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Markets with Event Risk

After having studied continuous financial markets, this chapter applies the
benchmark approach to markets that exhibit jumps due to event risk. It gener-
alizes several results previously obtained to the case of jump diffusion markets
(JDMs).

14.1 Jump Diffusion Markets

This section extends the results of Sect. 10.1. It provides a unified framework
for financial modeling, portfolio optimization, derivative pricing and risk mea-
surement when security price processes exhibit intensity based jumps. These
jumps allow for the modeling of event risk in finance, insurance and other
areas. Conditions are formulated under which such a market does not permit
arbitrage. The natural numeraire for pricing is again shown to be the GOP,
which relates to the concept of real world pricing as previously explained.
Nonnegative portfolios, when expressed in units of the GOP, turn out to
be supermartingales again. An equivalent risk neutral probability measure
needs not to exist in the JDMs considered. The approach presented avoids
the problem of dealing with risk neutral intensities and similar complications
and restrictions that apply under the standard risk neutral approach.

Continuous and Event Driven Uncertainty

We consider a market containing d ∈ N sources of trading uncertainty. Con-
tinuous trading uncertainty is represented by m ∈ {1, 2, . . . , d} independent
standard Wiener processes W̃ k = {W̃ k

t , t ∈ [0,∞)}, k ∈ {1, 2, . . . , m}. These
are defined on a filtered probability space (Ω,A,A, P ). We also model events
of certain types, for instance, corporate defaults, credit rating changes, opera-
tional failures or specified insured events, when these are reflected in the prices
of traded securities. Events of the kth type are counted by the A-adapted kth
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counting process pk = {pk
t , t ∈ [0,∞)}, whose intensity hk = {hk

t , t ∈ [0,∞)}
is a given, predictable, strictly positive process with

hk
t > 0 (14.1.1)

and ∫ t

0

hk
s ds < ∞ (14.1.2)

almost surely for t ∈ [0,∞) and k ∈ {1, 2, . . . , d−m}. The kth counting pro-
cess pk leads to the kth jump martingale qk = {qk

t , t ∈ [0,∞)} with stochastic
differential

dqk
t =

(
dpk

t − hk
t dt

) (
hk

t

)− 1
2 (14.1.3)

for k ∈ {1, 2, . . . , d−m} and t ∈ [0,∞). It is assumed that the above jump
martingales do not jump at the same time. They represent the compensated,
normalized sources of event driven trading uncertainty.

The evolution of trading uncertainty is modeled by the vector process of
independent (A, P )-martingales W = {W t = (W̃ 1

t , . . . , W̃m
t , q1

t , . . . , qd−m
t )�,

t ∈ [0,∞)}. Note that W 1 = W̃ 1, . . . , Wm = W̃m are Wiener processes,
while Wm+1 = q1, . . ., W d = qd−m are compensated, normalized counting
processes. The filtration A = (At) t∈[0,∞) satisfies the usual conditions and
A0 is the trivial σ-algebra, see Sect. 5.1. Note that the conditional variance
of the increment of the kth source of event driven trading uncertainty over a
time interval of length Δ equals

E
((

qk
t+Δ − qk

t

)2 ∣∣∣At

)
= Δ (14.1.4)

for all t ∈ [0,∞), k ∈ {1, 2, . . . , d−m} and Δ ∈ [0,∞). Note that in addition
to trading uncertainties the market typically involves additional uncertainties
that impact jump intensities, short rates, appreciation rates, volatilities and
other financial quantities.

Primary Security Accounts

As previously explained, a primary security account is an investment account,
consisting of only one kind of security. The jth risky primary security account
value at time t is denoted by Sj

t , for j ∈ {1, 2, . . . , d} and t ∈ [0,∞). These
primary security accounts model the evolution of wealth due to the owner-
ship of primary securities, with all dividends and income reinvested. The 0th
primary security account S0 = {S0

t , t ∈ [0,∞)} is again the domestic riskless
savings account, which continuously accrues at the short term interest rate rt.
In the market considered, the denominating security is the domestic currency.

Without loss of generality, we assume that the nonnegative jth primary
security account value Sj

t satisfies the jump diffusion SDE
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dSj
t = Sj

t−

(
aj

t dt +
d∑

k=1

bj,k
t dW k

t

)
(14.1.5)

for t ∈ [0,∞) with initial value Sj
0 > 0 and j ∈ {1, 2, . . . , d}, see Sect. 7.6.

Recall that Sj
t− denotes the value of the process Sj just before time t, which

is defined as the left hand limit at time t, see (5.2.17). This SDE formally looks
similar to the SDE (10.1.2). However, we have here also the jump martingales
W k

t = qk−m
t for k ∈ {m + 1, . . . , d}, t ∈ [0,∞).

We assume that the short rate process r, the appreciation rate processes
aj , the generalized volatility processes bj,k and the intensity processes hk are
almost surely finite and predictable, j ∈ {1, 2, . . . , d}, k ∈ {1, 2, . . . , d − m}.
They are assumed to be such that a unique strong solution of the system of
SDEs (14.1.5) exists, see Sect. 7.7. To ensure nonnegativity for each primary
security account we need to make the following assumption.

Assumption 14.1.1. The condition

bj,k
t ≥ −

√
hk−m

t (14.1.6)

holds for all t ∈ [0,∞), j ∈ {1, 2, . . . , d} and k ∈ {m + 1, . . . , d}.

Taking into account (14.1.3), it can be seen from the SDE (14.1.5) that
this assumption excludes jumps that would lead to negative values for Sj

t ,
see Sect. 7.6. To securitize the sources of trading uncertainty properly, we
introduce the generalized volatility matrix bt = [bj,k

t ]dj,k=1 for all t ∈ [0,∞)
and make the following assumption.

Assumption 14.1.2. The generalized volatility matrix bt is invertible for
Lebesgue-almost-every t ∈ [0,∞).

Assumption 14.1.2 generalizes Assumption 10.1.1 and allows us to intro-
duce the market price of risk vector

θt = (θ1
t , . . . , θd

t )� = b−1
t [at − rt 1] (14.1.7)

for t ∈ [0,∞). Here at = (a1
t , . . . , a

d
t )

� is the appreciation rate vector and 1 =
(1, . . . , 1)� the unit vector . Using (14.1.7), we can rewrite the SDE (14.1.5)
similarly to (10.1.7) in the form

dSj
t = Sj

t−

(
rt dt +

d∑
k=1

bj,k
t (θk

t dt + dW k
t )

)
(14.1.8)

for t ∈ [0,∞) and j ∈ {0, 1, . . . , d}. For k ∈ {1, 2, . . . ,m}, the quantity θk
t

denotes the market price of risk with respect to the kth Wiener process W k.
If k ∈ {m + 1, . . . , d}, then θk

t can be interpreted as the market price of the
(k−m)th event risk with respect to the counting process pk−m. As previously
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discussed, the market prices of risk play a central role, as they are invariants
of the market and determine the risk premia that risky securities attract.

The vector process S = {St = (S0
t , . . . , Sd

t )�, t ∈ [0,∞)} characterizes the
evolution of all primary security accounts. We say that a predictable stochastic
process δ = {δt = (δ0

t , . . . , δd
t )�, t ∈ [0,∞)} is a strategy, see Sect. 10.1, if the

Itô integral Iδ,W (t) of the corresponding gains from trade exists, see Sect. 5.3.
As explained in Chap. 10, the jth component δj of δ denotes the number
of units of the jth primary security account held at time t ∈ [0,∞) in the
portfolio Sδ, j ∈ {0, 1, . . . , d}. For a strategy δ we denote by Sδ

t the value of
the corresponding portfolio process at time t, when measured in units of the
domestic currency. Thus, we set

Sδ
t =

d∑
j=0

δj
t Sj

t (14.1.9)

for t ∈ [0,∞). As defined for a CFM, a strategy δ and the corresponding
portfolio process Sδ = {Sδ

t , t ∈ [0,∞)} are self-financing if

dSδ
t =

d∑
j=0

δj
t dSj

t (14.1.10)

for all t ∈ [0,∞), see (10.1.10). We emphasize that δ is assumed to be a
predictable process and we consider only self-financing portfolios.

Growth Optimal Portfolio

As before, let us denote by V+ the set of strictly positive portfolio processes.
For a given strategy δ with strictly positive portfolio process Sδ ∈ V+ denote
by πj

δ,t the fraction of wealth that is invested in the jth primary security
account at time t, that is,

πj
δ,t = δj

t

Sj
t

Sδ
t

(14.1.11)

for t ∈ [0,∞) and j ∈ {0, 1, . . . , d}, see (10.1.11). These fractions sum to one,
see (10.1.13). In terms of the vector of fractions πδ,t = (π1

δ,t, . . . , πd
δ,t)

� we
obtain from (14.1.10), (14.1.8) and (14.1.11) the SDE for Sδ

t

dSδ
t = Sδ

t−
{
rt dt + π�

δ,t− bt (θt dt + dW t)
}

(14.1.12)

for t ∈ [0,∞), where dW t = (dW 1
t , . . . , dWm

t , dq1
t , . . . , dqm−d

t )�. Note by
(14.1.3) that a portfolio process Sδ remains strictly positive if and only if

d∑
j=1

πj
δ,t bj,k

t > −
√

hk−m
t (14.1.13)

almost surely for all k ∈ {m + 1, . . . , d} and t ∈ [0,∞).
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For a strictly positive portfolio Sδ ∈ V+ we obtain for its logarithm, by
application of Itô’s formula, the SDE

d ln(Sδ
t ) = gδ

t dt +
m∑

k=1

d∑
j=1

πj
δ,t bj,k

t dW k
t

+
d∑

k=m+1

ln

⎛
⎝1 +

d∑
j=1

πj
δ,t−

bj,k
t√

hk−m
t

⎞
⎠√

hk−m
t dW k

t (14.1.14)

for t ∈ [0,∞). Similarly to (10.2.2), the growth rate in this expression is

gδ
t = rt +

m∑
k=1

⎡
⎢⎣

d∑
j=1

πj
δ,t bj,k

t θk
t − 1

2

⎛
⎝ d∑

j=1

πj
δ,t bj,k

t

⎞
⎠

2
⎤
⎥⎦

+
d∑

k=m+1

⎡
⎣ d∑

j=1

πj
δ,t bj,k

t

(
θk

t −
√

hk−m
t

)
+ ln

⎛
⎝1 +

d∑
j=1

πj
δ,t

bj,k
t√

hk−m
t

⎞
⎠hk−m

t

⎤
⎦

(14.1.15)

for t ∈ [0,∞), see Exercise 14.1. Note that for the first sum on the right hand
side of (14.1.15) a unique maximum exists, because it is a quadratic form
with respect to the fractions. Careful inspection of the terms in the second
sum reveals that, in general, a unique maximum growth rate only exists if the
market prices of event risks are less than the square roots of the corresponding
jump intensities. This leads to the following assumption.

Assumption 14.1.3. The intensities and market price of event risk com-
ponents satisfy √

hk−m
t > θk

t (14.1.16)

for all t ∈ [0,∞) and k ∈ {m + 1, . . . , d}.

We shall see that Assumption 14.1.3 guarantees that there are no portfolios
that explode for the given market, which would otherwise lead to some form of
arbitrage. Furthermore, this condition allows us to introduce the predictable
vector process ct = (c1

t , . . . , cd
t )

� with components

ck
t =

⎧⎨
⎩

θk
t for k ∈ {1, 2, . . . ,m}

θk
t

1−θk
t (hk−m

t )−
1
2

for k ∈ {m + 1, . . . , d}
(14.1.17)

for t ∈ [0,∞). Note that a very large jump intensity with hk−m
t � 1

or θk
t√

hk−m
t

� 1 causes the corresponding component ck
t to approach the
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market price of jump risk θk
t asymptotically for given t ∈ [0,∞) and k ∈

{m + 1, . . . , d}. In this case the structure of the kth component ck
t ≈ θk

t is
similar to those obtained with respect to Wiener processes.

We now define the fractions

πδ∗,t = (π1
δ∗,t, . . . , π

d
δ∗,t)

� =
(
c�t b−1

t

)�
(14.1.18)

of a particular portfolio Sδ∗ ∈ V+, which will be later identified as a GOP,
t ∈ [0,∞). By (14.1.12) and (14.1.17) it follows that Sδ∗

t satisfies the SDE

dSδ∗
t = Sδ∗

t−

(
rt dt + c�t (θt dt + dW t)

)

= Sδ∗
t−

(
rt dt +

m∑
k=1

θk
t (θk

t dt + dW k
t )

+
d∑

k=m+1

θk
t

1 − θk
t (hk−m

t )−
1
2

(θk
t dt + dW k

t )

)
(14.1.19)

for t ∈ [0,∞), with Sδ∗
0 > 0. Inspection of (14.1.19) shows that Assump-

tion 14.1.3 keeps the portfolio process Sδ∗ strictly positive. Let us now define
a GOP in the given market with intensity based jumps.

Definition 14.1.4. In the given market a strictly positive portfolio process
Sδ ∈ V+ that maximizes the growth rate gδ

t , see (14.1.15), of strictly positive
portfolio processes is called a GOP, that is, gδ

t ≤ g
δ
t almost surely for all

t ∈ [0,∞) and Sδ ∈ V+.

This definition generalizes the Definition 10.2.1 of a GOP in a CFM. The
proof of the following result is given at the end of this section, see also Platen
(2004b).

Corollary 14.1.5. Under Assumptions 14.1.1, 14.1.2 and 14.1.3 the port-
folio process Sδ∗ = {Sδ∗

t , t ∈ [0,∞)}, satisfying (14.1.19), is a GOP.

By (14.1.15), (14.1.17) and (14.1.18) we obtain the optimal growth rate of
the GOP in the form

gδ∗
t = rt +

1
2

m∑
k=1

(θk
t )2 −

d∑
k=m+1

hk−m
t

⎛
⎝ln

⎛
⎝1 +

θk
t√

hk−m
t − θk

t

⎞
⎠+

θk
t√

hk−m
t

⎞
⎠

(14.1.20)
for t ∈ [0,∞). Note that the optimal growth rate is never less than the short
rate. Furthermore, as long as θk

t√
hk−m

t

� 1, that is, θk
t is significantly smaller

than
√

hk−m
t for k ∈ {m + 1, . . . , d}, we approximately obtain
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gδ∗
t ≈ rt +

1
2

d∑
k=1

(θk
t )2 = rt +

|θt|2
2

(14.1.21)

and

d ln(Sδ∗
t ) ≈ gδ∗

t dt +
d∑

k=1

θk
t dW k

t . (14.1.22)

This SDE is analogous to the SDE for the logarithm of the GOP of a CFM
in Sect. 10.2. Also by (14.1.19) we can derive the approximation

dSδ∗
t ≈ Sδ∗

t

(
rt +

d∑
k=1

θk
t

(
θk

t dt + dW k
t

))
, (14.1.23)

which is similar to (10.2.8). Now, let us formally characterize the given jump
diffusion market.

Definition 14.1.6. We denote the above financial market by SJD
(d) =

{S,a, b, r,A, P} and call it a jump diffusion market (JDM) when it has d ∈ N
risky primary security accounts and satisfies Assumptions 14.1.1, 14.1.2 and
14.1.3.

Supermartingale Property

As is the case for a CFM, we call prices, when expressed in units of Sδ∗

benchmarked prices. By the Itô formula and relations (14.1.12) and (14.1.19),
a benchmarked portfolio process Ŝδ = {Ŝδ

t , t ∈ [0,∞)}, with

Ŝδ
t =

Sδ
t

Sδ∗
t

(14.1.24)

for t ∈ [0,∞), satisfies the SDE

dŜδ
t =

m∑
k=1

⎛
⎝ d∑

j=1

δj
t Ŝj

t bj,k
t − Ŝδ

t θk
t

⎞
⎠ dW k

t

+
d∑

k=m+1

⎛
⎝
⎛
⎝ d∑

j=1

δj
t Ŝj

t− bj,k
t

⎞
⎠
⎛
⎝1 − θk

t√
hk−m

t

⎞
⎠− Ŝδ

t− θk
t

⎞
⎠ dW k

t (14.1.25)

for t ∈ [0,∞).
The SDE (14.1.25) governs the dynamics of a benchmarked portfolio and

generalizes the SDE (10.3.2). For example, by (14.2.6) and (14.2.5) the bench-
marked savings account Ŝ0

t satisfies the SDE

dŜ0
t = −Ŝ0

t−

d∑
k=1

θk
t dW k

t (14.1.26)

for t ∈ [0,∞).
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Using previous notation, let us denote by V the set of all nonnegative
portfolios in the given market. Note that the right hand side of (14.1.25) is
driftless. Thus, for Sδ ∈ V the nonnegative benchmarked portfolio Ŝδ forms an
(A, P )-local martingale when Ŝδ is continuous, see Lemma 5.4.1. Also in the
given JDM the driftless Ŝδ is an (A, P )-local martingale, see Ansel & Stricker
(1994). This provides by Lemma 5.2.3 for nonnegative Ŝδ the important su-
permartingale property.

Theorem 14.1.7. In a JDM any nonnegative benchmarked portfolio pro-
cess Ŝδ is an (A, P )-supermartingale, that is

Ŝδ
t ≥ E

(
Ŝδ

τ

∣∣∣At

)
(14.1.27)

for all bounded τ ∈ [0,∞) and t ∈ [0, τ ].

A proof of this theorem can be found for general semimartingale mar-
kets in Platen (2004a), or for jump diffusion markets driven by Poisson jump
measures in Christensen & Platen (2005). We emphasize the fundamental
fact that nonnegative benchmarked portfolios are supermartingales in gen-
eral semimartingale markets as long as an almost surely finite GOP exists,
see Platen (2004a). Based on the above supermartingale property of non-
negative benchmarked portfolios and the notion of arbitrage introduced in
Definition 10.3.2, we can draw the following conclusion.

Corollary 14.1.8. A JDM does not allow nonnegative portfolios that per-
mit arbitrage.

This result generalizes Corollary 10.3.3. Its proof is formally the same as
the one given in Corollary 10.3.3. It is based on the fact that a nonnegative
supermartingale that reaches zero remains afterwards at zero, see (10.5.4).
This argument also can be used for a semimartingale market with a finite
GOP to show that no nonnegative portfolio permits arbitrage, see Platen
(2004a) and Christensen & Larsen (2007).

Real World Pricing

Recall now the notion of a fair security, see Definition 9.1.2, where its bench-
marked price is an (A, P )-martingale. Generalizing Corollary 10.4.2 yields by
Lemma 10.4.1 the following result.

Corollary 14.1.9. Consider a JDM with a bounded stopping time τ ∈
(0,∞) and a given future Aτ -measurable payoff H to be paid at τ with
E( H

Sδ∗
τ
|A0) < ∞. If there exists a fair nonnegative portfolio Sδ ∈ V with

Sδ
τ = H almost surely, then this is the minimal nonnegative portfolio that

replicates the payoff.
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This means that fair portfolios provide the best choice for an investor’s
tradable wealth. Otherwise, there exists a less expensive fair portfolio that
achieves the same payoff H at time τ .

Let H denote an Aτ -measurable payoff, with E( H

Sδ∗
τ

) < ∞, to be paid at
a stopping time τ ∈ [0,∞). The real world pricing formula (9.1.30) can also
be applied in a JDM context for pricing the payoff H. Its fair price UH(t) at
time t ∈ [0, τ ] is then given by the real world pricing formula

UH(t) = Sδ∗
t E

(
H

Sδ∗
τ

∣∣∣∣At

)
, (14.1.28)

see (10.4.1). This formula will be used when pricing derivatives in a JDM. In
the same way, as discussed in Sect. 10.4, real world pricing is equivalent to
risk neutral pricing as long as the candidate Radon-Nikodym derivative value
Λθ(t) = S0

t

Sδ∗
t

Sδ∗
0

S0
0

for the hypothetical risk neutral probability measure forms

an (A, P )-martingale.
We remark that the actuarial pricing formula in the form (9.2.6) follows

from the real world pricing formula (14.1.28) also for a JDM, when the payoff
H paid at time T , is independent of the GOP value Sδ∗

T . This is of particular
importance in insurance, and also for measuring operational risk, as well as,
for the pricing of weather derivatives and other payoffs that are not related to
the fluctuations of the market index. We remark that even for semimartingale
markets, the real world pricing formula is adequate for derivative pricing, as
long as a finite GOP exists, see Platen (2004a) and Christensen & Platen
(2005).

Forward Rate Equation

As in Sect. 10.4, a simple example of a derivative is the fair zero coupon
bond. It pays one unit of the domestic currency at the given maturity date
T ∈ [0,∞). By the real world pricing formula (14.1.28) the price P (t, T ) at
time t for this derivative is given by the conditional expectation

P (t, T ) = E

(
Sδ∗

t

Sδ∗
T

∣∣∣∣At

)
(14.1.29)

for t ∈ [0, T ], T ∈ [0,∞). This leads to the benchmarked fair zero coupon
bond value P̂ (t, T ) = P (t,T )

Sδ∗
t

, where we can assume, similarly to (10.4.9), that
it satisfies an SDE of the form

dP̂ (t, T ) = −P̂ (t−, T )
d∑

k=1

σk(t, T ) dW k
t (14.1.30)

for t ∈ [0, T ], with predictable generalized volatility process σk(·, T ) =
{σk(t, T ), t ∈ [0, T ]} for k ∈ {1, 2, . . . , d}. By using a logarithmic transfor-
mation and an application of the Itô formula this becomes
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ln(P̂ (t, T )) = ln(P̂ (0, T )) −
m∑

k=1

(∫ t

0

σk(s, T ) dW k
s +

1
2

∫ t

0

(σk(s, T ))2 ds

)

+
d∑

k=m+1

(∫ t

0

σk(s, T )
√

hk−m
s ds +

∫ t

0

ln

(
1 − σk(s, T )√

hk−m
s

)
dpk

s

)
.

(14.1.31)

Hence, according to (10.4.12) the forward rate f(t, T ) at time t ∈ [0, T ]
for the maturity T ∈ [0,∞) satisfies the equation

f(t, T ) = − ∂

∂T
ln(P (t, T )) = − ∂

∂T
ln(P̂ (t, T )). (14.1.32)

Consequently, by (14.1.31) we derive the forward rate equation

f(t, T ) = f(0, T ) +
m∑

k=1

∫ t

0

(
∂

∂T
σk(s, T )

)(
σk(s, T ) ds + dW k

s

)

+
d∑

k=m+1

∫ t

0

1

1 − σk(s,T )√
hk−m

s

∂

∂T
σk(s, T )

(
σk(s, T ) ds + dW k

s

)
(14.1.33)

for t ∈ [0, T ], see Exercise 14.2. This equation can also be found in Bruti-
Liberati, Nikitopoulos-Sklibosios & Platen (2009). It is a generalization of
(10.4.14) and the HJM equation (10.4.19). In the case when σk(t,T )√

hk−m
t

� 1 we

obtain asymptotically the forward rate equation in the form of the CFM.

GOP as Best Performing Portfolio

In Chap.10 it was demonstrated by using various criteria that the GOP is the
best performing portfolio for a CFM. Since the proofs of these results are based
on the supermartingale property of nonnegative benchmarked portfolios, a
similar set of proofs also applies for JDMs. Below, we generalize two of these
results. First, let us formulate the property that in a JDM the GOP has the
maximum long term growth rate, and, thus, almost surely, outperforms any
other portfolio after a sufficiently long time.

Theorem 14.1.10. In a JDM the GOP Sδ∗ has almost surely the largest
long term growth rate in comparison with that of any other strictly positive
portfolio Sδ ∈ V+, that is,

g̃δ∗ a.s.= lim sup
T→∞

1
T

ln

(
Sδ∗

T

Sδ∗
0

)
≥ lim

T→∞

1
T

ln
(

Sδ
T

Sδ
0

)
a.s.= g̃δ (14.1.34)

almost surely.
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We now extend Corollary 10.5.3 by using the obvious extension of Defini-
tion 10.5.2 concerning the systematic outperformance of a portfolio.

Corollary 14.1.11. In a JDM no strictly positive portfolio systematically
outperforms the GOP in the sense of Definition 10.5.2.

Thus, there also is no systematic way to beat the GOP in a JDM over any
short or long term horizon. This is a fundamental property of the GOP and
makes it very special for investment purposes. We emphasize that the proofs
of the above theorem and corollary depend only on the supermartingale prop-
erty of nonnegative benchmarked portfolios. As previously indicated, this su-
permartingale property holds for general semimartingale markets. Therefore,
similar statements about the optimal performance of the GOP hold very gen-
erally, see Platen (2004a).

Proof of Corollary 14.1.5 (*)

Under the Assumption 14.1.3 it follows from the first order conditions for iden-
tifying the maximum growth rate (14.1.15) that the optimal generalized port-
folio volatilities are described by ct as given in (14.1.17). Note from (14.1.12)
that the generalized volatility of a portfolio Sδ ∈ V+ has at time t the form
π�

δ,t−bt, which leads to the system of linear equations for the optimal fractions
πδ∗,t for a GOP with

π�
δ∗,t− bt = ct. (14.1.35)

By Assumption 14.1.2 the generalized volatility matrix bt is invertible and the
formula

π�
δ∗,t− = ct b−1

t (14.1.36)

follows from (14.1.35) for the optimal fractions. This yields formula (14.1.18)
for t ∈ [0,∞). These fractions are uniquely determined and so what is a GOP
when its initial value is given. Consequently, the SDE (14.1.19) is, by (14.1.12),
(14.1.18) and (14.1.17), the one that characterizes a GOP. 
�

14.2 Diversified Portfolios

This section considers diversified portfolios in a sequence of JDMs. It gener-
alizes the Diversification Theorem of Sect. 10.6 to the case of markets with
intensity based jumps.

Sequence of JDMs

We rely again on a filtered probability space (Ω,A,A, P ) with filtration A =
(At) t∈[0,∞), satisfying the usual conditions. Continuous trading uncertainty
is represented by independent standard Wiener processes W̃ k = {W̃ k

t , t ∈
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[0,∞)} for k ∈ N . Event driven trading uncertainty is modeled by counting
processes pk = {pk

t , t ∈ [0,∞)} characterized by corresponding predictable,
strictly positive intensity processes hk = {hk

t , t ∈ [0,∞)} for k ∈ N . We define
the kth jump martingale qk = {qk

t , t ∈ [0,∞)} as in (14.1.3), for k ∈ N .
In what follows, we consider a sequence (SJD

(d))d∈N of JDMs indexed by
the number d ∈ N of risky primary security accounts. For a given inte-
ger d, the corresponding JDM SJD

(d) comprises d + 1 primary security ac-
counts, denoted by S0

(d), S
1
(d), . . . , S

d
(d). These include a savings account S0

(d) =
{S0

(d)(t), t ∈ [0,∞)}, which is a locally riskless primary security account,

whose value at time t is given by the exponential S0
(d)(t) = exp

{∫ t

0
rs ds

}
for t ∈ [0,∞). Here r = {rt, t ∈ [0,∞)} denotes an adapted short rate
process, which we assume, for simplicity, to be the same in each JDM.
We include d nonnegative, risky primary security account processes Sj

(d) =

{Sj
(d)(t), t ∈ [0,∞)}, j ∈ {1, 2, . . . , d}, each of which can be driven by the

Wiener processes W̃ 1, W̃ 2, . . . , W̃m and the jump martingales q1, q2, . . . , qd−m.
Here μ ∈ [0, 1] is a fixed real number and m = [μd] denotes the largest integer
not exceeding μd. In the dth JDM we have the trading uncertainty driven by
the d-dimensional vector process W = {W t = (W̃ 1

t , . . . , W̃m
t , q1

t , . . . , qd−m)�,
t ∈ [0,∞)}. Obviously, if μ equals one, then we have no jumps. This covers
the case of a CFM, as was discussed in Sect. 10.1.

As previously noted, for fixed d ∈ N we call a predictable stochastic
process δ = {δt = (δ0

t , δ1
t , . . . , δd

t )�, t ∈ [0,∞)} a strategy if for each j ∈
{0, 1, . . . , d} the Itô integral

∫ t

0
δj
s dSj

(d)(s) exists. The corresponding portfolio

value is then Sδ
(d)(t) =

∑d
j=0 δj

t Sj
(d)(t) and satisfies the SDE

dSδ
(d)(t) =

d∑
j=0

δj
t dSj

(d)(t) (14.2.1)

for t ∈ [0,∞). Note that in the dth JDM SJD
(d) a given strategy δ depends typ-

ically on d. However, for simplicity we shall initially suppress this dependence
and shall only mention it when later required.

The corresponding jth fraction of a strictly positive portfolio Sδ
(d) is given

by the expression πj
δ,t = δj

t

Sj
(d)(t)

Sδ
(d)(t)

for t ∈ [0,∞) and j ∈ {0, 1, . . . , d}, as long

as Sδ
(d)(t) > 0.

As shown in Sect. 14.1, for each JDM SJD
(d) there exists a unique GOP

Sδ∗
(d) = {Sδ∗

(d)(t), t ∈ [0,∞)} satisfying the SDE (14.1.19) when we fix the initial
value, which we set, for simplicity, to

Sδ∗
(d)(0) = 1. (14.2.2)

Any portfolio Sδ
(d) in the dth JDM, when expressed in units of Sδ∗

(d), yields a

corresponding benchmarked portfolio Ŝδ
(d) = {Ŝδ

(d)(t), t ∈ [0,∞)}, defined by
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Ŝδ
(d)(t) =

Sδ
(d)(t)

Sδ∗
(d)(t)

(14.2.3)

at time t ∈ [0,∞). It forms a driftless SDE, see (14.1.25).
To obtain a more compact formulation of the SDE (14.1.25), let us de-

fine the (j, k)th specific generalized volatility σj,k
(d)(t), see (10.6.3)–(10.6.4), by

setting
σ0,k

(d) (t) = θk
t (14.2.4)

for j = 0 and k ∈ {1, 2, . . . , d} and

σj,k
(d)(t) =

⎧⎪⎨
⎪⎩

θk
t − bj,k

t for k ∈ {1, 2, . . . ,m}

θk
t − bj,k

t

(
1 − θk

t√
hk−m

t

)
for k ∈ {m + 1, . . . , d}

(14.2.5)

for t ∈ [0,∞) and j ∈ {1, 2, . . . , d}. By using (14.2.5) and (14.2.4) one can
rewrite the SDE (14.1.25) in the form

dŜδ
(d)(t) = −

d∑
k=1

d∑
j=0

δj
t Ŝj

(d)(t−)σj,k
(d)(t) dW k

t , (14.2.6)

and for strictly positive Sδ
(d)(t) as

dŜδ
(d)(t) = −Ŝδ

(d)(t−)
d∑

k=1

d∑
j=0

πj
δ,t− σj,k

(d)(t) dW k
t (14.2.7)

for t ∈ [0,∞).
The following assumption asks for the property that the specific general-

ized volatilities are finite in a certain sense.

Assumption 14.2.1. For all d ∈ N , T ∈ [0,∞) and j ∈ {0, 1, . . . , d} sup-
pose that ∫ T

0

d∑
k=1

(
σj,k

(d)(t)
)2

dt ≤ K̄T < ∞ (14.2.8)

almost surely, where K̄T < ∞ denotes some finite AT -measurable random
variable which does not depend on d. Furthermore, it is assumed that the
inequality

σj,k
(d)(t) <

√
hk−m

t (14.2.9)

holds almost surely for all t ∈ [0,∞), k ∈ {m + 1, m + 2, . . . , d} and j ∈
{0, 1, . . . , d}.
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Sequences of Diversified Portfolios

Our aim is now to generalize the Diversification Theorem from Sect. 10.6 to
the case of JDMs. Since for each d ∈ N the above model is a JDM, we
can form a sequence of JDMs (SJD

(d))d∈N , indexed by the number d of risky
primary security accounts. As in Sect. 10.6, for such a sequence of financial
market models we identify a class of sequences of portfolios that approximate
the corresponding sequence of GOPs.

Let us extend the Definition 10.6.2 for a sequence of diversified portfolios
(DPs).

Definition 14.2.2. For a sequence of JDMs (SJD
(d) )d∈N we call a corre-

sponding sequence (Sδ
(d))d∈N of strictly positive portfolio processes Sδ

(d) a se-
quence of DPs if some constants K1, K2 ∈ (0,∞) and K3 ∈ N exist, indepen-
dently of d, such that for d ∈ {K3, K3 + 1, . . .} the inequality

∣∣∣πj
δ,t

∣∣∣ ≤ K2

d
1
2+K1

(14.2.10)

holds almost surely for all j ∈ {0, 1, . . . , d} and t ∈ [0,∞).

Note that in (14.2.10) the strategy δ depends on d. Consider for fixed
d ∈ N the dth JDM SJD

(d) as an element of a given sequence of JDMs. By

(14.2.7), when setting πj
δ,t = 1 and πi

δ,t = 0 for i �= j, the jth benchmarked
primary security account process Ŝj

(d) = {Ŝj
(d)(t), t ∈ [0,∞)}, with

Ŝj
(d)(t) =

Sj
(d)(t)

Sδ∗
(d)(t)

, (14.2.11)

satisfies the driftless SDE

dŜj
(d)(t) = −Ŝj

(d)(t−)
d∑

k=1

σj,k
(d)(t) dW k

t (14.2.12)

for t ∈ [0,∞) and j ∈ {0, 1, . . . , d}.
The (j, k)th specific generalized volatility σj,k

(d)(t) of the benchmarked jth

primary security account Ŝj
(d)(t) measures at time t ∈ [0,∞) the jth spe-

cific market risk with respect to the kth trading uncertainty W k for k ∈
{1, 2, . . . , d}, j ∈ {0, 1, . . . , d}, see Platen & Stahl (2003) and Sect. 10.6. Sim-
ilarly as for CFMs, we introduce for all t ∈ [0,∞), d ∈ N and k ∈ {1, 2, . . . , d}
the kth total specific volatility for the dth JDM SJD

(d) in the form

σ̂k
(d)(t) =

d∑
j=0

|σj,k
(d)(t)|. (14.2.13)



14.2 Diversified Portfolios 527

Depending on k, the kth total specific volatility represents the sum of the
absolute values of the specific generalized volatilities with respect to the kth
trading uncertainty.

Similarly to Definition 10.6.3 the following regularity property of a se-
quence of markets ensures that each of the independent sources of trading
uncertainty influences only a restricted range of benchmarked primary secu-
rity accounts.

Definition 14.2.3. A sequence of JDMs is called regular if there exists a
constant K5 ∈ (0,∞), independent of d, such that

E

((
σ̂k

(d)(t)
)2
)

≤ K5 (14.2.14)

for all t ∈ [0,∞), d ∈ N and k ∈ {1, 2, . . . , d}.

Sequence of Approximate GOPs

As in the case of a CFM, we consider for given d ∈ N in the dth JDM
SJD

(d) a strictly positive portfolio process Sδ
(d) with strategy δ = {δt =

(δ0
t , δ1

t , . . . , δd
t )�, t ∈ [0,∞)}. We introduce again the tracking rate Rδ

(d)(t)
at time t for the portfolio Sδ

(d) by setting

Rδ
(d)(t) =

d∑
k=1

⎛
⎝ d∑

j=0

πj
δ,t σj,k

(d)(t)

⎞
⎠

2

(14.2.15)

for t ∈ [0,∞), see (10.6.22). By (14.2.7) one notes that the benchmarked
portfolio Ŝδ

(d) is constant with

Ŝδ
(d)(t) = Ŝδ

(d)(0) (14.2.16)

almost surely, if and only if the tracking rate vanishes, that is,

Rδ
(d)(t) = 0 (14.2.17)

almost surely for all t ∈ [0,∞). Recall that by (14.2.2) Sδ∗
(d)(0) = 1. In the case

of a constant benchmarked portfolio Ŝδ
(d), characterized by equation (14.2.16),

the portfolio value Sδ
(d)(t) equals, by relation (14.2.3), a multiple of the GOP,

that is,
Sδ

(d)(t) = Sδ
(d)(0)Sδ∗

(d)(t) (14.2.18)

almost surely for all t ∈ [0,∞). Therefore, a given portfolio process Sδ
(d)

moves in step with the GOP if the tracking rate Rδ
(d)(t) remains small for

all t ∈ [0,∞). Let us formalize this fact by extending Definition 10.6.4.
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Definition 14.2.4. For a sequence (SJD
(d) )d∈N of JDMs we call a sequence

(Sδ
(d))d∈N of strictly positive portfolio processes a sequence of approximate

GOPs if for all t ∈ [0,∞) the corresponding sequence of tracking rates van-
ishes in probability, see (2.7.1). That is, we have

lim
d→∞

Rδ
(d)(t)

P= 0 (14.2.19)

for all t ∈ [0,∞).

To obtain a moment based sufficient condition for the identification of a
sequence of approximate GOPs, we introduce, for any given d ∈ N and strictly
positive portfolio process Sδ

(d), the expected tracking rate

eδ
(d)(t) = E

(
Rδ

(d)(t)
)

(14.2.20)

at time t ∈ [0,∞). This leads to the following definition.

Definition 14.2.5. For a sequence of JDMs (SJD
(d) )d∈N , a sequence (Sδ

(d))d∈N
of strictly positive portfolio processes is said to have a vanishing expected
tracking rate, if their expected tracking rate converges to zero, that is,

lim
d→∞

eδ
(d)(t) = 0 (14.2.21)

for all t ∈ [0,∞).

Using Definition 14.2.5 and the Markov inequality (1.3.57), we obtain for
given ε > 0 and any sequence (Sδ

(d))d∈N of strictly positive portfolios with
vanishing expected tracking rate the asymptotic inequality

lim
d→∞

P
(
Rδ

(d)(t) > ε
)
≤ lim

d→∞

1
ε

eδ
(d)(t) = 0 (14.2.22)

for all t ∈ [0,∞). Therefore, by Definition 14.2.4 and inequality (14.2.22) we
obtain the following result.

Lemma 14.2.6. For a sequence of JDMs, any sequence of strictly positive
portfolios with vanishing expected tracking rate is a sequence of approximate
GOPs.

Diversification Theorem

Now, we state a crucial result of the benchmark approach. Using Definitions
14.2.2 and 14.2.3 the Lemma 14.2.6 allows us to extend the Diversification
Theorem to the case of JDMs. Its proof is omitted since it is analogous to the
one of Theorem 10.6.5 in Sect. 10.6 and can also be found in Platen (2005b).
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Theorem 14.2.7. (Diversification Theorem for JDMs) For a regular se-
quence of JDMs (SJD

(d) )d∈N , each sequence (Sδ
(d))d∈N of DPs is a sequence of

approximate GOPs. Moreover, for any d ∈ {K3, K3 + 1, . . .} and t ∈ [0,∞),
the expected tracking rate of a given DP Sδ

(d) satisfies the inequality

eδ
(d)(t) ≤

(K2)2 K5

d2K1
. (14.2.23)

Here the constants K1, K2, K3 and K5 are the same as in Definitions 14.2.2
and 14.2.3.

The Diversification Theorem shows that for a regular sequence of JDMs
any sequence of DPs approximates the GOP. This is highly relevant for the
practical applicability of the benchmark approach, as previously discussed in
Sect.10.6. In particular, it allows one to approximate the GOP by a diversified
market index without the need of an exact calculation of the fractions of the
GOP. We emphasize that this result is model independent, which makes it
very robust. The Diversification Theorem can be generalized under appropri-
ate assumptions to the case of semimartingale markets, as will be shown in
forthcoming work.

Diversification in an MMM Setting

In Sect. 10.6 we provided some examples for diversified portfolios in a Black-
Scholes type CFM. These examples demonstrate that the asymptotic proper-
ties of approximate GOPs do not need extremely large numbers of primary
security accounts to be practically relevant. In a JDM with only a few rare
events this is not so easy to demonstrate unless one generates an extremely
large number of primary security accounts. However, in practice, the number
of primary security accounts is indeed very large and the default of a single
stock, even a large one, does not significantly change the value of the market
portfolio. Let us now illustrate the fundamental phenomenon of diversification
by simulating diversified portfolios in an MMM type setting, for simplicity,
without jumps.

We consider the following multi-asset stylized MMM, which we discussed
in Sect. 13.2. This example also demonstrates how to construct efficiently
a market model under the benchmark approach. Firstly, we introduce the
savings account in the form

S0
(d)(t) = exp{r t} (14.2.24)

with constant short rate r > 0 for t ∈ [0, T ], d ∈ N . The discounted GOP
drift is set in all denominations to

αδ∗
t = α0 exp{η t} (14.2.25)
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Fig. 14.2.1. Primary security accounts under the MMM

with net growth rate η > 0 and initial parameter α0 > 0. We model the jth
benchmarked primary security account by the expression

Ŝj
(d)(t) =

1
Y j

t αδ∗
t

(14.2.26)

for all j ∈ {0, 1, . . . , d}. In this context Y j
t is the time t value of the SR process

Y j , which satisfies the SDE

dY j
t =

(
1 − η Y j

t

)
dt +

√
Y j

t dW j
t (14.2.27)

for t ∈ [0, T ], where we set Y j
0 = 1

η for j ∈ {0, 1, . . .}. Also W 0, W 1, . . . are
independent standard Wiener processes.

Now, with (14.2.11) the GOP is obtained as the ratio

Sδ∗
(d)(t) =

S0
(d)(t)

Ŝ0
(d)(t)

. (14.2.28)

Hence, by (14.2.11) the value of the jth primary security account is given by

Sj
(d)(t) = Ŝj

(d)(t)Sδ∗
(d)(t) (14.2.29)

for t ∈ [0,∞), j ∈ {1, 2, . . . , d} and d ∈ N . By starting from the savings
account and the benchmarked primary security accounts we have modeled all
primary security accounts and the GOP in the denomination of the domestic
currency.

We now simulate d = 50 primary security accounts Sj
(d), j ∈ {0, 1, . . . , d},

for a period of T = 32 years, where we set r = η = α0 = 0.05. We show in
Fig. 14.2.1 the trajectories of the first twenty risky primary security accounts.
One notes their typical increase but also a decline of some of the securities. It is
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Fig. 14.2.2. Benchmarked primary security accounts

Fig. 14.2.3. GOP and EWI

noticeable that the primary security accounts have some common fluctuations.
These are caused by the general market risk as captured by the GOP, which
is shown in Fig. 14.2.3. In Fig. 14.2.2 we plot the corresponding benchmarked
primary security accounts. These are strict supermartingales, as discussed
previously in Chap. 13.

Figure 14.2.3 shows the equi-value weighted index (EWI) together with the
GOP. One notes the closeness of the GOP and the EWI as predicted by the
above Diversification Theorem. Figure 14.2.4 displays a market index, where
its constituents represent simply one unit of each primary security account.
Here one notes that the market index is initially a good proxy of the GOP.
After an initial time period of about 13 years some extremely large stock val-
ues emerge, as can be seen in Fig.14.2.1. The resulting large fractions of these
stocks distort the performance of the market index. These fractions of the cor-
responding primary security accounts are simply too large to be acceptable as
those of a DP and, thus, violate the conditions of the Diversification Theorem.
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Fig. 14.2.4. GOP and market index

One can say that the market index is in our example, no longer interpretable
as a DP after about 13 years because the fractions of a few excellent perform-
ing stocks are larger than the average fraction by magnitudes. The EWI does
not suffer in this way and is in our example a good proxy for the GOP, as can
be seen from Fig. 14.2.3. We emphasize that even for a market with only 50
risky primary security accounts a rather good approximation of the GOP by
DPs like the EWI is obtained. Further experiments with other DPs reveal a
similar behavior as shown in Fig. 14.2.3.

The Diversification Theorem identifies DPs as proxies for the GOP without
any particular modeling assumptions on the market dynamics. This diversi-
fication phenomenon is, therefore, very robust. However, if the fractions of
some primary security accounts become too large in a portfolio, then such a
portfolio cannot be interpreted as a DP and it is unlikely to be a good proxy
of the GOP.

14.3 Mean-Variance Portfolio Optimization

This section generalizes some of the results on mean-variance portfolio opti-
mization that we presented in Chap.11. It turns out that the kind of two fund
separation of locally optimal portfolios into combinations of savings account
and GOP, which we observed for a CFM, does not hold any longer in the
same manner. Different classes of optimal portfolios arise in a JDM for differ-
ent types of optimization objectives. For instance, Sharpe ratio maximization
does not lead, in general, to portfolios that are a combination of the GOP and
savings account.
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Locally Optimal Portfolios

Our objective here is to try to generalize the results of Sect. 11.1 on locally
optimal portfolios. Given a strictly positive portfolio Sδ, its discounted value
S̄δ

t = Sδ
t

S0
t

satisfies the SDE

dS̄δ
t =

d∑
k=1

ψk
δ,t

(
θk

t dt + dW k
t

)
(14.3.1)

by (14.1.12) and an application of the Itô formula. Here

ψk
δ,t =

d∑
j=1

δj
t bj,k

t S̄δ
t− (14.3.2)

is called the kth generalized diffusion coefficient at time t for k ∈ {1, 2, . . . , d}
and t ∈ [0,∞). Obviously, by (14.3.1) and (14.3.2), the discounted portfolio
process S̄δ has discounted drift

αδ
t =

d∑
k=1

ψk
δ,t θk

t (14.3.3)

for t ∈ [0, T ]. This drift measures the portfolio’s trend at time t. The fluctua-
tions of a discounted portfolio S̄δ can be measured at time t by its aggregate
generalized diffusion coefficient

γδ
t =

√√√√ d∑
k=1

(
ψk

δ,t

)2

(14.3.4)

at time t ∈ [0,∞). Note that by relation (14.1.4) we have standardized the
variances of the increments of the driving martingales W 1, W 2, . . . , W d such
that they equal the corresponding time increments, as is the case for standard
Wiener processes.

For a given level of the aggregate generalized diffusion coefficient γ δ̃
t > 0,

suppose that an investor aims to maximize the portfolio drift αδ
t of a dis-

counted portfolio S̄δ. This objective can be interpreted as a possible gener-
alization of mean-variance portfolio optimization in the sense of Markowitz
(1959) to the case of a JDM. More precisely, let us identify the class of SDEs
for the portfolios of investors who prefer locally optimal portfolios, defined in
the following sense:

Definition 14.3.1. A strictly positive portfolio process S δ̃ ∈ V+ that maxi-
mizes the portfolio drift (14.3.3) among all strictly positive portfolio processes
Sδ ∈ V+ with a given aggregate generalized diffusion coefficient level γ δ̃

t is
called locally optimal, that is,
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γδ
t = γ δ̃

t and αδ
t ≤ αδ̃

t (14.3.5)

almost surely for all t ∈ [0,∞).

This definition generalizes our Definition 11.1.1 to the case of JDMs.

Mean-Variance Portfolio Selection Theorem

For the following analysis we use the total market price of risk

|θt| =

√√√√ d∑
k=1

(
θk

t

)2 (14.3.6)

and the weighting factor

G(t) =
d∑

k=1

d∑
j=1

θk
t b−1 j,k

t (14.3.7)

for t ∈ [0,∞). The following condition generalizes Assumption 11.1.2. It ex-
cludes the trivial situation of having the savings account as GOP.

Assumption 14.3.2. In a JDM suppose that

0 < |θt| < ∞ (14.3.8)

and
G(t) �= 0 (14.3.9)

almost surely for all t ∈ [0,∞).

Now, we can formulate a mean-variance portfolio selection theorem which
generalizes the results of Theorem 11.1.3. It identifies the structure of the
drift and generalized diffusion coefficients of the SDE of a discounted locally
optimal portfolio.

Theorem 14.3.3. Under Assumption 14.3.2, any discounted locally opti-
mal portfolio S̄δ satisfies in a JDM the SDE

dS̄δ
t = S̄δ

t

(
1 − π0

δ,t

)

G(t)

d∑
k=1

θk
t

(
θk

t dt + dW k
t

)
, (14.3.10)

with optimal fractions

πj
δ,t =

(
1 − π0

δ,t

)

G(t)

d∑
k=1

θk
t b−1 j,k

t (14.3.11)

for all t ∈ [0,∞) and j ∈ {1, 2, . . . , d}.
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The proof of this theorem is analogous to that of Theorem 11.1.3. It is,
therefore, omitted, but it can be found in Platen (2006b). According to Theo-
rem 14.3.3, the family of discounted locally optimal portfolios is characterized
by a single parameter process, namely the fraction of wealth π0

δ,t held in the
savings account at time t. However, we shall see that, in general, it is not
the GOP which arises as the mutual risky portfolio in the resulting two fund
separation.

Mutual Fund

Let us select a particular locally optimal portfolio SδMF , which we call the
mutual fund (MF), by choosing

π0
δMF,t = 1 − G(t) (14.3.12)

for t ∈ [0,∞). By (14.3.10) the MF satisfies the SDE

dSδMF
t = SδMF

t−

(
rt dt +

d∑
k=1

θk
t

(
θk

t dt + dW k
t

))
(14.3.13)

for t ∈ [0,∞). Note that this SDE is very similar to that of a GOP in a CFM,
see (10.2.8). However, in general, it is not the same SDE in the given JDM,
as we shall see below.

By Theorem 14.3.3 it follows that any locally optimal portfolio Sδ can
be obtained at any time by investing a fraction of wealth in the MF SδMF

and holding the remaining fraction in the savings account. Therefore, Theo-
rem 14.3.3 can be interpreted as a mutual fund theorem, see Merton (1973a).
In this sense we have again two fund separation, see Corollary 11.1.4. The
main difference here compared to the previous result obtained under a CFM
is that the MF in a JDM, in general, does not coincide with the GOP. This
can be seen when comparing the SDE (14.1.19) for the GOP and the SDE
(14.3.13) for the MF. The MF coincides in a JDM with the GOP only if
the market prices of event risk θm+1

t , . . . , θd
t are zero. Thus, mean-variance or

Sharpe ratio maximization does, in general, not provide two fund separation
into GOP and savings account. Further results in this direction can be found
in Platen (2006b) and Christensen & Platen (2007).

For locally optimal portfolios the up and down movements of asset prices
are weighted symmetrically by generalized diffusion coefficients. This is suffi-
cient in a CFM for the purpose of identifying a superior asset allocation. For a
practically useful portfolio selection in a JDM one needs to take into account
the entire range of possible asset price jumps. Upward jumps are favorable for
the investor, however, downward jumps can be disastrous. This asymmetric
weighting of jumps can be conveniently modeled by utility functions.

The maximization of expected utility appears to be a useful objective in
a JDM. In Sect. 11.3 we maximized expected utility from discounted terminal
wealth for a CFM. The extension of this result to the case of a JDM is beyond
the scope of this book.
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14.4 Real World Pricing for Two Market Models

This section considers two examples of JDMs, a Merton model (MM) and
a minimal market model with jumps (MMM). For both models real world
pricing for some common payoffs is applied along the lines of results in
Hulley, Miller & Platen (2005).

In the MM case, our aim is to illustrate how real world pricing retrieves
the risk neutral prices for these instruments familiar from the literature. Of
course, one could apply the standard risk neutral theory to obtain the pricing
formulas under the MM, but this would defeat our purpose of illustrating real
world pricing under the benchmark approach. In the case of the MMM, we
wish to exhibit derivative pricing formulas where risk neutral pricing is not
applicable and for what we believe is a more realistic market model.

Specifying a Continuous GOP

In a JDM SJD
(d) let us interpret the GOP as a large diversified portfolio that

is expressed in units of, say, US dollars, d ∈ N . One may think of a diver-
sified market portfolio or market index. Then aggregating all the jumps in
the underlying primary security accounts is assumed to produce noise which
is approximately continuous. In other words, we would expect the jumps to
be invisible to an observer of the GOP. According to the SDE (14.1.19), the
only way to eliminate jumps from the GOP dynamics is by setting the market
prices of event risk equal to zero. This is a key assumption that has been used
in Merton (1976) for the MM. Of course, small jumps can be asymptotically
modeled by some Wiener processes. Henceforth, the following simplifying as-
sumption will be used.

Assumption 14.4.1. The market prices of event risks are zero, that is

θk
t = 0, (14.4.1)

for each k ∈ {m + 1, . . . , d} and all t ∈ [0,∞).

Note that there is technically no problem to extend the following examples
to the case of nonzero market prices of event risk. Substitution of (14.4.1) into
(14.1.19) produces the following SDE for the GOP

dSδ∗
t = Sδ∗

t

(
rt dt +

m∑
k=1

θk
t

(
θk

t dt + dW k
t

))
, (14.4.2)

for all t ∈ [0,∞), with
Sδ∗

0 = 1. (14.4.3)

The solution to (14.4.2) is given by

Sδ∗
t = exp

{∫ t

0

(
rs +

1
2

m∑
k=1

(
θk

s

)2)
ds +

m∑
k=1

∫ t

0

θk
s dW k

s

}
, (14.4.4)

for all t ∈ [0, T ].
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Benchmarked Primary Security Accounts

The SDEs for the benchmarked primary security accounts are derived from
(14.2.7) by setting πj

δ,t = 1 for i = j and πi
δ,t = 0 otherwise, yielding

dŜj
t = −Ŝj

t−

d∑
k=1

σj,k
t dW k

t , (14.4.5)

for all j ∈ {0, 1, . . . , d} and t ∈ [0,∞), with Ŝj
0 = Sj

0. Here in our JDM we have
set σj,k

t = σj,k
(d)(t) for all j ∈ {0, 1, . . . , d}, k ∈ {1, 2, . . . , d} and t ∈ [0,∞). Re-

call that Wm+1, . . . , W d are compensated, normalized jump martingales with
corresponding intensity processes h1, . . . , hd−m, respectively. From (14.4.5),
via the Itô formula we obtain, see Sect. 6.4, the explicit expression

Ŝj
t = Sj

0 exp

{
−1

2

∫ t

0

m∑
k=1

(
σj,k

s

)2
ds −

m∑
k=1

∫ t

0

σj,k
s dW k

s

}

× exp

{∫ t

0

d∑
k=m+1

σj,k
s

√
hk−m

s ds

}
d∏

k=m+1

pk−m
t∏
l=1

⎛
⎝1 −

σj,k

τk
l −√

hk−m
τk

l −

⎞
⎠(14.4.6)

for each j ∈ {0, 1, . . . , d} and all t ∈ [0,∞). Here (τk
l )l∈N denotes the sequence

of jump times of the counting process pk for the events of kth type, k ∈
{m + 1, . . . , d}.

Under the benchmark approach the benchmarked primary security ac-
counts are the pivotal objects of study. The savings account together with
the benchmarked primary security accounts are sufficient to specify the entire
investment universe, see (14.2.28)–(14.2.29). For example, Sδ∗

t = S0
t

Ŝ0
t

, for all

t ∈ [0,∞), see (14.1.24), derives the GOP in terms of the savings account
and the benchmarked savings account. Also, Sj

t = Ŝj
t Sδ∗

t = Ŝj
t

S0
t

Ŝ0
t

, for each

j ∈ {1, . . . , d} and all t ∈ [0,∞), factors each primary security account in
terms of the corresponding benchmarked primary security account, the sav-
ings account and the benchmarked savings account.

Before presenting the MM and the MMM we introduce some simplifying
notation. Define the processes |σj | = {|σj

t |, t ∈ [0,∞)} for j ∈ {0, 1, . . . , d},
by setting

|σj
t | =

√√√√ m∑
k=1

(
σj,k

t

)2

. (14.4.7)

We also require the aggregate continuous noise processes Ŵ j = {Ŵ j
t , t ∈

[0,∞)} for j ∈ {0, 1, . . . , d}, defined by

Ŵ j
t =

m∑
k=1

∫ t

0

σj,k
s

|σj
s|

dW k
s . (14.4.8)
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By Lévy’s Theorem for the characterization of the Wiener process, see
Sect. 6.5, it follows that Ŵ j is a Wiener process for each j ∈ {0, 1, . . . , d}.
Note that these Wiener processes can be correlated. Furthermore, we require
Assumption 14.1.2, such that the generalized volatility matrix bt = [bj,k

t ]dj,k=1

is for all t ∈ [0,∞) invertible. Recall by (14.2.5) that

bj,k
t = θk

t − σj,k
t (14.4.9)

for k ∈ {1, 2, . . . , m} and by (14.4.1) and (14.2.5) that

bj,k
t = −σj,k

t (14.4.10)

for k ∈ {m + 1, . . . , d}, j ∈ {1, 2, . . . , d} and t ∈ [0,∞).
In both models presented in this section we assume, for simplicity, that the

parameters governing their jump behavior are constant. Thus, the counting
processes pk are, in fact, time homogenous Poisson processes with constant
intensities, such that

hk
t = hk > 0 (14.4.11)

for each k ∈ {1, 2, . . . , d−m} and all t ∈ [0,∞). Also, the jump ratios σj,k
t for

the benchmarked primary security accounts are assumed to be constant, and
so that

σj,k
t = σj,k ≤

√
hk−m (14.4.12)

for all j ∈ {0, 1, . . . , d}, k ∈ {m+1, . . . , d} and t ∈ [0,∞). Note that Assump-
tion 14.4.1 on zero market prices of event risk ensures that (14.4.11) does
not violate Assumption 14.1.3. Also, Assumption 14.4.1 and relation (14.2.5)
ensure that (14.4.12) satisfies Assumption 14.1.1.

Using (14.4.7)–(14.4.12), we can rewrite the benchmarked jth primary
security account in (14.4.6) as the product

Ŝj
t = Ŝj,c

t Sj,d
t (14.4.13)

with continuous part

Ŝj,c
t = Sj

0 exp
{
−1

2

∫ t

0

|σj
s|2 ds −

∫ t

0

|σj
s| dŴ j

s

}
(14.4.14)

and compensated jump part

Sj,d
t = exp

{
d∑

k=m+1

σj,k
√

hk−m t

}
d∏

k=m+1

(
1 − σj,k

√
hk−m

)pk−m
t

(14.4.15)

for each j ∈ {0, 1, . . . , d} and all t ∈ [0,∞). The two specific models for the
benchmarked primary security accounts, which we now present, differ in terms
of how the continuous processes (14.4.14) are modeled. The jump processes
(14.4.15) are, for simplicity, chosen to be the same in both cases. Forthcoming
work will model stochastic intensities in natural extensions of the MMM.
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The Merton Model

The Merton model (MM) is the standard market model when including event
risk with all parameters constant. We describe now a modification of the jump
diffusion model introduced in Merton (1976), see Sect.7.6. Each benchmarked
primary security account can be expressed as the product of a driftless geo-
metric Brownian motion and an independent jump martingale. Therefore, it is
itself a martingale. The MM arises if one assumes that all parameter processes,
that is, the short rate, the volatilities and the jump intensities, are constant.
In addition to (14.4.11) and (14.4.12) we have then rt = r and σj,k

t = σj,k for
each j ∈ {0, 1, . . . , d}, k ∈ {1, 2, . . . ,m} and t ∈ [0,∞). In this case (14.4.14)
can be written as

Ŝj,c
t = Sj

0 exp
{
−1

2
|σj |2 t − |σj | Ŵ j

t

}
(14.4.16)

for each j ∈ {0, 1, . . . , d} and all t ∈ [0,∞). In this special case, the bench-
marked primary security accounts are the products of driftless geometric
Brownian motions and compensated Poisson processes. The model is simi-
lar to that introduced in Samuelson (1965b), which was extended in Merton
(1976) to include jumps. We refer to this model as the Merton model (MM).
It is sometimes also called the Merton jump diffusion model.

By Assumption 14.4.1 and relations (14.4.13)–(14.4.15), the benchmarked
savings account Ŝ0 exhibits no jumps. Furthermore, Ŝ0 satisfies Novikov’s
condition, see (9.5.12), and is, thus, a continuous martingale. Consequently,
with this specification of the market, the benchmarked savings account is a
Radon-Nikodym derivative process and an (A, P )-martingale. Therefore, Gir-
sanov’s theorem, see Sect. 9.5, is applicable, and so the standard risk neutral
pricing approach can be used. While not advocating the MM as an accurate
description of observed market behavior, its familiarity makes it useful for
illustrating real world pricing under the benchmark approach.

A Minimal Market Model with Jumps

The minimal market model (MMM) is generalized here to a case with jumps.
For simplicity, we suppose the parameters associated with the jump parts of
the benchmarked primary security accounts to be constant. Their continuous
parts are modeled as inverted time transformed squared Bessel processes of
dimension four. Consequently, each benchmarked primary security account
is the product of an inverted, time transformed squared Bessel process of
dimension four and an independent jump martingale. Since inverted squared
Bessel processes of dimension four are strict local martingales, see (8.7.21), the
benchmarked savings account is not a martingale in the MMM, and hence a
viable equivalent risk neutral probability measure does not exist. We advocate
real world pricing for derivatives using the GOP as numeraire and the real
world probability measure as pricing measure.



540 14 Markets with Event Risk

Without imposing significant constraints on the parameter processes, and
working within the full generality of Sect. 14.1, we have shown in Sect. 13.2
that the discounted GOP follows a time transformed squared Bessel process
of dimension four. Since the discounted GOP is given by Sδ∗

t

S0
t

= 1
Ŝ0

t

for all

t ∈ [0,∞), it follows that the benchmarked savings account is an inverted
time transformed squared Bessel process of dimension four. A version of the
MMM for the continuous part of the benchmarked primary security accounts,
see Sect. 13.2, is obtained by modeling the resulting time transformations as
exponential functions. We provide here an outline of this model in the context
of this section. For further details we refer to Chap.13 or Hulley et al. (2005).

For each j ∈ {0, 1, . . . , d}, let ηj ∈ 
 and define the function αj : 
+ → 
+

by setting
αj(t) = αj

0 exp{ηjt} (14.4.17)

for all t ∈ [0,∞) with αj
0 > 0. We refer to ηj again as the net growth rate

of the jth primary security account, for j ∈ {0, 1, . . . , d}. Next, we define the
jth square root process Y j = {Y j

t , t ∈ [0,∞)} for j ∈ {0, 1, . . . , d}, through
the system of SDEs

dY j
t =

(
1 − ηjY j

t

)
dt +

√
Y j

t dŴ j
t (14.4.18)

for each j ∈ {0, 1, . . . , d} and all t ∈ [0,∞), with Y j
0 = 1

αj
0 Sj

0
. The continuous

parts Ŝj,c
t of the benchmarked primary security accounts (14.4.14) are modeled

in terms of these square root processes by setting

Ŝj,c
t =

1
αj(t)Y j

t

(14.4.19)

for each j ∈ {0, 1, . . . , d} and all t ∈ [0,∞). Since (14.4.19) combined with
(14.4.13) and (14.4.14) represents a version of the MMM for benchmarked
primary security accounts we shall henceforth refer to it as such in this section.

As previously mentioned, between jumps the benchmarked primary se-
curity accounts are inverted time transformed squared Bessel processes of
dimension four. The time transformations are deterministic in the given ver-
sion of the MMM. More precisely, define the continuous strictly increasing
functions ϕj : 
+ → 
+ for j ∈ {0, 1, . . . , d} by setting

ϕj(t) = ϕj
0 +

1
4

∫ t

0

αj(s) ds (14.4.20)

for each j ∈ {0, 1, . . . , d} and all t ∈ [0,∞) with ϕj
0 ∈ 
+. Continuity and

monotonicity imply that ϕj possesses an inverse (ϕj)−1 : [ϕj
0,∞) → 
+ for

each j ∈ {0, 1, . . . , d}. Now define the processes Xj = {Xj
ϕ, ϕ ∈ [ϕj

0,∞)} for
each j ∈ {0, 1, . . . , d} by setting
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Xj
ϕj(t) = αj(t)Y j

t =
1

Ŝj,c
t

(14.4.21)

for each j ∈ {0, 1, . . . , d} and all t ∈ [0,∞). It then follows, see Sect. 8.7, that
Xj is a squared Bessel process of dimension four, so that 1

Ŝj,c is such time
transformed squared Bessel process under the time transformation (ϕj)−1 for
each j ∈ {0, 1, . . . , d}.

Under the MMM the benchmarked savings account is a strict local martin-
gale, and hence a strict supermartingale, see Lemma 5.2.2 (i). This is also the
candidate Radon-Nikodym derivative process employed by Girsanov’s theo-
rem to transform from the real world probability measure P to a hypotheti-
cal equivalent risk neutral probability measure, see Sects. 9.4 and 13.3. How-
ever, the fact that the candidate Radon-Nikodym derivative is not an (A, P )-
martingale rules out this measure transformation. Consequently, risk neutral
derivative pricing is impossible within the MMM, and we shall resort to the
more general real world pricing under the benchmark approach. Chapter 13
showed that the MMM is attractive for a number of reasons. In particular, it
follows from economic reasoning when using the discounted GOP drift as the
main parameter process. The modest number of parameters employed makes
it a practical tool.

Zero Coupon Bonds

We first consider a standard default-free zero coupon bond, paying one unit
of the domestic currency at its maturity T ∈ [0,∞). According to the real
world pricing formula (14.1.28), the value of the zero coupon bond at time t
is given by

P (t, T ) = Sδ∗
t E

(
1

Sδ∗
T

∣∣∣∣At

)
=

1
Ŝ0

t

E

(
exp

{
−
∫ T

t

rs ds

}
Ŝ0

T

∣∣∣∣At

)

(14.4.22)
for all t ∈ [0, T ]. We shall now examine (14.4.22) under the two market models
outlined above.

In the MM case, since Ŝ0 is an (A, P )-martingale we obtain

P (t, T ) = exp{−r(T − t)} 1
Ŝ0

t

E
(
Ŝ0

T

∣∣∣At

)
= exp{−r(T − t)} (14.4.23)

for all t ∈ [0, T ]. In other words, we obtain the usual bond pricing formula
determined by discounting at the short rate. This is fully in line with the
results under risk neutral pricing, see Sect. 9.4.

To simplify the notation let us set in the MMM case

λj
t =

1
Ŝj

t (ϕj(t) − ϕj(T ))
(14.4.24)
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for t ∈ [0, T ] and j ∈ {0, 1, . . . , d}, where λj
T = ∞. It is argued in Miller &

Platen (2005), with some empirical support, that the interest rate process and
the discounted GOP can be assumed to be independent. If we accept this, and
apply it in the MMM case to (14.4.22), while remembering that Ŝ0

T = Ŝ0,c
T ,

we obtain

P (t, T ) = E

(
exp

{
−
∫ T

t

rs ds

} ∣∣∣∣At

)
1
Ŝ0

t

E
(
Ŝ0

T

∣∣∣At

)

= E

(
exp

{
−
∫ T

t

rs ds

} ∣∣∣∣At

)(
1 − exp

{
−1

2
λ0

t

})
(14.4.25)

for all t ∈ [0, T ], from (8.7.23) and (14.4.24).

Forward Contracts

In this subsection we fix j ∈ {0, 1, . . . , d}, T ∈ [0,∞) and t ∈ [0, T ]. Consider
now a forward contract, see (10.4.26), with the delivery of one unit of the jth
primary security account at the maturity date T , which is written at time
t ∈ [0, T ]. The value of the forward contract at the writing time t is defined
to be zero. According to the real world pricing formula (14.1.28) the forward
price F j(t, T ) at time t ∈ [0, T ] for this contract is then determined by the
relation

Sδ∗
t E

(
F j(t, T ) − Sj

T

Sδ∗
T

∣∣∣∣At

)
= 0. (14.4.26)

By (14.4.22), solving this equation yields the forward price

F j(t, T ) =
Sδ∗

t E
(
Ŝj

T

∣∣∣At

)

Sδ∗
t E

(
1

Sδ∗
T

∣∣∣At

) =

⎧⎨
⎩

Sj
t

P (t,T )
1

Ŝj
t

E
(
Ŝj

T

∣∣At

)
if Sj

t > 0

0 if Sj
t = 0

(14.4.27)

for all t ∈ [0, T ].
In the MM case, with reference to (14.4.16), the same argument, which

established that the benchmarked savings account is a continuous martingale,
also applies to the driftless geometric Brownian motion Ŝj,c, while the com-
pensated Poisson process Ŝj,d is a jump martingale. Consequently, Ŝj is the
product of independent martingales, and hence itself an (A, P )-martingale.
Together with (14.4.23) this enables us to write the forward price (14.4.27) as

F j(t, T ) = Sj
t exp{r(T − t)} (14.4.28)

for all t ∈ [0, T ]. Thus, in the MM case we recover the standard expression
for the forward price, see, for instance, Musiela & Rutkowski (2005).

In the MMM case, according to (14.4.21), Ŝj,c is an inverted time trans-
formed squared Bessel process of dimension four, while Sj,d is an independent
jump martingale, as before. Thus, we obtain
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1
Ŝj

t

E
(
Ŝj

T

∣∣∣At

)
=

1
Ŝj,c

t

E
(
Ŝj,c

T

∣∣∣At

) 1

Sj,d
t

E
(
Sj,d

T

∣∣∣At

)
= 1 − exp

{
−1

2
λj

t

}

(14.4.29)
for all t ∈ [0, T ], by (8.7.23) and (14.4.24). Putting (14.4.27) together with
(14.4.25) and (14.4.29) gives for the forward price the formula

F j(t, T ) = Sj
t

1 − exp
{
−1

2 λj
t

}

1 − exp
{
−1

2 λ0
t

}
(

E

(
exp

{
−
∫ T

t

rs ds

} ∣∣∣∣At

))−1

(14.4.30)

for all t ∈ [0, T ]. This demonstrates that the forward price of a primary
security account is a tractable quantity under the MMM.

Asset-or-Nothing Binaries

Binary options may be regarded as basic building blocks for complex deriva-
tives. This has been exploited in a recent approach to the valuation of exotic
options, where a complex payoff is decomposed into a series of binaries, see
Ingersoll (2000), Buchen (2004) and Buchen & Konstandatos (2005).

In this subsection we again fix j ∈ {0, 1, . . . , d} and consider a derivative
contract, with maturity T and strike K ∈ 
+, on the jth primary security
account. We also fix k ∈ {m+1, . . . , d} and assume that σj,k �= 0 and σj,l = 0,
for each l ∈ {m+1, . . . , d} with l �= k. In other words, we assume that the jth
primary security account responds only to the (k − m)th jump process. This
does not affect the generality of our calculations below, but it does result in
more manageable expressions. In addition, we shall assume a constant interest
rate throughout the rest of this section, so that rt = r, for all t ∈ [0, T ].
Although this is already the case for the MM, we now require it to obtain also
a compact pricing formula under the MMM.

The derivative contract under consideration is an asset-or-nothing binary
on the jth primary security account. At its maturity T it pays its holder one
unit of the jth primary security account if this is greater than the strike K,
and nothing otherwise. According to the real world pricing formula (14.1.28),
its value is given by

Aj,k(t, T, K) = Sδ∗
t E

(
1{Sj

T ≥K}
Sj

T

Sδ∗
T

∣∣∣∣At

)

=
Sj

t

Ŝj
t

E
(
1{Ŝj

T ≥K(S0
T )−1Ŝ0

T } Ŝj
T

∣∣∣At

)

=
Sj

t

Ŝj,c
t

E

(
1{Ŝj,c

T ≥g(pk−m
T −pk−m

t )Ŝ0
T }

× exp
{

σj,k
√

hk−m (T − t)
}(

1 − σj,k

√
hk−m

)pk−m
T −pk−m

t

Ŝj,c
T

∣∣∣∣At

⎞
⎠
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=
∞∑

n=0

exp
{
−hk−m(T − t)

} (hk(T − t))n

n!
exp

{
σj,k

√
hk−m(T − t)

}

×
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1 − σj,k

√
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)n
Sj

t

Ŝj,c
t

E
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1{Ŝj,c

T ≥g(n)Ŝ0
T }Ŝ

j,c
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∣∣∣At

)
(14.4.31)

for all t ∈ [0, T ], where

g(n) =
K

S0
t Sj,d

t

exp
{
−
(
r + σj,k

√
hk−m

)
(T − t)

}(
1 − σj,k

√
hk−m

)−n

(14.4.32)
for all n ∈ N .

In the MM case, (14.4.31) yields the following explicit formula:

Aj,k(t, T, K) =
∞∑

n=0

exp
{
−hk−m (T − t)

} (hk−m (T − t))n

n!

× exp
{

σj,k
√

hk−m (T − t)
}(

1 − σj,k

√
hk−m

)n

Sj
t N(d1(n)) (14.4.33)

for all t ∈ [0, T ], where

d1(n) =

ln
(

Sj
t

K

)
+

⎛
⎝r + σj,k

√
hk−m + n

ln

„

1− σj,k√
hk−m

«

T−t + 1
2

(
σ̂0,j

)2
⎞
⎠(T − t)

σ̂0,j
√

T − t
(14.4.34)

for each n ∈ N . Here N(·) is the Gaussian distribution function. Deriving
(14.4.33) is the subject of Exercise 14.3. In (14.4.34) we employ the following
notation

σ̂i,j =
√
|σi|2 − 2 �i,j |σi| |σj | + |σj |2 (14.4.35)

for i, j ∈ {0, 1, . . . , d}, where �i,j is the correlation between the Wiener pro-
cesses Ŵ i and Ŵ j .

For the MMM case, as we have just seen, calculating the price of a payoff
written on a primary security account requires the evaluation of a double
integral involving the transition density of a two-dimensional process. This
is a consequence of choosing the GOP as numeraire. Closed form derivative
pricing formulas can be obtained for the MM, but in the case of the MMM
this is more difficult, because the joint transition densities of two squared
Bessel processes are, in general, difficult to describe, see Bru (1991). A natural
response to this is to solve the partial integro differential equation (PIDE)
associated with the derivative price numerically by finite difference methods or
Monte Carlo simulation as will be described in Chap.15. However, to give the
reader a feeling for the types of formulas that emerge from applying real world
pricing in the MMM, we shall now assume, for simplicity, that the processes
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Ŝ0 and Ŝj,c are independent, which is also a reasonable assumption in many
practical situations. Combining (14.4.31) and (14.4.32), and remembering that
Ŝ0 = Ŝ0,c, results in the formula

Aj,k(t, T, K) =
∞∑

n=0

exp
{
−hk−m(T − t)

} (hk−m(T − t))n

n!

× exp
{

σj,k
√

hk−m(T − t)
}(

1 − σj,k

√
hk−m

)n

×Sj
t

(
G′′

0,4

(ϕ0(T ) − ϕ0(t)
g(n)

; λj
t , λ

0
t

)
− exp

{
−1

2
λj

t

})
(14.4.36)

for all t ∈ [0, T ], k ∈ {m + 1, . . . , d}, see Exercise 14.5. Here G′′
0,4(x; λ, λ′)

equals the probability P ( Z
Z′ ≤ x) for the ratio Z

Z′ of a non-central chi-square
distributed random variable Z ∼ χ2(0, λ) with degrees of freedom zero and
non-centrality parameter λ > 0, and a non-central chi-square distributed ran-
dom variable Z ′ ∼ χ2(4, λ′) with four degrees of freedom and noncentrality
parameter λ′. By implementing this special function one obtains the pricing
formula given in (14.4.36), see Johnson et al. (1995) and Hulley et al. (2005).

Bond-or-Nothing Binaries

In this subsection we price a bond-or-nothing binary, which pays the strike
K ∈ 
+ at maturity T , when the jth primary security account at time T
is not less than K, where j ∈ {0, 1, . . . , d} is still fixed. As before, let us
assume that the jth primary security account only responds to the kth jump
martingale W k, where k ∈ {m + 1, . . . , d} is fixed. We shall again require a
constant interest rate for the MMM as well as the MM.

Since at its maturity the bond-or-nothing binary under consideration pays
its holder the strike amount K if the value of the jth primary security account
is in excess of this, and nothing otherwise, the real world pricing formula
(14.1.28), yields

Bj,k(t, T, K) = Sδ∗
t E

(
1{Sj

T ≥K}
K

Sδ∗
T
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)
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Ŝ0
t

E

(
1{

Ŝ0
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= K P (t, T ) − K exp{−r (T − t)} 1
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T −pk−m
t )−1Ŝj,c
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}Ŝ0
T

∣∣∣∣At
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= K P (t, T ) − K exp{−r (T − t)}
∞∑

n=0

exp
{
−hk−m (T − t)

} (hk−m(T − t))n

n!

× 1
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t

E
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T >g(n)−1Ŝj,c

T

}Ŝ0
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)
(14.4.37)

for all t ∈ [0, T ], where g(n) is given by (14.4.32), for each n ∈ N .
In the MM case, (14.4.37) yields the following explicit formula:

Bj,k(t, T, K) = K exp{−r (T − t)}

×
(

1 −
∞∑

n=0

exp
{
−hk−m (T − t)

} (hk−m (T − t))n

n!
N(−d2(n))

)

=
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n=0

exp{−hk−m (T − t)} (hk−m (T − t))n

n!
K exp{−r(T − t)}N(d2(n))

(14.4.38)

for all t ∈ [0, T ], where

d2(n) =

ln
(

Sj
t

K

)
+

(
r + σj,k

√
hk−m + n

ln(1− σj,k√
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σ̂0,j
√
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= d1(n) − σ̂0,j
√

T − t (14.4.39)

for each n ∈ N , see Hulley et al. (2005). Again σ̂0,j is given by (14.4.35).
Deriving (14.4.38) is the subject to Exercise 14.4.

For the MMM case, subject to the assumption that Ŝ0
T and Ŝj,c

T are inde-
pendent, we can combine (14.4.37), (14.4.32) and (14.4.25), to obtain

Bj,k(t, T, K) = K exp{−r(T − t)}
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1 − exp
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2
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exp{−hk−m(T − t)} (hk−m (T − t))n

n!
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(ϕj(T ) − ϕj(t))g(n); λ0
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j
t

))
(14.4.40)
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for all t ∈ [0, T ], see Hulley et al. (2005). For the second equality in (14.4.40),
we have once again used the fact that

∞∑
n=0

exp{−hk−m(T − t)} (hk−m(T − t))n

n!

is the total probability of a Poisson random variable with parameter hk−m(T−
t). Deriving (14.4.40) is the subject of Exercise 14.6.

European Call Options

In this subsection we fix j ∈ {0, 1, . . . , d} again and consider a European
call option with maturity T and strike K ∈ 
+ on the jth primary security
account. As before, we make the simplifying assumption that the jth primary
security account is only sensitive to the (k−m)th jump process, for some
fixed k ∈ {m + 1, . . . , d}. We also continue to use a constant interest rate for
both market models. According to the real world pricing formula (14.1.28)
the European call option price is given by

cj,k
T,K(t) = Sδ∗

t E

⎛
⎜⎝
(
Sj

T − K
)+

Sδ∗
T

∣∣∣∣At

⎞
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t E

(
1{Sj

T ≥K}
Sj

T − K

Sδ∗
T

∣∣∣∣At

)

= Aj,k(t, T, K) − Bj,k(t, T, K) (14.4.41)

for all t ∈ [0, T ].
For the MM case, combining (14.4.33) and (14.4.38) gives

cj,k
T,K(t) =

∞∑
n=0

exp{−hk−m(T − t)} (hk−m(T − t))n

n!

(
exp

{
σj,k

√
hk−m (T − t)

}

×
(
1 − σj,k

√
hk−m

)n

Sj
t N(d1(n)) − K exp{−r(T − t)}N(d2(n))

)
(14.4.42)

for all t ∈ [0, T ], where d1(n) and d2(n) are given by (14.4.34) and (14.4.39),
respectively, for each n ∈ N .

It is easily seen that (14.4.42) corresponds to the original pricing formula
for a European call on a stock whose price follows a jump diffusion, as given in
Merton (1976). The only difference is that there the jump ratios are taken to
be independent log-normally distributed, while in our case they are constant.
Furthermore, this formula can be used to price an option to exchange the jth
primary security account for the ith primary security account. In that case,
the option pricing formula obtained instead of (14.4.42) is a generalization of
that given in Margrabe (1978).

In the MMM case the European call option pricing formula is obtained by
subtracting (14.4.40) from (14.4.36), according to (14.4.41), yielding



548 14 Markets with Event Risk

cj,k
T,K(t) =
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(14.4.43)

for all t ∈ [0, T ], where g(n) is given by (14.4.32), for each n ∈ N and λj
t in

(14.4.24).

Defaultable Zero Coupon Bonds

We have incorporated default risk in our modeling. This allows us to study
the pricing of credit derivatives. Here we consider the canonical example of
such a contract, namely a defaultable zero coupon bond with maturity T . To
keep the analysis simple, fix k ∈ {m + 1, . . . , d} and assume that the bond
under consideration defaults at the first jump time τk−m

1 of pk−m, provided
that this time is not greater than T . In other words, default occurs if and
only if τk−m

1 ≤ T , in which case τk−m
1 is the default time. As a further

simplification, we assume zero recovery upon default. According to the real
world pricing formula (14.1.28), the price of this instrument is given by

P̃ k−m(t, T ) = Sδ∗
t E
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1 >T}

Sδ∗
T
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=Sδ∗
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∣∣∣At

)

= P (t, T )P (pk−m
T = 0

∣∣At) (14.4.44)

for all t ∈ [0, T ]. Note that the second equality above follows from the inde-
pendence of the GOP and the underlying Poisson process, see (14.4.2).

Equation (14.4.44) shows that the price of the defaultable bond can be
expressed as the product of the price of the corresponding default-free bond
and the conditional probability of survival. In our setup the latter may be
further evaluated as

P
(
pk−m

T = 0
∣∣At

)
= E
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1{pk−m

t =0} 1{pk−m
T −pk−m

t =0}
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)

= 1{pk−m
t =0} E

(
exp

{
−
∫ T

t

hk−m
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} ∣∣∣∣At

)
(14.4.45)

for all t ∈ [0, T ].



14.5 Exercises for Chapter 14 549

One has to combine (14.4.44) and (14.4.45) with (14.4.23) to obtain an
explicit pricing formula for the defaultable bond under consideration in the
MM. Similarly, one can combine (14.4.44) and (14.4.45) with (14.4.25) to
obtain the pricing formula for this instrument under the MMM.

Note that the expression obtained by combining (14.4.44) and (14.4.45) is
similar to the familiar formula for the price of a defaultable zero coupon bond
in a simple reduced form model for credit risk, see Schönbucher (2003). How-
ever, the difference is that for this standard case expectations are computed in
the literature typically with respect to an equivalent risk neutral probability
measure. In particular, the survival probability is usually a risk neutral prob-
ability. In (14.4.44) and (14.4.45), however, only the real world probability
measure is in evidence. The crucial advantage of the benchmark approach in
such a situation is that one avoids the undesirable dichotomy of distinguishing
between real world default probabilities, as determined by historical data and
credit rating agencies, and hypothetical risk neutral default probabilities, as
determined by observed credit spreads. Note that substantial effort has been
expended on the problem of trying to reconcile real world and risk neutral
probabilities of default, see, for instance, Albanese & Chen (2005). This prob-
lem is, fortunately, avoided by using the benchmark approach with real world
pricing since the real world probability measure is the pricing measure.

The above two market models highlight some aspects of the benchmark
approach in derivative pricing for jump diffusion markets. This methodology
can be applied generally and yields for many derivative and insurance instru-
ments explicit formulas for the MMM and its extensions.

14.5 Exercises for Chapter 14

14.1. Calculate the growth rate of a strictly positive portfolio.

14.2. Derive the forward rate equation (14.1.33) from the benchmarked zero
coupon bond SDE (14.1.30).

14.3. (*) Calculate for the Merton model, given in Sect. 14.4, the price of an
asset-or-nothing binary from formula (14.4.31).

14.4. (*) Calculate for the Merton model, as in Sect. 14.4, the price of a
bond-or-nothing binary from formula (14.4.37).

14.5. (*) Derive for the MMM, given in Sect. 14.4, the price of an asset-or-
nothing binary from formula (14.4.31).

14.6. (*) Derive for the MMM, as in Sect.14.4, the pricing formula of a bond-
or-nothing binary from formula (14.4.37).
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