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Preliminaries from Probability Theory

This chapter reviews some important results from probability theory and fixes
notation. First we introduce discrete and continuous random variables and
their distributions. Then we discuss functionals of random variables such as
moments. Furthermore, we introduce certain classes of distributions and also
multivariate distributions together with copulas.

1.1 Discrete Random Variables and Distributions

In financial markets one can observe the prices of assets such as stocks, com-
modities, currencies, futures, bonds etc. It is a challenge to model these ran-
dom quantities in a satisfactory manner.

Log-Returns

Let us assume that we observe an asset price at times ti = iΔ for i ∈ {0, 1, . . .}
with time step size Δ > 0. The time Δ between two successive observations is
typically the length of one day. If Xti denotes the asset price at time ti, then
the log-return Rti at this time is defined as

Rti = ln(Xti+1) − ln(Xti) = ln
(

Xti+1

Xti

)
(1.1.1)

for i ∈ {0, 1, . . .}.
We define the daily log-return of an asset price as the daily increment

of the natural logarithm of this price because, as we shall see later on, this
reflects well the growth nature of economies and financial markets. Typically
log-returns exhibit considerable variability.

We focus in this book on the modeling of log-returns while we introduce
the basic concepts of probability, statistics, stochastic processes, stochastic
calculus and stochastic differential equations. It will turn out that stochastic
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differential equations provide an ideal mathematical framework for the mod-
eling of financial quantities. In this context log-returns will also allow us to
apply the powerful tools of stochastic calculus. This is not so conveniently
achieved when using, so-called, returns that are of the form

R̃ti =
Xti+1 − Xti

Xti

and closely approximate log-returns when these are small. As we shall see,
log-returns are more tractable in continuous time.

Relative Frequencies and Probabilities

Let us interpret an asset’s log-return Rti as the outcome of an experiment
based on observations of the data. Suppose, for simplicity, that we classify the
log-returns as strictly negative, zero or positive. We denote these elementary
outcomes or states by ω1, ω2, ω3, indicating that we observe a negative, zero
or strictly positive log-return, respectively. We call the set of outcomes or
states Ω = {ω1, ω2, ω3} the sample space for our experiment.

If we repeat our experiment N times, that is, we observe for a stock daily
log-returns on N different days, and count the number N(ωi) of times, that
the outcome ωi occurs, we can form the relative frequency

fi(N) =
N(ωi)

N
.

For smaller N this number usually varies considerably. As N becomes larger,
our experience would indicate that the relative frequency should approach a
limit pi, written as

lim
N→∞

fi(N) = pi,

which we call the probability of outcome ωi.
To illustrate the above example let us look at the daily IBM share price in

US dollars over the period from 1977 until 1997, which is shown in Fig. 1.1.1.
The corresponding log-returns are plotted in Fig. 1.1.2. In Fig. 1.1.3 we then
display the relative frequencies f1(ti), f2(ti) and f3(ti), i ∈ {0, 1, . . .}, of nega-
tive, zero and strictly positive log-returns, respectively, during the time period.
Note that after some wild fluctuations for small time t, at the beginning of
the period, the relative frequency for negative log-returns stabilizes around
a value close to p1 = 0.465. Similarly, we obtain at the end of the period
a value p3 = 0.463 for the relative frequency of strictly positive log-returns.
The value p2 = 0.072 is then obtained for the rather small probability of zero
log-returns. Clearly, we have 0 ≤ pi ≤ 1 for each i ∈ {1, 2, 3} and

∑3
i=1 pi = 1,

that is, the probabilities p1, p2 and p3 add up to one.
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Fig. 1.1.1. IBM share price from 1977 until 1997

Fig. 1.1.2. Log-returns of IBM stock

Probability Space

To analyze a model one is often interested in combinations of outcomes. We
call such a combination an event if we can identify it either by its occurrence
or its non-occurrence. Obviously, if a subset A of the set of outcomes Ω is
an event, then its complement Ac = {ωi ∈ Ω : ωi �∈ A}, which denotes the
set of all ωi from the sample space Ω that do not belong to the set A, must
also be an event. In the case of the above example we might consider the
event A = {ω1, ω2} that corresponds to the occurrence of either a negative or
zero log-return. The complement of this event is then Ac = {ωi ∈ Ω : ωi �∈
{ω1, ω2}} = {ω3}. This is the event {ω3} of a strictly positive log-return.

In particular, the whole sample space Ω is an event, which is called the
sure event since one of its outcomes must always occur. The complement of Ω
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Fig. 1.1.3. Relative frequency over time

is the empty set ∅, which is also defined as an event but never occurs. If A and
B are events, then the event A ∪ B occurs if either A or B occurs, whereas
the event A ∩ B occurs if both A and B occur. With A = {ω1, ω2}, as in our
example, and the event B = {ω2} indicating a zero log-return we note that
A ∪ B = {ω1, ω2} ∪ {ω2} = {ω1, ω2} stands for an event consisting of either
negative or zero log-returns and A∩B = {ω1, ω2} ∩ {ω2} = {ω2} is the event
which indicates only a zero log-return.

In the above discussion we have only mentioned experiments with a finite
number of outcomes. However, the introduction of probabilities based on an
infinite set of outcomes and the use of relative frequencies to define probabil-
ities can lead to conceptual subtleties and other mathematical problems. To
resolve these difficulties, Kolmogorov developed in the late 1920s an axiomatic
approach to probability theory. In this approach the probabilities represent
numbers assigned to corresponding events. In what follows we shall employ
this axiomatic framework.

Let us denote by P (A) the probability of the occurrence of an event A
that is taken from the collection of events A that corresponds to the sample
space Ω. Then from corresponding properties of relative frequencies we would
expect these probabilities to satisfy the following relationships

0 ≤ P (A) ≤ 1, (1.1.2)

P (Ac) = 1 − P (A), (1.1.3)

P (∅) = 0, P (Ω) = 1, (1.1.4)

and
P (A ∪ B) = P (A) + P (B) (1.1.5)

if A and B are exclusive, that is A∩B = ∅ for events A and B taken from A.
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The above relationships allow us, for a given finite sample space Ω =
{ω1, ω2, . . . , ωn}, consistently to allocate probabilities to each event. One can
deduce that

n⋃
i=1

Ai and
n⋂

i=1

Ai

are events if A1, A2, . . . , An are events, and that

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P (Ai)

if A1, A2, . . . , An are mutually exclusive, that is if Ai ∩ Aj = ∅ for all i, j ∈
{1, 2, . . . , n} with i �= j.

For the above example suppose we assign the probabilities pi = P ({ωi})
for each outcome ωi, i ∈ {1, 2, 3}, as obtained from frequency records. Then
the event A = {ω1, ω2} of non-strictly positive outcomes has, according to
(1.1.5), the probability

P (A) = P ({ω1, ω2}) = P ({ω1} ∪ {ω2}) = P ({ω1}) + P ({ω2}) = p1 + p2.

The essential probabilistic information that characterizes an experiment
can be succinctly summarized in the corresponding triplet (Ω,A, P ) consist-
ing of the sample space Ω, the collection of events A and the probability
measure P , where these have to satisfy certain relationships. In the above
analysis we have considered finite collections of events. To cover the case of
infinite collections we must specify these properties to avoid contradictions.
We assume that the collection of events A is a sigma-algebra, which means
that

Ω ∈ A, (1.1.6)

if A ∈ A then Ac ∈ A, (1.1.7)

if A ∈ A and B ∈ A then A ∪ B ∈ A (1.1.8)

and if Ai ∈ A for any i ∈ N = {1, 2, . . .} then

( ∞⋃
i=1

Ai

)
∈ A. (1.1.9)

In the case of infinite collections, equation (1.1.5) is replaced by what is called
countably additive probabilities. This means,

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai) (1.1.10)

for any sequence (Ai)i∈N of mutually exclusive events.
It can be shown by DeMorgan’s law that a sigma-algebra is closed under

finite and countable intersections of events. In addition, if a set function de-
fined on a sigma-algebra satisfies (1.1.2) and (1.1.10) with P (Ω) = 1, then
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(1.1.3)–(1.1.5) also hold and hence this set function would be a probability
measure.

A triplet (Ω,A, P ) is then called a probability space and the relations
(1.1.2)–(1.1.5) can be shown to form a consistent set of rules for modeling
probabilities in this space. This kind of structure will be used for all of our
modeling work described in this book. Since the models that we can construct
will always remain abstract objects, they can reflect reality only to a limited
extent. It will be our aim to introduce more and more flexible mathematical
structures that provide the potential to model successfully complex stochas-
tic phenomena in finance. However, the reader should never believe that there
is anything like a perfect model. Even if some model were to become very
successful, the market would regularly demand further modifications and ex-
tensions to the model.

The relations (1.1.2)–(1.1.5) allow us to prove in a straightforward manner
that if A, B ∈ A and A ⊆ B then

P (A) ≤ P (B). (1.1.11)

Furthermore, if A, B ∈ A then

P (A ∩ Bc) = P (A) − P (A ∩ B). (1.1.12)

There may be some events A with P (A) = 0. These are then called null events.
On the other hand, there may be some event B for which P (B) = 1. In this
case we say B has occurred almost surely (a.s.) or with probability one.

Probabilities

The probability P (A) of an event A can be interpreted as a measure of the
likelihood that A occurs. If we have some additional information, such as that
another event has occurred, then our estimate of this likelihood may change.
For instance, if we know in the above example that the event A = {ω1, ω2} of
having no strictly positive log-return has occurred, then conditioned on this
information, the conditional probabilities of observing negative or zero log-
returns will add up to one. We denote by P ({ω1}

∣∣A) the conditional proba-
bility that a negative log-return, the outcome ω1, will be observed, given that
the event A = {ω1, ω2} has occurred. Note that this conditional probability
can be expressed by the ratio

P ({ω1}
∣∣A) =

P ({ω1} ∩ A)
P (A)

=
P ({ω1})

P ({ω1, ω2})
,

where P (A) > 0. This relation is readily suggested from the ratio of relative
frequencies

f1(N)
f1(N) + f2(N)

=
N(ω1)

N
N(ω1)

N + N(ω2)
N

=
N(ω1)

N(ω1) + N(ω2)
,
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where N(ω1) and N(ω2) denote the number of outcomes ω1 and ω2, respec-
tively, that have occurred out of N repetitions of the experiment.

In general, the conditional probability P (A
∣∣B) for the event A given that

the event B has occurred is defined by the formula

P (A
∣∣B) =

P (A ∩ B)
P (B)

(1.1.13)

provided P (B) > 0. This formula is also called the Bayes formula. As a
consequence of (1.1.13) one obtains

P (A)P (B
∣∣A) = P (B)P (A

∣∣B), (1.1.14)

which is sometimes called Bayes’ Theorem.
Conditional probabilities have similar properties to ordinary probabilities,

for instance, they sum to one, when conditioned on the same B.
The likelihood for the occurrence of an event could be unaffected by

whether or not another event B has occurred. In such a case the conditional
probability P (A

∣∣B) should equal P (A), which implies together with (1.1.13)
that

P (A ∩ B) = P (A)P (B). (1.1.15)

We say that the events A and B are independent if and only if (1.1.15) holds.
By assuming P (B) > 0 and rearranging formula (1.1.15) we see that events
A and B are independent if

P (A) =
P (A ∩ B)

P (B)
. (1.1.16)

For instance, if we extend slightly our example and consider the log-returns
from two different days to be independent, then the event characterizing the
log-return from the first day does not affect the event that describes the log-
return for the second day. In this example the second log-return is assumed
to be not influenced by the outcome of the first log-return and vice versa.

More generally we say that m events A1, A2, . . . , Am are independent if

P (Ai1 ∩ Ai2 ∩ . . . ∩ Aik
) = P (Ai1)P (Ai2) . . . P (Aik

) (1.1.17)

for all k ∈ N and non-empty subsets {i1, i2, . . . , ik} of the set of indices
{1, 2, . . . ,m}.

One can show that if A1, A2, B ∈ A and P (B) > 0, then

P
(
A1 ∩ Ac

2

∣∣B) = P
(
A1

∣∣B)− P
(
A1 ∩ A2

∣∣B) . (1.1.18)

A sequence of events (Ai)i∈N with Ai ∈ A for all i ∈ N is called a partition
of Ω if

∞⋃
i=1

Ai = Ω, (1.1.19)
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and A� ∩ Am = ∅ for all � �= m. This allows us to formulate the following
statement on the total probability. If (Ai)i∈N is a partition of Ω with P (Ai) > 0
for all i ∈ N , then for any event B ∈ A one obtains the representation

P (B) =
∞∑

i=1

P
(
B
∣∣Ai

)
P (Ai). (1.1.20)

This formula can be very helpful for calculating the probabilities of certain
events.

Random Variables and Distributions

We are often interested in assigning some numerical quantity to the outcomes
of a probabilistic experiment. For instance, in our stock log-return example,
the quantity X(ω) might take the value 1 for a strictly positive log-return, 0
for a zero log-return and −1 for a negative log-return.

These assigned quantities correspond to the values taken by a function
X : Ω → 
, where 
 = (−∞,∞) is the set of real numbers. In our example
we have

X(ω) =

⎧⎨
⎩

1 for ω = ω1

0 for ω = ω2

−1 for ω = ω3.
(1.1.21)

More generally, given a probability space (Ω,A, P ) we say, that a function
X : Ω → 
 is an A-measurable function or a random variable if the set
{ω ∈ Ω : a < X(ω) ≤ b} is an event for each a, b ∈ 
 with a < b. This means
that this set is an element of A. Using this definition it can be shown that if
X is a random variable, then it holds for any Borel subset of the real line

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ A,

see Shiryaev (1984). We say that two random variables X and Y are indepen-
dent if the corresponding events {ω ∈ Ω : X(ω) ≤ a} and {ω ∈ Ω : Y (ω) ≤ b}
are independent for all a, b ∈ 
.

Now it is appropriate to introduce for a random variable X its distribution
function FX : 
 → [0, 1] that is defined for each real valued x ∈ 
 by the
relation

FX(x) = P ({ω ∈ Ω : X(ω) ≤ x})

= P (X ≤ x). (1.1.22)

Here we have used in the last term an abbreviated notation for the probability
of an event, which will also be used in other parts of the book. In Fig. 1.1.4
we show the three probabilities, p1 = 0.465, p2 = 0.072 and p3 = 0.463 for the
stock log-return example with possible outcomes −1, 0, 1, respectively, that is
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Fig. 1.1.4. Probabilities for the stock log-return example

Fig. 1.1.5. Distribution for the stock log-return example

P (X = x) =

⎧⎨
⎩

p1 for x = −1
p2 for x = 0
p3 for x = 1.

(1.1.23)

The distribution function is then according to (1.1.22) given by

FX(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x < −1
p1 for −1 ≤ x < 0

p1 + p2 for 0 ≤ x < 1
1 for 1 ≤ x

(1.1.24)

for x ∈ 
, which we plot in Fig. 1.1.5.

Two-Point Distribution

A simple random variable is the indicator function 1A : Ω → {0, 1} of an
event A ∈ A, where
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1A(ω) =
{

1 for ω ∈ A
0 for ω /∈ A.

(1.1.25)

Here the corresponding distribution function is of the form

F1A
(x) =

⎧⎨
⎩

0 for x < 0
1 − P (A) for 0 ≤ x < 1

1 for 1 ≤ x,
(1.1.26)

where P (A) denotes the probability of the event A. This is an example of a
two-point random variable which takes two distinct real values x1 and x2 with
probabilities p1 and p2 = 1 − p1, respectively, where x1 < x2.

It can be shown that for any random variable X the limit of the value of
the distribution function FX(x) for x tending to minus infinity, x → −∞, is
zero. That is

lim
x→−∞

FX(x) = 0. (1.1.27)

Similarly, it can be verified that

lim
x→∞

FX(x) = 1 (1.1.28)

and FX(x) is non-decreasing in x ∈ 
.
The above examples indicate that a distribution function does not have to

be continuous. However, one can show that it is always right-continuous, that
is

lim
h→0+

FX(x + h) = FX(x) (1.1.29)

for all x ∈ 
.

Poisson Distribution

An important discrete random variable is the Poisson random variable X char-
acterized by its mean λ > 0. It can be used to model, for instance, the number
of trades per day that occur for a given stock or the number of bankruptcies
that occur during a year. A Poisson random variable X takes values 0, 1, . . .
without any upper bound. The corresponding probabilities pn = P (X = n)
are the Poisson probabilities that are given by

pn =
λn

n !
exp{−λ} (1.1.30)

for n ∈ {0, 1, . . .}, where λ > 0, n! = 1 · 2 · . . . · n for n ∈ N and 0! = 1. These
probabilities are displayed in Fig. 1.1.6 for the intensity parameter λ = 2. We
write X ∼ P (λ) to indicate that X has a Poisson distribution with intensity
λ.

Let Ω = N = {1, 2, . . .} denote the set of natural numbers. A discrete real
valued random variable X is a measurable function from Ω into a finite or
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Fig. 1.1.6. Poisson probabilities for λ = 2

possibly infinite set of distinct real values x1 < x2 < · · · < xn < · · · with
probabilities pn = P (X = xn) for n ∈ N . Its distribution function FX has
the representation

FX(x) =

{
0 for x < x1∑n

i=1 pi for xn ≤ x < xn+1,
(1.1.31)

for n ∈ N . FX is a right-continuous step-function with steps of height pn at
x = xn. For this random variable the set {x1, x2, . . .} could be used as the
sample space Ω, with all of its subsets being events.

1.2 Continuous Random Variables and Distributions

The modeling of events in a financial context often requires random variables
that take any value in 
 = (−∞,∞) or subintervals of 
. We call a random
variable X a continuous random variable if the probability P (X = x) is zero
for all x ∈ 
. If X is a continuous random variable, then the corresponding
distribution function FX will also be continuous.

In cases where the distribution function FX is differentiable, there exists
a nonnegative function fX , called the density function, such that

fX(x) =
dFX(x)

dx
(1.2.1)

for all x ∈ 
. However, FX could be differentiable Lebesgue almost everywhere,
that is except possibly on a set of Lebesgue measure zero. It can be shown
that if FX is absolutely continuous, then it can be expressed as integral of the
form

FX(x) =
∫ x

−∞
fX(s) ds (1.2.2)

for all x ∈ 
, where fX is the corresponding density function.
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Fig. 1.2.1. The uniform density with a = 0 and b = 1

We shall now describe some commonly occurring examples of continuous
random variables.

Uniform Distribution

Consider a random variable X which takes values only in a finite interval [a, b),
such that the probability of its being in a given subinterval is proportional to
the length of the subinterval. Then the distribution function is given by

FX(x) =

⎧⎪⎨
⎪⎩

0 for x < a

x − a
b − a

for a ≤ x < b

1 for b ≤ x,

which is differentiable everywhere except at x = a and x = b. The correspond-
ing density function is then of the form

fX(x) =

{
0 for x /∈ [a, b)
1

b − a
for x ∈ [a, b).

(1.2.3)

We say that the random variable X is in this case uniformly distributed on
[a, b) and use the abbreviation X ∼ U(a, b) to denote this fact. For example,
log-returns of a stock could be modeled by a U(−a, a) distributed random
variable with a parameter a > 0 that describes the largest possible absolute
log-return. The density for a U(0, 1) distributed random variable is shown in
Fig. 1.2.1.

Exponential Distribution

The waiting time between two events when there is no memory kept on the
time when the first event occurred, for instance, bankruptcies, catastrophes
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Fig. 1.2.2. The exponential density for intensity λ = 2

or changes in credit ratings, can be often modeled by a random variable X
with an exponential distribution given by the distribution function

FX(x) =

{
0 for x < 0

1 − exp{−λx} for x ≥ 0
(1.2.4)

for some intensity parameter λ > 0. FX is differentiable everywhere except
when x = 0 and has as corresponding density function

fX(x) =

{
0 for x < 0

λ exp{−λx} for x ≥ 0.
(1.2.5)

We write X ∼ Exp(λ) to indicate that X is an exponentially distributed
random variable. A larger intensity parameter λ means that it is more likely
that the waiting time between two events is shorter. In Fig. 1.2.2 we plot the
density of the exponential distribution for the intensity λ = 2.

Gaussian Distribution

The Gaussian density function given by

fX(x) =
1√
2π σ

exp

{
−1

2

(
x − μ

σ

)2
}

(1.2.6)

for x ∈ 
 has a bell-shaped graph which is symmetric about x = μ. In
Fig.1.2.3 we show the density of an N(0, 1) distributed random variable which
is also called a standard Gaussian random variable. The corresponding stan-
dard Gaussian distribution function FX(x) is everywhere differentiable and
has a sigmoidal-shaped graph, see Fig. 1.2.4. A random variable X with the
density function (1.2.6) is called a Gaussian random variable and we summa-
rize this fact by writing X ∼ N(μ, σ2).
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Fig. 1.2.3. The standard Gaussian density

Gaussian random variables occur so commonly in many applications, in-
cluding financial ones, that they are often said to be normally distributed. The
log-returns of stocks have been widely modeled as normally distributed ran-
dom variables resulting in the well-known lognormal asset price model which
we shall discuss later in detail. For this standard market model the incre-
ments of the logarithm of the stock price, the log-returns, are assumed to be
normally distributed.

Unfortunately, the Gaussian distribution has no explicit analytic repre-
sentation. Since it is often used in finance, for instance, in option pricing and
Value at Risk calculations, it is useful to have an accurate approximation for
the standard Gaussian distribution function N : 
 → (0, 1). This function
can be approximated, for instance, by the expression

N(x) =
∫ x

−∞
N ′(z) dz = 1 − 0.5 (1 + 0.0498673470 x + 0.0211410061 x2

+0.0032776263 x3 + 0.0000380036 x4

+0.0000488906 x5 + 0.0000053830 x6)−16

+ ε(x), (1.2.7)

for x ≥ 0, where we have an error term ε(x) with |ε(x)| < 0.00000015, as
established in Abramowitz & Stegun (1972). To obtain values for N(x) for
x < 0 we can use the relation N(x) = 1 − N(−x). Here N ′(·) denotes the
standard Gaussian density function

N ′(x) =
1√
2π

exp
{
−1

2
x2

}
(1.2.8)

for x ∈ 
. In Fig. 1.2.4 we graph the standard Gaussian distribution function.
For statistical and other studies it is helpful to know that, for X ∼ N(μ, σ2),
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Fig. 1.2.4. The standard Gaussian distribution

we have, so-called, k-sigma rules, where |X − μ| < k σ approximately with
probability 0.95 for k = 2, 0.9973 for k = 3 and 0.99994 for k = 4.

Gamma Distribution

A gamma distributed random variable X takes only positive real values and
has a density function

fX(x) =
αp

Γ (p)
exp{−α x}xp−1 (1.2.9)

for 0 < x < ∞ and parameters α > 0 and p > 0. Here Γ denotes the gamma
function given by

Γ (p) =
∫ ∞

0

tp−1 e−t dt (1.2.10)

for p > 0. We use the abbreviation X ∼ G(p, α) to indicate that a random
variable X is gamma distributed with the density function (1.2.9) for given
parameters α and p. We plot in Fig.1.2.5 the density of the gamma distribution
for α = 0.5 and p = 2.

In the special case α = 0.5 the gamma distribution is equivalent to the
chi-square distribution with n = 2p degrees of freedom. For n ∈ N this dis-
tribution is obtained as that of a random variable X, that is the sum of the
squares of n = 2p independent standard Gaussian random variables. We ab-
breviate this by writing X ∼ χ2(n). Thus, Fig. 1.2.5 also shows a chi-square
density with n = 4 degrees of freedom.

Let X denote a chi-square distributed random variable with n degrees of
freedom. Its distribution function has the form

FX(x) = χ2(x; n) =
∫ x

0

exp
{
−u

2

} (
u
2

)n
2 −1

2 Γ
(

n
2

) du = 1 −
Γ
(

x
2 ; n

2

)
Γ
(

n
2

) (1.2.11)
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Fig. 1.2.5. The gamma density for α = 0.5 and p = 2

for x ≥ 0, where

Γ (u; a) =
∫ ∞

u

ta−1 exp{−t} dt (1.2.12)

is the incomplete gamma function for u ≥ 0, a > −1, see Abramowitz & Stegun
(1972) and Johnson, Kotz & Balakrishnan (1995).

Non-Central Chi-Square Distribution

For a non-central chi-square distributed random variable X ∼ χ2(n, �) with
n ≥ 0 degrees of freedom and non-centrality parameter � > 0 its distribution
function has the form

FX(x) = χ2(x; n, �) =
∞∑

k=0

exp
{
− �

2

} (
�
2

)k
k !

(
1 −

Γ
(

x
2 ; n+2k

2

)
Γ
(

n+2k
2

)
)

(1.2.13)

for x ≥ 0. In some sense, the non-central chi-square distribution is a weighted
sum of central chi-square distributions with Poisson probabilities as weights.
The corresponding density function is given as

fX(x) =
1
2

(x

�

)n
4 − 1

2
exp
{
−� + x

2

}
In

2 −1

(√
� x
)

, (1.2.14)

for x > 0. Here Iν(·) is the modified Bessel function of the first kind with
index ν, which is of the form

Iν(z) =
(z

2

)ν ∞∑
j=0

(
z2

4

)j

j ! Γ (j + ν + 1)
. (1.2.15)
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Fig. 1.2.6. Student t density for n = 4 degrees of freedom

Central Student t Distribution

Let Y ∼ N(0, 1) be a standard Gaussian distributed random variable and
Z ∼ χ2(n) be an independent chi-square distributed random variable with
n > 0 degrees of freedom. Then the random variable

X =
Y√

Z
n

(1.2.16)

turns out to be a central Student t, or in short a Student t, distributed with
n degrees of freedom. Its density function is given by

fX(x) =
Γ (n+1

2 )
Γ (n

2 )
√

π n

(
1 +

x2

n

)−n+1
2

, (1.2.17)

for x ∈ 
. We write X ∼ t(n) if the random variable X has a Student t
distribution with n degrees of freedom. In Fig.1.2.6 we plot the density of the
Student t distribution for n = 4 degrees of freedom. As will be shown later,
this distribution seems to model log-returns of indices extremely well.

It is interesting to express the Student t distribution function Ft(n)(x) in
terms of rational and trigonometric functions for small integers n, see Shaw
(2005). For n = 1 one obtains in this way the standard Cauchy distribution

Ft(1)(x) =
1
2

+
1
π

tan−1(x), (1.2.18)

where tan−1(·) expresses the inverse function of tan(·). Further Student t
distribution functions are given by
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Ft(2)(x) =
1
2

+
x

2
√

x2 + 2
, (1.2.19)

Ft(3)(x) =
1
2

+
1
π

tan−1

(
x√
3

)
+

√
3 x

π (x2 + 3)
, (1.2.20)

Ft(4)(x) =
1
2

+
x (x2 + 6)
2 (x2 + 4)

3
2
, (1.2.21)

Ft(5)(x) =
1
2

+
1
π

tan−1

(
x√
5

)
+

√
5 x (3x2 + 25)
3 π (x2 + 5)2

, (1.2.22)

Ft(6)(x) =
1
2

+
x (2x4 + 30x2 + 135)

4 (x2 + 6)
5
2

. (1.2.23)

Symmetric Generalized Hyperbolic Distribution (*)

Various authors have proposed asset price models with log-returns that relate
to the rich class of symmetric generalized hyperbolic (SGH) distributions. This
class of distributions was extensively examined by Barndorff-Nielsen (1977),
see Hurst & Platen (1997) for a study on log-returns. We shall use this class
later on to identify the distribution that fits best observed log-returns.

The SGH density function for a random variable X has the form

fX(x) =
1

δ Kλ(α δ)

√
α δ

2 π

(
1 +

(x − μ)2

δ2

) 1
2 (λ− 1

2 )
Kλ− 1

2

(
α δ

√
1 +

(x − μ)2

δ2

)

(1.2.24)
for x ∈ 
, where λ ∈ 
 and α, δ ≥ 0. We set α �= 0 if λ ≥ 0 and δ �= 0 if λ ≤ 0.
Here Kλ(·) is the modified Bessel function of the third kind with index λ, see
Abramowitz & Stegun (1972). It can be defined by the integral representation

Kλ(z) =
1
2

∫ ∞

0

uλ−1 exp
{
−1

2
z

(
u +

1
u

)}
du (1.2.25)

for z ∈ (0,∞). For λ = η + 1
2 , where η is a nonnegative integer, one has the

explicit expression

Kη+ 1
2
(z) =

√
π

2 z
exp{−z}

η∑
�=0

(η + �)!
(η − �)! �!

(2 z)−�. (1.2.26)

The SGH density is a four parameter density. The parameter μ is a location
parameter. The two shape parameters for its tails are λ and ᾱ = α δ, defined
so that they are invariant under scale transformations. The other parameters
contribute to the scaling of the density. We define the parameter c as the
unique scale parameter such that

c2 =

⎧⎨
⎩

2 λ
α2 if δ = 0 for λ > 0, ᾱ = 0,

δ2 Kλ+1(ᾱ)
ᾱ Kλ(ᾱ) otherwise.

(1.2.27)
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It can be shown that as λ → ±∞ and/or ᾱ → ∞ the SGH density
asymptotically approaches the Gaussian density.

To illustrate certain typical SGH densities we shall describe four special
cases of the SGH density in the sequel. These coincide with log-return densities
of important asset price models suggested in the literature.

Student t Density (*)

Praetz (1972) and Blattberg & Gonedes (1974) proposed for log-returns a
Student t density with degrees of freedom n > 0. This is also the log-return
density that arises from observations over long periods of time generated by
the minimal market model (MMM), which will be derived in Chap. 13, see
also Platen (2001). This density is obtained from the above SGH density for
the shape parameters λ = −1

2n < 0 and ᾱ = 0, where α = 0 and δ = ε
√

n.
Using these parameter values the Student t density function for X has then
the form

fX(x) =
Γ (n+1

2 )
ε
√

π nΓ (n
2 )

(
1 +

(x − μ)2

ε2 n

)−n+1
2

(1.2.28)

for x ∈ 
, where Γ (·) is again the gamma function, see (1.2.10). Equation
(1.2.28) expresses a generalization of the probability density (1.2.17) of a
central Student t distributed random variable with n degrees of freedom. The
Student t density is a three parameter density. The degree of freedom n =
−2λ is the shape parameter, with smaller n implying larger tail heaviness for
the density. This means that there is a larger probability of extreme values.
Furthermore, when the degrees of freedom increase, that is n → ∞, then the
Student t density asymptotically approaches the Gaussian density. We plot in
Fig. 1.2.7 the central Student t density in logarithmic scale in dependence on
the degrees of freedom n.

Normal-Inverse Gaussian Density (*)

Barndorff-Nielsen (1995) proposed log-returns to follow a normal-inverse
Gaussian mixture distribution. The corresponding density arises from the
SGH density when the shape parameter λ = −1

2 is chosen. For this parameter
value it follows by (1.2.24) that the probability density function of X is then

fX(x) =
√

ᾱ exp{ᾱ}
c π

(
1 +

(x − μ)2

ᾱ c2

)− 1
2

K1

(
ᾱ

√
1 +

(x − μ)2

ᾱ c2

)
(1.2.29)

for x ∈ 
, where c2 = δ2

ᾱ . The normal-inverse Gaussian density is a three
parameter density. The parameter ᾱ is the shape parameter for the tails
with smaller ᾱ implying larger tail heaviness. Furthermore, when ᾱ → ∞
the normal-inverse Gaussian density asymptotically approaches the Gaussian
density. Figure 1.2.8 shows the normal-inverse Gaussian density in logarithmic
scale in dependence on the shape parameter ᾱ.
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Fig. 1.2.7. Student t density under log scale

Fig. 1.2.8. Normal-inverse Gaussian density under log scale

Hyperbolic Density (*)

Eberlein & Keller (1995) and Küchler, Neumann, Sørensen & Streller (1999)
proposed models, where log-returns appear to be hyperbolicly distributed.
This occurs for the choice of the shape parameter λ = 1 in the SGH density.
Using this parameter value the probability density function of X is

fX(x) =
1

2 δ K1(ᾱ)
exp

{
−ᾱ

√
1 +

(x − μ)2

δ2

}
(1.2.30)

for x ∈ 
, where

δ2 =
c2 ᾱ K1(ᾱ)

K2(ᾱ)
.
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Fig. 1.2.9. Hyperbolic density under log scale

The hyperbolic density is a three parameter density. The parameter ᾱ is the
shape parameter with smaller ᾱ implying larger tail heaviness. Furthermore,
when ᾱ → ∞ the hyperbolic density asymptotically approaches the Gaussian
density. In Fig. 1.2.9 we graph the hyperbolic density in a logarithmic scale.

Variance Gamma Density (*)

Madan & Seneta (1990) proposed that log-returns are distributed with a
normal-variance gamma mixture distribution. This case is obtained when the
shape parameters are such that λ > 0 and ᾱ = 0, that is, δ = 0 and α =

√
2 λ
c .

With these parameter values the probability density function of X is

fX(x) =

√
λ

c
√

π Γ (λ) 2λ−1

(√
2 λ

|x − μ|
c

)λ− 1
2

Kλ− 1
2

(√
2 λ

|x − μ|
c

)
(1.2.31)

for x ∈ 
. The variance gamma density is a three parameter density. The
parameter λ is the shape parameter with smaller λ implying larger tail heav-
iness. Furthermore, when λ → ∞ the variance gamma density asymptotically
approaches the Gaussian density. Figure 1.2.10 plots the logarithm of the
variance gamma density.

The densities of the Student t, normal inverse Gaussian, hyperbolic and
variance gamma distribution look very similar when plotted directly. However,
their tail densities highlight significant differences. One can see, for instance,
that for large ᾱ and/or large |λ| the densities are all close to the Gaussian
density. Therefore, we have plotted the corresponding densities in logarithmic
scale. In general, it is a challenging problem to identify for log-returns the
type of distributions that fits best observed data, as will be discussed later
on.
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Fig. 1.2.10. Variance gamma density under log scale

1.3 Moments of Random Variables

Figure 1.1.2 clearly shows that stock log-returns can vary considerably. There-
fore, it is important to provide measures for the variability of random vari-
ables. Moments, which we shall introduce in the following, provide the most
common variability measures.

Mean

The first of these moments is the arithmetic average that is weighted by the
likelihood of occurrence. It is usually called the mean, expectation or simply
first moment of the given random variable X and is denoted by E(X). For a
discrete random variable X the mean is defined as

μX = E(X) =
∞∑

i=0

xi pi, (1.3.1)

where the summation is over all indices of the possible values taken by the ran-
dom variable. This definition of the mean is readily suggested by the relative
frequency interpretation of the probabilities that we discussed in Sect. 1.1.

For example, in the case of a two-point distributed random variable X,
which takes the value x1 with probability p1 and x2 with probability p2 =
1 − p1, we have the mean

μX = x1 p1 + x2 (1 − p1) = x2 + (x1 − x2) p1. (1.3.2)

Another example is obtained by computing the mean for the Poisson distri-
bution with the probabilities (1.1.30). Here we have for X ∼ P (λ) the mean
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μX =
∞∑

i=0

i
λi

i!
exp{−λ} = λ. (1.3.3)

When a continuous random variable has a probability density fX , then the
corresponding expression for its mean is

μX = E(X) =
∫ ∞

−∞
x fX(x) dx. (1.3.4)

One may say that the product fX(x) dx approximates the probability that X
takes its value in the interval (x, x + dx). Note the similarity between (1.3.4)
and (1.3.1).

Since X is a random variable defined on Ω, then (1.3.1) and (1.3.4) can
both be equivalently expressed as an integral with respect to the measure P .
That is, we can write

E(X) =
∫

Ω

X(ω) dP (ω). (1.3.5)

Of course, the above definitions for the mean assume that the summation
over the possibly infinite series (1.3.1) and the integral (1.3.4) actually exist,
that is, they are finite and well defined for each subset of Ω. This is not
always the case, as can be seen from Exercise 1.12 at the end of this chapter.
To ensure that the corresponding means are well defined and exist, a necessary
and sufficient condition is that X is integrable, that is,

E(|X|) =
∫

Ω

|X(ω)| dP (ω) < ∞. (1.3.6)

If E(|X|) = ∞, then we say X is not integrable and E(X) does not exist.
However, there is no problem in formally defining the mean, even if E(X) < ∞
or E(|X|) = ∞.

Furthermore, for p ≥ 1 we say that X is p-integrable, if

E(|X|p) =
∫

Ω

|X(ω)|p dP (ω) < ∞. (1.3.7)

In particular, if (1.3.7) holds for the case p = 2 we call the random variable
X square integrable.

Let us now compute the means of certain continuous random variables
introduced in Sect. 1.2:

The mean of a U(a, b) uniformly distributed random variable X is according
to (1.3.4) and (1.2.3) of the form

μX =
∫ ∞

−∞
x fX(x) dx =

∫ b

a

x

b − a
dx =

(a + b)
2

. (1.3.8)
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For a random variable X ∼ Exp(λ) with the exponential distribution (1.2.4)
one obtains

μX =
∫ ∞

0

xλ exp{−λx} dx =
1
λ

. (1.3.9)

For a Gaussian distributed random variable X ∼ N(μ, σ2) with density (1.2.6)
its mean is given by

μX =
∫ ∞

−∞

x√
2 π σ

exp

{
−1

2

(
x − μ

σ

)2
}

dx = μ. (1.3.10)

One can show that a gamma distributed random variable X ∼ G(p, α) with
density (1.2.9) has mean

μX =
∫ ∞

0

x
αp

Γ (p)
exp{−α x}xp−1 dx =

p

α
. (1.3.11)

Finally, we mention that a central Student t distributed random variable X ∼
t(n) with n > 1 degrees of freedom has mean zero, that is

μX =
∫ ∞

−∞
x

Γ (n+1
2 )

Γ (n
2 )

√
π n

(
1 +

x2

n

)−n+1
2

dx = 0. (1.3.12)

We could add further examples but it should now be clear how to obtain the
mean of a random variable with a given density.

Variance

A measure for the spread around the mean μX of the values taken by a random
variable X is given by its variance σ2

X , denoted also by Var(X), which is
defined as

σ2
X = Var(X) = E

(
(X − E(X))2

)
= E((X − μX)2), (1.3.13)

provided that the expression (1.3.13) is finite. Consequently, the variance, also
called the second central moment, is always nonnegative. The square root of
the variance, σX =

√
σ2

X , is called the standard deviation of X. Note that if
Var(X) = 0, then

P (X = E(X)) = 1. (1.3.14)

For a two-point distributed random variable X, taking values x1 with
probability p1 and x2 with probability p2 = 1 − p1, its variance is given by

σ2
X = p1 (1 − p1) (x2 − x1)2. (1.3.15)

For a Poisson distributed random variable X ∼ P (λ) with intensity λ we
obtain from (1.1.30) and (1.3.3) the variance
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σ2
X =

∞∑
i=0

(i − λ)2
λi

i !
exp{−λ} = λ, (1.3.16)

which equals its mean as given by (1.3.3).
It is easy to check that a U(a, b) uniformly distributed random variable X

with density (1.2.3) and mean (1.3.8) has variance

σ2
X =

∫ b

a

(
x − a + b

2

)2 1
b − a

dx =
(b − a)2

12
. (1.3.17)

The variance of an exponentially distributed random variable X ∼ Exp(λ) is,
according to (1.2.4) and (1.3.9), given by

σ2
X =

∫ ∞

0

(
x − 1

λ

)2

λ exp{−λx} dx = λ−2. (1.3.18)

An N(μ, σ2) distributed Gaussian random variable X with density (1.2.6) can
be shown to have a variance that equals σ2, that is

σ2
X =

∫ ∞

−∞
(x − μ)2

1√
2π σ

exp

{
−1

2

(
x − μ

σ

)2
}

dx = σ2. (1.3.19)

The variance of a gamma distributed random variable X ∼ G(p, α) with
density (1.2.9) is of the form

σ2
X =

∫ ∞

0

(
x − p

α

)2 αp

Γ (p)
exp{−α x}xp−1 dx =

p

α2
. (1.3.20)

Finally, for a central Student t distributed random variable X ∼ t(n) we
obtain from (1.2.17) and (1.3.12) the variance

σ2
X =

∫ ∞

−∞
x2 Γ (n+1

2 )
Γ (n

2 )
√

π n

(
1 +

x2

n

)−n+1
2

dx =
n

n − 2
, (1.3.21)

as long as we have degrees of freedom n > 2. A central Student t distribution
with n ≤ 2 degrees of freedom has no finite variance.

Skewness

Some random variables have probability densities with non-symmetric shapes.
One way to measure their asymmetry is to compute the skewness βX of the
corresponding density. The skewness of a random variable X is measured using
the centralized and normalized third moment, that is

βX = E

((
X − μX

σX

)3
)

. (1.3.22)
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For a random variable X we say that its density is called positively skewed if
βX > 0, negatively skewed if βX < 0 and symmetric if βX = 0.

For a two-point distributed random variable, taking values x1 with prob-
ability p1 and x2 with probability p2 = 1 − p1, we obtain, using (1.3.2) and
(1.3.15), the expression

βX =
√

p1 (1 − p1) (2p1 − 1). (1.3.23)

Consequently, there is no skewness for p1 = 0.5 in the two-point distribution.
For a Poisson distributed random variable X with probabilities given in

(1.1.30) its skewness, using (1.3.3) and (1.3.16), has the form

βX =
∞∑

i=0

(
i − λ√

λ

)3
λi

i !
exp{−λ} =

1√
λ

, (1.3.24)

which means that the corresponding Poisson distribution is positively skewed.
Furthermore, we note from (1.2.3), (1.3.8) and (1.3.17) that a U(a, b) uni-

formly distributed random variable X has zero skewness since

βX =
∫ b

a

⎛
⎝x − a+b

2
(b−a)√

12

⎞
⎠

3

1
b − a

dx = 0. (1.3.25)

This confirms the view that the shape of the uniform density in Fig. 1.2.1 is
symmetric around its mean. On the other hand, an exponentially distributed
random variable X with density (1.2.5) can be shown to have fixed skewness
with value

βX =
∫ ∞

0

(
x − 1

λ
1
λ

)3

λ exp{−λx} dx = 2, (1.3.26)

see also Fig. 1.2.2.
One can show for an N(μ, σ2) distributed Gaussian random variable X,

using (1.3.10) and (1.3.19), that its density (1.2.6) is symmetric and thus has
no skewness. That is, we have

βX =
∫ ∞

−∞

(
x − μ

σ

)3 1√
2π σ

exp

{
−1

2

(
x − μ

σ

)2
}

dx = 0. (1.3.27)

The Gaussian distribution is obviously not a reasonable distribution if one
has to model a strongly skewed random variable.

By (1.3.11) and (1.3.20) a gamma distributed random variable X ∼
G(p, α) has positive skewness

βX =
∫ ∞

0

(
x − p

α√
p

α

)3
αp

Γ (p)
exp{−α x}xp−1 dx =

2
√

p
(1.3.28)
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for p > 0. This is also indicated by inspection of its density, as displayed in
Fig. 1.2.5.

Finally, we mention that the density of a central Student t distributed
random variable X ∼ t(n) with n > 3 degrees of freedom is symmetrically
skewed, that is,

βX =
∫ ∞

−∞

⎛
⎝ x√

n
n−2

⎞
⎠

3

Γ (n+1
2 )

Γ (n
2 )

√
π n

(
1 +

x2

n

)−n+1
2

dx = 0. (1.3.29)

This fact is also apparent from the shape of the density shown in Fig. 1.2.6.

Kurtosis

Extreme values of returns are very important in a range of financial appli-
cations. A large negative log-return of a stock index, which may arise in a
major market correction, can considerably change the overall short term per-
formance of a portfolio. The likelihood of such extreme values can be reflected
by the kurtosis κX , which is the centralized and normalized fourth moment,
that is

κX = E

((
X − μX

σX

)4
)

. (1.3.30)

For a two-point distributed random variable X taking values x1 with prob-
ability p1 and x2 with probability p2 = 1 − p1 we obtain, using (1.3.2) and
(1.3.15),

κX =

(
1
3 − p1 + p2

1

)
3p1(1 − p1)

. (1.3.31)

A Poisson distributed random variable X with intensity λ yields according to
(1.3.3) and (1.3.16) a kurtosis of the form

κX =
∞∑

i=0

(
i − λ

2

)4
λi

i !
exp{−λ} = 3 +

1
λ

. (1.3.32)

The kurtosis of a U(a, b) uniformly distributed random variable X by (1.3.8)
and (1.3.17) is given by the constant

κX =
∫ a

b

(
x − a+b

2
b−a√

12

)4

dx = 1.8. (1.3.33)

For an exponentially distributed random variable X it can be shown, using
(1.3.9) and (1.3.18), that it has a constant kurtosis with

κX =
∫ ∞

0

(
x − 1

λ
1
λ

)4

λ exp{−λx} dx = 9. (1.3.34)
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An N(μ, σ2) distributed Gaussian random variable X has by (1.3.10) and
(1.3.19) the constant kurtosis

κX =
∫ ∞

−∞

(
x − μ

σ

)4 1√
2π σ

exp

{
−1

2

(
x − μ

σ

)2
}

dx = 3. (1.3.35)

If the kurtosis κX of a random variable X is greater than 3, then this random
variable, its density and also its distribution are called leptokurtic.

The kurtosis κX of a gamma distributed random variable X ∼ G(α, β) is
by (1.3.11) and (1.3.20) of the value

κX =
∫ ∞

0

(
x − p

α√
p

α

)4
αp

Γ (p)
exp{−α x}xp−1 dx =

3(p + 2)
p

, (1.3.36)

which is larger for smaller p > 0. Thus a gamma distributed random variable
is leptokurtic.

Finally, by (1.3.12) and (1.3.21) we have for a Student t distributed random
variable X ∼ t(n) the kurtosis

κX =
∫ ∞

0

⎛
⎝ x√

n
n−2

⎞
⎠

4

Γ (n+1
2 )

Γ (n
2 )

√
π n

(
1 +

x2

n

)−n+1
2

dx = 3
(

n − 2
n − 4

)
.

(1.3.37)
This is finite only for n > 4 degrees of freedom. This type of random variable is
also leptokurtic. The Student t density approaches asymptotically a Gaussian
density as n → ∞. This is also reflected in its limiting kurtosis of three as
n → ∞.

In Fig. 1.3.1 we plot the kurtosis

κX =
3 Kλ(ᾱ)Kλ+2(ᾱ)

Kλ+1(ᾱ)2
(1.3.38)

for (ᾱ, λ) ∈ [0,∞) × 
 of a symmetric generalized hyperbolic distributed
random variable, with density given in (1.2.24), in dependence on the two
shape parameters λ and ᾱ. Note that the kurtosis is not finite for a Student t
distribution with degrees of freedom not greater than four. The hyperbolic
distribution yields only a kurtosis of six, which limits its applicability as a
log-return distribution because a much higher kurtosis is typically observed
for log-returns.

It is an empirical stylized fact, which we shall document later on, that the
probability densities of log-returns of stock indices, stock prices and exchange
rates have much thicker tails than that of a Gaussian density, which means
they are leptokurtic. In some cases the kurtosis of a fitted model may not even
be finite. For convenience Table 1.3.1 summarizes the moments for several
distributions discussed previously.
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Fig. 1.3.1. Kurtosis of SGH random variable in dependence on shape parameters
λ and ᾱ

Table 1.3.1. Moments of some distributions

X distributed as μX σ2
X βX κX

Poisson P (λ) λ λ λ
1
2 3 + λ−1

Uniform U(a, b) a+b
2

(b−a)2

12
0 1.8

Exponential Exp(λ) λ−1 λ−2 2 9
Normal N(μ, σ2) μ σ2 0 3

Gamma G(p, α) p
α

p
α2 2 p− 1

2 3
“

p+2
p

”

Chi-square χ2(n) n 2 n 2
√

2
n

3 (n+4)
n

Central Student t t(n) 0 n
n−2

0 3
“

n−2
n−4

”

Finally, let us mention that sometimes the notion of excess kurtosis κX

of a random variable X is used. This is simply the difference between the
kurtosis κX and the value 3 for the Gaussian kurtosis, that is

κX = κX − 3. (1.3.39)

Higher Order Moments

In general, a new random variable is obtained when we transform or combine
random variables by functions or arithmetic operations. For a general trans-
formation of a random variable, however, we need to observe some restrictions
on the transforming function g. These restrictions follow from measurability
constraints to ensure that the resulting variable is still a random variable as
defined in Sect.1.1. More precisely, the function g should be Borel measurable.
This is the case when g is, for instance, continuous or piecewise continuous.
For more details on these issues the reader is referred to Shiryaev (1984).
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When Y = g(X) is a random variable, its expected value, or mean, is

E(g(X)) =
∑
i∈N

g(xi) pi (1.3.40)

when X is discrete, or

E(g(X)) =
∫ ∞

−∞
g(x) fX(x) dx (1.3.41)

when X is continuous with a density function fX . It should be noted that
these expectations may be undefined or infinite.

Typical functions of a random variable X are the polynomials g(x) = xp

or g(x) = (x − μX)p for integers p ≥ 1. The resulting expected value of Y =
g(X) is then called the pth moment

αp = E(Xp) (1.3.42)

or the pth central moment

mp = E((X − μX)p), (1.3.43)

respectively. For instance, the variance

σ2
X = m2 = Var(X) = E

(
(X − μX)2

)
(1.3.44)

is the second central moment of X. We have the following important relation-
ships between moments and central moments:

m1 = 0, m2 = α2 − α2
1, m3 = α3 − 3 α1 α2 + 2 α3

1

m4 = α4 − 4 α1 α3 + 6 α2
1 α2 − 3 α4

1. (1.3.45)

If we use the transform function

g(x) =
(

x − μX

σX

)p

, (1.3.46)

then we obtain the pth normalized central moment, p ≥ 1. As previously
mentioned, the skewness βX is the third normalized central moment and the
kurtosis κX is the fourth normalized central moment. Obviously, the first
normalized central moment is zero and the second normalized central moment
equals one.

Moments provide important information about the given random variable.
Note that the higher order moments need not always provide additional infor-
mation. For example, the Gaussian distribution is completely characterized
by its first two moments, its mean μ and variance σ2.

For an N(μ, σ2) Gaussian distributed random variable X one can show
that its pth normalized central moment has the form

E

((
X − μ

σ

)p)
=
{

1 · 3 · 5 · . . . · (2j − 1) for p = 2j
0 for p = 2j − 1,

(1.3.47)

where j ∈ N .
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The Poisson distribution is already fully characterized by its mean λ. For
a gamma distributed random variable X ∼ Γ (p; α) the rth moment has the
form

E(Xr) =
Γ (p + r)
αr Γ (p)

(1.3.48)

for α > 0, p > 0 and r > −p. With (1.3.46) and (1.3.20) we then obtain in
this case the rth normalized moment

E

((
X

σX

)r)
= p−

r
2

Γ (p + r)
Γ (p)

(1.3.49)

for r > −p, which does not depend on α.

Properties of Moments

General properties of moments can be used to gain an understanding of, and
insight into, many of the problems that arise in quantitative finance. Using
basic properties of integrals, or equivalently those of infinite series in the
discrete case, the first moment, see (1.3.5), inherits the additivity property.
That is

E(a X1 + b X2) = a E(X1) + b E(X2) (1.3.50)

for any two random variables X1, X2 and any two real numbers a, b, provided
the expectations are finite.

When P (X1 ≤ X2) = 1, then we have for the first moment the monotonic-
ity property

E(X1) ≤ E(X2). (1.3.51)

Moreover, Jensen’s inequality

g(E(X)) ≤ E(g(X)) (1.3.52)

holds for any convex function g : 
 → 
, which is a function satisfying the
relation

g(λx + (1 − λ) y) ≤ λ g(x) + (1 − λ) g(y)

for all x, y ∈ 
 and λ ∈ [0, 1]. In particular, for g(x) = |x|, g(x) = x2 and
g(x) = exp{x} this implies

|E(X)| ≤ E (|X|) (1.3.53)

|E(X)| ≤
√

E(X2). (1.3.54)

and
exp{E(X)} ≤ E(exp{X}). (1.3.55)

If E(|X|s) is finite for some s > 0, then for all r ∈ (0, s] and a ∈ 
 we have
the Lyapunov inequality
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(E(|X − a|r))
1
r ≤ (E(|X − a|s))

1
s . (1.3.56)

The Lyapunov inequality shows that, if the sth moment of a random variable
is finite, then any rth moment for r ∈ (0, s] is also finite. For any random
variable X we have the Markov inequality

P (X ≥ a) ≤ 1
a

E(|X|) (1.3.57)

for all a > 0. From this we can deduce the widely used Chebyshev inequality

P (|X − E(X)| ≥ a) ≤ 1
a2

Var(X) (1.3.58)

for all a > 0. For two random variables X1 and X2 the Cauchy-Schwartz
inequality provides the estimate

|E(|X1 X2|)| ≤
√

E ((X1)2) E ((X2)2). (1.3.59)

Further properties of moments can be found at the end of the following section.

Conditional Expectations

The notion of conditional expectation is central to many of the ideas that arise
in probability theory and stochastic calculus. The mean value or expectation
E(X) is the coarsest estimate that we have for an integrable random variable
X, that is, for which E(|X|) < ∞, see (1.3.6). If we know that some event A
has occurred we may be able to improve on this estimate. For instance, suppose
that the event A = {ω ∈ Ω : X(ω) ∈ [a, b]} has occurred. Then in evaluating
our estimate of the value of X we need only to consider corresponding values
of X and weight them according to their likelihood of occurrence, which is
now the conditional probability, see (1.1.13), given this event. The resulting
estimate is called the conditional expectation of X given event A and is denoted
by E(X|A).

For a discrete random variable X with possible values in a set of real num-
bers X = {. . . , x−1, x0, x1, . . .} the conditional probability for the outcome xi

given the event A = {ω ∈ Ω : X(ω) ∈ [a, b]} satisfies

P (X = xi |A) =

⎧⎨
⎩

0 for xi �∈ [a, b]
pi

P

a≤xj≤b pj
for xi ∈ [a, b]

(1.3.60)

and so the conditional expectation is given by

E(X |A) =
∑

xi∈X
xi P (X = xi |A) =

∑
a≤xi≤b xi pi∑
a≤xj≤b pj

. (1.3.61)

More generally, for an integrable random variable X and an event A ∈ A the
conditional expectation E(X |A) is given by
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E(X |A) =

∫
A

X(ω) dP (ω)
P (A)

. (1.3.62)

For a continuous random variable X with a density function fX the corre-
sponding conditional density is

fX(x |A) =

⎧⎨
⎩

0 for x < a or b < x

fX(x)
R b

a
fX(s) ds

for x ∈ [a, b]

with the conditional expectation

E(X |A) =
∫ ∞

−∞
x fX(x |A) dx =

∫ b

a
x fX(x) dx∫ b

a
fX(x) dx

, (1.3.63)

which is conditioned on the event A and is thus a number.
More generally let (Ω,A, P ) be a given probability space with an inte-

grable, see (1.3.6), random variable X. We denote by S a sub-sigma-algebra
of A, thus representing a coarser type of information than is given by A.
We then define the conditional expectation of X with respect to the sub-
sigma-algebra S, which we denote by E(X | S), as an S-measurable function
satisfying ∫

S

E(X | S)(ω) dP (ω) =
∫

S

X(ω) dP (ω), (1.3.64)

see Sect.1.1, for all S ∈ S. The Radon-Nikodym theorem, see Shiryaev (1984),
guarantees the existence and uniqueness of the random variable E (X | S) a.s.
Note that E (X | S) is a random variable defined on the coarser probability
space (Ω,S, P ) and thus on (Ω,A, P ). However, X is usually not a random
variable on (Ω,S, P ), but when it is we have

E
(
X
∣∣S) = X, (1.3.65)

which is the case when X is S-measurable.
Let us consider an example with a random variable X(ω) = ω for ω ∈ [0, 1]

with probability density fX(x) = 2x for x ∈ [0, 1]. We define the sigma-algebra
S generated by the event A = {ω ∈ [0, 0.5]}. It is then an easy calculation by
using (1.3.63) to obtain the conditional expectation

E (X | S) (ω) =

{
E(X |A) = 1

3 for ω ∈ [0, 0.5]

E(X |Ac) = 7
9 for ω �∈ [0, 0.5],

where P (A) = 1
4 , P (Ac) = 3

4 and E(X) = 2
3 .

For nested sigma-algebras S ⊂ T ⊂ A and an integrable random variable
X we have the law of iterated conditional expectations

E
(
E
(
X
∣∣ T ) ∣∣S) = E

(
X
∣∣S) (1.3.66)
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Fig. 1.3.2. Conditional expectation

a.s. and when X is independent of the events in S, see (1.1.16), we have

E
(
X
∣∣S) = E(X), (1.3.67)

a.s. Setting S = {∅, Ω} it can be seen that

E(E (X | S)) = E(X). (1.3.68)

This property is easy to check for the above example, where

E(X) =
1
4

1
3

+
3
4

7
9

=
2
3
.

Conditional expectations have similar properties to those of ordinary in-
tegrals such as linearity

E
(
α X + β Y

∣∣S) = α E
(
X
∣∣S)+ β E

(
Y
∣∣S) , (1.3.69)

where X and Y are integrable random variables and α, β ∈ 
 are deterministic
constants. In addition, if X is S-measurable, then

E(X Y | S) = X E(Y | S). (1.3.70)

Furthermore, we have the order preserving property

E
(
X
∣∣S) ≤ E

(
Y
∣∣S) (1.3.71)

if X ≤ Y a.s.
The conditional expectation E(X | S) is in some sense obtained by smooth-

ing X over the events in S. Thus the finer the information set S, the more
E(X | S) resembles the random variable X.
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Least-Squares Estimate

Let S ⊂ A be a given sigma-algebra and X a square integrable random
variable on (Ω,A, P ). We shall show below that

E
((

X − E
(
X
∣∣S))2) ≤ E

(
(X − Y )2

)
(1.3.72)

for all S-measurable, square integrable random variables Y . Consequently,
E(X | S) is the least-squares estimate or best forecast for X amongst the
random variables Y which are S-measurable.

The conditional expectation E(X | S) can therefore be interpreted as the
best estimate, in a least-squares sense, for X under the information given by
the events in S. In the case where S is the sigma-algebra of events generated
by a random variable Y we may also write E(X |Y ) for the conditional ex-
pectation E(X | S). This notion of a least-squares estimate, or best forecast,
is central to many ideas that arise in stochastic calculus and quantitative
finance.

Since the inequality (1.3.72) has fundamental importance we derive it in
the following few lines:

Let Y be any square integrable S-measurable random variable and X be
a square integrable random variable. Then with Z = E(X

∣∣S) we obtain

E((X −Y )2)=E((X − Z + Z − Y )2)

=E((X −Z)2) + 2 E((X −Z) (Z −Y ))+ E((Z −Y )2). (1.3.73)

Using the above described properties of conditional expectations it follows
that

E((X − Z) (Z − Y ))=E
(
E
(
(X − Z) (Z − Y )

∣∣S))
=E

(
E(X − Z

∣∣S) (Z − Y )
)

= E((Z − Z) (Z − Y )) = 0.

Consequently, (1.3.73) is minimized by choosing Y = Z = E(X
∣∣S), which

proves (1.3.72).

Moment Generating Functions (*)

The cumulants k1, k2, . . . of a random variable X appear as coefficients of the
power series expansion of its Laplace transform ψX , which is also called the
moment generating function, and has the form

ψX(λ) = E(exp{λX}) = 1 + k1 λ + k2
λ2

2
+ k3

λ3

3!
+ k4

λ4

4!
+ . . . (1.3.74)

for λ ∈ 
 if ψX(λ) is finite. Note that ψX(λ) is always finite for λ = 0 but
may be infinite for other values of λ. The derivatives of the Laplace transform



36 1 Preliminaries from Probability Theory

with respect to λ can be used to find the moments. The first four cumulants
are related to the first moment and the central moments up to order four, see
(1.3.45), by the equations

k1 = α1 = μX , k2 = m2, k3 = m3, k4 = m4 − 3m2
2. (1.3.75)

The Laplace transform of an N(μ, σ2) Gaussian distributed random variable
X is given by

ψX(λ) = E (exp{λX}) = exp
{

λμ +
λ2 σ2

2

}
(1.3.76)

for λ ∈ 
. This Laplace transform can be used to obtain expectations for
asset prices under the standard market model, which is the lognormal or
Black-Scholes model. Under this model returns are normalized increments of
exponentials of Gaussian random variables or, equivalently, the log-returns
are Gaussian.

Characteristic Functions (*)

Another important functional of a random variable X is its characteristic
function φX , which is defined as the expectation

φX(θ) = E(exp{ı θ X}), (1.3.77)

for all θ ∈ 
, where ı denotes the imaginary unit, that is ı =
√
−1. This

function always exists and its absolute value is less than or equal to one, that
is

|φX(θ)| ≤ 1. (1.3.78)

It can be used to identify uniquely the distribution of a given random variable.
In this sense the characteristic function encapsulates all of the information
content of the distribution of a random variable. For instance, the pth moment
of X, if it exists, can be obtained by the formula

αp = E(Xp) = (−ı)p dp

(dθ)p
φX(0). (1.3.79)

The mean, variance, skewness and kurtosis can then be derived from these
moments according to (1.3.45). For example, the characteristic function of
the Poisson distribution with intensity λ is from (1.1.31) given by

φX(θ) =
∞∑

n=0

exp{ı θ n} λn

n!
exp{−λ}

= exp{−λ (1 − exp{ı θ})} (1.3.80)

for θ ∈ 
. By using (1.2.6) the characteristic function of an N(μ, σ2) Gaussian
distributed random variable X takes the form
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φX(θ) =
∫ ∞

−∞
exp{ı θ x} 1√

2 π σ
exp

{
−1

2

(
x − μ

σ

)2
}

dx

= exp
{

ı θ μ − θ2 σ2

2

}
(1.3.81)

for θ ∈ 
. Note the similarity with the Laplace transform (1.3.76). For a
G(p, α) gamma distributed random variable, see (1.2.9), we obtain the ex-
pression

φX(θ) =
∫ ∞

0

exp{ı θ x} αp

Γ (p)
exp{−α x}xp−1 dx

=
(

α

α − ı θ

)p

(1.3.82)

for θ ∈ 
. For p = 1 and α = λ this is the characteristic function of an expo-
nential distributed random variable X ∼ Exp(λ), see (1.2.5). Characteristic
functions are often used to analyze and characterize properties of random
variables. They are closely related to Fourier transforms of the correspond-
ing density function. A characteristic function φX(θ) uniquely determines the
density function fX(x) of a continuous random variable X. Indeed, the cor-
responding density function can be found by the inverse Fourier transform

fX(x) =
1

2 π

∫ ∞

−∞
exp{−ı x θ}φX(θ) dθ, (1.3.83)

see Lukacs (1960).
We mentioned at the end of Sect.1.2 that the SGH distribution covers log-

return distributions for a number of important asset price models. Using the
notation and parametrization given there one obtains for the SGH distribution
the characteristic function

φX(θ) = exp{ı μΔθ} Kλ(
√

(α δ)2 + δ2 Δθ2) (α δ)λ

Kλ(α δ) ((α δ)2 + δ2 Δθ2)
1
2 λ

(1.3.84)

for θ ∈ 
. Recall that Kλ is the modified Bessel function of the third kind
with index λ.

If one searches in probability or statistics textbooks and encyclopedias,
then the characteristic function of the Student t distribution is notably absent
or erroneous. However, a simple closed form solution has been found in Hurst
(1997) that is given by the formula

φX(θ) = exp{ı μΔθ}
K 1

2 n(ε
√

nΔ |θ|) (ε
√

nΔ |θ|) 1
2 n

Γ (1
2 n) 2

1
2 n−1

(1.3.85)

for all degrees of freedom n > 0 and θ ∈ 
. For the normal-inverse Gaussian
distribution the characteristic function is
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φX(θ) = exp

{
ı μΔθ + ᾱ

(
1 −
√

1 +
c2 Δθ2

ᾱ

)}
(1.3.86)

for θ ∈ 
, where the parametrization is again as in (1.2.29). Furthermore, the
hyperbolic distribution has the characteristic function

φX(θ) = exp{ı μΔθ} ᾱ K1 (
√

ᾱ2 + δ2 Δθ2)
K1(ᾱ)

√
ᾱ2 + δ2 Δθ2

(1.3.87)

for θ ∈ 
. Finally, a variance gamma distributed random variable X has the
characteristic function

φX(θ) = exp{ı μΔθ}
(

1 +
c2 Δθ2

2 λ

)−λ

(1.3.88)

for θ ∈ 
. A convenient proof for the above results can be obtained by inter-
preting the above distributions as normal mixture distributions. This means
that the random variable is assumed to be conditionally Gaussian distributed
with independent random variance. For instance, a Student t distribution with
n degrees of freedom is obtained when the inverse of the variance is chi-square
distributed with n degrees of freedom. If instead the variance is chi-square dis-
tributed, then a variance gamma distribution arises.

Gaussian Shift (*)

In the context of option pricing, see Buchen & Konstandatos (2005), and other
applications it can be useful to apply the following basic relation for shifted
Gaussian random variables. Let X ∼ N(0, 1) denote a standard Gaussian
random variable, θ ∈ 
 a real valued constant and H(·) a real valued function
of x ∈ 
 with |E(H(X + θ))| < ∞. Then it can be shown by exploiting the
structure of the Gaussian density that the expectation of a shifted standard
Gaussian random variable is of the form

E(H(X + θ)) = E

(
exp
{
−1

2
θ2 + θ X

}
H(X)

)
. (1.3.89)

Interestingly, this allows one also to include the case of more general Gaussian
random variables Y = a + bX for a, b ∈ 
 with mean E(Y ) = a and variance
Var(Y ) = b2, where we derive the following relation from (1.3.89) for a real
valued function G(y) = G(a + b x)

E(G(Y + θ)) = E

(
exp
{
−1

2
θ2 + θ X

}
G(Y )

)
. (1.3.90)

This is an important relation because the function G can be freely chosen.
We shall see later on that the Gaussian shift forms, in principle, the basis
for the probability measure transformation that is used in standard derivative
pricing.
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1.4 Joint Distributions and Random Vectors

For many practical applications we need to consider several random variables
X1, X2, . . ., Xn. For instance, these may represent the daily log-returns of all
stocks in a market. This leads us to the introduction of joint distributions. The
random variables may sometimes be interpreted as components of a vector-
valued random variable, which is then called a random vector.

Joint Distributions

As in the case of a single random variable, we can similarly form a distribution
function for n random variables X1, X2, . . ., Xn, which are defined on the
same probability space. The distribution function FX1,X2,··· ,Xn : 
n → [0, 1]
is called the joint distribution function and is defined by the relation

FX1,X2,··· ,Xn(x1, x2, . . . , xn) = P (Xi ≤ xi, i ∈ {1, 2, . . . , n}) . (1.4.1)

Its properties can be illustrated by considering the case of two random vari-
ables X1 and X2. Then FX1,X2(x1, x2) satisfies the limit condition

lim
xi→−∞

FX1,X2(x1, x2) = 0 (1.4.2)

for i = 1 and fixed x2 ∈ 
 or i = 2 and fixed x1 ∈ 
, and also the limit
condition

lim
x1,x2→∞

FX1,X2(x1, x2) = 1. (1.4.3)

Furthermore, FX1,X2(x1, x2) is nondecreasing and continuous from the right
in x1 and x2. Additionally, it can be seen that

FX1,X2(x1, x2) = FX2,X1(x2, x1) (1.4.4)

for (x1, x2) ∈ 
2. The marginal distribution FX1 satisfies

FX1(x1) = lim
x2→∞

FX1,X2(x1, x2). (1.4.5)

for x1 ∈ 
.
For continuous random variables the joint distribution function is often

differentiable, except possibly at some isolated or boundary points. For a
wide class of continuous random variables there is a density function fX1,X2 :

2 → 
+ = [0,∞) given by

fX1,X2(x1, x2) =
∂2FX1,X2(x1, x2)

∂x1 ∂x2
, (1.4.6)

satisfying

FX1,X2(x1, x2) =
∫ x1

−∞

∫ x2

−∞
fX1,X2(s1, s2) ds1 ds2. (1.4.7)

Here ∂
∂x1

and ∂2

∂x1 ∂x2
denote first and second order partial derivatives.
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Correlated Random Variables

Let us consider two random variables X1 and X2 with means μX1 and μX2

and variances σ2
X1

and σ2
X2

, respectively. Their covariance is then defined as

Cov(X1, X2) = E((X1 − μX1) (X2 − μX2)). (1.4.8)

Obviously, we have for two random variables X1 and X2

Cov(X1, X2) = Cov(X2, X1) (1.4.9)

and for any constant ai ∈ 
, i ∈ {1, 2, 3, 4},

Cov(a1 X1 + a2, a3 X2 + a4) = a1 a3 Cov(X1, X2). (1.4.10)

If X1 and X2 are independent, then

Cov(X1, X2) = 0. (1.4.11)

If X1 = X2, then
Cov(X1, X2) = Var(X1). (1.4.12)

We define the correlation �X1,X2 of X1 and X2 in the form

�X1,X2 =
Cov(X1, X2)√

Var(X1)Var(X2)
. (1.4.13)

By the Cauchy-Schwartz inequality (1.3.59) it follows that

− 1 ≤ �X1,X2 ≤ 1. (1.4.14)

If X2 = a1 X1 + a2 and a1 > 0, then by (1.4.13) and (1.4.8) we have the
correlation

�X1,X2 = 1. (1.4.15)

The correlation �X1,X2 provides a measure of the degrees of linear dependence
between X1 and X2 using second moments. If �X1,X2 �= 0, then we call X1 and
X2 correlated. Two independent random variables are always uncorrelated. For
Gaussian random variables also the converse is true, that is, two uncorrelated
Gaussian random variables are independent. Note however, in general, two
uncorrelated random variables can be still dependent. This is important for
log-returns. These can be highly dependent even if they are uncorrelated. This
point is often missed in practice. A simple example is given when X1 is N(0, 1)
Gaussian distributed and X2 = 1√

2
((X1)2 − 1). Obviously, by (1.3.47) the

correlation is zero. However, both random variables X1 and X2 are strongly
dependent.



1.4 Joint Distributions and Random Vectors 41

Bivariate Gaussian Density

Let A� denote the transpose of the vector or matrix A. A matrix A is regular
if it is invertible. This is the case if its determinant det(A) is not equal to
zero.

An important example of a two-dimensional density function is the bivari-
ate Gaussian density given by

fX1,X2(x1, x2) =
1

2π
√

det(D)
exp

⎧⎨
⎩−1

2

2∑
i,j=1

Ci,j(xi − μi)(xj − μj)

⎫⎬
⎭

(1.4.16)
for (x1, x2)� ∈ 
2, with mean vector μ = (μ1, μ2)� ∈ 
2, covariance matrix
D = [Di,j ]2i,j=1, with components Di,j = E((Xi −μi)(Xj −μj)), i, j ∈ {1, 2},
which is here a 2× 2 regular matrix, and the inverse of the matrix C =
[Ci,j ]2i,j=1. We say that two random variables X1 and X2 having the density
(1.4.16) are jointly Gaussian distributed with mean vector μ and covariance
matrix D.

If the random vector Z = (Z1, Z2)� has independent standard Gaussian
components Z1 and Z2, then there exists an upper triangular, invertible 2×2
matrix S such that D = S�S and the vector

X = (X1, X2)� = S�Z + μ (1.4.17)

is jointly Gaussian with mean vector μ and covariance matrix D. S is some-
times called the Cholesky decomposition of the covariance matrix D.

As an example let us construct pairs of correlated Gaussian random vari-
ables X1, X2 with means μ1 = E(X1) = 0, μ2 = E(X2) = 0 and variances
E(X2

1 ) = 1, E(X2
2 ) = 1

3 and covariance E(X1X2) = 1
2 out of independent

standard Gaussian distributed random variables Z1 and Z2 ∼ N(0, 1). Some
Value at Risk (VaR) evaluations are based on constructions of this type.

We note that for

X1 = S1,1 Z1 + S2,1 Z2 and X2 = S1,2 Z1 + S2,2 Z2 (1.4.18)

with

S =

(
S1,1 S1,2

S2,1 S2,2

)
=

(
1 1

2

0 1√
12

)

we have

D = S� S =

(
1 1

2

1
2

1
3

)
(1.4.19)

and

C = D−1 =

(
4 −6

−6 12

)
,
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Fig. 1.4.1. Bivariate Gaussian density

Fig. 1.4.2. Points with correlated Gaussian coordinates

where
det(C) = C1,1 C2,2 − C1,2 C2,1 = 12.

In Fig. 1.4.1 we show the two-dimensional Gaussian joint density for X1

and X2 with mean vector zero and covariance matrix D given in (1.4.19). We
remark that the lines of the Gaussian density that have the same level have
an elliptic shape.

Figure 1.4.2 shows 3000 simulated realizations of pairs (X1, X2) of these
Gaussian random variables using X1 as the x-coordinate and X2 as the y-
coordinate. Note that the points are concentrated mostly in the area where
the density given in Fig. 1.4.1 is largest.

For the bivariate Gaussian density with covariance matrix (1.4.19) the
correlation coefficient is according to (1.4.18) and (1.4.13) given by
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�X1,X2 =
S1,1 S1,2

σX1 σX2

=
1
2

√
3 ≈ 0.866.

This means that Fig. 1.4.2 displays a set of 3000 outcomes of correlated
Gaussian random variables with the above correlation coefficient.

Conditional Expectation for the Bivariate Gaussian Case

For given random variables X1 and X2 with bivariate Gaussian distribution
one can prove that if Cov(X1, X2) = 0, then X1 and X2 are independent.
Furthermore, if Var(X2) > 0, then

E(X1

∣∣X2) = E(X1) +
Cov(X1, X2)

Var(X1)
(X2 − E(X2)) (1.4.20)

and

E
(
(X1 − E(X1

∣∣X2))2
)

= Var(X1) −
(Cov(X1, X2))2

Var(X2)
. (1.4.21)

Here E(X1 |X2) denotes the conditional expectation of X1 given the informa-
tion generated by X2.

We emphasize that the above constructions use jointly Gaussian dis-
tributed random variables. Now consider two independent N(0, 1) standard
Gaussian random variables Y1 and Y2. From these we construct X1 =
|Y2| sgn(Y1) and X2 = Y2. Using these definitions it can be shown that
X1 ∼ N(0, 1) and X2 ∼ N(0, 1) with

Cov(X1, X2) = E(X1 Y2) − E(X1)E(Y2) = E(Y2 |Y2| sgn(Y1))

= E(Y2 |Y2|)E(sgn(Y1)) = 0,

but X1 and X2 are dependent random variables. As a consequence, X1 and
X2 are not jointly Gaussian distributed and

Cov(|X1|, |X2|) = E(|Y2|2) − (E(|Y2|))2 > 0.

Note that these types of effects need to be taken into account if one is modeling
log-returns of securities.

Properties of Independent Random Variables

Recall the definition of independent random variables in Sect. 1.1. It can be
shown that two random variables X1 and X2 are independent if their joint
and marginal distribution functions satisfy the relation

FX1,X2(x1, x2) = FX1(x1)FX2(x2) (1.4.22)
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for all x1, x2 ∈ 
. This is equivalent to saying that

E(g1(X1) g2(X2)) = E(g1(X1))E(g2(X2)) (1.4.23)

for all measurable functions g1, g2 for which the above expectations exist. If
both FX1 and FX2 have density functions fX1 and fX2 , respectively, and if
X1 and X2 are independent, then their joint distribution function FX1,X2 has
a density function fX1,X2 which satisfies the equation

fX1,X2(x1, x2) = fX1(x1) fX2(x2). (1.4.24)

Moreover, choosing g1 and g2 to equal the identity function in (1.4.23) it
can be seen that for two independent random variables X1 and X2 the product
X1X2 has an expectation given by

E(X1X2) = E(X1)E(X2), (1.4.25)

and the sum X1 + X2 has a variance satisfying the additivity property

Var(X1 + X2) = Var(X1) + Var(X2). (1.4.26)

The Gaussian random variables X1 and X2 obtained from (1.4.18) in the
corresponding example are by (1.4.19) not independent since E(X1X2) = 1

2
but E(X1) = E(X2) = 0. They are correlated, as will be shown in the next
subsection.

First and Second Moments of Random Vectors

Let X = (X1, X2, . . . , Xn)� denote a random vector. Then the expectation is
taken componentwise and we obtain

E(X) = (E(X1), E(X2), . . . , E(Xn))�. (1.4.27)

In the case when B = [Bi,j ]n,m
i,j=1 is an n × m random matrix, where Bi,j is

some random variable we obtain its expectation as the n × m matrix

E(B) = [E(Bi,j)]n,m
i,j=1. (1.4.28)

Let X = (X1, X2, . . . , Xn)� and Y = (Y1, Y2, . . . , Ym)� with n, m ∈ N denote
two random vectors. Their covariance matrix Cov(X,Y) is defined as

Cov(X,Y) = E
(
(X − E(X)) (Y − E(Y))�

)

=
[
E
(
(Xi − E(Xi)) (Yj − E(Yj))

)]n,m

i,j=1
(1.4.29)

The matrix Cov(X) = Cov(X,X) is called the autocovariance matrix of the
vector X.



1.4 Joint Distributions and Random Vectors 45

If X = (X1, X2, . . . , Xn)� is an n-dimensional vector, A = [Ai,j ]n,m
i,j=1

a deterministic n × m matrix and b = (b1, b2, . . . , bm)� a deterministic m-
dimensional vector, then for Y = AX + b it is straightforward to show that

E(Y) = E(AX + b) = AE(X) + b (1.4.30)

and
Cov(Y,Y) = A Cov(X,X)A�. (1.4.31)

For example, if X is a vector of n independent random variables with variance
Var(Xi) = 1, i ∈ {1, 2, . . . , n}, then

Cov(X,X) = I, (1.4.32)

where I is the identity matrix or unit matrix and we have for Y = AX + b
the autocovariance matrix

Cov(Y,Y) = A A�. (1.4.33)

To construct from such a vector X an n-dimensional vector Y with given
autocovariance matrix Cov(Y,Y) it is sufficient to find an upper triangular
n × n-matrix A that satisfies (1.4.33). This matrix is then the Cholesky de-
composition of Cov(Y,Y), see (1.4.17).

For any X = (X1, X2, . . . , Xn)� one has the equality

Var

(
n∑

i=1

Xi

)
=

n∑
i,j=1

Cov(Xi, Xj), (1.4.34)

and if Cov(Xi, Xj) = 0 for i �= j, then

Var

(
n∑

i=1

Xi

)
=

n∑
i=1

Var(Xi). (1.4.35)

Multivariate Joint Distributions

The properties (1.4.2)–(1.4.5) of joint distribution functions generalize to any
number n ≥ 2 of random variables X1, X2, . . ., Xn. With the notation intro-
duced in (1.4.1) the joint distributions FX1,X2,··· ,Xn satisfy

lim
xi→−∞

FX1,X2,··· ,Xn(x1, x2, . . . , xn) = 0 (1.4.36)

for i ∈ {1, 2, . . . , n} and fixed xj , j ∈ {1, 2, . . . , i − 1, i + 1, . . . , n}. We also
have the limit condition

lim
x1,...,xn→+∞

FX1,X2,··· ,Xn(x1, x2, . . . , xn) = 1. (1.4.37)
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In addition, FX1,X2,··· ,Xn is non-decreasing and continuous from the right in xi

for i ∈ {1, 2, . . . , n}. For any permutation {i1, i2, . . . , in} of the set {1, 2, . . . , n}
we have

FXi1 ,Xi2 ,··· ,Xin
(xi1 , xi2 , . . . , xin) = FX1,X2,··· ,Xn(x1, x2, . . . , xn). (1.4.38)

Furthermore, if {i1, i2, . . . , ik} is any subset of the set {1, 2, . . . , n}, then the
marginal distribution FXi1 ,Xi2 ,··· ,Xik

for k ∈ {1, 2, . . . , n} satisfies

FXi1 ,Xi2 ,··· ,Xik
(xi1 , xi2 , . . . , xik

) = lim
xi→+∞

FX1,X2,··· ,Xn(x1, x2, . . . , xn),

(1.4.39)
where this limit has to be taken for all i �∈ {i1, i2, . . . , ik}.

The properties (1.4.22)–(1.4.26) can also be generalized to n random vari-
ables. Thus, the random variables X1, X2, . . ., Xn are independent if their
joint distribution satisfies the equation

FX1,X2,··· ,Xk
(x1, x2, . . . , xk) = FX1(x1)FX2(x2) · · · FXk

(xk) (1.4.40)

for all k ∈ {1, 2, . . . , n}. If in this case each FXi has a density function fXi ,
then FX1,X2,··· ,Xn has a joint density function fX1,X2,...,Xn that takes the form

fX1,X2,...,Xn(x1, x2, . . . , xn) = fX1(x1) fX2(x2) · · · fXn(xn). (1.4.41)

In addition, for n independent random variables X1, X2, · · · , Xn the product
g1(X1) g2(X2) · · · gn(Xn) involving measurable functions g1, g2, . . . , gn has
expectation

E(g1(X1)g2(X2) · · · gn(Xn)) = E(g1(X1))E(g2(X2)) · · · E(gn(Xn)),
(1.4.42)

whereas their sum has variance

Var

(
n∑

i=1

gi(Xi)

)
=

n∑
i=1

Var(gi(Xi)). (1.4.43)

Multivariate Gaussian Density

Consider a random vector X = (X1, X2, . . . , Xn)� with mean vector

μ = (μ1, μ2, . . . , μn)� = (E(X1), E(X2), . . . , E(Xn))� (1.4.44)

and an n×n autocovariance matrix D = Cov(X,X) =
[
D�,m

]n
�,m=1

, where

D�,m = E ((X� − μ�) (Xm − μm)) = E(X� Xm) − E(X�)E(Xm). (1.4.45)

If D is regular, that is det(D) �= 0, and its density is for x = (x1, x2, . . . , xn)�

∈ 
n given by
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fX(x) = fX1,X2,...,Xn(x1, x2, . . . , xn)

=
exp
{
−1

2 (x − μ)� D−1 (x − μ)
}

√
(2 π)n det(D)

, (1.4.46)

then X has an n-dimensional Gaussian density. The components of a Gaussian
distributed random vector are independent if and only if they are pairwise
uncorrelated. Furthermore, if X is an n-dimensional Gaussian random vector,
A a deterministic matrix with m rows and n columns and b a deterministic m-
dimensional vector, then Y = AX + b is an m-dimensional Gaussian random
vector with mean Aμ + b and covariance matrix ADA�.

Conditional Expectation for Multivariate Gaussian Case (*)

We can generalize the relationships (1.4.20) and (1.4.21) on conditional ex-
pectations for bivariate Gaussian random variables to the case where X1 is
a scalar random variable and X2 = (X1

2 , X2
2 , . . . , Xn

2 )� is an n-dimensional
random vector such that X1 and the components of X2 are jointly Gaussian
distributed. One can prove that if Cov(X1, X

i
2) = 0 for all i ∈ {1, 2, . . . , n},

then the random variable X1 and the components of the random vector X2

are independent. In the case when the autocovariance matrix of X2 is in-
vertible, that is Cov(X2,X2)−1 exists, then one has the following conditional
expectations

E(X1

∣∣X2) = E(X1) + Cov(X1,X2) (Cov(X2,X2))−1 (X2 − E(X2))
(1.4.47)

and

E
(
(X1 − E(X1

∣∣X2))2
)

= Var(X1) − Cov(X1,X2) (Cov(X2,X2))−1

×Cov(X1,X2)�. (1.4.48)

These relationships are quite helpful in statistical analysis and for the pricing
of derivatives for multiple securities.

Multivariate Gaussian Shift (*)

The following relationships can be used for Value at Risk calculations and
also in multi-asset option pricing. Let X = (X1, X2, . . . , Xn)� ∈ 
 denote
an n-dimensional vector with correlated N(0, 1) distributed components. The
correlation matrix equals the covariance matrix D with components

D�,m = �X�,Xm ,

see (1.4.13). We denote according to (1.4.46) the corresponding joint density
by
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fX1,X2,...,Xn(x1, x2, . . . , xn) = N ′
n,D(x) =

exp{−1
2 x�D−1 x}√

(2π)n det(D)
(1.4.49)

for x ∈ 
n. The associated Gaussian distribution function for X is given by

FX1,X2,...,Xn(x1, x2, . . . , xn) = Nn,D(x)

= P (Xi < xi, i ∈ {1, 2, . . . , n})

= E

(
n∏

i=1

1{Xi<xi}

)

=
∫ xn

−∞
· · ·
∫ x1

−∞
N ′

n,D(y) dy1 · · · dyn (1.4.50)

for x = (x1, x2, . . . , xn)� ∈ 
n. We say that the n-dimensional vector
x ∼ Nn(0,D) is Gaussian distributed with mean vector μ = (0, . . . , 0)�

and covariance matrix D.
Let X ∼ Nn(0,D) and b = (b1, b2, . . . , bn)� ∈ 
n be an n-dimensional

deterministic vector, then the scalar random variable

Z = b�X

is Gaussian with
Z ∼ N(0, b�D b). (1.4.51)

More generally, let B = [Bi,j ]m,n
i,j=1 be a deterministic m × n matrix, then we

obtain
Y = B X ∼ Nm(0,B D B�), (1.4.52)

where the mean vector is a vector of zeros and the covariance matrix BDB�

is an m × m matrix. Additionally, let us normalize the vector Y by using the

diagonal matrix A = [Ai,j ]mi,j=1, where Ai,i =
√

(B D B�)i,i and Ai,j = 0 for
i �= j. We set

Ỹ = A−1 Y = A−1 B X,

where Ỹ = (Ỹ1, Ỹ2, . . . , Ỹm)� ∼ Nm(0,A−1 B D B�(A−1)�) turns out to
be an m-dimensional Gaussian vector with zero mean vector and standard
variances for its components. Therefore, it follows for ỹ = (ỹ1, ỹ2, . . . , ỹm)� =
A−1y that

P
(
Ỹi < ỹi, i ∈ {1, 2, . . . ,m}

)
= P (Yi < yi, i ∈ {1, 2, . . . ,m})

= Nm,A−1BDB�(A−1)�(A−1 y), (1.4.53)

where the multivariate Gaussian distribution function is given in (1.4.50).
From the properties of the probability density N ′

n,D(x) of an n-dimensional
vector X of standard Gaussian random variables with covariance matrix D,
see (1.4.49), we have the relation
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N ′
n,D(x) = exp

{
θ� x − 1

2
θ�D θ

}
N ′

n,D(x − D θ) (1.4.54)

for any vectors θ,x ∈ 
n. This yields the multivariate Gaussian shift property
for X ∼ Nn(0,D), a deterministic vector θ = (θ1, θ2, . . . , θn)� and a scalar
function H(x) of an n-dimensional vector x = (x1, x2, . . . , xn)� in the form

E(H(X + θ)) = E

(
exp
{
−1

2
θ�D θ + θ�X

}
H(X)

)
. (1.4.55)

This result can be employed in the pricing of derivatives involving several
securities, see Buchen (2004) and Buchen & Konstandatos (2005).

Multivariate Characteristic Functions (*)

Let X = (X1, X2, . . . , Xp)� be a random vector. The characteristic function
φX(θ) with θ = (θ1, θ2, . . . , θp)� is defined for all values of θ ∈ 
p by

φX(θ) = E(exp{ıθ� X}), (1.4.56)

where ı is the imaginary unit. Note that

|φX(θ)| ≤ 1 (1.4.57)

for all θ = (θ1, θ2, . . . , θp)� ∈ 
p. This characteristic function uniquely iden-
tifies the distribution of the corresponding random vector. For a continuous
n-dimensional random vector we have

φX(θ) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

{
ı

p∑
k=1

θk xk

}
fX(x1, . . . , xp) dx1, . . . , dxp.

(1.4.58)
The characteristic function φX(θ) of a p-dimensional jointly Gaussian dis-

tributed random vector X with mean vector μ and covariance matrix D is of
the form

φX(θ) = exp
{

ıμ� θ − 1
2

θ�D θ

}
. (1.4.59)

for all θ ∈ 
p.
Let us give another example using a p-dimensional Student t distributed

random variable X = (X1, X2, . . . , Xp)� with n > 0 degrees of freedom,
zero mean vector μ = (0, . . . , 0)� and regular covariance matrix D. This
random variable can be obtained from a multivariate Gaussian vector Y =
(Y1, Y2, . . . , Yp)�, with mean vector μY = (0, . . . , 0)� and covariance matrix
D, scaled by the inverse of the square root of an independent scalar χ2(n)
distributed random variable Z ∈ (0,∞) such that

X =
Y√

Z
n

, (1.4.60)
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see (1.2.16). If Y is a vector of independent standard Gaussian random vari-
ables, then X has the characteristic function

φX(θ) = E
(
eı θ�X

)
=

Kn
2

(
{nθ�θ} 1

2

)
(nθ�θ)

n
4

Γ (n
2 ) 2

n
2 −1

(1.4.61)

for n > 0 and θ = (θ1, . . . , θp)� ∈ 
p, where Kλ(·) is again the modified Bessel
function of the third kind with index λ. Its probability density function is then
of the form

fX(x) =
Γ (1

2 (n + p))
(π n)

p
2 Γ (n

2 )

(
1 +

x�x

n

)− 1
2 (n+p)

(1.4.62)

for x = (x1, x2, . . . , xp)� ∈ 
p.

Further Properties of Moments (*)

When we are considering n different random variables X1, X2, . . ., Xn, then
it is often convenient to use vector notation. For vectors x = (x1, x2, . . . , xn)�

and y = (y1, y2, . . . , yn)� in 
n recall that the inner product (x,y) and the
Euclidean norm |x| are defined by

(x,y) = x� y =
n∑

i=1

xi yi and |x| =
√

x� x =

√√√√ n∑
i=1

(xi)2, (1.4.63)

respectively. Note that for n = 1 the Euclidean norm coincides with the ab-
solute value operator.

The following moment inequalities are often useful and follow from more
general inequalities for integrals, see Shiryaev (1984). Let X = (X1, X2, . . . ,
Xn)� and Y = (Y1, Y2, . . . , Yn)� be random vectors, then

E(|X + Y|r) ≤ cr (E(|X|r) + E(|Y|r)) (1.4.64)

with cr = 1 for r ≤ 1 and cr = 2r−1 for r ≥ 1. Furthermore,

(E(|X + Y|r))
1
r ≤ (E(|X|r))

1
r + (E(|Y|r))

1
r (1.4.65)

for r ≥ 1, and
E(|(X,Y)|) ≤ (E(|X|p))

1
p (E(|Y|q))

1
q (1.4.66)

for p, q > 1 with 1
p + 1

q = 1.

1.5 Copulas (*)

Copulas play an important role in the analysis and modeling of the dependence
structures of financial random variables. They are used, for instance, in Value
at Risk (VaR) and credit risk modeling applications. Since they are widely
used in different areas in quantitative finance we summarize below a few basic
facts on copulas.
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Copula Function (*)

A copula function can be considered as a basic building block for constructing
multivariate densities and distributions, see Nelsen (1999). A copula function
C : [0, 1]n → [0, 1] in 
n, n ∈ {2, 3, . . .}, is a multivariate distribution func-
tion with the property that its marginal distributions are standard uniform
distributions.

By this definition a copula has the U(0, 1) uniform density as the density
for all of its marginal distributions, see (1.4.5). The following theorem by Sklar
(1959) makes clear that copulas are universal tools for analyzing multivariate
distributions.

Theorem 1.5.1. (Sklar) Let FX1,X2,...,Xn : 
n → [0, 1] be a multivariate
n-dimensional distribution function with marginal distributions FXi : 
 →
[0, 1], i ∈ {1, 2, . . . , n}, then there exists a copula C : [0, 1]n → [0, 1] such that

FX1,X2,...,Xn(x1, x2, . . . , xn) = C (FX1(x1), FX2(x2), . . . , FXn(xn)) (1.5.1)

for (x1, x2, . . . , xn)� ∈ 
n. Moreover, if the marginal distributions have a
density, then the copula is unique.

The proof of this important result exploits the essential fact that one has
for (u1, u2, . . . , un)� ∈ [0, 1]n the relation

C(u1, u2, . . . , un) = FX1,X2,...,Xn

(
F−1

X1
(u1), F−1

X2
(u2), . . . , F−1

Xn
(un)

)
. (1.5.2)

Corollary 1.5.2. For any copula C : [0, 1]n → [0, 1] in 
n, n ∈ {2, 3, . . .},
and distribution functions FX1 , FX2 , . . . , FXn the function

FX1,X2,...,Xn(x1, x2, . . . , xn) = C (FX1(x1), FX2(x2), . . . , FXn(xn)) (1.5.3)

for (x1, x2, . . . , xn)� ∈ 
n defines a multivariate distribution function with
marginal distributions FX1 , FX2 , . . . , FXn .

This means that every multivariate distribution with continuous marginal
distribution function admits a unique copula representation. Furthermore, the
above result shows that copulas and marginal distribution functions are the
building blocks for general multivariate distributions.

Gaussian Copula (*)

One of the most common copulas that arise in finance is the Gaussian copula
CN,D, which is defined as

CN,D(u1, u2, . . . , un) = Nn,D

(
N−1

X1
(u1), N−1

X2
(u2), . . . , N−1

Xn
(un)

)
(1.5.4)

for (u1, u2, . . . , un)� ∈ [0, 1]n. Here D is the regular n × n covariance matrix
of the multivariate Gaussian random variable X, see (1.4.45). It is common
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in standard VaR calculations to use the Gaussian copula if one has to deduce
from the log-returns of the constituents of a portfolio the VaR number of the
portfolio.

As an example, let us consider points (X1, X2)� with Gaussian marginals
that have the bivariate Gaussian copula. Here we set

Xi = �Z0 +
√

1 − �2 Zi (1.5.5)

for i ∈ {1, 2}, where Z0, Z1, Z2 are independent standard Gaussian random
variables. The parameter � ∈ [−1, 1] measures the correlation between Xi

and Z0 for i ∈ {1, 2}. In Fig. 1.4.2 we have plotted 3000 of such points that
relate to a bivariate Gaussian distribution with correlation � ≈ 0.866. The
corresponding bivariate Gaussian copula is then

CN,D(u1, u2) = N2,D

(
N−1

X1
(u1), N−1

X2
(u2)

)
(1.5.6)

for (u1, u2)� ∈ [0, 1]2. Although the Gaussian copula is widely used in VaR
calculations, it usually provides a poor fit to multivariate log-return data.

Student t Copula (*)

It has been reported in Breymann, Dias & Embrechts (2003) that a good fit
for multivariate log-returns of currencies is obtained by the Student t copula
Ct,D,δ with approximately δ ≈ 4 degrees of freedom. This copula is defined
by the function

Ct,D,δ(u1, u2, . . . , un) = tδ,D
(
t−1
X1

(u1), t−1
X2

(u2), . . . , t−1
Xn

(un)
)

(1.5.7)

for (u1, u2, . . . , un)� ∈ [0, 1]n. Here tδ,D is the Student t distribution with
δ > 2 degrees of freedom and D as the covariance matrix of the compo-
nents (X1, X2, . . . , Xn)�, see (1.4.60) and (1.4.62). For currency log-returns
Breymann et al. (2003) identified a Student t copula with approximately four
degrees of freedom.

The isolines of the bivariate t density have an elliptical shape as is the
case for the Gaussian density. This is not surprising due to the representation
(1.4.60) of multivariate Student t distributed random variables as multivariate
Gaussian random variables with independent inverse chi-square distributed
variance.

According to (1.5.7) the bivariate t copula with covariance matrix D and
δ degrees of freedom is obtained from the expression

Ct,D,δ(u1, u2) = tδ,D
(
t−1
X1

(u1), t−1
X2

(u2)
)

(1.5.8)

for (u1, u2)� ∈ [0, 1]2.
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1.6 Exercises for Chapter 1

1.1. Show that Var(X) = E(X2) − (E(X))2.

1.2. Calculate the first and second moments and the variance for a Poisson
random variable with intensity λ > 0.

1.3. Calculate the first and second moments and the variance for a U(a, b)
uniformly distributed random variable.

1.4. Determine for an exponentially distributed random variable with inten-
sity parameter λ > 0 the first and second moments and the variance.

1.5. Calculate the first and second moments and the variance for an N(0, 1)
standard Gaussian distributed random variable.

1.6. Determine the even moments for a standard Gaussian distributed random
variable.

1.7. If a random variable Y is N(μ, σ2) Gaussian distributed show that X =
Y −μ

σ is N(0, 1) distributed.

1.8. If a random variable Y is N(0, 1) Gaussian distributed what is the dis-
tribution of Y 2?

1.9. Compute the expectation of the exponential Y = exp{X} of a Gaussian
N(μ, σ2) distributed random variable.

1.10. (*) Show for a standard Gaussian random variable X ∼ N(0, 1), a
deterministic constant θ ∈ 
 and a real valued function H(x) for x ∈ 
 with
|E(H(X + θ))| < ∞ that

E(H(X + θ)) = E

(
exp
{
−1

2
θ2 + θ X

}
H(X)

)
.

1.11. (*) Prove that for a correlated pair of Gaussian random variables the
corresponding joint density is, in general, not the product of their marginal
densities. When are these random variables independent?

1.12. (*) Compute the mean for the Cauchy distribution with density p(x) =
[π (1 + x2)]−1. Is this mean finite?

1.13. (*) Compute the conditional expectation E(X|A) for a random variable
X(ω) = ω ∈ [0, 1] with density fX(x) = x with respect to the event A = {ω ∈
[0, 0.5]}.
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