
13

Minimal Market Model

This chapter derives an alternative model for the long term dynamics of the
GOP from basic economic arguments. The discounted GOP drift, which mod-
els the long term trend of the economy, is chosen as the key parameter process.
This leads to the minimal market model with the discounted GOP forming a
time transformed squared Bessel process of dimension four. Its dynamics al-
lows us to explain various empirical stylized facts and other properties relating
to the long term behavior of a world stock index.

13.1 Parametrization via Volatility or Drift

Volatility Parametrization

The market portfolio can be interpreted as an accumulation index, or to-
tal return index. Let us again assume that a diversified stock market index
approximates the GOP. The SDE (10.2.8) of the GOP reveals a close link be-
tween its drift and diffusion coefficient. More precisely, the risk premium of the
GOP equals the square of its volatility. To see this clearly, we rewrite the SDE
(10.2.8) for the discounted GOP when assuming a CFM, see Definition 10.1.2,
in the form

dS̄δ∗
t = S̄δ∗

t |θt| (|θt| dt + dWt), (13.1.1)

where

dWt =
1
|θt|

d∑

k=1

θk
t dW k

t (13.1.2)

is the stochastic differential of a standard Wiener process W . For the efficient
modeling of the GOP it is important to find an appropriate parametrization.
The SDE (13.1.1) uses the volatility parametrization of the GOP, which can
be best identified after application of a logarithmic transformation to S̄δ∗

t . By
taking the logarithm of the discounted GOP S̄δ∗

t we obtain from (13.1.1) the
SDE
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Fig. 13.1.1. Discounted WSI

Fig. 13.1.2. Logarithm of discounted WSI

d ln
(
S̄δ∗

t

)
=

1
2
|θt|2 dt + |θt| dWt (13.1.3)

for t ∈ [0,∞), see Exercise 13.1. On the right hand side of this equation only
one parameter process appears in the drift and diffusion coefficients.

Figure 13.1.1 shows a discounted world stock index (WSI) observed in US
dollars from 1926 until 2004. This index starts at S̄δ∗

0 = 2.3 in January 1926
and has been reconstructed from monthly data provided by Global Financial
Data.

The logarithm of the above discounted WSI is displayed in Fig.13.1.2. One
notes that the logarithm of the discounted WSI increases on average linearly
with some fluctuations and could be potentially related to some underlying
stationary process. One possibility is to model the logarithm of the discounted
WSI by a simple time transformed Wiener process, a Lévy process or another
process with independent increments. However, the increasing variance of such
a process over time would not match the dynamics that we observe. Therefore,
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there has to be some feedback effect modeled that drives the logarithm of the
index back to its long-term average linear growth, consistent with stationary
variance.

It is apparent that constant volatility is not compatible with stationary
variance for the logarithm of the discounted WSI. Also if volatility is stochas-
tic, stationary and independent of the driving noise of the WSI, then the
variance of the logarithm of the WSI is going to increase over time. Thus, it
would seem that some dependence between the WSI and its volatility needs
to be established in a reasonable model for its long term dynamics.

Unfortunately, volatility does not have a major economic interpretation
and is difficult to observe, see Corsi et al. (2001) and Barndorff-Nielsen &
Shephard (2003). It simply emerges as a traditional parameter process in an
attempt to model the random fluctuations or local risk of asset prices via
the logarithmic transformation. The use of volatility as a parameter process
grew historically from an early practice that employed geometric Brownian
motion in the modeling of asset prices, see Osborne (1959), Samuelson (1971)
and Black & Scholes (1973). However, in recent years growing concerns have
emerged about the deficiencies of geometric Brownian motion as an asset price
model. A major problem is the fact that volatility is, in reality, stochastic, see
Fig.12.1.1. Many other parameterizations of asset price dynamics are possible.
Ideally, there should be an economically based or plausible parametrization
which may then explain a potential link between the changes in the WSI and
its volatility. As explained in Sect. 12.1, the volatility of an index has, via the
leverage effect, some qualitative link to the value of the underlying index. Still,
the leverage effect should also be explained on the basis of formal economic
reasoning and, ideally, should be specified quantitatively.

Drift Parametrization

From an economic perspective it is clear that the WSI needs always to revert
back to its underlying economic value even if this may take a long time. This
property is a consequence of the conservation of value in an economy. We
have observed that the drift of the discounted GOP can be interpreted as the
change per unit of time of its underlying economic value. This drift provides an
important link between the long term average evolution of the market index
and the long term growth of the macro economy. By the law of conservation
of value, the growth rate of the discounted index should in the long term, on
average, match the growth rate of the total net wealth of the companies which
comprise the market portfolio. Therefore, let us parameterize the discounted
GOP dynamics, that is the SDE (13.1.1), by its trend. More precisely, we
consider the discounted GOP drift

αδ∗
t = S̄δ∗

t |θt|2 (13.1.4)

for t ∈ [0,∞), which is assumed to be a strictly positive, predictable parameter
process, see (11.1.4). Using this parametrization we obtain from (13.1.4) the
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volatility |θt| of the GOP in the form

|θt| =

√
αδ∗

t

S̄δ∗
t

. (13.1.5)

This structure provides a natural explanation for the leverage effect. When
the index decreases, then the volatility increases and vice versa. This creates
a feedback effect resulting from the structure of the SDE (13.1.1) for the
discounted GOP.

By substituting (13.1.4) and (13.1.5) into (13.1.1), we obtain the following
parametrization of the SDE of the discounted GOP:

dS̄δ∗
t = αδ∗

t dt +
√

S̄δ∗
t αδ∗

t dWt (13.1.6)

for t ∈ [0,∞). We emphasize that the square root of the discounted GOP
appears in the diffusion coefficient. Note that the parameter process αδ∗ =
{αδ∗

t , t ∈ [0,∞)} can be freely specified as a predictable stochastic process
such that the SDE (13.1.6) has a unique strong solution.

With the quantity

At = A0 +
∫ t

0

αδ∗
s ds (13.1.7)

we can rewrite (13.1.6) in the form

S̄δ∗
t = S̄δ∗

0 + At − A0 +
∫ t

0

√
S̄δ∗

s αδ∗
s dWs (13.1.8)

for t ∈ [0,∞). Here At can be interpreted as the underlying value at time
t of the discounted GOP, where A0 needs to be appropriately chosen as the
initial underlying value at time t = 0. One can say that the underlying value At

corresponds to the discounted wealth that underlies the discounted index S̄δ∗ .
The drift parametrization above has, therefore, a formal economic meaning. If
one expects the fluctuations of the increase per unit of time of the discounted
underlying value to be reasonably independent of trading uncertainty, then the
fitting of a model to market data is more likely to be effective and amenable
to this drift parametrization rather than to the alternative formulation using
volatility.

Squared Bessel Process of Dimension Four

It is important to realize that the SDE (13.1.6) describes a very particu-
lar time transformed diffusion process. More precisely, it is the SDE of a
time transformed squared Bessel process of dimension four, see Sect. 8.7 and
Revuz & Yor (1999).
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More precisely, with the specification of transformed time ϕ(t) as

ϕ(t) =
1
4

∫ t

0

αδ∗
s ds (13.1.9)

and with
Xϕ(t) = S̄δ∗

t (13.1.10)

we obtain from (13.1.6) the SDE of a squared Bessel process of dimension four
in the form

dXϕ(t) = 4 dϕ(t) + 2
√

Xϕ(t) dW (ϕ(t)), (13.1.11)

see (8.7.1), where

dW (ϕ(t)) =

√
αδ∗

t

4
dWt (13.1.12)

for t ∈ [0,∞). By (13.1.9) the increase of the transformed time equals a quar-
ter of the underlying value At. This provides a simple economically founded
parametrization of the discounted GOP dynamics. In the model the trans-
formed time can be interpreted as business time or market time.

Note that we have still not specified the dynamics of the discounted GOP
S̄δ∗

t because we have not fixed the dynamics of the discounted GOP drift pro-
cess αδ∗

t . So far almost any strictly positive, predictable process is possible
here. The discounted GOP dynamics are in (13.1.6) and (13.1.11) only pa-
rameterized in an alternative way by using the drift instead of the volatility
as parameter process.

Time Transformed Bessel Process

By application of the Itô formula to the square root of the discounted GOP
one obtains from (13.1.6) the SDE

d

√
S̄δ∗

t =
3 αδ∗

t

8
√

S̄δ∗
t

dt +
1
2

√
αδ∗

t dWt, (13.1.13)

see Exercise 13.2. This is the SDE of a time transformed Bessel process of
dimension four, see (7.7.19). In a CFM the quadratic variation of

√
S̄δ∗ equals

[√
S̄δ∗

]

t
=

1
4

∫ t

0

αδ∗
s ds (13.1.14)

for t ∈ [0,∞), see Sect. 5.2. This means that by (13.1.9) in a CFM the incre-
ment of the transformed time ϕ(t) equals the quadratic variation of the time
transformed Bessel process

√
S̄δ∗ . That is

ϕ(t) − ϕ(0) =
[√

S̄δ∗

]

t
(13.1.15)
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Fig. 13.1.3. Empirical quadratic variation of the square root of the discounted WSI

for t ∈ [0,∞). This is a surprisingly simple relationship. Hence, the trans-
formed time process can be determined, in principle, from the quadratic vari-
ation of the square root of the discounted GOP, an observable quantity if
we take the WSI as proxy for the GOP. For the discounted WSI shown in
Fig.13.1.1 we plot in Fig.13.1.3 the empirical quadratic variation of its square
root. One notes a reasonably smooth increase of this quadratic variation over
the long time period.

We emphasize that so far we have not made any assumptions about the
particular dynamics of the discounted GOP. The relationships revealed under
the given drift parametrization hold generally for any CFM. In the next section
we shall choose the discounted GOP drift as having a simple exponential
function of time.

13.2 Stylized Minimal Market Model

Let us now apply the above results for the derivation of a parsimonious index
model, the minimal market model (MMM), see Platen (2001, 2002, 2006c)
and Sect. 7.5.

Net Growth Rate

By conservation of value the long-term growth rate of the underlying value
of the discounted GOP can be expected to correspond to the long-term net
growth rate of the world economy. According to historical records we assume
in the long term, as a first approximation, that the world economy has been
growing exponentially, see Fig. 13.1.2. Such exponential growth will now be
postulated for the discounted GOP drift. The following assumption leads us
to the stylized version of the MMM.
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Fig. 13.2.1. Fitted and observed transformed time

Assumption 13.2.1. The discounted GOP drift is an exponentially grow-
ing function of time.

Note that this assumption can be considerably weakened and made more
flexible, as will be shown later in Sect. 13.4, see also Heath & Platen (2005b).
To satisfy Assumption 13.2.1 let us model the discounted GOP drift αδ∗

t as
an exponential function of time of the form

αδ∗
t = α0 exp {η t} (13.2.1)

for t ∈ [0,∞). In this equation we have as parameters, a nonnegative initial
value α0 > 0 and a constant net growth rate η > 0. Note that the initial value
parameter α0 depends on the initial date and also on the initial value of the
discounted GOP. By equations (13.1.9) and (13.2.1) the underlying value at
time t satisfies under the given parametrization the equation

ϕ(t) =
α0

4

∫ t

0

exp {η z} dz (13.2.2)

for t ∈ [0,∞). This demonstrates that the transformed time and the underly-
ing value evolve asymptotically for long time periods in an exponential man-
ner. More precisely, one obtains for the transformed time the explicit expres-
sion

ϕ(t) =
α0

4 η
(exp {η t} − 1) . (13.2.3)

By applying standard curve fitting methods, see Sect. 2.3, we fit the trans-
formed time ϕ(t), satisfying (13.2.3), to the observed quadratic variation of
the square root of the discounted WSI shown in Fig. 13.1.3. In Fig. 13.2.1 we
plot then the resulting fit for the parameter choice α0 = 0.043 and η = 0.0528.
One notes that we achieve a reasonable fit of the theoretical transformed time
when only using a constant net growth rate η over the long time period.
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The net growth rate for the market capitalization weighted world stock
portfolio, when discounted by the US dollar savings account, has been esti-
mated for the entire last century in Dimson et al. (2002) to be on average
close to 0.049 under discrete annual compounding. This is reasonably close to
what we have obtained as the annual net growth rate parameter η = 0.0528
under continuous compounding, as shown in Fig. 13.2.1.

Normalized GOP

We now discuss the feedback effect in the dynamics of the market index that
drives its value back to its long term exponentially growing average. The
formulation (13.2.1) suggests that one should examine for this purpose the
normalized GOP

Yt =
S̄δ∗

t

αδ∗
t

(13.2.4)

for t ∈ [0,∞).
By application of the Itô formula and using (13.1.5) and (13.1.6), we obtain

for this case the SDE

dYt = (1 − η Yt) dt +
√

Yt dWt (13.2.5)

for t ∈ [0,∞) with

Y0 =
S̄δ∗

0

α0
, (13.2.6)

see Exercise 13.3. Note by (8.7.34) that Y is a square root (SR) process of
dimension four. The above stylized version of the MMM is an economically
based, parsimonious model for the dynamics of the discounted GOP, and by
extension for a WSI. We remark that we would still obtain the above type
of SDE for Yt if η were a stochastic process. This is rather important for
extended versions of the MMM.

By using the SR process Y = {Yt, t ∈ [0,∞)} and (13.2.5), the discounted
GOP S̄δ∗

t can be expressed in the form

S̄δ∗
t = Yt αδ∗

t (13.2.7)

for t ∈ [0,∞). This leads us to a useful description of the GOP when expressed
in units of the domestic currency given by

Sδ∗
t = S0

t S̄δ∗
t = S0

t Yt αδ∗
t (13.2.8)

for t ∈ [0,∞). For the above model of the discounted GOP one needs only to
specify the initial values S̄δ∗

0 and α0 and the net growth rate process η. Note
that α0 and S̄δ∗

0 are linked through (13.2.6). Consequently, one can say that
the stylized MMM assumes that the discounted GOP is the product of an SR
process and an exponential function.
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Fig. 13.2.2. Normalized GOP

One notes that the normalized GOP is an SR process of dimension four,
see Sects. 4.4 and 7.5. The net growth rate η is here the speed of adjustment
parameter for the linear mean-reversion. Note that besides the scalar initial
values α0 and S̄δ∗

0 , the net growth rate η is the only parameter process needed
for the characterization of the dynamics of the normalized GOP under the
MMM.

According to our previous findings for the discounted WSI shown in
Fig. 13.1.1 we set η = 0.0528 and choose α0 = 0.043. With this parameter
choice we show in Fig. 13.2.2 the resulting normalized GOP Yt, constructed
according to (13.2.4) and (13.2.1).

For the above choice of η the half life time of a major displacement of
the normalized GOP would be about ln(2)

η ≈ 13 years. This rather long time
period supports the view that it takes on average significant time to correct
for major up- or downturns in the world financial market. One realizes that
a look at the market performance over the last 10 or even 15 years may not
be sufficient to judge its potential long term evolution. This is consistent with
the impression that one obtains when studying in Fig. 13.1.2 the logarithm
of the world stock index for the long period from 1926 until 2003. It seems
to take about 25 years in this graph to go through a full “cycle” of random
ups and downs for the market index. The MMM reflects well this type of long
term mean reverting dynamics of the normalized GOP.

Since the normalized GOP Yt has for constant net growth rate a station-
ary density, so has ln(Yt). This means, that ln(Yt) has a uniformly bounded
variance for all t ∈ [0,∞). In this sense the stylized MMM with constant
parameters exhibits some kind of an equilibrium dynamic. By taking the log-
arithm on both sides of equation (13.2.7) we obtain the relation

ln(S̄δ∗
t ) = ln(Yt) + ln(α0) + η t (13.2.9)
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Fig. 13.2.3. Volatility of the WSI under the MMM

for t ∈ [0,∞), assuming the net growth rate to be a constant. The above
stylized MMM suggests the logarithm of the discounted GOP will fluctuate
around a straight line with slope η. The variance of ln(S̄δ∗

t ) is therefore uni-
formly bounded under the MMM. This is also what one observes in Fig.13.1.2.

The BS model and most of its extensions, with volatility processes inde-
pendent of the trading noise, are not able to recover dynamics of the type
shown in Fig. 13.1.2. In particular, exponential Lévy models, as mentioned
in Sect. 3.6, share this problem. Stochastic volatility models, as discussed in
Sect. 12.4, are better suited. However, they need an extra volatility process to
generate some negative correlation between volatility and index as described
earlier. The MMM is a parsimonious model that does not need any extra
volatility process, but still generates a realistic long term dynamics for the
GOP.

Volatility under the MMM

The resulting model for the discounted GOP with constant net growth rate
η is called the stylized version of the MMM, which was originally proposed
in Platen (2001). We now discuss the endogenous nature of volatility as it
emerges under the MMM.

According to formula (13.2.4), under the MMM the discounted GOP has
the volatility

|θt| =
1√
Yt

(13.2.10)

for t ∈ [0,∞). We plot in Fig. 13.2.3 the path of the volatility for the dis-
counted WSI, shown in Fig. 13.1.1, as it follows under the MMM for the
default parameters η = 0.0528 and α0 = 0.043. It is interesting to note that
according to this graph the volatility was, for instance, relatively high around
1975 and rather low during the period near the year 2000. The stochastic
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volatility process of the WSI under the MMM, as shown in Fig. 13.2.3, is
negatively correlated to the normalized WSI and, therefore, also negatively
correlated to the WSI.

From (13.2.10) and (13.2.5) it can be seen that the squared volatility |θt|2
satisfies the SDE

d|θt|2 = d

(
1
Yt

)
= |θt|2 η dt −

(
|θt|2
) 3

2 dWt (13.2.11)

for t ∈ [0,∞), see Exercise 13.4. This provides us with a stochastic volatility
model in the sense as discussed in Sect.12.4. Note that the diffusion coefficient
of the squared volatility has in (13.2.11) the power 3

2 . In Platen (1997) such
a 3/2 volatility model was suggested for the modeling of a market index, see
also (12.4.24). This stochastic volatility model has been obtained under the
benchmark approach by using economic arguments.

Distribution of Log-Returns under the MMM

Let us now examine the distribution of log-returns of the GOP that can be
expected to be estimated under the MMM. We show that under the MMM the
estimated log-returns of the GOP, from sufficiently long observation periods,
are Student t distributed with four degrees of freedom. To see this, let us recall
that under the MMM the squared volatility of the GOP is by (13.2.4) given
as

|θt|2 =
1
Yt

, (13.2.12)

which is the inverse of an SR process. Note from (4.5.7) that the SR process
Y has as stationary density a gamma density with four degrees of freedom.
Consequently, the squared volatility 1

Yt
has an inverse gamma density as its

stationary density.
When estimating the density of, say, daily log-returns that are observed

over a long time period, then the stationary density of the squared volatility
acts as mixing density for the stochastic variance of the log-returns. This
is similar to normal variance mixture models, as discussed in Sect. 2.5, and
to stochastic volatility models, as described in Sect. 12.4. We refer also to
Kessler (1997), Prakasa Rao (1999) and Kelly, Platen & Sørensen (2004) for
more details on this issue. For log-returns of the GOP, the inverse gamma
density acts under the MMM as a mixing density for their normal-mixture
distribution. It follows from (1.2.16) and (1.2.28) that the resulting normal-
mixture distribution is the Student t distribution with four degrees of freedom.
Therefore, this is the theoretically predicted log-return density that will be
estimated under the stylized MMM dynamics. We emphasize that one needs
a sufficiently long time period with log-return observations for this kind of
estimation procedure to be reliable. Obviously, the path of the ergodic process
1
Y needs enough time to sufficiently act in its mixing role for the random
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variance of the conditionally Gaussian log-returns. Since we have seen that
the half life time of shocks on the square root process Y for the calibrated
MMM is about 13 years, the available 33 years of daily data can be possibly
considered to be just sufficient to confirm or reject the predicted Student t
feature of log-returns.

The above described distributional feature of the MMM is rather clear
and testable. Most importantly, the Student t log-return property has already
been documented in the literature as an empirical stylized fact, as was pointed
out in Sect. 2.6. Recall that Markowitz & Usmen (1996a) found that the Stu-
dent t distribution with about 4.5 degrees of freedom matches daily S&P500
log-return data well. Hurst & Platen (1997) found within the rich class of
symmetric generalized hyperbolic distributions that for most stock market in-
dices, daily log-returns are likely to be Student t distributed with about four
degrees of freedom. Fergusson & Platen (2006) confirmed with high accuracy
this empirical stylized fact. Furthermore, in Breymann et al. (2003) the cop-
ula, see Sect. 1.5, of the joint distribution of log-returns of exchange rates has
been identified as a Student t copula with roughly four degrees of freedom.
One can say that the MMM provides in its stylized version a rather accurate
model for the probabilistic nature of the log-returns of a world stock index.

Stylized Multi-Currency MMM (*)

We have examined under the MMM the properties of stochastic volatility for
the discounted GOP in a currency denomination. By using the same argu-
ments as above, we now show how to model exchange rates. This will result
in a stylized multi-currency version of the MMM, similar to the one described
in Platen (2001) and Heath & Platen (2005a).

Let us consider a market with d + 1 currencies, d ∈ N . We denote by
Sδ∗

i (t) the GOP at time t when denominated in units of the ith currency,
i ∈ {0, 1, . . . , d}. Furthermore, ri

t is the short rate for the ith currency and
θk

i (t) the market price of risk for the ith currency denomination with respect
to the kth Wiener process, k ∈ {1, 2, . . . , d + 1}, t ∈ [0,∞).

We derive now a stylized multi-currency version of the MMM. Assuming,
for simplicity, constant net growth rates and constant short rates, we can
describe at time t the value of the GOP in the ith currency denomination
according to (13.2.8) by the expression

Sδ∗
i (t) = αi

t Y i
t Si

i(t). (13.2.13)

Here we have
αi

t = αi
0 exp{ηi t}, (13.2.14)

Si
i(t) = exp{ri t}. (13.2.15)

The ith normalized GOP Y i
t satisfies the SDE
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dY i
t =
(
1 − ηi Y i

t

)
dt +

√
Y i

t

d+1∑

k=1

qi,k dW k
t (13.2.16)

for t ∈ [0,∞), with Y i
0 > 0 and ηi the ith net growth rate, i ∈ {0, 1, . . . , d}.

Furthermore, we introduce constant scaling levels qi,k, for i ∈ {0, 1, . . . , d}
and k ∈ {1, 2, . . . , d+1} to model the covariations between normalized GOPs
Y i and Y j for i �= j. For the stylized multi-currency version of the MMM we
set, for simplicity,

d+1∑

k=1

(qi,k)2 = 1 (13.2.17)

for all i ∈ {0, 1, . . . , d}. This constraint can be relaxed in extended versions of
the MMM.

The (i, j)th exchange rate Xi,j
t from the jth into the ith currency is given

at time t by the ratio

Xi,j
t =

Sδ∗
i (t)

Sδ∗
j (t)

=
Y i

t αi
t Si

i(t)
Y j

t αj
t Sj

j (t)
. (13.2.18)

This satisfies the SDE

dXi,j
t = Xi,j

t

⎛

⎝(ri − rj) dt +
d+1∑

k=1

⎛

⎝ qi,k

√
Y i

t

− qj,k

√
Y j

t

⎞

⎠
(

qi,k

√
Y i

t

dt + dW k
t

)⎞

⎠

(13.2.19)
for t ∈ [0,∞) with Xi,j

0 > 0, i, j ∈ {0, 1, . . . , d}. Hence, this is the dynam-
ics for an exchange rate, consistent with that of the GOP having the struc-
ture (13.2.13) and (13.2.16) in each currency denomination. Under the multi-
currency MMM the exchange rate volatility depends on the volatilities of the
GOPs in both currencies and, thus, on the fluctuations of the GOP in both
denominations.

The jth savings account, when denominated in the ith currency, is given
by the product

Sj
i (t) = Xi,j

t Sj
j (t). (13.2.20)

Consequently, by the Itô formula it satisfies the SDE

dSj
i (t) = Sj

i (t)

⎛

⎝ri dt +
d+1∑

k=1

⎛

⎝ qi,k

√
Y i

t

− qj,k

√
Y j

t

⎞

⎠
(

qi,k

√
Y i

t

dt + dW k
t

)⎞

⎠

(13.2.21)
for all t ∈ [0,∞) with Sj

i (0) > 0 for i, j ∈ {0, 1, . . . , d}.
One notes from (10.1.7) that the stochastic market price of risk with re-

spect to the kth Wiener process under the ith currency denomination is of
the form
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θk
i (t) =

qi,k

√
Y i

t

(13.2.22)

for all t ∈ [0,∞), i ∈ {0, 1, . . . , d} and k ∈ {1, 2, . . . , d + 1}. The (j, k)th
volatility in the ith denomination is given by the expression

bj,k
i (t) = θk

i (t) − θk
j (t) (13.2.23)

for t ∈ [0,∞), i, j ∈ {0, 1, . . . , d} and k ∈ {1, 2, . . . , d + 1} and is, therefore,
stochastic. One notes that the volatility of an exchange rate is different and
more complex than that of an index. The interplay between the volatilities of
the denominations of the GOP in two different currencies under the MMM is
visible in the above volatility structure of the corresponding exchange rate.

In fact, the above stylized multi-currency MMM, which characterizes a
currency market, can be used to model an equity market. For equity markets
the exdividend spot price of a stock is treated in the same manner as an ex-
change rate. The share savings account of a cum dividend stock is then similar
to that of a foreign savings account. The dividend rate plays a similar role to
that of the short rate for a foreign savings account. In Platen & Stahl (2003)
it is shown that log-returns of many benchmarked US stocks are Student t dis-
tributed with about four degrees of freedom. This suggests that, potentially,
the above stylized multi-currency MMM can also be applied to a number of
stocks.

In this context it is worth mentioning that the spot price of a commodity,
like gold, copper, oil or electricity, can also be modeled like an exchange rate.
Here, the, so-called, convenience yield, see Miltersen & Schwartz (1998), be-
haves in a similar manner as the foreign short rate. In this sense the above
stylized multi-currency MMM can be used to model commodity prices. Forth-
coming work will identify the dynamics of the GOP when denominated in
units of equities or commodities.

13.3 Derivatives under the MMM

This section derives pricing formulas for standard derivatives under the styl-
ized MMM. This includes zero coupon bonds, as well as, call and put options
on an index. In this section we rely on the methodology presented in Chap.12.

Zero Coupon Bond under the MMM

First, we study the price of a zero coupon bond under the stylized MMM. For
simplicity, we assume that the short rate rt is deterministic and the net growth
rate η is constant. The price P (t, T ) of a zero coupon bond that matures at
time T ∈ (0,∞) is by the real world pricing formula (9.1.34) and (10.4.1)
obtained from the conditional expectation
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P (t, T ) = Sδ∗
t E

(
1

Sδ∗
T

∣∣∣∣At

)
= exp

{
−
∫ T

t

rs ds

}
E

(
S̄δ∗

t

S̄δ∗
T

∣∣∣∣At

)
(13.3.1)

for t ∈ [0, T ]. We recall that the discounted GOP S̄δ∗ is a time transformed
squared Bessel process of dimension δ = 4. As in (13.2.1) we choose the
discounted GOP drift

αδ∗
t = α0 exp{η t} (13.3.2)

with initial value α0 > 0 and constant net growth rate η > 0. The correspond-
ing time transformation is given in (13.2.3) by

ϕ(t) =
α0

4 η
(exp{η t} − 1) (13.3.3)

for t ∈ [0,∞), where we set ϕ(0) = 0. We know by the formula (8.7.17) the
first negative moment of a squared Bessel process of dimension δ = 4, which
has the form

E

((
S̄δ∗

T

)−1 ∣∣∣At

)
=
(
S̄δ∗

t

)−1
(

1 − exp

{
− S̄δ∗

t

2 (ϕ(T ) − ϕ(t))

})
. (13.3.4)

Therefore, we obtain by (13.3.1) and (13.3.4) the price for the fair zero coupon
bond

P (t, T ) = exp

{
−
∫ T

t

rs ds

}(
1 − exp

{
− S̄δ∗

t

2 (ϕ(T ) − ϕ(t))

})
(13.3.5)

for t ∈ [0, T ). Hence, for the stylized MMM an explicit formula exists for the
price of a zero coupon bond, which was originally derived in Platen (2002).

Forward Rates under the MMM

As introduced in Sect.10.4, the forward rate f(t, T ) at time t for the maturity
date T ∈ (0,∞) is given by the formula

f(t, T ) = − ∂

∂T
ln(P (t, T )) (13.3.6)

for t ∈ [0, T ). Using (13.3.5) for the stylized MMM with deterministic short
rate, the forward rate follows in the form

f(t, T ) = rT + n(t, T ), (13.3.7)

where n(t, T ) describes the market price of risk contribution

n(t, T ) = − ∂

∂T
ln

(
1 − exp

{
− S̄δ∗

t

2(ϕ(T ) − ϕ(t))

})
. (13.3.8)
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Fig. 13.3.1. Market price of risk contribution in dependence on η and T

In our case with a deterministic short rate, the forward rate is the sum of
the short rate at the maturity date and the market price of risk contribution.
The existence of a nonzero market price of risk contribution is a consequence
of the fact that the stylized MMM does not have an equivalent risk neutral
probability measure. By performing the differentiation in (13.3.8) we obtain
the equation

n(t, T ) =
1(

exp
{

S̄δ∗
t

2(ϕ(T )−ϕ(t))

}
− 1
) S̄δ∗

t

(ϕ(T ) − ϕ(t))2
αδ∗

T

8

=
2 η2 Yt(

exp
{

2 η Yt

(exp{η (T−t)}−1)

}
− 1
)

(exp{η (T − t)} − 1)

× 1
(1 − exp{−η (T − t)}) (13.3.9)

for t ∈ [0, T ), T ∈ (0,∞).
To illustrate the type of market price of risk contribution that the styl-

ized MMM produces we plot in Fig. 13.3.1 this function for t = 0 and
Y0 = 53 as a function of the net growth rate η ∈ [0.001, 0.1] and the ma-
turity T ∈ [0.001, 80.0]. It can be seen that the market price of risk contribu-
tion is practically zero for short dated maturities of up to one or two years.
Afterwards, one obtains an increase in the value of the market price of risk
contribution. For larger net growth rates the market price of risk contribution
is larger. For extremely large time to maturity it equals the net growth rate,
that is,

lim
T→∞

n(t, T ) = η. (13.3.10)
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Fig. 13.3.2. Candidate Radon-Nikodym derivative for world market

In Platen (2005a) and Miller & Platen (2005) interest rate term structure
models are discussed that are based on versions of the MMM.

Absence of an Equivalent Risk Neutral Probability Measure

From the fair bond price (13.3.5) we note for t ∈ [0, T ) that

P (t, T ) < P ∗
T (t) = exp

{
−
∫ T

t

rs ds

}
=

S0
t

S0
T

, (13.3.11)

which means for the stylized MMM that the fair zero coupon bond has a lower
price than the savings bond P ∗

T (t). As discussed in the previous chapter, this
demonstrates that the stylized MMM does not have an equivalent risk neutral
probability measure. Indeed, the candidate Radon-Nikodym derivative process
Λ = {Λt, t ∈ [0,∞)} for the hypothetical risk neutral measure, where

Λt =
Ŝ0

t

Ŝ0
0

=
S̄δ∗

0

S̄δ∗
t

, (13.3.12)

is a strict (A, P )-supermartingale. This follows from our example in Sect. 8.7
for the inverse of a squared Bessel process of dimension four. Consequently,
by Lemma 5.2.3 the process Λ is a strict supermartingale. In Fig. 13.3.2 we
show the candidate Radon-Nikodym derivative for the world market from 1926
until 2004, as it results when interpreting the discounted WSI in Fig. 13.1.1
as discounted GOP. We have for the hypothetical risk neutral measure Pθ on
[0, T ] the inequality

Pθ,T (Ω) = E
(
ΛT

∣∣A0

)
= 1 − exp

{
− S̄δ∗

0

2 ϕ(T )

}
< Λ0 = 1. (13.3.13)
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Fig. 13.3.3. Total mass of a hypothetical risk neutral measure

This shows that Pθ is not a probability measure because it does not give a
total mass of one, see (1.1.4). This important fact does not create a problem,
since we shall use the real world pricing formula to obtain derivative prices
under the MMM and do not rely on risk neutral pricing. For illustration we
show in Fig.13.3.3 the total mass of the candidate risk neutral measure Pθ(Ω)
as a function of T . Here we use the default parameters η = 0.0528, α0 = 0.043
and S̄δ∗

0 = 2.3. One notes that the difference in total probability mass from
the value one is very small for short time horizons T of up to about ten years.
In this range the hypothetical risk neutral measure is almost a probability
measure. However, after ten years we observe the begin of a significant decline.
After 40 years the total mass of the hypothetical risk neutral measure is only
about 0.5. In these circumstances it is then not reasonable to expect a “risk
neutral” price to be realistic for time horizons beyond ten years.

Transition Density of the Stylized MMM

Before we price any particular European option we recall the transition density
of the discounted GOP S̄δ∗ . According to (8.7.9) this transition density is of
the form

p(s, x; t, y) =
1

2 (ϕ(t) − ϕ(s))

(y

x

) 1
2

exp
{
− x + y

2 (ϕ(t) − ϕ(s))

}
I1

( √
x y

ϕ(t) − ϕ(s)

)

(13.3.14)
for 0 ≤ s < t < ∞ and x, y ∈ (0,∞). Here I1(·) is the modified Bessel function
of the first kind with index ν = 1, see (1.2.15). Note by (1.2.14) that (13.3.14)
is the density of a non-central chi-square distributed random variable at time
t with value

y

ϕ(t) − ϕ(s)
=

S̄δ∗
t

ϕ(t) − ϕ(s)

with δ = 4 degrees of freedom and non-centrality parameter
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x

ϕ(t) − ϕ(s)
=

S̄δ∗
s

ϕ(t) − ϕ(s)
.

Recall that Fig. 8.7.2 shows the transition density of a squared Bessel process
of dimension four.

It is also interesting to consider the transition density for the normalized
GOP

Yt =
S̄δ∗

t

αδ∗
t

,

see (13.2.4). This density is by (8.7.44) of the form

p(s, x; t, y) =
1

2 s̄t ϕ̄t

(
y

x s̄t

) 1
2

exp

{
−

x + y
s̄t

2 ϕ̄t

}
I1

⎛

⎝

√
x y

s̄t

ϕ̄t

⎞

⎠ (13.3.15)

for 0 ≤ s < t < ∞ and x, y ∈ (0,∞), where s̄t = exp{−η(t − s)} and
ϕ̄t = 1

4η (exp{η(t− s)}− 1). Recall that Fig. 4.4.1 shows the transition density
of a square root process of dimension δ = 4.

European Call Options under the MMM

Since a diversified index is considered to be a proxy for the GOP, see Sect.10.6,
the MMM would appear to be a reasonable choice to model an index. We
compute now the price cT,K(t, Sδ∗

t ) of a fair European call option on the
index with strike K and maturity T under the MMM. From the real world
pricing formula (10.4.1) it follows that

cT,K(t, Sδ∗
t ) = Sδ∗

t E

(
(Sδ∗

T − K)+

Sδ∗
T

∣∣∣∣At

)

= E

⎛

⎝
(

Sδ∗
t − K Sδ∗

t

Sδ∗
T

)+ ∣∣∣∣At

⎞

⎠ (13.3.16)

for t ∈ [0, T ]. By applying the transition density of the time transformed
squared Bessel process S̄δ∗ of dimension four it has been shown in Hulley,
Miller & Platen (2005) that the fair price of a European call option has the
explicit formula

cT,K(t, Sδ∗
t ) = Sδ∗

t

(
1 − χ2(d1; 4, �2)

)
− K exp{−r (T − t)} (1 − χ2(d1; 0, �2))

(13.3.17)
with

d1 =
4 η K exp{−r (T − t)}

S0
t αδ∗

t (exp{η (T − t)} − 1)
(13.3.18)

and
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�2 =
2 η Sδ∗

t

S0
t αδ∗

t (exp{η (T − t)} − 1)
(13.3.19)

for t ∈ [0, T ). This is an analytic pricing formula that involves the non-central
chi-square distribution function, see (1.2.13). This formula has a similar level
of complexity to that of the Black-Scholes formula, see (8.3.2). However, it
provides more realistic European call option prices, as we shall see later.

We have shown in Fig. 12.3.1 an implied volatility surface for European
call options on the GOP under the MMM. We noted a negatively skewed and
slightly upwards sloping implied volatility surface.

European Put Options under the MMM

For completeness, let us now determine the fair price of a European put option
on the GOP when the underlying model is the stylized MMM. For this purpose
it is appropriate to use the fair put-call parity relation (12.2.60) to calculate
the put price pT,K(t, S̄δ∗

t ) at time t for maturity T and strike K. This means
that we apply the formula

pT,K(t, S̄δ∗
t ) = cT,K(t, S̄δ∗

t ) − Sδ∗
t + K P (t, T ) (13.3.20)

for t ∈ [0, T ). This leads us by (13.3.17) to the explicit European put formula

pT,K(t, Sδ∗
t ) = −Sδ∗

t

(
χ2(d1; 4, �2)

)

+K exp{−r (T − t)}
(
χ2(d1; 0, �2) − exp{−�2}

)
(13.3.21)

for t ∈ [0, T ) when using the previous notation, see Hulley et al. (2005). One
can calculate the implied volatilities for these put option prices as in Sect.12.3.
These are the same as those for the corresponding call prices.

As previously explained in Sect. 12.2, for the case of the modified CEV
model, put-call parity breaks down if one uses the savings bond P ∗

T (t) = S0
t

S0
T

instead of the fair bond P (t, T ) in relation (13.3.20).
It can be seen from (13.3.21) that when the GOP becomes very small,

the put value also becomes small. As we have seen in (12.2.70), a put price
derived under standard risk neutral pricing would be larger than the fair put
price and would typically not become small when the GOP becomes small.

Note that one can explicitly calculate the forward price of a fair portfolio
under the stylized MMM, as described at the end of Sect. 10.4. Furthermore,
there are explicit formulas for fair European call and put options on primary
security accounts, as will be discussed in Sect. 14.4.

13.4 MMM with Random Scaling (*)

Model Formulation (*)

The version of the MMM described here, which generalizes the stylized version
derived in Sect.13.2, is governed by a particular choice of the discounted GOP
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drift αδ∗
t . By (13.1.14) it can be seen that the αδ∗

t , when integrated over time,
yield the underlying value. One could argue that the underlying value is a
non-decreasing, slowly varying stochastic process, where the randomness is
caused by random trading activity potentially involving speculation.

If we take αδ∗
t to be a deterministic exponential function of time, as in

(13.2.1), then we obtain the discounted GOP as a time transformed squared
Bessel process of dimension δ = 4. One could interpret this as an ideal or
optimal market dynamics. Here αδ∗

t would express at time t the discounted
underlying value that is transferred per unit of time into the market. The
discounted GOP evolves due to the conservation of underlying value according
to a very specific probability law. Interestingly, the underlying value plays here
the role of a transforming time, see (13.3.3).

In order to capture some possible delays or accelerations of this transfer
of discounted underlying value into the market, we now employ a squared
Bessel process with a more general dimension δ > 2 and allow also for some
randomness in its time transformation.

This is achieved by introducing the process Z = {Zt, t ∈ [0,∞)} via the
power transformation

Zt =
(
S̄δ∗

t

) 2
δ−2

(13.4.1)

for t ∈ [0,∞) and δ ∈ (2,∞). The Itô formula applied to (13.1.8) and (13.4.1)
yields

dZt =
δ

4
γt dt +

√
γt Zt dWt. (13.4.2)

The scaling process γ = {γt, t ∈ [0,∞)} with

γt = Zt
αδ∗

t

S̄δ∗
t

4
(δ − 2)2

(13.4.3)

will be specified later in an appropriate manner to reflect realistically the
randomness of market activity or market time observed in the market. This
means that Z is a time transformed squared Bessel process of dimension δ > 2,
see Sect.8.7. Note that for the standard choice δ = 4 and γt = 1 we recover the
stylized MMM, see Sect.13.2. As we shall see, structuring the model equations
in the above general form has the advantage that the model with deterministic
γt can generate different slopes of the implied volatility surface for European
call and put options via the dimension δ, see Heath & Platen (2005b).

Using the Itô formula together with (13.4.1) and (13.4.2), the GOP Sδ∗
t

can be shown to satisfy the SDE

dSδ∗
t = Sδ∗

t

⎛
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+
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δ

2
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)

√
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Sδ∗

t

S0
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) 1
2−δ

dWt

⎞

⎠ (13.4.4)
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for t ∈ [0,∞). For simplicity, we assume a constant short rate rt = r ≥ 0.
The GOP volatility or total market price of risk is by (13.1.1) and (13.4.1) of
the form

|θt| =
(

δ

2
− 1
)√

γt

Zt
(13.4.5)

for t ∈ [0,∞). This means that the volatility of the GOP is stochastic and
depends at time t on both the level of the discounted GOP with

S̄δ∗
t = Z

δ−2
2

t (13.4.6)

and the random scaling quantity γt. Furthermore, the discounted GOP drift
is by (13.1.4) and (13.4.5) given by

αδ∗
t =

(
δ

2
− 1
)2

γt Z
δ−4
2

t (13.4.7)

for t ∈ [0,∞). By introducing a random scaling process, we model the dis-
counted GOP drift in the form (13.4.7). Note that for the standard case with
δ = 4 the discounted GOP drift does not depend on Zt. For δ > 4 the dis-
counted GOP drift increases when S̄δ∗

t increases. In the case δ ∈ (2, 4) the
discounted GOP drift decreases when S̄δ∗

t increases.

Random Scaling (*)

The random scaling process can be used to model the typical short term
features of the market. For instance, it can model various random and seasonal
features of trading activity. We assume here that the scaling process γ =
{γt, t ∈ [0,∞)} is a nonnegative, adapted stochastic process that satisfies an
SDE of the form

dγt = a(t, γt) dt + b(t, γt)
(
� dWt +

√
1 − �2 dW̃t

)
(13.4.8)

for t ∈ [0,∞) with a random initial value γ0 > 0. Here W̃ is a Wiener process
that models some uncertainty in trading activity and is assumed to be inde-
pendent of W . The scaling drift a(·, ·) and scaling diffusion coefficient b(·, ·)
are given functions of time t and scaling level γt. The scaling correlation � is,
for simplicity, assumed to be constant. Under this formulation the dynamics
of the diffusion process γ can be chosen to match empirical evidence. Note
that there seems to be no compelling reason to make the scaling correlation
� different to zero, see Breymann, Kelly & Platen (2006). The main feedback
effect for indices, is well captured under the MMM already. We keep � still
flexible in the above model since it makes it similar to the stochastic volatility
models presented in the previous section. For the preferred case � = 0 we
have independence between γt and Wt, which simplifies the computation of
derivative prices.
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The above MMM with random scaling offers different choices for the di-
mension δ > 2 and, thus, different volatility dynamics. It has some similarity
with the CEV model, see Sect. 12.2, which also involves a squared Bessel
process. In Heath & Platen (2003) the random scaling was chosen to be a ge-
ometric Brownian motion, whereas in Heath & Platen (2005a) the dynamics
are similar to those outlined above. The results for short term and medium
term options are similar to those that we are going to report in this section.

We provide now an example for the modeling of random scaling that is
motivated by an intraday empirical analysis of trading activity, obtained in
Breymann et al. (2006) for a diversified world stock index denominated in US
dollars. The scaling is modeled as a product of the type

γt = ξt mt (13.4.9)

with
ξt = ξ0 exp {η t} (13.4.10)

for t ∈ [0,∞) with ξ0 > 0. As before, the parameter η > 0 is called the net
growth rate. The market activity process m = {mt, t ∈ [0,∞)} in (13.4.9) is
designed to model normalized trading activity. Note that for constant market
activity mt = 1 and dimension δ = 4 the stylized MMM of Sect. 13.2 is
recovered. In Breymann et al. (2006) it was suggested that market activity
appears to have multiplicative noise. Therefore, the market activity process
is modeled as a nonnegative process that satisfies an SDE of the form

dmt = k(mt)β2 dt + β mt

(
� dWt +

√
1 − �2 dW̃t

)
(13.4.11)

for t ∈ [0,∞) with random initial market activity m0 ≥ 0. In this SDE mul-
tiplicative noise is characterized by the constant activity volatility β > 0.
The function k(·) controls the drift of the market activity. Let us choose this
function to be of the form

k(m) = (p − g m)
m

2
, (13.4.12)

with speed of adjustment parameter g and reference level p. These constant,
deterministic parameters are set so that the expected value of market activ-
ity is about one. The market activity process m = {mt, t ∈ [0,∞)} has a
stationary density, see (4.5.5), of the form

pm(y) =
gp−1

Γ (p − 1)
yp−2 exp{−g y} (13.4.13)

for y ∈ [0,∞), where Γ (·) is the gamma function. This is a gamma density
with mean p−1

g and variance 1
g for parameters p > 1 and g > 0, see (1.2.9).

Figure 13.4.1 shows the stationary density (13.4.13) of mt for different
levels of market activity y and speed of adjustment parameter g, with p = g+1,
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Fig. 13.4.1. Stationary density of market activity mt = y as function of y and
speed of adjustment parameter g

to ensure that the mean of the stationary density always equals one. Note that
for a large speed of adjustment parameter the market activity remains close
to one.

Applying the Itô formula and using (13.4.9)–(13.4.12), the drift and diffu-
sion coefficients appearing in (13.4.8) take the form

a(t, γ) = γ

(
p − g

γ

ξt

)
+ γ η (13.4.14)

and
b(t, γ) = β γ, (13.4.15)

respectively, for t ∈ [0,∞).
Note that at any time t ∈ [0,∞) the actual value of the market activity mt,

and thus the random scaling γt, are not easily observable. These change very
rapidly and can only be estimated after sufficient time has elapsed. Therefore,
the initial value m0 of the market activity itself may have to be modeled as a
random variable. For instance, the stationary density (13.4.13) could be used
as its probability density. In the following we shall discuss the impact of using
different parameter choices on various derivatives.

Zero Coupon Bond (*)

First, we consider a fair zero coupon bond that pays one unit of the domestic
currency at the maturity date T ∈ [0,∞). An equivalent risk neutral prob-
ability measure does not exist for the above model. The benchmarked sav-
ings account Ŝ0 and, thus, the candidate Radon-Nikodym derivative process
Λ = {Λt, t ∈ [0,∞)} with
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Λt =

(
S̄δ∗

t

S̄δ∗
0

)−1

=
(

Zt

Z0

)1− δ
2

(13.4.16)

are by (8.7.24) strict local martingales when we assume no correlation, that
is � = 0. For this reason we shall use real world pricing to calculate derivative
prices. By using (13.4.1) the benchmarked price P̂T (t, Zt, γt) for a zero coupon
bond at time t with maturity T is then given by the conditional expectation

P̂T (t, Zt, γt) = E

(
1

Sδ∗
T

∣∣∣∣At

)
= E

(
1

S0
T Z

δ
2−1

T

∣∣∣∣At

)
(13.4.17)

for t ∈ [0, T ], see (10.4.8). Hence the corresponding zero coupon bond price
PT (t, Zt, γt) is given by

PT (t, Zt, γt) = Sδ∗
t P̂T (t, Zt, γt) = S0

t Z
δ
2−1
t P̂T (t, Zt, γt) (13.4.18)

for t ∈ [0,∞).
In general, we do not have an explicit joint density of (ZT , γT ), which we

would need to calculate the conditional expectation in (13.4.17). Therefore,
let us introduce the diffusion operator L0 for the Markovian factors (Zt, γt),
which when applied to a sufficiently smooth function f : (0, T )× (0,∞)2 → 

is of the form

L0 f(t, Z, γ) =
(

∂

∂t
+

δ γ

4
∂

∂Z
+ a(t, γ)

∂

∂γ
+

1
2

γ Z
∂2

∂Z2

+ � b(t, γ) γ
1
2 Z

1
2

∂2

∂Z ∂γ
+

1
2

b(t, γ)2 γ
∂2

∂γ2

)
f(t, Z, γ) (13.4.19)

for (t, Z, γ) ∈ (0, T ) × (0,∞)2. Using (13.4.2) and (13.4.8) together with the
Feynman-Kac formula, see Sect. 9.7, the benchmarked fair zero coupon bond
pricing function P̂T (·, ·, ·) satisfies the Kolmogorov backward equation

L0 P̂T (t, Z, γ) = 0 (13.4.20)

for (t, Z, γ) ∈ (0, T ) × (0,∞)2 with terminal condition

P̂T (T, Z, γ) =
1

S0
T Z

δ
2−1

(13.4.21)

for (Z, γ) ∈ (0,∞)2. By using numerical methods for solving partial differen-
tial equations (PDEs), as we shall describe in Sect. 15.7, one can numerically
determine P̂T (·, ·, ·).

Forward Rates (*)

For the above two-factor model we obtain by (10.4.12) the forward rate for
the maturity date T at time t < T by the formula
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Fig. 13.4.2. Forward rates as a function of Z0 and T

fT (t, Zt, γt) = − ∂

∂T
ln (PT (t, Zt, γt)) . (13.4.22)

Figure 13.4.2 shows for different initial values of Z0 ∈ [50, 150] the forward
rate curves at time t = 0 as functions of T ∈ [0.25, 10]. For this and subsequent
plots the default parameters used are: δ = 4, r = 0.05, � = 0, ηt = 0.048,
ξ0 = 10, p = 3 and g = 2. Note that despite a constant short rate the
forward rates are not constant and are always greater than the short rate.
Furthermore, we observe a hump in the forward rate at about the time of two
years to maturity. This is an important feature that has been observed in the
market, see, for instance Bouchaud, Sagna, Cont, El Karoui & Potters (1999)
and Matacz & Bouchaud (2000). These results together with those described
below are numerically obtained by using the Crank-Nicolson finite difference
method, which will be discussed in Sect. 15.7. The randomness of the initial
value m0 is generated by a two-point distributed random variable with mean
p−1

g and variance 1
g . The fact that the realistic hump shaped forward rates,

shown in Fig. 13.4.2, are greater than the constant short rate, demonstrates
that the benchmarked savings account process Ŝ0, see (10.3.1), is a strict
(A, P )-supermartingale, as was pointed out earlier.

European Options on a Market Index (*)

As previously explained, the GOP is employed as proxy for a market index.
Consider now a European put option on the index Sδ∗ with strike K and
maturity date T ∈ [0,∞). Using the real world pricing formula (10.4.1), the
put option price pT,K(t, Zt, γt) is given by

pT,K(t, Zt, γt) = S0
t Z

δ
2−1
t E

⎛

⎝
(

K

S0
T Z

δ
2−1

T

− 1

)+ ∣∣∣∣At

⎞

⎠ (13.4.23)

for t ∈ [0, T ].
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Fig. 13.4.3. Implied volatilities for put options on index as a function of strike K
and maturity T

To see the effect of random scaling on implied volatilities, Fig. 13.4.3 dis-
plays an implied volatility surface for European puts as a function of the
maturity date T and the strike K. These results were obtained using the zero
coupon bond price (13.4.18) to infer the discount factor used in the Black-
Scholes formula via (12.2.57). The implied volatilities shown in Fig.13.4.3 are
rather close to those observed for European index options in real markets,
see Fig. 12.1.5. Note that the curvature of the implied volatility surface for
short dated options results from the randomness of the scaling. One can show
that this curvature is mainly generated by the randomness of the initial value
m0 of the market activity process. If a fixed initial value m0 were used, then
much of the curvature for the short dated implied volatility surface would
disappear. This is important to notice since it tells us that the MMM with a
random initial value already provides most of the stylized features observed in
reality. The MMM with random initial scaling is also able to capture realistic
implied volatility smiles for exchange rate and equity options, as observed in
real markets, see Heath & Platen (2005a).

It is well-known that skew and smile patterns for implied volatility sur-
faces, as shown in Fig. 13.4.3, can be obtained by various stochastic volatility
models, see Carr & Wu (2003) or Brigo, Mercurio & Rapisarda (2004) and
our comments in Sect. 12.4. However, most of these models are difficult to
calibrate to a range of standard and exotic derivatives. It has been demon-
strated in Heath & Platen (2005a, 2005b) that the MMM avoids most of these
problems.

To demonstrate the effect of making the scaling process γ stochastic,
Fig. 13.4.4 shows implied volatilities for European puts on the GOP as a
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Fig. 13.4.4. Implied volatilities for put options as a function of strike K and speed
of adjustment g

function of the strike K and the speed of adjustment parameter g for a fixed
maturity date T = 0.25 and with p = g + 1. The figure indicates that an in-
crease in speed of adjustment g decreases the curvature of the implied volatil-
ity curve, when viewed as a function of the strike K. For different values of g
the corresponding initial random market activity m0 is also adjusted to match
the mean and variance of the corresponding stationary distribution.

It should be noted that changing the dimension δ of the time transformed
squared Bessel process Z affects the slope of the implied volatility surface.
That is, lowering the dimension δ produces a stronger negative skew for the
implied volatility surface and vice versa.

For long dated European put or call options it can be seen that there
is little curvature in the corresponding implied volatility curves for a given
maturity date, see Fig. 13.4.5.

Note that a remarkably sustained increase in overall implied volatilities
occurs for longer maturities. This is not usually obtained from a stochastic
volatility model where an equivalent risk neutral probability measure exists.
It can be observed that the impact of using random scaling, which is mainly
reflected in the curvature of implied volatilities for short dated options, is not
so prominent for longer dated maturities. This suggests that for long dated
options deterministic scaling will suffice.
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Fig. 13.4.5. Implied volatilities for long dated put options as a function of strike
K and maturity T

13.5 Exercises for Chapter 13

13.1. Calculate the SDE for the logarithm of the discounted GOP.

13.2. Derive the SDE of the square root for the discounted GOP.

13.3. Derive the SDE for the normalized GOP Yt = S̄δ∗
t

αδ∗
t

if

αδ∗
t = α0 exp{

∫ t

0

ηs ds}.

13.4. Calculate the SDE for the squared volatility of the discounted GOP,
given as in Exercise 13.3.
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