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Modeling Stochastic Volatility

This chapter introduces into the pricing and hedging of derivatives under
stochastic volatility. The emphasis is on standard derivatives for various in-
dex models. We choose as underlying security a diversified index, which we
interpret as GOP.

12.1 Stochastic Volatility

Stochastic Volatility of an Index

Since a diversified accumulation index can be interpreted as a diversified port-
folio we assume that its dynamics are closely approximated by that of a GOP.
The value Sδ∗

t of a GOP at time t satisfies by (10.2.8) the SDE

dSδ∗
t = Sδ∗

t (rt dt + |θt| (|θt| dt + dWt)) (12.1.1)

for t ∈ [0,∞) with Sδ∗
0 > 0. Here r = {rt, t ∈ [0,∞)} is the short term interest

rate process, which we assume in this chapter, for simplicity, to be constant,
such that rt = r ≥ 0 for all t ∈ [0,∞). Furthermore, |θt| denotes the volatility
of the GOP at time t, which is the, in general, stochastic total market price of
risk, see (11.1.11). Finally, W = {Wt, t ∈ [0,∞)} is a standard Wiener process
on (Ω,A,A, P ). Note that the volatility and the short rate characterize the
dynamics of the GOP in the denomination of the domestic currency.

If we consider the logarithm of the GOP, then the SDE follows by the Itô
formula and (12.1.1) in the form

d ln
(
Sδ∗

t

)
=

(
r +

1
2
|θt|2

)
dt + |θt| dWt (12.1.2)

for t ∈ [0,∞), see Exercise 13.1. This allows us to obtain the GOP volatility
|θt| at time t by the volatility formula (5.2.14) as the time derivative of the
quadratic variation of ln(Sδ∗

t ), that is,
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Fig. 12.1.1. Estimated volatility of WSI from 1973–2004

|θt| =

√
d

dt
[ln (Sδ∗)]t (12.1.3)

for t ∈ [0,∞). In Fig. 12.1.1 we plot for the WSI from Fig. 10.6.5, based on
daily observations, the volatility which was obtained numerically by using the
formula (12.1.3) for the period from 1973 until 2004. One observes that the
volatility of this stock index is not a constant or a simple deterministic function
of time. Obviously, it is a stochastic process with clusters of higher values.
Taking this into account, the BS model is certainly not a perfect description
of reality.

Leverage Effect

To illustrate systematic deviations of an index dynamics from the BS model
a study was undertaken by Kelly (1999). Using the standard BS model with
constant volatility the P&L, that is the hedge error, was minimized when
hedging a European call option with given strike K and given time to maturity
T , as described in Chap.8. By using daily data from 1990 until 1998 from the
S&P500 and a fixed volatility for the BS model the resulting average hedge
errors are shown in Fig. 12.1.2 with dependence on moneyness. These hedge
errors express the average P&L when exhausting all possible periods allowed
by the data for the hedge analysis. One notes that there is a strong negative
skew in the P&L from hedging European calls under the BS model. This
indicates that an improved model for such an index needs to account for this
stylized empirical feature, which one can also document for other time periods.
Note that in this simple experiment no traded option prices from the market
were involved.

The negative skew in Fig. 12.1.2 is a reflection of the leverage effect, see
Black (1976), which expresses a negative correlation between the index and
its volatility. When the index value increases the volatility decreases and vice
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Fig. 12.1.2. Estimated hedge error for S&P500 under BS model

versa. To give an economic interpretation of the leverage effect let us interpret
the index as a stock market index. If the index is relatively high, then the
average market value of companies is rather high and the debt that these
companies have, appears to be comparably low. Such a situation corresponds
to low risk, which is reflected in low volatility of the index. On the other hand,
there is a much higher risk associated with these companies if the market
index is relatively low. For a low stock market index level the debt of the
companies appears to be relatively high and the volatility, as a measure of
risk, is therefore comparably high. This basic economic relationship explains,
in principle, the observed negative correlation between the stock market index
and its volatility. The leverage effect has been empirically documented in
many ways, for instance, it was studied in Black (1976). It is a challenge for
an advanced index model to explain and reflect this effect in a consistent
and parsimonious manner, in particular, over long periods of time. A crucial
step would be to reveal a potential functional dependence between index and
volatility.

Implied Volatilities

Stylized facts on stochastic volatility for traded index options are well doc-
umented in the econometrics and finance literature. For example Bollerslev,
Chou & Kroner (1992) provide a survey using autoregressive conditional het-
eroscedastic (ARCH) models and Ghysels, Harvey & Renault (1996), Frey
(1997) and Cont & Tankov (2004) provide reviews on stochastic volatility
models.

In principle, the only parameter in the Black & Scholes (1973) option pric-
ing formula, see (8.3.2), that cannot be directly observed is the volatility. Thus,
by using certain given option prices the corresponding implied volatility can be
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obtained by inverting the Black-Scholes formula (8.3.2), as will be explained
below.

There exists a liquid market for European call and put options on most
stock indices. One can use the observed market prices to detect deviations
from the BS model that traders, who survived successfully in the market,
have learned to take into account. Let us denote by

cT,K(0, S, σ, r) = cT,K(0, S) (12.1.4)

the European call option price at time t = 0 obtained from the Black-Scholes
formula (8.3.2) when the volatility is σ > 0, the short rate r ∈ [0,∞), the
time to maturity T ∈ [0,∞), the actual value of the underlying index S > 0
and the strike price equals K > 0. From the traded European call option price
Vc,T,K(0, S0) with strike price K and time to maturity T , which is observed
in the market for an index with value S0 at the time t = 0, one can deduce
the implied volatility σcall

BS (0, S0, T, K, r) by setting

Vc,T,K(0, S0) = cT,K

(
0, S0, σ

call
BS (0, S0, T, K, r), r

)
. (12.1.5)

There is no explicit solution to this equation and one needs to find the implied
volatility σcall

BS (0, S0, T, K, r) by some root finding method. For instance, the
well-known Newton-Raphson iteration method can be used. Similarly, one
finds implied volatilities for European puts. One can also price European
call or put options according to a given model, for instance the MMM, and
calculate the corresponding implied volatilities.

In the market it is often observed that away-from-the-money equity and ex-
change rate options have higher implied volatilities than at-the-money options.
This phenomenon is commonly called the implied volatility smile, as for in-
stance discussed in Rubinstein (1985), Clewlow & Xu (1994), Derman & Kani
(1994a), Taylor & Xu (1994) or Platen & Schweizer (1998). For indices one
observes a negative skew in the implied volatilities. This is also consistent
with the pattern of hedge errors in Fig. 12.1.2 and is a manifestation of the
leverage effect.

For the S&P500 in Fig.12.1.3 we show implied volatilities for three months
to maturity European options for the period from 1997 until 1998 in depen-
dence on the moneyness K

S of the strike over the underlying index value. One
notes that the implied volatilities are not the same for different moneyness.
Furthermore, one notes that the negatively skewed implied volatility curves
evolve over time. In Fig.12.1.4 we show implied volatilities of one year options,
that is, for time to maturity T = 1, for the S&P500 during the same period.
Note that the curvature of these implied volatility curves is less pronounced
than that of the shorter dated options shown in Fig. 12.1.3. This leads to an
implied volatility term structure.

More precisely, at a fixed time one can generate an implied volatility sur-
face from observed option prices by interpolation over different maturities and
strikes. Such a surface reflects the deviations of traded option prices from BS
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Fig. 12.1.3. Implied volatilities for S&P500 three month options

Fig. 12.1.4. Implied volatilities for S&P500 one year options

option prices. In Cont & da Fonseca (2002) an average shape of the implied
volatility surface for European options on the S&P500 has been extracted. For
the one year period from March 2000 until February 2001 we plot in Fig.12.1.5
a graph that shows approximately the observed average shape of the implied
volatility surface. This surface is negatively skewed with less curvature for
larger times to maturity. For shorter times to maturity the implied volatil-
ity surface is more curved in a convex manner. At the money, the implied
volatility shows a slight systematic increase over time. These stylized empiri-
cal facts should be explained by an advanced index model. Additionally, it is
also observed that the implied volatility with fixed strike, say at-the-money,
and fixed maturity, for instance one month, changes randomly over time.
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Fig. 12.1.5. Average S&P500 implied volatility surface

Consequently, the implied volatility term structure appears to be rather com-
plex. Stylized facts on implied volatility surfaces are, for instance, documented
in Dumas, Fleming & Whaley (1998), Schönbucher (1999), Ait-Sahalia & Lo
(2000), Cont & da Fonseca (2002), Ledoit, Santa-Clara & Wolf (2003) and Le
(2005). It would be highly desirable if an asset price model could also provide
an economic interpretation for the volatility dynamics so that the trader can
develop a reasoning behind this important market feature. In the following we
shall discuss several volatility models which aim to match the type of implied
volatility surface, as shown in Fig. 12.1.5.

12.2 Modified CEV Model

CEV Model

We present in this section a modification of the well-known constant elasticity
of variance (CEV) model, as suggested in Heath & Platen (2002a). The CEV
model assumes constant elasticity of variance for log-returns. This means that
the volatility is a power function. This type of model seems to have first
appeared in Cox (1975) and Cox & Ross (1976). It is a natural one-factor
extension of the BS model that provides nonconstant stochastic volatilities
and, thus, nonconstant implied volatilities. It has been adapted and applied
more recently, for instance, in Andersen & Andreasen (2000), Lewis (2000),
Lo, Yuen & Hui (2000) and Brigo & Mercurio (2005).

The classical risk neutral approach to the pricing of derivatives under the
CEV model is described, for instance, in Beckers (1980) and Schroder (1989).
It should be emphasized that these classical formulations typically assume a
risk neutral dynamics of the underlying security, which in the case of the CEV
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model may reach zero with strictly positive probability. This can lead to prob-
lems in the pricing of derivatives, see Lewis (2000) and Delbaen & Shirakawa
(2002). The modified CEV model that we are going to consider does not have
an equivalent risk neutral probability measure, as we shall see, and we apply
real world pricing.

What makes the CEV type models attractive is that they easily generate
a leverage effect, that is, a negative correlation between the index and its
volatility, as discussed in Sect. 12.1.

Modified CEV Model

We consider a CFM, as introduced in Chap.10, with one source of uncertainty
W = {Wt, t ∈ [0,∞)}, modeled by a standard Wiener process under the real
world probability measure P on a filtered probability space (Ω,A,A, P ). The
deterministic savings account S0

t at time t is given by the differential equation

dS0
t = r S0

t dt (12.2.1)

for t ∈ [0,∞) with S0
0 = 1, where r denotes the constant short rate. By

introducing the total market price of risk process |θ| = {|θt|, t ∈ [0,∞)}, the
GOP Sδ∗

t satisfies the SDE (12.1.1). Recall that the total market price of risk
|θt| appears as the volatility at time t of the GOP. By introducing the drifted
Wiener process Wθ = {Wθ(t), t ∈ [0,∞)} with

dWθ(t) = |θt| dt + dWt (12.2.2)

we obtain from (12.1.1) for the GOP the SDE

dSδ∗
t = Sδ∗

t (r dt + |θt| dWθ(t)) (12.2.3)

for t ∈ [0,∞).
To illustrate the kind of problem that may arise if there is no risk neu-

tral probability measure under the classical formulation of the modified CEV
model, we consider the case where the GOP volatility |θt| is specified in the
form

|θt| = (Sδ∗
t )a−1 ψ (12.2.4)

for t ∈ [0,∞) with exponent a ∈ (−∞,∞) and scaling parameter ψ > 0. In
this case the appreciation rate of the GOP, see (12.1.1), is stochastic as long
as a �= 1.

We then have for the GOP by (12.2.3) and (12.2.4) the dynamics

dSδ∗
t = Sδ∗

t r dt + (Sδ∗
t )a ψ dWθ(t) (12.2.5)

for t ∈ [0,∞). The existence and uniqueness of a solution of the SDE (12.2.5)
is, in general, not automatically guaranteed without extra conditions on the
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behavior of the process Sδ∗ at zero, see Sect. 7.7 and Karatzas & Shreve
(1991).

In (12.2.5), the process Wθ = {Wθ(t), t ∈ [0,∞)} is usually interpreted in
the literature as a Wiener process under a risk neutral probability measure Pθ.
Let us follow this interpretation for the moment. However, it will be shown
that for a < 1 there is a major problem with the application of the risk
neutral methodology. The scaling parameter ψ is, for simplicity, assumed to
be constant.

Note that for the case a = 1 we have the BS model, which has a risk
neutral probability measure Pψ and constant market price of risk ψ. As we
shall see shortly, this is the only case where considering a risk neutral version
of the model makes sense.

By (12.1.1) and (12.2.4) the GOP satisfies the SDE

dSδ∗
t =

(
Sδ∗

t r + (Sδ∗
t )2a−1 ψ2

)
dt + (Sδ∗

t )a ψ dWt (12.2.6)

for t ∈ [0,∞). The above choice (12.2.4) of the market price of risk con-
trasts with what is used in the classical formulation of the CEV model, see
Cox & Ross (1976) and Schroder (1989). For this reason we refer to (12.2.6)
as modified CEV model, which has been studied in Heath & Platen (2002a).
As we shall see, the real world dynamics of the GOP, governed by (12.2.6),
remains for a < 1 strictly positive. This is not the case for its hypothetical
risk neutral dynamics when Wθ is interpreted as a Wiener process under Pθ,
because Sδ∗ may be absorbed at zero with strictly positive Pθ probability, as
will become clear below.

Squared Bessel Process

We shall now show that the modified CEV model is closely related to squared
Bessel processes, see Sect. 8.7. By application of the Itô formula we obtain
from (12.2.6) for the quantity

Xt =
(
Sδ∗

t

)2 (1−a)

(12.2.7)

the SDE

dXt =
(
2(1 − a) r Xt + ψ2 (1 − a) (3 − 2a)

)
dt+2 ψ (1−a)

√
Xt dWt (12.2.8)

for t ∈ [0,∞) with X0 = (Sδ∗
0 )2 (1−a) > 0. It follows from Sect. 8.7 that X =

{Xt, t ∈ [0,∞)} is a time transformed, squared Bessel process of dimension

δ =
3 − 2 a

1 − a
(12.2.9)

for a �= 1. Note that the SDE (12.2.8) has for a �= 1 a nonnegative, unique
strong solution, see Sect.7.7, which for a > 1 we assume remains at zero when
it reaches zero. By (12.2.7) the GOP can be expressed in the form
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Sδ∗
t = (Xt)q, (12.2.10)

where
q =

1
2 (1 − a)

(12.2.11)

for t ∈ [0,∞) and a �= 1. One notes that for extremely small a < 1 the
dimension δ of the squared Bessel process X equals approximately two, which
yields strongly leptokurtic log-returns for the GOP. However, for the exponent
a when approaching one from below, the dimension δ tends to infinity, which
yields lognormal dynamics for the GOP and, thus, Gaussian log-returns.

Hypothetical Risk Neutral Measure Transformation

In this setting the candidate Radon-Nikodym derivative process Λθ = {Λθ(t),
t ∈ [0,∞)}, which determines the hypothetical risk neutral measure Pθ for the
pricing of options with maturity T with

dPθ

dP

∣∣∣∣
AT

= Λθ(T ), (12.2.12)

is given by

Λθ(t) =
Sδ∗

0

Sδ∗
t

S0
t (12.2.13)

for t ∈ [0,∞), see (9.4.5). This means that by (12.2.10), the candidate Radon-
Nikodym derivative equals the power of a time transformed, squared Bessel
process of dimension δ, that is

Λθ(t) = S0
t

(
X0

Xt

)q

(12.2.14)

for t ∈ [0,∞), where q is given in (12.2.11).
Using (12.2.2) and (12.2.4) one can now rewrite the SDE (12.2.8) with

respect to the drifted Wiener process Wθ, see (12.2.2), in the form

dXt =
(
2 (1 − a) r Xt + ψ2 (1 − a)(1 − 2 a)

)
dt + 2 ψ (1 − a)

√
Xt dWθ(t)

(12.2.15)
for t ∈ [0,∞). Consequently, if one interprets the process X as a time trans-
formed, squared Bessel process under a hypothetical risk neutral probability
measure Pθ, then it would have the dimension

δθ =
1 − 2 a

1 − a
(12.2.16)

for a �= 1. In Fig. 12.2.1 we show the dimensions δ and δθ, see (12.2.9) and
(12.2.16), of the above discussed time transformed, squared Bessel processes
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Fig. 12.2.1. Dimensions δ and δθ as a function of the exponent a

as a function of the exponent a, see Heath & Platen (2002b) and also Lewis
(2000).

Note from Fig. 12.2.1 that if a < 1 then δ > 2 and δθ < 2, and if a > 1
then δ < 2 and δθ > 2. These inequalities follow from (12.2.9) and (12.2.16).
It is known, see (8.7.7), that a time transformed, squared Bessel process with
a dimension greater than two remains strictly positive. However, a time trans-
formed, squared Bessel process with a dimension less than two hits zero with
some strictly positive probability, see (8.7.8).

Hypothetical Risk Neutral Measure

In most of the previously mentioned literature one performs the modeling
under a hypothetical risk neutral probability measure Pθ. This allows one to
express the hypothetical risk neutral probability Pθ(A) for an event A in the
form

Pθ(A) =
∫

A

dPθ(ω) =
∫

A

dPθ(ω)
dP (ω)

dP (w) =
∫

A

Λθ(T ) dP (ω), (12.2.17)

where Λθ(T ) is the candidate Radon-Nikodym derivative described in (12.2.14)
at time T ∈ (0,∞). Then one can ask for the total risk neutral measure. By
(12.2.17) one obtains

Pθ(Ω) =
∫

Ω

Λθ(T ) dP (ω) = E
(
Λθ(T )

∣∣A0

)
. (12.2.18)

If Λθ were an (A, P )-martingale, then Pθ(Ω) would equal Λθ(0) = 1 and Pθ

would be a probability measure. However, for a < 1 it follows from (12.2.14)
and Sect. 8.7 that Λθ is an (A, P )-strict local martingale, see (8.7.25), and,
thus, by Lemma 5.2.3 an (A, P )-strict supermartingale. Consequently, we have
for the total hypothetical risk neutral measure Pθ(Ω) < 1. This means that Pθ

is for the given modified CEV model not a probability measure. Consequently,
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for this model there does not exist an equivalent risk neutral probability mea-
sure Pθ for a < 1.

In addition, for a > 1 the dimension δ is less than two and the exponent
q appearing in (12.2.10) is negative. It therefore follows from (8.7.8) that the
GOP explodes for this parameter choice at some time with strictly positive
P -probability. Consequently, the choice a > 1 does not lead to a viable model
for the GOP. For this reason, we consider only the case a < 1 in the remainder
of this section.

Real World Pricing

As we have seen previously, with its real world pricing concept the benchmark
approach provides a consistent pricing framework without requiring the ex-
istence of an equivalent risk neutral probability measure. For T ∈ [0,∞) let
H = H(Sδ∗

T ) denote a nonnegative payoff with

E

(
H(Sδ∗

T )
Sδ∗

T

)
< ∞. (12.2.19)

Recall from Sect. 9.1 that a price process is fair if, when expressed in units of
the GOP, it is an (A, P )-martingale. Then the fair, benchmarked price ÛH(t)
at time t of this payoff is given by the conditional expectation

ÛH(t) = E

(
H(Sδ∗

T )
Sδ∗

T

∣∣∣∣At

)
(12.2.20)

for t ∈ [0, T ], see Definition 9.1.2. By using the transition density (8.7.9) of a
squared Bessel process X of dimension δ = 3−2a

1−a one can for some given payoff
H(Sδ∗

T ) explicitly calculate the benchmarked price ÛH(t) for any t ∈ [0, T ].
The fair price UH(t) of the payoff H, when expressed in units of the do-

mestic currency, is then obtained by the real world pricing formula

UH(t) = Sδ∗
t ÛH(t) (12.2.21)

for t ∈ [0, T ], see (9.1.31) or (10.4.1).

PDE for Benchmarked Pricing Function

As an alternative to the use of the transition density of the squared Bessel
process X one can exploit the Markovianity of the GOP Sδ∗ . This permits the
application of the Feynman-Kac formula (9.7.3)–(9.7.4) to obtain the bench-
marked price ÛH(t) = ûH(t, Sδ∗

t ) as a function ûH : [0, T ] × [0,∞) → [0,∞)
of the time t and the value Sδ∗

t of the GOP. To formulate this method
of calculation we define the operator L0 on a sufficiently smooth function
f : [0, T ) × (0,∞) → � by
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L0 f(t, S) =
∂f(t, S)

∂t
+

(
r S + ψ2 S2a−1

) ∂f(t, S)
∂S

+
1
2

ψ2 S2a ∂2f(t, S)
∂S2

(12.2.22)
for (t, S) ∈ (0, T ) × (0,∞).

Applying the above operator L0 to the benchmarked pricing function
ûH(·, ·) by using (12.2.20), (12.2.6) and the Feynman-Kac formula, yields the
PDE

L0 ûH(t, S) = 0 (12.2.23)

for (t, S) ∈ (0, T ) × (0,∞) with the terminal condition

ûH(T, S) =
H(S)

S
(12.2.24)

for S ∈ (0,∞). It remains to solve the PDE (12.2.23)–(12.2.24), which, for
instance, can be achieved by a finite difference method, as will be described
in Sect. 15.7.

Martingale Representation

From the Feynman-Kac formula it follows that the benchmarked pricing func-
tion ûH : [0, T ] × [0,∞) → [0,∞) is differentiable with respect to time t and
twice differentiable with respect to Sδ∗

t on (0, T ) × (0,∞). Consequently, by
application of the Itô formula, using (12.2.6), we obtain the representation

ûH(t, Sδ∗
t ) = ûH(0, Sδ∗

0 ) +
∫ t

0

(Sδ∗
s )a ψ

∂ûH(s, Sδ∗
s )

∂Sδ∗
dWs (12.2.25)

for t ∈ [0, T ]. This is the martingale representation of the benchmarked price,
as discussed in Sect. 11.4. By Theorem 11.5.2 this representation provides the
information about the hedge that enables one to replicate the payoff.

Hedge Portfolio

Obviously, by (12.2.1) and (12.2.6), the benchmarked savings account Ŝ0
t sat-

isfies by the Itô formula the SDE

dŜ0
t = −S0

t

(
Sδ∗

t

)a−2

ψ dWt (12.2.26)

for t ∈ [0,∞). Trivially, we have dŜδ∗
t = 0 for t ∈ [0,∞).

For a given payoff function H(Sδ∗
T ) we can construct a hedge portfolio

consisting of δ0
H(t) units of the savings account S0

t and δ1
H(t) units of the GOP

Sδ∗
t . As one can see from (12.2.25) and (12.2.26), to construct a replicating

portfolio we need to choose the hedge ratios according to the prescription

δ0
H(t) = − (Sδ∗

t )2

Ŝ0
t

∂ûH(t, Sδ∗
t )

∂Sδ∗
(12.2.27)
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and
δ1
H(t) = ûH(t, Sδ∗

t ) − δ0
H(t) Ŝ0

t (12.2.28)

for t ∈ [0, T ]. This choice ensures that the value of the hedge portfolio, when
measured in units of the domestic currency, equals the fair price UH(t) =
uH(t, Sδ∗

t ) at time t ∈ [0, T ]. That is

uH(t, Sδ∗
t ) = δ0

H(t)S0
t + δ1

H(t)Sδ∗
t (12.2.29)

for t ∈ [0, T ]. The benchmarked value of the hedge portfolio is, therefore,
given by

ûH(t, Sδ∗
t ) = δ0

H(t) Ŝ0
t + δ1

H(t) (12.2.30)

for t ∈ [0, T ]. By (12.2.20) this hedge portfolio replicates the payoff at the
maturity date T . Since it is a fair portfolio it provides by Corollary 10.4.2 the
minimal hedge.

Benchmarked P&L

To illustrate the replication of the payoff, we define the benchmarked P&L
ĈH(t) for maintaining this hedge portfolio up to time t ∈ [0, T ]. Similarly
to (8.2.13) it equals the benchmarked value of the hedge portfolio minus the
benchmarked gains from trade and the benchmarked initial value, that is,

ĈH(t) = ûH(t, Sδ∗
t ) −

∫ t

0

δ0
H(s) dŜ0

s − ûH(0, Sδ∗
0 ) (12.2.31)

for t ∈ [0, T ]. By combining (12.2.31), (12.2.27), (12.2.25) and (12.2.22) we
see that

ĈH(t) = 0 (12.2.32)

for all t ∈ [0, T ]. This means that the benchmarked P&L for maintaining the
hedge portfolio is always zero. Consequently, the P&L

CH(t) = ĈH(t)Sδ∗
t = 0 (12.2.33)

equals zero for all times t ∈ [0, T ]. Thus, the payoff H(Sδ∗
T ) can be perfectly

hedged using the real world pricing formula (12.2.21) together with the hedg-
ing prescriptions (12.2.27) and (12.2.30).

Hedge Ratio

By using (12.2.27), (12.2.30) and (12.2.25) the hedge ratio δ1
H(t) can be rewrit-

ten in the form

δ1
H(t) = ûH(t, Sδ∗

t ) + Sδ∗
t

∂ûH(t, Sδ∗
t )

∂Sδ∗
=

∂uH(t, Sδ∗
t )

∂Sδ∗
(12.2.34)
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for t ∈ [0, T ]. Therefore, the number of units δ1
H(t) held in the GOP at time

t ∈ [0, T ] equals the delta hedge ratio obtained by calculating the partial
derivative of the fair price with respect to the value of the underlying, that
is the GOP. This is entirely analogous to what we obtained in Chap. 8 under
the BS model. It is also analogous to what one obtains in a classical risk
neutral hedging framework when using a savings account for hedging, see, for
instance, Karatzas & Shreve (1998). Note, however, that the above benchmark
methodology still works when no equivalent risk neutral probability measure
exists, as is the case for the given modified CEV model.

Fair Zero Coupon Bond

The price PT (t, Sδ∗
t ) at time t ∈ [0, T ] for the fair zero coupon bond that pays

one unit of the domestic currency at maturity T is given as

PT (t, Sδ∗
t ) = Sδ∗

t P̂T (t, Sδ∗
t ) (12.2.35)

for t ∈ [0, T ], see (9.1.34) and (10.4.1), with

P̂T (t, Sδ∗
t ) = E

(
1

Sδ∗
T

∣∣∣At

)
. (12.2.36)

Note by (8.7.16) that the conditional expectation in (12.2.36) can be calcu-
lated explicitly. The following explicit bond pricing formula for the modified
CEV model has been established in Miller & Platen (2008). By using the
transition density (8.7.9) of a squared Bessel process of dimension δ > 2 one
obtains

PT (t, Sδ∗
t ) = E

(
Sδ∗

t

Sδ∗
T

∣∣∣At

)
= exp{−r (T − t)}χ2(�∗; δ − 2) (12.2.37)

for t ∈ [0, T ]. Here χ2(·; δ) is the central chi-square distribution function with
δ degrees of freedom, see (1.2.11), where

�∗ =
2 r (Sδ∗

t )2(1−a)

ψ2 (1 − a) (1 − exp{−2(1 − a) r (T − t)}) . (12.2.38)

It is clear that
PT (t, Sδ∗

t ) < exp{−r (T − t)} (12.2.39)

for all t ∈ [0, T ) and Sδ∗
t > 0, because χ2(�∗; δ− 2) is the value of a chi-square

distribution.
We remark that the function P̂T (·, ·) of the benchmarked fair zero coupon

bond price satisfies the PDE

L0 P̂T (t, S) = 0 (12.2.40)
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for (t, S) ∈ [0, T ) × (0,∞) with terminal condition

P̂T (T, S) =
1
S

(12.2.41)

for S ∈ (0,∞), see (12.2.23)–(12.2.24), where the operator L0 is given in
(12.2.22).

Savings Bond

The price process uH = {uH(t, Sδ∗
t ), t ∈ [0,∞)} in (12.2.28) is the only fair

portfolio process, which perfectly replicates the payoff. However, as we shall
see below, other nonnegative portfolio processes exist, which also perfectly
replicate the payoff. As shown in Theorem 10.3.1, any benchmarked nonnega-
tive portfolio process forms an (A, P )-supermartingale. From this it followed
in Corollary 10.4.2 that the fair price, as obtained according to (12.2.29),
yields the minimal price that permits perfect replication of the payoff. This
will be verified for our case below.

Since we have assumed a constant short rate rt = r it is easy to introduce
an artificial savings bond P ∗

T = {P ∗
T (t), t ∈ [0,∞)} with

P ∗
T (t) =

S0
t

S0
T

= exp{−r (T − t)} (12.2.42)

for t ∈ [0, T ]. By application of the Itô formula, it can be shown by (12.2.10),
(12.2.8) and (12.2.42), that the benchmarked savings bond price process P̂ ∗

T =
{P̂ ∗

T (t, Sδ∗
t ), t ∈ [0, T ]} with

P̂ ∗
T (t, Sδ∗

t ) =
P ∗

T (t)
Sδ∗

t

= X−q
t P ∗

T (t) (12.2.43)

satisfies the SDE

dP̂ ∗
T (t, Sδ∗

t ) = −P̂ ∗
T (t, Sδ∗

t )
ψ√
Xt

dWt (12.2.44)

for t ∈ [0, T ]. Therefore, P̂ ∗
T forms an (A, P )-local martingale. Since a non-

negative, local martingale is an (A, P )-supermartingale, see Corollary (5.2.2),
it follows that

P̂ ∗
T (t, Sδ∗

t ) ≥ E

(
1

Sδ∗
T

∣∣∣At

)

for t ∈ [0, T ]. Therefore, by (12.2.35) and (12.2.43) we can deduce the in-
equality

PT (t, Sδ∗
t ) = Sδ∗

t E

(
1

Sδ∗
T

∣∣∣At

)
≤ Sδ∗

t P̂ ∗
T (t, Sδ∗

t ) = P ∗
T (t) (12.2.45)
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Fig. 12.2.2. Difference between savings and fair bond

for t ∈ [0, T ]. This confirms our observation in (12.2.39) that the savings
bond is at least as expensive as the fair zero coupon bond. In Fig. 12.2.2
we show the difference between the savings bond and the fair zero coupon
bond for a = −0.5, ψ = 0.2 and r = 0.04. The savings bond is an unfair
price process because when benchmarked it forms a strict supermartingale,
see Exercise 12.6. However, it does not constitute an arbitrage in the sense of
Definition 10.3.2.

Free Snack from Savings Bond

The above relation (12.2.45) poses an obvious question about the potential
existence of arbitrage. As shown in (12.2.27)–(12.2.28), there exists a trading
strategy which hedges the fair zero coupon bond under consideration. One
may now form a trading strategy δ consisting of the aforementioned hedge,
which is funded by borrowing the amount PT (0, Sδ∗

0 ) from a savings account
at initiation. The portfolio value Sδ

t at time t ∈ [0, T ] is then given by the
expression

Sδ
t = PT (t, Sδ∗

t ) − PT (0, Sδ∗
0 ) exp{−r t}. (12.2.46)

We observe that Sδ
0 = 0 and

Sδ
T = 1 − PT (0, Sδ∗

0 ) exp{−r T} > 0, (12.2.47)

as well as
Sδ

t ≥ −PT (0, Sδ∗
0 ) exp{−r t} (12.2.48)

almost surely for all t ∈ [0, T ]. Thus, δ is a strategy with a wealth process
that is uniformly bounded from below. Since Sδ

t may become negative this
portfolio is not covered by our arbitrage concept given in Definition 10.3.2.
However, it is covered by the concept of free lunch with vanishing risk, see
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Delbaen & Schachermayer (2006). Since we have in the given case a free lunch
with vanishing risk it follows by the fundamental theorem of asset pricing
of Delbaen & Schachermayer (1998) that the modified CEV model does not
admit an equivalent risk neutral probability measure. This confirms what
we observed already when we studied the strict supermartingale property of
the candidate Radon-Nikodym derivative for the hypothetical risk neutral
probability measure.

In Loewenstein & Willard (2000) a portfolio of the above kind is called
a free snack. As we have seen, it rules out the existence of an equivalent
risk neutral probability measure. However, it does not constitute an economic
reason for dismissing the given model.

Benchmarked Savings Bond

Note that the pricing function of the benchmarked savings bond P̂ ∗
T (·, ·) satis-

fies the PDE (12.2.23) with

L0 P̂ ∗
T (t, S) = 0 (12.2.49)

for (t, S) ∈ [0, T ) × (0,∞) and terminal condition

P̂ ∗
T (T, S) =

1
S

(12.2.50)

for S ∈ (0,∞). The PDE (12.2.40) with terminal condition (12.2.41) is the
same as the one given in (12.2.49) and (12.2.50). Therefore, there is more than
one solution to the PDE problem (12.2.49)–(12.2.50). This is related to the fact
that the solution to this PDE is not fully determined without specification of
its behavior along the spatial boundary at zero. From the absence of arbitrage
in the sense of Definition 10.3.2 it follows from (10.3.4) that any nonnegative
portfolio that reaches zero remains at zero after that time. For this reason the
spatial boundary condition where S reaches zero must be that of absorption.

The above savings bond provides a perfect hedge via a self-financing port-
folio that replicates one monetary unit at maturity T . Note however that
this is not the minimal possible hedge portfolio. The fair zero coupon bond
portfolio, given by the price (12.2.35), provides the minimal hedge since its
benchmarked value forms a martingale while the benchmarked savings bond
is a strict supermartingale.

European Call Option

For a European call option on the GOP with strike K and maturity T the
benchmarked fair price ĉT,K(t, Sδ∗

t ) at time t is given by the formula

ĉT,K(t, Sδ∗
t ) = E

(
(Sδ∗

T − K)+

Sδ∗
T

∣∣∣∣At

)
= E

⎛
⎝

(
1 − K

Sδ∗
T

)+ ∣∣∣∣At

⎞
⎠ (12.2.51)
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for t ∈ [0, T ]. Note that the conditional expectation used in (12.2.51) is finite
because the payoff (1 − K

Sδ∗
T

)+ is bounded. Thus, the inequality (12.2.19) for

the European call payoff is satisfied. The corresponding fair price cT,K(t, Sδ∗
t ),

see (12.2.21), takes the form by the real world pricing formula (9.1.34) and
(10.4.1)

cT,K(t, Sδ∗
t ) = Sδ∗

t ĉT,K(t, Sδ∗
t ) (12.2.52)

for t ∈ [0, T ].
By (12.2.23) the function ĉT,K(·, ·) satisfies the PDE (12.2.23) with termi-

nal condition

ĉT,K(T, S) = Ĥ(S) =
(

1 − K

S

)+

(12.2.53)

for S ∈ (0,∞), which can be solved numerically.
Alternatively, one can calculate the benchmarked European call price by

exploiting the known transition density of the squared Bessel process X. This
yields by (8.7.9), see Miller & Platen (2008), the explicit expression

ĉT,K(t, Sδ∗
t ) = (1 − χ2(u∗; δ, �∗)) − K

Sδ∗
t

exp{−r (T − t)}χ2(�∗; δ − 2, u∗),

(12.2.54)
where

u∗ =
2 r K2(1−a)

ψ2 (1 − a) (exp{2(1 − a) r (T − t)} − 1)
(12.2.55)

and �∗ is as in (12.2.38) for t ∈ (0, T ] and χ2(·; δ, ·) is the non-central chi-
square distribution (1.2.13) with degrees of freedom δ. Now, when using the
previous notation we obtain the explicit European call pricing formula

cT,K(t, Sδ∗
t ) = Sδ∗

t

(
1 − χ2(u∗; δ, �∗)

)
− K exp{−r (T − t)}χ2(�∗; δ − 2, u∗)

(12.2.56)
for the modified CEV model, see Miller & Platen (2008). This explicit pricing
formula is equivalent to similar CEV call option pricing formulas that one can
find in Cox & Ross (1976), Beckers (1980), Schroder (1989), Cox (1996), Shaw
(1998) and Delbaen & Shirakawa (2002). The important difference, however,
is that an equivalent risk neutral probability measure does not exist for the
modified CEV model. We shall discuss this issue further below.

According to (12.1.5) one can visualize a European call price efficiently
by its implied volatility. For an exponent a = −0.5, that is with dimension
δ ≈ 2.67, ψ = 0.2, a constant interest rate r = 0.04 and maturity dates
of up to two years, Fig. 12.2.3 displays the corresponding implied volatility
surface that results from the fair call option price using different values of
the strike K and time t for fixed value of Sδ∗

t = 1. In Fig. 12.2.3 we see
negatively skewed implied volatilities. Note that we use here the fair zero
coupon bond as discount factor for the inversion of the Black-Scholes formula
when calculating implied volatilities. More precisely, we use the substitute
short rate for a European call option with maturity T
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Fig. 12.2.3. Implied volatilities for fair European call prices

r̂ = − 1
T − t

ln(PT (t, Sδ∗
t )) =

1
T − t

∫ T

t

f(t, s)ds (12.2.57)

when calculating implied volatilities. Here f(t, s) denotes the forward rate at
time t for the maturity s, see (10.4.12). We emphasize that it is important
to make the above adjustment. Otherwise, implied put and call volatilities do
not match.

European Put Option

Similarly, one can also compute the fair European put option price

pT,K(t, Sδ∗
t ) = Sδ∗

t E

⎛
⎝

(
K

Sδ∗
T

− 1

)+ ∣∣∣At

⎞
⎠ (12.2.58)

for t ∈ [0, T ], which has by application of the transition density (8.7.9) the
explicit form

pT,K(t, Sδ∗
t ) = −Sδ∗

t χ2(u∗; δ, �∗) + K exp{−r (T − t)}

×
(
χ2(�∗; δ − 2) − χ2(�∗; δ − 2, u∗)

)
(12.2.59)

for t ∈ [0, T ] with the notation (12.2.55)–(12.2.38). This explicit, fair Euro-
pean put pricing formula for the modified CEV model, see Miller & Platen
(2008), is clearly different from the type of put pricing formulas that one
would obtain from Cox & Ross (1976), Beckers (1980), Schroder (1989), Cox
(1996) or Shaw (1998). The reason is that these authors priced a CEV model
under the assumption that it has an equivalent risk neutral probability mea-
sure. Their benchmarked put prices are strict supermartingales. The modified
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CEV model does not have an equivalent risk neutral probability measure and
its benchmarked fair put prices are martingales.

In Lewis (2000) some rules are proposed that aim to account for the dif-
ferences that arise when constructing some hypothetical risk neutral prices
in models like the CEV model. Unfortunately, this approach appears to lead
to conceptual problems when going beyond standard put and call options.
The real world pricing concept of the benchmark approach also applies to the
pricing under any reasonable model that has a GOP.

Fair Put-Call Parity

By using the corresponding fair zero coupon bond price with maturity T the
fair put-call parity is satisfied, that is, the following relation holds

pT,K(t, Sδ∗
t ) = cT,K(t, Sδ∗

t ) − Sδ∗
t + K PT (t, Sδ∗

t ) (12.2.60)

for t ∈ [0, T ]. However, by (12.2.39) we have

pT,K(t, Sδ∗
t ) < cT,K(t, Sδ∗

t ) − Sδ∗
t + K exp{−r (T − t)} (12.2.61)

for t ∈ [0, T ) and Sδ∗
t > 0. This means, when using the savings bond instead of

the fair bond in (12.2.60), put-call parity does not hold. Note that this effect
arises here even in a model with constant interest rates.

As already indicated, since we use the fair zero coupon bond price as the
discount factor for the computation of implied volatilities from the Black-
Scholes formula, the implied volatilities of fair puts equal those of correspond-
ing fair calls. However, if one would use the savings bond in such calculations
as discount factor, then differences between the implied volatilities for puts
and calls would emerge.

Comparison to Hypothetical Risk Neutral Prices

Let us now compare the above results with those that one would obtain under
formal application of the standard risk neutral pricing methodology. This
means we are for a moment neglecting the fact that there does not exist an
equivalent risk neutral probability measure for the given modified CEV model.

We define the hypothetical risk neutral price c∗T,K(t, Sδ∗
t ) at time t of a Eu-

ropean call option on the GOP with strike K and maturity T by c∗T,K(t, Sδ∗
t )

for t ∈ [0, T ]. The benchmarked hypothetical risk neutral call price

ĉ∗T,K(t, Sδ∗
t ) =

c∗T,K(t, Sδ∗
t )

Sδ∗
t

(12.2.62)

forms an (A, P )-local martingale, as all benchmarked portfolio processes in a
CFM. One notes the important fact that its benchmarked payoff is bounded.
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Fig. 12.2.4. Difference between hypothetical risk neutral and fair put prices

Therefore, the benchmarked hypothetical risk neutral price ĉ∗T,K(·, ·) is uni-
formly bounded. By Lemma 5.2.2 (ii) it follows that bounded local martingales
are martingales. Therefore, ĉ∗T,K forms a martingale such that

ĉ∗T,K(t, Sδ∗
t ) = ĉT,K(t, Sδ∗

t )

and thus
c∗T,K(t, Sδ∗

t ) = cT,K(t, Sδ∗
t ) (12.2.63)

for all t ∈ [0, T ]. This means that hypothetical risk neutral and fair call option
prices coincide in the given case.

We now introduce the hypothetical risk neutral put price by the corre-
sponding hypothetical risk neutral put-call parity relation

p∗T,K(t, Sδ∗
t ) = c∗T,K(t, Sδ∗

t ) − Sδ∗
t + K P ∗

T (t) (12.2.64)

for t ∈ [0, T ], where P ∗
T (·) is the savings bond, see (12.2.42). By applying

(12.2.61) and (12.2.64) it can be inferred that

pT,K(t, Sδ∗
t ) < p∗T,K(t, Sδ∗

t ) (12.2.65)

for all t ∈ [0, T ). This means that the fair put price is less than or equal to
the hypothetical risk neutral put price.

Figure 12.2.4 shows the difference between the hypothetical risk neutral
and the fair European put price as a function of the strike K and time t for
the same parameter values used in Fig. 12.2.3. Note that these differences are
always nonnegative, see (12.2.65). This visualizes again the fact that fair prices
are the minimal prices that replicate a contingent claim, see Corollary 10.4.2.
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Difference in Asymptotic Put Prices

When considering the above analysis it becomes clear that differences between
fair and hypothetical risk neutral prices arise when the payoff is not vanish-
ing for vanishing GOP. In such a case the risk neutral pricing methodology
suggests some prices that contradict economic reasoning. There always exists
a corresponding fair price that allows a perfect hedge which is less or equal
to the hypothetical risk neutral price.

Now, we shall demonstrate that the differences between fair prices and hy-
pothetical risk neutral prices can become extreme if the underlying GOP value
tends towards zero. One can show by the conditional moment estimate (8.7.16)
for the benchmarked, fair zero coupon bond, see (12.2.36) and (12.2.10), when
the GOP comes close to zero, that

lim
Sδ∗

t →0
P̂T (t, Sδ∗

t ) a.s.= lim
Xt→0

E
(
(XT )−q

∣∣At

)
< ∞ (12.2.66)

so that
lim

Sδ∗
t →0

PT (t, Sδ∗
t ) a.s.= lim

Sδ∗
t →0

Sδ∗
t P̂T (t, Sδ∗

t ) = 0 (12.2.67)

for t ∈ [0, T ] and T ∈ (0,∞). In addition, since

lim
Sδ∗

t →0
cT,K(t, Sδ∗

t ) a.s.= lim
Sδ∗

t →0
Sδ∗

t ĉT,K(t, Sδ∗
t ) = 0, (12.2.68)

by application of the fair put-call parity relation (12.2.60) we see for the fair
put price that

lim
Sδ∗

t →0
pT,K(t, Sδ∗

t ) a.s.= 0 (12.2.69)

for t ∈ [0, T ]. However, from the hypothetical risk neutral put-call parity
relation (12.2.64) together with (12.2.63), (12.2.68) and (12.2.42) it can be
seen that the corresponding hypothetical risk neutral put price satisfies for
vanishing GOP the limit condition

lim
Sδ∗

t →0
p∗T,K(t, Sδ∗

t ) a.s.= K
S0

t

S0
T

> 0 (12.2.70)

for t ∈ [0, T ]. By comparing (12.2.69) and (12.2.70), we note a difference
between the behavior of the fair and hypothetical risk neutral put prices as
the GOP comes close to zero. We emphasize again that the fair put price is,
in economic terms, the correct price for this contingent claim as it can be
perfectly hedged using the hedge ratios (12.2.27) and (12.2.30) and there is
no lower put price which could be used for replication. We emphasize that in
both cases the put payoff is replicated by a self-financing hedge portfolio.

The above study of the modified CEV model signals that one has to be
very careful in the pricing and hedging under stochastic volatility. This is of
particular relevance if an index model attempts to capture the leverage effect
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where volatility increases when the index value decreases. One can expect that
this results in effects similar to those described above. For a realistic model the
volatility has to become large when the index attains small values to be able
to reflect the economically relevant risk involved. This suggests that realistic
index models can be expected to face the above experienced problems when
applying the risk neutral methodology.

12.3 Local Volatility Models

LV Models

As we have seen in Sect. 12.1, the existence of implied volatility skews for
options on indices is well documented. A natural one-factor extension of the BS
model is obtained by introducing local volatility (LV) models. This means that
the volatility is allowed to change as a function of the underlying and time.
The resulting LV models have attracted the interest of many researchers and
practitioners. They were pioneered by Dupire (1992, 1993, 1994) and Derman
& Kani (1994a, 1994b) and have been widely used in practice. However, in
this literature one typically assumes the existence of a risk neutral probability
measure. This could be problematic since the modified CEV model, considered
in the previous section, is a special case of an LV model. Another LV model
is the MMM proposed in Platen (2001), which was mentioned in Sect. 7.5.
We shall see in the next chapter that it does not have an equivalent risk
neutral probability measure. Therefore, in this section we apply again real
world pricing to obtain derivative prices.

In the first part of this section it will be our aim to estimate the real world
transition density of the underlying index from observed call option prices
and also its local volatility function. Typically, in the literature on LV models
one extracts risk neutral transition densities from observed option prices, see
Dupire (1994). This does not make sense for models that do not have an
equivalent risk neutral probability measure. Therefore, it will be our aim to
estimate the real world transition density without relying on the existence of
an equivalent risk neutral probability measure.

Local Volatility

Let us consider a CFM with GOP process Sδ∗ = {Sδ∗
t , t ∈ [0,∞)}, which

we interpret, similarly to the previous section, as a diversified accumulation
index. For simplicity, the short rate rt = r is assumed to be constant. We say
that the GOP Sδ∗

t follows an LV model if it satisfies an SDE of the form

dSδ∗
t = Sδ∗

t

((
r + σ2(t, Sδ∗

t )
)

dt + σ(t, Sδ∗
t ) dWt

)
(12.3.1)
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for t ∈ [0,∞), see (10.2.8). This formulation of the GOP dynamics incorpo-
rates the total market price of risk |θt|, as a function of time t and underlying
security Sδ∗

t , in the form of the local volatility (LV)

|θt| = σ(t, Sδ∗
t ) (12.3.2)

for t ∈ [0,∞). The specific structural assumption here is that the total market
price of risk depends on the underlying security and time. The choice of the
LV function characterizes the selected LV model. Here W = {Wt, t ∈ [0,∞)}
denotes a standard Wiener process on a filtered probability space (Ω,A,A, P ),
where P is the real world probability measure. Furthermore, we assume that
a unique strong solution of the SDE (12.3.1) exists, see Sect. 7.7, which is not
trivial for certain classes of LV functions. In cases, where Sδ∗

t may reach zero,
we choose zero as an absorbing boundary, similarly as in (7.7.18).

LV Function

Under an LV model it is assumed that the volatility σ(t, Sδ∗
t ) is generated by

a given LV function σ : [0,∞) × [0,∞) → [0,∞], which is a deterministic
function of time and the underlying security.

If the volatility process σ = {σ(t, Sδ∗
t ), t ∈ [0,∞)} is deterministic, then

we have a BS model for Sδ∗ . The modified CEV model, considered in the
previous section, has as LV function the power function

σ(t, Sδ∗
t ) = (Sδ∗

t )a−1 ψ (12.3.3)

for some exponent a ∈ (−∞, 1) and constant scaling parameter ψ.
Another LV model is obtained by the stylized version of the MMM, men-

tioned in Sect. 7.5. Here the LV function has the form

σ(t, Sδ∗
t ) =

√
α0 exp{(r + η) t}

Sδ∗
t

, (12.3.4)

with constant net growth rate η > 0 and initial parameter α0 > 0. In this
case the GOP can be modeled as

Sδ∗
t = Yt α0 exp {(r + η) t} (12.3.5)

for t ∈ [0,∞) with parameters α0, η, r > 0. In (12.3.5) Y = {Yt, t ∈ [0,∞)}
is a square root process of dimension four, which satisfies the SDE

dYt = (1 − η Yt) dt +
√

Yt dWt (12.3.6)

for t ∈ [0,∞), see (7.5.16), with Y0 = Sδ∗
0

α0
> 0. One notes that the LV function

(12.3.4) of the stylized MMM can be expressed simply as a function of the
value of the square root process Y . That is, by (12.3.4) and (12.3.5) we can
write
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σ(t, Sδ∗
t ) =

1√
Yt

(12.3.7)

for t ∈ [0,∞). Consequently, the squared volatility is the inverse of a square
root (SR) process. Such an SR process is known to have as stationary density
a gamma density, see Sect. 4.5. Therefore, in the case of the stylized MMM
the volatility has a stationary density and, thus, allows us to model some kind
of an equilibrium.

Benchmarked Savings Account

The benchmarked savings account process Ŝ0 = {Ŝ0
t , t ∈ [0,∞)} is again given

by the ratio

Ŝ0
t =

S0
t

Sδ∗
t

. (12.3.8)

For the LV model it satisfies, by an application of the Itô formula together
with (12.3.1), the driftless SDE

dŜ0
t = −Ŝ0

t σ

(
t,

S0
t

Ŝ0
t

)
dWt (12.3.9)

for t ∈ [0,∞). Since a nonnegative, local martingale is a supermartingale,
see Lemma 5.2.2 (i) and Theorem 10.3.1, the benchmarked savings account
Ŝ0 is a supermartingale. Recall from Sect. 9.4 that the candidate Radon-
Nikodym derivative process Λ = {Λt, t ∈ [0,∞)} of the hypothetical risk
neutral probability measure is given by the normalized benchmarked savings
account Λ = {Λt, t ∈ [0,∞)} with

Λt =
Ŝ0

t

Ŝ0
0

= exp
{
−1

2

∫ t

0

σ(s, Sδ∗
s )2 ds −

∫ t

0

σ(s, Sδ∗
s ) dWs

}
(12.3.10)

for t ∈ [0,∞). We have already seen for the modified CEV model that Λ can
become a strict (A, P )-supermartingale. Therefore, an equivalent risk neutral
probability measure may not exist for a range of LV models.

Real World Pricing under an LV Model

Let H = H(Sδ∗
T ) denote a nonnegative payoff with maturity date T ∈ (0,∞).

Then its benchmarked fair price ÛH(t) at time t ∈ [0, T ] is given by the
conditional expectation

ÛH(t) = E

(
H(Sδ∗

T )
Sδ∗

T

∣∣∣∣At

)
(12.3.11)

for t ∈ [0, T ], see Definition 9.1.2. The corresponding fair price UH(t) at time
t, expressed in units of the domestic currency, is then
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UH(t) = Sδ∗
t ÛH(t) (12.3.12)

for t ∈ [0, T ], which is the real world pricing formula. Note that under an
LV model Sδ∗ is a diffusion process and, thus, Markovian. For a sufficiently
smooth function f : [0, T ]× (0,∞) → � define the operator L0 by the expres-
sion

L0 f(t, S) =
∂f(t, S)

∂t
+ (r + σ2(t, S))S

∂f(t, S)
∂S

+
1
2

σ2(t, S)S2 ∂2f(t, S)
∂S2

(12.3.13)
for (t, S) ∈ (0, T ) × (0,∞). Using (12.3.11) and (12.3.1) it follows by the
Feynman-Kac formula (9.7.3)–(9.7.5) that the benchmarked fair pricing func-
tion ûH(·, ·) with ûH(t, Sδ∗

t ) = ÛH(t) satisfies the PDE

L0 ûH(t, S) = 0 (12.3.14)

for (t, S) ∈ (0, T ) × (0,∞) with terminal condition

ûH(T, S) =
H(S)

S
(12.3.15)

for S ∈ (0,∞).
The benchmarked fair pricing function ûH(·, ·) is uniquely determined by

(12.3.11) and satisfies the PDE (12.3.14) with terminal condition (12.3.15) as
its minimal solution. As we have noticed from the modified CEV model, one
needs to be aware of the fact that for certain types of payoffs the solution to
this PDE may not be unique. This was, for instance, the case for zero coupon
bonds and European puts. These are payoffs with nonvanishing value when
the GOP reaches zero. However, we emphasize that there is only one minimal
solution to the PDE (12.3.14)–(12.3.15), which is given by the benchmarked
fair pricing function. In this case the boundary for S → 0 is absorbing. This
ensures the absence of arbitrage in the sense of Definition 10.3.2, because
benchmarked nonnegative portfolios that reach zero stay at zero in a CFM.

For the fair price of H(Sδ∗
T ) a corresponding self-financing hedge portfolio,

which replicates the payoff, can be constructed, similarly as in the previous
section. If the benchmarked fair pricing function ûH(·, ·) is sufficiently smooth,
then we have by application of the Itô formula a martingale representation of
the form

H(Sδ∗
T )

Sδ∗
T

= ûH(t, Sδ∗
t ) +

∫ T

t

∂ûH(s, Sδ∗
s )

∂Sδ∗
Sδ∗

s σ(s, Sδ∗
s ) dWs (12.3.16)

for t ∈ [0, T ), see (11.5.3) and (12.2.25). One can form a hedge portfolio, see
Theorem 11.5.2, consisting of δ0

H(t) units of the domestic savings account and
δ1
H(t) units of the GOP at time t. By comparing (12.3.16) with the SDE for

a benchmarked portfolio Ŝδ one obtains the hedge ratios

δ0
H(t) = − (Sδ∗

t )2

S0
t

∂ûH(t, Sδ∗
t )

∂Sδ∗
(12.3.17)
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Fig. 12.3.1. Implied volatility surface for the stylized MMM

and

δ1
H(t) = ûH(t, Sδ∗

t ) − δ0
H(t)

S0
t

Sδ∗
t

(12.3.18)

for t ∈ [0, T ). These generalize the equations (12.2.27) and (12.2.28). This
hedge portfolio replicates the payoff H(Sδ∗

T ). It provides perfect replication
in the sense that the corresponding P&L remains zero, see (12.2.33). The
portfolio value forms the minimal possible value since its benchmarked value
is a martingale and coincides with the payoff at maturity T .

European Calls

If we denote by K the strike price of a European call option with maturity T ,
then at time t the corresponding fair call option price c(t, Sδ∗

t , T, K) satisfies
the relation

c(t, Sδ∗
t , T, K) = Sδ∗

t E

⎛
⎝

(
1 − K

Sδ∗
T

)+ ∣∣∣∣At

⎞
⎠ (12.3.19)

for t ∈ [0, T ].
Instead of the European call option prices their corresponding implied

volatilities give a better view of the option market. We have shown in
Fig.12.2.3 the implied volatility surface for European calls, which results from
the modified CEV model as a function of the strike and time to maturity. To
provide another example we show in Fig.12.3.1 the implied volatility surface’s
dependence on T and K for a fair call option under the stylized MMM given in
Sect.7.5, with r = 0.04, η = 0.048, α0 = 0.03827, and Sδ∗

0 = 1. In Fig.12.3.1 we
observe a pronounced negative skew. The term structure of implied volatility
is characterized here by a gradual increase in at-the-money implied volatil-
ities over time. Note that we take here, as in the previous section, the fair
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zero coupon bond as discount factor when calculating implied volatilities, see
(12.2.57). This means that we adjust in the Black-Scholes formula the short
rate to

r̂ =
−1

T − t
ln(P (t, T )) (12.3.20)

for calculating implied volatilities.

Implied Transition Density of the GOP

We shall now demonstrate that it is, in principle, possible to estimate from
observed option prices the transition probability density of the underlying
GOP under an LV model. Let us denote by pŜ0(t, Ŝ0

t ; T, Ŝ0
T ) the transition

density of the benchmarked savings account process Ŝ0 under the real world
probability measure P . For convenient presentation we define the quantity

u(t, Ŝ0
t , T, κ) = κ ĉT,K(t, Sδ∗

t ) =
S0

T

K Sδ∗
t

c(t, Sδ∗
t , T, K) (12.3.21)

with the deterministic value

κ =
S0

T

K
. (12.3.22)

By (12.3.19) together with (12.3.8) this equation can be rewritten in the form

u(t, Ŝ0
t , T, κ) = E

((
κ − Ŝ0

T

)+ ∣∣∣At

)
. (12.3.23)

Using an idea of Breeden & Litzenberger (1978), which was also applied by
Dupire (1993) and Derman & Kani (1994b) in the risk neutral setting, it fol-
lows from (12.3.23) that

∂

∂κ
u(t, Ŝ0

t , T, κ) =
∂

∂κ

∫ κ

0

(κ − y) pŜ0(t, Ŝ0
t ; T, y) dy

=
∫ κ

0

pŜ0(t, Ŝ0
t ; T, y) dy. (12.3.24)

This allows us to express the real world transition density pŜ0 in the form

pŜ0(t, Ŝ0
t ; T, κ) =

∂2

∂κ2
u(t, Ŝ0

t , T, κ) (12.3.25)

for t ∈ [0, T ]. By using (12.3.22) and (12.3.21) and calculating the partial
derivative of u in terms of partial derivatives of the call pricing function c
given in (12.3.19), the transition density pŜ0 in (12.3.25) can be equivalently
expressed in the form

pŜ0(t, Ŝ0
t ; T, κ) =

K3

S0
T Sδ∗

t

∂2

∂K2
c(t, Sδ∗

t , T, K) (12.3.26)
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Fig. 12.3.2. Implied transition density obtained from CEV call option prices

for t ∈ [0, T ].
Let pSδ∗ (t, Sδ∗

t ; T, K) denote the transition density for the GOP process
Sδ∗ under the real world probability measure P . Then the following result
can be directly obtained by using the transformation (12.3.8) and formulas
(12.3.25) and (12.3.26).

Lemma 12.3.1. The transition density pSδ∗ is of the form

pSδ∗ (t, Sδ∗
t ; T, K) =

K

Sδ∗
t

∂2

∂K2
c(t, Sδ∗

t , T, K) (12.3.27)

for t ∈ [0, T ].

Consequently, by assuming the availability of a continuum of European call
option prices with respect to strike and time to maturity we can theoretically
infer the real world transition density of the GOP. This is different to most
results in the literature where one infers risk neutral transition densities. As we
have seen earlier, a corresponding equivalent risk neutral probability measure
may, in general, not exist. Therefore, the derivation of risk neutral transition
densities may not be that useful.

To illustrate the statement of Lemma 12.3.1, Fig. 12.3.2 displays a transi-
tion density of the GOP as a function of K and T , which has been numerically
computed by application of relation (12.3.27). As input we used the values
of the European call options that were calculated earlier under the modified
CEV model for obtaining the implied volatilities shown in Fig. 12.2.3. This
means that Fig. 12.3.2 displays an inferred real world transition probability
density pSδ∗ for a GOP process Sδ∗ for the case of the modified CEV model
with a = −1

2 , ψ = 0.2 and r = 0.04.
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Representation of the LV Function

We shall see under the LV model that, in principle, at any maturity date
T ∈ [0,∞) and for any value κ ∈ (0,∞), the LV function value σ(T, κ) can be
recovered from a continuum of observed European call option prices. This is
again similar to results described in Breeden & Litzenberger (1978), Dupire
(1992, 1993, 1994) and Derman & Kani (1994a, 1994b). In our case the LV
function is obtained without requiring the existence of an equivalent risk neu-
tral probability measure, which is different to the approach taken in these
references.

To derive the result conveniently let us make the following technical as-
sumptions

lim
κ→0

1
κ

∂

∂T
u(t, Ŝ0

t , T, κ) = 0, (12.3.28)

and

lim
κ→0

σ2(T, K)κ
∂2

∂κ2
u(t, Ŝ0

t , T, κ) = 0. (12.3.29)

These are reasonable conditions that apply to a wide range of LV models.
They lead to the following result, which is derived in Heath & Platen (2006):

Theorem 12.3.2. Under (12.3.28) and (12.3.29) has for fixed t ∈ [0, T ]
and Ŝ0

t > 0 the LV function the form

σ(T, K) =
√

2
κ

(
∂

∂T u(t, Ŝ0
t , T, κ)

∂2

∂κ2 u(t, Ŝ0
t , T, κ)

) 1
2

(12.3.30)

for (T, K) ∈ (0,∞) × (0,∞), t ∈ [0, T ), with κ as given in (12.3.22).

Dupire Formula

To express the LV function in terms of European call option prices one can
use the transformations (12.3.22) and (12.3.21) to compute the corresponding
partial derivatives. One then obtains the following result, which is equivalent
to (12.3.30), see Heath & Platen (2006). It is known as the Dupire formula.
Here it is obtained without relying on the existence of a risk neutral probability
measure.

Corollary 12.3.3. (Dupire) The LV function has the representation

σ(T, K) =
√

2
K

√√√√ ∂
∂T c(t, Sδ∗

t , T, K) + K r ∂
∂K c(t, Sδ∗

t , T, K)
∂2

∂K2 c(t, Sδ∗
t , T, K)

(12.3.31)

for (T, K) ∈ (0,∞) × (0,∞), t ∈ [0, T ).
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Fig. 12.3.3. LV function implied from modified CEV call option prices

Fig. 12.3.4. LV function implied from MMM call option prices

For illustration, in Fig. 12.3.3 the LV function σ(·, ·) is displayed when ob-
tained numerically via formula (12.3.31) from the European call option values
that were used to compute the implied volatilities of the modified CEV model
shown in Fig. 12.2.3. These results match, up to some negligible numerical
errors, the corresponding LV function σ(t, S) = Sa−1ψ. Small errors in values
are detectable in Fig. 12.3.3 for small K and T , which are caused by the nu-
merical implementation of the formula (12.3.31). These minor differences are
explained by round-off and truncation errors from the discrete differentiations
involved. Similarly we plot in Fig.12.3.4 the LV function, numerically implied
from call prices under the stylized MMM. Also we recover here, up to minor
numerical errors for small K and T , the LV function of the MMM.

It must be noted that a wide range of typically observed implied volatility
surfaces can be calibrated via LV models. However, this does not mean that
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Fig. 12.3.5. Implied volatility surface for the S&P500 for 20 April 2004

the resulting LV model explains the dynamics of the underlying security. It
only provides an LV function for European call and put options which allows
us to match the observed option prices under the assumption of an LV model.

Finally, it is important to emphasize that implying a local volatility func-
tion from traded option prices is a difficult numerical task. Small deviations in
prices can have a substantial effect on the implied LV function. This also cre-
ates a major drawback for the practical calibration of LV models. It would be
valuable to have some economic reasoning behind the particular form of a se-
lected LV function. The MMM, which we derive in the next chapter, provides
such an economic explanation.

Local Volatility Function of S&P500

To illustrate the above analysis further we consider observed index option
prices for the S&P500 index. Due to the numerical sensitivity of the implied
LV functions to small errors in option prices we work with smoothed data.
Figure 12.3.5 shows a fit of the implied volatility surface for S&P500 European
call options for 20 April 2004 as in Heath & Platen (2006). These implied
volatilities were computed using prices obtained from the average of bid and
ask prices using the short rate r = 0.03 and a dividend rate of d = 0.01. The
corresponding closing price for the S&P500 index was Sδ∗

0 = 1114. A total of
83 option prices was used to obtain the displayed fit. A least squares fit, see
Sect. 2.3, for the implied volatility surface was obtained using a set of two-
dimensional cubic polynomials. The corresponding smoothed option prices are
then used to calculate the real world transition densities according to formula
(12.3.27). The resulting transition density function is displayed in Fig. 12.3.6.
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Fig. 12.3.6. Implied transition density for S&P500 for 20 April 2004

Fig. 12.3.7. LV function for S&P500 for 20 April 2004

The corresponding LV function is obtained by formula (12.3.31) and is
displayed in Fig.12.3.7. Because of the form of equation (12.3.31) and, in par-
ticular, the combination of first and second order partial derivatives, the shape
of this surface turns out to be rather sensitive to the choice of the basis func-
tions employed in the fitting procedure. Note that this LV function returns in
our case exactly the implied volatility surface displayed in Fig. 12.3.5 and the
corresponding smoothed S&P500 option prices. We observe a strong sensitiv-
ity of the LV function towards small deviations in option prices. Therefore, it
is difficult to extract from observed data what the calibrated LV function of
an index should be. The difficulties indicated above, in calibrating LV models
in practice, emphasize the need for a better understanding of the nature of
the volatility process itself. This should then provide a generic shape for the
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LV function. In the next chapter we shall discuss this question further when
deriving the MMM. It is interesting to note that the implied volatility sur-
face in Fig.12.3.5 is without any major curvature for times to maturity above
six months. This is also the type of implied volatility surface that the MMM
generates for this range of maturities, see Fig. 12.3.1.

Proof of Theorem 12.3.2 (*)

From the SDE (12.3.9) and relation (12.3.8) it follows that the transition
density pŜ0 for Ŝ0 satisfies the Fokker-Planck equation

∂

∂T
pŜ0(t, Ŝ0

t ; T, κ) − 1
2

∂2

∂κ2

{
σ2(T, K)κ2 pŜ0(t, Ŝ0

t ; T, κ)
}

= 0 (12.3.32)

for (T, κ) ∈ (0,∞) × (0,∞) with initial condition

pŜ0(t, Ŝ0
t ; t, κ) = δ(Ŝ0

t − κ), (12.3.33)

where δ(·) is the Dirac delta function, see (4.4.1). It, therefore, follows by
using (12.3.25) that (12.3.32) can be rewritten in the form

∂

∂T

(
∂2

∂κ2
u(t, Ŝ0

t , T, κ)
)
− 1

2
∂2

∂κ2

{
σ2(T, K)κ2 ∂2

∂κ2
u(t, Ŝ0

t , T, κ)
}

= 0

and hence

∂2

∂κ2

{
∂

∂T
u(t, Ŝ0

t , T, κ) − 1
2

σ2(T, K)κ2 ∂2

∂κ2
u(t, Ŝ0

t , T, κ)
}

= 0. (12.3.34)

Then there exist quantities β0(T ) and β1(T ) such that

∂

∂T
u(t, Ŝ0

t , T, κ) − 1
2

σ2(T, K)κ2 ∂2

∂κ2
u(t, Ŝ0

t , T, κ) = β0(T ) + β1(T )κ.

(12.3.35)
From (12.3.35), (12.3.28) and (12.3.29) it follows that

β0(T ) = 0. (12.3.36)

and
β1(T ) = 0. (12.3.37)

Combining (12.3.35), (12.3.36) and (12.3.37) yields (12.3.30). ��

12.4 Stochastic Volatility Models

Modeling Volatility as a Separate Process

A number of continuous asset price models have been developed, which model
the volatility process as a separate, possibly correlated, stochastic process.
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This group of models includes the models by Hull & White (1987, 1988),
Johnson & Shanno (1987), Scott (1987), Wiggins (1987), Chesney & Scott
(1989), Melino & Turnbull (1990), Stein & Stein (1991), Hofmann et al. (1992)
and Heston (1993) among others. In the following we provide a description
of this type of model by applying results from Heath, Hurst & Platen (2001).
The GOP models again an index which is interpreted as the underlying secu-
rity.

The empirical results of Sect. 2.6 on the estimation of index log-returns
indicate that for daily observations of stock index log-returns the Student t
distribution with about four degrees of freedom provides an excellent fit. We
take this stylized empirical fact as motivation for the following study, which
aims to construct stochastic volatility processes with a prescribed stationary
density.

First, let us explain how this is linked to the results from the estimation
of prescribed log-return densities. When considering small time steps, then
a discounted GOP S̄δ∗ with squared volatility |θt|2 generates at time t ap-
proximately conditionally Gaussian distributed log-returns with a stochastic
variance |θt|2 per unit of time. This means that for small time step size h > 0
one observes the conditionally Gaussian log-returns

Δ ln(S̄δ∗
t ) = ln

(
S̄δ∗

t+h

S̄δ∗
t

)
∼ N

(
|θt|2
2

h, |θt|2 h

)
. (12.4.1)

Since we consider log-returns over a short time period [t, t+h] the trend effect
of the conditional mean in (12.4.1) can be neglected.

We now consider the case where the process |θ|2 has a given stationary
density and the observation of the log-returns extends over a sufficiently long
time period. This then results in the estimation of normal variance mixture
log-returns, as described in Sect. 2.5, see also Fergusson & Platen (2006). For
instance, when 1

|θt|2 has as stationary density that of a gamma distributed
random variable, then the estimated log-returns appear to be Student t dis-
tributed, see Kessler (1997) and Prakasa Rao (1999). On the other hand, if
the stationary density of |θt|2 is a gamma density, then the log-returns, when
estimated, appear to be variance gamma distributed. We emphasize the fact
that a stochastic volatility process needs a long observation period so that
the squared volatility values have traversed reasonably often over the range
of their typical values to generate the mixing effect of the random variance
for the log-returns.

A Class of Continuous Stochastic Volatility Models

Note from (12.1.1) that the discounted GOP

S̄δ∗
t =

Sδ∗
t

S0
t

(12.4.2)

satisfies the SDE
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dS̄δ∗
t = S̄δ∗

t (|θt|2 dt + |θt| dWt) (12.4.3)

for t ∈ [0,∞). Similarly to Heath, Hurst & Platen (2001) we now derive a
class of continuous discounted GOP models with stochastic volatility processes
that have stationary densities. To cover a wide range of stochastic volatility
models let us consider the factor process X = {Xt, t ∈ [0,∞)} with

Xt = Y (|θt|). (12.4.4)

It involves a twice continuously differentiable function Y (·) that depends on
the volatility process |θ| = {|θt|, t ∈ [0,∞)} of the GOP. The joint dynamics
of the discounted GOP process S̄δ∗ and the factor process X are assumed to
be governed by a time homogeneous system of SDEs

dS̄δ∗
t = S̄δ∗

t

(
|θt|2 dt + |θt|

(
� dW̄t +

√
1 − �2 dW̃t

))
,

dXt = C(Xt) dt + D(Xt) dW̄t (12.4.5)

for t ∈ [0,∞). Here W̃ and W̄ are independent standard Wiener processes
under the real world probability measure P . In the SDE (12.4.5) the dynamics
of the discounted GOP S̄δ∗ involve the stochastic volatility process |θ|. The
functions C(·) and D(·) are assumed to satisfy appropriate conditions so that
the SDE (12.4.5) admits a unique strong solution, see Sect.7.7. The parameter
� ∈ [−1, 1] is the correlation parameter.

We remark that, by application of the Itô formula to the function (12.4.4)
of Xt = Y (|θt|), we obtain the SDE

dXt = dY (|θt|) = Y ′(|θt|) d|θt| +
1
2

Y ′′(|θt|) d[|θ|]t

and, thus, by rearranging this SDE for d|θt| with (12.4.5) the SDE

d|θt| =
1

Y ′(|θt|)

(
C(Xt) dt − 1

2
Y ′′(|θt|) d[|θ|]t + D(Xt) dW̄t

)
.

This leads to an SDE for the volatility process |θ| = {|θt| = Y −1(Xt), t ∈
[0,∞)}, which is of the form

d|θt| =
(

C(Y (|θt|))
Y ′(|θt|)

− 1
2

D(Y (|θt|))2 Y ′′(|θt|)
Y ′(|θt|)3

)
dt+

D(Y (|θt|))
Y ′(|θt|)

dW̄t (12.4.6)

for t ∈ [0,∞). Here Y ′(·) and Y ′′(·) denote the first and second derivatives of
the function Y (·), respectively, and Y −1(·) is the inverse function of Y (·) on
(0,∞). The resulting stochastic volatility models differ according to different
specifications of the functions Y (·), C(·) and D(·).
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Specific Stochastic Volatility Models

Let us now mention some well-known stochastic volatility models and explain
how they fit into the above framework:

Hull & White (1988) proposed a model with mean reverting dynamics for
the squared volatility process |θ|2. Here Xt = Y (|θt|) = |θt|2, C(x) = k (θ̄2−x)
and D(x) = γ

√
x, where k, θ̄ and γ are positive constants. This is also the

dynamics used in Heston (1993). It provides a popular squared stochastic
volatility model, the Heston model, which satisfies the SDE

d|θt|2 = k (θ̄2 − |θt|2) dt + γ
√
|θt|2 dW̄t (12.4.7)

for t ∈ [0,∞) with |θ0|2 > 0. Note that one needs to have κ
γ2 ≥ 1

2 to obtain
a stationary density for the stochastic volatility since the squared volatility is
modeled by a square root process, see Sect. 8.7.

Scott (1987) and Stein & Stein (1991) used Ornstein-Uhlenbeck processes
to model the volatility process |θ|, where Xt = Y (|θt|) = |θt|, C(x) = k (θ̄−x)
and D(x) = γ. Here k, θ̄ and γ are positive constants. The Scott model is
defined by the SDE

d|θt| = k (θ̄ − |θt|) dt + γ dW̄t (12.4.8)

for t ∈ [0,∞), |θ0| ∈ �. Note that the squared volatility |θt|2 satisfies the SDE

d|θt|2 = 2 k

(
θ̄ |θt| +

γ2

2 k
− |θt|2

)
dt + 2 γ |θt| dW̄t, (12.4.9)

which resembles some generalized square root process.
Also Wiggins (1987), Chesney & Scott (1989) and Melino & Turnbull

(1990) used the Ornstein-Uhlenbeck process, but for modeling the logarithm
ln(|θt|) of the volatility process. Here Xt = Y (|θt|) = ln(|θt|), C(x) =
k(ln(θ̄)−x) and D(x) = γ, where, once again, k, θ̄ and γ are positive constants.
The Wiggins model satisfies then the SDE

d ln(|θt|) = k
(
ln(θ̄) − ln(|θt|)

)
dt + γ dW̄t (12.4.10)

for t ∈ [0,∞), |θ0| > 0. The squared volatility satisfies here the SDE

d|θt|2 = |θt|2
(
2 γ2 + k (ln(θ̄2) − ln(|θt|2))

)
dt + 2 γ |θt|2 dW̄t, (12.4.11)

which has multiplicative noise. Note that further stochastic volatility models
can be expressed under the above framework, as we shall see below.

Stationary Density

Let us now compute the stationary density for the process X given by the
SDE (12.4.5). The process X is a time homogeneous diffusion process with
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transition densities depending only on the elapsed period of time. We, there-
fore, write p(s, x; t, y) to denote the transition density of Xt = y given Xs = x.
The corresponding Fokker-Planck equation, see (4.4.1), is then given by

∂p(s, x; t, y)
∂t

+
∂(C(y) p(s, x; t, y))

∂y
− 1

2
∂2

(
D(y)2 p(s, x; t, y)

)
∂y2

= 0 (12.4.12)

for all t ∈ (s,∞) and s ∈ [0,∞), with (s, x) fixed.
Since X is assumed to have a stationary density the transition density

p(s, x; t, y) approaches the stationary density function p̄ as t → ∞, that is

p̄(y) = lim
t→∞

p(0, x; t, y), (12.4.13)

for x, y ∈ �. It follows by the Fokker-Planck equation (12.4.12) that

C(y)p̄(y) − 1
2

d(D(y)2 p̄(y))
dy

= K̃, (12.4.14)

for all y ∈ � and some constant K̃. Now, we assume that p̄(y) → 0 and
dp̄(y)

dy → 0 as |y| → ∞. Under these assumptions the constant K̃ must become
zero. By direct integration we then obtain, as shown in (4.5.5),

p̄(y) =
A

D(y)2
exp

{
2

∫ y

y0

C(u)
D(u)2

du

}
(12.4.15)

for y ∈ �, where A is a normalizing constant such that
∫ ∞

−∞
p̄(y) dy = 1.

Here y0 is an appropriately chosen point in (−∞,∞). Note that (12.4.15)
gives the form of the stationary density function and accommodates a wide
range of diffusions X with stationary density.

Inverse Gamma Density

As pointed out in Sect. 2.6, we obtain the Student t distribution as normal
variance mixture log-return distribution if the squared volatility has an in-
verse gamma distribution. Therefore, let us now introduce a class of squared
volatility models, which have for

Xt = |θt|2 (12.4.16)

an inverse gamma density as stationary density. As we shall see below, several
diffusion processes can fulfill this requirement. The stationary density p̄θ2 for
the squared volatility equals in this case
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p̄θ2(y) =
(1
2 δ)

1
2 δ

ε2 Γ (1
2 δ)

( y

ε2

)− 1
2 δ−1

exp
{
−

1
2 δ ε2

y

}
, (12.4.17)

for y > 0 with δ > 0 degrees of freedom and scaling parameter ε, where Γ (·)
denotes the gamma function, see (1.2.10). Note that we model here the density
of the inverse of a random variable that is gamma distributed.

After rearrangement of (12.4.14) we obtain the formula

C(x) =
1

2 p̄θ2(x)
d(D(x)2p̄θ2(x))

dx
, (12.4.18)

for x > 0. The function C(·) is therefore solely determined by the probability
density function p̄θ2(·) for the stationary density of |θ|2 and the function D(·).

To be specific and obtain still a rich class of diffusions X we let the diffusion
coefficient function D(·) of X have the form of a power function

D(x) = γ xξ, (12.4.19)

for x > 0 with some positive constants γ and ξ. This particular choice for the
functional form of D(·) ensures that the diffusion coefficient of the squared
volatility approaches zero when the squared volatility approaches zero. Fur-
thermore, the exponent ξ controls the feedback of the squared volatility on
its diffusion coefficient. With this functional form for D(·) and the probabil-
ity density function p̄θ2 in (12.4.17), the equation (12.4.18) provides for the
squared volatility process X the drift function

C(x) = k x2(ξ−1) (θ̄2 − x), (12.4.20)

for x > 0, where k = 1
4 γ2 (δ + 2 − 4 ξ), θ̄2 = ε2 δ

δ+2−4 ξ and δ > 4 ξ − 2. In

the special case δ + 2 − 4ξ = 0 we set kθ̄2 = γ2ε2δ
4 . The resulting family of

discounted GOP models is, therefore, characterized by a squared volatility
with SDE

d|θt|2 = k |θt|4(ξ−1) (θ̄2 − |θt|2) dt + γ |θt|2 ξ dW̄t, (12.4.21)

where k, θ̄, γ and ξ are all constants. Note that for a desired degree of freedom
δ for the inverse gamma density (12.4.17) the parameters k, ξ, γ and θ̄2 cannot
be chosen freely. In particular, we need to set

δ =
2 (2 ξ − 1)

1 − ε2

θ̄2

. (12.4.22)

It is important to note that several existing models are included in this
class of squared volatility models. For the choice of the exponent ξ = 1 we
obtain the ARCH diffusion model

d|θt|2 = k (θ̄2 − |θt|2) dt + γ |θt|2 dW̄t, (12.4.23)
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which is the continuous time limit of the innovation process of the GARCH(1,1)
and NGARCH(1,1) models described in Nelson (1990) and Frey (1997). The
class of ARCH and GARCH time series models, which have many generaliza-
tions, was originally developed in Engle (1982). When taking the continuous
time limit in a GARCH(1,1) model, see Nelson (1990), the underlying security
and the squared volatility process appear to be driven by independent Wiener
processes. The leverage effect, see Sect.12.1, can be modeled in (12.4.23) when
W̄ and W are assumed to be negatively correlated.

When the exponent is set to ξ = 3
2 and � = −1 we obtain the 3/2 model

d|θt|2 = k |θt|2 (θ̄2 − |θt|2) dt + γ (|θt|2)
3
2 dW̄t. (12.4.24)

It corresponds to the squared volatility model suggested in Platen (1997) and
covers the volatility structure of the stylized MMM mentioned in Sect.7.5, see
Platen (2001, 2002). We remark that in Lewis (2000) a version of a 3/2 model
was studied among other models.

ARCH Diffusion Model

Let us now investigate effects generated by the ARCH diffusion model consid-
ered in Hurst (1997), Lewis (2000) and Heath, Hurst & Platen (2001). This
means, we consider the case ξ = 1 in (12.4.21).

In the following, the speed of adjustment is chosen to be k = 2.0 so that the
half-life time of shocks, ln(2)

k , is approximately eighteen weeks. The volatility
of the squared volatility is set to γ = 1.0 so that the volatility of volatility
is approximately 0.5. These choices for k and γ ensure a strong stochastic
volatility effect. The initial squared volatility |θ0|2 and the long term mean
of the squared volatility θ̄2 are both chosen to equal 0.04 so that initial and
long term volatility are approximately 0.2. Furthermore, the correlation � is,
for simplicity, first set to zero. The initial discounted GOP value is set to
S̄δ∗

0 = 100 with a short rate of r = 0.04. The effect of changing each of these
parameters, while keeping the others constant, is examined below.

Figure 12.4.1 displays the implied volatility surface for European call op-
tions with maturity dates, ranging from five weeks to one year and the strike
K ranging from 80 to 125. These kind of implied volatility surfaces are often
observed for currency and equity options but not for index options. Note that
the magnitude of the implied volatility smile or curvature decreases as the
time to maturity increases. The smile effect for short dated options is very
prominent but becomes less pronounced for longer dated options.

The effect of changing the correlation � on the implied volatility surface is
now examined. Figure 12.4.2 shows implied volatilities for European call op-
tions with correlation � ranging from -0.5 to 0.5 and the strike K ranging from
80 to 125, where the time to maturity is six months. When the correlation
is negative it can be seen that out-of-the-money options have lower implied
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Fig. 12.4.1. Implied volatility surface for zero correlation

Fig. 12.4.2. Effect of changing correlation on implied volatilities

volatilities than in-the-money options. This effect is commonly called a nega-
tive implied volatility skew. Usually, for index options the implied volatilities
are negatively skewed, see Fig. 12.1.5, reflecting the leverage effect created by
negatively correlated index and volatility increments. Thus, with the choice
� < 0 the typical implied volatility curves for indices can be generated. Note
that for � > 0 a strong positively skewed implied volatility curve can be
obtained.

Figure 12.4.3 displays implied volatilities for European call options with
the speed of adjustment parameter k ranging from 1 to 20, the strike K
ranging from 80 to 125 and where the time to maturity is six months. It
can be observed that as the speed of adjustment parameter k increases, the
magnitude of the implied volatility smile decreases.
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Fig. 12.4.3. Effect of changing speed of adjustment on implied volatilities

Fig. 12.4.4. Effect of changing volatility of the squared volatility on implied volatil-
ities

Figure 12.4.4 depicts implied volatilities for European call options with
the volatility γ of squared volatility ranging from 0.1 to 2, or volatility of
volatility ranging from approximately 0.5 to 1, the strike K ranging from 80 to
125 and where the time to maturity is six months. Note that, as the volatility
of squared volatility increases, the magnitude of the implied volatility smile
increases. For γ = 0 we have a version of the BS model with no deformation
or curvature in the implied volatility surface.

It is apparent that the ARCH diffusion model in (12.4.23) captures some
of the typical properties of implied volatilities observed in index option mar-
kets, see Fig. 12.1.5. However, to generate such a negatively skewed implied
volatility surface one needs to consider a rather strong negative correlation pa-
rameter � < 0. As is evident from Fig.12.4.2, the ARCH diffusion model with
strong negative correlation can generate the negative skew pattern. Therefore,
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it can model some leverage effect. However, it requires a separate stochastic
volatility process to achieve this. Other stochastic volatility models produce
similar results to what has been demonstrated above for the ARCH diffusion
model, see, for instance, Cont & Tankov (2004) and results on the MMM in
the next chapter. This makes it difficult to decide which is potentially a better
model.

An important drawback of the above stochastic volatility models is that
they are genuine two-factor models, driven by two separate stochastic pro-
cesses. This makes it a complex numerical task to value even standard in-
dex derivatives. A parsimonious, economically based one-factor model, which
can generate similar skews and smiles in implied volatility surfaces, would be
preferable. In particular, if it could explain the nature of the dynamics of the
underlying index.

12.5 Exercises for Chapter 12

12.1. Prove that the ARCH diffusion model for squared volatility

d|θt|2 = κ (θ̄2 − |θt|2) dt + γ |θt|2 dWt

has an inverse gamma density as stationary density.

12.2. Show that the squared volatility of the model

d|θt|2 = κ |θt|2 (θ̄2 − |θt|2) dt + γ |θt|3 dWt

has an inverse gamma density.

12.3. Compute the stationary density for the squared volatility for the Heston
model

d|θt|2 = κ (θ̄2 − |θt|2) dt + γ ||θt|| dWt.

12.4. Calculate the stationary density for the squared volatility |θt|2 of the
Scott model, where

d|θt| = κ (θ̄ − |θt|) dt + γ dWt.

Characterize the type of the stationary density ?

12.5. Calculate the stationary density for the squared volatility |θt|2, which
satisfies the SDE

d ln(|θt|2) = κ (ξ̄ − |θt|2) dt + γ dWt.

Which type of density is this ?

12.6. (*) Show under the modified CEV model that the benchmarked savings
account and, thus, the benchmarked savings bond are strict local martingales.
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