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Martingales and Stochastic Integrals

In this chapter we consider a class of continuous stochastic processes, called
martingales, which play a central role in finance. We also define the gains
realized from trading as a stochastic integral. Stochastic integration and mar-
tingales provide key tools for the analysis of the continuous time evolution of
financial markets.

5.1 Martingales

One of the fundamental concepts in modern finance is the notion of a martin-
gale. This is a stochastic process that, with its last observed value, provides
the best forecast for its future values. Martingales exhibit the property of
having no systematic trends in their dynamics. It is obvious that financial
quantities, such as asset prices, are driven primarily by information. Forecast-
ing a quantity, for example, the value of a derivative price when expressed in
units of the market portfolio, is strongly dependent on the information that
is available at the present time. This forces one to use a detailed notion for
the information structure related to the evolution of the underlying stochastic
processes.

Information Sets and Filtrations

On a given probability space (Ω,A, P ), as introduced in Sect. 1.1, let us con-
sider a financial market model that is based on the observation of a continuous
time stochastic vector process X = {Xt ∈ �n, t ∈ [0,∞)}, n ∈ N , typically
expressing asset price processes. We denote by Ât the time t information set,
which is the sigma-algebra of events that are known to the market partici-
pants at time t ∈ [0,∞). Our interpretation of Ât is that it represents the
information obtained from the values of the vector process X up to time t.
More precisely, it is the sigma-algebra
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Ât = σ{Xs : s ∈ [0, t]}

generated from all observations of X in the market up to time t. In a general
financial market model the components of X could include diverse quanti-
ties, for instance, security prices, interest rates, indicators for certain political
events, market activity, corporate data, employment figures, insurance claims,
balance sheets of companies or trade balances.

Assuming that information is not lost, then the increasing family

Â = {Ât, t ∈ [0,∞)}

of information sets Ât, which are sub-sigma-algebras of Â∞ satisfy, for any
sequence 0 ≤ t1 < t2 < . . . < ∞ of observation times, the relation Ât1 ⊆
Ât2 ⊆ . . . ⊆ Â∞ = ∪ t∈[0,∞)Ât.

Furthermore, to avoid technical subtleties, we introduce the information
set At as the augmented sigma-algebra of Ât for each t ∈ [0,∞). This means
that it is augmented by every null set in Â∞ such that it belongs to A0, and so
to each At. We define At+ = ∩ε>0At+ε to be the sigma-algebra of events im-
mediately after t ∈ [0,∞). We say that the family A = {At, t ∈ [0,∞)} is right
continuous if At = At+ holds for every t ∈ [0,∞). Such a right-continuous
family A = {At, t ∈ [0,∞)} of information sets we call a filtration. Thus, a fil-
tration models the evolution of information as it becomes available over time.
For simplicity, we define A as the smallest sigma-algebra that contains A∞
= ∪ t∈[0,∞)At.

The above technical assumptions allow convenient mathematical deriva-
tions and do not restrict our practical modeling potential. From now on, if not
stated otherwise, we shall assume a filtered probability space (Ω,A,A, P ) to be
given, where the filtration A characterizes the evolution of the corresponding
information. The capturing of the evolution of this information is essential for
the modeling of financial markets since it is information that drives most of
its dynamics.

Any given stochastic process Y = {Yt, t ∈ [0,∞)} generates a filtration
AY = {AY

t , t ∈ [0,∞)}. Here AY
t = σ{Ys : s ∈ [0, t]} is the information set,

that is the sigma-algebra, generated by Y up to time t. This information set
can be interpreted as a complete record of all movements of the process Y up
until time t. AY is also called the natural filtration for the process Y . For a
given model with a vector process X that describes the total evolution of the
model and, thus, the corresponding increasing family of information sets, we
write A = AX and set At = AX

t , similarly as above.
If for a process Z = {Zt, t ∈ [0,∞)} and each time t ∈ [0,∞) the ran-

dom variable Zt is AX
t -measurable, then Z is called adapted to AX =

{AX
t , t ∈ [0,∞)}. In intuitive terms this means that the history of the process

Z until time t is covered by the information set AX
t . As a consequence, for an

AX -adapted process Z the value Zt is known, given the information set AX
t

up to and including time t. We mention that the completeness of the informa-
tion set AX

t , which includes all null events, allows us to conclude that for two
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random variables Z1 and Z2, where Z1 = Z2 a.s. and Z1 is AX
t measurable,

Z2 is also AX
t -measurable.

If the process X is Markovian, then the relevant information needed to
determine properties of its future values reduces to the knowledge of the value
Xt at the present time t. This makes it possible to express and store the
relevant information in a compact form. It also highlights the importance of
Markovianity for the tractability of a wide range of financial models.

In financial modeling we shall typically use later a filtered probability
space (Ω,A, A, P ), where the sources of continuous uncertainty are indepen-
dent standard Wiener processes W 1, W 2, . . . , Wm and the sources of event
driven uncertainty are independent Poisson processes Nm+1, Nm+2, . . . , Nd,
d ∈ {1, 2, . . .}, m ∈ {1, 2, . . . , d}. We shall always assume that these Wiener
and Poisson processes are A-adapted and that their increments (W j

t − W j
s )

are independent of As, see (1.1.16), for t ∈ [0,∞), s ∈ [0, t] and j ∈
{1, 2, . . . ,m}. We call then W = {W t = (W 1

t , W 2
t , . . . , Wm

t )�, t ∈ [0,∞)} an
m-dimensional standard Wiener process on (Ω,A,A, P ) or an (A, P )-Wiener
process.

Continuous Time Martingales

In financial markets, investors have to determine best estimates for the actual
value of future payoffs. If they were to use different information sets, then
they might generate different value estimates. For simplicity, let us assume
that they all use the same information sets. Furthermore, a value estimate
needs to be based on a corresponding benchmark or numeraire, which pro-
vides the units in which the investor formulates his or her best estimates. We
shall later discuss cases where one uses the savings account or the market
portfolio as numeraire. Finally, an investor has also to employ a probability
measure for forming some expectation when identifying the best estimate, as
we shall see below. Let us use the numeraire for which it is appropriate to
form an expectation under the real world probability measure when searching
for the best estimate of a future payoff. We shall see later that an appropriate
numeraire is the market portfolio. More generally, given an information set, a
probability measure and a numeraire, we shall ask what is at present the best
estimate for the value of a future cash flow or payoff.

To answer this question in a mathematically precise manner we define the
quantity Fs for s ∈ [0,∞) as the least-squares estimate, see (1.3.72), of the
future value Xt at the later time t ∈ [s,∞) under the information given by As.
This best estimate is As-measurable and minimizes the expected least-squares
error

εs = E
(
(Xt − Fs)2

)

over all possible As-measurable estimates. Note that we need here to assume
that Xt is square integrable, see (1.3.7). The random variable Fs is simply
the least-squares projection of Xt given the information at time s ∈ [0, t]. It
is obtained by the conditional expectation
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Fs = E(Xt

∣
∣As), (5.1.1)

for all s ∈ [0, t].
In a price system a candidate for a reasonable price at time s ∈ [0, t]

for the future value Xt at time t is the least-squares estimate Fs that can
be formed on the basis of the information contained in As. This means, one
obtains realistic prices when setting Xs = Fs by forming the price process
X = {Xt, t ∈ [0,∞)} which satisfies the conditional expectation

Xs = E(Xt

∣
∣As) (5.1.2)

for all s ∈ [0, t] and t ∈ [0,∞).

Definition 5.1.1. We call a continuous time stochastic process X = {Xt,
t ∈ [0,∞)}, which satisfies the property (5.1.2) and the integrability condition

E(|Xt|) < ∞ (5.1.3)

for all t ∈ [0,∞), a martingale or more precisely an (A, P )-martingale.

If for a martingale X in addition the random variable Xt is square inte-
grable for all t ∈ [0,∞), that is

E
(
|Xt|2

)
< ∞ (5.1.4)

for all t ∈ [0,∞), then we call X a square integrable martingale. Note by
(5.1.1) and (5.1.2) that for a square integrable martingale the least-squares
estimate of its future values is always given by its last available observation.

A martingale is defined with respect to a given filtration A, which denotes
the family of relevant information sets, and a probability measure P , which
expresses the likelihood of events. The conditional expectation is then taken
under P . Since both ingredients are essential we shall call a martingale an
(A, P )-martingale if it is defined with respect to the filtration A and the
probability measure P . This is sometimes important because it is not always
clear from the context which filtration and probability measure are chosen.
If one changes the filtration A or the probability measure P , then a given
martingale will usually no longer remain a martingale.

The martingale relation (5.1.2) is fundamental in finance, in particular, in
derivative pricing. Under the benchmark approach we shall ask later deriva-
tive prices, when expressed in units of the benchmark, to form martingales.
Different pricing rules are obtained by selecting different reference units or
numeraires, an issue that will be discussed later in detail.

Examples of Martingales

As an example of a continuous time martingale, let us consider a Wiener
process W = {Wt, t ∈ [0,∞)} on a filtered probability space (Ω,A,A, P ).
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Fig. 5.1.1. Paths of Xt = W 2
t − t, W 2

t and t

Here, as previously mentioned, we assume that Wt+h − Wt is independent of
At for all t ∈ [0,∞) and h ∈ [0,∞). Furthermore, the natural filtration AW

of W is such that AW
t ⊆ At for each t ∈ [0,∞).

Note that W is A-adapted, which means that Wt is At-measurable for
t ∈ [0,∞). We can show by the linearity and independence properties of con-
ditional expectations, see (1.3.69) and (1.3.67), that

E(Wt

∣
∣As) = E

(
Wt − Ws

∣
∣As

)
+ E

(
Ws

∣
∣As

)

= E (Wt − Ws) + E
(
Ws

∣
∣As

)

= Ws (5.1.5)

for s ∈ [0,∞) and t ∈ [s,∞). From (5.1.5) it follows by Definition 5.1.1 that
the above Wiener process W is a martingale, or more precisely an (A, P )-
martingale.

There are many other continuous time stochastic processes that form mar-
tingales. For example, using again the standard Wiener process W it can be
demonstrated that the process

X =
{
Xt = W 2

t − t, t ∈ [0,∞)
}

(5.1.6)

is an (A, P )-martingale. In Fig. 5.1.1 we show a typical path for this process
together with W 2

t and t.
The process

X̄ =
{

X̄t = exp
{

σWt −
1
2

σ2t

}
, t ∈ [0,∞)

}
,

which is an exponential of a transformed Wiener process, is also an (A, P )-
martingale. Note that this is a specific geometric Brownian motion with
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Fig. 5.1.2. Path of X̄t = exp
˘

σWt − 1
2

σ2t
¯

volatility σ, negative growth rate μ = −1
2σ2 and initial value X̄0 = 1. Fig-

ure 5.1.2 displays a sample path for this process with volatility σ = 0.2.

Super- and Submartingales

In practice asset prices are usually not completely trendless. For instance,
the price of a zero coupon bond, which pays one dollar at a fixed maturity
date, increases on average over time until it reaches at maturity the value one.
These types of systematically trending stochastic processes are captured by
the following definition of super- and submartingales.

Definition 5.1.2. One calls an A-adapted process X = {Xt, t ∈ [0,∞)}
an (A, P )-supermartingale (submartingale) if

Xs

(≤)
≥ E

(
Xt

∣
∣As

)
(5.1.7)

and
E(|Xt|) < ∞ (5.1.8)

for s ∈ [0,∞) and t ∈ [s,∞).

This means, on average, a supermartingale (submartingale) decreases (in-
creases) its value over time. In comparison with a martingale the equality
in (5.1.2) is replaced by the inequality (5.1.7). We call a supermartingale
(submartingale) a strict supermartingale (submartingale) if the inequality in
(5.1.7) is a strict inequality.

As an example for a submartingale we show in Fig.5.1.3 for some geometric
Brownian motion with
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Fig. 5.1.3. Path of Xt for a submartingale

Xt = exp
{(

r − 1
2

σ2

)
t + σ Wt

}
(5.1.9)

a sample path over a period of ten years with expected rate of return
r = 0.05 and volatility σ = 0.2. This example illustrates some features
that are typical for asset price scenarios. They seem to exhibit larger fluc-
tuations for larger asset price values, as is the case for the S&P500 index
shown in Fig. 3.1.1. If the submartingale X is discounted by the process
B = {Bt = exp{r t}, t ∈ [0,∞)}, which is simply a savings account with
continuously compounding constant interest rate r > 0, then the discounted
process X̄ = {X̄t = Xt

Bt
, t ∈ [0,∞)} is a martingale. Let us mention that

Fig. 5.1.2 displays the sample path for X̄t, where Xt is shown in Fig. 5.1.3.
As we shall see later in Chaps. 9 to 14, in financial market models super-

martingales play a natural role. They appear when securities are expressed
in units of a particular benchmark, which is the, so-called, growth optimal
portfolio (GOP). This is the portfolio that maximizes the expected logarithm
of its value at future dates, see Kelly (1956), Long (1990). By interpreting a
diversified market index as the GOP it has been suggested in Platen (2004c)
that the savings account B, when expressed in units of the market index
should be modeled to form a strict supermartingale and not a martingale, as
the classical risk neutral theory assumes, and will be explained in Chap. 9.

Compensated Poisson Process

In Fig. 3.5.1 we plotted the path of a Poisson process N = {Nt, t ∈ [0,∞)}
with intensity λ > 0, see Definition 3.5.1. We have assumed for any Poisson
process N that N is A-adapted and such that for t ∈ [0,∞) and h ∈ [0, T − t]
the At+h-measurable random variable Nt+h − Nt is independent of At. We
can then show for 0 ≤ s < t < ∞ by using (3.5.2) that
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Fig. 5.1.4. Path of a compensated Poisson process

E
(
Nt

∣
∣As

)
= E

(
Nt − Ns

∣
∣As

)
+ Ns = E (Nt − Ns) + Ns

= λ(t − s) + Ns ≥ Ns, (5.1.10)

which proves that the Poisson process is a submartingale.
On the other hand, the compensated Poisson process q = {qt, t ∈ [0,∞)}

with
qt = Nt − λ t (5.1.11)

is a martingale since we have by similar arguments as in (5.1.10)

E
(
qt

∣
∣As

)
= E

(
qt − qs

∣
∣As

)
+ qs

= E (Nt − Ns) − λ (t − s) + qs = qs (5.1.12)

for 0 ≤ s ≤ t < ∞. In Fig. 5.1.4 we plot the path of a compensated Poisson
process q with intensity λ = 20, where Fig. 3.5.1 shows the corresponding
trajectory of the Poisson process N .

Stopping Times

Random times naturally appear in financial and insurance applications, for
instance, as time of default of a company. We refer to Sect.3.7 for an insurance
example. Also the first hitting time of a critical barrier by an underlying
asset price is a random time. Since the information structure is essential in
stochastic modeling such random times have to be properly defined.

This leads us to the notion of stopping times. Let us consider a filtered
probability space (Ω,A,A, P ) as introduced above.

Definition 5.1.3. A random variable τ : Ω → [0,∞) is called a stopping
time with respect to the filtration A if for all t ∈ [0,∞)

{τ ≤ t} ∈ At. (5.1.13)
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Fig. 5.1.5. First hitting time of a Wiener path

The relation (5.1.13) means that for all ω ∈ Ω the event τ ≤ t is in At,
which expresses the fact that it is At-measurable and thus observable at time
t. The information set, that is, the sigma-algebra associated with a stopping
time τ is defined as

Aτ = σ {A ∈ A : A ∩ {τ ≤ t} ∈ At for t ∈ [0,∞)}. (5.1.14)

It represents the information available before and at the stopping time τ . For
instance, the kth jump time τk of a Poisson process N , as defined in Sect. 3.5,
is a stopping time. This could be the time when the kth company collapses in
a given year. One can show that a counting process is adapted if and only if
the associated jump times are stopping times.

The first time
τ(a) = inf{t ≥ 0 : Wt = a} (5.1.15)

when a Wiener process W reaches a level a ∈ � is a stopping time. In Fig.5.1.5
we display the first time τ(1.0) ≈ 5.8 of a Wiener path hitting the level a = 1.0.
Similarly, the default time of a company is a stopping time.

Predictable Processes

The allocation of assets in a portfolio can, in practice, only be performed in
a predictable way. That means, the investor has to decide in advance what
allocation will be pursued. To make this notion of predictability precise for
stopping times, we call a sigma-algebra predictable when it is generated by left-
continuous A-adapted processes with right hand limits. Roughly speaking, we
exclude in a predictable sigma-algebra all information about the time instant
when a sudden not predictable event, like a default, occurs. Note however,
immediately after the event a predictable sigma-algebra already contains also
this information. A stochastic process X = {Xt, t ∈ [0,∞)}, where Xτ is
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for each stopping time τ measurable with respect to a predictable sigma-
algebra, is called predictable. For instance, all continuous stochastic processes
are predictable. From a right-continuous process with left hand limits X =
{Xt, t ∈ [0,∞)} we obtain its predictable version X̃ = {X̃t, t ∈ [0,∞)} by
taking at each time point the left hand limit, that is

X̃t = Xt− (5.1.16)

for all t ∈ [0,∞). Later when we form stochastic integrals we shall typically
request that the integrands are predictable processes. In the case when a
given potential integrand is not predictable, then its left-continuous version
is chosen as integrand. This is similar to the natural request that an investor
has to decide about his or her portfolio allocation of stocks at the beginning
of any trading period and cannot revise it afterwards.

A stopping time is called predictable, if Aτ is predictable. This means, Aτ

is generated by left-continuous stochastic processes with right hand limits. A
stopping time that is not predictable is called inaccessible. The jump times
of a Poisson process are inaccessible. Here Aτ cannot be generated by left-
continuous processes. However, the first hitting time τ(a) of the continuous
Wiener process W , given in (5.1.15), is predictable.

Properties of Stopping Times (*)

For a, b ∈ � we employ the notation a ∧ b = min(a, b) and a ∨ b = max(a, b).
One can derive the following useful properties of stopping times τ and τ ′, see
Karatzas & Shreve (1991) and Elliott (1982).

(i) τ is Aτ -measurable.
(ii) For a continuous A-adapted process X = {Xt, t ∈ [0,∞)} the random

variable Xτ is Aτ -measurable.
(iii) If P (τ ≤ τ ′) = 1, then Aτ ⊆ Aτ ′ .
(iv) The random variables τ ∧ τ ′, τ ∨ τ ′ and (τ + τ ′) are stopping times.
(v) If for a real valued random variable Y we have E(|Y |) < ∞

and P (τ ≤ τ ′) = 1, then

E(Y | Aτ ) = E(Y | Aτ∧τ ′) (5.1.17)

and
E

(
E(Y | Aτ )

∣
∣Aτ ′

)
= E(Y | Aτ ). (5.1.18)

Optional Sampling Theorem (*)

If X = {Xt, t ∈ [0,∞)} is a right continuous (A, P )-supermartingale, then the
supermartingale property (5.1.2) is also true if the times s and t in (5.1.2) are
stopping times. More precisely, Doob’s Optional Sampling Theorem states the
following result, see Doob (1953), Elliott (1982) or Karatzas & Shreve (1991).
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Theorem 5.1.4. (Doob) If X = {Xt, t ∈ [0,∞)} is a right continuous
(A, P )-supermartingale on (Ω,A,A, P ), then it holds for two bounded stopping
times τ and τ ′ with τ ≤ τ ′ almost surely that

E(Xτ ′ | Aτ ) ≤ Xτ (5.1.19)

almost surely. Furthermore, if X is also an (A, P )-martingale, then equality
holds in (5.1.19).

This theorem is important if one wants to apply a pricing rule at a stopping
time or the payoff that one aims to price matures at a stopping time. Such
case arises for American options that allow exercising the payoff at any time
prior to maturity.

Martingale Inequalities (*)

For a given underlying financial quantity, or more generally, a given stochastic
process X, it is important to have some upper bounds for its maximum. If
X = {Xt, t ∈ [0,∞)} is a right continuous supermartingale, then it can be
shown, see Doob (1953) or Elliott (1982), that for any λ > 0 it holds

λP

(

sup
t∈[0,∞)

Xt ≥ λ
∣
∣A0

)

≤ E
(
X0

∣
∣A0

)
+ E

(
max(0,−X0)

∣
∣A0

)
. (5.1.20)

By exploiting the martingale property (5.1.19) one can prove the following
powerful martingale inequalities, see Doob (1953) or Elliott (1982). A contin-
uous martingale X = {Xt, t ∈ [0,∞)} with finite pth moment satisfies the
maximal martingale inequality

P

(

sup
s∈[0,t]

|Xs| > a

)

≤ 1
ap

E(|Xt|p) (5.1.21)

and the Doob inequality

E

(

sup
s∈[0,t]

|Xs|p
)

≤
(

p

p − 1

)p

E(|Xt|p) (5.1.22)

for a > 0, p > 1 and t ∈ [0,∞). If X is a continuous martingale, then the
maximal martingale inequality provides an estimate for the probability that
a level a will be exceeded by the maximum of X. In particular the Doob
inequality provides for p = 2 for the squared maximum the estimate

E

(

sup
s∈[0,t]

|Xs|2
)

≤ 4 E
(
|Xt|2

)

for t ∈ [0,∞). These inequalities are important for deriving a number of fun-
damental results in stochastic calculus and quantitative finance.
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5.2 Quadratic Variation and Covariation

Quadratic Variation

The notion of the, so-called, quadratic variation of a given stochastic process
X plays a fundamental role in stochastic calculus and, therefore, in finance as
well. It is a characteristic of the fluctuating part of a stochastic process and
can be easily observed. In this capacity it will be useful for measuring locally
in time the risk of an asset price.

To introduce this notion in a simple manner let us consider an equidistant
time discretization

{tk = k h : k ∈ {0, 1, . . .}}, (5.2.1)

with small time steps of lengths h > 0, such that 0 = t0 < t1 < t2 < . . ..
Thus, we have the discretization times tk = k h for k ∈ {0, 1, . . .}. The specific
structure of the time discretization is in fact not essential for the definition of
the quadratic variation that we shall use, as long as the maximum time step
size vanishes a.s. when approaching the limit. We employ the equidistant time
discretization here to simplify our presentation. Other time discretizations
with vanishing step size yield the same limit.

For a given stochastic process X the quadratic variation process [X] =
{[X]t, t ∈ [0,∞)} is defined as the limit in probability, see (2.7.1), as h → 0
of the sums of squared increments of the process X, provided this limit exists
and is unique. For details we refer to Jacod & Shiryaev (2003) and Protter
(2004). For instance, for semimartingales, which form a very general class of
stochastic processes that we shall introduce in Sect.5.5, the quadratic variation
is uniquely defined. We have at time t the quadratic variation

[X]t
P= lim

h→0
[X]h,t, (5.2.2)

where the approximate quadratic variation [X]h,t is given by the sum

[X]h,t =
it∑

k=1

(Xtk
− Xtk−1)

2. (5.2.3)

Here it denotes the integer

it = max{k ∈ N : tk ≤ t} (5.2.4)

of the last discretization point before or including t ∈ [0,∞).

Examples of Quadratic Variations

As an example, Fig. 5.2.1 shows for a standard Wiener process W = {Wt,
t ∈ [0,∞)} a sample path and its approximate quadratic variation [W ]h,t

with time step size h = 0.02 on the interval [0, 10]. Note that the approximate
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Fig. 5.2.1. A Wiener path Wt and its approximate quadratic variation [W ]h,t

Fig. 5.2.2. Transformed Wiener process Yt and its approximate quadratic variation
[Y ]h,t

quadratic variation in Fig. 5.2.1 forms almost a straight line with slope one.
Indeed, it can be shown, see Karatzas & Shreve (1991) or Elliott (1982), that
the value of the quadratic variation process [W ] = {[W ]t, t ∈ [0,∞)} at time
t for a standard Wiener process W is given by the relation

[W ]t = t (5.2.5)

for t ∈ [0,∞). Thus, for finer time discretizations, the approximate quadratic
variation becomes almost a perfect straight line.

In Fig. 5.2.2, a sample path of a transformed Wiener process Y =
{Yt, t ∈ [0,∞)} with values

Yt = Wt + t

together with its approximate quadratic variation are displayed. Observe that
the drift, which was added to the Wiener process, had practically no impact on
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the approximate quadratic variation, when compared to Fig.5.2.1. This effect
can be explained by noting that for a stochastic process F = {Ft, t ∈ [0,∞)}
its, so-called, total variation is

[F ]
1
2
t

P= lim
h→0

it∑

k=1

∣
∣Ftk

− Ftk−1

∣
∣ (5.2.6)

for t ∈ [0,∞). Note that in the case where Ft = t for t ∈ [0,∞) the total

variation [F ]
1
2
t = t is bounded. However, Ft = t has zero quadratic variation

since

[F ]t
P= [t]t

P= lim
h→0

it∑

k=1

(tk − tk−1)2 = 0. (5.2.7)

One notes that a differentiable function has finite total variation but zero
quadratic variation. In contrast to that one can show that the strongly fluc-
tuating Wiener process has no finite total variation but some finite quadratic
variation.

It is then possible to show that the above transformed Wiener process Y
has the finite quadratic variation

[Y ]t
P= lim

h→0

it∑

k=1

(Ytk
− Ytk−1)

2

P= lim
h→0

it∑

k=1

(
(Wtk

− Wtk−1)
2 + 2 (Wtk

− Wtk−1) (tk − tk−1) + (tk − tk−1)2
)

P=[W ]t, (5.2.8)

for t ∈ [0,∞), which is the same as that for the Wiener process. Here only the
sum of the squared Wiener process increments does not vanish asymptotically.
We note that only the martingale term in the transformed Wiener process,
which is in the above example the Wiener process itself, contributes to the
quadratic variation.

Another Martingale

Starting with a continuous, square integrable (A, P )-martingale X, another
(A, P )-martingale can be constructed by using its quadratic variation [X] if
E([X]T ) < ∞ for each T ∈ [0,∞). More precisely, a new continuous (A, P )-
martingale Y = {Yt, t ∈ [0,∞)} is obtained by setting

Yt = (Xt)2 − [X]t (5.2.9)

for t ∈ [0,∞), see Protter (2004).
In the case of a standard Wiener process W , we obtain the martingale

Y = {Yt = (Wt)2− t, t ∈ [0,∞)}, see (5.1.6). The type of martingale property
of Y given in (5.2.9) is fundamental to stochastic calculus.
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Fig. 5.2.3. Path of a geometric Brownian motion and its quadratic variation

Quadratic Variation and Geometric Brownian Motion

The quadratic variation turns out to be one of the most important charac-
teristics of a martingale. The standard market model for an asset price is the
Black-Scholes (BS) model, given by a geometric Brownian motion. To high-
light the usefulness of the quadratic variation in such a financial context we
consider as a model for an asset price Xt at time t the BS model, see (4.1.2),
which we write in the form

Xt = X0 exp{Lt}, (5.2.10)

where
Lt = g t + σ Wt (5.2.11)

for t ∈ [0,∞). Here W = {Wt, t ∈ [0,∞)} denotes again a standard Wiener
process. With the choice of the growth rate g = r− 1

2 σ2 this provides the same
dynamics as was given in (5.1.9). When we use the initial value X0 = 1, the
expected rate of return r = 0.05 and the volatility σ = 0.2, then the quadratic
variation [X] for X is shown in Fig. 5.2.3. Also displayed in Fig. 5.2.3 is the
sample path for X, see also Fig. 5.1.3. Note that the quadratic variation is
not linear. However, if we visualize the quadratic variation of the logarithm
ln(Xt) of Xt, then we obtain, as can be seen in Fig. 5.2.4, an almost perfect
straight line. The reason for this effect can be directly seen when using the
following identities

[ln(X)]t = [L]t = σ2 [W ]t = σ2 t (5.2.12)

for t ∈ [0,∞). These relations hold because Lt = ln(Xt) forms a linearly
transformed Wiener process and we can use the fact that [W ]t = t, see (5.2.5).
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Fig. 5.2.4. Path of ln(X) and [ln(X)]

Volatility

The key quantity for the parametrization of the BS model, which was the
standard market model for many decades, is the volatility. We observe in
(5.2.12) that under the BS model the squared volatility is the time derivative
of the quadratic variation of the logarithm of the asset price. We can express
this important observation in the form

σ2 =
d

dt
[ln(X)]t. (5.2.13)

This relation can still be used theoretically as a definition for the volatil-
ity of a continuous asset price process, even if its dynamics is not that of a
geometric Brownian motion.

To be more precise, we define the historical volatility VolX(t) at a given
time t ∈ [0,∞) of a given continuous asset price process X, as the square root
of the left hand derivative of the quadratic variation of the logarithm of X.
That is, we define the historical volatility in the form

VolX(t) =

√
d

dt
[ln(X)]t (5.2.14)

for t ∈ [0,∞). A common market practice for estimating squared volatility,
see for instance Hull (2000), is that one estimates the sample variance of log-
returns, see (2.1.19). Note that VolX(t) is by (5.2.3) and (5.2.2) asymptotically
equivalent to the way that volatility is calculated in practice. However, it
is well-known, see for instance, Corsi, Zumbach, Müller & Dacorogna (2001)
and Barndorff-Nielsen & Shephard (2003), that the estimation of volatility is
in practice a very delicate task.

The definition of volatility in (5.2.14) is quite general and can be used for
all continuous asset price processes. It has the advantage that it is independent
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Fig. 5.2.5. IBM log-share price and its quadratic variation

of the specific choice of the underlying asset price model and also the time
discretization employed. In the particular case of geometric Brownian motion
it leads us directly to the constant volatility of the BS model, as can be seen
from (5.2.12). We shall see, that the above definition of historical volatility is
useful for the study of the actual volatility dynamics in asset price models.
Furthermore, the approximate quadratic variation (5.2.3) can be directly used
to construct a volatility estimator.

It is well-known that in reality, volatility is stochastic, as can be seen from
the changing slope of the quadratic variation of the logarithm of asset prices.
This indicates that the standard market model with its constant volatility
can only be considered to be used as a first, rough approximation of the ex-
isting market dynamics. As another example for an application of the above
definition of historical volatility, Fig. 5.2.5 shows the logarithm ln( Xt

Xt0
) of the

IBM share price Xt from 1993 up until 1998 together with its approximate
quadratic variation based on daily observations. According to the definition
of historical volatility in (5.2.14) we can interpret the square root of the slope
in Fig. 5.2.5 as an empirical volatility estimate of the IBM share price dur-
ing the corresponding time period. By estimating the observed slope of the
quadratic variation in Fig. 5.2.5, an annualized average volatility of approxi-

mately
√

0.5
5 =

√
0.1 ≈ 0.32 is inferred.

To illustrate further the type of information that the quadratic variation
provides we show in Fig. 5.2.6 the logarithm ln( Xt

Xt0
) of the S&P500 index

for the period from 1993 up until 1998 together with its quadratic variation.
Note that the average slope of the quadratic variation in Fig. 5.2.6, that is
its squared volatility, is much smaller than that for the IBM share price in
Fig. 5.2.5. This is mainly due to the effect of diversification for the index.
Again, an approximate estimate for the average volatility of the S&P500 index
can be obtained from the square root of the slope of the quadratic variation
shown in Fig. 5.2.6. Thus, we estimate an annualized average volatility of



180 5 Martingales and Stochastic Integrals

Fig. 5.2.6. Logarithm of S&P500 and its quadratic variation

about
√

0.05
5 =

√
0.01 = 0.1, which is about a third of the estimated volatility

of the IBM share price.

Covariation

In a similar manner as the quadratic variation the covariation of two continu-
ous stochastic processes can be defined. This is another important tool which
turns out to be useful for the characterization of dependencies between two
stochastic processes, for instance, between asset prices. It allows the, locally
in time, measurement of associations between the random fluctuations of two
different continuous processes.

For the definition of covariation the same equidistant time discretization,
as given in (5.2.1), is now used. That is, we set tk = kh for k ∈ {0, 1, . . .},
h > 0. For continuous stochastic processes Z1 and Z2 the covariation pro-
cess [Z1, Z2] = {[Z1, Z2]t, t ∈ [0,∞)} is defined as the limit in probability,
see (2.7.2), as h → 0 of the values of the approximate covariation process
[Z1, Z2]h,· with

[Z1, Z2]h,t =
it∑

k=1

(Z1(tk) − Z1(tk−1))(Z2(tk) − Z2(tk−1)) (5.2.15)

for t ∈ [0,∞) and h > 0, given by the sums of the products of the increments
of the processes Z1 and Z2. Here the integer it is as introduced in (5.2.4).
More precisely, we define at time t ∈ [0,∞) the covariation

[Z1, Z2]t
P= lim

h→0
[Z1, Z2]h,t, (5.2.16)

where [Z1, Z2]h,t is the approximate covariation.
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Fig. 5.2.7. Covariation between logarithms of S&P500 and IBM share price

As an example, we display in Fig. 5.2.7 the approximate covariation be-
tween the logarithms of the S&P500 index, see Fig. 5.2.6, and the IBM share
price, see Fig. 5.2.5, for the period from 1993 up until 1998 using daily ob-
servations. Note that the average slope of the covariation seems to be here
almost always positive, which indicates some association between the move-
ments of the IBM share price and those of the S&P500 index. Summarizing
these observations, it appears that the covariation provides a useful tool for
measuring the degree of association of the fluctuations of two stochastic pro-
cesses locally in time. Obviously, if the processes Z1 and Z2 are identical, then
their covariation coincides with their quadratic variation.

Covariation for Processes with Jumps (*)

For any right-continuous stochastic process ξ = {ξ(t), t ∈ [0,∞)} we denote
by

ξ(t−) a.s.= lim
h→0+

ξ(t − h) (5.2.17)

the almost sure left hand limit of ξ(t) at time t ∈ (0,∞). The jump size Δξ(t)
at time t is then defined as

Δξ(t) = ξ(t) − ξ(t−) (5.2.18)

for t ∈ (0,∞).
In the case of a pure jump process p = {pt, t ∈ [0,∞)} the corresponding

quadratic variation is obtained as

[p]t =
∑

0≤s≤t

(Δps)2 (5.2.19)

for t ∈ [0,∞), where Δps = ps −ps−. In the case when p is a Poisson process,
its quadratic variation equals the process itself, that is, [N ]t = Nt for all
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Fig. 5.2.8. Quadratic variation of a compound Poisson process

t ∈ [0,∞). We show in Fig.5.2.8 the quadratic variation [Y ]t of the trajectory
of the compound Poisson process Y shown in Fig. 3.5.2.

It is preferable to separate the jump part of a process when computing its
quadratic variation. For a general stochastic process the quadratic variation
consists of the sum of the quadratic variations of its continuous and its pure
jump part. This will be made more precise below.

Let us denote by Z1 and Z2 two stochastic processes with continuous part

Zc
i (t) = Zi(t) − Zi(0) −

∑

0<s≤t

ΔZi(s) (5.2.20)

for t ∈ [0,∞) and i ∈ {1, 2}. Here the jump size at time s is given as

ΔZi(s) = Zi(s) − Zi(s−) (5.2.21)

for s ∈ [0,∞) and we assume that the sum in (5.2.20) is almost surely finite.
The covariation [Z1, Z2]t of Z1 and Z2 at time t is then defined as

[Z1, Z2]t = [Zc
1, Z

c
2]t +

∑

0<s≤t

(ΔZ1(s)) (ΔZ2(s)) (5.2.22)

for t ∈ [0,∞), as long as the quantities involved are almost surely finite. This
also means that the quadratic variation of a process Z1 equals the quadratic
variation [Zc

1]t of its continuous part Zc
1 plus the sum of the squares of its

jumps, that is
[Z1]t = [Zc

1]t +
∑

0<s≤t

(ΔZ1(s))2 (5.2.23)

for t ∈ [0,∞). Again, we assume that the expressions involved are almost
surely finite. The above notion of covariation for processes with jumps is
convenient and useful. Obviously, if the processes Z1 and Z2 are identical,
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then their quadratic variation coincides with their covariation. The quadratic
variation [q]t of the compensated Poisson process q = {qt, t ∈ [0,∞)}, shown
in Fig. 5.1.4, equals that of the Poisson process N shown in Fig. 3.5.1, that is
[N ]t = [q]t for t ∈ [0,∞).

We emphasize that the covariation of a process with continuous and jump
part is an important characteristic in financial modeling, see Cont & Tankov
(2004) and Ait-Sahalia (1996).

pth Variation (*)

We call for p > 0 and a stochastic process X = {Xt, t ∈ [0,∞)} the process
[X]

p
2
h =

{
[X]

p
2
h,t, t ∈ [0,∞)

}
with

[X]
p
2
h,t =

it∑

k=1

|Xtk
− Xtk−1 |p (5.2.24)

for t ∈ [0,∞) the approximate pth variation process of X. Then the pth vari-
ation process [X]

p
2 =

{
[X]

p
2
t , t ∈ [0,∞)

}
is for each t ∈ [0,∞) defined as the

limit in probability
[X]

p
2
t

P= lim
h→0

[X]
p
2
h,t, (5.2.25)

see (2.7.1). The first order variation process [X]
1
2 is called total variation, see

(5.2.6). For instance, the time t with Xt = t is a process with total variation

[X]
1
2
t = t < ∞ a.s. for t ∈ [0,∞). Furthermore, any differentiable process

can be shown to have finite total variation. Note that the Wiener process
W = {Wt, t ∈ [0,∞)} does not have finite total variation, however, it has
finite quadratic variation, as shown in (5.2.5). On the other hand, a Poisson
process with finite intensity does have finite total variation.

Local Martingales (*)

As we shall see later, in quantitative finance stochastic processes naturally
appear that are not martingales but become martingales if they are properly
stopped. These local martingales are locally in time similar to martingales.

Definition 5.2.1. A stochastic process X = {Xt, t ∈ [0,∞)} is an (A, P )-
local martingale if there exists an increasing sequence (τn)n∈N of stopping
times, that may depend on X, such that limn→∞ τn

a.s.= ∞ and each stopped
process

Xτn = {Xτn
t = Xt∧τn , t ∈ [0,∞)} (5.2.26)

is an (A, P )-martingale, where t ∧ τn = min(t, τn).
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Fig. 5.2.9. Two trajectories of a strict local martingale

If X is a local martingale, then the value Xs does, in general, not equal the
conditional expectation E(Xt|As) for s ∈ [0,∞) and t ∈ [s,∞). Note that an
(A, P )-martingale is also an (A, P )-local martingale. However, an (A, P )-local
martingale is not always an (A, P )-martingale. A local martingale that is not
a martingale is called a strict local martingale.

To provide an example for such a strict local martingale X = {Xt,
t ∈ [0,∞)} we form the sum of the squares of four independent Wiener pro-
cesses W 1, W 2, W 3, W 4 which start each at the value W i

0 = 5, i ∈ {1, 2, 3, 4}.
By taking the inverse of this sum, that is

Xt =

(
4∑

i=1

(
W i

t + 5
)2

)−1

(5.2.27)

for t ∈ [0,∞), we shall show later that this inverse of a squared Bessel process
of dimension four forms a strict local martingale, see Revuz & Yor (1999). Two
paths of such a process X = {Xt, t ∈ [0,∞)} are shown in Fig. 5.2.9. They
both look rather different but are both constructed according to (5.2.27).
It appears that they can mimic very different behaviors, in particular, over
the initial time period. As we discuss later in the context of squared Bessel
processes, this process has peculiar properties that differentiate it from a mar-
tingale, see Revuz & Yor (1999).

One can formulate the following statements, see Protter (2004), that will
become relevant when dealing with local martingales in financial modeling
under the benchmark approach.

Lemma 5.2.2.

(i) An almost surely nonnegative (negative) (A, P )-local martingale is an
(A, P )-supermartingale (submartingale).
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Fig. 5.2.10. Quadratic variations of two trajectories of a strict local martingale

(ii) An a.s. uniformly bounded (A, P )-local martingale is an (A, P )-martin-
gale.

(iii) A square integrable (A, P )-local martingale X is a square integrable
(A, P )-martingale if and only if

E([X]T ) < ∞ (5.2.28)

for all T ∈ [0,∞).

We prove the assertion (i) at the end of this section. The Definition 5.2.1 of
a local martingale is rather technical and somehow difficult to verify. However,
the statement (iii) of the above lemma is quite useful in practice because local
martingales that one typically faces in finance seem to be square integrable.
The statement (iii) means that if the fluctuations of a square integrable local
martingale are so strong that the mean of its quadratic variation does not
exist, then it cannot be a martingale and is therefore a strict local martingale.
In Fig. 5.2.10 we show the quadratic variation of the two paths of the strict
local martingale shown in Fig.5.2.9. Note that its quadratic variation appears
to be highly dependent on the particular path. As we shall see later, one can
show for the given example that E([X]t) = ∞ for t ∈ (0,∞). This means
that the quadratic variation of different paths varies so strongly that no finite
expectation can be calculated.

We face here a subtle but important property, which will be highly rele-
vant for the understanding of the typical dynamics of financial markets as it
becomes visible under the benchmark approach.
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Nonnegative Local Martingales are Supermartingales (*)

As we shall see later the statement (i) in Lemma 5.2.2 is crucial for the
benchmark approach when it establishes no-arbitrage. For completeness we
provide here a proof.

Lemma 5.2.3. A nonnegative (A, P )-local martingale X = {Xt, t ∈ [0,∞)}
with E(Xt|As) < ∞ for all 0 ≤ s ≤ t < ∞ is an (A, P )-supermartingale.

Proof: Consider a nonnegative (A, P )-local martingale X = {Xt, t ∈
[0,∞)}. Then there exists an increasing sequence (τn)n∈N of stopping times,
with respect to the filtration A, such that each stopped process Xτn = {Xτn

t =
Xt∧τn , t ∈ [0,∞)} is an (A, P )-martingale and we have τn → ∞ almost surely.
Consequently, for each n ∈ N and 0 ≤ s ≤ t < ∞ we have

E(Xt

∣
∣As) = E

(
1{τn≥t} Xt

∣
∣
∣As

)
+ E

(
1{τn<t} Xt

∣
∣
∣As

)

= E
(
1{τn≥t} Xτn

t

∣
∣
∣As

)
+ E

(
1{τn<t} Xt

∣
∣
∣As

)

≤ E
(
Xτn

t

∣
∣
∣As

)
+ E

(
1{τn<t} Xt

∣
∣
∣As

)

= Xτn
s + E

(
1{τn<t} Xt

∣
∣
∣As

)
. (5.2.29)

Since we have for each t ∈ [0,∞) by definition that 1{τn≥t}Xt approaches Xt

almost surely from below as n → ∞ it follows by (5.2.29) and the Monotone
Convergence Theorem, see (2.7.9), that the difference

E(Xt

∣
∣As) − E

(
1{τn<t} Xt

∣
∣
∣As

)
= E

(
1{τn≥t} Xt

∣
∣
∣As

)

approaches almost surely the conditional expectation E(Xt

∣
∣As) from be-

low as n → ∞. As a consequence of that, the conditional expectation
E(1{τn<t} Xt

∣
∣As) is for n → ∞ decreasing and converges almost surely to

zero. By using the fact that limn→∞ Xτn
s

a.s.= Xs yields in (5.2.29) the inequal-
ity E(Xt

∣
∣As) ≤ Xs when letting n tend to infinity. This proves the lemma.

��

In Rogers & Williams (2000) one can find an alternative proof of this re-
sult based on Fatou’s Lemma, see (2.7.11). We emphasize that it is essential
in Lemma 5.2.3 that one defines the local martingale over the infinite time
interval [0,∞) and not on [0,∞] or [0, T ] with T ∈ (0,∞) since the above
result does not hold in these cases.
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Fig. 5.3.1. Gains from trade of one share of IBM stock during 1993 - 1998

5.3 Gains from Trade as Stochastic Integral

One of the most fundamental notions in finance is that of gains from trade.
In stochastic calculus this corresponds exactly to the notion of a stochastic
integral, the Itô integral, which is therefore highly relevant in finance.

Gains from Trade

Let us consider an investor who holds during the time period [0, T ] a constant
number ξ(0) of units of an asset with price process X = {Xt, t ∈ [0, T ]}. The
investor’s allocation strategy ξ = {ξ(t) = ξ(0), t ∈ [0, T ]}, characterized by
the number of units of the asset held, is assumed to be constant in this case.
Then the investor’s gains from trade over the period [0, t] equals

Iξ,X(t) = ξ(0) {Xt − X0}, (5.3.1)

for t ∈ [0, T ]. This provides the first step towards an appropriate definition
of a stochastic integral, which we shall call later Itô integral. Formally, we
interpret the above gains from trade Iξ,X(t) as an Itô integral of the integrand
ξ with respect to the integrator X over the time interval [0, t], and use the
following notation

Iξ,X(t) =
∫ t

0

ξ(s) dXs. (5.3.2)

To illustrate the above construction we show in Fig.5.3.1 the gains from trade
obtained from IBM share holdings over the period from 1993 to 1998. This
refers to a constant allocation strategy which is holding ξ(t) = 1 share.
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Fig. 5.3.2. Gains from trade of ten and later one share of IBM stock

Piecewise Constant Allocation Strategies

Now, let us allow the investor to change his or her strategy so that it becomes
a piecewise constant allocation process ξ = {ξ(t), t ∈ [0, T ]} with ξ(t) = ξ(tk)
units of shares held at time t ∈ [tk, tk+1), k ∈ {0, 1, . . .} and tk = kh for
h > 0. Here the reallocation times tk form an equidistant time discretization,
as given in (5.2.1). Obviously, the gains from trade over the period [0, t] can
be expressed in the form

∫ t

0

ξ(s) dXs =
it∑

k=1

ξ(tk−1) {Xtk
− Xtk−1} + ξ(tit) {Xt − Xtit

}, (5.3.3)

where
it = max{k ∈ N : tk ≤ t} (5.3.4)

is the integer index of the latest discretization time before and including t,
see (5.2.4). Here we formally interpret the gains from trade as an Itô integral
in the same form as in (5.3.2) with integrand ξ and integrator X covering the
interval [0, t].

In Fig. 5.3.2, the gains from trade are displayed when during the first half
of the time period, that is until mid 1995, ten shares of IBM were held and
in the second half only one share. One observes during the first period strong
fluctuations of the gains from trade when compared to the second half of that
time period.

Itô Integral as a Limit

It is sufficient in many applications to use a Wiener process as integrator.
Therefore, we use in a standard setting often the Itô integral with respect to
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the Wiener process W = {Wt, t ∈ [0,∞)} as integrator over the interval [0, t]
for a wide range of integrands ξ = {ξ(t), t ∈ [0,∞)}.

Definition 5.3.1. For a left continuous stochastic process ξ = {ξ(t), t ∈
[0,∞)} as integrand with

∫ T

0

ξ(s)2 ds < ∞ (5.3.5)

for all T ∈ [0,∞) almost surely, the Itô integral with respect to the Wiener
process W is defined as the left continuous limit in probability

∫ t

0

ξ(s) dWs
P= lim

h→0

it∑

k=1

ξ(tk−1) {Wtk
− Wtk−1} (5.3.6)

of the sequence of corresponding approximating sums for t ∈ [0,∞).

For details on the definition of Itô integrals we refer to Karatzas & Shreve
(1991), Kloeden & Platen (1999) or Protter (2004). We see that the right hand
sides of both (5.3.3) and (5.3.6) are very similar and coincide in the case of
piecewise constant integrands. Consequently, the Itô integral can be seen as
a limit in probability of gains from trade, taken over progressively finer time
discretizations.

An important characteristic of the Itô integral is that the evaluation point
tk−1 for the integrand ξ is always taken at the left hand side of the discretiza-
tion interval [tk−1, tk). This feature is natural for finance applications because
an investor needs to decide at the beginning of an investment period how
many units of a security he or she wants to hold. It distinguishes the Itô in-
tegral from other stochastic integrals, see Protter (2004). The choice of the
evaluation point at the left hand side corresponds in finance to the economi-
cally given fact that once an allocation is made it remains constant for some
period of time and cannot be changed retrospectively in a legal manner. As
we shall see later, this fact is essential for establishing the martingale property
for Itô integrals with respect to Wiener processes.

The above definition of Itô integrals can be extended to include more
general classes of integrators rather than just the Wiener process, see Protter
(2004), which will be discussed later.

Explicit Value for an Itô Integral

To give a simple example of how the Itô integral differs from the classical,
say, Riemann-Stieltjes integral, let us consider a trading strategy, where the
number of shares held in an asset equals its price. For simplicity, we assume
the asset price to be modeled by the Wiener process W . Then according to
(5.3.6) we obtain

∫ t

0

Ws dWs
P= lim

h→0

it∑

k=1

Wtk−1(Wtk
− Wtk−1) (5.3.7)



190 5 Martingales and Stochastic Integrals

for t ∈ [0,∞). If W were differentiable, then we would obtain from the de-
terministic integration rule the quantity 1

2 W 2
t as the value of this integral at

time t. However, in the stochastic case the correct value will be much less, as
we shall see. This means that the gains from trade under this strategy do not
accumulate in the same way as they would for differentiable asset prices or
under the classical integration rule.

The following calculation demonstrates this important effect in more de-
tail. By subtracting and adding W 2

tk
and completing the square on the right

hand side of (5.3.7) for each time step we see that

∫ t

0

Ws dWs
P= lim

h→0

1
2

it∑

k=1

{(
W 2

tk
− W 2

tk−1

)
− (Wtk

− Wtk−1)
2
}

P=
1
2

W 2
t − 1

2
W 2

0 − lim
h→0

1
2

it∑

k=1

(Wtk
− Wtk−1)

2,

where all except the first and last terms in the first sum cancel each other.
From the definition of the approximate quadratic variation of standard Wiener
processes in (5.2.3) we have [W ]t = t, see (5.2.5), and W0 = 0, see (3.2.6).
Consequently, the value of the Itô integral (5.3.7) is

∫ t

0

Ws dWs =
1
2

W 2
t − 1

2
[W, W ]t =

1
2

W 2
t − 1

2
[W ]t =

1
2

W 2
t − 1

2
t. (5.3.8)

The quantity on the right hand side of this equation is clearly less than 1
2 W 2

t ,
which would be expected for a differentiable function under classical integra-
tion. Note that the difference is equal to half the covariation of integrand and
integrator. We shall see below that this property holds more generally.

The above example exhibits striking differences between the Itô integral
and the classical integral. Since, in practice, asset price processes with prop-
erties similar to those of Wiener processes are typically encountered, these
differences turn out to be crucial for the rigorous modeling in finance. For
instance, the computation of derivative prices, values of portfolios and other
financial quantities may become incorrect, if these differences were ignored.
Stochastic calculus which we introduce in this and the following two chapters
will allow us to obtain correct quantities.

To illustrate these differences we show in Fig. 5.3.3 the path of a Wiener
process together with half of its squared value and the Itô integral

IW,W (t) =
∫ t

0

Ws dWs =
∫ t

0

∫ s

0

dWz dWs, (5.3.9)

for t ∈ [0, 1]. Note in this figure the significant difference between the Itô inte-
gral IW,W (t) and the value 1

2 W 2
t that would be obtained under the classical

integration rule.
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Fig. 5.3.3. Paths of W , 1
2

W 2 and IW,W

In the following analysis it will be shown that the differences between Itô
and classical integration relate to the covariation of the processes involved as
integrand and integrator. These differences are crucial and impact significantly
the area of quantitative finance due to the nature of asset prices.

General Itô Integrals and Differentials

The definition of an Itô integral as gains from trade, given in (5.3.6), can
naturally be extended to include more general integrators. Let us again use, for
simplicity, the equidistant time discretization (5.2.1) and denote, as previously,
by Yt− the left hand limit of the value of a process Y = {Yt, t ∈ [0,∞)} at
time t ∈ [0,∞). We define for a stochastic process X = {Xt, t ∈ [0,∞)} as
integrator and a predictable process ξ = {ξ(t), t ∈ [0,∞)} as integrand with

∫ T

0

ξ(s)2 d[X]s < ∞ (5.3.10)

for all T ∈ [0,∞) a.s., the Itô integral as the limit in probability

∫ t

0

ξ(s) dXs
P= lim

h→0

it∑

k=1

ξ(tk−1) (Xtk
− Xtk−1) (5.3.11)

for t ∈ [0,∞), provided this limit exists. For details we refer the reader to
Protter (2004). Here it is the integer index given by (5.3.4) for t ∈ [0,∞).
We emphasize that in financial applications the Itô integral can be naturally
interpreted as gains from trade. Furthermore, one can use almost any adapted
process ξ, which satisfies (5.3.10), to form an integrand by using its predictable
version with left hand limits.
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Let e = {et, t ∈ [0,∞)} and f = {ft, t ∈ [0,∞)} be predictable stochastic
processes. Consider a stochastic process Y = {Yt, t ∈ [0,∞)}, where

Yt = y0 +
∫ t

0

es ds +
∫ t

0

fs dWs (5.3.12)

for t ∈ [0,∞) and initial value Y0 = y0. Here W = {Wt, t ∈ [0,∞)} is a stan-
dard Wiener process and we assume that appropriate measurability and inte-
grability conditions apply so that the above integrals exist. In particular, the
first integral is a random ordinary Riemann-Stieltjes integral for t ∈ [0,∞).
It exists if ∫ t

0

|es| ds < ∞ (5.3.13)

for all t ∈ [0,∞) a.s. The second integral is an Itô integral with respect to the
Wiener process W , see (5.3.6), where we assume that

∫ t

0

|fs|2 ds < ∞ (5.3.14)

for all t ∈ [0,∞) a.s. It is common to use the following more compact way
of expressing the integral equation (5.3.12): The Itô differential dYt of Y at
time t is given by the expression

dYt = et dt + ft dWt (5.3.15)

for t ∈ [0,∞) with Y0 = y0. This is simply another symbolic way of writing
(5.3.12), where one should not forget to add the specification of the initial
value Y0. The processes e and f are called drift and diffusion coefficients of
the Itô differential (5.3.15), respectively. The concept of an Itô differential
is very powerful. It leads to a compact characterization that can be used to
succinctly express the dynamics of rather complicated stochastic processes.
Note that no Markovianity is required to characterize a process Y via its
stochastic differential. This allows the modeling of very general dynamics and
corresponding gains from trade.

For the above process Y , given in (5.3.12), consider the Itô integral defined
in (5.3.11) with Y replacing X. Under rather general conditions it can be
shown that ∫ t

0

ξ(s) dYs =
∫ t

0

ξ(s) es ds +
∫ t

0

ξ(s) fs dWs (5.3.16)

a.s. for all t ∈ [0,∞), see Protter (2004). Therefore, an Itô integral of the
above type can be expressed as the sum of a random ordinary Riemann-
Stieltjes integral with respect to time and a standard Itô integral with respect
to the Wiener process W .

These definitions and formulations extend to the case of multi-dimensional
integrands ξ and integration with respect to several independent standard
Wiener processes. Furthermore, they can be generalized also to hold for more
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Fig. 5.3.4. Log IBM share price Xt,
1
2

(Xt)
2 and IX,X(t)

general processes as integrators including those with jumps, as we shall see
later.

In Fig. 5.3.4 we consider the logarithm Xt of the IBM share price between
1977 and 1997 when normalized to the value one at the beginning. Using Xt

we compute also half of its squared value, that is 1
2 (Xt)2, and plot these values

in Fig. 5.3.4 together with the Itô integral IX,X(t) of X with respect to itself.
One notes in Fig. 5.3.4 that there is a clear difference between the Itô integral
IX,X(t) and what one would expect from a classical integral of a function,
which would result in the value 1

2 (Xt)2 at time t. The Itô integral provides
here the smaller values, similar as in Fig. 5.3.3.

5.4 Itô Integral for Wiener Processes

The Itô integral exhibits a number of important properties and features that
are essential in stochastic calculus and thus also for many applications in
quantitative finance. The following properties will be repeatedly exploited
later, for instance, in the context of pricing and hedging of derivatives.

Properties of Itô Integrals with Respect to Wiener Processes

Let us consider two A-adapted independent Wiener processes W 1 and W 2.
Recall that (W i

t − W i
s) is independent of As for t ∈ [0,∞), s ∈ [0, t] and

i ∈ {1, 2}.
It is useful to specify for T ∈ [0,∞) the class L2

T of predictable, square
integrable stochastic processes f = {ft, t ∈ [0, T ]} in the form that

∫ T

0

E
(
(ft)2

)
dt < ∞. (5.4.1)
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Note that it is convenient to work in a world of square integrable stochastic
processes as long as this is possible for the problem at hand. Let us now
summarize some fundamental properties of Itô integrals, which are essential
and often used in derivations in quantitative finance.

1. Linearity property: For T ∈ (0,∞), t ∈ [0, T ], s ∈ [0, t], Z1, Z2 ∈ L2
T and

As-measurable, square integrable random variables A and B it is
∫ t

s

(AZ1(u) + B Z2(u)) dW 1
u = A

∫ t

s

Z1(u) dW 1
u + B

∫ t

s

Z2(u) dW 1
u .

(5.4.2)
2. Martingale property: For T ∈ (0,∞), t ∈ [0, T ], s ∈ [0, t] and ξ ∈ L2

T one
has

E

(∫ t

0

ξ(u) dW 1
u

∣
∣As

)
=

∫ s

0

ξ(u) dW 1
u . (5.4.3)

3. Correlation property: For T ∈ (0,∞), t ∈ [0, T ], independent Wiener
processes W 1 and W 2 and Z1, Z2 ∈ L2

T the conditional correlation of two
Itô integrals is given by

E

(∫ t

0

Z1(u) dW i
u

∫ t

0

Z2(u) dW j
u

∣
∣
∣As

)

=

⎧
⎨

⎩

∫ t

0
E

(
Z1(u)Z2(u)

∣
∣
∣As

)
du for i = j

0 otherwise
(5.4.4)

with i, j ∈ {1, 2}.
4. Covariation property: For t ∈ [0,∞), independent Wiener processes W 1

and W 2 and predictable integrands Z1 and Z2 with
∫ t

0
|Z1(u)Z2(u)| du <

∞ a.s. the covariation of two Itô integrals is
[ ∫

0

Z1(u) dW i
u,

∫

0

Z2(u) dW j
u

]

t

=

{∫ t

0
Z1(u)Z2(u) du for i = j

0 otherwise
(5.4.5)

with i, j ∈ {1, 2}.
5. Finite variation property: For t ∈ [0,∞) the covariation between an Itô

and a random ordinary Riemann-Stieltjes integral with respect to time
vanishes. That is, for predictable Z1 and Z2 one has

[∫

0

Z1(u) dW 1
u ,

∫

0

Z2(u) du

]

t

= 0. (5.4.6)

In (5.4.5) and (5.4.6) we take the upper end of the integration interval
as the time parameter when forming the covariation. Using the martingale
property (5.4.3) it can be shown that an Itô integral process is an (A, P )-
martingale if the integrand is in L2

T . The above imposed measurability and
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integrability conditions can be weakened for some of the above stated prop-
erties, see Protter (2004).

The following important property of an Itô integral with respect to a
Wiener process is very useful in finance. It involves again the notion of a
predictable process, as was introduced in Sect. 5.1.

Lemma 5.4.1. If ξ is predictable and it holds for this integrand that
∫ T

0

ξ(u)2 du < ∞ (5.4.7)

a.s. for all T ∈ [0,∞), then the corresponding Itô integral process Iξ,W =
{Iξ,W (t) =

∫ t

0
ξ(s)dWs, t ∈ [0,∞)} is an (A, P )-local martingale.

The proofs for the above properties and lemma take advantage of the prop-
erties of increments of Wiener processes and their relationship to the filtra-
tion A. Details can be found in Karatzas & Shreve (1991), Kloeden & Platen
(1999) or Protter (2004). By application of the Statement (iii) of Lemma 5.2.2
one can derive directly the following result.

Corollary 5.4.2. Assume that Iξ,W is square integrable, then Iξ,W is a
square integrable (A, P )-martingale if and only if

E

(∫ T

0

ξ(u)2 du

)

< ∞ (5.4.8)

for all T ∈ [0,∞).

Covariation Property

To illustrate the covariation property (5.4.5), Fig. 5.4.1 shows a sample path
of a Wiener process together with an Itô integral with respect to this Wiener
process using an integrand with value 10 for the first half of the period and
value 1 for the rest of the period. The covariation of the Wiener process with
this Itô integral is then shown in Fig. 5.4.2. Note that the slope of the covari-
ation is proportional to the integrand of the Itô integral, as is suggested by
formula (5.4.5). In Fig.5.4.3, the quadratic variation of the Itô integral, shown
in Fig. 5.4.1, is displayed. Again, as indicated by (5.4.5), the time derivative
of the quadratic variation is proportional to the square of the integrand. Con-
sequently, the slope of the quadratic variation in the second period is rather
small, about 1% of that of the first period.

Itô and Deterministic Calculus

The rules that apply to Itô integrals form most of what is called the Itô or
stochastic calculus. This calculus specifies rules for handling stochastic quanti-
ties, which involves integration over time. The key relationships in quantitative
finance are strongly influenced by these rules.
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Fig. 5.4.1. Wiener process and Itô integral

Fig. 5.4.2. Covariation of Wiener process and Itô integral

As previously mentioned the rules of Itô calculus are different from those of
classical calculus, which is, in general, built on Riemann-Stieltjes integration
requiring finite total variation of the integrator. The differences are primarily
due to the fact that the Wiener process is of infinite total variation and has
trajectories of non-zero, finite quadratic variation, see (5.2.2) and (5.2.25).
Thus, the Itô integral has, in general, non-vanishing covariation between its
integrand and integrator. The Wiener process and the Itô integral with re-
spect to the Wiener process are continuous processes but not differentiable.
Therefore, to ask for the slope or time derivative of a Wiener process, an Itô
integral or an asset price when modeled by such process, is a meaningless
question.
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Fig. 5.4.3. Quadratic variation of an Itô integral

However as described earlier, the Itô integral is well defined without having
to require differentiability of its integrator. As we shall see later, the rules of
stochastic calculus provide answers to important problems in quantitative
finance, such as how the pricing and hedging of a derivative can be performed
or what is the typical dynamics of an asset price or optimal portfolio.

5.5 Stochastic Integrals for Semimartingales (*)

In this section we introduce general Itô integrals. These are useful for the
formulation of general statements. The most general class of stochastic pro-
cesses that we mention is that of semimartingales. For details on the following
results we refer to Protter (2004).

Semimartingales (*)

From the practical point of view the following class of semimartingales is a
very rich class of processes. It turns out to be sufficient for the modeling of
most finite dimensional problems that appear in finance, insurance, portfolio
optimization and other areas of risk management. As we shall see later, staying
within this class, is rewarded by rather general and elegant results.

As usual, we assume a filtered probability space (Ω,A,A, P ) as introduced
in Sect. 5.1. In the following definition of a semimartingale we refer to several
notions that we have introduced earlier in this chapter.

Definition 5.5.1. A semimartingale is an A-adapted, right-continuous sto-
chastic process X = {Xt, t ∈ [0,∞)} with left hand limits, where Xt can be
expressed as a sum of the form
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Xt = X0 + At + Mt (5.5.1)

for all t ∈ [0,∞). Here A = {At, t ∈ [0,∞)} is a process of finite total varia-
tion and M = {Mt, t ∈ [0,∞)} is an (A, P )-local martingale.

When A is predictable, then X is called a special semimartingale and the
decomposition (5.5.1) is unique. If the discontinuous part

Ad
t =

∑

0≤s≤t

ΔAs

of A and the discontinuous part

Md
t =

∑

0≤s≤t

ΔMs

of M are almost surely finite, then each of the processes A and M can be split
into a continuous and discontinuous part, that is,

At = Ac
t + Ad

t (5.5.2)

and
Mt = M c

t + Md
t (5.5.3)

for t ∈ [0,∞), respectively.
The above defined class of semimartingales includes all stochastic processes

that we have introduced so far, in particular, it covers discrete and continuous
time Markov chains, diffusion processes, compound Poisson processes and
Lévy processes. Note that semimartingales do not need to be Markovian.

For instance, the Wiener process W = {Wt, t ∈ [0,∞)}, given in Defini-
tion 3.2.2, is a semimartingale. Here the decomposition (5.5.1) is simply so
that X0 = 0, At = 0 and Mt = M c

t = Wt. The Wiener process is a martingale
and, thus, by Definition 5.1.2 a local martingale.

A Poisson process N with intensity λ, as given by Definition 3.5.1, and
the compensated Poisson process q, defined in (5.1.11), are semimartingales.
For the latter, we have q0 = X0 = 0, where Mt = Md

t = Nt − λt = qt is
the local martingale, which is here a martingale. Furthermore, At = Ac

t = λt
characterizes the predictable process A of finite total variation.

In the case of a Lévy process X with the notation given in (3.6.2) and
almost surely finite discontinuous martingale part

Md
t =

∫ t

0

∫

E
v(pϕ(dv, ds) − ϕ(dv) ds), (5.5.4)

the initial value is X0 = 0. The continuous local martingale part of X is then
of the form

M c
t = β Wt (5.5.5)
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and the predictable finite total variation term is continuous and equals

At = Ac
t = α t +

∫ t

0

∫

|v|≥1

v ϕ(dv) ds (5.5.6)

for t ∈ [0,∞), assuming At to be finite.
It turns out that the class of semimartingales is stable with respect to im-

portant operations and transformations. It is closed with respect to stochastic
integration, which when applied to semimartingales as integrands and inte-
grators, generates again semimartingales. Further examples of transformations
that map into the class of semimartingales include the application of smooth
functions, equivalent changes of measure and time changes. These properties
show that the class of semimartingales is a very special class and also highly
suitable for financial modeling. The class of semimartingales includes all fi-
nancial models that we shall cover. However, there are non-semimartingale
models being actively studied, such as those based on fractional Brownian
motion, see Heyde (1999), Heyde & Liu (2001) and Elliott & van der Hoek
(2003).

Itô Integral for Semimartingales (*)

For an A-adapted, right-continuous stochastic process ξ = {ξ(t), t ∈ [0,∞)}
let

ξ(t−) a.s.= lim
h→0+

ξ(t − h)

denote again the almost sure left hand limit of ξ(t) at time t. Similarly
as in (5.3.11), we define for semimartingales X = {Xt, t ∈ [0,∞)} and
ξ = {ξ(s), s ∈ [0,∞)} the corresponding Itô integral as limit in probabil-
ity

Iξ,X(t) =
∫ t

0

ξ(s−) dXs
P= lim

h→0

it∑

k=1

ξ(tk−1) (Xtk
− Xtk−1), (5.5.7)

using an equidistant time discretization with step size h. What is important
here is that the integrand is effectively a predictable stochastic process, see
Sect. 5.1, since we take always the left hand value in a discretization interval.
We could have asked ξ to be a predictable process and could then write in
(5.5.7) instead of ξ(s−) simply ξ(s).

The Itô integral enjoys important properties. Most importantly, it is again
a semimartingale. If the integrator X is an (A, P )-local martingale, then the
Itô integral is also an (A, P )-local martingale if the integrand is, for example,
continuous or locally bounded, see Protter (2004). In the case when X is of
finite total variation, then the Itô integral coincides with the random ordinary
Riemann-Stieltjes integral.
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Itô Integral for Jump Processes (*)

Let us consider the case when a semimartingale X has jumps, that is, the
difference

ΔXt = Xt − Xt− (5.5.8)

does not vanish for all t ∈ [0,∞). In this case, the following important prop-
erty of the jumps of the Itô integral Iξ,X(t) applies:

ΔIξ,X(t) = Iξ,X(t) − Iξ,X(t−) = ξ(t−)ΔXt (5.5.9)

for t ∈ [0,∞). This means that at a jump time the value of the Itô integral
increases by the value of the integrand before the jump multiplied by the
jump size of the integrator. For example, if N is a Poisson process, as given
in Definition 3.5.1, then at its kth jump time τk we have

ΔNτk
= Nτk

− Nτk−1 = 1

for k ∈ {1, 2, . . .}. Consequently, it follows in this case from (5.5.9) that the
Itô integral for an integrand ξ = {ξ(t), t ∈ [0,∞)} takes simply the form

Iξ,N (t) =
∫ t

0

ξ(s−) dNs =
Nt∑

k=1

ξ(τk−)ΔNτk
=

Nt∑

k=1

ξ(τk−) (5.5.10)

for t ∈ [0,∞). Consider the special case of a finite pure jump process X =
{Xt =

∑
0≤s≤t ΔXs, t ∈ [0,∞)}, which jumps at the jump times τ1, τ2, . . . of

a counting process p = {pt, t ∈ [0,∞)} with jump size ΔXτk
= c(k, τk−), we

obtain for an integrand ξ = {ξ(t), t ∈ [0,∞)} the Itô integral

Iξ,X(t) =
∫ t

0

ξ(s−) dXs =
pt∑

k=1

ξ(τk−)ΔXτk
=

pt∑

k=1

ξ(τk−) c(k, τk−) (5.5.11)

for t ∈ [0,∞). Here it is important to assume that the terms involved
are almost surely finite. This means that the sums

∑pt

k=1 ξ(τk−)ΔXτk
and∑pt

k=1 ΔXτk
almost surely converge to a finite value for all t ∈ [0,∞). Note

that the integral (5.5.11) covers also the cases of inaccessible, predictable, as
well as, deterministic jump times. Thus, discrete time Markov chains and con-
tinuous time Markov chains are covered as integrators by the above formula.

Itô Integral for Poisson Measures (*)

In the case when jump sizes are continuously distributed, as is the case for
general Lévy processes, we need to consider the stochastic integration with
respect to a Poisson measure. Assume that pϕ(dv, dt) is the Poisson measure
on E × [0,∞) with intensity measure qϕ(dv, dt) = ϕ(dv) dt, as introduced at
the end of Sect. 3.5, satisfying condition (3.5.13). Here E = �\{0} is the mark
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set. We again assume that a Poisson measure is such that for all h ∈ [0,∞)
and any set B ∈ B(E) the At+h-measurable random variable pϕ(B, [0, t+h])−
pϕ(B, [0, t]) is independent of At for all t ∈ [0,∞).

In generalization of relation (5.5.9), we define for a family (ξ(v))v∈E of a.s.
finite adapted processes ξ(v) = {ξ(v, t), t ∈ [0,∞)} with v ∈ E the Itô integral

Iξ,pϕ(t) =
∫ t

0

∫

E
ξ(v, s−) pϕ(dv, ds) (5.5.12)

with respect to pϕ, such that

ΔIξ,pϕ(t) =
∫ t

0

∫

E
ξ(v, s−) pϕ(dv, ds) −

∫ t−

0

∫

E
ξ(v, s−) pϕ(dv, ds)

=
∫

E
ξ(v, t−) pϕ(dv, {t}) (5.5.13)

for all t ∈ [0,∞). This means that if at a jump time τ the Poisson measure
pϕ generates an event with mark v, then the change of the value of the cor-
responding Itô integral is given by the value ξ(v, τ−) of the integrand ξ for
the mark v just before the jump time. Note that we do not have to write al-
ways ξ(v, s−) for the integrands in (5.5.9) and (5.5.13) if ξ(v, ·) is predictable.
However, to emphasize the fact that the integrand has in the case of a jump
its value always taken before the jump time, we prefer often the above nota-
tion. We refer to Protter (2004) for more details on Itô integrals for Poisson
measures.

To illustrate the above definition for the case when E = (0, λ) with λ ∈
(0,∞), where

ϕ(v) =

{
1 for v ∈ E

0 otherwise,

we obtain for the special case ξ(v, t) = 1 the Itô integral

I1,pϕ(t) =
∫ t

0

∫ λ

0

pϕ(dv, ds) = Nt (5.5.14)

for t ∈ [0,∞). Here

N = {Nt = pϕ((0, λ) × [0, t]), t ∈ [0,∞)} (5.5.15)

is a Poisson process with intensity λ.
As another example let us form the Itô integral for the simple integrand

ξ(v, t) = t and use the previous integrator pϕ. This leads to the Itô integral

It,pϕ(t) =
∫ t

0

∫ λ

0

s pϕ(dv, ds) =
Nt∑

k=1

τk, (5.5.16)
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Fig. 5.5.1. Itô integral of ξ(v, t) = t with respect to pϕ

which equals the sum of the jump times of the above Poisson process N given
in (5.5.15). Figure 5.5.1 displays for the path of the Poisson process N , shown
in Fig. 3.5.1, the resulting value of the Itô integral over time. Note that the
jump sizes in Fig. 5.5.1 increase as the jump times increase.

Finally, let us discuss an example where the integrand depends on the
mark v. We choose as integrand the simple function ξ(v, t) = v

λ . This leads to
the Itô integral I v

λ ,pϕ(t), which is equivalent to a compound Poisson process,
as defined in (3.5.9). Here we have uniformly U(0, 1) distributed jump sizes.
An example for a path of such an Itô integral can be found in Fig. 3.5.2.

Itô Integral for a Lévy Process (*)

Similarly as above, we can introduce for a Lévy process X = {Xt, t ∈ [0,∞)}
as integrator with decomposition (3.6.2) and for some stochastic process ξ =
{ξ(t), t ∈ [0,∞)} the Itô integral

∫ t

0

ξ(s−) dXs =
∫ t

0

ξ(s)α ds +
∫ t

0

ξ(s)β dWs

+
∫ t

0

∫

|v|<1

ξ(s−) v (pϕ(dv, ds) − ϕ(dv) ds)

+
∫ t

0

∫

|v|≥1

ξ(s−) v pϕ(dv, ds) (5.5.17)

for t ∈ [0,∞), see Protter (2004). Recall that the Poisson measure pϕ(·, ·) is
specified in (3.6.2) under the condition (3.5.13). Here we have split the jump
terms according to the representation (3.6.2). In the same manner as for Lévy
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processes one obtains the Itô integral for general semimartingales by using
the decomposition (5.5.1)–(5.5.3) and calculating the different contributing
terms.

5.6 Exercises for Chapter 5

5.1. If we assume that W i = {W i
t , t ∈ [0,∞)}, i ∈ {1, 2}, are standard

Wiener processes, is the process Y = {Yt = α1 W 1
t + α2 W 2

t , t ∈ [0,∞)} for
α1, α2 ∈ � a martingale?

5.2. For a standard Wiener process W , is the process Y = {Yt = (Wt)2,
t ∈ [0,∞)} a martingale, submartingale or supermartingale?

5.3. Show that M = {Mt = (Wt)2 − t, t ∈ [0,∞)} is a martingale, if W is a
standard Wiener process.

5.4. Let (Ω,A,A, P ) be a filtered probability space with standard Wiener
process W , geometric Brownian motion X = {Xt = exp{(r − 1

2 σ2) t + σ Wt},
t ∈ [0,∞)} and a money account B = {Bt = exp{r t}, t ∈ [0,∞)} with inter-
est rate r. Is the discounted process X̄ = {X̄t = Xt

Bt
, t ∈ [0,∞)} a martingale,

submartingale or supermartingale? Use the fact that an N(0, 1) distributed
Gaussian random variable Y has Laplace transform

E(exp{σ Y }) = exp
{

1
2

σ2

}
,

see (1.3.76).

5.5. Compute the quadratic variation [Y ] for a transformed Wiener process
Y = {Yt = a t + b Wt, t ∈ [0,∞)}, where W is a standard Wiener process.

5.6. Determine the covariation [Y, W ] between the transformed Wiener pro-
cess Y from Exercise 5.5 and the standard Wiener process W .

5.7. If X = {Xt, t ∈ [0,∞)} is a martingale and g(·) a convex function, is the
process

g(X) = {g(Xt), t ∈ [0,∞)}
a martingale, supermartingale, submartingale or none of these?

5.8. (*) Prove the martingale property for Itô integrals with piecewise con-
stant deterministic integrands and the Wiener process as integrator.

5.9. (*) Show that the correlation property holds for Itô integrals with piece-
wise constant deterministic integrands and the Wiener process as integrator.

5.10. (*) Derive the linearity property for Itô integrals with piecewise constant
deterministic integrands and the Wiener process as integrator.

5.11. (*) For a Lévy process X = {Xt, t ∈ [0,∞)} with E(Xt | A0) = 0 for
all t ∈ [0,∞) prove that X is a martingale.
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