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Diffusion Processes

In this chapter diffusion processes are introduced. These are potential candi-
dates for the modeling of asset prices, interest rates and other financial quan-
tities. We cover examples on geometric Brownian motion, Ornstein-Uhlenbeck
and square root processes.

4.1 Continuous Markov Processes

A Markov process that evolves in continuous time and has continuous tra-
jectories is called a continuous Markov process. This type of process would
appear to be well suited for the modeling of a range of financial quantities
such as stock prices, exchange rates and interest rates. Unlike Markov chains,
that have discontinuous paths, it allows us to model continuous random move-
ments of stock prices. The typical trajectory of a transformed Wiener process,
as given in Fig. 3.2.3, would seem to be a reasonable candidate for the repre-
sentation of asset price dynamics, for example, the path of the S&P500 index
that was displayed in Fig. 3.1.1.

The Wiener process evolves in continuous time and has continuous tra-
jectories. That is, it has paths without any jumps. Since it has independent
increments it is also a Markov process. However, the transformed Wiener pro-
cess given in Sect. 3.2 can take negative values. To see this better we plot in
Fig. 4.1.1 the Gaussian transition densities for the standard Wiener process
for the time interval [0.1, 3.0]. The figure shows that for negative values to
be obtained there is a positive probability. This observation also applies to a
transformed Wiener process. It indicates that the Wiener process or a trans-
formed Wiener process would not be suitable for the modeling of asset price
dynamics.
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Fig. 4.1.1. Probability densities for the standard Wiener process

Black-Scholes Model

It is intuitively appealing to assume that asset prices can be modeled using
some positive process which changes its value proportionally to its current
value. On the basis of this assumption it makes sense to exponentially trans-
form the Wiener process W to ensure positive asset price values. That is, we
consider the random variable

Xt = exp{g t + b Wt} (4.1.1)

for t ∈ [0,∞). Here g denotes the growth rate and b is known as the volatil-
ity of the asset price process X. In Samuelson (1955, 1965a) this model
was suggested for asset prices. Later, it was used in Merton (1973b) and
Black & Scholes (1973) as a stock price model in their Nobel prize winning
work on option pricing. The stochastic process given in (4.1.1) is called geomet-
ric Brownian motion. The corresponding asset price model is the lognormal
or Black-Scholes model.

In Fig. 4.1.2 we show a path for geometric Brownian motion over a period
of ten years with growth rate g = 0.05 and volatility b = 0.2. Note that the
fluctuations become larger for larger values of the asset price.

To have flexibility in using different initial values in the lognormal model
we define geometric Brownian motion more generally by the expression

Xt = Xt0 exp{g (t − t0) + b (Wt − Wt0)} (4.1.2)

for t ∈ [t0,∞) with initial asset price Xt0 > 0, growth rate g and volatility b,
where W denotes a standard Wiener process.
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Fig. 4.1.2. A path of geometric Brownian motion

Markov Property

Geometric Brownian motion is an example of a continuous Markov process,
a class of stochastic processes widely used for asset price modeling. Let us
suppose that the share price of a stock is at present $1 and follows a con-
tinuous Markov process. Then it is reasonable to assume that predictions of
future stock price values should only depend on the present share price and
be unaffected by the price one year, one month or one week ago. The only rel-
evant information is that the price at present is $1. Any predictions of future
prices are uncertain, however, they can be expressed in terms of a probability
distribution. The Markov property then implies that the probability distribu-
tion of the stock price at a particular future time depends only on the current
stock price. This simplifies considerably the modeling, statistical inference and
numerical analysis that typically arise.

The Markov property has a natural economic interpretation in the mod-
eling of asset prices: The present price of a stock encapsulates all of the infor-
mation contained in the knowledge of past prices. This does not exclude the
possibility of using certain statistical properties of the stock price history to
determine, that is calibrate, model parameters, for instance, the growth rate
or the volatility of the lognormal model.

In what follows we shall suppose that for k ∈ {0, 1, . . .} every joint dis-
tribution FXt0 ,Xt1 ,...,Xtk

(x0, x1, . . ., xk) of the process X = {Xt, t ∈ [0,∞)}
under consideration has a density p(t0, x0; t1, x1; . . . ; tk, xk). This allows us
to define the conditional probability distribution in the form

P
(
Xtn+1 < xn+1 |Xt0 = x0, Xt1 = x1, . . . , Xtn = xn

)

=

∫ xn+1

−∞
p(t0, x0; t1, x1; . . . ; tn, xn; tn+1, y) dy

∫ ∞

−∞
p(t0, x0; t1, x1; . . . ; tn, xn; tn+1, y) dy

(4.1.3)
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for all time instants 0 ≤ t0 < t1 < . . . < tn < tn+1 < ∞, n ∈ {0, 1, . . .}, and
all states x0, x1, . . ., xn+1 ∈ �, provided the denominator is nonzero. Now,
the Markov property can be formulated in the form

P
(
Xtn+1 < xn+1 |Xt0 = x0, Xt1 = x1, . . . , Xtn = xn

)

= P
(
Xtn+1 < xn+1 |Xtn = xn

)
(4.1.4)

for all time instants 0 ≤ t0 < t1 < . . . < tn < tn+1 < ∞, n ∈ {0, 1, . . .}
and all states x0, x1, . . ., xn+1 ∈ � for which the conditional probabilities are
defined.

For a continuous Markov process X we write its transition probability
distribution in the form

P (s, x; t, (−∞, y)) = P (Xt < y |Xs = x),

for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ �. If for s, x and t the probability dis-
tribution function P (s, x; t, ·) has a probability density p(s, x; t, ·), called the
transition density, then it holds

P (s, x; t, (−∞, y)) =
∫ y

−∞
p(s, x; t, u) du (4.1.5)

for all y ∈ �, t ∈ [0,∞) and s ∈ [0, t].

Chapman-Kolmogorov Equation

The transition matrix equation (3.4.5) for continuous time Markov chains has
a counterpart for the transition densities of continuous Markov processes. This
continuous version is called the Chapman-Kolmogorov equation and has the
form

p(s, x; t, y) =
∫ ∞

−∞
p(s, x; τ, z) p(τ, z; t, y) dz (4.1.6)

for 0 ≤ s ≤ τ ≤ t < ∞ and x, y ∈ �, which follows directly from the Markov
property. The Chapman-Kolmogorov equation is a fundamental relation that
is used to derive important properties of continuous Markov processes.

4.2 Examples for Continuous Markov Processes

Let us discuss some examples of continuous Markov processes that, as we shall
see later, are diffusion processes and play a role in financial modeling.
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Fig. 4.2.1. Transition density for geometric Brownian motion

Wiener Process

An example of a continuous Markov process is given by the standard Wiener
process defined in (3.2.6). The Wiener process obtains the Markov property
from its independent increments. It has the Gaussian transition density

p(s, x; t, y) =
1

√
2π(t − s)

exp
{
− (y − x)2

2(t − s)

}
, (4.2.1)

for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ �. Figure 4.1.1 shows the transition density
for a Wiener process that starts at time 0 with the initial value 0.

Geometric Brownian Motion

Geometric Brownian motion, see (4.1.2), is also a continuous Markov process.
As we see later, it can be expressed as an exponential of a linearly transformed
Wiener process, which gives it its Markov property. It has the transition den-
sity

p(s, x; t, y) =
1

√
2 π(t − s) b y

exp
{
− (ln(y) − ln(x) − g(t − s))2

2 b2(t − s)

}
, (4.2.2)

for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ (0,∞). Figure 4.2.1 shows the transition
density for a geometric Brownian motion with growth rate g = 0.05, volatility
b = 0.2 and initial value x = 1 at time s = 0 for the period from 0.1 to 3
years.
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Fig. 4.2.2. Transition density of standard OU process starting at (s, x) = (0, 0)

Standard Ornstein-Uhlenbeck Process

Let us consider an example of another continuous Markov process which is
also a Gaussian process. This is the standard Ornstein-Uhlenbeck (OU) process
X = {Xt, t ∈ [0,∞)}, where we start from an initial value X0. Since it is a
Gaussian process it can be characterized by the mean and the variance of its
increments. More precisely, its Gaussian transition density is defined in the
form

p(s, x; t, y) =
1

√
2π

(
1 − e−2(t−s)

) exp

{

−
(
y − xe−(t−s)

)2

2
(
1 − e−2(t−s)

)

}

, (4.2.3)

for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ �, with mean x e−(t−s) and variance
1 − e−2(t−s).

To illustrate the stochastic dynamic of this process we show in Fig. 4.2.2
the transition density of a standard OU process for the period from 0.1 to 3
years with initial value x = 0 at time s = 0. As can be seen from Fig. 4.2.2
that the transition densities for the standard OU process seem to stabilize
after a period of about one year. In fact, as can be seen from (4.2.3) these
transition densities asymptotically approach, as t → ∞, a standard Gaus-
sian density. This is in contrast, for example, to transition densities for the
Wiener process, which do not converge to a stationary density, see (4.2.1) and
Fig. 4.1.1. For illustration, we plot in Fig. 4.2.3 the transition density for a
standard OU process that starts at the initial value x = 2 at time t = 0. Note
how the transition density evolves towards a median that is close to 0.

In Fig. 4.2.4 a path of a standard OU process is shown. It can be observed
that this trajectory fluctuates around some reference level. Indeed, as already
indicated, the standard OU process has a stationary density. This can be
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Fig. 4.2.3. Transition density of standard OU process starting at (s, x) = (0, 2)

Fig. 4.2.4. Path of a standard Ornstein-Uhlenbeck process

seen from (4.2.3) when t → ∞. Note also that the Gaussian property of the
standard OU process means that even a scaled and shifted OU process may
become negative.

More generally, as we shall describe later in Sect. 7.2, an Ornstein-
Uhlenbeck (OU) process is a Gaussian process that is mean reverting to a
reference level and its fluctuations can be more or less intense than that of
a standard OU process. Such a model is suitable, for instance, for an infla-
tion rate or a real interest rate. The fact that the OU process leads into an
equilibrium dynamics is important for such modeling purposes.

Geometric Ornstein-Uhlenbeck Process

An asset price model that both has a stationary density and is positive is
obtained by the geometric Ornstein-Uhlenbeck process. It is expressed as the
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Fig. 4.2.5. Transition density of the geometric Ornstein-Uhlenbeck process

Fig. 4.2.6. Path of a geometric Ornstein-Uhlenbeck process

exponential of a standard OU process, that is, it has the lognormal transition
density

p(s, x; t, y) =
1

y
√

2 π (1 − e−2(t−s))
exp

{

−
(
ln(y) − ln(x) e−(t−s)

)2

2
(
1 − e−2(t−s)

)

}

,

(4.2.4)
for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ (0,∞). In Fig. 4.2.5 we display the cor-

responding probability densities for the time period from 0.1 to 3 years with
initial value x = 1 at time s = 0. In this case the transition density converges
over time to a limiting lognormal density as stationary density, as can be seen
from (4.2.4). Figure 4.2.6 shows a trajectory for the geometric OU process.
We note that it stays positive and shows large fluctuations for large values.
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This process was, for instance, interpreted in Föllmer & Schweizer (1993)
as an asset price model. However, it is still somewhat restrictive in that it
is not possible to model changes in the trend or volatility of the asset price.
This will be conveniently achieved in the context of more general diffusion
processes, which form a class of special continuous Markov processes and will
be considered below.

4.3 Diffusion Processes

It is not surprising that the Wiener process serves as a prototype example of a
diffusion process since it can model the diffusive motion of Brownian particles.
As we attempt to show, diffusion processes form a powerful class of stochastic
processes that can be applied to a range of financial modeling problems.

Characterization of Diffusion Processes

Definition 4.3.1. A continuous time Markov process with transition den-
sity p(s, x; t, y) is called a diffusion process if the following three limits exist
for all ε > 0, s ∈ [0,∞) and x ∈ � :

lim
t↓s

1
t − s

∫

|y−x|>ε

p(s, x; t, y) dy = 0, (4.3.1)

lim
t↓s

1
t − s

∫

|y−x|<ε

(y − x)p(s, x; t, y) dy = a(s, x) (4.3.2)

and
lim
t↓s

1
t − s

∫

|y−x|<ε

(y − x)2p(s, x; t, y) dy = b2(s, x), (4.3.3)

where a and b2 are integrable functions.

The condition (4.3.1) prevents the diffusion process from having jumps. At
time s and position x the quantity a(s, x) in (4.3.2) is called the drift coefficient
and b(s, x) in (4.3.3) the diffusion coefficient. Condition (4.3.2) implies that
the drift coefficient is given by the limit of the conditional expectation

a(s, x) = lim
t↓s

1
t − s

E
(
Xt − Xs

∣
∣
∣ Xs = x

)
. (4.3.4)

This means that the drift a(s, x) is the instantaneous rate of change in the
conditional mean of the diffusion process given that Xs = x.

Similarly, it follows from (4.3.3) that

b2(s, x) = lim
t↓s

1
t − s

E
(
(Xt − Xs)2

∣
∣
∣ Xs = x

)
, (4.3.5)
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which denotes the limit of the second moment of the increments of the diffusion
process normalized by the time t−s, given that Xs = x. Thus b(s, x) measures
the average size of the fluctuations of the diffusion process. In fact it can be
shown that b2(s, x) is approximately the normalized variance of its increments
Xt−Xs as t → s. Furthermore, it can be shown under fairly general conditions
that for a given initial value X0, drift a(·, ·) and diffusion coefficient b(·, ·) the
diffusion process X is uniquely determined, for instance, in a mean square
sense as will be discussed later.

Roughly speaking, the increment Xt − Xs of a diffusion process over a
small time interval of length h = t−s can be interpreted approximately as
a conditionally Gaussian random variable with mean a(s, Xs)h and variance
b2(s, Xs)h. This can be expressed as

Xt − Xs ≈ a(s, Xs)h + b(s, Xs)
√

h ξ, (4.3.6)

where ξ is an independent standard Gaussian random variable. This equation
is useful as a first approximation of increments of diffusion processes, to guide
intuition and to indicate a relationship with the classical Taylor series expan-
sion. Note however, in this simplified form no information is given about the
corresponding error term.

Examples of One-Factor Asset Price Models

Let us list together with the already mentioned examples a few additional one-
dimensional diffusion processes that have been applied in asset price modeling:
The linearly transformed Wiener process, see Fig. 3.2.3, is an example of a
diffusion process with drift a(s, x) = 0 and diffusion coefficient b(s, x) = b. As
previously mentioned, it was used in Bachelier (1900) for stock price modeling.
One of the disadvantages of this asset price model is given by the fact that
it generates negative asset prices. In a very simplistic way it is sometimes
argued that if one freezes the trajectory of this Bachelier model when it first
hits zero, then one obtains a very basic asset price model. This model has
many deficiencies. In particular, the asset price will hit zero with positive
probability. This is usually not intended when modeling asset prices.

It can be shown that geometric Brownian motion or the Black-Scholes
(BS) model as given in (4.1.2) is a diffusion process with drift

a(s, x) = x

(
g +

1
2

b2

)
(4.3.7)

and diffusion coefficient
b(s, x) = x b. (4.3.8)

As previously mentioned, the BS model was suggested in Samuelson (1955,
1965a) and used in Black & Scholes (1973). Despite the fact that this model
became the standard financial market model, it does not generate a random,
fluctuating volatility, which is usually observed in practice.
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The geometric Ornstein-Uhlenbeck (GOU) model, see (4.2.4), can be shown
to have drift coefficient

a(s, x) = x (1 − ln(x)) (4.3.9)

and diffusion coefficient
b(s, x) =

√
2 x. (4.3.10)

This asset price model permits an equilibrium type dynamics. It was used, as
already mentioned, in Föllmer & Schweizer (1993), Platen & Rebolledo (1996)
and Fleming & Sheu (1999). A disadvantage is again that it does not generate
a fluctuating volatility.

The constant elasticity of variance (CEV) model introduced in Cox (1975),
see also Schroder (1989), has drift

a(s, x) = x r (4.3.11)

and diffusion coefficient
b(s, x) = σ xα (4.3.12)

with constants r, σ and α ∈ (0, 1). It does generate a fluctuating volatility.
The elasticity of the changes of the variance of log-returns can be shown to be
constant due to the power structure of the diffusion coefficient. However, as
shown in Delbaen & Shirakawa (2002), the model has a deficiency since the
asset price will hit zero with positive probability in finite time, which is not
what one usually intends to model.

The minimal market model (MMM) introduced in Platen (2001, 2002) has
in its stylized version the drift

a(s, x) = αs (4.3.13)

and the diffusion coefficient

b(s, x) =
√

αs x (4.3.14)

with αs = α0 exp{η s}, for initial trend α0 > 0 and net growth rate η > 0.
This model generates a realistic, fluctuating volatility and does not hit zero.
In particular, its volatility dynamics match closely that of observed index
volatility and yields realistic option prices, as we shall see later.

Examples of One-Factor Short Rate Models

A large variety of short rate models has been developed that are formed by
diffusion processes. In the following we shall mention several one-factor short
rate models by specifying their drift and diffusion coefficients.

One of the simplest stochastic short rate models arises if the Wiener
process is linearly transformed by assuming a deterministic drift coefficient
a(s, x) = as and a deterministic diffusion coefficient b(s, x) = bs. This leads to
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the Merton model, see Merton (1973a), or to some specification of the contin-
uous time version of the Ho-Lee model, see Ho & Lee (1986). Here the short
rate does not remain positive, as one would expect.

A widely used short rate model is the Vasicek model, see Vasicek (1977),
or the extended Vasicek model, which is an Ornstein-Uhlenbeck process with
linear drift coefficient a(s, x) = γs (x̄s − x) and deterministic diffusion coef-
ficient b(s, x) = bs. Also this model has a Gaussian transition density and,
thus, allows negative interest rates.

In Black (1995) it was suggested that one considers the nonnegative value
of a short rate like an option value, which only takes the positive part of
an underlying quantity. This Black model results, when using an Ornstein-
Uhlenbeck process u = {ut, t ∈ [0, T ]} as underlying shadow short rate and a
short rate of the form xs = (us)+ = max(0, us). Such type of short rate mod-
els, which allow the consideration of low interest rate regimes, have been stud-
ied, for instance, in Gorovoi & Linetsky (2004) and Miller & Platen (2005).

Cox et al. (1985) suggested the CIR model, which uses a square root pro-
cess, see (4.4.6) below. Its drift coefficient a(s, x) = γs (x̄s − x) is affine,
which means that it is linear, and its diffusion coefficient is of the form
b(s, x) = bs

√
x. In the next section we shall describe the transition densi-

ties of the CIR model. This model has the desirable feature that it excludes
negative interest rates. Furthermore, it yields an equilibrium dynamics. Un-
fortunately, when calibrated to market data, it shows a number of deficien-
cies which concern the possible shapes of the, so-called, forward rate or yield
curves.

A translated or extended model of the CIR type is the Pearson-Sun model,
see Pearson & Sun (1989), which assumes a(s, x) = γ (x̄s − x) and b(s, x) =√

b1 + b2 x. Here the parameters are usually assumed to be constants which
fulfill certain conditions, such as γ(x̄+ b1

b2
) > 0. These ensure that the solution

is contained in a certain region. Duffie & Kan (1994) generalized this model,
which belongs to the affine class of diffusion processes, because the drift a and
squared diffusion coefficient b2 are affine. This model is therefore often called
an affine model.

Marsh & Rosenfeld (1983) and also Dothan (1978) considered a short rate
model with a(s, x) = asx and b(s, x) = bsx. This specification is known as the
lognormal model. Here the short rate remains positive, however, it does not
admit a stationary regime.

A generalized lognormal model, also called the Black-Karasinski model, see
Black & Karasinski (1991), is obtained by setting a(s, x) = x (as + gs ln(x))
and b(s, x) = bsx. This generates a geometric Ornstein-Uhlenbeck process, see
Sect.4.2. If gs = − b′s

bs
, then the above model is also called the continuous-time

version of the Black-Derman-Toy model, see Black, Derman & Toy (1990).
This type of model keeps interest rates positive and allows them to have an
equilibrium.
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Another model arises if one sets a(s, x) = γs (x̄s − x) and b(s, x) = bsx. In
the case of constant parameters this formulation is known as the Courtadon
model, see Courtadon (1982). The Longstaff model, see Longstaff (1989) is
obtained by setting a(s, x) = γs (

√
x̄s −

√
x) and b(s, x) = bs

√
x.

A rather general model is the Hull-White model, see Hull & White (1990).
It has linear mean-reverting drift a(s, x) = γs (x̄s−x) and diffusion coefficient
b(s, x) = bsx

q for some choice of exponent q ≥ 0. Obviously, this structure
includes several of the above models. In the case q = 0 the Hull-White model
is also called the extended Vasicek model, as already mentioned above.

The Sandmann-Sondermann model, see Sandmann & Sondermann (1994),
was motivated by the aim to consider annual, continuously compounded in-
terest rates. It has drift a(s, x) = (1 − e−x)(as − 1

2 (1 − e−x) b2
s) and diffusion

coefficient b(s, x) = (1 − e−x)cs.
An alternative short rate model was proposed in Platen (1999), which

suggests a drift a(s, x) = γ(x − as)(cs − x) and a diffusion coefficient of the
type b(s, x) = bs|x − cs|

3
2 . The Platen model provides a reasonably accurate

reflection of the short rate drift and diffusion coefficient as estimated from
market data in Ait-Sahalia (1996).

As can be seen by these examples one can, in principle, choose quite general
functions for the drift and diffusion coefficients to form meaningful diffusion
models of asset prices, short rates and other financial quantities. These func-
tions then characterize, together with the initial conditions, the dynamics of
the diffusion process in an elegant and efficient way. This characterization
is more compact than, for instance, that given by a transition matrix of a
discrete or continuous time Markov chain. As we shall see, it also allows the
exploitation of smoothness and other regularity properties of the transition
densities for functionals of diffusions. We shall later aim to identify an optimal
diffusion type dynamics of a financial market that takes advantage of these
powerful mathematical features.

4.4 Kolmogorov Equations

In this section we describe some important results, which show that the tran-
sition densities for diffusion processes satisfy certain partial differential equa-
tions (PDEs).

Kolmogorov Equations

When the drift coefficient a(·) and diffusion coefficient b(·) of a diffusion pro-
cess are appropriate functions, as will be discussed later, then its transition
density p(s, x; t, y) satisfies certain PDEs. These are the Kolmogorov forward
equation or Fokker-Planck equation
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∂p(s, x; t, y)
∂t

+
∂

∂y
(a(t, y) p(s, x; t, y)) − 1

2
∂2

∂y2

(
b2(t, y) p(s, x; t, y)

)
= 0,

(4.4.1)
for (s, x) fixed, and the Kolmogorov backward equation

∂p(s, x; t, y)
∂s

+ a(s, x)
∂p(s, x; t, y)

∂x
+

1
2

b2(s, x)
∂2p(s, x; t, y)

∂x2
= 0, (4.4.2)

for (t, y) fixed. Obviously, the initial or terminal condition for this PDE equals
the Dirac delta function

p(s, x; s, y) = δ(y − x) =

{
∞ for y = x

0 for y 
= x,
(4.4.3)

where ∫ ∞

−∞
δ(y − x) dy = 1 (4.4.4)

for given x.
The first PDE (4.4.1) describes the forward evolution of the transition

density with respect to the final time and state (t, y) and the second provides
the backward evolution with respect to the initial time and position (s, x). The
forward equation (4.4.1) is commonly called the Fokker-Planck equation. Both
Kolmogorov equations follow from the Chapman-Kolmogorov equation (4.1.6)
and the conditions (4.3.1)–(4.3.3). The Kolmogorov backward equation plays,
in an extended form with other boundary conditions, an essential role in
derivative pricing.

A few diffusion processes, for instance, those that arise from transfor-
mations of either Gaussian or square root processes have known transition
densities. It is convenient to use such transformed diffusions with explicitly
known transition densities to model financial quantities. As long as one is able
to stay in such a framework the resulting quantitative methods are usually
superior to numerical methods for solving PDEs. However, when the drift or
diffusion coefficients become more complex or time dependent, then numerical
methods have to be employed to approximate the solutions of the PDEs.

Transition Densities for the Square Root Process

Let us consider the square root (SR) process that appears in the CIR model
mentioned in the previous section. Here we use the specification of the drift
coefficient a(s, x) = γ(x̄ − x) and the diffusion coefficient b(s, x) = β

√
x

for s ≥ 0, x > 0, with constant reference level x̄ > 0, speed of adjustment
γ > 0 and scaling parameter β > 0. A key feature of the SR process is
that it is linear mean-reverting and can be shown to be nonnegative, see
Borodin & Salminen (2002). For a value x above the reference level x̄ the drift
coefficient is negative and drives the process back to x̄. For a value x = 0,
the diffusion coefficient is zero and the drift coefficient is positive. Intuitively,
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Fig. 4.4.1. Transition density of a square root process

the process is then driven back to its reference level x̄. One can show that for
γ x̄
β2 ≥ 1

2 the SR process remains strictly positive, see Revuz & Yor (1999) or
Borodin & Salminen (2002).

The quantity

n =
4 γ x̄

β2
(4.4.5)

is referred to as the dimension of the SR process. For the SR process with
γ x̄
β2 ≥ 1

2 the corresponding transition density p(s, x; t, y) is available in analytic
form. In fact, it is given by

p(s, x; t, y)=
1

2(τ(t) − τ(s))
exp

{
γ t − x exp{γ s} + y exp{γ t}

2(τ(t) − τ(s))

}

×
(

y exp{γ (t − s)}
x

) ν
2

Iν

(√
x y exp{γ (t + s)}

τ(t) − τ(s)

)

(4.4.6)

with

τ(t) =
(exp{γ t} − 1)β2

4 γ
(4.4.7)

for t ∈ [0,∞), s ∈ [0, t], x > 0, y > 0 and modified Bessel function of the first
kind Iν(z) with index

ν =
2
β2

γ x̄ − 1 =
n

2
− 1, (4.4.8)

see (1.2.15). Here Γ (·) is the gamma function, see (1.2.10). One can show
that the above transition density satisfies the Kolmogorov equations (4.4.1)–
(4.4.4).
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Fig. 4.4.2. Sample path of a square root process of dimension four

Figure 4.4.1 shows the transition density of an SR process for the period
from 0.1 to 3.0 years, with initial value X0 = 1.0, reference level x̄ = 1.0 and
parameters γ = 2 and β =

√
2. By (4.4.5) this means that we consider an

SR process of dimension n = 4. Figure 4.4.2 displays a sample path for the
SR process.

Generalized Square Root Processes (*)

As we have seen above, for asset price modeling and short rate modeling
but also for squared volatility modeling, positive diffusion processes, which
potentially allow some equilibrium, have a great appeal. Therefore, we add
the following explicit transition densities for generalized square root processes.
Some of these have been recently derived in Craddock & Platen (2004) by
symmetry group methods. Such transition densities can be potentially rather
useful in quantitative finance.

Let us consider a generalized square root process, which is a diffusion pro-
cess X = {Xt, t ∈ [0,∞)} with a square root function as diffusion coefficient
of the form

b(t, x) =
√

2 x (4.4.9)

for all t ≥ 0 and x ∈ [0,∞). Here the drift function a(t, x) = a(x) is time
homogeneous but otherwise rather flexible. This drift will be specified below
for certain cases.

It is of interest to identify those drift functions a(·), where one has an
analytic solution of the Kolmogorov backward PDE for the corresponding
time homogeneous transition density p(0, x; t, y), which can be written as

− ∂p(0, x; t, y)
∂t

+ x
∂2p(0, x; t, y)

∂x2
+ a(x)

∂p(0, x; t, y)
∂x

= 0 (4.4.10)

for t ∈ (0,∞) with
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Fig. 4.4.3. Transition density for a squared Bessel process, case (i)

p(0, x, y) = δ(x − y) (4.4.11)

for x, y ∈ (0,∞). In Craddock & Platen (2004) for the following ten particular
cases analytical solutions have been identified:

(i) When the drift function is a constant

a(x) = α > 0, (4.4.12)

then we have a, so-called, squared Bessel process of dimension n = 2α
with transition density

p(0, x; t, y) =
1
t

(
x

y

) 1−α
2

Iα−1

(
2
√

x y

t

)
exp

{
− (x + y)

t

}
. (4.4.13)

Here Iα−1 is again the modified Bessel function of the first kind with
index α − 1, see (1.2.15). In Fig. 4.4.3 we plot the transition density
p(0, x; t, y) for x = 1 and α = 3

2 , that is, for a squared Bessel process of
dimension n = 3.

(ii) When we set the drift function to

a(x) =
μx

1 + μ
2 x

(4.4.14)

for μ > 0, then we obtain the transition density

p(0, x; t, y) =
exp

{
− (x+y)

t

}

(
1 + μ

2 x
)
t

[(√
x

y
+

μ
√

x y

2

)
I1

(
2
√

x y

t

)
+ t δ(y)

]

(4.4.15)
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Fig. 4.4.4. Transition density for case (ii)

with δ(·) denoting the Dirac delta function. For y = 0 one can interpret
exp{− x

t }
(1+ μ

2 x) as the probability of absorption at zero. In Fig. 4.4.4 we show

the above transition density for x = 1 and μ = 1.
(iii) In the case of the drift function

a(x) =
1 + 3

√
x

2 (1 +
√

x)
, (4.4.16)

one obtains the transition density

p(0, x; t, y) =
cosh

(
2
√

x y

t

)

√
π y t (1 +

√
x)

(
1 +

√
y tanh

(
2
√

x y

t

))

× exp
{
− (x + y)

t

}
. (4.4.17)

In Fig. 4.4.5 we display the corresponding transition density for x = 1.
(iv) When we choose as drift function

a(x) = 1 + μ tanh
(

μ +
1
2

μ ln(x)
)

(4.4.18)

for μ = 1
2

√
5
2 , then we obtain the transition density

p(0, x; t, y) =
(

x

y

)μ
2

[
I−μ

(
2
√

x y

t

)
+ e2 μ yμ Iμ

(
2
√

x y

t

)]

×
exp{−x+y

t }
(1 + exp{2 μ}xμ) t

. (4.4.19)
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Fig. 4.4.5. Transition density for case (iii)

The shape of the density (4.4.19) for x = 1 looks quite similar to that
in Fig. 4.4.5.

(v) For the drift function

a(x) =
1
2

+
√

x, (4.4.20)

one obtains the transition density

p(0, x; t, y) = cosh
(

(t + 2
√

x)
√

y

t

)
exp{−

√
x}√

π y t
exp

{
− (x + y)

t
− t

4

}
.

(4.4.21)
Also the transition density (4.4.21) for x = 1 shows a lot of similarity
with that in Fig. 4.4.5.

(vi) In the case where the drift function is set to

a(x) =
1
2

+
√

x tanh(
√

x), (4.4.22)

we obtain the transition density

p(0, x; t, y) =
cosh

(
2
√

x y

t

)

√
π y t

cosh(
√

y)
cosh(

√
x)

exp
{
− (x + y)

t
− t

4

}
. (4.4.23)

The above transition density (4.4.23) for x = 1 has also a similar shape
as that in Fig. 4.4.5.

(vii) For the drift function

a(x) =
1
2

+
√

x coth(
√

x) (4.4.24)

the process has the transition density
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Fig. 4.4.6. Transition density for case (viii)

p(0, x; t, y) =
sinh

(
2
√

x y

t

)

√
π y t

sinh(
√

y)
sinh(

√
x)

exp
{
− (x + y)

t
− t

4

}
. (4.4.25)

This transition density has for x = 1 some similarity with that shown
in Fig. 4.4.3.

(viii) When we use as drift function

a(x) = 1 + cot(ln(
√

x)) (4.4.26)

for x ∈ (exp{−2π}, 1), then we obtain the real valued transition density

p(0, x; t, y) =
exp{− (x+y)

t }
2 ı t sin(ln(

√
x))

(
y

ı
2 Iı

(
2
√

x y

t

)
− y− ı

2 I−ı

(
2
√

x y

t

))
,

(4.4.27)
where ı denotes the imaginary unit.
We plot in Fig.4.4.6 the transition density (4.4.27) for x = 1

2 . Note that
the process X lives on the bounded interval (exp{−2π}, 1).

(ix) If we choose the drift function

a(x) = x coth
(x

2

)
, (4.4.28)

then we obtain the transition density

p(0, x; t, y) =
sinh(y

2 )
sinh(x

2 )
exp

{
− (x + y)

2 tanh( t
2 )

}

×
[

exp{ t
2}

exp{t} − 1

√
x

y
I1

( √
x y

sinh( t
2 )

)
+ δ(y)

]
, (4.4.29)
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Fig. 4.4.7. Transition density for case (x)

where δ(·) is again the Dirac delta function. In Fig. 4.4.3 we displayed
a transition density of similar shape.

(x) Finally, let us set the drift function to

a(x) = x tanh
(x

2

)
(4.4.30)

to obtain the transition density

p(0, x; t, y) =
cosh(y

2 )
cosh(x

2 )
exp

{
− (x + y)

2 tanh( t
2 )

}

×
[

exp{ t
2}

exp{t} − 1

√
x

y
I1

( √
x y

sinh( t
2 )

)
+ δ(y)

]
. (4.4.31)

We plot in Fig. 4.4.7 the transition density for x = 1.

All ten cases that we described above provide examples for generalized
square root processes with diffusion coefficient function b(x) =

√
2 x. In all

these cases we have for the prescribed drift coefficient function an explicitly
known transition density. This list of explicitly known transition densities pro-
vides valuable information for a quantitative analyst when a model needs to
be designed with a square root diffusion coefficient. One can try to choose
one of the above models to reflect the given dynamics. As we shall see later,
by applications of stochastic calculus one can describe analytically the tran-
sition densities of a much wider class of diffusion processes that arise as twice
differentiable functions of the above generalized square root processes.



154 4 Diffusion Processes

4.5 Diffusions with Stationary Densities

Let us now consider diffusion processes that can model an equilibrium. Such
stationary processes are important when the probabilistic features of a dif-
fusion process do not change after a shift in time. In finance such processes
are needed to model volatilities, short rates, credit spreads, inflation rates,
market activity and other key quantities.

Stationary Density

When we use diffusion processes to provide models for financial quantities
that can evolve into some equilibrium, then we restrict considerably the class
of diffusion processes that we consider. For example, as previously noted, the
standard and the geometric OU processes are diffusion processes with transi-
tion densities that converge over long periods of time towards corresponding
stationary densities, see (4.2.3) and (4.2.4). The transition density of the stan-
dard OU process is shown in Fig.4.2.2. In this figure we observe for increasing
time the convergence of the transition density towards some stationary den-
sity, which in this case is the standard Gaussian density. Similarly, one notes in
Fig. 4.2.5, the convergence of the transition density of the geometric OU pro-
cess towards another stationary density, which is here the lognormal density.
Also the SR process, see (4.2.4), has a stationary density.

More precisely, for a diffusion process that permits some equilibrium its
stationary density p̄(y) is defined as the solution of the integral equation

p̄(y) =
∫ ∞

−∞
p(s, x; t, y) p̄(x) dx

for t ∈ [0,∞), s ∈ [0, t] and y ∈ �. This means, if one starts with the station-
ary density, then one obtains again the stationary density as the probability
density of the process after any given time period. A stationary diffusion pro-
cess is, therefore, obtained when the corresponding diffusion process starts
with its stationary density. We shall not call a stationary diffusion process a
diffusion process with stationary density that starts with a given fixed value.
We rather say in this case that the process has a stationary density.

One can identify the stationary density p̄ by noting that it satisfies the
corresponding stationary, or time-independent, Kolmogorov forward equation,
see (4.4.1). This stationary Fokker-Planck equation reduces to the ordinary
differential equation (ODE)

d

dy
(a(y) p̄(y)) − 1

2
d2

dy2

(
b2(y) p̄(y)

)
= 0 (4.5.1)

with drift a(x) = a(s, x) and diffusion coefficient b(x) = b(s, x). Consequently,
it is necessary that equation (4.5.1) is satisfied to ensure that a diffusion has
a stationary density. We assume in the following that a unique stationary
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density exists for the diffusion processes to be considered in the remainder of
this section.

Note that since p̄ is a probability density it must satisfy the relation
∫ ∞

−∞
p̄(y) dy = 1. (4.5.2)

Analytic Stationary Densities

Fortunately, one can identify for a large class of stationary diffusion processes
the analytic form of their stationary density p̄(y). To do this, one notes from
equation (4.5.1) when setting

H(y) = a(y)p̄(y) − 1
2

d

dy

(
b2(y) p̄(y)

)

that
d

dy
H(y) = 0 (4.5.3)

for y ∈ � so that
H(y) = H = const. (4.5.4)

As y → ∞ then p̄(y) → 0 and also dp̄(y)
dy → 0. This implies that H = 0 and

one can therefore show that the stationary density is given by the explicit
expression

p̄(y) =
C

b2(y)
exp

{
2

∫ y

y0

a(u)
b2(u)

du

}
. (4.5.5)

This density satisfies the Fokker-Planck equation (4.5.1) for y ∈ � with some
fixed value y0 ∈ �. Here y0 is some appropriate point in the interval, where the
process X is defined. The constant C can be obtained from the normalization
condition (4.5.2). The formula (4.5.5) is useful in a number of applications
since it allows one to obtain explicit analytic representations for the station-
ary density of diffusions. Moreover, if one observes from data the stationary
density of a diffusion and has either its drift or its diffusion coefficient function
given, then one can deduce the form of the missing diffusion or drift coefficient
function, respectively.

Examples of Stationary Densities

Specifications for both the drift and diffusion coefficients are needed to deter-
mine the stationary density. For instance, in the case of the standard OU pro-
cess, see (4.2.3), with a(s, x) = a(x) = −x and b(s, x) = b(x) =

√
2 the

stationary probability density is the standard Gaussian density

p̄(y) =
1√
2π

exp
{
−y2

2

}
(4.5.6)

for y ∈ �, see Fig. 1.2.3.
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For the SR process, see (4.4.6), with a(s, x) = a(x) = γ (1−x) and b(s, x) =
b(x) = β

√
x we obtain from (4.5.5) the stationary density

p̄(y) = C y
2γ

β2 −1 exp
{
−2γ

β2
y

}
(4.5.7)

for y ∈ (0,∞), where we assume 2γ
β2 > 1. This is a gamma density, see (1.2.9),

with α = p = 2γ
β2 .

An interesting class of diffusion processes with stationary density is ob-
tained for a linear mean reverting drift

a(x) = γ(x̄ − x) (4.5.8)

and a squared diffusion coefficient of the form

b2(x) = 2(b0 + b1x + b2x
2), (4.5.9)

which is quadratic in x ∈ �. In this case, it can be shown that the corre-
sponding stationary density p̄ turns out to be a Pearson type density for an
appropriate choice of constants γ, x̄, b0, b1 and b2. This class includes the
normal, chi-square, gamma, Student t, uniform and exponential, but also the
power exponential, beta, arcsin, Erlang and Pareto probability densities.

In Fig. 4.5.1 we show three stationary densities for specific choices of drift
and diffusion coefficients. The stationary density for an Ornstein-Uhlenbeck
process, labelled OU is obtained, using γ = 2 and x̄ = 1 in (4.5.8) and b1 =
b2 = 0 and b0 = 1 in (4.5.9). The stationary density of a square root process,
labelled SR, is produced with the choices γ = 2 and x̄ = 1 in (4.5.8) and
b0 = b2 = 0 and b1 = 1 in (4.5.9). Finally, the stationary density of a geometric
OU process, labelled GOU, is generated if we set in (4.5.5) a(x) = x(1− ln(x))
and b(x) = 2x2. We see in Fig.4.5.1 the different shapes of stationary densities
that can be obtained.

Ergodicity of a Diffusion Process (*)

In Sect. 3.4 we introduced the notation of ergodicity in the context of con-
tinuous time Markov chains. This property can be analogously defined for
diffusion processes with stationary densities. A diffusion process X = {Xt,
t ∈ [0,∞)} is called ergodic if it has a stationary density p̄ and

lim
T→∞

1
T

∫ T

0

f(Xt) dt =
∫ ∞

−∞
f(x) p̄(x) dx, (4.5.10)

for all bounded measurable functions f : � → �. That is, the limit as T → ∞,
of the random time average specified on the left hand side of relation (4.5.10)
equals the spatial average with respect to p̄, as given on the right hand side of
(4.5.10). Ergodicity is an important property that allows us to describe and
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Fig. 4.5.1. Stationary density for OU, SR and GOU process

quantify functionals of equilibrium states of diffusion processes. It involves
an expectation with respect to the stationary density. However, it does not
require the diffusion process to be stationary. The process only needs to have
a stationary density but it is not required to start with an initial value having
the stationary density as its density.

Note that the widely used lognormal model, described in (4.1.2), does
not yield an ergodic process, since it does not have a stationary density. For
this reason its use and applicability, for instance, in long term short rate,
volatility, credit spread or market activity modeling is limited. For instance,
the geometric OU process discussed in (4.2.4) may be a better candidate
for this type of modeling when aiming to use a diffusion coefficient that is
multiplicative in the state variable.

Now we describe a result that permits us to identify a diffusion process
with drift function a(·) and diffusion coefficient function b(·) as being ergodic.
For this purpose we introduce the scale measure s : � → �+ given by

s(x) = exp
{
−2

∫ x

y0

a(y)
b2(y)

dy

}
(4.5.11)

for x ∈ � with y0 as in (4.5.5). The following result can be found in Borodin
& Salminen (2002).

Theorem 4.5.1. A diffusion process with scale measure s(·) satisfying the
following two properties:

∫ ∞

y0

s(x) dx =
∫ y0

−∞
s(x) dx = ∞ (4.5.12)

and ∫ ∞

−∞

1
s(x) b2(x)

dx < ∞ (4.5.13)

is ergodic and its stationary density p̄ is given by the expression (4.5.5).



158 4 Diffusion Processes

Theorem 4.5.1 is formulated for diffusions with a state space that equals
the set � of all real numbers. In the case of diffusions that are confined to
a smaller set of subintervals, the above conditions can be reformulated by
including relevant boundary conditions.

Affine Diffusions (*)

Let us now introduce the important class of affine diffusions. An affine func-
tion is a linear function added to some constant. Here we have the affine drift
function

a(x) = θ1 + θ2 x (4.5.14)

and the affine squared diffusion function

b2(x) = θ3 + θ4 x. (4.5.15)

The parameter vector θ = (θ1, θ2, θ3, θ4)� ∈ �4 is chosen so that the diffusion
process X = {Xt, t ∈ [0,∞)} has a stationary density. In particular, we set

θ2

θ4
< 0 (4.5.16)

and

η =
2
θ4

(
θ1 −

θ2 θ3

θ4

)
> 1 (4.5.17)

with
θ3 ≥ 0 and θ4 ≥ 0. (4.5.18)

Then it can be shown that the process X is defined on the interval (y0,∞)
with y0 = − θ3

θ4
, see Borodin & Salminen (2002). One obtains from (4.5.2) and

(4.5.5) the stationary density for such an affine diffusion in the form

p̄(x) =
g(x)

∫ ∞
y0

g(y) dy
(4.5.19)

with

g(x) =

(
−2 θ2

θ4

)η (
x + θ3

θ4

)η−1

exp
{

2 θ2
θ4

(
x + θ3

θ4

)}

Γ (η)
(4.5.20)

for x ∈ (y0,∞), where Γ (·) denotes the gamma function, see (1.2.10). We plot
in Fig. 4.5.2 the stationary density p̄(x) for θ1 = −θ2 = 1, θ4 = 1 − θ3 and
θ3 ∈ [0, 0.85].

If we denote by E∞ the expectation under the corresponding stationary
distribution, then we have the stationary mean
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Fig. 4.5.2. Stationary density for θ1 = −θ2 = 1, θ4 = 1 − θ3 and θ3 ∈ [0, 0.85]

E∞(X∞) =
∫ ∞

−∞
x p̄(x) dx = −θ1

θ2
(4.5.21)

and the stationary second moment

E∞((X∞)2) =
(2 θ1 + θ4) θ1 − θ3 θ2

2 (θ2)2
. (4.5.22)

Obviously, in the case θ4 = 0 we obtain an OU process, see (4.2.3), with
Gaussian stationary density. For the case when θ3 equals zero we have an
SR process, see (4.4.6), of dimension

n = 4
θ1

θ4
> 2, (4.5.23)

which has the gamma density, see (1.2.9), as stationary density. The OU and
the SR process are ergodic diffusions, which have explicit expressions for their
transition densities. This makes these two ergodic affine diffusion processes
attractive for a wide range of applications in finance. We remark that at the
end of Sect. 4.4 additional diffusion processes are mentioned that also have
explicit transition densities and could be linked to ergodic diffusions.

4.6 Multi-Dimensional Diffusion Processes (*)

Vector Diffusion (*)

In financial and insurance markets one observes a large number of quantities
concurrently, including equity prices, exchange rates, market indices, volatili-
ties, credit spreads and short rates. These quantities influence each other and
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can be modeled as a vector stochastic process because interactions need to be
considered. For this type of modeling one can use a d-dimensional diffusion
process

X =
{

Xt =
(
X1

t , X2
t , . . . , Xd

t

)�
, t ∈ [0,∞)

}

that generalizes the one-dimensional diffusion process introduced in the pre-
vious section. We call such a continuous time process with continuous paths
a vector diffusion. Here superscripts index the components of the vector.

The transition density for the vector Markov process X to move from the
state x ∈ �d at time s to the state y ∈ �d at the later time t is denoted
by p(s,x; t, y). The continuous time Markov property for this vector process
can be restated in a similar manner as given in (4.1.3) and we require the
following limits to exist for any ε > 0, s ≥ 0 and x ∈ �d, see (4.3.1)–(4.3.3):

lim
t↓s

1
t − s

∫

|y−x|>ε

p(s,x; t, y) dy = 0, (4.6.1)

lim
t↓s

1
t − s

∫

|y−x|≤ε

(y − x) p(s,x; t, y) dy = a(s,x) (4.6.2)

and

lim
t↓s

1
t − s

∫

|y−x|≤ε

(y − x)(y − x)�p(s,x; t, y) dy = S�(s,x)S(s,x).

(4.6.3)
Here a is a d-dimensional vector valued function and D = [di,j ]di,j=1 =
S�S is a symmetric d×d-matrix valued function. Each component of these
functions must satisfy appropriate measurability and integrability condi-
tions, see Stroock & Varadhan (1982). We used above the Euclidean norm
| · |, see (1.4.63), and interpret the vectors as column vectors, for example,
(y − x)(y − x)� is a d×d-matrix with (i, j)th component (yi − xi)(yj − xj).
The drift vector a and the covariance matrix D = S�S have similar in-
terpretations to their one-dimensional counterparts in the previous section.
However, we note that the components of D are the conditional covariances
or variances of the increments of corresponding components of the vector dif-
fusion, that is

di,j(s, x) = lim
t↓s

1
t − s

E
((

Xi
t − Xi

s

) (
Xj

t − Xj
s

) ∣
∣
∣Xs = x

)
,

where di,j(s, x) = dj,i(s, x). They indicate which components of the vector
diffusion are correlated.

Kolmogorov Equations (*)

For vector diffusions the transition densities satisfy the multi-dimensional Kol-
mogorov forward equation, also known as Fokker-Planck equation, given by



4.7 Exercises for Chapter 4 161

∂p(s,x; t, y)
∂t

+
d∑

i=1

∂

∂yi

(
ai(t, y)p(s,x; t, y)

)

− 1
2

d∑

i,j=1

∂2

∂yi∂yj

(
di,j(t, y)p(s,x; t, y)

)
= 0 (4.6.4)

for (s,x) ∈ (0,∞)×�d fixed and (t, y) ∈ (s,∞)×�d with the initial condition

lim
t↓s

p(s,x; t, y) = δ(x − y)

for x,y ∈ �d. Here δ(z) denotes again the Dirac delta function but now on
�d, which defines a measure that has a mass of one concentrated at the point
(0, . . . , 0)� ∈ �d.

We can write the parabolic partial differential equation (4.6.4) more com-
pactly in operator form as

∂p(s,x; t, y)
∂t

− L∗p(s,x; t, y) = 0

for (s,x) ∈ [0,∞) × �d fixed and (t, y) ∈ (s,∞) × �d. Here L∗ is the formal
adjoint of the operator L0 defined as

L0u(s,x) =
d∑

i=1

ai(s,x)
∂u(s,x)

∂xi
+

1
2

d∑

i,j=1

di,j(s,x)
∂2u(s,x)
∂xi∂xj

(4.6.5)

for (s,x) ∈ (0,∞) × �d. The Kolmogorov backward equation, which as previ-
ously mentioned plays a central role in derivative pricing, is given by

∂u(s,x)
∂s

+ L0 u(s,x) = 0 (4.6.6)

for (s,x) ∈ (0, t) × �d with u(s,x) = p(s,x; t, y) for fixed t ∈ [0,∞) and
y ∈ �d.

To model and analyze the quantities in a financial market purely via cor-
responding partial differential equations is rather complex. A more elegant
and also more general framework for modeling stochastic dynamics is pro-
vided when using stochastic calculus, which will be introduced in the following
chapters.

4.7 Exercises for Chapter 4

4.1. Verify that the standard Ornstein-Uhlenbeck process is a diffusion process
with stationary density and identify its mean and its variance.
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4.2. Identify the drift and diffusion coefficient for the standard Wiener process
as a specific diffusion process.

4.3. Compute the drift and diffusion coefficients for the standard Ornstein-
Uhlenbeck process.

4.4. Prove that the transition density of the standard Wiener process solves
the Kolmogorov forward equation and the Kolmogorov backward equation.

4.5. Formulate the Kolmogorov forward equation for the transition density of
the standard Ornstein-Uhlenbeck process.

4.6. Verify that the transition density of the standard Ornstein-Uhlenbeck
process satisfies the corresponding Kolmogorov backward equation.

4.7. Determine the stationary density for the standard Ornstein-Uhlenbeck
process.

4.8. Does geometric Brownian motion have a stationary density?

4.9. Verify whether the geometric Ornstein-Uhlenbeck process has a station-
ary density.

4.10. (*) Is the geometric Brownian motion an ergodic process?

4.11. (*) Prove that the transition density p(s, x; t, y) of the standard Wiener
process satisfies the Chapman-Kolmogorov equation.

4.12. (*) Is the standard Ornstein-Uhlenbeck process an ergodic process?

4.13. (*) Show that the stationary density p̄ of a one dimensional diffusion
process solves the time-independent Kolmogorov forward equation.

4.14. (*) Show that a geometric Brownian motion with growth rate g and
volatility b has the drift a(s, x) = x(g + 1

2b2).
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