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Portfolio Optimization

This chapter derives and extends a range of classical results from portfolio
optimization and derivative pricing in incomplete markets in the context of
a CFM. First, we consider the question of how wealth should be optimally
transferred into the future given the preferences of an investor. This is a
central question in economics and finance and leads into the area of portfolio
optimization. We shall advocate the GOP as the best long term investment.
This is consistent with views formulated in Latané (1959), Breiman (1961),
Hakansson (1971) and Thorp (1972).

For the case when the investment horizon is short it was pointed out
in Samuelson (1963, 1969, 1979) that one should not use the GOP as the
only investment. We shall show that the optimal portfolio of an investor,
who maximizes an expected utility from discounted terminal wealth, can be
separated into two funds, the savings account and the GOP. This generalizes
earlier results in Tobin (1958b) and Sharpe (1964) to the continuous market
case. Such an optimal portfolio, which invests only into the GOP and the
savings account, turns out to be an efficient portfolio in a mean-variance
sense, see Markowitz (1959). It has always the maximum Sharpe ratio in the
sense of Sharpe (1964, 1966).

Furthermore, we generalize the intertemporal capital asset pricing model
(ICAPM) derived in Merton (1973a) under very weak assumptions. Under the
assumption that the fundamental relationships in the market are invariant
under changes of currency denomination, it is demonstrated that the GOP
matches the market portfolio.

Real world pricing emerges as the natural pricing concept when deriving for
a nonreplicable payoff its utility indifference price. The resulting benchmarked
prices are martingales, independent of the underlying utility of the investor.
This provides a fundamental relationship between portfolio optimization and
derivative pricing. The GOP is selected as numeraire and the real world prob-
ability measure is the pricing measure. The existence of an equivalent risk
neutral probability measure is not required.

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,
Springer Finance,
© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010
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11.1 Locally Optimal Portfolios

Within this section we aim to derive and generalize under weak assumptions
classical results on portfolio selection, these include Sharpe ratio maximiza-
tion, two fund separation, the Markowitz efficient frontier and the ICAPM.

Discounted Portfolios

Suppose investors select portfolios for the investment of their total tradable
wealth, which perform better than other portfolios in a sense specified below.
We aim to clarify when the MP approximates the GOP if all investors perform
some form of portfolio optimization.

We assume that an investor adjusts for the time value of money by consid-
ering discounted portfolios, where the savings account is used for discounting.
She or he can always invest in the locally riskless asset, which is the savings
account, without facing short term fluctuations. When accepting short term
fluctuations an investor expects a “better” portfolio performance than is pro-
vided by the savings account. Below we specify what we mean by “better”
performance. Given a strictly positive portfolio Sδ ∈ V+, its discounted value

S̄δ
t =

Sδ
t

S0
t

(11.1.1)

satisfies by (10.1.1), (10.1.14) and an application of the Itô formula the SDE

dS̄δ
t =

d∑

k=1

ψk
δ,t

(
θk

t dt + dW k
t

)
(11.1.2)

with kth diffusion coefficient

ψk
δ,t =

d∑

j=1

δj
t S̄j

t bj,k
t (11.1.3)

for k ∈ {1, 2, . . . , d} and t ∈ [0,∞). Note that ψk
δ,t makes sense also in the

case when S̄δ
t equals zero.

Obviously, by (11.1.2) and (11.1.3) the discounted portfolio process S̄δ has
discounted drift

αδ
t =

d∑

k=1

ψk
δ,t θk

t (11.1.4)

at time t ∈ [0,∞), which measures its trend at time t. One can say that the
discounted drift models the increase per unit of time of the underlying value
of S̄δ at time t. This can be interpreted as the fundamental economic value of
the portfolio, which would be visible if one were able to remove the speculative
fluctuations
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M̄t =
d∑

k=1

∫ t

0

ψk
δ,s dW k

s

from the discounted portfolio value

S̄δ
t = S̄δ

0 +
∫ t

0

αδ
s ds + M̄t.

From an economic point of view αδ = {αδ
t , t ∈ [0,∞)} is a highly relevant

parameter process, since it describes the average discounted wealth that un-
derpins the market. It provides a natural link to the macro economy. We shall
use the underlying value in Chap. 13 to derive a parsimonious market model.

The magnitude of the trading uncertainty of a discounted portfolio S̄δ at
time t ∈ [0,∞) can be measured by its aggregate diffusion coefficient

γδ
t =

√√√√
d∑

k=1

(
ψk

δ,t

)2

(11.1.5)

or equivalently by its aggregate volatility

bδ
t =

γδ
t

S̄δ
t

(11.1.6)

for S̄δ
t > 0. The square (γδ

t )2 of the aggregate diffusion coefficient measures
the variance per unit of time of the fluctuating increments of S̄δ.

Locally Optimal Portfolios

Let us identify the typical SDE of a family of portfolios that capture the
objective of investors who locally in time on average prefer a larger discounted
wealth increase for the same risk level. This means that these investors prefer
a higher mean for the same variance. To characterize such a portfolio, which
performs “better” than others in the above sense, we introduce the following
definition, similar to those in Platen (2002, 2004a) and Christensen & Platen
(2007).

Definition 11.1.1. In a CFM SC
(d) we call a strictly positive portfolio S δ̃ ∈

V+ locally optimal, if for all t ∈ [0,∞) and all strictly positive portfolios
Sδ ∈ V+ with given aggregate diffusion coefficient value

γδ
t = γ δ̃

t (11.1.7)

it has the largest discounted drift, that is,

αδ
t ≤ αδ̃

t (11.1.8)

almost surely.
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This type of local optimality can be interpreted as a continuous time gener-
alization of mean-variance optimality in the sense of Markowitz (1952, 1959).
Indeed, we shall see later that a locally optimal portfolio can be shown to
be an efficient portfolio in a generalized Markowitz mean-variance sense. A
discounted, locally optimal portfolio exhibits at all times the largest trend in
comparison with all other discounted strictly positive portfolios with the same
aggregate diffusion coefficient and, thus, with the same risk level.

Sharpe Ratio

An important investment characteristic is the Sharpe ratio sδ
t , see Sharpe

(1964, 1966). It is defined for any strictly positive portfolio Sδ ∈ V+ with
positive aggregate volatility bδ

t > 0 at time t as the ratio of the risk premium

pSδ(t) =
αδ

t

S̄δ
t

(11.1.9)

over its aggregate volatility bδ
t , see (11.1.6), that is,

sδ
t =

pSδ (t)
bδ
t

=
αδ

t

γδ
t

(11.1.10)

for t ∈ [0,∞), see (11.1.4)–(11.1.6). We observe that the Sharpe ratio equals
the ratio of the discounted drift over the aggregate diffusion coefficient. Under
the mean-variance approach of Markowitz, investors aim to maximize the
Sharpe ratio, which in a CFM corresponds by Definition 11.1.1 to the selection
of a locally optimal portfolio. Below we shall analyze Sharpe ratios of locally
optimal portfolios. We show that these are greater or equal to the Sharpe
ratios of other portfolios.

Portfolio Selection Theorem

In preparation for the Portfolio Selection Theorem, which we present below,
let us introduce the total market price of risk

|θt| =

√√√√
d∑

k=1

(
θk

t

)2 (11.1.11)

at time t ∈ [0,∞), which is by (10.2.8) and (11.1.6) the aggregate volatility
of the GOP. If the total market price of risk is zero, then all discounted
drifts are zero and all strictly positive portfolios are, by Definition 11.1.1,
locally optimal. To avoid such unrealistic dynamics we introduce the following
assumption.
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Assumption 11.1.2. Assume in a CFM SC
(d) for all t ∈ [0,∞) that the

total market price of risk is strictly greater than zero and finite almost surely,
with

0 < |θt| < ∞, (11.1.12)

and the fraction of the GOP wealth that is invested in the savings account
does not equal one, that is,

π0
δ∗,t �= 1 (11.1.13)

almost surely.

We now formulate a Portfolio Selection Theorem, see Platen (2002), which
generalizes some classical results, for instance, given in Markowitz (1959),
Sharpe (1964), Merton (1973a) and Khanna & Kulldorff (1999), to the case
of a CFM.

Theorem 11.1.3. (Portfolio Selection Theorem) Consider a CFM SC
(d)

satisfying Assumption 11.1.2. For any strictly positive portfolio Sδ ∈ V+ with
nonzero aggregate diffusion coefficient and aggregate volatility bδ

t , see (11.1.6),
its Sharpe ratio sδ

t satisfies the inequality

sδ
t ≤ |θt| (11.1.14)

for all t ∈ [0,∞), where equality arises when Sδ is locally optimal. Further-
more, the value S̄δ

t at time t of a discounted, locally optimal portfolio satisfies
the SDE

dS̄δ
t = S̄δ

t

bδ
t

|θt|

d∑

k=1

θk
t

(
θk

t dt + dW k
t

)
, (11.1.15)

with fractions

πj
δ,t =

bδ
t

|θt|
πj

δ∗,t (11.1.16)

for all j ∈ {1, 2, . . . , d} and t ∈ [0,∞). Each discounted portfolio that satisfies
an SDE of the type (11.1.15) is a locally optimal portfolio.

The proof of this theorem is given at the end of this section and can be
found in Platen (2002). It exploits the fact that at any time t the fractions of
the family of discounted, locally optimal portfolios S̄δ can be parameterized
by the aggregate volatility bδ

t . Obviously, for bδ
t = 0 one obtains the savings

account as locally optimal portfolio, whereas in the case bδ
t = |θt| it is the

GOP that arises.
Note that we would have obtained equivalent results if we searched for the

family of portfolios that minimizes the aggregate diffusion coefficient for given
discounted drift. Similarly, we could have minimized the aggregate volatility
for given risk premium. Furthermore, we shall show in Sect. 11.3 that also ex-
pected utility maximization leads to locally optimal portfolios. This robustness
of portfolio optimization in a CFM is very satisfying, because it demonstrates
the equivalence of several seemingly different objectives.
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Two Fund Separation and Fractional Kelly Strategies

By analyzing the structure of the fractions of a locally optimal portfolio, as
given in (11.1.16), and applying (10.1.13) we obtain for the fraction of wealth
held in the GOP the expression

bδ
t

|θt|
=

1 − π0
δ,t

1 − π0
δ∗,t

(11.1.17)

for t ∈ [0,∞). This leads directly to the following result.

Corollary 11.1.4. Under the assumptions of Theorem 11.1.3, any locally
optimal portfolio Sδ ∈ V+ can be decomposed at time t into a fraction of
wealth bδ

t

|θt|
that is invested in the GOP and a remaining fraction that is held

in the savings account. In particular, one has

π0
δ,t = 1 − bδ

t

|θt|
(
1 − π0

δ∗,t

)
(11.1.18)

for all t ∈ [0,∞).

Theorem 11.1.3 can be interpreted as a Two Fund Separation Theorem,
since only the two funds; the GOP and the savings account, are involved when
forming locally optimal portfolios. Such an investment strategy is also known
as a fractional Kelly strategy, see Kelly (1956), Latané (1959), Thorp (1972)
and Hakansson & Ziemba (1995). When all wealth is invested in the GOP,
then this corresponds to the Kelly strategy. Results on two fund separation
go back to Tobin (1958b), Breiman (1960), Sharpe (1964), Merton (1973a),
Khanna & Kulldorff (1999) and Nielsen & Vassalou (2004). An investor, who
forms with her or his total tradable wealth a locally optimal portfolio, has
according to Corollary 11.1.4 to choose the volatility bδ

t of the portfolio and
then invests the fraction of wealth bδ

t

|θt|
at time t in the GOP. The remainder

of her or his wealth is held in the savings account. We emphasize that only
these two funds are needed to form locally optimal portfolios. We shall see in
the next section that two fund separation also arises if an investor aims to
maximize expected utility from discounted terminal wealth.

Risk Aversion Coefficient

We can interpret

Jδ
t =

1 − π0
δ∗,t

1 − π0
δ,t

=
|θt|
bδ
t

(11.1.19)

as a risk aversion coefficient similar as in the sense of Pratt (1964) and Arrow
(1965). The risk aversion coefficient for obtaining the GOP equals one, and
when investing only in the savings account it equals infinity. The latter cor-
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responds to being infinitely risk averse. According to (11.1.15), (11.1.19) and
(11.1.17) a discounted locally optimal portfolio S̄δ

t satisfies then the SDE

dS̄δ
t = S̄δ

t

1
Jδ

t

|θt| (|θt| dt + dWt), (11.1.20)

where

dWt =
d∑

k=1

θk
t

|θt|
dW k

t (11.1.21)

for t ∈ [0,∞). From the SDEs (11.1.20) and (10.2.8) it follows that the fraction
of wealth invested in the GOP is 1

Jδ
t
. This fraction is, therefore, the fraction

that characterizes at time t a fractional Kelly strategy.

Capital Market Line

Note that the expected rate of return or appreciation rate aδ
t of a portfolio Sδ

is at time t the sum of short rate and risk premium and, thus, given by the
expression

aδ
t = rt + pSδ (t) (11.1.22)

for t ∈ [0,∞).
One can visualize the relationship (11.1.22) by using (11.1.14) and (11.1.10)

for the family of locally optimal portfolios by the capital market line, see
Sharpe (1964). This line shows the expected return aδ

t , given in (11.1.22), of
a locally optimal portfolio Sδ in dependence on its aggregate volatility, see
(11.1.6). That is, by (11.1.10) and (11.1.14) we obtain the fundamental linear
relationship

aδ
t = rt + |θt| bδ

t (11.1.23)

for t ∈ [0,∞). Consequently, the slope of the capital market line equals the
total market price of risk, which is, in general, a fluctuating stochastic process.
The expected return for zero aggregate volatility is according to (11.1.23) the
short rate. It follows from (11.1.19) that a portfolio process Sδ at the capital
market line with volatility bδ

t has at time t the fraction 1
Jδ

t
= bδ

t

|θt|
invested in

the GOP, which characterizes its fractional Kelly strategy.

Markowitz Efficient Frontier

For a locally optimal portfolio process Sδ it follows from the SDE (11.1.15)
and (11.1.17) that at a given time t its aggregate volatility, see (11.1.6), equals

bδ
t =

1 − π0
δ,t

1 − π0
δ∗,t

|θt| (11.1.24)

and its risk premium pSδ (t) is
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pSδ (t) = bδ
t |θt| (11.1.25)

for t ∈ [0,∞).
Note that the risk premium, see (11.1.9), of a portfolio Sδ is the appreci-

ation rate of the corresponding discounted portfolio S̄δ. By analogy with the
one period mean-variance approach in Markowitz (1959), one can introduce in
a CFM a family of efficient portfolios, which is parameterized by the squared
aggregate volatility. When using formula (11.1.22) for the expected rate of
return this leads to the following definition:

Definition 11.1.5. In a CFM satisfying Assumption 11.1.2, an efficient
portfolio Sδ ∈ V+ is one whose expected rate of return aδ

t , as a function of its
squared volatility (bδ

t )2, lies on the efficient frontier aδ
t , defined as

aδ
t = rt +

√
(bδ

t )2 |θt| (11.1.26)

for all times t ∈ [0,∞).

By exploiting relations (11.1.25) and (11.1.26), the following result can be
directly obtained.

Corollary 11.1.6. Under the assumptions of Theorem 11.1.3 any locally
optimal portfolio Sδ ∈ V+ is also an efficient portfolio.

The relationship (11.1.26) can be interpreted as a generalization of the
Markowitz efficient frontier to the continuous time setting. It holds for lo-
cally optimal portfolios under rather weak assumptions. Due to the inequality
(11.1.14) in the Portfolio Selection Theorem and relation (11.1.10) it is not
possible to form a strictly positive portfolio that generates an expected rate
of return above the efficient frontier.

Each optimal portfolio Sδ has an expected rate of return aδ
t that is lo-

cated at the efficient frontier given in (11.1.26). Note that the efficient fron-
tier moves randomly up and down over time in dependence on the fluctuations
of the short rate rt. Its slope also changes over time according to the total
market price of risk |θt|, which is, generally, stochastic. For a fixed time in-
stant t ∈ [0,∞) the Fig. 11.1.1 shows the efficient frontier’s dependence on
the squared volatility |bδ

t |2 of a locally optimal portfolio, where the param-
eter values rt = 0.05 and |θt|2 = 0.04 are chosen. This graph also includes
the tangent of the efficient frontier with slope 1

2 at the point |bδ
t |2 = |θt|2

that corresponds to the squared volatility of the GOP. The reason why the
mean-variance approach holds generally in a CFM is that, due to the assumed
continuity of asset prices the asset dynamics resembles, locally in time, that
of a one period model with Gaussian log-returns.

Efficient Growth Rates

As we have seen in Theorem 10.5.1, the focus of the long term investor should
be the growth rate of her or his portfolio of tradable wealth. For illustration,
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Fig. 11.1.1. Efficient frontier

Fig. 11.1.2. Efficient growth rates

Fig. 11.1.2 shows for given t ∈ [0,∞) how the growth rate of a locally opti-
mal portfolio Sδ depends on its squared volatility |bδ

t |2, when using the same
default parameters as in Fig. 11.1.1. One could call these growth rates the ef-
ficient growth rates. The corresponding frontier in dependence on the squared
portfolio volatilities one can call the efficient growth rate frontier. The efficient
growth rates satisfy the expression

gδ
t = rt +

√
|bδ

t |2 |θt| −
1
2
|bδ

t |2 = rt +
|θt|2
Jδ

t

(
1 − 1

2 Jδ
t

)
, (11.1.27)

see (10.2.2), (11.1.16), (10.2.6) and (11.1.11). Note that for the value of the
squared volatility |bδ

t |2 = |θt|2, that is Jδ
t = 1, the efficient growth rates

achieve their maximum, yielding the growth rate of the GOP

gδ∗
t = rt +

1
2
|θt|2. (11.1.28)
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For the volatility value |bδ
t | = 2 |θt| the efficient growth rate equals the short

rate. As we have seen in Sect. 10.5, the GOP is the best performing portfolio
under various criteria, in particular, for long term growth. By choosing a
volatility value |bδ

t | > |θt| one is, in principle, overbetting. This means that
one faces larger fluctuations, which are more risky than those of the GOP due
to a short position in the savings account. Such a fractional Kelly strategy
does not perform as well as the Kelly strategy in the long term. Overbetting
diminishes the long term growth rate. However, some investors may achieve by
luck spectacular growth over some short period when overbetting but others
may fail dramatically.

We have seen that the GOP is a central object in a CFM which fa-
cilitates the intertemporal generalization of the classical Markowitz-Tobin-
Sharpe static mean-variance portfolio analysis, see Markowitz (1959), Tobin
(1958a) and Sharpe (1964). Due to two fund separation the GOP is also a
highly important benchmark for fund management. Two fund separation is
equivalent to some kind of a fractional Kelly strategy. In Theorem 10.5.1 it
was shown that the GOP almost surely outperforms pathwise any other port-
folio after a sufficiently long time. Furthermore, Corollary 10.5.3 showed that
even over any short time period it cannot be systematically outperformed by
any other portfolio.

Lagrange Multipliers and Optimization (*)

As we shall see, the proof of the Portfolio Selection Theorem uses only stan-
dard multivariate calculus and a basic understanding of stochastic calculus.
Before we give the proof of Theorem 11.1.3 let us mention a standard result
on Lagrange multipliers and optimization.

Let U : �n → � and g : �k → �k be differentiable functions. Further-
more, assume that U is strictly concave and that g is convex. Under these
assumptions we consider the problem of solving the optimization problem to
find the maximum

U(x∗) = max
x∈�n

U(x) (11.1.29)

such that
gi(x∗) = 0 (11.1.30)

for all i ∈ {1, 2, . . . , k} and x∗ ∈ �n. This problem is equivalent to finding a
zero of the gradient of the corresponding Lagrangian

L(x,λ) = U(x) − λ� g(x) (11.1.31)

for x = (x1, x2, . . . , xn)� ∈ �n and λ = (λ1, λ2, . . . , λk)� ∈ �k, see
Luenberger (1969). More precisely, if the pair (x∗,λ∗) ∈ �n × �n solves the
system of first order conditions

0 =
∂L(x,λ)

∂xi
=

∂U(x)
∂xi

−
k∑

�=1

λ� ∂g�(x)
∂xi

(11.1.32)
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for i ∈ {1, 2, . . . , n} and

0 =
∂L(x,λ)

∂λi
= gi(x) (11.1.33)

for i ∈ {1, 2, . . . , k}, then x∗ is the unique maximizer of the optimization
problem.

In the case when the vector λ∗ of the Lagrangian multipliers consists
only of nonnegative components, then x∗ is also the unique maximizer of the
optimization problem

U(x∗) = max
x∈�n

U(x) (11.1.34)

such that
gi(x∗) ≤ 0 (11.1.35)

for all i ∈ {1, 2, . . . , k}.

Proof of Theorem 11.1.3 (*)

To prove the Portfolio Selection Theorem we follow essentially the proof given
in Platen (2002). To identify a discounted, locally optimal portfolio, as de-
scribed in Definition 11.1.1, we maximize locally in time the drift (11.1.4),
subject to the constraint (11.1.7). For this purpose we use the Lagrange mul-
tiplier λ, as described in the above subsection, and consider the function

L(ψ1
δ , . . . , ψd

δ , λ) =
d∑

k=1

ψk
δ θk + λ

((
γ δ̃

)2

−
d∑

k=1

(
ψk

δ

)2

)
(11.1.36)

by suppressing time dependence. For ψ1
δ , ψ2

δ , . . . , ψd
δ to provide a maximum

for L(ψ1
δ , . . . , ψd

δ , λ) it is necessary that the first-order conditions

∂L(ψ1
δ , . . . , ψd

δ , λ)
∂ψk

δ

= θk − 2 λψk
δ = 0 (11.1.37)

are satisfied for all k ∈ {1, 2, . . . , d} as well as

∂L(ψ1
δ , . . . , ψd

δ , λ)
∂λ

=
(
γ δ̃

)2

−
d∑

k=1

(
ψk

δ

)2
= 0. (11.1.38)

Consequently, a locally optimal portfolio S(δ̃), which maximizes the discounted
drift, must satisfy the relation

ψk
δ̃

=
θk

2 λ
(11.1.39)

for all k ∈ {1, 2, . . . , d}. Furthermore, by (11.1.38) we must have
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d∑

k=1

(
ψk

δ̃

)2
=

(
γ δ̃

)2

. (11.1.40)

We can now use the constraint (11.1.7), together with (11.1.40), (11.1.5) and
(11.1.11), to obtain from (11.1.39) the relation

(
γ δ̃

)2

=
d∑

k=1

(
ψk

δ̃

)2
=

∑d
k=1(θ

k)2

4 λ2
. (11.1.41)

By (11.1.12) we have |θ| =
√∑d

k=1(θk)2 > 0 and obtain by (11.1.39) and
(11.1.41) the equation

ψk
δ̃

=
γ δ̃

|θ| θk (11.1.42)

for all k ∈ {1, 2, . . . , d}. This yields at time t by (11.1.4) for a locally optimal
portfolio S δ̃ the discounted drift

αδ̃
t = γ δ̃

t

|θt|2
|θt|

= γ δ̃
t |θt|. (11.1.43)

This leads, by (11.1.10), to the equality in (11.1.14). Due to the above opti-
mization the inequality in (11.1.14) follows for any strictly positive portfolio
with nonzero aggregate diffusion coefficient.

Equation (11.1.42), when substituted into (11.1.2), provides by (11.1.5)
the SDE

dS̄ δ̃
t = γ δ̃

t

d∑

k=1

θk
t

|θt|
(θk

t dt + dW k
t ). (11.1.44)

Using (11.1.6) this yields the SDE (11.1.15). Furthermore, it follows for k ∈
{1, 2, . . . , d} from (11.1.3), (10.1.12), (11.1.42) and (11.1.6) that

ψk
δ̃,t

=
d∑

j=1

δ̃j
t S̄j

t bj,k
t = S̄

(δ̃)
t

d∑

j=1

πj

δ̃,t
bj,k
t =

γ δ̃
t

|θt|
θk

t = S̄
(δ̃)
t bδ̃

t

θk
t

|θt|
. (11.1.45)

Using the invertibility of the volatility matrix one obtains, see Assump-
tion 10.1.1, the fraction

πj

δ̃,t
=

bδ̃
t

|θt|

d∑

k=1

θk
t b−1 j,k

t (11.1.46)

and, thus, by (10.2.6) the equation (11.1.16) for all j ∈ {1, 2, . . . , d} and
t ∈ [0,∞). Using the SDE of the discounted GOP one notes that an SDE of
the form (11.1.15) belongs to a discounted portfolio, which has for its given
aggregate diffusion coefficient the maximum discounted drift. Thus, by Defi-
nition 11.1.1 the corresponding portfolio is a locally optimal portfolio. �	
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11.2 Market Portfolio and GOP

In Sect. 9.3 we already considered a version of the intertemporal capital asset
pricing model (ICAPM). The capital asset pricing model (CAPM) was devel-
oped in one and multiperiod discrete time settings by Sharpe (1964), Lintner
(1965) and Mossin (1966). Its continuous time analog, the ICAPM, was es-
tablished for continuous markets in Merton (1973a) as an equilibrium model
of exchange using utility maximization and equilibrium arguments. Most of
the following results are established in Platen (2005c, 2006a, 2006b).

Intertemporal Capital Asset Pricing Model

By using a locally optimal portfolio as a reference portfolio, we shall now
derive the ICAPM for a CFM. For this purpose let us consider a strictly
positive, risky, locally optimal portfolio Sδ ∈ V+. Then by (11.1.9), (10.1.14),
(10.2.1) and (11.1.15) the risk premium pSδ (t) of a strictly positive portfolio
Sδ ∈ V+ can be expressed as

pSδ(t) =
d∑

k=1

d∑

j=1

πj
δ,t bj,k

t θk
t =

d[ln(Sδ), ln(Sδ)]t
dt

|θt|
b
δ
t

(11.2.1)

at time t. Here [ln(Sδ), ln(Sδ)]t denotes the covariation at time t of the stochas-
tic processes ln(Sδ) and ln(Sδ), see Sect. 5.2. The time derivative of the co-
variation is the local, in time, analogue of the covariance of log-returns for
continuous time processes.

For a strictly positive portfolio Sδ ∈ V+ the systematic risk parameter
βSδ (t), also called the beta, is defined as the ratio of the covariations

βSδ(t) =
d[ln(Sδ),ln(Sδ)]t

dt
d[ln(Sδ)]t

dt

, (11.2.2)

for t ∈ [0,∞), where Sδ denotes again a strictly positive, risky, locally op-
timal portfolio. This allows us to deduce by (11.2.1) and (11.2.2) the core
relationship of the ICAPM.

Theorem 11.2.1. Under the assumptions of Theorem 11.1.3, for any strict-
ly positive portfolio Sδ ∈ V+ the portfolio beta with respect to a strictly posi-
tive, risky, locally optimal portfolio Sδ ∈ V+, with nonzero aggregate volatility,
has the form

βSδ(t) =
pSδ (t)
pSδ (t)

(11.2.3)

for t ∈ [0,∞).

The above expression for the portfolio beta is exactly what the ICAPM
suggests if the market portfolio (MP) is a locally optimal portfolio. In this
case, Theorem 11.2.1 already proves the ICAPM in a general CFM setting.
This raises the question: When is the MP a locally optimal portfolio?
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Market Portfolio

Let us assume the existence of n ∈ N investors who hold all tradable wealth in
the market, which is the total sum of all units of primary security accounts.
The portfolio of tradable wealth of the �th investor is denoted by Sδ� , � ∈
{1, 2, . . . , n}. Due to the limited liability of investors Sδ� ∈ V is nonnegative.
The total portfolio SδMP

t of the tradable wealth of all investors is then the
MP, which is given by the sum

SδMP
t =

n∑

�=1

Sδ�
t (11.2.4)

at time t ∈ [0,∞). We have seen in the previous section that Sharpe ratio
maximizing investors form locally optimal portfolios. We shall see in Sect.11.3
that also expected utility maximizing investors form locally optimal portfolios.
Therefore, it is natural to make the following assumption.

Assumption 11.2.2. Each investor forms a nonnegative, locally optimal
portfolio with her or his total tradable wealth.

Since the sum of locally optimal portfolios is again a locally optimal port-
folio we can prove the following result.

Theorem 11.2.3. For a CFM, where each investor holds a locally optimal
portfolio with respect to the domestic currency denomination, the MP is a
locally optimal portfolio.

Proof: The discounted MP S̄δMP
t = S

δMP
t

S0
t

at time t is under the assumptions
of the theorem by (11.1.15), (11.1.17) and (11.2.4) determined by the SDE

dS̄δMP
t =

n∑

�=1

dS̄δ�
t =

n∑

�=1

(
S̄δ�

t − δ0
�

)

(
1 − π0

δ∗,t

)
d∑

k=1

θk
t (θk

t dt + dW k
t )

= S̄δMP
t

(
1 − π0

δMP,t

)

(
1 − π0

δ∗,t

)
d∑

k=1

θk
t (θk

t dt + dW k
t ) (11.2.5)

for t ∈ [0,∞). This shows, by (11.1.15), that the MP SδMP
t has the SDE of

a locally optimal portfolio. This proves by Theorem 11.1.3 that the MP is a
locally optimal portfolio. �	

It is straightforward to draw the following conclusion from Theorem 11.2.1
and Theorem 11.2.3.

Corollary 11.2.4. Under the assumptions of Theorem 11.2.3 the ICAPM
relationship (11.2.3) holds when using the market portfolio as reference port-
folio.
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This proves the ICAPM under the assumptions of Theorem 11.2.3. It is
important to emphasize the fact that the derivation of this result does not
require any assumptions about expected utility maximization, equilibrium or
Markovianity, as typically imposed in the literature. Note also that no matter
what locally optimal portfolio the investor holds, the ICAPM follows with the
MP as reference portfolio.

Market Portfolio and GOP

It is reasonable to discuss the following invariance of a financial market model.
By invariance we mean here the property of the market that relationships that
hold for one currency denomination apply also for another currency denomi-
nation. This can be expressed by the following assumption.

Assumption 11.2.5. The fundamental relationships in the market are in-
variant under a change of currency denomination.

As the following theorem shows, this assumption has interesting conse-
quences.

Theorem 11.2.6. In a CFM where a strictly positive portfolio is locally
optimal in at least two currency denominations this portfolio must be a GOP.

This theorem will be derived at the end of this section. It allows us to
draw interesting conclusions. If one assumes that the investors optimize their
tradable wealth in two currency denominations by forming an MP that is a
locally optimal portfolio in each of the two currencies, then by Theorem 11.2.6
the MP is the GOP. Of course, the investors will never exactly form an MP
that is a perfect locally optimal portfolio in two currency denominations.
However, the reality may come close to this situation. This then allows the
conclusion that the MP may be not too far from the GOP.

In Sect. 10.6 we concluded under some regularity condition on the market
that a portfolio approximates the GOP purely on the basis of the assumption
that it is a diversified portfolio. The above optimal portfolio selection leads to
a complementing result, as long as the sequence of CFMs (SC

(d))d∈N is regular
and the corresponding sequence of MPs is that of diversified portfolios.

For the given world market the MP is, in principle, observable. For in-
stance, a potential proxy is given by the daily MSCI, which essentially reflects
the stock portfolio of the developed markets. For illustration, in Fig.11.2.1 we
show the MSCI in units of the US dollar savings account for the period from
1970 until 2003. We have alternatively studied the WSI and EWI in Sect.10.6
as potential proxies of the GOP. We have already seen that the differences
between all these proxies of the GOP are minor from a practical point of view.
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Fig. 11.2.1. Discounted MSCI

Proof of Theorem 11.2.6 (*)

Let us denote, the GOP at time t in the ith currency by Sδ∗
i (t) for i ∈ {0, 1}.

This satisfies by (10.2.8) the SDE

dSδ∗
i (t) = Sδ∗

i (t)

(
ri
t dt +

d∑

k=1

θk
i (t)

(
θk

i (t) dt + dW k
t

)
)

(11.2.6)

for t ∈ [0,∞). Here ri
t is the ith short rate for the ith currency denomination

and θk
i (t) the market price of risk for the ith currency denomination with

respect to the kth Wiener process. Furthermore, we denote by Sj
i (t) the jth

savings account at time t, denominated in the ith currency, i, j ∈ {0, 1}.
A locally optimal portfolio S δ̃

0(t) at time t, when denominated in units of
the 0th currency, satisfies by Theorem 11.1.3, see (11.1.15), the SDE

dS δ̃
0(t) = S δ̃

0(t)

⎛

⎝r0
t dt +

(
1 − π0

δ̃,t

)

(
1 − π0

δ∗,t

)
d∑

k=1

θk
0 (t)

(
θk
0 (t) dt + dW k

t

)
⎞

⎠ (11.2.7)

for t ∈ [0,∞).
The exchange rate X1,0

t from the 0th into the first currency at time t can
be written as

X1,0
t =

Sδ∗
1 (t)

Sδ∗
0 (t)

. (11.2.8)

It satisfies by (11.2.6) and an application of the Itô formula the SDE

dX1,0
t = X1,0

t

(
(r1

t − r0
t ) dt +

d∑

k=1

(
θk
1 (t) − θk

0 (t)
) (

θk
1 (t) dt + dW k

t

)
)

(11.2.9)

for t ∈ [0,∞).
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Denominating now the locally optimal portfolio S δ̃ in units of the first
currency yields by the Itô formula, (11.2.6) and (11.2.9) the SDE

dS δ̃
1(t) = d

(
S δ̃

0(t)X1,0
t

)

= S δ̃
1(t)

⎛

⎝r1
t dt +

d∑

k=1

⎡

⎣

(
1 − π0

δ̃,t

)

(
1 − π0

δ∗,t

)
(
θk
0 (t)

)2
+

(
θk
1 (t) − θk

0 (t)
)
θk
1 (t)

+

(
1 − π0

δ̃,t

)

(
1 − π0

δ∗,t

)θk
0 (t)

(
θk
1 (t) − θk

0 (t)
)
⎤

⎦ dt

+
d∑

k=1

⎡

⎣

(
1 − π0

δ̃,t

)

(
1 − π0

δ∗,t

)θk
0 (t) + θk

1 (t) − θk
0 (t)

⎤

⎦ dW k
t

⎞

⎠

= S δ̃
1(t)

(
r1
t dt +

d∑

k=1

(
θk
1 (t) − θk

0 (t)

(
π0

δ∗,t − π0
δ̃,t

1 − π0
δ∗,t

))
(
θk
1 (t) dt + dW k

t

)
)

.

For S δ̃
1(t) to satisfy the SDE of a locally optimal portfolio in the first currency

denomination requires by (11.1.15) and (11.1.17) for t ∈ [0,∞) the equality

θk
1 (t) − θk

0 (t)

(
π0

δ∗,t − π0
δ̃,t

1 − π0
δ∗,t

)
=

(
1 − π1

δ̃,t

)

(
1 − π1

δ∗,t

) θk
1 (t).

To achieve this equality one needs to satisfy the equation

π0
δ∗,t = π0

δ̃,t
(11.2.10)

for all t ∈ [0,∞). This demonstrates by (11.2.7) and (11.2.6) that S δ̃ is under
the assumptions of Theorem 11.2.6 a GOP. �	

11.3 Expected Utility Maximization

Utility functions, as introduced in von Neumann & Morgenstern (1953), have
been widely used in portfolio optimization and economic modeling, see Merton
(1973a). We study now the type of portfolio that an expected utility maxi-
mizer forms in a CFM. We shall show under appropriate assumptions that this
will again be a locally optimal portfolio. As a consequence of Corollary 11.1.4
a two fund separation theorem holds also for expected utility maximization.
Therefore, when some investors maximize expected utility, others maximize
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Fig. 11.3.1. Examples for power utility (upper graph) and log-utility (lower graph)

Sharpe ratios and the rest maximizes the growth rate for a given portfolio
volatility, then the MP is still a locally optimal portfolio and, thus, a combi-
nation of the GOP and the savings account. As already mentioned, this can
also be interpreted as a fractional Kelly strategy, see Hakansson & Ziemba
(1995). Some of the following results appear in Platen (2006a, 2006c).

Utility Functions

A utility function is a real valued function U(·) which allocates a real number
to any nonnegative level of wealth. Once a utility function is chosen, then
all alternative wealth levels are ranked by evaluating their expected utility
values. It turns out that the following class of utility functions can express
the personal preferences of market participants.

Definition 11.3.1. A utility function U : [0,∞) → [−∞,∞) is a real
valued, twice differentiable, strictly increasing and strictly concave function,
where U ′(0) = ∞ and U ′(∞) = 0.

Examples of utility functions are given by the power utility

U(x) =
1
γ

xγ (11.3.1)

for γ �= 0 and γ < 1 and the log-utility

U(x) = ln(x) (11.3.2)

for x ∈ [0,∞), where ln(0) is set to minus infinity. In Fig. 11.3.1 we show
with the upper graph an example for a power utility function with γ = 1

2 ,
together with the log-utility displayed as the lower curve. The properties of
a utility function given in Definition 11.3.1 have economic interpretations.
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The strict monotonicity reflects the natural preference of an investor for more
rather than less wealth. In this sense investors are nonsatiable. The concavity
of U(x) implies that U ′(x) is decreasing in x. This models the fact that a
typical investor has some risk aversion, which may depend on her or his level
of total tradable wealth. Note that the derivative U ′ of a utility function has
an inverse function U ′−1, which will be of importance in our analysis below.

Expected Utility Maximization

We aim to identify the portfolio which an expected utility maximizer con-
structs. Let us consider a utility function U : [0,∞) → [−∞,∞) and fix a
terminal time horizon T ∈ [0,∞).

An investor can always compare her or his investment strategy δ with
the one where all wealth is invested in the locally riskless security, that is,
the savings account S0. Therefore, we shall take the time value of money
into account by discounting with the savings account S0. This means, we
shall consider an investor who maximizes expected utility from discounted
terminal wealth. Furthermore, we assume that the investor maximizes only
over fair portfolios, since according to Corollary 10.4.2, these are the portfolios
that require the minimal initial investment to reach a desired future payoff.
This payoff is in our case the utility of discounted terminal wealth. It is not
rational to invest in an unfair portfolio, because there exists then a cheaper
fair portfolio that provides exactly the same utility.

Definition 11.3.2. Define the set V̄+
S0

of strictly positive, savings account
discounted, fair portfolios S̄δ with given initial value S̄δ

0 = S0 > 0.

We maximize now the expected utility

vδ̃ = max
S̄δ∈V̄+

S0

vδ (11.3.3)

with
vδ = E

(
U

(
S̄δ

T

) ∣∣A0

)
, (11.3.4)

where the maximum is taken over the set V̄+
S0

and is assumed to exist.
Furthermore, to obtain a tractable solution of the expected utility maxi-

mization problem, we assume in this section, for simplicity, that the discounted
GOP S̄δ∗ itself is a strictly positive Markov process with

dS̄δ∗
t = S̄δ∗

t θ(t, S̄δ∗
t )

(
θ(t, S̄δ∗

t ) dt + dWt

)
(11.3.5)

for t ∈ [0,∞) and given volatility function θ : [0,∞) × (0,∞) → (0,∞). In
Chap. 13 we shall demonstrate by deriving the minimal market model that
this is an acceptable assumption. This assumption can be relaxed in many
ways yielding slightly more complex but similar results.
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The following theorem describes the structure of the optimal portfolio of
the expected utility maximizer. Its derivation follows the, so-called, martingale
approach in portfolio optimization as described, for instance, in Korn (1997),
Karatzas & Shreve (1998) and Zhao & Ziemba (2003). The theorem is derived
at the end of the section, see also Platen (2006c).

Theorem 11.3.3. Consider a CFM that satisfies the Assumption 11.1.2
and has a Markovian, strictly positive discounted GOP S̄δ∗ , satisfying (11.3.5).
Then the discounted, strictly positive, fair portfolio S̄ δ̃ ∈ V̄+

S0
, which maxi-

mizes the given utility function U(·), is a locally optimal portfolio in the sense
of Definition 11.1.1 and satisfies the SDE

dS̄ δ̃
t = S̄ δ̃

t

1

J δ̃
t

θ(t, S̄δ∗
t )

(
θ(t, S̄δ∗

t ) dt + dWt

)
(11.3.6)

with risk aversion coefficient

J δ̃
t =

1

1 − Ŝ0
t

û(t,Ŝ0
t )

∂û(t,Ŝ0
t )

∂Ŝ0

, (11.3.7)

and benchmarked fair portfolio value

Ŝ δ̃
t = û(t, Ŝ0

t ) = E
(
U ′−1

(
λ Ŝ0

T

)
Ŝ0

T

∣∣∣At

)
(11.3.8)

at time t ∈ [0, T ]. The constant λ follows from the match of the initial value

S0 = û(0, Ŝ0
0)Sδ∗

0 . (11.3.9)

Note in (11.3.7) that the risk aversion coefficient is the inverse of the
fraction of S δ̃ that is invested in the GOP. We notice from (11.3.8) that the
problem of maximizing expected utility from discounted terminal wealth has
been transformed into that of hedging a particular payoff of the type

H = U ′−1(λŜ0
T )S0

T .

This demonstrates that there is a deep link between expected utility maxi-
mization and hedging. We shall discuss hedging issues in more detail in the
next section. Due to the Markovianity of S̄δ∗ one can in the given case calcu-
late û(·, ·) and replicate the payoff H by a fair, locally optimal portfolio. More
precisely, one can apply the Feynman-Kac formula, see Sect.9.7, to obtain the
function û(·, ·) as the solution of a PDE. From û(·, ·) one can then determine
the fraction of wealth to be held in the GOP and the remaining fraction that
has to be invested in the savings account. Note that if S̄δ∗ is driven by n ∈ N
tradable factors that form together a Markov process, then one obtains n + 1
fund separation for the resulting optimal portfolios. However, as we will see
in Chap. 13 the MMM suggests in reality two fund separation.
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Examples on Expected Utility Maximization

A disadvantage of the expected utility approach is that only in rare cases one
can provide explicit results. To illustrate the above theorem we discuss two
simple examples.

1. In the first example we consider the log-utility function U(x) = ln(x).
Its derivative is U ′(x) = 1

x , which has the inverse U ′−1(y) = 1
y . Since the

second derivative U ′′(x) = − 1
x2 is negative, the utility function is concave, as

required in Definition 11.3.1. We recall that maximizing expected logarithmic
utility is equivalent to selecting the Kelly criterion for portfolio optimization,
see Kelly (1956) and Hakansson & Ziemba (1995).

According to (11.3.8) we obtain for t ∈ [0,∞) the conditional expectation

û(t, Ŝ0
t ) = E

(
U ′−1

(
λ Ŝ0

T

)
Ŝ0

T

∣∣∣At

)
= E

(
1

λ Ŝ0
T

Ŝ0
T

∣∣∣At

)
=

1
λ

(11.3.10)

for t ∈ [0, T ]. By equation (11.3.9) we obtain the Lagrange multiplier

λ =
S̄δ∗

0

S0
. (11.3.11)

By formula (11.3.7) the risk aversion coefficient equals the constant

J δ̃
t = 1, (11.3.12)

which shows that the corresponding expected log-utility maximizing portfolio
S δ̃ is a GOP, see (11.1.19). This allows us to interpret the GOP as the portfolio
which maximizes expected log-utility. Therefore, we could have defined earlier
the GOP as the strictly positive portfolio which maximizes expected log-
utility from discounted terminal wealth. Indeed, this idea has been followed
in Platen (2004a) in the case of other asset price dynamics, since such a
definition is generally applicable beyond the setting of a CFM. Note that in
the relationships of this example the particular dynamics of the GOP did not
play any role. We obtain the expected log-utility in the form

vδ̃ = E
(
ln

(
S̄δ∗

T

) ∣∣∣A0

)
= ln(λ) + ln(S0) +

1
2

∫ T

0

E
((

θ(s, S̄δ∗
s )

)2
∣∣∣A0

)
ds

if the local martingale part in the SDE for ln(S̄δ∗
t ) forms a martingale, see

Exercise 11.1.

2. Our second example uses the power utility U(x) = 1
γ xγ for γ < 1 and

γ �= 0. Its derivative is U ′(x) = xγ−1 and the corresponding inverse has the
form U ′−1(y) = y

1
γ−1 . The second derivative U ′′(x) = (γ−1)xγ−2 is negative,

which makes U(·) a suitable concave function.
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According to (11.3.8) we have

û(t, Ŝ0
t ) = E

⎛

⎝
(

λ

S̄δ∗
T

) 1
γ−1 1

S̄δ∗
T

∣∣∣∣At

⎞

⎠ = λ
1

γ−1 E

((
S̄δ∗

T

) γ
1−γ

∣∣∣At

)
.

(11.3.13)
If there are analytic formulas for the conditional moments of the discounted
GOP S̄δ∗

T , then one can write down an explicit expression for the value of
û(t, Ŝ0

t ). Since S̄δ∗ is in Theorem 11.3.3 assumed to be Markovian, one can
apply the Feynman-Kac formula, see Sect. 9.7, to obtain the function û(·, ·).

For simplicity, let us consider here the case where S̄δ∗ is a geometric Brow-
nian motion with θ(t, S̄δ∗

t ) = θ > 0. Thus, we obtain from (11.3.13) the ex-
pression

û(t, Ŝ0
t ) = λ

1
γ−1

(
S̄δ∗

t

) γ
1−γ

E

(
exp

{
γ

1 − γ

(
θ2

2
(T − t) + θ (WT − Wt)

)} ∣∣∣∣At

)

= λ
1

γ−1

(
S̄δ∗

t

) γ
1−γ

exp
{

θ2

2
γ

(1 − γ)2
(T − t)

}
(11.3.14)

for t ∈ [0, T ]. By using (11.3.9) we obtain the Lagrange multiplier

λ = Sγ−1
0

(
S̄δ∗

0

)γ

exp
{

θ2

2
γ

1 − γ
T

}
. (11.3.15)

Furthermore, from (11.3.14) by noting that Ŝ0
t = (S̄δ∗

t )−1 we obtain, see
(10.3.1), the partial derivative

∂û(t, Ŝ0
t )

∂Ŝ0
=

û(t, Ŝ0
t )

Ŝ0
t

γ

γ − 1
. (11.3.16)

Therefore, by (11.3.7) for the power utility under the BS model we obtain the
risk aversion coefficient

J δ̃
t = 1 − γ (11.3.17)

and the expected utility

vδ̃ = E

(
1
γ

(
S̄ δ̃

T

)γ
∣∣∣∣A0

)
=

1
γ

exp
{

θ2

2
γ

1 − γ
T

}
(S0)γ ,

see Exercise 11.2.
This recovers well-known results derived in Merton (1973a). One notes that

as γ → 0, the above risk aversion coefficient converges to one, which selects
asymptotically the GOP as the expected utility maximizing portfolio. Note
that for a power utility the particular dynamics of the discounted GOP are
relevant. In this special case we have then also the constant fraction 1

J δ̃
t

= 1
1−γ

of wealth invested in the GOP and the remainder in the savings account. This
is again a fractional Kelly strategy.
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Proof of Theorem 11.3.3 (*)

1. Since we only consider fair portfolios, we have a constrained optimization
problem. Let us apply in the following the, so-called, martingale approach, see
Karatzas & Shreve (1998). We express the constrained optimization problem
(11.3.3) by using a Lagrange multiplier λ ∈ �, see Sect. 11.1, and maximize
the functional

vδ = E
(
U

(
S̄δ

T

) ∣∣∣A0

)
− λ

(
E

(
Sδ

T

Sδ∗
T

∣∣∣A0

)
− S0

Sδ∗
0

)
(11.3.18)

over the set V̄+
S0

of strictly positive, discounted, fair portfolios S̄δ starting with
S̄δ

0 = S0. Then (11.3.18) can be rewritten as

vδ = E

(
U

(
S̄δ

T

)
− λ

(
S̄δ

T

S̄δ∗
T

− S0

S̄δ∗
0

) ∣∣∣A0

)
. (11.3.19)

This means, we seek a discounted portfolio S̄ δ̃ ∈ V̄+
S0

so that

vδ̃ = max
S̄δ∈V̄+

S0

vδ ≤ E

(
max

S̄δ∈V̄+
S0

{
U

(
S̄δ

T

)
− λ

(
S̄δ

T

S̄δ∗
T

− S0

S̄δ∗
0

)}∣∣∣∣∣A0

)

≤ E

(
max
S̄δ

T >0

{
U

(
S̄δ

T

)
− λ

(
S̄δ

T

S̄δ∗
T

− S0

S̄δ∗
0

)}∣∣∣∣∣A0

)
. (11.3.20)

First let us solve a static optimization problem. This is an optimization that
maximizes in (11.3.20), the expression under the conditional expectation on
the right hand side of the last inequality, with respect to S̄δ

T . One can read
off the corresponding first order condition

U ′ (S̄δ
T

)
− λ

S̄δ∗
T

= 0, (11.3.21)

which for λ > 0 characterizes a maximum since U is concave, U ′(0) = ∞ and
U ′(∞) = 0. Note that due to the strict concavity of U its derivative U ′ has an
inverse function U ′−1. By applying the inverse function U ′−1 of U ′ it follows
from (11.3.21) that the value

S̄δ
T = U ′−1

(
λ

S̄δ∗
T

)
(11.3.22)

is the candidate for the optimal value of the discounted portfolio at time T
that an expected utility maximizer should replicate. It is very important to
realize that this candidate value turns out to be a function of the discounted
GOP value. In principle, we face now a hedging problem that replicates via
S̄δ the payoff given in (11.3.22).
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2. Since U ′−1 : [0,∞] → [0,∞], it makes only sense to consider in the
following strictly positive values of λ. Since Sδ is assumed to be a fair portfolio
one needs by (11.3.22) to choose the constant λ ∈ (0,∞) such that

S0

Sδ∗
0

=
Sδ

0

Sδ∗
0

= E

(
Sδ

T

Sδ∗
T

∣∣∣A0

)
= E

(
S̄δ

T

S̄δ∗
T

∣∣∣A0

)
= E

(
U ′−1

(
λ

S̄δ∗
T

)
1

S̄δ∗
T

∣∣∣A0

)
.

(11.3.23)

Due to the properties of U given in Definition 11.3.1, it follows that there
exists a λ ∈ (0,∞) such that (11.3.23) holds. Note that for very small λ > 0
one obtains extremely large payoffs U ′−1( λ

S̄δ∗
T

) 1

S̄δ∗
T

. With (11.3.23) we have

identified a candidate value for an expected utility maximizing portfolio.

3. We now show that there is a strategy δ̃ that replicates with its bench-
marked portfolio value Ŝ δ̃

T the payoff U ′−1( λ

S̄δ∗
T

) 1

S̄δ∗
T

in (11.3.22), such that

S̄ δ̃ ∈ V̄+
S0 . Since the benchmarked savings account Ŝ0

t = (S̄δ∗
t )−1 forms a

Markov process we obtain the (A, P )-martingale û(·, Ŝ0
· ) = {û(t, Ŝ0

t ), t ∈
[0, T ]} with

û(t, Ŝ0
t ) = Ŝ δ̃

t = E

(
U ′−1

(
λ

S̄δ∗
T

)
1

S̄δ∗
T

∣∣∣At

)
= E

(
U ′−1

(
λ Ŝ0

T

)
Ŝ0

T

∣∣∣At

)

(11.3.24)

for t ∈ [0, T ]. Here û(t, Ŝ0
t ) is a function of t and Ŝ0

t only, which can be
identified via the Feynman-Kac formula (9.7.3). By application of the Itô
formula and using the martingale property of û(·, Ŝ0

· ) we obtain

dû(t, Ŝ0
t ) =

∂û(t, Ŝ0
t )

∂Ŝ0
dŜ0

t

for t ∈ [0,∞). Hence, one can form the locally optimal portfolio S δ̃ by in-
vesting at time t in û(t, Ŝ0

t ) − Ŝ0
t

∂û(t,Ŝ0
t )

∂Ŝ0 units of the GOP and investing the

remaining wealth in ∂û(t,Ŝ0
t )

∂Ŝ0 units of the savings account. Note that we have

S̄ δ̃
t =

Ŝ δ̃
t

Ŝ0
t

=
û(t, Ŝ0

t )
Ŝ0

t

.

Consequently, the discounted, locally optimal portfolio S̄ δ̃
t satisfies the SDE
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dS̄ δ̃
t = û(t, Ŝ0

t ) dS̄δ∗
t + S̄δ∗

t dû(t, Ŝ0
t ) + d[S̄δ∗ , û]t

=

(
û(t, Ŝ0

t ) − Ŝ0
t

∂û(t, Ŝ0
t )

∂Ŝ0

)
dS̄δ∗

t

= S̄ δ̃
t

(
û(t, Ŝ0

t ) − Ŝ0
t

∂û(t, Ŝ0
t )

∂Ŝ0

)
S̄δ∗

t

S̄ δ̃
t

θ(t, S̄δ∗
t )

(
θ(t, S̄δ∗

t ) dt + dWt

)

= S̄ δ̃
t

(
J δ̃

t

)−1

θ(t, S̄δ∗
t )

(
θ(t, S̄δ∗

t ) dt + dWt

)
,

where û(t, Ŝ0
t ) = S̄δ̃

t

S̄δ∗
t

, with risk aversion coefficient

J δ̃
t =

û(t, Ŝ0
t )

û(t, Ŝ0
t ) − Ŝ0

t
∂û(t,Ŝ0

t )

∂Ŝ0

=

(
1 − Ŝ0

t

û(t, Ŝ0
t )

∂û(t, Ŝ0
t )

∂Ŝ0

)−1

for t ∈ [0,∞).

4. It follows from (11.3.24) that Ŝ δ̃ is a martingale. Furthermore, we note
by the nonnegativity of U ′−1 that S δ̃ is nonnegative. The solution that has
been obtained must be shown to belong to the set V̄+

S0
. For this purpose it

suffices to show that equality holds in (11.3.20). This is achieved by observing
that for positive λ, satisfying (11.3.9), one has

E

(
max
S̄δ

T >0

{
U

(
S̄δ

T

)
− λ

(
S̄δ

T

S̄δ∗
T

− S0

S̄δ∗
0

)}∣∣∣∣∣A0

)

= E

⎛

⎜⎝U

(
U ′−1

(
λ

S̄δ∗
T

))
− λ

⎛

⎜⎝
U ′−1

(
λ

S̄δ∗
T

)

S̄δ∗
T

− S0

S̄δ∗
0

⎞

⎟⎠

∣∣∣∣∣A0

⎞

⎟⎠

= E

(
U

(
S̄ δ̃

T

)
− λ

(
S̄ δ̃

T

S̄δ∗
T

− S0

S̄δ∗
0

)∣∣∣∣∣A0

)

= E
(
U

(
S̄ δ̃

T

) ∣∣∣A0

)
= vδ̃. �	

11.4 Pricing Nonreplicable Payoffs

This section addresses the problem of pricing nonreplicable payoffs. These
are payoffs that cannot be replicated by a fair portfolio of primary security
accounts. By utility indifference pricing we shall show that the concept of real
world pricing naturally applies to the pricing of nonreplicable payoffs.
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Utility Indifference Price

In the following we shall continue to use our notation of the previous sections,
in particular Sect. 11.3, which considered expected utility maximization in
the framework of a CFM. Let us assume that the investor uses the utility
function U with time horizon T ∈ (0,∞), as defined in Definition 11.3.1. The
investor has the total tradable wealth S δ̃

t accumulated at time t ∈ [0,∞),
which she or he invests according to an expected utility maximizing strategy
δ̃, see Sect. 11.1.

We consider now the problem that the investor has to price a random,
discounted, nonnegative payoff H̄ that is AT -measurable and delivered at the
same time T which determines the time horizon for the expected utility func-
tion. We allow H̄ to be nonreplicable. This means that the discounted payoff
H̄ or parts of it cannot be replicated by a fair portfolio of primary security
accounts. Let us assume that the total face value of the discounted payoff that
the investor wants to purchase is vanishing small, that is, it amounts to εH̄
where ε 
 1 is a very small real number.

We aim to identify a consistent price for the above payoff at time t = 0
from the viewpoint of the expected utility maximizer. For this purpose we
apply the concept of utility indifference pricing. This is a classical economic
concept that has been generating renewed interest in continues time finance
due to the important work in Davis (1997). The utility indifference price is
the price at which the investor is indifferent between buying the contract that
provides the discounted payoff εH̄, or not accepting the price when taking her
or his expected utility maximization objective into account.

Consider now a contract that can be purchased for a hypothetical price
V at time t = 0 and which delivers the discounted payoff H̄ at maturity
T ∈ (0,∞). Assume that the investor buys a vanishing fraction ε 
 1 of
the contract at time t = 0 for the amount εV . This corresponds to the price
V at time t = 0 per total contract. She or he continues to invest the bulk
of the wealth with her or his locally optimal strategy δ̃, determined by the
expected utility maximization for the utility function U(·) with time horizon
T . Similarly to (11.3.3)–(11.3.4) we introduce the expected utility function

vδ̃
ε,V = E

(
U

(
(S0 − ε V )

S̄ δ̃
T

S0
+ εH̄

) ∣∣∣∣A0

)
(11.4.1)

for ε ≥ 0. Here S0 − εV is invested at time t = 0 in a portfolio which starts
at one and follows the locally optimal strategy δ̃. At the delivery date T the

discounted payoff εH̄ is added to the discounted payoff (S0 − εV ) S̄δ̃
T

S0
of the

investment in the locally optimal portfolio. Note that the purchasing price
εV is at time t = 0 subtracted from the locally optimal portfolio value. This
allows us to formulate the following definition of a utility indifference price.

Definition 11.4.1. In the above framework the value V is called the utility
indifference price for the discounted payoff H̄ if
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lim
ε→0

vδ̃
ε,V − vδ̃

0,V

ε
= 0 (11.4.2)

almost surely.

This means that the maximized expected utility of the investor changes
only by a small amount for prices that are in the neighborhood of the utility
indifference price. To see the structure of the resulting expected utility more
clearly, let us derive from (11.4.1), by a Taylor expansion, the representation

vδ̃
ε,V ≈ E

(
U

(
S̄ δ̃

T

)
+ U ′

(
S̄ δ̃

T

)
ε

(
H̄ − V

S̄ δ̃
T

S0

) ∣∣∣∣A0

)

= vδ̃
0,V + εE

(
U ′

(
S̄ δ̃

T

)(
H̄ − V

S̄ δ̃
T

S0

) ∣∣∣A0

)
. (11.4.3)

Here we neglect higher order terms in ε, assuming appropriate conditions.
This expansion allows us to identify the utility indifference price. It is clear
that for particular dynamics and specific utility functions, as well as payoffs,
one needs to check whether the above expansion applies.

Utility Indifference Pricing Formula

When appropriate conditions are imposed, one can derive for a given utility
function, discounted payoff H̄ and prescribed market dynamics a correspond-
ing utility indifference price. What is needed in such a derivation are suffi-
cient integrability and smoothness properties. For instance, for a BS model
and power utility such properties are guaranteed. For the utility indifference
price we derive its general formula heuristically by indicating the crucial steps
for its derivation without formulating any assumptions. However, this can be
done for particular classes of models, utilities and payoffs. The general result
that we shall obtain below will always be the same.

We obtain from the expansion (11.4.3) the relation

lim
ε→0

1
ε

(
vδ̃

ε,V − vδ̃
0,V

)
= E

(
U ′

(
S̄ δ̃

T

)(
H̄ − V

S̄ δ̃
T

S0

) ∣∣∣∣A0

)
. (11.4.4)

We emphasize that S δ̃ is here the locally optimal portfolio that maximizes
the given expected utility when ε is set to zero. From equation (11.4.4) and
Definition 11.4.1 we obtain then the utility indifference pricing formula in the
form

V =
E

(
U ′

(
S̄ δ̃

T

)
H̄

∣∣A0

)

E

(
U ′

(
S̄ δ̃

T

)
S̄δ̃

T

S0

∣∣A0

) . (11.4.5)
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This formula holds rather generally. It allows us to determine the utility indif-
ference price for a given utility and given discounted payoff H̄. We emphasize
that the payoff is possibly not replicable. If it were replicable, then the mini-
mal price for replicating this payoff is the fair price, which is given by the real
world pricing formula.

Real World Pricing of Nonreplicable Payoffs

For a general payoff H and a general utility function U(·) we obtain under
the assumptions of Theorem 11.3.3 by (11.3.8) that

S̄ δ̃
T = U ′−1

(
λ

S̄δ∗
T

)
. (11.4.6)

It follows from formula (11.4.5) that in a surprisingly simple way U ′ and U ′−1

offset each other in the following calculation

V =
E

(
U ′

(
U ′−1

(
λ

S̄δ∗
T

))
H̄

∣∣∣A0

)

E

(
U ′

(
U ′−1

(
λ

S̄δ∗
T

))
S̄δ̃

T

S0

∣∣∣A0

) =
E

(
λ

S̄δ∗
T

H̄
∣∣∣A0

)

E

(
λ

S̄δ∗
T

S̄δ̃
T

S0

∣∣∣A0

) .

Therefore, we obtain with (11.3.8) for V the expression

V =
E

(
H

Sδ∗
T

∣∣∣A0

)

1
S0

E
(
Ŝ δ̃

T

∣∣A0

) =
E

(
H

Sδ∗
T

∣∣∣A0

)

1
S0

û(0, Ŝ0
0)

=
E

(
H

Sδ∗
T

∣∣∣A0

)

S0

S0 Sδ∗
0

. (11.4.7)

For the utility indifference price this yields by (11.3.9) the relation

V = Sδ∗
0 E

(
H

Sδ∗
T

∣∣∣A0

)
. (11.4.8)

We observe that this is the real world pricing formula (9.1.30). This means
that under utility indifference pricing payoffs, which are not replicable by a
fair portfolio of primary security accounts, are priced according to the real
world pricing formula. Most importantly, we see that the utility indifference
price does not depend on the utility function of the investor.

This is a very satisfying result not only from the theoretical but also from
the practical point of view. It extends real world pricing naturally to the case
of general nonreplicable payoffs. From a practical viewpoint it gives the buyer
and the seller an acceptable price for any nonreplicable payoff.

11.5 Hedging

One important feature of a market is the possibility to hedge future uncer-
tainties. In this section we study the hedging of uncertain payoffs.
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Hedge Portfolios

In the following we consider a CFM SC
(d), as defined in Sect. 10.1, and discuss

the problem of hedging. Let τ ∈ (0,∞) be a bounded stopping time and H
a nonnegative payoff that is paid at τ . By generalizing (8.2.8), we say that a
portfolio Sδ replicates a nonnegative payoff Hτ paid at a stopping time τ if

Sδ
τ = H (11.5.1)

almost surely. Note that a general payoff can always be decomposed into
its nonnegative and its negative part and considering nonnegative payoffs is
therefore no restriction. As previously, a nonnegative payoff is replicable if
there exists a nonnegative, replicating fair portfolio. We shall demonstrate
later that there may exist several self-financing portfolios in a CFM that
replicate a given nonnegative payoff. In the case of nonnegative replicating
portfolios it follows from Corollary 10.4.2 that for a nonnegative payoff H the
replicating, fair portfolio SδH is the minimal portfolio that replicates H. Note
that this portfolio process is uniquely determined as a value process. However,
there may be different securities that can be used for hedging.

Tradable Martingale Representation

For a nonnegative replicable payoff the real world pricing formula provides
the minimal nonnegative price process. From an economic point of view it is
in a competitive market the correct price process. We shall determine below
the strategy of the fair portfolio which hedges a given replicable nonnega-
tive payoff. Recall that the benchmarked fair price process forms an (A, P )-
martingale. It is of primary interest to find a representation for this martingale
process. There are various methods that can be used to find the martingale
representation of a benchmarked nonnegative payoff.

For instance, under the standard BS model, which we used for illustration
in Chap.9, we obtained in (9.1.31) a corresponding martingale representation
for the benchmarked European call option payoff. It was derived from the real
world pricing formula together with an application of the Itô formula to the
benchmarked pricing function.

More generally, in the case when the market dynamics can be expressed
via a set of Markovian factor processes, then one can apply the Feynman-
Kac formula, see Sect. 9.7. This yields the benchmarked, fair pricing function
of a corresponding replicable payoff. The corresponding benchmarked, fair
price process forms then a martingale and similarly to (9.1.31), a real world
martingale representation. We shall not present in this section any particular
example for such a martingale representation. However, the following two
chapters will discuss several such examples.

In a CFM not all Wiener processes which drive volatility processes and
short rates need to represent trading uncertainty. Therefore, in general, not all
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payoffs are replicable. Under rather general assumptions one can usually es-
tablish a real world martingale representation for reasonable payoffs in a CFM.
The particular structure of a martingale representation depends strongly on
the model dynamics and can become quite complex for certain payoffs. As
indicated, in a Markovian setting one can explicitly derive, via the Feynman-
Kac formula, martingale representations for nonreplicable payoffs.

The following definition of a tradable martingale representation allows us to
formulate general results on pricing and hedging of particular payoffs without
specifying the dynamics of the CFM.

Definition 11.5.1. We say that a given Aτ -measurable, nonnegative payoff
H, which matures at a bounded stopping time τ , has a tradable martingale
representation if there exists a predictable vector process xH = {xH(t) =
(x1

H(t), . . . , xd
H(t))�, t ∈ [0, τ ]}, where

∫ τ

0

d∑

k=1

(
xk

H(s)
)2

ds < ∞ (11.5.2)

almost surely such that

H

Sδ∗
τ

= ÛH(t) +
d∑

k=1

∫ τ

t

xk
H(s) dW k

s (11.5.3)

almost surely with

ÛH(t) = E

(
H

Sδ∗
τ

∣∣∣∣∣At

)
< ∞ (11.5.4)

for all t ∈ [0, τ ].

Note that the above tradable martingale representation (11.5.3) is ex-
pressed with respect to trading uncertainty, that is with respect to the Wiener
processes W 1, . . ., W d. There are, in general, other sources of uncertainty in
the market that are not securitized and therefore not tradable. Consequently,
there exist, in general, nonnegative payoffs which do not have a tradable
martingale representation. We shall see below that such payoffs are not fully
replicable.

Hedging Strategy

By using the above notion of a tradable martingale representation we prove
the following result on the hedging of derivatives. In the corresponding proof,
which is given at the end of this section, we use the SDE (10.3.2) of a bench-
marked portfolio together with (11.5.3).
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Theorem 11.5.2. For a nonnegative payoff H with a tradable martingale
representation there exists a replicating, fair portfolio SδH , which satisfies at
time t ∈ [0, τ ] the real world pricing formula

SδH
t = Sδ∗

t ÛH(t) (11.5.5)

with ÛH(t) given in (11.5.4). This portfolio has the vector of fractions

πδH
(t) =

(
bδH

(t)� b−1
t

)�
, (11.5.6)

where the vector bδH
(t) = (b1

δH
(t), . . . , bd

δH
(t))� of portfolio volatilities has kth

component

bk
δH

(t) =
d∑

j=1

δj
H(t) Ŝj

t

ÛH(t)
bj,k
t =

xk
H(t)

ÛH(t)
+ θk

t (11.5.7)

for t ∈ [0, τ ] and k ∈ {1, 2, . . . , d}.

Theorem 11.5.2 states that a nonnegative payoff with tradable martingale
representation can be replicated. It also characterizes the minimal hedge port-
folio. We emphasize here again that for a CFM, which is built as a Markovian
factor model, one can obtain by the Feynman-Kac formula for each integrable
benchmarked payoff a corresponding martingale representation. This makes
it advisable to prefer Markovian factor models if one aims to construct com-
putationally tractable CFMs.

Martingale Representation Theorem (*)

By the following result we shall see that payoffs can be decomposed into the
sum of their hedgable part and their unhedgable part. Let us mention a Mar-
tingale Representation Theorem, for a proof see Karatzas & Shreve (1991),
which is convenient for establishing a real world martingale representation for
payoffs in a wide range of CFMs.

Theorem 11.5.3. (Martingale Representation Theorem) For T ∈ [0,∞)
assume that in a CFM SC

(d) with given filtered probability space (Ω,A,A, P )
the filtration A is the augmentation under P of the natural filtration AW

generated by the vector W = {W t = (W 1
t , . . . , Wm

t )�, t ∈ [0, T ]} of Wiener
processes, m ∈ {d, d+1, . . .}. Then for any square integrable benchmarked fair
price process V̂t = {V̂t = Vt

Sδ∗
t

, t ∈ [0, T ]} there exists a predictable, measurable

process xVT
= {xVT

(t) = (x1
VT

(t), . . . , xd
VT

(t))�, t ∈ [0, T ]} such that

E

(∫ T

0

(
xk

VT
(s)

)2
ds

)
< ∞ (11.5.8)

for k ∈ {1, 2, . . . , d} and
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V̂t = V̂0 +
m∑

k=1

∫ t

0

xk
VT

(s) dW k
s (11.5.9)

for t ∈ [0, T ], where V̂ is almost surely continuous. Furthermore, if x̃k =
{x̃k(t), t ∈ [0, T ], k ∈ {1, 2, . . . , d}, are any other predictable measurable pro-
cesses satisfying (11.5.8) and (11.5.9), then

∫ T

0

m∑

k=1

∣∣xk
VT

(s) − x̃k(s)
∣∣2 ds = 0 (11.5.10)

almost surely.

Real World Martingale Decomposition (*)

Note that under the assumptions of the above theorem one has for any square
integrable, benchmarked payoff Ĥ = H

Sδ∗
T

paid at time T , the unique repre-

sentation (11.5.9), where

Ĥ = V̂T = V̂0 +
m∑

k=1

∫ t

0

xk
H(s) dW k

s . (11.5.11)

It is essential to realize that Theorem 11.5.3 assumes that only the m Wiener
processes W 1, . . . , Wm generate the total uncertainty in the model. This is
why we have chosen in Theorem 11.5.3 the filtration A to be the augmentation
of the natural filtration AW . The Wiener processes W 1, . . . , W d model the
trading uncertainty.

The real world martingale decomposition of the nonnegative, square inte-
grable benchmarked payoff Ĥ is then given by the sum

Ĥ = Ĥh + Ĥu. (11.5.12)

It consists of its hedgable part Ĥh = ÛHh
(T ), which we obtain at time t as

ÛHh
(t) = Û

(0)
Hh

+
d∑

k=1

∫ t

0

xk
H(s) dW k

s (11.5.13)

and its unhedgable part Ĥu = ÛHu(T ), which at time t ∈ [0, T ] is

ÛHu(t) =
m∑

k=d+1

∫ t

0

xk
H(s) dW k

s . (11.5.14)

The hedgable part Ĥh can be replicated according to Theorem 11.5.2. We use
in (11.5.13) for the nonnegative payoff H its benchmarked fair price ÛHh

(0)
at time t = 0, that is,
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ÛHh
(0) = E

(
Ĥ

∣∣A0

)
. (11.5.15)

Then the benchmarked value

V̂t = ÛHh
(t) + ÛHu(t) (11.5.16)

corresponds to a fair process since it forms an (A, P )-martingale. As we have
seen in Sect. 5.1, this martingale minimizes the expected least squares er-
ror of the benchmarked hedge. The choice of the real world pricing formula
for the unhedgable part appears, therefore, as a projection in a least square
sense. More precisely, the benchmarked fair price V̂0 can be interpreted as
the projection of the benchmarked payoff into the space of A0-measurable,
tradable portfolio values. Note that the benchmarked fair price ÛHu(0) of the
unhedgable part is zero at time t = 0.

This means, when applying real world pricing for a payoff one is leav-
ing its unhedgable part totally untouched. This is reasonable because any
extra trading would create unnecessary uncertainty and potential costs. The
benchmarked unhedgable part has according to (11.5.14) zero conditional ex-
pectation

E
(
ÛHu(T )

∣∣A0

)
= 0. (11.5.17)

In summary, we obtain from (11.5.12)–(11.5.17) for the benchmarked payoff
Ĥ payable at time T the real world martingale decomposition

Ĥ = ÛHh
(0) +

d∑

k=1

∫ T

0

xk
H(s) dW k

s +
m∑

k=d+1

∫ T

0

xk
H(s) dW k

s . (11.5.18)

Let us indicate that by pooling a wide variety of independent unhedgable parts
of payoffs, under appropriate integrability conditions, the Law of Large Num-
bers, see Sect. 2.1, makes their impact vanishing. For instance, the books of
large investment banks and insurance companies pool substantial unhedgable
payoffs and benefit from this effect.

Föllmer-Schweizer Decomposition (*)

In the case when an equivalent risk neutral probability measure exists in
a CFM, real world pricing coincides with the risk neutral pricing obtained
under the, so-called, minimal equivalent martingale measure of Föllmer and
Schweizer, see Föllmer & Schweizer (1991), Hofmann, Platen & Schweizer
(1992) and Heath, Platen & Schweizer (2001).

It has been shown in Föllmer & Schweizer (1991), by assuming the exis-
tence of an equivalent risk neutral probability measure Pθ, that the hedging
of a payoff is linked to the existence of a corresponding martingale represen-
tation under Pθ for the discounted payoff. This important representation is
known as the Föllmer-Schweizer decomposition, see Schweizer (1995). A simi-
lar decomposition exists for the benchmarked payoff in a general CFM, where
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one does not require the existence of an equivalent risk neutral probability
measure.

To formulate explicitly the Föllmer-Schweizer decomposition we consider
a CFM as assumed in Theorem 11.5.3 and multiply both sides of the represen-
tation (11.5.16) by the discounted GOP value and apply then the Itô formula.
This provides the decomposition

H̄ = Ĥ S̄δ∗
T

= ÛHh
(0) S̄δ∗

0 +
d∑

k=1

∫ T

0

S̄δ∗
t

(
xk

H(t) +
(
ÛHh

(t) + ÛHu(t)
)

θk
t

)

×
(
θk

t dt + dW k
t

)
+

m∑

k=d+1

∫ T

0

S̄δ∗
t xk

H(t) dW k
t , (11.5.19)

which is a Föllmer-Schweizer decomposition for the discounted payoff H̄, see
Schweizer (1995) and Exercise 11.3.

Note that in the case when a risk neutral probability measure Pθ exists,
then the second term in the sum on the right hand side of (11.5.19) is a mar-
tingale under Pθ. The third term is then a martingale under P and under Pθ.
The, so-called, minimal equivalent martingale measure, see Schweizer (1995),
changes only the drift of the Wiener processes that model trading uncertainty.
The other sources of uncertainty remain unchanged.

Complete Market (*)

In the literature one is often using the notion of a complete market, which we
introduce now.

Definition 11.5.4. A CFM where all integrable, benchmarked nonnega-
tive payoffs have a tradable martingale representation in the sense of Defi-
nition 11.5.1, is called a complete CFM. Any other CFM we call incomplete.

Note that in some literature a market is called complete when a unique
equivalent risk neutral probability measure exists, see Harrison & Kreps (1979)
and Harrison & Pliska (1981, 1983). As we have seen in Sect. 10.3, there is no
economic necessity to insist on the existence of an equivalent risk neutral prob-
ability measure. Therefore, we defined here the completeness of a market in a
more practical way. By Theorem 11.5.2 we obtain now directly the following
result.

Corollary 11.5.5. In a complete CFM all integrable, nonnegative payoffs
can be perfectly replicated with the hedge portfolio characterized by relation
(11.5.6). The price for setting up this replicating portfolio at some time t ∈
[0, τ) is obtained by the real world pricing formula (9.1.30). This price is the
minimal price that permits the replication of a given payoff.



11.6 Exercises for Chapter 11 437

This result emphasizes the fact that in a complete market all integrable
payoffs can be replicated. An equivalent risk neutral probability measure is
not required for the existence of a complete market. This is very important
from a practical point of view when hedging derivatives for advanced models,
as we shall see later. We have seen in our previous discussion, if the CFM
is incomplete, then one can still perfectly replicate the hedgable part of a
benchmarked payoff. Under real world pricing one leaves the unhedgable part
as it is.

Proof of Theorem 11.5.2 (*)

For a given payoff H, paid at a bounded stopping time τ ≥ 0, with tradable
martingale representation we use the martingale representation (11.5.3). This
leads us for a benchmarked hedge portfolio ŜδH , see (10.3.2), to the replication
condition

H

Sδ∗
τ

− ÛH(t) =
d∑

k=1

∫ τ

t

xk
H(s) dW k

s

=
d∑

k=1

∫ τ

t

ŜδH
s

(
bk
δH

(s) − θk
s

)
dW k

s = ŜδH
τ − ŜδH

t (11.5.20)

for t ∈ [0, τ ]. The formulas (10.3.2), (11.5.7) and (10.1.12) provide by direct
comparison of the integrands in (11.5.20) the equation

(
π�

δH
(t) bt

)�
= bδH

(t)

for t ∈ [0, τ ]. By the invertibility of bt, see Assumption 10.1.1, this proves
(11.5.6), and thus with (11.5.1) equation (11.5.5). �	

11.6 Exercises for Chapter 11

11.1. Calculate the maximum expected log-utility for the BS model.

11.2. Compute the maximum expected power utility for the BS model.

11.3. (*) In the case when a risk neutral probability measure exists, derive
by using the setup of Theorem 11.5.3 a representation for a discounted payoff
H̄ = H

S0
T

, which is paid at time T ∈ (0,∞).
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