summarize some application of the Taylor series expansion and the Mean
Value Theorem of classical calculus in a simple lemma.

Lemma 6.6.2. Let the function u : [0, T ] × � → � be as in Theorem 6.6.1.
Then for any t, t + Δt ∈ [0, T ] and x, x + Δx ∈ � there exist constants
α, β ∈ [0, 1] such that

u(t + Δt, x + Δx) − u(t, x) =
∂u(t + αΔt, x)

∂t
Δt +

∂u(t, x)
∂x

Δx

+
1
2

∂2u(t, x + βΔx)
∂x2

(Δx)2.
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Proof of Theorem 6.6.1 (*)

1. First assume that e and f are deterministic constants, that is, they do not
depend on t. We choose a continuous sample-path of X and fix a subinterval
[s, t] ⊆ [0, T ], for which we consider partitions of the form s = t

(n)
1 < t

(n)
2 <

. . . < t
(n)
n+1 = t with Δt

(n)
j = t

(n)
j+1 − t

(n)
j and δ(n) = max1≤j≤n Δt

(n)
j , where

limn→∞ δ(n) a.s.= 0. Then

u (t, Xt) − u (s, Xs) =
n∑

j=1

Δu
(n)
j ,

where
Δu

(n)
j = u

(
t
(n)
j+1, Xtn

j+1

)
− u
(
t
(n)
j , Xtn

j

)

for j ∈ {1, 2, . . . , n}. Applying Lemma 6.6.2 on each subinterval [t(n)
j , t

(n)
j+1] for

each ω ∈ Ω, we have α
(n)
j , β

(n)
j ∈ [0, 1] such that

Δu
(n)
j =

∂u

∂t

(
t
(n)
j + α

(n)
j Δt

(n)
j , Xtn

j

)
Δt

(n)
j

+
∂u

∂x

(
t
(n)
j , Xtn

j

)
ΔX

(n)
j

+
1
2

∂2u

∂x2

(
t
(n)
j , Xtn

j
+ β

(n)
j ΔX

(n)
j

)(
ΔX

(n)
j

)2
, (6.6.3)

almost surely, where ΔX
(n)
j = Xtn

j+1
− Xtn

j
for j ∈ {1, 2, . . . , n}. By the

continuity of ∂u
∂t and ∂2u

∂x2 , and the sample-path continuity of X, we have for
each j ∈ {1, 2, . . . , n}

lim
n→∞

∂u

∂t

(
t
(n)
j + α

(n)
j Δt

(n)
j , Xtn

j

)
− ∂u

∂t

(
t
(n)
j , Xtn

j

)
a.s.= 0, (6.6.4)

and

lim
n→∞

∂2u

∂x2

(
t
(n)
j , Xtn

j
+ β

(n)
j ΔX

(n)
j

)
− ∂2u

∂x2

(
t
(n)
j , Xtn

j

)
a.s.= 0. (6.6.5)

Since e and f are independent of t, the increments of X are of the form

ΔX
(n)
j = eΔt

(n)
j + fΔW

(n)
j ,

where ΔW
(n)
j = Wtn

j+1
− Wtn

j
for j ∈ {1, 2, . . . , n}. Consequently, it can be

shown that the sum
n∑

j=1

{(
ΔX

(n)
j

)2
−
(
fΔW

(n)
j

)2}
= e2

n∑
j=1

(
Δt

(n)
j

)2
+ 2ef

n∑
j=1

ΔW
(n)
j Δt

(n)
j

(6.6.6)
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tends to 0 in probability for δ(n) → 0 as n → ∞. By combining rela-
tions (6.6.3)–(6.6.6) we see that under convergence in probability

u(t, Xt) − u(s, Xs)
P= lim

n→∞

n∑
j=1

Δu
(n)
j

P= lim
n→∞

n∑
j=1

{
∂u

∂t

(
t
(n)
j , Xtn

j

)
+ e

∂u

∂x

(
t
(n)
j , Xtn

j

)

+
1
2

f2 ∂2u

∂x2

(
t
(n)
j , Xtn

j

)}
Δt

(n)
j

+ lim
n→∞

n∑
j=1

f
∂u

∂x

(
t
(n)
j , Xtn

j

)
ΔW

(n)
j

+ lim
n→∞

n∑
j=1

1
2
f2 ∂2u

∂x2

(
t
(n)
j , Xtn

j

)((
ΔW

(n)
j

)2
− Δt

(n)
j

)
. (6.6.7)

The first two terms on the right hand side of (6.6.7) are the terms on the right
hand side of (6.6.2). We shall show that the last term in (6.6.7) converges to
zero in probability for n → ∞. Let us write Γ

(n)
j = (ΔW

(n)
j )2 − Δt

(n)
j with

1(N)
n,j denoting the indicator function of the set

A
(N)
n,j =

{
ω ∈ Ω :

∣∣Xtn
i

∣∣ ≤ N for i ∈ {1, 2, . . . , j}
}

for j ∈ {1, 2, . . . , n}. For fixed n the random variables Γ
(n)
j are independent

with mean E
(
Γ

(n)
j

)
= 0 and variance E

((
Γ

(n)
j

)2)
= 2
(
Δt

(n)
j

)2
for j ∈

{1, 2, . . . , n}. Using this result we obtain the estimate

lim
n→∞

E

⎛
⎜⎝
∣∣∣∣∣∣

n∑
j=1

∂2u

∂x2

(
t
(n)
j , Xtn

j

)
1(N)

n,j Γ
(n)
j

∣∣∣∣∣∣
2
⎞
⎟⎠

P= lim
n→∞

n∑
j=1

E

(∣∣∣∣∂
2u

∂x2

(
t
(n)
j , Xtn

j

)
1(N)

n,j Γ
(n)
j

∣∣∣∣
2
)

P
≤ lim

n→∞
CN

n∑
j=1

2
(
Δt

(n)
j

)2

P
≤ lim

n→∞
2 CN |t − s| δ(n) P= 0.
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Here we have used the upper bound

CN = max
s≤z≤t
|x|≤N

∣∣∣∣∂
2u

∂x2 (z, x)
∣∣∣∣
2

< ∞.

As mentioned in Sect. 2.1, for an event D its complement denoted by Dc is
given by Dc = {ω ∈ Ω : ω �∈ D}. Since

n⋃
j=1

(
A

(N)
n,j

)c

⊆ B(N) =
{

ω ∈ Ω : sup
s≤z≤t

|Xz| > N

}
,

so that limN→∞ P
(
B(N)
)

= 0, then limN→∞ P (A(N)
n,j ) = 1. Combining these

two results it can be shown that the last term in (6.6.7) converges to zero
in probability n → ∞. For e and f , which do not depend on t, the proof
is thus complete. We can show that a similar result holds for random step
functions e and f since these remain constant within partition subintervals,
when conditioned on the sigma-algebra of the last discretization point.

2. For general e and f with
√

|e|, f ∈ L2
T we can construct sequences of

step functions (
√

|e(n)|), (f (n)) in L2
T such that the integrals

lim
n→∞

∫ t

s

∣∣∣e(n)
z − ez

∣∣∣ dz
P= 0

and

lim
n→∞

∫ t

s

∣∣∣f (n)
z − fz

∣∣∣2 dz
P= 0

converge in probability to zero. This is because p-mean convergence for p = 1
implies convergence in probability, see (2.7.6). Then we can show that the
sequence defined by

X(n)
r = Xs +

∫ r

s

e(n)
z dz +

∫ r

s

f (n)
z dWz

converges in probability to Xr as n → ∞ for each r ∈ [0, t] and s ∈ [0, r],
that is limn→∞ X

(n)
r

P= Xr. Since the Itô formula has been shown for step
functions, then

u
(
t, X

(n)
t

)
− u
(
s, X(n)

s

)
=
∫ t

s

(
∂u

∂t

(
z, X(n)

z

)
+ e(n)

z

∂u

∂x

(
z, X(n)

z

)

+
1
2

(
f (n)

z

)2 ∂2u

∂x2

(
z, X(n)

z

))
dz

+
∫ t

s

f (n)
z

∂u

∂x
(z, X(n)

z ) dWz, (6.6.8)
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almost surely for each n. Now, from the convergence of X
(n)
z to Xz in proba-

bility as n → ∞ for z ∈ [s, t] it follows convergence in probability for the left
hand side of (6.6.8), that is

lim
n→∞

(u(t, X(n)
t ) − u(s, X(n)

s )) P= u(t, Xt) − u(s, Xs). (6.6.9)

Using similar arguments as given in the first part of this proof it can be
shown that under convergence in probability

lim
n→∞

∫ t

s

(
∂u

∂t

(
z, X(n)

z

)
+ e(n)

z

∂u

∂x

(
z, X(n)

z

)
+

1
2

(
f (n)

z

)2 ∂2u

∂x2

(
z, X(n)

z

))
dz

P=
∫ t

s

(
∂u

∂t
(z, Xz) + ez

∂u

∂x
(z, Xz) +

1
2
(fz)2

∂2u

∂x2 (z, Xz)
)

dz (6.6.10)

and

lim
n→∞

∫ t

s

f (n)
z

∂u

∂x

(
z, X(n)

z

)
dWz

P=
∫ t

s

fz
∂u

∂x
(z, Xz) dWz. (6.6.11)

As explained at the end of Sect.2.1, by taking subsequences the above conver-
gences in probability can be considered to hold a.s. Thus, we see by passing
to the limit on both sides of equation (6.6.8) for n → ∞ it follows that equa-
tion (6.6.2) holds a.s. The processes on the two sides of equation (6.6.2) are
continuous and, thus, indistinguishable, see (3.1.6). Note that the integrals
appearing on the right hand side of (5.4.1) are well defined as limits in prob-
ability. This means that these integrals can be interpreted in a wider sense,

namely as limits in probability, when either
√∣∣∣∂u(·,X(·))

∂t

∣∣∣,
√∣∣∣e(·) ∂u(·,X(·))

∂x

∣∣∣,√
f2(·)

∣∣∣∂2u(·,X(·))
∂x2

∣∣∣ or
∣∣∣f(·) ∂u(·,X(·))

∂x

∣∣∣ are not elements of the space L2
T . In

cases where the integrals in (5.4.1) exist in the mean square sense, as described
in Sect. 5.3, these limits coincide almost surely with the limits in probability.
�	

6.7 Exercises for Chapter 6

6.1. Derive the Itô differential for (Yt)2 if Y = {Yt = a t + b Wt, t ∈ [0,∞)}
denotes a transformed Wiener process, where W is a standard Wiener process.

6.2. Determine for a geometric Brownian motion Zt = Z0 exp{μ t+σ Wt} the
Itô differential for Zt and ln(Zt) by the use of the Itô formula, where W is a
standard Wiener process.

6.3. What is the Itô differential for the square (Zt)2 of the geometric Brownian
motion in Exercise 6.2?
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6.4. Derive the Itô differential for the inverse (Zt)−1 of the geometric Brow-
nian motion in Exercise 6.2.

6.5. Compute the Itô differential of the product Yt Zt of the transformed
Wiener process Y in Exercise 6.1 and the geometric Brownian motion Zt in
Exercise 6.2.

6.6. Consider two transformed Wiener processes with Y 1
t = a1 t + b1 W 1

t and
Y 2

t = a2 t + b2 W 2
t , where W 1 and W 2 are two independent standard Wiener

processes. What is the Itô differential for Y 1
t Y 2

t ?

6.7. Assume the same transformed Wiener processes as in Exercise 6.6 and
compute the Itô differential for the expression exp{Y 1

t } exp{Y 2
t }.

6.8. Calculate the covariation between a standard Wiener process and its
square.

6.9. (*) Assume ξ : [0,∞) → � is a given deterministic function of time and
that X is given by an Itô integral, such that

Xt =
∫ t

0

ξ(s) dWs

for t ∈ [0,∞), where W is a standard Wiener process. Show that Y = {Yt =
X2

t − [X]t, t ∈ [0,∞)} is a martingale.

6.10. (*) For a process X = {Xt, t ∈ [0,∞)} with Xt = σ Wt+ξ Nt, where W
is a standard Wiener process and N a Poisson process with intensity λ > 0,
characterize the stochastic differential of its exponential when σ, ξ > 0.

6.11. (*) For the sum Xt = a N1
t + b N2

t , where N1 and N2 are two in-
dependent Poisson processes with intensity λ > 0, compute the stochastic
differential of the exponential.
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