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Authors’ Comments on the Corrected Second
Printing

The original printing of the book appeared in 2006. Its very positive reception
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typographical errors in the original printing of the monograph. We would
appreciate receiving any suggestions for further improvements and thank all
those readers who have pointed out misprints and errors to us.

August 2009 Eckhard Platen
David Heath



Preface

In recent years products based on financial derivatives have become an indis-
pensable tool for risk managers and investors. Insurance products have become
part of almost every personal and business portfolio. The management of mu-
tual and pension funds has gained in importance for most individuals. Banks,
insurance companies and other corporations are increasingly using financial
and insurance instruments for the active management of risk. An increasing
range of securities allows risks to be hedged in a way that can be closely tai-
lored to the specific needs of particular investors and companies. The ability
to handle efficiently and exploit successfully the opportunities arising from
modern quantitative methods is now a key factor that differentiates market
participants in both the finance and insurance fields. For these reasons it is
important that financial institutions, insurance companies and corporations
develop expertise in the area of quantitative finance, where many of the asso-
ciated quantitative methods and technologies emerge.

This book aims to provide an introduction to quantitative finance. More
precisely, it presents an introduction to the mathematical framework typically
used in financial modeling, derivative pricing, portfolio selection and risk man-
agement. It offers a unified approach to risk and performance management by
using the benchmark approach, which is different to the prevailing paradigm
and will be described in a systematic and rigorous manner.

This approach uses the growth optimal portfolio as numeraire and the real
world probability measure as pricing measure. The existence of an equivalent
risk neutral probability measure is not required, which is one of the aspects
distinguishing the approach in this book from other more conventional texts
in the area. It is our experience that many practitioners find the use of the
real world probability measure attractive for pricing because it is natural and
pricing can still be carried out even under circumstances when a risk neutral
probability measure cannot exist.

We have attempted to write a multi-purpose book that provides informa-
tion and methods for a wide range of professionals, researchers and graduate
students. It is designed for three groups of readers. In the first instance it
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should provide useful information to financial analysts and practitioners in
the investment, banking and insurance industries. Other professionals at fi-
nancial software companies, hedge funds, consultants, regulatory authorities
and government agencies may significantly benefit from using this book. Sec-
ondly, the book aims to introduce those with a reasonable basic mathematical
background to the area of quantitative finance. Engineers, computer scientists,
numerical analysts, physicists, theoretical chemists, biologists, astrophysicists,
statisticians, econometricians, actuaries and other readers should be able to
gain access to the field through the book. Thirdly, researchers in financial
mathematics will find the later parts of the book interesting and possibly
challenging. In particular, the monograph aims to stimulate further develop-
ments of the benchmark approach.

The material presented is a self-contained introduction that could be part
of a coursework masters or PhD program in quantitative finance. The areas
of probability and statistics, stochastic calculus, optimization and numerical
methods relevant to finance are all introduced. The book has been designed in
a modular way with cross references so that it can also be used as a handbook
allowing relevant definitions, formulas and results to be easily looked up.

The monograph is divided into fifteen chapters. The first two chapters
summarize fundamental results from probability and statistics which are es-
sential for quantitative finance. Some statistical analysis on the log-return
distribution of indices is included at the end of Chap. 2.

The Chaps. 3 and 4 introduce stochastic processes. The stochastic cal-
culus needed for financial modeling using stochastic differential equations is
presented in Chaps. 5 to 7. Stochastic differential equations with jumps are
introduced from a finance perspective. Some of the material goes beyond what
can be found in standard textbooks.

In Chap. 8 basic financial derivatives are introduced from a hedging per-
spective. European call and put options are priced via the corresponding
Black-Scholes partial differential equation. The sensitivities of these option
prices to movements in parameter values are studied. Hedge simulations are
performed, which illustrate derivative pricing and hedging.

Chapter 9 presents various alternative pricing methodologies. First, the
concept of real world pricing is introduced. Several other pricing methods
are shown to be special cases of real world pricing. These include actuarial
pricing, risk neutral pricing and pricing under change of numeraire. The exis-
tence of an equivalent risk neutral probability measure is not required under
the benchmark approach. The chapter concludes by introducing the Girsanov
theorem, the Bayes rule and the Feynman-Kac formula.

Chapter 10 develops a unified modeling framework for continuous financial
markets under the benchmark approach. It presents a range of new concepts
and ideas that do not fit under the presently prevailing approaches. A diversi-
fication theorem is derived, which shows under some regularity condition that
diversified portfolios approximate the growth optimal portfolio. This allows
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us to interpret a diversified market index as a proxy for the growth optimal
portfolio.

Chapter 11 derives results on portfolio optimization via the maximization
of Sharpe ratios. The capital asset pricing model (CAPM), the Markowitz
efficient frontier, two fund separation and results on expected utility maxi-
mization, utility indifference pricing, derivative pricing and hedging are also
presented in this chapter.

The modeling of stochastic volatility of stock market indices under the
benchmark approach is discussed in Chap.12. This analysis includes the pric-
ing of index derivatives under models that do not admit an equivalent risk
neutral probability measure. More general volatility models than those per-
mitted under the standard risk neutral approach are covered.

In Chap.13 it is shown that the discounted growth optimal portfolio follows
the dynamics of a time transformed squared Bessel process of dimension four.
Making the drift of the discounted growth optimal portfolio a function of time,
yields the minimal market model. Derivative prices which follow under this
parsimonious model appear to be rather realistic. Long term derivatives can
be realistically priced. These prices deviate significantly from those obtained
under risk neutral pricing because the hypothetical risk neutral measure has
after several years a total mass that is significantly less than one. Extensions
of the minimal market model with random scaling are considered.

In Chap. 14 models are analyzed that permit jumps to model event risk.
Most of the results of previous chapters are generalized to jump diffusion
markets. Two market models illustrate differences in derivative pricing under
the standard risk neutral and the benchmark approach.

Finally, in Chap.15 a brief introduction is given from a unifying perspective
to basic numerical methods for quantitative finance. This introduction covers
scenario simulation, Monte Carlo simulation, tree based methods and finite
difference methods. A binomial tree method is developed for the benchmark
approach and finite difference methods are explained as numerical methods
for systems of coupled ordinary differential equations.

Selected exercises at the end of each chapter should enable the reader
to further develop skills and test the understanding of the subject. Solutions
to these exercises are included at the end of the book. The material can be
taught at different levels. The first sections in most chapters provide a less
technical presentation of the subject. At the end of some sections or chapters
(*)-subsections or (*)-sections have been included. These are more technical
in nature and are usually not necessary for a first reading.

The formulas are numbered according to the chapter and section where
they appear. Assumptions, theorems, lemmas, definitions and corollaries are
numbered sequentially in each section. The most common notations are listed
at the beginning of the book and an index of keywords is given at its end.
Some readers may find the author index at the end of the book useful.

Substantial work is involved in studying the material presented. This
should not be underestimated by the reader. Actively solving exercises is
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strongly recommended. The reward for this demanding work will be a sound
understanding of essential methods in quantitative finance with an emphasis
on the benchmark approach.

The authors would like to thank several colleagues and PhD students for
many valuable suggestions on the manuscript, including Nicola Bruti-Liberati,
Hans Bühlmann, Carl Chiarella, Boris Choy, Morten Christensen, Marc Crad-
dock, Ernst Eberlein, Robert Elliott, Kevin Fergusson, Chris Heyde, John
van der Hoek, Hardy Hulley, Monique Jeanblanc, Leah Kelly, Truc Le, Shane
Miller, Alex Novikov, Alun Pope, Wolfgang Runggaldier and Marc Yor. The
authors would like to express their deep gratitude to Katrin Platen, who orga-
nized all technical work on the book, in particular, many figures. She carefully
and patiently type set the countless versions of the extensive manuscript. Fi-
nally, we like to thank Catriona Byrne from Springer Verlag for her excellent
work and for encouraging us to write this book.

It is greatly appreciated if readers could forward any errors, misprints or
suggested improvements to: eckhard.platen@uts.edu.au

The interested reader is likely to find updated information about the
benchmark approach, as well as, teaching material related to the book on
the webpage of the first author under “Benchmark Approach”:

http://www.business.uts.edu.au/
finance/staff/Eckhard/Benchmark Approach.html

Sydney, Eckhard Platen
March 2006 David Heath

mailto:eckhard.platen@uts.edu.au
http://www.business.uts.edu.au/finance/staff/Eckhard/Benchmark_Approach.html
http://www.business.uts.edu.au/finance/staff/Eckhard/Benchmark_Approach.html
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1

Preliminaries from Probability Theory

This chapter reviews some important results from probability theory and fixes
notation. First we introduce discrete and continuous random variables and
their distributions. Then we discuss functionals of random variables such as
moments. Furthermore, we introduce certain classes of distributions and also
multivariate distributions together with copulas.

1.1 Discrete Random Variables and Distributions

In financial markets one can observe the prices of assets such as stocks, com-
modities, currencies, futures, bonds etc. It is a challenge to model these ran-
dom quantities in a satisfactory manner.

Log-Returns

Let us assume that we observe an asset price at times ti = iΔ for i ∈ {0, 1, . . .}
with time step size Δ > 0. The time Δ between two successive observations is
typically the length of one day. If Xti denotes the asset price at time ti, then
the log-return Rti at this time is defined as

Rti = ln(Xti+1) − ln(Xti) = ln
(
Xti+1

Xti

)
(1.1.1)

for i ∈ {0, 1, . . .}.
We define the daily log-return of an asset price as the daily increment

of the natural logarithm of this price because, as we shall see later on, this
reflects well the growth nature of economies and financial markets. Typically
log-returns exhibit considerable variability.

We focus in this book on the modeling of log-returns while we introduce
the basic concepts of probability, statistics, stochastic processes, stochastic
calculus and stochastic differential equations. It will turn out that stochastic

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,
Springer Finance,
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differential equations provide an ideal mathematical framework for the mod-
eling of financial quantities. In this context log-returns will also allow us to
apply the powerful tools of stochastic calculus. This is not so conveniently
achieved when using, so-called, returns that are of the form

R̃ti =
Xti+1 −Xti

Xti

and closely approximate log-returns when these are small. As we shall see,
log-returns are more tractable in continuous time.

Relative Frequencies and Probabilities

Let us interpret an asset’s log-return Rti as the outcome of an experiment
based on observations of the data. Suppose, for simplicity, that we classify the
log-returns as strictly negative, zero or positive. We denote these elementary
outcomes or states by ω1, ω2, ω3, indicating that we observe a negative, zero
or strictly positive log-return, respectively. We call the set of outcomes or
states Ω = {ω1, ω2, ω3} the sample space for our experiment.

If we repeat our experiment N times, that is, we observe for a stock daily
log-returns on N different days, and count the number N(ωi) of times, that
the outcome ωi occurs, we can form the relative frequency

fi(N) =
N(ωi)
N

.

For smaller N this number usually varies considerably. As N becomes larger,
our experience would indicate that the relative frequency should approach a
limit pi, written as

lim
N→∞

fi(N) = pi,

which we call the probability of outcome ωi.
To illustrate the above example let us look at the daily IBM share price in

US dollars over the period from 1977 until 1997, which is shown in Fig. 1.1.1.
The corresponding log-returns are plotted in Fig. 1.1.2. In Fig. 1.1.3 we then
display the relative frequencies f1(ti), f2(ti) and f3(ti), i ∈ {0, 1, . . .}, of nega-
tive, zero and strictly positive log-returns, respectively, during the time period.
Note that after some wild fluctuations for small time t, at the beginning of
the period, the relative frequency for negative log-returns stabilizes around
a value close to p1 = 0.465. Similarly, we obtain at the end of the period
a value p3 = 0.463 for the relative frequency of strictly positive log-returns.
The value p2 = 0.072 is then obtained for the rather small probability of zero
log-returns. Clearly, we have 0 ≤ pi ≤ 1 for each i ∈ {1, 2, 3} and

∑3
i=1 pi = 1,

that is, the probabilities p1, p2 and p3 add up to one.
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Fig. 1.1.1. IBM share price from 1977 until 1997

Fig. 1.1.2. Log-returns of IBM stock

Probability Space

To analyze a model one is often interested in combinations of outcomes. We
call such a combination an event if we can identify it either by its occurrence
or its non-occurrence. Obviously, if a subset A of the set of outcomes Ω is
an event, then its complement Ac = {ωi ∈ Ω : ωi ∈ A}, which denotes the
set of all ωi from the sample space Ω that do not belong to the set A, must
also be an event. In the case of the above example we might consider the
event A = {ω1, ω2} that corresponds to the occurrence of either a negative or
zero log-return. The complement of this event is then Ac = {ωi ∈ Ω : ωi ∈
{ω1, ω2}} = {ω3}. This is the event {ω3} of a strictly positive log-return.

In particular, the whole sample space Ω is an event, which is called the
sure event since one of its outcomes must always occur. The complement of Ω
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Fig. 1.1.3. Relative frequency over time

is the empty set ∅, which is also defined as an event but never occurs. If A and
B are events, then the event A ∪ B occurs if either A or B occurs, whereas
the event A ∩B occurs if both A and B occur. With A = {ω1, ω2}, as in our
example, and the event B = {ω2} indicating a zero log-return we note that
A ∪ B = {ω1, ω2} ∪ {ω2} = {ω1, ω2} stands for an event consisting of either
negative or zero log-returns and A∩B = {ω1, ω2} ∩ {ω2} = {ω2} is the event
which indicates only a zero log-return.

In the above discussion we have only mentioned experiments with a finite
number of outcomes. However, the introduction of probabilities based on an
infinite set of outcomes and the use of relative frequencies to define probabil-
ities can lead to conceptual subtleties and other mathematical problems. To
resolve these difficulties, Kolmogorov developed in the late 1920s an axiomatic
approach to probability theory. In this approach the probabilities represent
numbers assigned to corresponding events. In what follows we shall employ
this axiomatic framework.

Let us denote by P (A) the probability of the occurrence of an event A
that is taken from the collection of events A that corresponds to the sample
space Ω. Then from corresponding properties of relative frequencies we would
expect these probabilities to satisfy the following relationships

0 ≤ P (A) ≤ 1, (1.1.2)

P (Ac) = 1 − P (A), (1.1.3)

P (∅) = 0, P (Ω) = 1, (1.1.4)

and
P (A ∪B) = P (A) + P (B) (1.1.5)

if A and B are exclusive, that is A∩B = ∅ for events A and B taken from A.
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The above relationships allow us, for a given finite sample space Ω =
{ω1, ω2, . . . , ωn}, consistently to allocate probabilities to each event. One can
deduce that

n⋃

i=1

Ai and
n⋂

i=1

Ai

are events if A1, A2, . . . , An are events, and that

P

(
n⋃

i=1

Ai

)

=
n∑

i=1

P (Ai)

if A1, A2, . . . , An are mutually exclusive, that is if Ai ∩ Aj = ∅ for all i, j ∈
{1, 2, . . . , n} with i = j.

For the above example suppose we assign the probabilities pi = P ({ωi})
for each outcome ωi, i ∈ {1, 2, 3}, as obtained from frequency records. Then
the event A = {ω1, ω2} of non-strictly positive outcomes has, according to
(1.1.5), the probability

P (A) = P ({ω1, ω2}) = P ({ω1} ∪ {ω2}) = P ({ω1}) + P ({ω2}) = p1 + p2.

The essential probabilistic information that characterizes an experiment
can be succinctly summarized in the corresponding triplet (Ω,A, P ) consist-
ing of the sample space Ω, the collection of events A and the probability
measure P , where these have to satisfy certain relationships. In the above
analysis we have considered finite collections of events. To cover the case of
infinite collections we must specify these properties to avoid contradictions.
We assume that the collection of events A is a sigma-algebra, which means
that

Ω ∈ A, (1.1.6)

if A ∈ A then Ac ∈ A, (1.1.7)

if A ∈ A and B ∈ A then A ∪B ∈ A (1.1.8)

and if Ai ∈ A for any i ∈ N = {1, 2, . . .} then

( ∞⋃

i=1

Ai

)

∈ A. (1.1.9)

In the case of infinite collections, equation (1.1.5) is replaced by what is called
countably additive probabilities. This means,

P

( ∞⋃

i=1

Ai

)

=
∞∑

i=1

P (Ai) (1.1.10)

for any sequence (Ai)i∈N of mutually exclusive events.
It can be shown by DeMorgan’s law that a sigma-algebra is closed under

finite and countable intersections of events. In addition, if a set function de-
fined on a sigma-algebra satisfies (1.1.2) and (1.1.10) with P (Ω) = 1, then
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(1.1.3)–(1.1.5) also hold and hence this set function would be a probability
measure.

A triplet (Ω,A, P ) is then called a probability space and the relations
(1.1.2)–(1.1.5) can be shown to form a consistent set of rules for modeling
probabilities in this space. This kind of structure will be used for all of our
modeling work described in this book. Since the models that we can construct
will always remain abstract objects, they can reflect reality only to a limited
extent. It will be our aim to introduce more and more flexible mathematical
structures that provide the potential to model successfully complex stochas-
tic phenomena in finance. However, the reader should never believe that there
is anything like a perfect model. Even if some model were to become very
successful, the market would regularly demand further modifications and ex-
tensions to the model.

The relations (1.1.2)–(1.1.5) allow us to prove in a straightforward manner
that if A,B ∈ A and A ⊆ B then

P (A) ≤ P (B). (1.1.11)

Furthermore, if A,B ∈ A then

P (A ∩Bc) = P (A) − P (A ∩B). (1.1.12)

There may be some events A with P (A) = 0. These are then called null events.
On the other hand, there may be some event B for which P (B) = 1. In this
case we say B has occurred almost surely (a.s.) or with probability one.

Probabilities

The probability P (A) of an event A can be interpreted as a measure of the
likelihood that A occurs. If we have some additional information, such as that
another event has occurred, then our estimate of this likelihood may change.
For instance, if we know in the above example that the event A = {ω1, ω2} of
having no strictly positive log-return has occurred, then conditioned on this
information, the conditional probabilities of observing negative or zero log-
returns will add up to one. We denote by P ({ω1}

∣
∣A) the conditional proba-

bility that a negative log-return, the outcome ω1, will be observed, given that
the event A = {ω1, ω2} has occurred. Note that this conditional probability
can be expressed by the ratio

P ({ω1}
∣
∣A) =

P ({ω1} ∩A)
P (A)

=
P ({ω1})

P ({ω1, ω2})
,

where P (A) > 0. This relation is readily suggested from the ratio of relative
frequencies

f1(N)
f1(N) + f2(N)

=
N(ω1)

N
N(ω1)

N + N(ω2)
N

=
N(ω1)

N(ω1) +N(ω2)
,
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where N(ω1) and N(ω2) denote the number of outcomes ω1 and ω2, respec-
tively, that have occurred out of N repetitions of the experiment.

In general, the conditional probability P (A
∣
∣B) for the event A given that

the event B has occurred is defined by the formula

P (A
∣
∣B) =

P (A ∩B)
P (B)

(1.1.13)

provided P (B) > 0. This formula is also called the Bayes formula. As a
consequence of (1.1.13) one obtains

P (A)P (B
∣
∣A) = P (B)P (A

∣
∣B), (1.1.14)

which is sometimes called Bayes’ Theorem.
Conditional probabilities have similar properties to ordinary probabilities,

for instance, they sum to one, when conditioned on the same B.
The likelihood for the occurrence of an event could be unaffected by

whether or not another event B has occurred. In such a case the conditional
probability P (A

∣
∣B) should equal P (A), which implies together with (1.1.13)

that
P (A ∩B) = P (A)P (B). (1.1.15)

We say that the events A and B are independent if and only if (1.1.15) holds.
By assuming P (B) > 0 and rearranging formula (1.1.15) we see that events
A and B are independent if

P (A) =
P (A ∩B)
P (B)

. (1.1.16)

For instance, if we extend slightly our example and consider the log-returns
from two different days to be independent, then the event characterizing the
log-return from the first day does not affect the event that describes the log-
return for the second day. In this example the second log-return is assumed
to be not influenced by the outcome of the first log-return and vice versa.

More generally we say that m events A1, A2, . . . , Am are independent if

P (Ai1 ∩Ai2 ∩ . . . ∩Aik
) = P (Ai1)P (Ai2) . . . P (Aik

) (1.1.17)

for all k ∈ N and non-empty subsets {i1, i2, . . . , ik} of the set of indices
{1, 2, . . . ,m}.

One can show that if A1, A2, B ∈ A and P (B) > 0, then

P
(
A1 ∩Ac

2

∣
∣B
)

= P
(
A1

∣
∣B
)
− P

(
A1 ∩A2

∣
∣B
)
. (1.1.18)

A sequence of events (Ai)i∈N with Ai ∈ A for all i ∈ N is called a partition
of Ω if

∞⋃

i=1

Ai = Ω, (1.1.19)
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and A� ∩ Am = ∅ for all  = m. This allows us to formulate the following
statement on the total probability. If (Ai)i∈N is a partition ofΩ with P (Ai) > 0
for all i ∈ N , then for any event B ∈ A one obtains the representation

P (B) =
∞∑

i=1

P
(
B
∣
∣Ai

)
P (Ai). (1.1.20)

This formula can be very helpful for calculating the probabilities of certain
events.

Random Variables and Distributions

We are often interested in assigning some numerical quantity to the outcomes
of a probabilistic experiment. For instance, in our stock log-return example,
the quantity X(ω) might take the value 1 for a strictly positive log-return, 0
for a zero log-return and −1 for a negative log-return.

These assigned quantities correspond to the values taken by a function
X : Ω → �, where � = (−∞,∞) is the set of real numbers. In our example
we have

X(ω) =

⎧
⎨

⎩

1 for ω = ω1

0 for ω = ω2

−1 for ω = ω3.
(1.1.21)

More generally, given a probability space (Ω,A, P ) we say, that a function
X : Ω → � is an A-measurable function or a random variable if the set
{ω ∈ Ω : a < X(ω) ≤ b} is an event for each a, b ∈ � with a < b. This means
that this set is an element of A. Using this definition it can be shown that if
X is a random variable, then it holds for any Borel subset of the real line

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ A,

see Shiryaev (1984). We say that two random variables X and Y are indepen-
dent if the corresponding events {ω ∈ Ω : X(ω) ≤ a} and {ω ∈ Ω : Y (ω) ≤ b}
are independent for all a, b ∈ �.

Now it is appropriate to introduce for a random variable X its distribution
function FX : � → [0, 1] that is defined for each real valued x ∈ � by the
relation

FX(x) = P ({ω ∈ Ω : X(ω) ≤ x})

= P (X ≤ x). (1.1.22)

Here we have used in the last term an abbreviated notation for the probability
of an event, which will also be used in other parts of the book. In Fig. 1.1.4
we show the three probabilities, p1 = 0.465, p2 = 0.072 and p3 = 0.463 for the
stock log-return example with possible outcomes −1, 0, 1, respectively, that is
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Fig. 1.1.4. Probabilities for the stock log-return example

Fig. 1.1.5. Distribution for the stock log-return example

P (X = x) =

⎧
⎨

⎩

p1 for x = −1
p2 for x = 0
p3 for x = 1.

(1.1.23)

The distribution function is then according to (1.1.22) given by

FX(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x < −1
p1 for −1 ≤ x < 0

p1 + p2 for 0 ≤ x < 1
1 for 1 ≤ x

(1.1.24)

for x ∈ �, which we plot in Fig. 1.1.5.

Two-Point Distribution

A simple random variable is the indicator function 1A : Ω → {0, 1} of an
event A ∈ A, where
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1A(ω) =
{

1 for ω ∈ A
0 for ω /∈ A.

(1.1.25)

Here the corresponding distribution function is of the form

F1A
(x) =

⎧
⎨

⎩

0 for x < 0
1 − P (A) for 0 ≤ x < 1

1 for 1 ≤ x,
(1.1.26)

where P (A) denotes the probability of the event A. This is an example of a
two-point random variable which takes two distinct real values x1 and x2 with
probabilities p1 and p2 = 1 − p1, respectively, where x1 < x2.

It can be shown that for any random variable X the limit of the value of
the distribution function FX(x) for x tending to minus infinity, x → −∞, is
zero. That is

lim
x→−∞

FX(x) = 0. (1.1.27)

Similarly, it can be verified that

lim
x→∞

FX(x) = 1 (1.1.28)

and FX(x) is non-decreasing in x ∈ �.
The above examples indicate that a distribution function does not have to

be continuous. However, one can show that it is always right-continuous, that
is

lim
h→0+

FX(x+ h) = FX(x) (1.1.29)

for all x ∈ �.

Poisson Distribution

An important discrete random variable is the Poisson random variableX char-
acterized by its mean λ > 0. It can be used to model, for instance, the number
of trades per day that occur for a given stock or the number of bankruptcies
that occur during a year. A Poisson random variable X takes values 0, 1, . . .
without any upper bound. The corresponding probabilities pn = P (X = n)
are the Poisson probabilities that are given by

pn =
λn

n !
exp{−λ} (1.1.30)

for n ∈ {0, 1, . . .}, where λ > 0, n! = 1 · 2 · . . . · n for n ∈ N and 0! = 1. These
probabilities are displayed in Fig. 1.1.6 for the intensity parameter λ = 2. We
write X ∼ P (λ) to indicate that X has a Poisson distribution with intensity
λ.

Let Ω = N = {1, 2, . . .} denote the set of natural numbers. A discrete real
valued random variable X is a measurable function from Ω into a finite or
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Fig. 1.1.6. Poisson probabilities for λ = 2

possibly infinite set of distinct real values x1 < x2 < · · · < xn < · · · with
probabilities pn = P (X = xn) for n ∈ N . Its distribution function FX has
the representation

FX(x) =

{
0 for x < x1

∑n
i=1 pi for xn ≤ x < xn+1,

(1.1.31)

for n ∈ N . FX is a right-continuous step-function with steps of height pn at
x = xn. For this random variable the set {x1, x2, . . .} could be used as the
sample space Ω, with all of its subsets being events.

1.2 Continuous Random Variables and Distributions

The modeling of events in a financial context often requires random variables
that take any value in � = (−∞,∞) or subintervals of �. We call a random
variable X a continuous random variable if the probability P (X = x) is zero
for all x ∈ �. If X is a continuous random variable, then the corresponding
distribution function FX will also be continuous.

In cases where the distribution function FX is differentiable, there exists
a nonnegative function fX , called the density function, such that

fX(x) =
dFX(x)
dx

(1.2.1)

for all x ∈ �. However, FX could be differentiable Lebesgue almost everywhere,
that is except possibly on a set of Lebesgue measure zero. It can be shown
that if FX is absolutely continuous, then it can be expressed as integral of the
form

FX(x) =
∫ x

−∞
fX(s) ds (1.2.2)

for all x ∈ �, where fX is the corresponding density function.
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Fig. 1.2.1. The uniform density with a = 0 and b = 1

We shall now describe some commonly occurring examples of continuous
random variables.

Uniform Distribution

Consider a random variable X which takes values only in a finite interval [a, b),
such that the probability of its being in a given subinterval is proportional to
the length of the subinterval. Then the distribution function is given by

FX(x) =

⎧
⎪⎨

⎪⎩

0 for x < a

x− a
b− a

for a ≤ x < b

1 for b ≤ x,

which is differentiable everywhere except at x = a and x = b. The correspond-
ing density function is then of the form

fX(x) =

{
0 for x /∈ [a, b)
1

b− a
for x ∈ [a, b).

(1.2.3)

We say that the random variable X is in this case uniformly distributed on
[a, b) and use the abbreviation X ∼ U(a, b) to denote this fact. For example,
log-returns of a stock could be modeled by a U(−a, a) distributed random
variable with a parameter a > 0 that describes the largest possible absolute
log-return. The density for a U(0, 1) distributed random variable is shown in
Fig. 1.2.1.

Exponential Distribution

The waiting time between two events when there is no memory kept on the
time when the first event occurred, for instance, bankruptcies, catastrophes
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Fig. 1.2.2. The exponential density for intensity λ = 2

or changes in credit ratings, can be often modeled by a random variable X
with an exponential distribution given by the distribution function

FX(x) =

{
0 for x < 0

1 − exp{−λx} for x ≥ 0
(1.2.4)

for some intensity parameter λ > 0. FX is differentiable everywhere except
when x = 0 and has as corresponding density function

fX(x) =

{
0 for x < 0

λ exp{−λx} for x ≥ 0.
(1.2.5)

We write X ∼ Exp(λ) to indicate that X is an exponentially distributed
random variable. A larger intensity parameter λ means that it is more likely
that the waiting time between two events is shorter. In Fig. 1.2.2 we plot the
density of the exponential distribution for the intensity λ = 2.

Gaussian Distribution

The Gaussian density function given by

fX(x) =
1√
2π σ

exp

{

−1
2

(
x− μ

σ

)2
}

(1.2.6)

for x ∈ � has a bell-shaped graph which is symmetric about x = μ. In
Fig.1.2.3 we show the density of an N(0, 1) distributed random variable which
is also called a standard Gaussian random variable. The corresponding stan-
dard Gaussian distribution function FX(x) is everywhere differentiable and
has a sigmoidal-shaped graph, see Fig. 1.2.4. A random variable X with the
density function (1.2.6) is called a Gaussian random variable and we summa-
rize this fact by writing X ∼ N(μ, σ2).
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Fig. 1.2.3. The standard Gaussian density

Gaussian random variables occur so commonly in many applications, in-
cluding financial ones, that they are often said to be normally distributed. The
log-returns of stocks have been widely modeled as normally distributed ran-
dom variables resulting in the well-known lognormal asset price model which
we shall discuss later in detail. For this standard market model the incre-
ments of the logarithm of the stock price, the log-returns, are assumed to be
normally distributed.

Unfortunately, the Gaussian distribution has no explicit analytic repre-
sentation. Since it is often used in finance, for instance, in option pricing and
Value at Risk calculations, it is useful to have an accurate approximation for
the standard Gaussian distribution function N : � → (0, 1). This function
can be approximated, for instance, by the expression

N(x) =
∫ x

−∞
N ′(z) dz = 1 − 0.5 (1 + 0.0498673470x+ 0.0211410061x2

+0.0032776263x3 + 0.0000380036x4

+0.0000488906x5 + 0.0000053830x6)−16

+ ε(x), (1.2.7)

for x ≥ 0, where we have an error term ε(x) with |ε(x)| < 0.00000015, as
established in Abramowitz & Stegun (1972). To obtain values for N(x) for
x < 0 we can use the relation N(x) = 1 − N(−x). Here N ′(·) denotes the
standard Gaussian density function

N ′(x) =
1√
2π

exp
{
−1

2
x2

}
(1.2.8)

for x ∈ �. In Fig. 1.2.4 we graph the standard Gaussian distribution function.
For statistical and other studies it is helpful to know that, for X ∼ N(μ, σ2),
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Fig. 1.2.4. The standard Gaussian distribution

we have, so-called, k-sigma rules, where |X − μ| < k σ approximately with
probability 0.95 for k = 2, 0.9973 for k = 3 and 0.99994 for k = 4.

Gamma Distribution

A gamma distributed random variable X takes only positive real values and
has a density function

fX(x) =
αp

Γ (p)
exp{−αx}xp−1 (1.2.9)

for 0 < x < ∞ and parameters α > 0 and p > 0. Here Γ denotes the gamma
function given by

Γ (p) =
∫ ∞

0

tp−1 e−t dt (1.2.10)

for p > 0. We use the abbreviation X ∼ G(p, α) to indicate that a random
variable X is gamma distributed with the density function (1.2.9) for given
parameters α and p. We plot in Fig.1.2.5 the density of the gamma distribution
for α = 0.5 and p = 2.

In the special case α = 0.5 the gamma distribution is equivalent to the
chi-square distribution with n = 2p degrees of freedom. For n ∈ N this dis-
tribution is obtained as that of a random variable X, that is the sum of the
squares of n = 2p independent standard Gaussian random variables. We ab-
breviate this by writing X ∼ χ2(n). Thus, Fig. 1.2.5 also shows a chi-square
density with n = 4 degrees of freedom.

Let X denote a chi-square distributed random variable with n degrees of
freedom. Its distribution function has the form

FX(x) = χ2(x;n) =
∫ x

0

exp
{
−u

2

} (
u
2

)n
2 −1

2Γ
(

n
2

) du = 1 −
Γ
(

x
2 ; n

2

)

Γ
(

n
2

) (1.2.11)
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Fig. 1.2.5. The gamma density for α = 0.5 and p = 2

for x ≥ 0, where

Γ (u; a) =
∫ ∞

u

ta−1 exp{−t} dt (1.2.12)

is the incomplete gamma function for u ≥ 0, a > −1, see Abramowitz & Stegun
(1972) and Johnson, Kotz & Balakrishnan (1995).

Non-Central Chi-Square Distribution

For a non-central chi-square distributed random variable X ∼ χ2(n, ) with
n ≥ 0 degrees of freedom and non-centrality parameter  > 0 its distribution
function has the form

FX(x) = χ2(x;n, ) =
∞∑

k=0

exp
{
− �

2

} (
�
2

)k

k !

(

1 −
Γ
(

x
2 ; n+2k

2

)

Γ
(

n+2k
2

)

)

(1.2.13)

for x ≥ 0. In some sense, the non-central chi-square distribution is a weighted
sum of central chi-square distributions with Poisson probabilities as weights.
The corresponding density function is given as

fX(x) =
1
2

(x


)n
4 − 1

2
exp
{
−+ x

2

}
In

2 −1

(√
 x
)
, (1.2.14)

for x > 0. Here Iν(·) is the modified Bessel function of the first kind with
index ν, which is of the form

Iν(z) =
(z

2

)ν ∞∑

j=0

(
z2

4

)j

j !Γ (j + ν + 1)
. (1.2.15)
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Fig. 1.2.6. Student t density for n = 4 degrees of freedom

Central Student t Distribution

Let Y ∼ N(0, 1) be a standard Gaussian distributed random variable and
Z ∼ χ2(n) be an independent chi-square distributed random variable with
n > 0 degrees of freedom. Then the random variable

X =
Y
√

Z
n

(1.2.16)

turns out to be a central Student t, or in short a Student t, distributed with
n degrees of freedom. Its density function is given by

fX(x) =
Γ (n+1

2 )
Γ (n

2 )
√
π n

(
1 +

x2

n

)−n+1
2

, (1.2.17)

for x ∈ �. We write X ∼ t(n) if the random variable X has a Student t
distribution with n degrees of freedom. In Fig.1.2.6 we plot the density of the
Student t distribution for n = 4 degrees of freedom. As will be shown later,
this distribution seems to model log-returns of indices extremely well.

It is interesting to express the Student t distribution function Ft(n)(x) in
terms of rational and trigonometric functions for small integers n, see Shaw
(2005). For n = 1 one obtains in this way the standard Cauchy distribution

Ft(1)(x) =
1
2

+
1
π

tan−1(x), (1.2.18)

where tan−1(·) expresses the inverse function of tan(·). Further Student t
distribution functions are given by
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Ft(2)(x) =
1
2

+
x

2
√
x2 + 2

, (1.2.19)

Ft(3)(x) =
1
2

+
1
π

tan−1

(
x√
3

)
+

√
3x

π (x2 + 3)
, (1.2.20)

Ft(4)(x) =
1
2

+
x (x2 + 6)
2 (x2 + 4)

3
2
, (1.2.21)

Ft(5)(x) =
1
2

+
1
π

tan−1

(
x√
5

)
+

√
5x (3x2 + 25)
3π (x2 + 5)2

, (1.2.22)

Ft(6)(x) =
1
2

+
x (2x4 + 30x2 + 135)

4 (x2 + 6)
5
2

. (1.2.23)

Symmetric Generalized Hyperbolic Distribution (*)

Various authors have proposed asset price models with log-returns that relate
to the rich class of symmetric generalized hyperbolic (SGH) distributions. This
class of distributions was extensively examined by Barndorff-Nielsen (1977),
see Hurst & Platen (1997) for a study on log-returns. We shall use this class
later on to identify the distribution that fits best observed log-returns.

The SGH density function for a random variable X has the form

fX(x) =
1

δ Kλ(α δ)

√
α δ

2π

(
1 +

(x− μ)2

δ2

) 1
2 (λ− 1

2 )
Kλ− 1

2

(

α δ

√

1 +
(x− μ)2

δ2

)

(1.2.24)
for x ∈ �, where λ ∈ � and α, δ ≥ 0. We set α = 0 if λ ≥ 0 and δ = 0 if λ ≤ 0.
Here Kλ(·) is the modified Bessel function of the third kind with index λ, see
Abramowitz & Stegun (1972). It can be defined by the integral representation

Kλ(z) =
1
2

∫ ∞

0

uλ−1 exp
{
−1

2
z

(
u+

1
u

)}
du (1.2.25)

for z ∈ (0,∞). For λ = η + 1
2 , where η is a nonnegative integer, one has the

explicit expression

Kη+ 1
2
(z) =

√
π

2 z
exp{−z}

η∑

�=0

(η + )!
(η − )! !

(2 z)−�. (1.2.26)

The SGH density is a four parameter density. The parameter μ is a location
parameter. The two shape parameters for its tails are λ and ᾱ = α δ, defined
so that they are invariant under scale transformations. The other parameters
contribute to the scaling of the density. We define the parameter c as the
unique scale parameter such that

c2 =

⎧
⎨

⎩

2 λ
α2 if δ = 0 for λ > 0, ᾱ = 0,

δ2 Kλ+1(ᾱ)
ᾱ Kλ(ᾱ) otherwise.

(1.2.27)
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It can be shown that as λ → ±∞ and/or ᾱ → ∞ the SGH density
asymptotically approaches the Gaussian density.

To illustrate certain typical SGH densities we shall describe four special
cases of the SGH density in the sequel. These coincide with log-return densities
of important asset price models suggested in the literature.

Student t Density (*)

Praetz (1972) and Blattberg & Gonedes (1974) proposed for log-returns a
Student t density with degrees of freedom n > 0. This is also the log-return
density that arises from observations over long periods of time generated by
the minimal market model (MMM), which will be derived in Chap. 13, see
also Platen (2001). This density is obtained from the above SGH density for
the shape parameters λ = −1

2n < 0 and ᾱ = 0, where α = 0 and δ = ε
√
n.

Using these parameter values the Student t density function for X has then
the form

fX(x) =
Γ (n+1

2 )
ε
√
π nΓ (n

2 )

(
1 +

(x− μ)2

ε2 n

)−n+1
2

(1.2.28)

for x ∈ �, where Γ (·) is again the gamma function, see (1.2.10). Equation
(1.2.28) expresses a generalization of the probability density (1.2.17) of a
central Student t distributed random variable with n degrees of freedom. The
Student t density is a three parameter density. The degree of freedom n =
−2λ is the shape parameter, with smaller n implying larger tail heaviness for
the density. This means that there is a larger probability of extreme values.
Furthermore, when the degrees of freedom increase, that is n → ∞, then the
Student t density asymptotically approaches the Gaussian density. We plot in
Fig. 1.2.7 the central Student t density in logarithmic scale in dependence on
the degrees of freedom n.

Normal-Inverse Gaussian Density (*)

Barndorff-Nielsen (1995) proposed log-returns to follow a normal-inverse
Gaussian mixture distribution. The corresponding density arises from the
SGH density when the shape parameter λ = −1

2 is chosen. For this parameter
value it follows by (1.2.24) that the probability density function of X is then

fX(x) =
√
ᾱ exp{ᾱ}
c π

(
1 +

(x− μ)2

ᾱ c2

)− 1
2

K1

(

ᾱ

√

1 +
(x− μ)2

ᾱ c2

)

(1.2.29)

for x ∈ �, where c2 = δ2

ᾱ . The normal-inverse Gaussian density is a three
parameter density. The parameter ᾱ is the shape parameter for the tails
with smaller ᾱ implying larger tail heaviness. Furthermore, when ᾱ → ∞
the normal-inverse Gaussian density asymptotically approaches the Gaussian
density. Figure 1.2.8 shows the normal-inverse Gaussian density in logarithmic
scale in dependence on the shape parameter ᾱ.
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Fig. 1.2.7. Student t density under log scale

Fig. 1.2.8. Normal-inverse Gaussian density under log scale

Hyperbolic Density (*)

Eberlein & Keller (1995) and Küchler, Neumann, Sørensen & Streller (1999)
proposed models, where log-returns appear to be hyperbolicly distributed.
This occurs for the choice of the shape parameter λ = 1 in the SGH density.
Using this parameter value the probability density function of X is

fX(x) =
1

2 δ K1(ᾱ)
exp

{

−ᾱ
√

1 +
(x− μ)2

δ2

}

(1.2.30)

for x ∈ �, where

δ2 =
c2 ᾱK1(ᾱ)
K2(ᾱ)

.
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Fig. 1.2.9. Hyperbolic density under log scale

The hyperbolic density is a three parameter density. The parameter ᾱ is the
shape parameter with smaller ᾱ implying larger tail heaviness. Furthermore,
when ᾱ → ∞ the hyperbolic density asymptotically approaches the Gaussian
density. In Fig. 1.2.9 we graph the hyperbolic density in a logarithmic scale.

Variance Gamma Density (*)

Madan & Seneta (1990) proposed that log-returns are distributed with a
normal-variance gamma mixture distribution. This case is obtained when the
shape parameters are such that λ > 0 and ᾱ = 0, that is, δ = 0 and α =

√
2 λ
c .

With these parameter values the probability density function of X is

fX(x) =

√
λ

c
√
π Γ (λ) 2λ−1

(√
2λ

|x− μ|
c

)λ− 1
2

Kλ− 1
2

(√
2λ

|x− μ|
c

)
(1.2.31)

for x ∈ �. The variance gamma density is a three parameter density. The
parameter λ is the shape parameter with smaller λ implying larger tail heav-
iness. Furthermore, when λ → ∞ the variance gamma density asymptotically
approaches the Gaussian density. Figure 1.2.10 plots the logarithm of the
variance gamma density.

The densities of the Student t, normal inverse Gaussian, hyperbolic and
variance gamma distribution look very similar when plotted directly. However,
their tail densities highlight significant differences. One can see, for instance,
that for large ᾱ and/or large |λ| the densities are all close to the Gaussian
density. Therefore, we have plotted the corresponding densities in logarithmic
scale. In general, it is a challenging problem to identify for log-returns the
type of distributions that fits best observed data, as will be discussed later
on.
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Fig. 1.2.10. Variance gamma density under log scale

1.3 Moments of Random Variables

Figure 1.1.2 clearly shows that stock log-returns can vary considerably. There-
fore, it is important to provide measures for the variability of random vari-
ables. Moments, which we shall introduce in the following, provide the most
common variability measures.

Mean

The first of these moments is the arithmetic average that is weighted by the
likelihood of occurrence. It is usually called the mean, expectation or simply
first moment of the given random variable X and is denoted by E(X). For a
discrete random variable X the mean is defined as

μX = E(X) =
∞∑

i=0

xi pi, (1.3.1)

where the summation is over all indices of the possible values taken by the ran-
dom variable. This definition of the mean is readily suggested by the relative
frequency interpretation of the probabilities that we discussed in Sect. 1.1.

For example, in the case of a two-point distributed random variable X,
which takes the value x1 with probability p1 and x2 with probability p2 =
1 − p1, we have the mean

μX = x1 p1 + x2 (1 − p1) = x2 + (x1 − x2) p1. (1.3.2)

Another example is obtained by computing the mean for the Poisson distri-
bution with the probabilities (1.1.30). Here we have for X ∼ P (λ) the mean
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μX =
∞∑

i=0

i
λi

i!
exp{−λ} = λ. (1.3.3)

When a continuous random variable has a probability density fX , then the
corresponding expression for its mean is

μX = E(X) =
∫ ∞

−∞
x fX(x) dx. (1.3.4)

One may say that the product fX(x) dx approximates the probability that X
takes its value in the interval (x, x+ dx). Note the similarity between (1.3.4)
and (1.3.1).

Since X is a random variable defined on Ω, then (1.3.1) and (1.3.4) can
both be equivalently expressed as an integral with respect to the measure P .
That is, we can write

E(X) =
∫

Ω

X(ω) dP (ω). (1.3.5)

Of course, the above definitions for the mean assume that the summation
over the possibly infinite series (1.3.1) and the integral (1.3.4) actually exist,
that is, they are finite and well defined for each subset of Ω. This is not
always the case, as can be seen from Exercise 1.12 at the end of this chapter.
To ensure that the corresponding means are well defined and exist, a necessary
and sufficient condition is that X is integrable, that is,

E(|X|) =
∫

Ω

|X(ω)| dP (ω) < ∞. (1.3.6)

If E(|X|) = ∞, then we say X is not integrable and E(X) does not exist.
However, there is no problem in formally defining the mean, even if E(X) < ∞
or E(|X|) = ∞.

Furthermore, for p ≥ 1 we say that X is p-integrable, if

E(|X|p) =
∫

Ω

|X(ω)|p dP (ω) < ∞. (1.3.7)

In particular, if (1.3.7) holds for the case p = 2 we call the random variable
X square integrable.

Let us now compute the means of certain continuous random variables
introduced in Sect. 1.2:

The mean of a U(a, b) uniformly distributed random variable X is according
to (1.3.4) and (1.2.3) of the form

μX =
∫ ∞

−∞
x fX(x) dx =

∫ b

a

x

b− a
dx =

(a+ b)
2

. (1.3.8)
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For a random variable X ∼ Exp(λ) with the exponential distribution (1.2.4)
one obtains

μX =
∫ ∞

0

xλ exp{−λx} dx =
1
λ
. (1.3.9)

For a Gaussian distributed random variable X ∼ N(μ, σ2) with density (1.2.6)
its mean is given by

μX =
∫ ∞

−∞

x√
2π σ

exp

{

−1
2

(
x− μ

σ

)2
}

dx = μ. (1.3.10)

One can show that a gamma distributed random variable X ∼ G(p, α) with
density (1.2.9) has mean

μX =
∫ ∞

0

x
αp

Γ (p)
exp{−αx}xp−1 dx =

p

α
. (1.3.11)

Finally, we mention that a central Student t distributed random variable X ∼
t(n) with n > 1 degrees of freedom has mean zero, that is

μX =
∫ ∞

−∞
x

Γ (n+1
2 )

Γ (n
2 )

√
π n

(
1 +

x2

n

)−n+1
2

dx = 0. (1.3.12)

We could add further examples but it should now be clear how to obtain the
mean of a random variable with a given density.

Variance

A measure for the spread around the mean μX of the values taken by a random
variable X is given by its variance σ2

X , denoted also by Var(X), which is
defined as

σ2
X = Var(X) = E

(
(X −E(X))2

)
= E((X − μX)2), (1.3.13)

provided that the expression (1.3.13) is finite. Consequently, the variance, also
called the second central moment, is always nonnegative. The square root of
the variance, σX =

√
σ2

X , is called the standard deviation of X. Note that if
Var(X) = 0, then

P (X = E(X)) = 1. (1.3.14)

For a two-point distributed random variable X, taking values x1 with
probability p1 and x2 with probability p2 = 1 − p1, its variance is given by

σ2
X = p1 (1 − p1) (x2 − x1)2. (1.3.15)

For a Poisson distributed random variable X ∼ P (λ) with intensity λ we
obtain from (1.1.30) and (1.3.3) the variance
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σ2
X =

∞∑

i=0

(i− λ)2
λi

i !
exp{−λ} = λ, (1.3.16)

which equals its mean as given by (1.3.3).
It is easy to check that a U(a, b) uniformly distributed random variable X

with density (1.2.3) and mean (1.3.8) has variance

σ2
X =

∫ b

a

(
x− a+ b

2

)2 1
b− a

dx =
(b− a)2

12
. (1.3.17)

The variance of an exponentially distributed random variable X ∼ Exp(λ) is,
according to (1.2.4) and (1.3.9), given by

σ2
X =

∫ ∞

0

(
x− 1

λ

)2

λ exp{−λx} dx = λ−2. (1.3.18)

An N(μ, σ2) distributed Gaussian random variable X with density (1.2.6) can
be shown to have a variance that equals σ2, that is

σ2
X =

∫ ∞

−∞
(x− μ)2

1√
2π σ

exp

{

−1
2

(
x− μ

σ

)2
}

dx = σ2. (1.3.19)

The variance of a gamma distributed random variable X ∼ G(p, α) with
density (1.2.9) is of the form

σ2
X =

∫ ∞

0

(
x− p

α

)2 αp

Γ (p)
exp{−αx}xp−1 dx =

p

α2
. (1.3.20)

Finally, for a central Student t distributed random variable X ∼ t(n) we
obtain from (1.2.17) and (1.3.12) the variance

σ2
X =

∫ ∞

−∞
x2 Γ (n+1

2 )
Γ (n

2 )
√
π n

(
1 +

x2

n

)−n+1
2

dx =
n

n− 2
, (1.3.21)

as long as we have degrees of freedom n > 2. A central Student t distribution
with n ≤ 2 degrees of freedom has no finite variance.

Skewness

Some random variables have probability densities with non-symmetric shapes.
One way to measure their asymmetry is to compute the skewness βX of the
corresponding density. The skewness of a random variable X is measured using
the centralized and normalized third moment, that is

βX = E

((
X − μX

σX

)3
)

. (1.3.22)
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For a random variable X we say that its density is called positively skewed if
βX > 0, negatively skewed if βX < 0 and symmetric if βX = 0.

For a two-point distributed random variable, taking values x1 with prob-
ability p1 and x2 with probability p2 = 1 − p1, we obtain, using (1.3.2) and
(1.3.15), the expression

βX =
√
p1 (1 − p1) (2p1 − 1). (1.3.23)

Consequently, there is no skewness for p1 = 0.5 in the two-point distribution.
For a Poisson distributed random variable X with probabilities given in

(1.1.30) its skewness, using (1.3.3) and (1.3.16), has the form

βX =
∞∑

i=0

(
i− λ√

λ

)3
λi

i !
exp{−λ} =

1√
λ
, (1.3.24)

which means that the corresponding Poisson distribution is positively skewed.
Furthermore, we note from (1.2.3), (1.3.8) and (1.3.17) that a U(a, b) uni-

formly distributed random variable X has zero skewness since

βX =
∫ b

a

⎛

⎝x− a+b
2

(b−a)√
12

⎞

⎠

3

1
b− a

dx = 0. (1.3.25)

This confirms the view that the shape of the uniform density in Fig. 1.2.1 is
symmetric around its mean. On the other hand, an exponentially distributed
random variable X with density (1.2.5) can be shown to have fixed skewness
with value

βX =
∫ ∞

0

(
x− 1

λ
1
λ

)3

λ exp{−λx} dx = 2, (1.3.26)

see also Fig. 1.2.2.
One can show for an N(μ, σ2) distributed Gaussian random variable X,

using (1.3.10) and (1.3.19), that its density (1.2.6) is symmetric and thus has
no skewness. That is, we have

βX =
∫ ∞

−∞

(
x− μ

σ

)3 1√
2π σ

exp

{

−1
2

(
x− μ

σ

)2
}

dx = 0. (1.3.27)

The Gaussian distribution is obviously not a reasonable distribution if one
has to model a strongly skewed random variable.

By (1.3.11) and (1.3.20) a gamma distributed random variable X ∼
G(p, α) has positive skewness

βX =
∫ ∞

0

(
x− p

α√
p

α

)3
αp

Γ (p)
exp{−αx}xp−1 dx =

2
√
p

(1.3.28)
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for p > 0. This is also indicated by inspection of its density, as displayed in
Fig. 1.2.5.

Finally, we mention that the density of a central Student t distributed
random variable X ∼ t(n) with n > 3 degrees of freedom is symmetrically
skewed, that is,

βX =
∫ ∞

−∞

⎛

⎝ x
√

n
n−2

⎞

⎠

3

Γ (n+1
2 )

Γ (n
2 )

√
π n

(
1 +

x2

n

)−n+1
2

dx = 0. (1.3.29)

This fact is also apparent from the shape of the density shown in Fig. 1.2.6.

Kurtosis

Extreme values of returns are very important in a range of financial appli-
cations. A large negative log-return of a stock index, which may arise in a
major market correction, can considerably change the overall short term per-
formance of a portfolio. The likelihood of such extreme values can be reflected
by the kurtosis κX , which is the centralized and normalized fourth moment,
that is

κX = E

((
X − μX

σX

)4
)

. (1.3.30)

For a two-point distributed random variable X taking values x1 with prob-
ability p1 and x2 with probability p2 = 1 − p1 we obtain, using (1.3.2) and
(1.3.15),

κX =

(
1
3 − p1 + p2

1

)

3p1(1 − p1)
. (1.3.31)

A Poisson distributed random variable X with intensity λ yields according to
(1.3.3) and (1.3.16) a kurtosis of the form

κX =
∞∑

i=0

(
i− λ

2

)4
λi

i !
exp{−λ} = 3 +

1
λ
. (1.3.32)

The kurtosis of a U(a, b) uniformly distributed random variable X by (1.3.8)
and (1.3.17) is given by the constant

κX =
∫ a

b

(
x− a+b

2
b−a√

12

)4

dx = 1.8. (1.3.33)

For an exponentially distributed random variable X it can be shown, using
(1.3.9) and (1.3.18), that it has a constant kurtosis with

κX =
∫ ∞

0

(
x− 1

λ
1
λ

)4

λ exp{−λx} dx = 9. (1.3.34)
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An N(μ, σ2) distributed Gaussian random variable X has by (1.3.10) and
(1.3.19) the constant kurtosis

κX =
∫ ∞

−∞

(
x− μ

σ

)4 1√
2π σ

exp

{

−1
2

(
x− μ

σ

)2
}

dx = 3. (1.3.35)

If the kurtosis κX of a random variable X is greater than 3, then this random
variable, its density and also its distribution are called leptokurtic.

The kurtosis κX of a gamma distributed random variable X ∼ G(α, β) is
by (1.3.11) and (1.3.20) of the value

κX =
∫ ∞

0

(
x− p

α√
p

α

)4
αp

Γ (p)
exp{−αx}xp−1 dx =

3(p+ 2)
p

, (1.3.36)

which is larger for smaller p > 0. Thus a gamma distributed random variable
is leptokurtic.

Finally, by (1.3.12) and (1.3.21) we have for a Student t distributed random
variable X ∼ t(n) the kurtosis

κX =
∫ ∞

0

⎛

⎝ x
√

n
n−2

⎞

⎠

4

Γ (n+1
2 )

Γ (n
2 )

√
π n

(
1 +

x2

n

)−n+1
2

dx = 3
(
n− 2
n− 4

)
.

(1.3.37)
This is finite only for n > 4 degrees of freedom. This type of random variable is
also leptokurtic. The Student t density approaches asymptotically a Gaussian
density as n → ∞. This is also reflected in its limiting kurtosis of three as
n → ∞.

In Fig. 1.3.1 we plot the kurtosis

κX =
3Kλ(ᾱ)Kλ+2(ᾱ)

Kλ+1(ᾱ)2
(1.3.38)

for (ᾱ, λ) ∈ [0,∞) × � of a symmetric generalized hyperbolic distributed
random variable, with density given in (1.2.24), in dependence on the two
shape parameters λ and ᾱ. Note that the kurtosis is not finite for a Student t
distribution with degrees of freedom not greater than four. The hyperbolic
distribution yields only a kurtosis of six, which limits its applicability as a
log-return distribution because a much higher kurtosis is typically observed
for log-returns.

It is an empirical stylized fact, which we shall document later on, that the
probability densities of log-returns of stock indices, stock prices and exchange
rates have much thicker tails than that of a Gaussian density, which means
they are leptokurtic. In some cases the kurtosis of a fitted model may not even
be finite. For convenience Table 1.3.1 summarizes the moments for several
distributions discussed previously.
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Fig. 1.3.1. Kurtosis of SGH random variable in dependence on shape parameters
λ and ᾱ

Table 1.3.1. Moments of some distributions

X distributed as μX σ2
X βX κX

Poisson P (λ) λ λ λ
1
2 3 + λ−1

Uniform U(a, b) a+b
2

(b−a)2

12
0 1.8

Exponential Exp(λ) λ−1 λ−2 2 9
Normal N(μ, σ2) μ σ2 0 3

Gamma G(p, α) p
α

p
α2 2 p− 1

2 3
“

p+2
p

”

Chi-square χ2(n) n 2 n 2
√

2
n

3 (n+4)
n

Central Student t t(n) 0 n
n−2

0 3
“

n−2
n−4

”

Finally, let us mention that sometimes the notion of excess kurtosis κX

of a random variable X is used. This is simply the difference between the
kurtosis κX and the value 3 for the Gaussian kurtosis, that is

κX = κX − 3. (1.3.39)

Higher Order Moments

In general, a new random variable is obtained when we transform or combine
random variables by functions or arithmetic operations. For a general trans-
formation of a random variable, however, we need to observe some restrictions
on the transforming function g. These restrictions follow from measurability
constraints to ensure that the resulting variable is still a random variable as
defined in Sect.1.1. More precisely, the function g should be Borel measurable.
This is the case when g is, for instance, continuous or piecewise continuous.
For more details on these issues the reader is referred to Shiryaev (1984).
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When Y = g(X) is a random variable, its expected value, or mean, is

E(g(X)) =
∑

i∈N
g(xi) pi (1.3.40)

when X is discrete, or

E(g(X)) =
∫ ∞

−∞
g(x) fX(x) dx (1.3.41)

when X is continuous with a density function fX . It should be noted that
these expectations may be undefined or infinite.

Typical functions of a random variable X are the polynomials g(x) = xp

or g(x) = (x− μX)p for integers p ≥ 1. The resulting expected value of Y =
g(X) is then called the pth moment

αp = E(Xp) (1.3.42)

or the pth central moment

mp = E((X − μX)p), (1.3.43)

respectively. For instance, the variance

σ2
X = m2 = Var(X) = E

(
(X − μX)2

)
(1.3.44)

is the second central moment of X. We have the following important relation-
ships between moments and central moments:

m1 = 0, m2 = α2 − α2
1, m3 = α3 − 3α1 α2 + 2α3

1

m4 = α4 − 4α1 α3 + 6α2
1 α2 − 3α4

1. (1.3.45)

If we use the transform function

g(x) =
(
x− μX

σX

)p

, (1.3.46)

then we obtain the pth normalized central moment, p ≥ 1. As previously
mentioned, the skewness βX is the third normalized central moment and the
kurtosis κX is the fourth normalized central moment. Obviously, the first
normalized central moment is zero and the second normalized central moment
equals one.

Moments provide important information about the given random variable.
Note that the higher order moments need not always provide additional infor-
mation. For example, the Gaussian distribution is completely characterized
by its first two moments, its mean μ and variance σ2.

For an N(μ, σ2) Gaussian distributed random variable X one can show
that its pth normalized central moment has the form

E

((
X − μ

σ

)p)
=
{

1 · 3 · 5 · . . . · (2j − 1) for p = 2j
0 for p = 2j − 1, (1.3.47)

where j ∈ N .
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The Poisson distribution is already fully characterized by its mean λ. For
a gamma distributed random variable X ∼ Γ (p;α) the rth moment has the
form

E(Xr) =
Γ (p+ r)
αr Γ (p)

(1.3.48)

for α > 0, p > 0 and r > −p. With (1.3.46) and (1.3.20) we then obtain in
this case the rth normalized moment

E

((
X

σX

)r)
= p−

r
2
Γ (p+ r)
Γ (p)

(1.3.49)

for r > −p, which does not depend on α.

Properties of Moments

General properties of moments can be used to gain an understanding of, and
insight into, many of the problems that arise in quantitative finance. Using
basic properties of integrals, or equivalently those of infinite series in the
discrete case, the first moment, see (1.3.5), inherits the additivity property.
That is

E(aX1 + bX2) = aE(X1) + bE(X2) (1.3.50)

for any two random variables X1, X2 and any two real numbers a, b, provided
the expectations are finite.

When P (X1 ≤ X2) = 1, then we have for the first moment the monotonic-
ity property

E(X1) ≤ E(X2). (1.3.51)

Moreover, Jensen’s inequality

g(E(X)) ≤ E(g(X)) (1.3.52)

holds for any convex function g : � → �, which is a function satisfying the
relation

g(λx+ (1 − λ) y) ≤ λ g(x) + (1 − λ) g(y)

for all x, y ∈ � and λ ∈ [0, 1]. In particular, for g(x) = |x|, g(x) = x2 and
g(x) = exp{x} this implies

|E(X)| ≤ E (|X|) (1.3.53)

|E(X)| ≤
√
E(X2). (1.3.54)

and
exp{E(X)} ≤ E(exp{X}). (1.3.55)

If E(|X|s) is finite for some s > 0, then for all r ∈ (0, s] and a ∈ � we have
the Lyapunov inequality
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(E(|X − a|r))
1
r ≤ (E(|X − a|s))

1
s . (1.3.56)

The Lyapunov inequality shows that, if the sth moment of a random variable
is finite, then any rth moment for r ∈ (0, s] is also finite. For any random
variable X we have the Markov inequality

P (X ≥ a) ≤ 1
a
E(|X|) (1.3.57)

for all a > 0. From this we can deduce the widely used Chebyshev inequality

P (|X −E(X)| ≥ a) ≤ 1
a2

Var(X) (1.3.58)

for all a > 0. For two random variables X1 and X2 the Cauchy-Schwartz
inequality provides the estimate

|E(|X1 X2|)| ≤
√
E ((X1)2) E ((X2)2). (1.3.59)

Further properties of moments can be found at the end of the following section.

Conditional Expectations

The notion of conditional expectation is central to many of the ideas that arise
in probability theory and stochastic calculus. The mean value or expectation
E(X) is the coarsest estimate that we have for an integrable random variable
X, that is, for which E(|X|) < ∞, see (1.3.6). If we know that some event A
has occurred we may be able to improve on this estimate. For instance, suppose
that the event A = {ω ∈ Ω : X(ω) ∈ [a, b]} has occurred. Then in evaluating
our estimate of the value of X we need only to consider corresponding values
of X and weight them according to their likelihood of occurrence, which is
now the conditional probability, see (1.1.13), given this event. The resulting
estimate is called the conditional expectation ofX given eventA and is denoted
by E(X|A).

For a discrete random variable X with possible values in a set of real num-
bers X = {. . . , x−1, x0, x1, . . .} the conditional probability for the outcome xi

given the event A = {ω ∈ Ω : X(ω) ∈ [a, b]} satisfies

P (X = xi |A) =

⎧
⎨

⎩

0 for xi ∈ [a, b]
pi

P

a≤xj≤b pj
for xi ∈ [a, b]

(1.3.60)

and so the conditional expectation is given by

E(X |A) =
∑

xi∈X
xi P (X = xi |A) =

∑
a≤xi≤b xi pi
∑

a≤xj≤b pj
. (1.3.61)

More generally, for an integrable random variable X and an event A ∈ A the
conditional expectation E(X |A) is given by
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E(X |A) =

∫
A
X(ω) dP (ω)
P (A)

. (1.3.62)

For a continuous random variable X with a density function fX the corre-
sponding conditional density is

fX(x |A) =

⎧
⎨

⎩

0 for x < a or b < x

fX(x)
R b

a
fX(s) ds

for x ∈ [a, b]

with the conditional expectation

E(X |A) =
∫ ∞

−∞
x fX(x |A) dx =

∫ b

a
x fX(x) dx
∫ b

a
fX(x) dx

, (1.3.63)

which is conditioned on the event A and is thus a number.
More generally let (Ω,A, P ) be a given probability space with an inte-

grable, see (1.3.6), random variable X. We denote by S a sub-sigma-algebra
of A, thus representing a coarser type of information than is given by A.
We then define the conditional expectation of X with respect to the sub-
sigma-algebra S, which we denote by E(X | S), as an S-measurable function
satisfying ∫

S

E(X | S)(ω) dP (ω) =
∫

S

X(ω) dP (ω), (1.3.64)

see Sect.1.1, for all S ∈ S. The Radon-Nikodym theorem, see Shiryaev (1984),
guarantees the existence and uniqueness of the random variable E (X | S) a.s.
Note that E (X | S) is a random variable defined on the coarser probability
space (Ω,S, P ) and thus on (Ω,A, P ). However, X is usually not a random
variable on (Ω,S, P ), but when it is we have

E
(
X
∣
∣S
)

= X, (1.3.65)

which is the case when X is S-measurable.
Let us consider an example with a random variable X(ω) = ω for ω ∈ [0, 1]

with probability density fX(x) = 2x for x ∈ [0, 1]. We define the sigma-algebra
S generated by the event A = {ω ∈ [0, 0.5]}. It is then an easy calculation by
using (1.3.63) to obtain the conditional expectation

E (X | S) (ω) =

{
E(X |A) = 1

3 for ω ∈ [0, 0.5]

E(X |Ac) = 7
9 for ω ∈ [0, 0.5],

where P (A) = 1
4 , P (Ac) = 3

4 and E(X) = 2
3 .

For nested sigma-algebras S ⊂ T ⊂ A and an integrable random variable
X we have the law of iterated conditional expectations

E
(
E
(
X
∣
∣ T
) ∣∣S

)
= E

(
X
∣
∣S
)

(1.3.66)
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Fig. 1.3.2. Conditional expectation

a.s. and when X is independent of the events in S, see (1.1.16), we have

E
(
X
∣
∣S
)

= E(X), (1.3.67)

a.s. Setting S = {∅, Ω} it can be seen that

E(E (X | S)) = E(X). (1.3.68)

This property is easy to check for the above example, where

E(X) =
1
4

1
3

+
3
4

7
9

=
2
3
.

Conditional expectations have similar properties to those of ordinary in-
tegrals such as linearity

E
(
αX + β Y

∣
∣S
)

= αE
(
X
∣
∣S
)

+ β E
(
Y
∣
∣S
)
, (1.3.69)

where X and Y are integrable random variables and α, β ∈ � are deterministic
constants. In addition, if X is S-measurable, then

E(X Y | S) = X E(Y | S). (1.3.70)

Furthermore, we have the order preserving property

E
(
X
∣
∣S
)
≤ E

(
Y
∣
∣S
)

(1.3.71)

if X ≤ Y a.s.
The conditional expectation E(X | S) is in some sense obtained by smooth-

ing X over the events in S. Thus the finer the information set S, the more
E(X | S) resembles the random variable X.
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Least-Squares Estimate

Let S ⊂ A be a given sigma-algebra and X a square integrable random
variable on (Ω,A, P ). We shall show below that

E
((
X − E

(
X
∣
∣S
))2) ≤ E

(
(X − Y )2

)
(1.3.72)

for all S-measurable, square integrable random variables Y . Consequently,
E(X | S) is the least-squares estimate or best forecast for X amongst the
random variables Y which are S-measurable.

The conditional expectation E(X | S) can therefore be interpreted as the
best estimate, in a least-squares sense, for X under the information given by
the events in S. In the case where S is the sigma-algebra of events generated
by a random variable Y we may also write E(X |Y ) for the conditional ex-
pectation E(X | S). This notion of a least-squares estimate, or best forecast,
is central to many ideas that arise in stochastic calculus and quantitative
finance.

Since the inequality (1.3.72) has fundamental importance we derive it in
the following few lines:

Let Y be any square integrable S-measurable random variable and X be
a square integrable random variable. Then with Z = E(X

∣
∣S) we obtain

E((X −Y )2)=E((X − Z + Z − Y )2)

=E((X −Z)2) + 2E((X −Z) (Z −Y ))+E((Z −Y )2). (1.3.73)

Using the above described properties of conditional expectations it follows
that

E((X − Z) (Z − Y ))=E
(
E
(
(X − Z) (Z − Y )

∣
∣S
))

=E
(
E(X − Z

∣
∣S) (Z − Y )

)
= E((Z − Z) (Z − Y )) = 0.

Consequently, (1.3.73) is minimized by choosing Y = Z = E(X
∣
∣S), which

proves (1.3.72).

Moment Generating Functions (*)

The cumulants k1, k2, . . . of a random variable X appear as coefficients of the
power series expansion of its Laplace transform ψX , which is also called the
moment generating function, and has the form

ψX(λ) = E(exp{λX}) = 1 + k1 λ+ k2
λ2

2
+ k3

λ3

3!
+ k4

λ4

4!
+ . . . (1.3.74)

for λ ∈ � if ψX(λ) is finite. Note that ψX(λ) is always finite for λ = 0 but
may be infinite for other values of λ. The derivatives of the Laplace transform
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with respect to λ can be used to find the moments. The first four cumulants
are related to the first moment and the central moments up to order four, see
(1.3.45), by the equations

k1 = α1 = μX , k2 = m2, k3 = m3, k4 = m4 − 3m2
2. (1.3.75)

The Laplace transform of an N(μ, σ2) Gaussian distributed random variable
X is given by

ψX(λ) = E (exp{λX}) = exp
{
λμ+

λ2 σ2

2

}
(1.3.76)

for λ ∈ �. This Laplace transform can be used to obtain expectations for
asset prices under the standard market model, which is the lognormal or
Black-Scholes model. Under this model returns are normalized increments of
exponentials of Gaussian random variables or, equivalently, the log-returns
are Gaussian.

Characteristic Functions (*)

Another important functional of a random variable X is its characteristic
function φX , which is defined as the expectation

φX(θ) = E(exp{ı θ X}), (1.3.77)

for all θ ∈ �, where ı denotes the imaginary unit, that is ı =
√
−1. This

function always exists and its absolute value is less than or equal to one, that
is

|φX(θ)| ≤ 1. (1.3.78)

It can be used to identify uniquely the distribution of a given random variable.
In this sense the characteristic function encapsulates all of the information
content of the distribution of a random variable. For instance, the pth moment
of X, if it exists, can be obtained by the formula

αp = E(Xp) = (−ı)p dp

(dθ)p
φX(0). (1.3.79)

The mean, variance, skewness and kurtosis can then be derived from these
moments according to (1.3.45). For example, the characteristic function of
the Poisson distribution with intensity λ is from (1.1.31) given by

φX(θ) =
∞∑

n=0

exp{ı θ n} λ
n

n!
exp{−λ}

= exp{−λ (1 − exp{ı θ})} (1.3.80)

for θ ∈ �. By using (1.2.6) the characteristic function of an N(μ, σ2) Gaussian
distributed random variable X takes the form
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φX(θ) =
∫ ∞

−∞
exp{ı θ x} 1√

2π σ
exp

{

−1
2

(
x− μ

σ

)2
}

dx

= exp
{
ı θ μ− θ2 σ

2

2

}
(1.3.81)

for θ ∈ �. Note the similarity with the Laplace transform (1.3.76). For a
G(p, α) gamma distributed random variable, see (1.2.9), we obtain the ex-
pression

φX(θ) =
∫ ∞

0

exp{ı θ x} αp

Γ (p)
exp{−αx}xp−1 dx

=
(

α

α− ı θ

)p

(1.3.82)

for θ ∈ �. For p = 1 and α = λ this is the characteristic function of an expo-
nential distributed random variable X ∼ Exp(λ), see (1.2.5). Characteristic
functions are often used to analyze and characterize properties of random
variables. They are closely related to Fourier transforms of the correspond-
ing density function. A characteristic function φX(θ) uniquely determines the
density function fX(x) of a continuous random variable X. Indeed, the cor-
responding density function can be found by the inverse Fourier transform

fX(x) =
1

2π

∫ ∞

−∞
exp{−ı x θ}φX(θ) dθ, (1.3.83)

see Lukacs (1960).
We mentioned at the end of Sect.1.2 that the SGH distribution covers log-

return distributions for a number of important asset price models. Using the
notation and parametrization given there one obtains for the SGH distribution
the characteristic function

φX(θ) = exp{ı μΔθ} Kλ(
√

(α δ)2 + δ2 Δθ2) (α δ)λ

Kλ(α δ) ((α δ)2 + δ2 Δθ2)
1
2 λ

(1.3.84)

for θ ∈ �. Recall that Kλ is the modified Bessel function of the third kind
with index λ.

If one searches in probability or statistics textbooks and encyclopedias,
then the characteristic function of the Student t distribution is notably absent
or erroneous. However, a simple closed form solution has been found in Hurst
(1997) that is given by the formula

φX(θ) = exp{ı μΔθ}
K 1

2 n(ε
√
nΔ |θ|) (ε

√
nΔ |θ|) 1

2 n

Γ (1
2 n) 2

1
2 n−1

(1.3.85)

for all degrees of freedom n > 0 and θ ∈ �. For the normal-inverse Gaussian
distribution the characteristic function is
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φX(θ) = exp

{

ı μΔθ + ᾱ

(

1 −
√

1 +
c2 Δθ2

ᾱ

)}

(1.3.86)

for θ ∈ �, where the parametrization is again as in (1.2.29). Furthermore, the
hyperbolic distribution has the characteristic function

φX(θ) = exp{ı μΔθ} ᾱK1 (
√
ᾱ2 + δ2 Δθ2)

K1(ᾱ)
√
ᾱ2 + δ2 Δθ2

(1.3.87)

for θ ∈ �. Finally, a variance gamma distributed random variable X has the
characteristic function

φX(θ) = exp{ı μΔθ}
(

1 +
c2 Δθ2

2λ

)−λ

(1.3.88)

for θ ∈ �. A convenient proof for the above results can be obtained by inter-
preting the above distributions as normal mixture distributions. This means
that the random variable is assumed to be conditionally Gaussian distributed
with independent random variance. For instance, a Student t distribution with
n degrees of freedom is obtained when the inverse of the variance is chi-square
distributed with n degrees of freedom. If instead the variance is chi-square dis-
tributed, then a variance gamma distribution arises.

Gaussian Shift (*)

In the context of option pricing, see Buchen & Konstandatos (2005), and other
applications it can be useful to apply the following basic relation for shifted
Gaussian random variables. Let X ∼ N(0, 1) denote a standard Gaussian
random variable, θ ∈ � a real valued constant and H(·) a real valued function
of x ∈ � with |E(H(X + θ))| < ∞. Then it can be shown by exploiting the
structure of the Gaussian density that the expectation of a shifted standard
Gaussian random variable is of the form

E(H(X + θ)) = E

(
exp
{
−1

2
θ2 + θ X

}
H(X)

)
. (1.3.89)

Interestingly, this allows one also to include the case of more general Gaussian
random variables Y = a+ bX for a, b ∈ � with mean E(Y ) = a and variance
Var(Y ) = b2, where we derive the following relation from (1.3.89) for a real
valued function G(y) = G(a+ b x)

E(G(Y + θ)) = E

(
exp
{
−1

2
θ2 + θ X

}
G(Y )

)
. (1.3.90)

This is an important relation because the function G can be freely chosen.
We shall see later on that the Gaussian shift forms, in principle, the basis
for the probability measure transformation that is used in standard derivative
pricing.
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1.4 Joint Distributions and Random Vectors

For many practical applications we need to consider several random variables
X1, X2, . . ., Xn. For instance, these may represent the daily log-returns of all
stocks in a market. This leads us to the introduction of joint distributions. The
random variables may sometimes be interpreted as components of a vector-
valued random variable, which is then called a random vector.

Joint Distributions

As in the case of a single random variable, we can similarly form a distribution
function for n random variables X1, X2, . . ., Xn, which are defined on the
same probability space. The distribution function FX1,X2,··· ,Xn : �n → [0, 1]
is called the joint distribution function and is defined by the relation

FX1,X2,··· ,Xn(x1, x2, . . . , xn) = P (Xi ≤ xi, i ∈ {1, 2, . . . , n}) . (1.4.1)

Its properties can be illustrated by considering the case of two random vari-
ables X1 and X2. Then FX1,X2(x1, x2) satisfies the limit condition

lim
xi→−∞

FX1,X2(x1, x2) = 0 (1.4.2)

for i = 1 and fixed x2 ∈ � or i = 2 and fixed x1 ∈ �, and also the limit
condition

lim
x1,x2→∞

FX1,X2(x1, x2) = 1. (1.4.3)

Furthermore, FX1,X2(x1, x2) is nondecreasing and continuous from the right
in x1 and x2. Additionally, it can be seen that

FX1,X2(x1, x2) = FX2,X1(x2, x1) (1.4.4)

for (x1, x2) ∈ �2. The marginal distribution FX1 satisfies

FX1(x1) = lim
x2→∞

FX1,X2(x1, x2). (1.4.5)

for x1 ∈ �.
For continuous random variables the joint distribution function is often

differentiable, except possibly at some isolated or boundary points. For a
wide class of continuous random variables there is a density function fX1,X2 :
�2 → �+ = [0,∞) given by

fX1,X2(x1, x2) =
∂2FX1,X2(x1, x2)

∂x1 ∂x2
, (1.4.6)

satisfying

FX1,X2(x1, x2) =
∫ x1

−∞

∫ x2

−∞
fX1,X2(s1, s2) ds1 ds2. (1.4.7)

Here ∂
∂x1

and ∂2

∂x1 ∂x2
denote first and second order partial derivatives.
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Correlated Random Variables

Let us consider two random variables X1 and X2 with means μX1 and μX2

and variances σ2
X1

and σ2
X2

, respectively. Their covariance is then defined as

Cov(X1, X2) = E((X1 − μX1) (X2 − μX2)). (1.4.8)

Obviously, we have for two random variables X1 and X2

Cov(X1, X2) = Cov(X2, X1) (1.4.9)

and for any constant ai ∈ �, i ∈ {1, 2, 3, 4},

Cov(a1 X1 + a2, a3 X2 + a4) = a1 a3 Cov(X1, X2). (1.4.10)

If X1 and X2 are independent, then

Cov(X1, X2) = 0. (1.4.11)

If X1 = X2, then
Cov(X1, X2) = Var(X1). (1.4.12)

We define the correlation �X1,X2 of X1 and X2 in the form

�X1,X2 =
Cov(X1, X2)√

Var(X1)Var(X2)
. (1.4.13)

By the Cauchy-Schwartz inequality (1.3.59) it follows that

− 1 ≤ �X1,X2 ≤ 1. (1.4.14)

If X2 = a1 X1 + a2 and a1 > 0, then by (1.4.13) and (1.4.8) we have the
correlation

�X1,X2 = 1. (1.4.15)

The correlation �X1,X2 provides a measure of the degrees of linear dependence
between X1 and X2 using second moments. If �X1,X2 = 0, then we call X1 and
X2 correlated. Two independent random variables are always uncorrelated. For
Gaussian random variables also the converse is true, that is, two uncorrelated
Gaussian random variables are independent. Note however, in general, two
uncorrelated random variables can be still dependent. This is important for
log-returns. These can be highly dependent even if they are uncorrelated. This
point is often missed in practice. A simple example is given when X1 is N(0, 1)
Gaussian distributed and X2 = 1√

2
((X1)2 − 1). Obviously, by (1.3.47) the

correlation is zero. However, both random variables X1 and X2 are strongly
dependent.
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Bivariate Gaussian Density

Let A� denote the transpose of the vector or matrix A. A matrix A is regular
if it is invertible. This is the case if its determinant det(A) is not equal to
zero.

An important example of a two-dimensional density function is the bivari-
ate Gaussian density given by

fX1,X2(x1, x2) =
1

2π
√

det(D)
exp

⎧
⎨

⎩
−1

2

2∑

i,j=1

Ci,j(xi − μi)(xj − μj)

⎫
⎬

⎭

(1.4.16)
for (x1, x2)� ∈ �2, with mean vector μ = (μ1, μ2)� ∈ �2, covariance matrix
D = [Di,j ]2i,j=1, with components Di,j = E((Xi −μi)(Xj −μj)), i, j ∈ {1, 2},
which is here a 2× 2 regular matrix, and the inverse of the matrix C =
[Ci,j ]2i,j=1. We say that two random variables X1 and X2 having the density
(1.4.16) are jointly Gaussian distributed with mean vector μ and covariance
matrix D.

If the random vector Z = (Z1, Z2)� has independent standard Gaussian
components Z1 and Z2, then there exists an upper triangular, invertible 2×2
matrix S such that D = S�S and the vector

X = (X1, X2)� = S�Z + μ (1.4.17)

is jointly Gaussian with mean vector μ and covariance matrix D. S is some-
times called the Cholesky decomposition of the covariance matrix D.

As an example let us construct pairs of correlated Gaussian random vari-
ables X1, X2 with means μ1 = E(X1) = 0, μ2 = E(X2) = 0 and variances
E(X2

1 ) = 1, E(X2
2 ) = 1

3 and covariance E(X1X2) = 1
2 out of independent

standard Gaussian distributed random variables Z1 and Z2 ∼ N(0, 1). Some
Value at Risk (VaR) evaluations are based on constructions of this type.

We note that for

X1 = S1,1 Z1 + S2,1 Z2 and X2 = S1,2 Z1 + S2,2 Z2 (1.4.18)

with

S =

(
S1,1 S1,2

S2,1 S2,2

)

=

(
1 1

2

0 1√
12

)

we have

D = S� S =

(
1 1

2

1
2

1
3

)

(1.4.19)

and

C = D−1 =

(
4 −6

−6 12

)

,
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Fig. 1.4.1. Bivariate Gaussian density

Fig. 1.4.2. Points with correlated Gaussian coordinates

where
det(C) = C1,1 C2,2 − C1,2 C2,1 = 12.

In Fig. 1.4.1 we show the two-dimensional Gaussian joint density for X1

and X2 with mean vector zero and covariance matrix D given in (1.4.19). We
remark that the lines of the Gaussian density that have the same level have
an elliptic shape.

Figure 1.4.2 shows 3000 simulated realizations of pairs (X1, X2) of these
Gaussian random variables using X1 as the x-coordinate and X2 as the y-
coordinate. Note that the points are concentrated mostly in the area where
the density given in Fig. 1.4.1 is largest.

For the bivariate Gaussian density with covariance matrix (1.4.19) the
correlation coefficient is according to (1.4.18) and (1.4.13) given by
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�X1,X2 =
S1,1 S1,2

σX1 σX2

=
1
2

√
3 ≈ 0.866.

This means that Fig. 1.4.2 displays a set of 3000 outcomes of correlated
Gaussian random variables with the above correlation coefficient.

Conditional Expectation for the Bivariate Gaussian Case

For given random variables X1 and X2 with bivariate Gaussian distribution
one can prove that if Cov(X1, X2) = 0, then X1 and X2 are independent.
Furthermore, if Var(X2) > 0, then

E(X1

∣
∣X2) = E(X1) +

Cov(X1, X2)
Var(X1)

(X2 −E(X2)) (1.4.20)

and

E
(
(X1 − E(X1

∣
∣X2))2

)
= Var(X1) −

(Cov(X1, X2))2

Var(X2)
. (1.4.21)

Here E(X1 |X2) denotes the conditional expectation of X1 given the informa-
tion generated by X2.

We emphasize that the above constructions use jointly Gaussian dis-
tributed random variables. Now consider two independent N(0, 1) standard
Gaussian random variables Y1 and Y2. From these we construct X1 =
|Y2| sgn(Y1) and X2 = Y2. Using these definitions it can be shown that
X1 ∼ N(0, 1) and X2 ∼ N(0, 1) with

Cov(X1, X2) = E(X1 Y2) −E(X1)E(Y2) = E(Y2 |Y2| sgn(Y1))

= E(Y2 |Y2|)E(sgn(Y1)) = 0,

but X1 and X2 are dependent random variables. As a consequence, X1 and
X2 are not jointly Gaussian distributed and

Cov(|X1|, |X2|) = E(|Y2|2) − (E(|Y2|))2 > 0.

Note that these types of effects need to be taken into account if one is modeling
log-returns of securities.

Properties of Independent Random Variables

Recall the definition of independent random variables in Sect. 1.1. It can be
shown that two random variables X1 and X2 are independent if their joint
and marginal distribution functions satisfy the relation

FX1,X2(x1, x2) = FX1(x1)FX2(x2) (1.4.22)
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for all x1, x2 ∈ �. This is equivalent to saying that

E(g1(X1) g2(X2)) = E(g1(X1))E(g2(X2)) (1.4.23)

for all measurable functions g1, g2 for which the above expectations exist. If
both FX1 and FX2 have density functions fX1 and fX2 , respectively, and if
X1 and X2 are independent, then their joint distribution function FX1,X2 has
a density function fX1,X2 which satisfies the equation

fX1,X2(x1, x2) = fX1(x1) fX2(x2). (1.4.24)

Moreover, choosing g1 and g2 to equal the identity function in (1.4.23) it
can be seen that for two independent random variables X1 and X2 the product
X1X2 has an expectation given by

E(X1X2) = E(X1)E(X2), (1.4.25)

and the sum X1 + X2 has a variance satisfying the additivity property

Var(X1 +X2) = Var(X1) + Var(X2). (1.4.26)

The Gaussian random variables X1 and X2 obtained from (1.4.18) in the
corresponding example are by (1.4.19) not independent since E(X1X2) = 1

2
but E(X1) = E(X2) = 0. They are correlated, as will be shown in the next
subsection.

First and Second Moments of Random Vectors

Let X = (X1, X2, . . . , Xn)� denote a random vector. Then the expectation is
taken componentwise and we obtain

E(X) = (E(X1), E(X2), . . . , E(Xn))�. (1.4.27)

In the case when B = [Bi,j ]n,m
i,j=1 is an n ×m random matrix, where Bi,j is

some random variable we obtain its expectation as the n×m matrix

E(B) = [E(Bi,j)]n,m
i,j=1. (1.4.28)

Let X = (X1, X2, . . . , Xn)� and Y = (Y1, Y2, . . . , Ym)� with n,m ∈ N denote
two random vectors. Their covariance matrix Cov(X,Y) is defined as

Cov(X,Y) = E
(
(X − E(X)) (Y −E(Y))�

)

=
[
E
(
(Xi −E(Xi)) (Yj − E(Yj))

)]n,m

i,j=1
(1.4.29)

The matrix Cov(X) = Cov(X,X) is called the autocovariance matrix of the
vector X.
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If X = (X1, X2, . . . , Xn)� is an n-dimensional vector, A = [Ai,j ]n,m
i,j=1

a deterministic n × m matrix and b = (b1, b2, . . . , bm)� a deterministic m-
dimensional vector, then for Y = AX + b it is straightforward to show that

E(Y) = E(AX + b) = AE(X) + b (1.4.30)

and
Cov(Y,Y) = A Cov(X,X)A�. (1.4.31)

For example, if X is a vector of n independent random variables with variance
Var(Xi) = 1, i ∈ {1, 2, . . . , n}, then

Cov(X,X) = I, (1.4.32)

where I is the identity matrix or unit matrix and we have for Y = AX + b
the autocovariance matrix

Cov(Y,Y) = A A�. (1.4.33)

To construct from such a vector X an n-dimensional vector Y with given
autocovariance matrix Cov(Y,Y) it is sufficient to find an upper triangular
n × n-matrix A that satisfies (1.4.33). This matrix is then the Cholesky de-
composition of Cov(Y,Y), see (1.4.17).

For any X = (X1, X2, . . . , Xn)� one has the equality

Var

(
n∑

i=1

Xi

)

=
n∑

i,j=1

Cov(Xi, Xj), (1.4.34)

and if Cov(Xi, Xj) = 0 for i = j, then

Var

(
n∑

i=1

Xi

)

=
n∑

i=1

Var(Xi). (1.4.35)

Multivariate Joint Distributions

The properties (1.4.2)–(1.4.5) of joint distribution functions generalize to any
number n ≥ 2 of random variables X1, X2, . . ., Xn. With the notation intro-
duced in (1.4.1) the joint distributions FX1,X2,··· ,Xn satisfy

lim
xi→−∞

FX1,X2,··· ,Xn(x1, x2, . . . , xn) = 0 (1.4.36)

for i ∈ {1, 2, . . . , n} and fixed xj , j ∈ {1, 2, . . . , i − 1, i + 1, . . . , n}. We also
have the limit condition

lim
x1,...,xn→+∞

FX1,X2,··· ,Xn(x1, x2, . . . , xn) = 1. (1.4.37)
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In addition, FX1,X2,··· ,Xn is non-decreasing and continuous from the right in xi

for i ∈ {1, 2, . . . , n}. For any permutation {i1, i2, . . . , in} of the set {1, 2, . . . , n}
we have

FXi1 ,Xi2 ,··· ,Xin
(xi1 , xi2 , . . . , xin) = FX1,X2,··· ,Xn(x1, x2, . . . , xn). (1.4.38)

Furthermore, if {i1, i2, . . . , ik} is any subset of the set {1, 2, . . . , n}, then the
marginal distribution FXi1 ,Xi2 ,··· ,Xik

for k ∈ {1, 2, . . . , n} satisfies

FXi1 ,Xi2 ,··· ,Xik
(xi1 , xi2 , . . . , xik

) = lim
xi→+∞

FX1,X2,··· ,Xn(x1, x2, . . . , xn),

(1.4.39)
where this limit has to be taken for all i ∈ {i1, i2, . . . , ik}.

The properties (1.4.22)–(1.4.26) can also be generalized to n random vari-
ables. Thus, the random variables X1, X2, . . ., Xn are independent if their
joint distribution satisfies the equation

FX1,X2,··· ,Xk
(x1, x2, . . . , xk) = FX1(x1)FX2(x2) · · · FXk

(xk) (1.4.40)

for all k ∈ {1, 2, . . . , n}. If in this case each FXi has a density function fXi ,
then FX1,X2,··· ,Xn has a joint density function fX1,X2,...,Xn that takes the form

fX1,X2,...,Xn(x1, x2, . . . , xn) = fX1(x1) fX2(x2) · · · fXn(xn). (1.4.41)

In addition, for n independent random variables X1, X2, · · · , Xn the product
g1(X1) g2(X2) · · · gn(Xn) involving measurable functions g1, g2, . . . , gn has
expectation

E(g1(X1)g2(X2) · · · gn(Xn)) = E(g1(X1))E(g2(X2)) · · · E(gn(Xn)),
(1.4.42)

whereas their sum has variance

Var

(
n∑

i=1

gi(Xi)

)

=
n∑

i=1

Var(gi(Xi)). (1.4.43)

Multivariate Gaussian Density

Consider a random vector X = (X1, X2, . . . , Xn)� with mean vector

μ = (μ1, μ2, . . . , μn)� = (E(X1), E(X2), . . . , E(Xn))� (1.4.44)

and an n×n autocovariance matrix D = Cov(X,X) =
[
D�,m

]n
�,m=1

, where

D�,m = E ((X� − μ�) (Xm − μm)) = E(X� Xm) − E(X�)E(Xm). (1.4.45)

If D is regular, that is det(D) = 0, and its density is for x = (x1, x2, . . . , xn)�

∈ �n given by
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fX(x) = fX1,X2,...,Xn(x1, x2, . . . , xn)

=
exp
{
−1

2 (x − μ)� D−1 (x − μ)
}

√
(2π)n det(D)

, (1.4.46)

then X has an n-dimensional Gaussian density. The components of a Gaussian
distributed random vector are independent if and only if they are pairwise
uncorrelated. Furthermore, if X is an n-dimensional Gaussian random vector,
A a deterministic matrix with m rows and n columns and b a deterministic m-
dimensional vector, then Y = AX + b is an m-dimensional Gaussian random
vector with mean Aμ + b and covariance matrix ADA�.

Conditional Expectation for Multivariate Gaussian Case (*)

We can generalize the relationships (1.4.20) and (1.4.21) on conditional ex-
pectations for bivariate Gaussian random variables to the case where X1 is
a scalar random variable and X2 = (X1

2 , X
2
2 , . . . , X

n
2 )� is an n-dimensional

random vector such that X1 and the components of X2 are jointly Gaussian
distributed. One can prove that if Cov(X1, X

i
2) = 0 for all i ∈ {1, 2, . . . , n},

then the random variable X1 and the components of the random vector X2

are independent. In the case when the autocovariance matrix of X2 is in-
vertible, that is Cov(X2,X2)−1 exists, then one has the following conditional
expectations

E(X1

∣
∣X2) = E(X1) + Cov(X1,X2) (Cov(X2,X2))−1 (X2 −E(X2))

(1.4.47)
and

E
(
(X1 − E(X1

∣
∣X2))2

)
= Var(X1) − Cov(X1,X2) (Cov(X2,X2))−1

×Cov(X1,X2)�. (1.4.48)

These relationships are quite helpful in statistical analysis and for the pricing
of derivatives for multiple securities.

Multivariate Gaussian Shift (*)

The following relationships can be used for Value at Risk calculations and
also in multi-asset option pricing. Let X = (X1, X2, . . . , Xn)� ∈ � denote
an n-dimensional vector with correlated N(0, 1) distributed components. The
correlation matrix equals the covariance matrix D with components

D�,m = �X�,Xm ,

see (1.4.13). We denote according to (1.4.46) the corresponding joint density
by



48 1 Preliminaries from Probability Theory

fX1,X2,...,Xn(x1, x2, . . . , xn) = N ′
n,D(x) =

exp{−1
2 x�D−1 x}

√
(2π)n det(D)

(1.4.49)

for x ∈ �n. The associated Gaussian distribution function for X is given by

FX1,X2,...,Xn(x1, x2, . . . , xn) = Nn,D(x)

= P (Xi < xi, i ∈ {1, 2, . . . , n})

= E

(
n∏

i=1

1{Xi<xi}

)

=
∫ xn

−∞
· · ·
∫ x1

−∞
N ′

n,D(y) dy1 · · · dyn (1.4.50)

for x = (x1, x2, . . . , xn)� ∈ �n. We say that the n-dimensional vector
x ∼ Nn(0,D) is Gaussian distributed with mean vector μ = (0, . . . , 0)�

and covariance matrix D.
Let X ∼ Nn(0,D) and b = (b1, b2, . . . , bn)� ∈ �n be an n-dimensional

deterministic vector, then the scalar random variable

Z = b�X

is Gaussian with
Z ∼ N(0, b�D b). (1.4.51)

More generally, let B = [Bi,j ]m,n
i,j=1 be a deterministic m× n matrix, then we

obtain
Y = B X ∼ Nm(0,B D B�), (1.4.52)

where the mean vector is a vector of zeros and the covariance matrix BDB�

is an m×m matrix. Additionally, let us normalize the vector Y by using the

diagonal matrix A = [Ai,j ]mi,j=1, where Ai,i =
√

(B D B�)i,i and Ai,j = 0 for
i = j. We set

Ỹ = A−1 Y = A−1 B X,

where Ỹ = (Ỹ1, Ỹ2, . . . , Ỹm)� ∼ Nm(0,A−1 B D B�(A−1)�) turns out to
be an m-dimensional Gaussian vector with zero mean vector and standard
variances for its components. Therefore, it follows for ỹ = (ỹ1, ỹ2, . . . , ỹm)� =
A−1y that

P
(
Ỹi < ỹi, i ∈ {1, 2, . . . ,m}

)
= P (Yi < yi, i ∈ {1, 2, . . . ,m})

= Nm,A−1BDB�(A−1)�(A−1 y), (1.4.53)

where the multivariate Gaussian distribution function is given in (1.4.50).
From the properties of the probability densityN ′

n,D(x) of an n-dimensional
vector X of standard Gaussian random variables with covariance matrix D,
see (1.4.49), we have the relation
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N ′
n,D(x) = exp

{
θ� x − 1

2
θ�D θ

}
N ′

n,D(x − D θ) (1.4.54)

for any vectors θ,x ∈ �n. This yields the multivariate Gaussian shift property
for X ∼ Nn(0,D), a deterministic vector θ = (θ1, θ2, . . . , θn)� and a scalar
function H(x) of an n-dimensional vector x = (x1, x2, . . . , xn)� in the form

E(H(X + θ)) = E

(
exp
{
−1

2
θ�D θ + θ�X

}
H(X)

)
. (1.4.55)

This result can be employed in the pricing of derivatives involving several
securities, see Buchen (2004) and Buchen & Konstandatos (2005).

Multivariate Characteristic Functions (*)

Let X = (X1, X2, . . . , Xp)� be a random vector. The characteristic function
φX(θ) with θ = (θ1, θ2, . . . , θp)� is defined for all values of θ ∈ �p by

φX(θ) = E(exp{ıθ� X}), (1.4.56)

where ı is the imaginary unit. Note that

|φX(θ)| ≤ 1 (1.4.57)

for all θ = (θ1, θ2, . . . , θp)� ∈ �p. This characteristic function uniquely iden-
tifies the distribution of the corresponding random vector. For a continuous
n-dimensional random vector we have

φX(θ) =
∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

{

ı

p∑

k=1

θk xk

}

fX(x1, . . . , xp) dx1, . . . , dxp.

(1.4.58)
The characteristic function φX(θ) of a p-dimensional jointly Gaussian dis-

tributed random vector X with mean vector μ and covariance matrix D is of
the form

φX(θ) = exp
{
ıμ� θ − 1

2
θ�D θ

}
. (1.4.59)

for all θ ∈ �p.
Let us give another example using a p-dimensional Student t distributed

random variable X = (X1, X2, . . . , Xp)� with n > 0 degrees of freedom,
zero mean vector μ = (0, . . . , 0)� and regular covariance matrix D. This
random variable can be obtained from a multivariate Gaussian vector Y =
(Y1, Y2, . . . , Yp)�, with mean vector μY = (0, . . . , 0)� and covariance matrix
D, scaled by the inverse of the square root of an independent scalar χ2(n)
distributed random variable Z ∈ (0,∞) such that

X =
Y
√

Z
n

, (1.4.60)
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see (1.2.16). If Y is a vector of independent standard Gaussian random vari-
ables, then X has the characteristic function

φX(θ) = E
(
eı θ�X

)
=

Kn
2

(
{nθ�θ} 1

2

)
(nθ�θ)

n
4

Γ (n
2 ) 2

n
2 −1

(1.4.61)

for n > 0 and θ = (θ1, . . . , θp)� ∈ �p, where Kλ(·) is again the modified Bessel
function of the third kind with index λ. Its probability density function is then
of the form

fX(x) =
Γ (1

2 (n+ p))
(π n)

p
2 Γ (n

2 )

(
1 +

x�x

n

)− 1
2 (n+p)

(1.4.62)

for x = (x1, x2, . . . , xp)� ∈ �p.

Further Properties of Moments (*)

When we are considering n different random variables X1, X2, . . ., Xn, then
it is often convenient to use vector notation. For vectors x = (x1, x2, . . . , xn)�

and y = (y1, y2, . . . , yn)� in �n recall that the inner product (x,y) and the
Euclidean norm |x| are defined by

(x,y) = x� y =
n∑

i=1

xi yi and |x| =
√

x� x =

√√
√
√

n∑

i=1

(xi)2, (1.4.63)

respectively. Note that for n = 1 the Euclidean norm coincides with the ab-
solute value operator.

The following moment inequalities are often useful and follow from more
general inequalities for integrals, see Shiryaev (1984). Let X = (X1, X2, . . . ,
Xn)� and Y = (Y1, Y2, . . . , Yn)� be random vectors, then

E(|X + Y|r) ≤ cr (E(|X|r) + E(|Y|r)) (1.4.64)

with cr = 1 for r ≤ 1 and cr = 2r−1 for r ≥ 1. Furthermore,

(E(|X + Y|r))
1
r ≤ (E(|X|r))

1
r + (E(|Y|r))

1
r (1.4.65)

for r ≥ 1, and
E(|(X,Y)|) ≤ (E(|X|p))

1
p (E(|Y|q))

1
q (1.4.66)

for p, q > 1 with 1
p + 1

q = 1.

1.5 Copulas (*)

Copulas play an important role in the analysis and modeling of the dependence
structures of financial random variables. They are used, for instance, in Value
at Risk (VaR) and credit risk modeling applications. Since they are widely
used in different areas in quantitative finance we summarize below a few basic
facts on copulas.
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Copula Function (*)

A copula function can be considered as a basic building block for constructing
multivariate densities and distributions, see Nelsen (1999). A copula function
C : [0, 1]n → [0, 1] in �n, n ∈ {2, 3, . . .}, is a multivariate distribution func-
tion with the property that its marginal distributions are standard uniform
distributions.

By this definition a copula has the U(0, 1) uniform density as the density
for all of its marginal distributions, see (1.4.5). The following theorem by Sklar
(1959) makes clear that copulas are universal tools for analyzing multivariate
distributions.

Theorem 1.5.1. (Sklar) Let FX1,X2,...,Xn : �n → [0, 1] be a multivariate
n-dimensional distribution function with marginal distributions FXi : � →
[0, 1], i ∈ {1, 2, . . . , n}, then there exists a copula C : [0, 1]n → [0, 1] such that

FX1,X2,...,Xn(x1, x2, . . . , xn) = C (FX1(x1), FX2(x2), . . . , FXn(xn)) (1.5.1)

for (x1, x2, . . . , xn)� ∈ �n. Moreover, if the marginal distributions have a
density, then the copula is unique.

The proof of this important result exploits the essential fact that one has
for (u1, u2, . . . , un)� ∈ [0, 1]n the relation

C(u1, u2, . . . , un) = FX1,X2,...,Xn

(
F−1

X1
(u1), F−1

X2
(u2), . . . , F−1

Xn
(un)

)
. (1.5.2)

Corollary 1.5.2. For any copula C : [0, 1]n → [0, 1] in �n, n ∈ {2, 3, . . .},
and distribution functions FX1 , FX2 , . . . , FXn the function

FX1,X2,...,Xn(x1, x2, . . . , xn) = C (FX1(x1), FX2(x2), . . . , FXn(xn)) (1.5.3)

for (x1, x2, . . . , xn)� ∈ �n defines a multivariate distribution function with
marginal distributions FX1 , FX2 , . . . , FXn .

This means that every multivariate distribution with continuous marginal
distribution function admits a unique copula representation. Furthermore, the
above result shows that copulas and marginal distribution functions are the
building blocks for general multivariate distributions.

Gaussian Copula (*)

One of the most common copulas that arise in finance is the Gaussian copula
CN,D, which is defined as

CN,D(u1, u2, . . . , un) = Nn,D

(
N−1

X1
(u1), N−1

X2
(u2), . . . , N−1

Xn
(un)

)
(1.5.4)

for (u1, u2, . . . , un)� ∈ [0, 1]n. Here D is the regular n× n covariance matrix
of the multivariate Gaussian random variable X, see (1.4.45). It is common
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in standard VaR calculations to use the Gaussian copula if one has to deduce
from the log-returns of the constituents of a portfolio the VaR number of the
portfolio.

As an example, let us consider points (X1, X2)� with Gaussian marginals
that have the bivariate Gaussian copula. Here we set

Xi = �Z0 +
√

1 − �2 Zi (1.5.5)

for i ∈ {1, 2}, where Z0, Z1, Z2 are independent standard Gaussian random
variables. The parameter � ∈ [−1, 1] measures the correlation between Xi

and Z0 for i ∈ {1, 2}. In Fig. 1.4.2 we have plotted 3000 of such points that
relate to a bivariate Gaussian distribution with correlation � ≈ 0.866. The
corresponding bivariate Gaussian copula is then

CN,D(u1, u2) = N2,D

(
N−1

X1
(u1), N−1

X2
(u2)

)
(1.5.6)

for (u1, u2)� ∈ [0, 1]2. Although the Gaussian copula is widely used in VaR
calculations, it usually provides a poor fit to multivariate log-return data.

Student t Copula (*)

It has been reported in Breymann, Dias & Embrechts (2003) that a good fit
for multivariate log-returns of currencies is obtained by the Student t copula
Ct,D,δ with approximately δ ≈ 4 degrees of freedom. This copula is defined
by the function

Ct,D,δ(u1, u2, . . . , un) = tδ,D
(
t−1
X1

(u1), t−1
X2

(u2), . . . , t−1
Xn

(un)
)

(1.5.7)

for (u1, u2, . . . , un)� ∈ [0, 1]n. Here tδ,D is the Student t distribution with
δ > 2 degrees of freedom and D as the covariance matrix of the compo-
nents (X1, X2, . . . , Xn)�, see (1.4.60) and (1.4.62). For currency log-returns
Breymann et al. (2003) identified a Student t copula with approximately four
degrees of freedom.

The isolines of the bivariate t density have an elliptical shape as is the
case for the Gaussian density. This is not surprising due to the representation
(1.4.60) of multivariate Student t distributed random variables as multivariate
Gaussian random variables with independent inverse chi-square distributed
variance.

According to (1.5.7) the bivariate t copula with covariance matrix D and
δ degrees of freedom is obtained from the expression

Ct,D,δ(u1, u2) = tδ,D
(
t−1
X1

(u1), t−1
X2

(u2)
)

(1.5.8)

for (u1, u2)� ∈ [0, 1]2.
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1.6 Exercises for Chapter 1

1.1. Show that Var(X) = E(X2) − (E(X))2.

1.2. Calculate the first and second moments and the variance for a Poisson
random variable with intensity λ > 0.

1.3. Calculate the first and second moments and the variance for a U(a, b)
uniformly distributed random variable.

1.4. Determine for an exponentially distributed random variable with inten-
sity parameter λ > 0 the first and second moments and the variance.

1.5. Calculate the first and second moments and the variance for an N(0, 1)
standard Gaussian distributed random variable.

1.6. Determine the even moments for a standard Gaussian distributed random
variable.

1.7. If a random variable Y is N(μ, σ2) Gaussian distributed show that X =
Y −μ

σ is N(0, 1) distributed.

1.8. If a random variable Y is N(0, 1) Gaussian distributed what is the dis-
tribution of Y 2?

1.9. Compute the expectation of the exponential Y = exp{X} of a Gaussian
N(μ, σ2) distributed random variable.

1.10. (*) Show for a standard Gaussian random variable X ∼ N(0, 1), a
deterministic constant θ ∈ � and a real valued function H(x) for x ∈ � with
|E(H(X + θ))| < ∞ that

E(H(X + θ)) = E

(
exp
{
−1

2
θ2 + θX

}
H(X)

)
.

1.11. (*) Prove that for a correlated pair of Gaussian random variables the
corresponding joint density is, in general, not the product of their marginal
densities. When are these random variables independent?

1.12. (*) Compute the mean for the Cauchy distribution with density p(x) =
[π (1 + x2)]−1. Is this mean finite?

1.13. (*) Compute the conditional expectation E(X|A) for a random variable
X(ω) = ω ∈ [0, 1] with density fX(x) = x with respect to the event A = {ω ∈
[0, 0.5]}.
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Statistical Methods

We introduce in this chapter further fundamental results from probability
theory and statistics which are important in quantitative finance. They are
highly relevant for the empirical analysis of financial data. In particular, limit
theorems are presented and confidence intervals constructed. Furthermore,
the log-returns of a world stock index will be estimated pointing at a stylized
empirical fact.

2.1 Limit Theorems

In this section some fundamental limit theorems are summarized. These in-
clude the Law of Large Numbers and the Central Limit Theorem.

Law of Large Numbers

In Sect.1.1 we mentioned the intuitive idea of defining probabilities as limits of
relative frequencies determined from many independent repetitions of a given
probabilistic experiment. This idea can be given some theoretical justifica-
tion from an asymptotic analysis of sequences of independent and identically
distributed (i.i.d.) random variables X1, X2, . . .. An example would be a se-
quence of daily log-returns. Let us assume for the moment that these random
variables have the same distribution as some random variable X with finite
second moments. We then write for their mean

μ = E(Xn) (2.1.1)

and for their variance
σ2 = Var(Xn), (2.1.2)

n ∈ N . Since the random variables X1, X2, . . . are independent it follows that
the sample mean

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,
Springer Finance,
© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010
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μ̂n =
1
n

n∑

i=1

Xi (2.1.3)

has the mean
E(μ̂n) = μ (2.1.4)

and the variance

Var(μ̂n) =
σ2

n
. (2.1.5)

Note that one does not need for (2.1.3) the independence of the random vari-
ables. The Law of Large Numbers (LLN) is one of the fundamental results
of probability theory and statistics. To formulate this law we say, that a se-
quence of random variables Y1, Y2, . . . converges in the mean square sense to
a random variable Y if

lim
n→∞

E
(
|Yn − Y |2

)
= 0. (2.1.6)

In this case we write
Y

m.s.= lim
n→∞

Yn. (2.1.7)

The mean square version of the LLN using this mode of convergence is
stated by the following result.

Theorem 2.1.1. (Mean-square LLN) If the independent random vari-
ables X1, X2, . . . have the same finite first and second moments, then the
sample mean μ̂n converges in the mean square sense to the mean μ, that is

μ
m.s.= lim

n→∞
μ̂n. (2.1.8)

To see this we can write, using the independence property of X1, X2, . . .
and equations (2.1.3), (2.1.1) and (2.1.5), the relation

E
(
(μ̂n − μ)2

)
= E

⎛

⎝

(
1
n

n∑

i=1

(Xi − μ)

)2
⎞

⎠ =
1
n2

n∑

i=1

E
(
(Xi − μ)2

)

=
1
n

(
1
n

n∑

i=1

σ2

)

=
1
n
σ2. (2.1.9)

Using this formula we see by (2.1.6) and (2.1.7) that (2.1.8) is established.
There exists also a strong LLN, which goes back to Kolmogorov. Here the

sample mean converges almost surely (a.s.) and we write

μ
a.s.= lim

n→∞
μ̂n (2.1.10)

for
P
(

lim
n→∞

μ̂n = μ
)

= 1. (2.1.11)



2.1 Limit Theorems 57

Theorem 2.1.2. (Strong LLN, Kolmogorov) For a sequence of indepen-
dent random variables X1, X2, . . . with mean μ and

∞∑

i=1

Var(Xi)
i2

< ∞ (2.1.12)

it holds that
μ

a.s.= lim
n→∞

μ̂n. (2.1.13)

To underline that there are different types of convergence let us also state
a weak LLN, which is due to Markov. For this purpose we say that a sequence
of random variables Y1, Y2, . . . converges in probability to a random variable
Y if for any ε > 0

lim
n→∞

P (|Yn − Y | > ε) = 0 (2.1.14)

and we write
Y

P= lim
n→∞

Yn. (2.1.15)

Theorem 2.1.3. (Weak LLN, Markov) For a sequence of uncorrelated
random variables X1, X2, . . . with mean E(Xi) = μ, i ∈ N , and

lim
n→∞

1
n2

n∑

i=1

Var(Xi) = 0 (2.1.16)

one has
μ

P= lim
n→∞

μ̂n. (2.1.17)

In the case of an i.i.d. sequence of log-returns one can therefore estimate
via the sample mean the mean of the log-returns. In Fig. 2.1.2 we plot the
sample mean for the log-returns of the S&P500 as it evolves for an increasing
number of observations.

The link between relative frequencies, as discussed in Sect. 1.1, and corre-
sponding probabilities can now be directly established by using the weak LLN.
If A is an event and N(A)

N the relative frequency of A occurring in N ∈ N
independent, identical observations of A, then

P (A) P= lim
N→∞

N(A)
N

. (2.1.18)

This is a fundamental result, which supports our empirical analysis and
stochastic modeling in finance.
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Empirical Moments

We have shown by the weak LLN under appropriate conditions that the sample
mean μ̂n, which is also the first empirical moment, approaches the true mean μ
of uncorrelated random variables X1, X2, . . . , Xn in probability for increasing
n. The sample mean μ̂n is therefore a reasonable estimate for the mean μ.
This provides a method for estimating the mean of a sequence of uncorrelated
random variables.

Consider i.i.d. random variables X1, X2, . . . under the conditions E(X2
i ) <

∞, i ∈ N , one can also show that the sample variance

σ̂2
n =

1
n− 1

n∑

i=1

(Xi − μ̂n)2, (2.1.19)

which we define as the second empirical central moment, converges almost
surely to the variance σ2 of the i.i.d. random variables X1, X2, . . ..

Similarly, under the conditions E(X3
i ) < ∞ and Var(Xi) > 0, i ∈ N , the

sample skewness

β̂n =
1
n

n∑

i=1

(
Xi − μ̂n

σ̂n

)3

(2.1.20)

approaches almost surely the skewness βX , see (1.3.22). The sample kurtosis

κ̂n =
1
n

n∑

i=1

(
Xi − μ̂n

σ̂n

)4

(2.1.21)

provides under the conditions E(X4
i ) < ∞ and Var(X) > 0, i ∈ N , an

a.s. converging estimate for the kurtosis κX , see (1.3.30), for i.i.d. random
variables X1, X2, . . .. To obtain useful estimates for these empirical moments
one has, therefore, only to ensure that the corresponding moments are finite
if one has i.i.d. observations.

Let us consider a simulated sequence of independent identically N(−1, 1)
Gaussian distributed random variables. These have by Table 1.3.1 mean μ =
−1, variance σ2 = 1, skewness β = 0 and kurtosis κ = 3. Figure 2.1.1 displays
linearly interpolated graphs for the resulting sample mean, sample variance,
sample skewness and sample kurtosis for increasing values of the sample size
n ∈ {10, 11, . . . , 1000}.

As suggested by the weak LLN, for increasing sample sizes we see that the
empirical moments appear to converge towards the respective values of the
moments; in this case the mean μ = −1, variance σ2 = 1, skewness β = 0
and kurtosis κ = 3. One notes that for higher order moments one needs more
observations to stabilize the corresponding empirical sample moment.

As another illustration, let us calculate the empirical moments from ob-
servations of daily log-returns of the S&P500 index covering the twenty year
period from 1977 until 1997. For these S&P500 log-returns we obtain the
empirical moments
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Fig. 2.1.1. Empirical moments from a simulation

Fig. 2.1.2. Sample mean and variance for S&P500 log-returns

μ̂n = 0.00040, σ̂2
n = 0.000082, β̂n = −2.22, κ̂n = 58.43 (2.1.22)

for sample size n = 5478. In Fig.2.1.2, we show the corresponding sample mean
and sample variance as they evolve over time in dependence on time. These
converge reasonably well towards the corresponding values shown in (2.1.22).
We then display the resulting evolution of the sample skewness and sample
kurtosis in Fig. 2.1.3. It is apparent that these are not very stable estimates.
In particular, the values jump considerably at the 1987 stock market crash. If
we remove from our sample the largest absolute log-return that occurred at
the October 1987 market crash, then we obtain with the remaining n = 5477
observations the empirical moments

μ̂n = 0.00044, σ̂2
n = 0.000074, β̂n = −0.098, κ̂n = 11.06. (2.1.23)
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Fig. 2.1.3. Sample skewness and kurtosis for S&P500 log-returns

Fig. 2.1.4. Sample skewness and kurtosis for S&P500 log-returns without 1987
crash

This calculation shows that the estimated sample kurtosis changed dramat-
ically after removing the most extreme log-return. In Fig. 2.1.4 we show the
corresponding empirical skewness and kurtosis for the reduced sample. A com-
parison of Fig.2.1.3 and Fig.2.1.4 indicates that the fourth empirical moment
is extremely sensitive with respect to this data set. The kurtosis κ might not
even be finite for log-returns of the S&P500 index if fitted to a reasonable
class of models. We shall show later in this chapter that typical parameter
estimates of stock market index log-returns in the class of symmetric gener-
alized distributions imply infinite kurtosis. For this reason, when estimating
log-returns, it is recommended one uses a statistical approach that exploits
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the entire distribution and does not depend on any higher order empirical
moments, such as the sample kurtosis.

Central Limit Theorem

To obtain more information regarding the asymptotics of the sample mean
μ̂n one needs another fundamental result. To prepare its formulation we say
that a sequence of random variables X1, X2, . . . converges in distribution to
a random variable X if the distribution function FXn(x) converges at each
point x of continuity of FX(x), and we write

X
d= lim

n→∞
Xn. (2.1.24)

The Central Limit Theorem CLT states the following result.

Theorem 2.1.4. (CLT) A standardized sample average

Ẑn =
√
n

(μ̂n − μ)
σ

, (2.1.25)

for a sequence X1, X2, . . . of i.i.d. random variables with mean μ ∈ � and
variance σ2 ∈ (0,∞) converges in distribution, as n → ∞, to a standard
Gaussian random variable Z ∼ N(0, 1), that is

lim
n→∞

Ẑn
d= Z. (2.1.26)

This fundamental theorem states that

lim
n→∞

FẐn
(z) = FZ(z) = N(z), (2.1.27)

for all z ∈ �, where N(·) denotes the standard Gaussian distribution function,
see (1.2.7). One can show that one only needs the existence of the third abso-
lute moment E(|Xi|3) < ∞, i ∈ N , of the i.i.d. distributed random variables
to achieve Gaussianity for the standardized sample average together with the
Berry-Esseen inequality

sup
x∈	

∣
∣
∣P
(
Ẑn < x

)
−N(x)

∣
∣
∣ ≤ n− 1

2
0.8
σ2

E
(
|X1 −E(X1)|3

)
. (2.1.28)

As a consequence of the CLT the independence of the random variables
X1, X2, . . . and the existence of second moments guarantee a Gaussian limit
for Ẑn. This provides an explanation for the dominant role of the Gaussian dis-
tribution in probability and statistics and many areas of application including
quantitative finance. For instance, one observes for most financial securities
that for increasing periods of time the corresponding long term log-returns
seem to approach Gaussian random variables. In view of the CLT this is not a
surprising observation if one interprets short term log-returns as i.i.d. random
variables.
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Bernoulli Trials

Let us provide a simple illustration of the Law of Large Numbers and also
the Central Limit Theorem. Bernoulli trials are independent repetitions of an
experiment with two basic outcomes which might occur with probabilities p
and 1 − p, respectively. If we set Xn = 1 for a positive log-return and Xn =
0 for a non-positive log-return, then we can model these log-returns by using
an i.i.d. sequence of random variables X1, X2, . . . with mean

μ = E(Xn) = p (2.1.29)

and variance
σ2 = Var(Xn) = p (1 − p). (2.1.30)

The sum
Hn = X1 +X2 + · · · +Xn = n μ̂n, (2.1.31)

see (2.1.3), counts the number of positive log-returns occurring out of n ob-
served trials. In a Bernoulli trial one is typically interested in the number of
outcomes that correspond to a given specific event. Furthermore, μ̂n = Hn

n
measures the relative frequency of observing such an event, in our example the
occurrence of positive log-returns. The LLNs tell us, as n → ∞, that the ran-
dom variables μ̂n converge in a meaningful sense to the value p, which in our
example is the probability of having a positive log-return for a single obser-
vation. Additionally, by the CLT we know that, as n → ∞, the standardized
sample mean

Ẑn =
√
n

(
Hn

n − p
)

√
p (1 − p)

,

see (2.1.25)–(2.1.31), converges in distribution to a standard Gaussian random
variable Z.

Binomial Distribution

We remark that the probability for the event Hn = m is the same as the
binomial probability for m successes out of n trials, that is

P (Hn = m) = pm (1 − p)n−m n!
(n−m)!m!

, (2.1.32)

where we recall that k! = 1 ·2 · . . . ·k and 0! = 1. Figure 2.1.5 shows for p = 0.5
and n = 10 the resulting binomial probabilities, when these are interpolated.
These probabilities resemble the corresponding bell shaped Gaussian density
function, as indicated by the CLT, which is also included in Fig. 2.1.5 for
comparison. The Gaussian density is the curve with the slightly larger value
at the mean. This means, for p asymptotically not vanishing for large n that
the binomial probabilities tend asymptotically to the values of the Gaussian
density.
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Fig. 2.1.5. Binomial probabilities for p = 0.5 and n = 10 and Gaussian density

Binomial probabilities appear in finance, for example, in random walk and
binomial tree approximations of continuous time asset price models, as will be
discussed later. However, binomial distributions are also linked to the Poisson
distribution as the following statement shows. If n is large and p is small in
(2.1.32), such that λ = np > 0, then it holds asymptotically for n → ∞ that

P (Hn = m) ≈ exp{−λ} λ
m

m !
(2.1.33)

for m ∈ {0, 1, . . .}. This means that for large n and λ = np the binomial
probabilities approach Poisson probabilities, see (1.1.30).

2.2 Confidence Intervals

To analyze empirically market data one needs sophisticated statistical tools.
With the sample mean that we introduced in the previous section we have an
estimate for the mean. We may ask, what is the number of observations needed
to obtain a reasonably accurate estimate and how correct is this estimate? This
question can be answered in different ways, as we shall see below.

Basic Confidence Intervals

Let us again consider the Bernoulli trials introduced previously. These are
formed by a sequence of i.i.d. random variables X1, X2, . . . taking the value
1 with probability p and the value 0 with probability 1 − p, where we now
assume that p is unknown to us. We recall that μ = E(Xn) = p and σ2 =
Var(Xn) = p (1 − p) and so it follows

E(μ̂n) = p

and by (1.4.26) and (2.1.30)
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Var(μ̂n) =
p (1 − p)

n
.

As outlined previously, the sample mean μ̂n converges by the LLN, see
(2.1.8), in a mean square sense to p. We can apply the Chebyshev inequality
(1.3.58) to the random variable μ̂n − p and may then use the inequality σ2 =
p (1 − p) ≤ 1

4 for p ∈ [0, 1] to obtain

P (|μ̂n − p| ≥ a) = P (|μ̂n − μ| ≥ a) ≤ σ2

na2
=

p (1 − p)
na2

≤ 1
4na2

(2.2.1)

for a > 0 and so

P (|μ̂n − p| < a) = 1 − P (|μ̂n − p| ≥ a) ≥ 1 − 1
4na2

. (2.2.2)

Thus, for any 0 < α < 1 and a > 0 we can conclude that the unknown mean
p lies in the interval (μ̂n − a, μ̂n + a) with at least probability 1 − α when

n ≥ n(a, α) =
1

4αa2
. (2.2.3)

In statistical terminology we say that the hypothesis that p belongs to the
interval (μ̂n − a, μ̂n + a) is acceptable at a 100(1 − α)% level of confidence if

P (|μ̂n − p| < a) = 1 − α (2.2.4)

and call
(μ̂n − a, μ̂n + a)

the 100(1−α)% confidence interval. In our example, (μ̂n −0.1, μ̂n +0.1) is at
least a 95% confidence interval when n ≥ n(0.1, 0.05) = 500. If n were fixed,
then we would obtain from (2.2.3) in this example the inequality

a ≥ 1
2
√
αn

. (2.2.5)

We note that the length of the confidence interval only decreases propor-
tionally to n− 1

2 for increasing number of observations n. This is a general
phenomenon, as we shall see later on.

Gaussian Confidence Interval and VaR

For a Gaussian random variable X with known mean μ and known variance
σ2 the 100(1 − α)% confidence interval with

P

(∣∣
∣
∣
X − μ

σ

∣
∣
∣
∣ < p1−α

2

)
= 1 − α (2.2.6)

is given in the form
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(μ− σ p1−α
2
, μ+ σ p1−α

2
). (2.2.7)

Here p1−α is the 100(1−α)% quantile of the standard Gaussian distribution.
For instance, a 99% confidence interval requires one to choose p1−α ≈ 2.58.

The confidence interval (2.2.7) is a two-sided confidence interval. Some-
times however, in particular, in the computation of Value at Risk (VaR),
one is interested in determining a critical maximum loss VaR((1 − α)%) so
that one can assert with (1 − α)% confidence that X is at least as large as
−VaR((1 − α)%), that is

P (X ≥ −VaR((1 − α)%)) = 1 − α (2.2.8)

or equivalently

P

(
X − μ

σ
< −zα

)
= α, (2.2.9)

with

zα =
VaR((1 − α)%) + μ

σ
(2.2.10)

Then (2.2.9) corresponds to the one sided confidence interval

(−∞,−zα), (2.2.11)

where the random variable X−μ
σ can be found with α% probability in that

interval. According to (2.2.8) and (2.2.10) X will thus be with (1 − α)%
probability above the level

− VaR((1 − α)%) = −(zα σ − μ). (2.2.12)

For example, for a Gaussian random variable X and α = 0.01 we have the
α% percentile with value z0.01 ≈ 2.35, which determines according to (2.2.12)
the corresponding maximum critical loss VaR(99%) = z0.01 σ − μ.

Student t Confidence Interval

Often we do not know the variance σ2 or do not have a reasonable estimate
for it. However, in these cases we can use the sample variance σ̂2

n, see (2.1.19),
to construct appropriate confidence intervals.

Let X1, X2, . . ., Xn denote n i.i.d. N(μ, σ2) Gaussian random variables
with known mean μ and unknown variance σ2. As described in (2.1.3) and
(2.1.19) we have the sample mean

μ̂n =
1
n

n∑

j=1

Xj (2.2.13)

and sample variance
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Table 2.2.1. Quantiles for the Student t distribution

n 10 20 30 40 60 100 200

t0.9,n−1 1.83 1.73 1.70 1.68 1.67 1.66 1.65

t0.99,n−1 3.25 2.86 2.76 2.70 2.66 2.62 2.58

σ̂2
n =

1
n− 1

n∑

j=1

(Xj − μ̂n)2 . (2.2.14)

Then for n > 3 it can be shown that the random variable

Tn =
μ̂n − μ
√

σ̂2
n

n

(2.2.15)

is Student t distributed, see (1.2.17), with n − 1 degrees of freedom, that is
Tn ∼ t(n− 1).

We have

P (|μ̂n − μ| < a) = P (|Tn| < t) = 2 (FTn(t) − 0.5) , (2.2.16)

where
t = a

√
n

σ̂2
n

(2.2.17)

and FTn(x) is the value of the Student t distribution function with n − 1
degrees of freedom evaluated at x ∈ �.

Thus, for a given 100α% confidence level, we can check whether or not the
test variable

T 0
n =

μ̂n − μ0√
σ̂2

n

n

with hypothesized mean μ0 satisfies the inequality

|T 0
n | < t1−α,n−1. (2.2.18)

Here t1−α,n−1 is the 100 (1 − α)% quantile of the Student t distribution with
n− 1 degrees of freedom for which

2
(
FT 0

n
(t1−α,n−1) − 0.5

)
= 1 − α.

Some values of the quantile t1−α,n−1 are given in Table 2.2.1. If the relation
(2.2.18) is not fulfilled, then we reject the null hypothesis H0 that μ = μ0.
Otherwise, we accept it on the basis of this test. In addition, we can form the
corresponding 100(1 − α)% confidence interval

(μ̂n − a, μ̂n + a),

see (2.2.17), with



2.2 Confidence Intervals 67

a = t1−α,n−1

√
σ̂2

n

n
. (2.2.19)

We call this interval the Student t confidence interval. It contains all of the
values μ0 for which the null hypothesis would not be rejected by this test.
Applications of this result can be found, for instance, in the treatment of
errors in Monte Carlo simulations.

We note also that the length of the above confidence interval is propor-
tional to n− 1

2 . This means, to obtain a ten times smaller confidence interval
requires approximately hundred times as many observations. We face this
phenomenon in the application of Monte Carlo methods.

The above described procedure requires X1, X2, . . . to be Gaussian. When
this is not the case we note by the CLT that sample means of sufficiently
large groups or batches of these i.i.d. random variables will be approximately
Gaussian. Consequently, with such a construction we can approximately apply
the above methodology to these sample means. To be more precise we take n
batches of m i.i.d. random variables X(j)

1 , X(j)
2 , . . ., X(j)

m for j ∈ {1, 2, . . . , n}.
Then we form the sample means

μ̂(j)
m =

1
m

m∑

�=1

X
(j)
�

and apply the above Student t methodology to these sample means rather
than the original random variables X(j)

i . For practical applications it has often
been found that the batches should consist of at least 15 random variables to
provide a reasonable approximation.

In the case when the variance σ2 is known the following test variable

T̄n =
√
n

(μ̂n − μ)
σ

is Gaussian and we can construct similar confidence intervals as above, but
based on the Gaussian distribution rather than the Student t distribution. Re-
call also that the Student t distribution asymptotically approaches a Gaussian
distribution as the degrees of freedom tend to infinity.

VaR Analysis for Student t Log-Returns (*)

As outlined in regulatory recommendations the modeling of, so-called, event
risk is of increasing importance in VaR analysis.

In the following version of a Student t log-return model we exploit the fact
that symmetric generalized hyperbolic distributions admit a representation as
a mixture of normal distributions. This means, if one chooses the variance of
a conditionally Gaussian distribution as the inverse of a Gamma distributed
random variable, then the resulting distribution is a Student t distribution,
see also Sect.1.2. For simplicity, we neglect here the impact of any asymmetry
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since for the short time intervals considered this is not relevant. We shall
provide later in this chapter more details on normal variance mixture models.

To generate Student t distributed log-returns Z(1), . . ., Z(d) for d securities
at a fixed time we set

Z(k) =
√
τ Y (k) (2.2.20)

for k ∈ {1, 2, . . . , d}, where τ denotes the conditional variance with

τ =
(

1 − 2
n

)(
1
n

n∑

�=1

(
ψ(�)
)2
)−1

(2.2.21)

and n ∈ {3, 4, . . .}. Additionally to the independent standard Gaussian dis-
tributed random variables Y (k) that appear in (2.2.20) we employ further
independent standard Gaussian random variables ψ(�). Hence, the random
variable τ is chi-square distributed with n degrees of freedom, see Sect. 1.2.
Consequently, the random variables Z(k), k ∈ {1, 2, . . . , d}, are Student t dis-
tributed with unit variance and n degrees of freedom. The conditional variance
τ can be interpreted as a measure of the random activity of the market during
the time period of interest. Note that the conditional variance converges to
one as the degrees of freedom n tend to infinity, which yields asymptotically
normal log-returns.

In addition to the typical parameters of the lognormal model we have
used here only the extra parameter n, which is sufficient to characterize the
leptokurtosis of the Student t distribution. As will be shown later, a typical
parameter choice for n is about four. Smaller degrees of freedom generate
log-returns with more extreme movements.

An important feature of the resulting multivariate Student t distribution
for log-returns is its copula, see Sect. 1.5. It realistically captures the es-
timated dependence of extreme asset price movements, as shown in Em-
brechts, McNeil & Straumann (2002) and McNeil, Frey & Embrechts (2005).
Let Y = (Y (1), . . . , Y (d))� denote a vector of independent standard Gaus-
sian distributed random variables and τ be an independent chi-square ran-
dom variable. Note that the joint distribution of the random vector X =
(X(1), . . . , X(d))� with

X =
√
τ D Y

is a multivariate Student t distribution with n degrees of freedom. Here D is
the Cholesky decomposition of the covariance matrix CovX of X, see Sect.1.4.
Since Y is Gaussian and 1

τ is independent chi-square distributed, the result-
ing multivariate Student t distribution of X belongs to the class of elliptic
distributions. One can show that the calculation of VaR numbers is for this
class of distributions analytically tractable, see Platen & Stahl (2003). More
precisely, a theorem in Fang, Kotz & Ng (1990) yields the representation

a� X = |a� D| ζ (2.2.22)
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for any given weight vector a = (a1, a2, . . . , ad)�, where | · | is the Euclidean
norm, a ∈ �d, D�D = CovX and ζ denotes a Student t distributed scalar
random variable with n degrees of freedom. The representation (2.2.22) sig-
nificantly simplifies the VaR calculation for portfolios even if these have an
extremely large number of constituents.

Since the multivariate Student t distribution is an elliptical distribution,
it follows from Embrechts et al. (2002), that VaR is in this case a, so-called,
coherent risk measure, see Artzner, Delbaen, Eber & Heath (1997). This fact
is highly important for the consistent use of VaR as a risk measure for internal
capital allocation to particular business lines. The property of coherent risk
measures that sometimes creates problems for VaR is the additivity, where
the risk measure for the sum of two risky securities should never be greater
than the sum of their risk measures, see Föllmer & Schiedt (2002).

In order to calculate VaR for the given short term horizon we apply, the
so-called, square root time rule, which is in line with regulatory recommenda-
tions. From (2.2.22) we obtain then the following formula for the VaR number
of a given portfolio at the given time:

VaRh(V, α) ≈ V
√

a� CovX a
√
hΔ t̃α(n). (2.2.23)

Here
√

a�CovXa characterizes the total volatility of the portfolio, V denotes
the market value of the portfolio at the given time, Δ is the time step size for
a trading day, h the number of trading days and t̃1−α(n) the 100(1 − α)%-
quantile of the Student t distribution with n degrees of freedom.

The product (2.2.23) generalizes a short hand formula, used in practice,
to calculate VaR by including the event factor

ϕ =
t̃1−α(n)
p1−α

, (2.2.24)

that is
VaRh(V, α) ≈ V

√
a� CovX a

√
hΔ p1−α ϕ. (2.2.25)

Here p1−α is the 100(1−α)%-quantile of the standard Gaussian distribution.
Consequently, the event factor ϕ adjusts the standard VaR formula to a level
that captures the, so-called, event risk when one uses Student t log-returns.
According to the quantiles of the Gaussian and Student t distribution one
obtains by (2.2.23) the event factors shown in Table 2.2.2. Even for rather
small degrees of freedom, say n ≈ 2, the additional regulatory capital will not
surpass 16%.

Table 2.2.2. Event factor ϕ in dependence on degrees of freedom n

n ∞ 10 5 4 3 2

ϕ 1 1.06 1.11 1.12 1.14 1.16
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Gibson (2001) performed an extensive study using an extremely large set
of representative portfolios of US institutions, where he identified empirically
an event factor of about ϕ̂ ≈ 1.12. One notes that this is exactly the value
of the event factor that matches in Table 2.2.2 the one for the degrees of
freedom n = 4. We shall see later that this finding supports a model proposed
in Platen (2002), the minimal market model, which will be derived later in
Chap. 13. Also our inference later in this chapter will suggest a Student t
distribution with four degrees of freedom as a realistic estimate for the log-
return distribution of indices.

2.3 Estimation Methods

There exists a wide range of estimation techniques developed for various in-
ference problems that have major importance in quantitative finance. The
choice of a suitable estimation method depends on the available data and the
assumed model. In this section we concentrate mainly on linear models.

Estimators

Assume that there are n ∈ N real valued observations Rt1 , Rt2 , . . . , Rtn ∈ �
of, say, log-returns. These observations contain information about the param-
eters θ1, θ2, . . . , θq ∈ � that we wish to estimate. The observations can be
represented as observation vector R = (Rt1 , Rt2 , . . . , Rtn)� ∈ �n and the
parameters as parameter vector θ = (θ1, θ2, . . . , θq)� ∈ Θ ⊆ �q, where Θ
specifies the set of allowable values for the parameters, q ∈ N .

Generally, an estimator θ̂ = (θ̂1, θ̂2, . . . , θ̂q)� ∈ Θ is a function θ̂ : �n → Θ
by which the parameters can be approximately identified from the observa-
tions, that is, by the estimate

θ̂ = θ̂(Rt1 , Rt2 , . . . , Rtn). (2.3.1)

For example, as discussed previously, two typical parameters that are often
needed are the mean θ1 = E(X) and the variance θ2 = E((X−μ)2) of a Gaus-
sian random variable X ∼ N(θ1, θ2), say Gaussian daily log-returns. Given
an observation vector R = (Rt1 , Rt2 , . . . , Rtn)� with components that consist
of i.i.d. observations of X, these parameters can be estimated. According to
(2.2.13) the sample mean

θ̂1 =
1
n

n∑

j=1

Rtj (2.3.2)

estimates the value of θ1. By (2.2.14) the sample variance

θ̂2 =
1

n− 1

n∑

j=1

(Rtj − θ̂1)2 (2.3.3)
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provides an estimator for θ2. In this example we have q = 2 and θ̂ =
(θ̂1, θ̂2)� ∈ �2. For Gaussian daily log-returns, θ̂1 would be the estimate of
the expected daily growth rate and θ̂2 the estimate of the variance of the daily
log-returns.

Unbiasedness and Consistency

The assessment of the quality of an estimate θ̂i, i ∈ {1, 2, . . . , q}, of the ith
parameter θi can be based on the estimation error

θ̃i(n) = θi − θ̂i. (2.3.4)

Ideally, the estimation error should be close to zero almost surely. However,
this is difficult to achieve for a finite set of observations and a general model.
Therefore, less stringent requirements are typically used.

The first requirement, which is often formulated, is that the expected value
of the estimation error should be zero. That is, by taking expectations we
obtain from (2.3.4) the condition

0 = E(θ̃i(n)) = E(θi) −E(θ̂i) = θi − E(θ̂i) (2.3.5)

for i ∈ {1, 2, . . . , q}. Estimators that satisfy relation (2.3.5) are called unbiased
and it follows by (2.3.5) that

E(θ̂i) = θi (2.3.6)

for i ∈ {1, 2, . . . , q}.
In the case when the estimator θ̂i does not meet the unbiasedness condition

(2.3.5), then θ̂i is said to be biased. The bias E(θ̃i(n)) is defined as the expected
value of the estimation error (2.3.4). If the bias tends to zero as the number n
of observations increases, then the estimator is called asymptotically unbiased,
that is

lim
n→∞

E(θ̃i(n)) = 0, (2.3.7)

i ∈ {1, 2, . . . , q}. A reasonable requirement for an unbiased estimator θ̂i is that
its estimation error should, for increasing number n of observations, converge
in probability to zero, that is

lim
n→∞

θ̃i(n) P= 0 (2.3.8)

for i ∈ {1, 2, . . . , q}. An estimator satisfying the property (2.3.8) is called
consistent.

In our previous example, where X ∼ N(θ1, θ2) is a Gaussian random
variable and Rt1 , Rt2 , . . . are independent observations of X, the expected
value of the sample mean θ̂1 given in (2.3.2) is
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E(θ̂1) =
1
n

n∑

j=1

E(Rtj ) =
1
n
n θ1 = θ1. (2.3.9)

Consequently, in this case the sample mean θ̂1 is an unbiased estimator of the
mean θ1. We obtain for the estimation error θ̃1(n) the variance

E(θ̃1(n)2) = E

⎛

⎜
⎝

⎛

⎝ 1
n

n∑

j=1

(Rtj − θ1)

⎞

⎠

2
⎞

⎟
⎠ =

1
n2

n∑

j=1

E
(
(Rtj − θ1)2

)
=

1
n
θ2.

(2.3.10)
The variance in (2.3.10) converges to zero as n → ∞. This implies by the
Chebyshev inequality (1.3.58) and equation (2.3.10) that θ̃1(n) converges in
probability to zero, that is

P (θ̃1(n) > ε) ≤ 1
ε2

E
(
θ̃1(n)2

)
=

θ2
n ε2

. (2.3.11)

Therefore, the estimator θ̂1 is by (2.3.8) consistent.
In (2.1.22) we have estimated for the S&P500 daily log-returns with mean

θ1 ≈ 0.0004 and variance θ2 ≈ 0.00008. By (2.3.11) to obtain with about
only a probability of θ2

n ε2 ≈ 0.1 an estimation error θ̃1(n) > ε ≈ 0.1θ1 one
needs more than n ≈ θ2

0.1 ε2 ≈ 500, 000 observations. This is an enormous
number of daily observations that is needed to get any rough idea about the
daily expected growth of an underlying security, as the S&P500. It requires
far more data than market history offers. Therefore, without the availability
of any extra structure it is highly unrealistic to expect any reliably estimates
of trend, drift or growth parameters for financial securities. In particular, it
is unlikely that with the available data one can estimate equity risk premia
realistically.

Efficiency

One calls an estimator, which yields the lowest variance estimate an efficient
estimator. It uses optimally, in a least-square sense, the information contained
in the observations. Therefore, a useful measure of the quality of an estimator
with estimation error vector θ̃(n) = (θ̃1(n), . . . , θ̃q(n))� is given by the error
covariance matrix

Covθ̃(n) = E
(
θ̃(n) θ̃(n)�

)
. (2.3.12)

This matrix measures the errors of individual estimators also in relation to
each other. One obtains a scalar error measure for the ith estimator by con-
sidering the ith diagonal element in (2.3.12), which is the ith mean-square
error

Covi,i

θ̃(n)
= E

(
(θ̃i(n))2

)
, (2.3.13)
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i ∈ {1, 2, . . . , q}. An overall scalar error measure is obtained by summing up
all the diagonal elements of Covθ̃(n), which yields the mean-square error

Mseθ̃(n) = E
(
θ̃(n)� θ̃(n)

)
. (2.3.14)

One calls a symmetric q × q matrix B positive definite if

a� B a > 0 (2.3.15)

for all q-vectors a. A symmetric matrix C is said to be smaller than another
symmetric matrix A, or C < A, if the matrix A − C is positive definite.
This allows us to state that an estimator θ̂, which provides the smallest error
covariance matrix among all unbiased estimators, is the best estimator in the
mean-square sense. Such an estimator is called an efficient estimator.

Fisher Information

It can be shown that there exists a lower bound for the error covariance
matrix given in (2.3.12), see Mendel (1995). This bound involves the Fisher
information matrix J = [J i,j ]qi,j=1, where

J i,j = E

(
∂

∂θi
ln(FX(R))

∂

∂θj
ln(FX(R))

)
(2.3.16)

and FX(R) is the joint distribution of the vector X = (X1, X2, . . . , Xn)� with
the given parameter vector θ ∈ Θ, when taken under the information given
by the observations R = (Rt1 , Rt2 , . . . , Rtn)�. The term ∂

∂θi
ln(FX(R)) is the

partial derivative with respect to the parameter θi of the natural logarithm
of the joint distribution FX(·) of the observed quantities R. We assume that
the partial derivatives exist and are absolutely integrable. If θ̂ is any unbiased
estimator of θ, then the error covariance matrix is bounded from below by
the inverse of the Fisher information matrix J , that is

Covθ̃(n) ≥ J−1. (2.3.17)

The lower bound is called the Cramér-Rao lower bound and provides a useful
measure for testing the efficiency of specific estimation methods.

In the context of estimating trend, drift or growth parameters in log-
returns of financial securities it tells us that there is an objective lower bound
for the error covariance matrix. As already indicated previously, this bound is
so high that there are not enough data available to accurately estimate trend
and growth parameters in security prices.
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Method of Moments

A rather obvious and simple estimation method is the method of moments, see
Hansen (1982) or Cochrane (2001). It often leads to computationally simple
estimators and is intuitively satisfying. However, it has also some weaknesses,
in particular, when moments that are involved in the derivation of the esti-
mators are not certain to exist in reality. For instance, as we shall see later, it
seems that empirical studies on log-return data indicate that the existence of
the fourth moment could be questionable, see also Dacorogna, Müller, Pictet
& De Vries (2001).

Assume that there are n i.i.d. observations Rt1 , Rt2 , . . . , Rtn ∈ � that have
the probability distribution function FR,θ, which depends on the parameter
vector θ = (θ1, θ2, . . . , θq)� ∈ �q for q ∈ N . We know from Sect. 1.3 that the
jth moment mj = mj(θ1, θ2, . . . , θq) of the random variable R is obtained by
the integral

mj(θ1, θ2, . . . , θq) = E((R)j) =
∫ ∞

−∞
(r)j dFR,θ(r) (2.3.18)

for j ∈ N as long as mj = mj(θ1, θ2, . . . , θq) < ∞. It is obvious that the
moments mj , j ∈ N , are functions of the parameters θ1, θ2, . . . , θq.

By application of the strong Law of Large Numbers, see Sect. 2.1, one can
estimate under appropriate assumptions the respective moments using the
given observations Rt1 , Rt2 , . . . , Rtn . Let us denote by m̂j the jth sample
moment

m̂j =
1
n

n∑

i=1

(Rti)
j (2.3.19)

for j ∈ N . Typically, q equations for the first q moments are sufficient for
identifying estimators for the q unknown parameters θ1, θ2, . . . , θq. The basic
idea for the method of moments is therefore to equate the theoretical moments
mj with corresponding sample moments m̂j , that is

mj(θ̂1, θ̂2, . . . , θ̂q) = m̂j (2.3.20)

for j ∈ {1, 2, . . . , q}, with θ̂1, θ̂2, . . . , θ̂q denoting the resulting parameter esti-
mators.

If the system of equations (2.3.20) has a solution that is acceptable, then
we call θ̂1, θ̂2, . . . , θ̂q the method of moments estimators.

Sometimes, it is recommended to use the jth central theoretical moments

μj = μj(θ1, θ2, . . . , θq) = E
(
(R−m1)j

)
(2.3.21)

and the respective jth central sample moments

μ̂j =
1

n− 1

n∑

i=1

(Rti −m1)
j (2.3.22)
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to form the q equations

μj(θ1, θ2, . . . , θq) = μ̂j (2.3.23)

for j ∈ {1, 2, . . . , q}. By solving the system of equations (2.3.23) one may
obtain slightly different method of moment estimators θ̂1, θ̂2, . . . , θ̂q.

The theoretical justification for the method of moments relies on the fact
that under appropriate assumptions the sample moments are consistent es-
timators of the respective theoretical moments, see (2.3.8). It is well-known
that the method of moments is sometimes not very efficient. Furthermore, the
unbiasedness of the method of moment estimators cannot be easily guaran-
teed.

Linear Least-Squares Estimation

The following well-known estimation method does, in principle, not require
any information about the structure of the underlying distribution function
of the observations. It uses only first and second order moments. In its basic
form the least-squares estimation method assumes that the n-dimensional ob-
servation vector R = (Rt1 , Rt2 , . . ., Rtn)� ∈ �n satisfies the following linear
model

R = B θ + ε. (2.3.24)

Here B = [bi,j ]n,q
i,j=1 is the (n, q)-observation matrix, ε = (ε1, ε2, . . . , εn)�

∈ �n is the n-dimensional observation error vector and θ = (θ1, θ2, . . . , θq)�

∈ Θ denotes the q-dimensional parameter vector, n, q ∈ N with q < n. The
observation matrix B is assumed to be known and to be of maximum rank q.

Note that for ε = (0, 0, . . . , 0)� equation (2.3.24) has no solution. How-
ever, in reality the observation errors ε are random and unknown. Therefore,
the best that one can achieve is to find an estimator θ̂ that minimizes in a
reasonable sense the effect of the observation errors. From a mathematical
viewpoint it is convenient to use a least-squares criterion of the form

ULS(θ) =
1
2

ε� ε =
1
2

(R − B θ)� (R − B θ). (2.3.25)

One notes that no expectation is taken in the least-squares criterion (2.3.25).
This criterion simply minimizes the observation error ε. It does not directly
minimize the absolute value of the estimation error θ − θ̂.

Minimizing the quadratic form (2.3.25) with respect to the unknown pa-
rameter vector θ yields by the corresponding first order conditions the, so-
called, normal equations in the form

(B� B) θ̂ = B� R. (2.3.26)

This allows one to determine the least-squares estimator θ̂, since we assumed
that the matrix B has maximum rank q < n. Then we obtain
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θ̂ = B+ R (2.3.27)

with
B+ = (B� B)−1 B�. (2.3.28)

Statistically one can analyze the least-squares estimator by assuming that the
measurement errors have zero mean, that is

E(εtj ) = 0 (2.3.29)

for all i ∈ {1, 2, . . . , n}. Obviously, the least-squares estimator is unbiased,
since by (2.3.27) and (2.3.24) we obtain

E(θ̂) = B+ (B θ +E(ε)) = θ. (2.3.30)

Of great interest is the covariance matrix of the observation error vector,
which has the form

Cov(ε) = E(ε ε�). (2.3.31)

If this matrix is known, then one can use the relation

θ̂ − θ = B+ R − B+B θ = B+(R − B θ) = B+ ε

to calculate the covariance matrix

Cov(θ − θ̂) = E
(
(θ − θ̂) (θ − θ̂)�

)
= E

(
B+ ε (B+ ε)�

)

= B+ E
(
ε ε�) (B+)� = B+ Cov(ε) (B+)� (2.3.32)

of the estimation error. One notes that this covariance matrix depends on the
second moments of the observation errors and the observation matrix.

Curve Fitting

The linear least-squares estimation method is widely used, for instance, in
linear regression analysis, that is, linear curve fitting. Linear and nonlinear
curve fitting are common tasks in quantitative finance. Let us fit to given
observations Rt1 , Rt2 , . . . , Rtn the model

Rtk
=

q∑

i=1

θi φi(tk) + εk (2.3.33)

for tk ∈ {t1, t2, . . . , tn}. Here φi : [0,∞) → � is the given ith basis func-
tion with i ∈ {1, 2, . . . , q}, which can be a nonlinear function of the variable
t ∈ [0,∞). The unknown parameter vector is again θ = (θ1, θ2, . . . , θq)�. The
observation error vector ε = (ε1, ε2, . . . , εn)� is as before.

If we now assume that the observations Rt1 , Rt2 , . . . , Rtn are available at
the arguments t1, t2, . . . , tn, then by (2.3.33) the observation matrix B =
[B�,i]

n,q
�,i=1 has the elements
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B�,i = φi(t�) (2.3.34)

for  ∈ {1, 2, . . . , n} and i ∈ {1, 2, . . . , q}.
By inserting the known values of the functions φi, i ∈ {1, 2, . . . , q} into

the observation matrix and using the observation vector one obtains directly
the least-squares estimate (2.3.27). Often it is convenient to choose the basis
functions such that they are orthogonal, that is

n∑

�=1

φi(t�)φk(t�) =

{
1 for i = k

0 otherwise.
(2.3.35)

In this case one obtains B�B = I, where I is the identity matrix. This
simplifies the least-squares estimator (2.3.27) yielding the simple expression

θ̂ = B� R. (2.3.36)

In this case, one obtains for the least-squares estimator of the ith parameter
the formula

θ̂i =
n∑

�=1

φi(t�)Rt�
(2.3.37)

for i ∈ {1, 2, . . . , q}. The covariance matrix of the estimation error reduces
here to the matrix

Cov(θ − θ̂) = B�E(ε ε�)B = B� Cov(ε)B, (2.3.38)

which does not depend on the true parameter vector θ. The linear least-
squares method is widely used because of its simplicity. Its application can be
largely successful if the chosen model is reasonably accurate for the data.

Generalized Least-Squares Estimators

One can refine the previously given linear least-squares problem by adding
a symmetric positive weighting matrix W into the least-squares criterion
(2.3.25). The generalized least-squares criterion is then of the form

UGLS(θ) =
1
2

ε� W ε =
1
2

(R − B θ)�W (R − B θ). (2.3.39)

The optimal choice for the weighting matrix W is the inverse of the covariance
matrix of the observation error, that is

W = (Cov(ε))−1. (2.3.40)

This choice follows from the fact that the resulting generalized least-squares
estimator

θ̂ =
(
B�(Cov(ε))−1B

)−1

B�(Cov(ε))−1 R (2.3.41)



78 2 Statistical Methods

minimizes also the mean square error criterion

UMSE(θ) = E
(
(θ − θ̂)� (θ − θ̂)

)
. (2.3.42)

The estimator (2.3.41) is often called the best linear unbiased estimator.
In some applications the generalized linear least-squares method is not suf-

ficient for capturing the dependence between the observationsRt1 , Rt2 , . . . , Rtn

and the parameter vector θ. In such case one can consider a nonlinear model
of the form

R = G(θ) + ε (2.3.43)

with a given nonlinear vector valued function G : Θ → �n.
Similarly as before, one can in this case minimize the observation error to

obtain the criterion

UNLS(θ) =
1
2

(R − G(θ))� (R − G(θ)). (2.3.44)

By minimizing the criterion (2.3.44) one typically obtains a nonlinear least-
squares estimator. However, one must note that this involves a nonlinear opti-
mization, which can only be performed numerically and may not always yield
unique estimators.

2.4 Maximum Likelihood Estimation

Maximum Likelihood Method

For proper financial modeling, it is essential to use an objective and reliable
statistical methodology to distinguish between competing models. A key prob-
lem is the identification of a typical distribution for log-returns. For instance,
one can try to use some moment based methods, as described previously. How-
ever, these may not say enough about the shape of the distribution. Alter-
natively, one could use the following maximum likelihood methodology, which
appears to be reasonably objective. It is based on some hypothesized family
of probability densities and does not require the use of higher order empirical
moments.

In the following the maximum likelihood methodology will be explained
in the context of observed sequences of i.i.d. log-returns. This framework can
be used to identify a best fit of log-return distributions, for instance, for stock
market index data as will be discussed later in detail. However, one must be
aware of the fact that there is never a “true” distribution behind the ran-
dom variables that one observes in practice. More realistic estimation tech-
niques are, for instance, provided by the quasi-likelihood theory, as presented
in Heyde (1997).

The maximum likelihood estimation method assumes that there is no prior
information available on the parameters θ1, θ2, . . . , θq. What is needed for the
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maximum likelihood method is the probability density function fR of the inde-
pendent identically distributed observations Rt1 , Rt2 , . . ., Rtn . The maximum
likelihood estimators θ̂ = (θ̂1, θ̂2, . . . , θ̂n)� have several theoretically highly
desirable asymptotic optimality properties when the sample size n is large.
For instance, in the case when there exists an estimator which satisfies the
Cramer-Rao lower bound (2.3.17), then it can be constructed by using the
maximum likelihood method. The maximum likelihood estimator θ̂ is consis-
tent and asymptotically efficient, which means that it achieves asymptotically
the Cramer-Rao lower bound for the estimation error.

Likelihood Function

We assume that the observed log-returns are denoted by Rt1 , Rt2 , . . . and form
a sequence of i.i.d. random variables with some hypothesized, parameterized
density fR. Note that the joint probability density function fR of the random
vector R = (Rt1 , Rt2 , . . ., Rtn)� of log-returns can be written for these i.i.d.
random variables, see (1.4.41), in the form

L(θ) = fRt1 ,Rt2 ,...,Rtn
(Rt1 , Rt2 , . . . , Rtn ,θ) =

n∏

i=1

fR(Rti ,θ). (2.4.1)

Here fR(·,θ) is the density of Rti , i ∈ {1, 2, . . . , n}, given the parameter values
θ = (θ1, θ2, . . . , θq)� ∈ Θ ⊆ �q, q ∈ N . The set Θ specifies again the set of
allowable values that the parameters can take. Our aim will be to find some
best parameter estimates that fit the data. We call the above function (2.4.1)
the likelihood function for the parameter θ ∈ Θ.

Maximum Likelihood Estimate

To be able to optimize the choice of the parameter we need a criterion to
identify a best fit. The maximum likelihood methodology uses the maximum
likelihood estimator θ̂ = (θ̂1, θ̂2, . . . , θ̂q)� as a best estimate of θ ∈ Θ, where

L∗ = L(θ̂) = sup
θ∈Θ

L(θ). (2.4.2)

Here L∗ = supθ∈Θ L(θ) denotes the supremum of L(θ), that is in our case
the least upper bound of L(θ) over all θ ∈ Θ. This means, θ̂ is the parameter
that maximizes the likelihood function with respect to the set of permitted
parameter values θ ∈ Θ. Intuitively, this choice yields the parameter θ̂ for
which the observed log-returns are most likely chosen from the hypothesized
density in the given parameterized family of probability densities. This means
that fR(·, θ̂) represents the most probable density from the given class of
densities having observed the log-returns Rt1 , Rt2 . . . , Rtn .

In practice, it is convenient to work with the log-likelihood function
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(θ) = ln(L(θ)). (2.4.3)

Under suitable conditions, when the true parameter is an interior point of Θ,
the maximum likelihood estimate θ̂ can be obtained as a root of the first order
conditions

∂(θ)
∂θi

= 0 (2.4.4)

for all i ∈ {1, 2, . . . , q}, where ∂
∂θi

denotes the partial derivative with respect to
θi. The system of equations (2.4.4) is called the system of maximum likelihood
equations.

If one cannot explicitly solve the maximum likelihood equations, then a
root finding method, for instance, a multi-dimensional Newton method, can
be applied to solve the system of maximum likelihood equations. The above
maximum likelihood approach only yields reliable estimates if the hypothe-
sized model is suitable and a sufficient number of observations is available.
For the identification of log-return distributions this means that the hypoth-
esized distribution must be reasonably close to the true distribution and one
needs a large number of observed log-returns that can be interpreted as being
independent and identically distributed.

Likelihood Ratio Test

Now, let us suppose that we have a class of models that corresponds to a class
of parameters characterizing some hypothesized density. Our goal will be to
identify the parameters of the density which best fits our data set of observed
log-returns using the maximum likelihood approach.

This can be achieved by the likelihood ratio test which is due to Neyman &
Pearson (1928). We emphasize, that the maximum likelihood approach does
not rely on certain higher moments, for instance the kurtosis, that might not
even exist in a given situation, as we shall see later.

We define the likelihood ratio in the form

Λ =
L∗

model

L∗
general model

. (2.4.5)

Here L∗
model represents the maximized likelihood function of a hypothesized

model density, say, with q parameters. On the other hand, L∗
general model de-

notes the maximized likelihood function for the density of a more general
model that has, say q + ν parameters and nests the hypothesized model den-
sity q, ν ∈ N .

Under appropriate conditions it can be shown, see Rao (1973), that the
density of the test statistic

Ln = −2 ln(Λ) (2.4.6)

is asymptotically a chi-square density, or more generally a gamma density,
see (1.2.9), for increasing number of observations n → ∞. Here the degrees
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Table 2.4.1. Quantiles for the chi-square-distribution

ν 1 2 30

χ2
0.99,ν 6.635 9.210 50.9

χ2
0.95,ν 3.841 5.991 43.8

χ2
0.90,ν 2.706 4.605 40.3

χ2
0.20,ν 0.064 0.446 23.4

χ2
0.10,ν 0.0158 0.211 20.6

χ2
0.05,ν 0.0039 0.103 18.5

χ2
0.01,ν 0.000157 0.020 15.0

χ2
0.001,ν 0.000002 0.002 11.6

of freedom ν equal the difference between the number of parameters in the
general model density and the hypothesized model density. It can then be
shown that as n → ∞

P
(
Ln < χ2

1−α,ν

)
≈ Fχ2(ν)

(
χ2

1−α,ν

)
= 1 − α, (2.4.7)

where Fχ2(ν) denotes the chi-square distribution with ν degrees of freedom
and χ2

1−α,ν is its 100(1 − α)% quantile. In Table 2.4.1 we summarize some
quantiles of the chi-square distribution.

As in Sect. 2.2 we can similarly check for a given 100α% confidence level
whether or not the test statistic Ln is in the 100(1 − α)% quantile of the
chi-square distribution with ν degrees of freedom. If the relation

Ln < χ2
1−α,ν (2.4.8)

is satisfied, then we cannot reject at the 100α% significance level the hypoth-
esis that the suggested model is the true underlying model. Otherwise, we
reject this hypothesis on the basis of this likelihood ratio test.

2.5 Normal Variance Mixture Models

Subordination

It is well-known that the log-return distributions of security prices are strongly
leptokurtic. This means that they have larger kurtosis than the Gaussian dis-
tribution provides. The following simple modeling approach is called subor-
dination and goes back to Bochner (1955) and Clark (1973). We used al-
ready some kind of subordination when generating Student t log-returns in
(2.2.20). For capturing typical features of log-return distributions one can sim-
ply make the conditional variances themselves independent random variables.
This yields a class of models with normal-variance mixture distributed log-
returns, see Feller (1968). This kind of models allows us to keep the empirical
analysis fairly simple. For simplicity we shall only consider here symmetric
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log-returns since any log-return mean is in reality extremely small and can be
easily added to the model.

We now assume a normal-variance mixture density for the ith log-return
Zi by setting

Zi =
√
mi ξi. (2.5.1)

Here we use for all i ∈ {0, 1, . . . , n−1} an independent identically distributed
nonnegative conditional variance mi, together with some independent, stan-
dard Gaussian distributed random variable ξi ∼ N(0, 1). Note that each log-
return Zi can here be linked to a corresponding conditional variance mi. The
conditional variance mi for the log-return at time ti, i ∈ {0, 1, . . .}, is assumed
to be distributed according to a given density fm. The generality of the re-
sulting class of normal-variance mixture densities for log-returns follows from
the freedom to adjust the density fm. One obtains here the normal-variance
mixture density function of the log-return Zi, in the form

fZ(x) =
1√
2π

∫ ∞

0

1√
u

exp
{
− x2

2u

}
fm(u) du (2.5.2)

for x ∈ �, as long as this integral exists. The ith log-return Zi has then mean
zero, variance vZ = vm, skewness zero and kurtosis

κZ = 3
(

1 +
vm

(μm)2

)
. (2.5.3)

Here the ith conditional variance mi, i ∈ {0, 1, . . . , n−1} has mean μm and
variance vm. One notes for the case of nonzero variance of the conditional
variance mi that it follows by (2.5.3) that any normal-variance mixture density
has kurtosis greater than three and is, therefore, leptokurtic. This can be used
as an explanation for widely observed leptokurtic log-returns in practice. The
lognormal model with constant mi is an extremely useful modeling attempt
that has as its justification mainly its mathematical simplicity.

Samuelson (1957), Osborne (1959) and subsequently many other authors
have modeled asset price increments by lognormal random variables, where
the resulting log-returns are Gaussian random variables. This has been an ex-
tremely important first step in quantitative finance. The corresponding Gaus-
sian density for the lognormal model results from (2.5.2) when the density
of the conditional variance degenerates to that of a constant mi = 1 with
vm > 0 for i ∈ {0, 1, . . . , n−1}. We emphasize that the Gaussian density has
been clearly rejected in many studies as a suitable log-return density for most
securities.

Let us remark that in a wider range of models, beyond the models that we
consider here, one does not need the conditional variance for the log-returns
to exist. This allows one to cover logstable models as suggested in Mandelbrot
(1963, 1967), Mandelbrot & Taylor (1967), Fama (1965) and Hurst, Platen &
Rachev (1999). These models have typically one additional parameter when
compared to the lognormal model and generate log-returns that may have no
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conditional variance. We are not studying here any of these models since most
log-returns in financial markets seem to have finite conditional variance.

SGH Models

We shall not consider any further the case of a Gaussian log-return density
but study instead a rich class of analytically tractable densities that include
the Gaussian one as a limit. Our aim will be to discriminate between a wide
range of possible leptokurtic densities. The densities that we shall analyze can
be classified as a class of normal-variance mixture densities. The Gaussian log-
return density arises simply as limiting case for certain extreme parameters.
As described in Sect. 1.2, it is noticeable that a large group of authors have
proposed important models with log-returns that relate to the class of gener-
alized hyperbolic densities. This class of densities was extensively examined
by Barndorff-Nielsen (1977, 1978) and Barndorff-Nielsen & Blaesild (1981).
We assume, for simplicity, zero skewness and consider in the following the
symmetric generalized hyperbolic (SGH) density as a possible density for log-
returns. This density results when the density of the conditional variance mi,
i ∈ {0, 1, . . .}, is a generalized inverse Gaussian density. We call the resulting
discrete time log-return models SGH models.

By (1.2.24) the SGH density function of a log-return Zi is of the form

fZ(x) =
1

δ Kλ(α δ)

√
α δ

2π

(
1 +

x2

δ2

) 1
2 (λ− 1

2 )
Kλ− 1

2

(

α δ

√

1 +
x2

δ2

)

(2.5.4)

for x ∈ �, where λ ∈ � and α, δ ≥ 0. We set α = 0 if λ ≥ 0 and δ = 0 if
λ ≤ 0. We remark that the corresponding probability density function of a
conditional variance mi in the normal-variance mixture density (2.5.2) is here
the generalized inverse Gaussian density of the form

fm(x) =
αλ

2 δλKλ(α δ)
xλ−1 exp

{
−1

2

(
δ2

x
+ α2x

)}
, (2.5.5)

where Kλ(·) is the modified Bessel function of the third kind with index λ,
see (1.2.25).

The SGH density is a four parameter density. The two shape parameters
are λ and ᾱ = α δ, defined so that they are invariant under scale transforma-
tions. The other parameters contribute to the scaling of the density. We define
as in (1.2.27) the parameter c as the scale parameter such that vm = vZ = c2,
that is

c2 =

⎧
⎨

⎩

2 λ
α2 if δ = 0 for λ > 0, ᾱ = 0,

δ2 Kλ+1(ᾱ)
ᾱ Kλ(ᾱ) otherwise.

(2.5.6)

The variance of mi is
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vm = c4

(
Kλ(ᾱ)Kλ+2(ᾱ)

Kλ+1(ᾱ)2
− 1

)

. (2.5.7)

Consequently, the log-return Zi has mean zero, variance vZ = c2, skewness
zero and kurtosis

κZ =
3Kλ(ᾱ)Kλ+2(ᾱ)

Kλ+1(ᾱ)

2

. (2.5.8)

Furthermore, it can be shown that as λ → ±∞ or ᾱ → ∞ the SGH density
asymptotically approaches the Gaussian density.

To illustrate certain candidate densities for the log-returns within the class
of SGH densities we recall in the following four special cases of the SGH density
that coincide with the log-return densities of important asset price models,
which we previously mentioned in Sect. 1.2.

Praetz (1972) and Blattberg & Gonedes (1974) suggested for log-returns a
Student t density with degrees of freedom n > 0. This density follows from the
above SGH density for the shape parameters λ = −1

2 n < 0 and ᾱ = 0, that
is α = 0 and δ = ε

√
n. Using these parameter values the Student t density

function has then the form (1.2.28). Here the variance mixture density is an
inverse gamma density.

Barndorff-Nielsen (1995) considered log-returns to follow a normal-inverse
Gaussian mixture distribution. The corresponding density is obtained from the
SGH density when the shape parameter λ = −1

2 is chosen. For this parameter
value the conditional variance mi is inverse Gaussian distributed and it follows
by (2.5.4) that the probability density function (1.2.29) for Zi.

Eberlein & Keller (1995) and Küchler et al. (1999) suggested models,
where log-returns appear to be hyperbolicly distributed. This type of mod-
els is covered by the choice of the shape parameter λ = 1 in the SGH density.
The probability density function of the Zi is then of the form (1.2.30).

Madan & Seneta (1990), Geman, Madan & Yor (2001) and Carr, Geman,
Madan & Yor (2003) assumed log-returns to be distributed with a normal-
variance gamma mixture distribution. This particular case occurs when the
shape parameters are such that λ > 0 and ᾱ = 0, that is, δ = 0 and α =√

2 λ
c . In this case the conditional variance mi is gamma distributed and the

probability density function of Zi is given by (1.2.31)
This means the variance mixture density is here a gamma density. The

model is also known as variance gamma (VG) model. Below we shall investi-
gate which kinds of densities best fit observed log-returns.

2.6 Distribution of Index Log-Returns

Estimation of Log-Returns

In the literature a vast amount of empirical work has been accomplished
estimating the distributions of log-returns of financial securities. Starting with
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papers by Mandelbrot (1963) and Fama (1963), and in a subsequent stream of
literature, it became clear that the standard assumption that log-returns are
Gaussian distributed is very crude and for certain risk management tasks even
a dangerous assumption. It is now widely recognized that, in reality, extreme
log-returns are more likely than suggested by the Gaussian distribution.

From the perspective of the benchmark approach, which we present later in
this book, it is not surprising that empirical studies on log-returns of exchange
rates and equity prices have so far not identified a particular distribution that
fits the observed data well. The reason is that an exchange rate involves at
least two major factors. One of these relates to the domestic economy and the
second reflects the foreign economy. As we shall explain later, the benchmark
approach suggests we analyze and model the denominations of the market
portfolio in different currencies. Intuitively, one separates other impacts from
that of the currency of interest. The market portfolio acts as the reference unit
that is practically least disturbed by any particular security. The benchmark
approach will suggest that one may more easily find some testable empirical
evidence about the log-return distribution of an index than for an exchange
rate or equity price.

In two papers, the Nobel Laureate Harry Markowitz together with Usmen;
see Markowitz & Usmen (1996a, 1996b), analyzed daily S&P500 stock index
log-returns for the period from 1963 until 1983 in a Baysian framework. Within
the wide family of Pearson distributions, see Stuart & Ord (1994), they iden-
tified the Student t distribution with about n = 4.5 degrees of freedom as the
best fit.

In an independent empirical analysis of stock index log-returns observed
from 1982 until 1996 of the S&P500 and other stock indices, Hurst & Platen
(1997) demonstrated that the Student t distribution provides the best fit in a
range of normal-variance mixture distributions when employing a maximum
likelihood methodology. In a recent study on log-returns of a world stock
index, when denominated in different currencies, Fergusson & Platen (2006)
showed via likelihood ratio tests by using daily data for the period from 1970
until 2004 that the Student t distribution provides clearly the best fit in the
class of SGH distributions. In the following we provide more details on these
findings.

A World Stock Index

We apply the previously described SGH model, where we use as security a
world stock index (WSI), which we construct as a self-financing portfolio of
stock market accumulation indices. The weights for the market capitalization
that were chosen at the end of the observation period in 2004 are given in
the last column of Table 2.6.1. Weights for earlier years reflect the market
capitalization as obtainable from Thomson Financial.

We cover with this index more than 95% of the world stock market capital-
ization for the period from 1970 until 2004. We exclude in our study weekends
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Table 2.6.1. Empirical moments for log-returns of WSI

Country Currency m̂y σ̂y β̂y κ̂y Weights

Argentina ARS 0.000495 0.009705 4.971980 170.049000 0.0023

Australia AUD 0.000403 0.008815 -0.372951 14.051762 0.0017

Austria ATS, EUR 0.000367 0.008716 -0.489599 13.406629 0.0161

Belgium BEF, EUR 0.000332 0.009387 -0.443605 13.231579 0.0061

Brazil BRL 0.001392 0.011284 2.330662 79.025855 0.0013

Canada CAD 0.000404 0.007831 -0.579593 18.075123 0.0251

Denmark DKK 0.000356 0.009526 -0.394520 14.431344 0.0037

Finland FIM, EUR 0.000396 0.010612 0.238200 70.189255 0.0032

France FRF, EUR 0.000376 0.009332 -0.416397 13.655084 0.0302

Germany DEM, EUR 0.000285 0.009417 -0.483043 13.632198 0.0342

Greece GRD, EUR 0.000569 0.009454 0.841563 35.815507 0.0012

Hong Kong HKD 0.000421 0.008000 -0.446156 17.986618 0.0231

Hungary HUF 0.000476 0.008578 -0.184216 17.086200 0.0023

India INR 0.000542 0.013561 -0.131696 78.892868 0.0047

Indonesia IDR 0.000571 0.008906 -0.118789 19.917163 0.0201

Ireland IRP, EUR 0.000373 0.009033 -0.507152 13.844893 0.0055

Italy ITL, EUR 0.000373 0.008957 -0.535339 16.379118 0.0132

Japan JPY 0.000238 0.009033 -0.638245 14.427542 0.1550

Korea KRW 0.000439 0.009636 -0.139465 57.088739 0.0072

Malaysia MYR 0.000398 0.008500 -0.616024 18.996454 0.0158

Mexico MXN 0.001152 0.020686 3.860894 278.762521 0.0016

Netherlands NLG, EUR 0.000300 0.009358 -0.472830 13.914414 0.0193

Norway NOK 0.000373 0.009196 -0.340799 14.541824 0.0029

Philippines PHP 0.000460 0.009009 -0.354508 19.339190 0.0041

Portugal PTE, EUR 0.000391 0.008810 -0.452567 13.152174 0.0013

Singapore SGD 0.000353 0.007991 -0.554040 17.215279 0.0079

Spain ESP, EUR 0.000464 0.010334 1.079021 48.935156 0.0124

Sweden SEK 0.000421 0.009195 0.214018 19.355551 0.0124

Switzerland CHF 0.000239 0.010097 -0.407918 11.406303 0.0206

Taiwan TWD 0.000357 0.007900 -0.558432 17.784127 0.0141

Thailand THB 0.000450 0.009285 0.628255 36.231337 0.0049

Turkey TRL 0.001029 0.011354 5.010563 155.199258 0.0018

UK GBP 0.000414 0.009141 -0.482534 13.541676 0.0846

US USD 0.000374 0.007724 -0.613548 18.808550 0.4301

and other nontrading days at the US and European exchanges. As shown in
Platen (2004c, 2005b) and as will be discussed later in Sect. 10.6 under the
benchmark approach, such a diversified portfolio is robust against variations in
weightings as long as the weight of each contributing security remains reason-
ably small. The constructed portfolio is a proxy for the world stock portfolio
or market portfolio.
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Fig. 2.6.1. WSI in units of different currencies

In Fig. 2.6.1 we plot the resulting WSI for the observation period when
denominated in units of British Pound, US dollar, Deutsche Mark, Swiss Franc
and Japanese Yen. For convenience we normalized the initial values to one.

In the following we shall study the distribution of log-returns of the WSI
when denominated in 34 major currencies. This will provide some distribu-
tional characterization of the general market risk for the respective markets.
The findings will be quite important for supporting the appropriateness of
theoretically suggested financial market models.

We deliberately do not adjust for any changes over time, market crashes
or other influences that may have affected the data. Some methods of data
analysis discard extreme values of observations as outliers. But this would
be inappropriate in a financial context because it is most important for risk
management to capture the probability for extreme log-returns. For daily log-
returns of the WSI for the period from 1970 until 2004 in 34 currency denom-
inations, the first four empirical moments yield the average empirical mean
m̂y = 0.000486, average standard deviation σ̂y = 0.009789, average skewness
β̂y = 0.460316 and average kurtosis κ̂y = 44.485182.

For each currency let us centralize the log-returns of WSI denominations
with respect to the mean. Furthermore, we scale these to obtain unit variance.
The resulting transformed log-returns have then an estimated zero mean and
unit variance. Now, we combine all observed centralized and scaled daily log-
returns in one large sample. We show in Fig.2.6.2 the logarithm of the resulting
log-return histogram, that is, the relative frequencies. This figure shows also
the logarithm of the Student t density with degrees of freedom 3.64, which
appears to fit the data extremely well already by visual inspection. When
comparing the shapes of the other densities covered in Fig. 1.2.8–1.2.10, then
none of these match the shape shown in Fig. 2.6.2.
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Fig. 2.6.2. Logarithm of WSI log-return histogram

By considering the above fit and the relatively small empirical skewness
the empirical log-return density appears to be fairly symmetrical. This is
also consistent with the findings in Markowitz & Usmen (1996a, 1996b) for
the case of S&P500 log-returns and those in Hurst & Platen (1997) for stock
index log-returns. Therefore, to simplify our analysis and to focus on the
identification of the tail properties of log-return densities, we assume that
the densities that we shall consider are symmetric, that is we assume zero
mean and zero skewness. This assumption does not very much influence the
empirical results that we obtain and allows us to use the SGH models described
in Sect.2.5. We emphasize that the following study focuses on the shape of the
log-return densities. It avoids relying on any particular moment properties.
Note that certain higher order moments may not exist. In particular, the
kurtosis of Student t distributed log-returns with less than four degrees of
freedom is infinite, see (1.3.37). This could become a problem in reality when
taking into account that in Fig.2.6.2 we fitted a Student t density with about
3.64 degrees of freedom.

Maximum Likelihood Estimation for SGH Densities

Let us now identify the typical distribution for log-returns of the WSI in the
class of SGH distributions.

The class of SGH densities that we introduced in Sect. 1.2 represents a
rich class of leptokurtic densities. To reject, on a given significance level, the
assumption that a hypothetical SGH density is not the true underlying density
we apply the maximum likelihood ratio test, as described in Sect. 2.4. We
define the likelihood ratio in the form

Λ =
L∗

model

L∗
SGH

. (2.6.1)
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Here L∗
model represents the maximized likelihood function of a given specific,

nested log-return density, for instance, the Student t density. With respect to
this density the maximum likelihood estimate for the parameters is calculated
and then used to obtain the corresponding likelihood function L∗

model. On the
other hand, L∗

SGH denotes the maximized likelihood function for the SGH
density, which is the nesting density that has been similarly obtained. We
then calculate according to (2.4.6) the test statistic Ln = −2 ln(Λ), which
is for increasing number n → ∞ of observations asymptotically chi-square
distributed. Here the degrees of freedom equal the difference between the
number of parameters of the nesting density and the nested density. The
nesting density, which is the SGH density, is a four-parameter density and
our nested densities are the Student t, normal-inverse Gaussian, hyperbolic
and variance-gamma density, see Sect. 1.2. Each of these is a three-parameter
density. Therefore, in the cases considered, the test statistic Ln is, for n → ∞,
asymptotically chi-square distributed with one degree of freedom.

According to (2.4.7) we have asymptotically as n → ∞ that

P
(
Ln < χ2

1−α,1

)
≈ 1 − α, (2.6.2)

where χ2
1−α,1 is the 100(1−α)% quantile of the chi-square distribution Fχ2(1)

with one degree of freedom. One can then check, say, for a 99% significance
level whether or not the test statistic Ln is in the 1% quantile of the chi-square
distribution with one degree of freedom. By Table 2.4.1 it follows that if the
relation

Ln < χ2
0.01,1 ≈ 0.000157 (2.6.3)

is satisfied, then we cannot reject on a 99% significance level the hypothesis
that the suggested density is the true underlying density. Similarly, if

Ln < χ2
0.001,1 ≈ 0.000002 (2.6.4)

holds, then we cannot reject the hypothesis that the given density is the true
underlying density on a 99.9% significance level.

The above maximum likelihood methodology offers a natural definition of
a best fit. We call the density with the smallest test statistic Ln the best fit in
the given class of SGH densities. This density maximizes the likelihood ratio
Λ given in (2.6.1).

Log-Returns of World Stock Indices

Now let us study the log-returns of the WSI when denominated in units of each
of the 34 currencies. By the above formulas together with the different SGH
densities described in Sects. 1.2 and 2.5 one can construct the corresponding
maximum likelihood estimators and test statistics. In Table 2.6.2 we display
the test statistics Ln for log-returns of the WSI in the 34 different currency
denominations, as given in Fergusson & Platen (2006). It is apparent that the
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Fig. 2.6.3. (ᾱ, λ)-plot for log-returns of WSI in different currencies

Student t density shows in all cases the smallest test statistic. For 25 of the
34 currencies one cannot reject on a 99.9% significance level the hypothesis
that the Student t density is the true density. The inverse Gaussian density
seems to be the second best choice but can be for all stocks rejected on any
reasonable significance level. In the last column of Table 2.6.2 one finds the
estimated degrees of freedom for the Student t density for each of the currency
denominations. One notes that the degrees of freedom are in the range of 2.2
to 4.9. We emphasize that the resulting arithmetic average of 3.9899 of the
estimated degrees of freedom for log-returns of WSI currency denominations
is very close to the number four. We shall find towards the end of the book a
natural explanation for this empirical result.

Let us visualize the estimated shape parameters ᾱ and λ of the SGH
density in Fig. 2.6.3 in an (ᾱ, λ)-scatter plot for the log-returns of the 34 WSI
currency denominations.

Interestingly, the estimated parameter points are scattered near the neg-
ative λ-axis with values between −2.5 and −1.0. It is the Student t density
that is characterized by points directly located on the λ-axis with n = −2λ
degrees of freedom. This means that the large number of points near λ = −2
on the λ-axis indicate a Student t density of about four degrees of freedom.
For comparison, the variance-gamma density, which would favor the Madan-
Seneta variance gamma model, see Madan & Seneta (1990) and Geman et al.
(2001), would need to have points on the positive λ-axis in Fig. 2.6.3. The
hyperbolic density, suggested by Eberlein & Keller (1995) as log-return den-
sity corresponds to the shape parameter λ = 1 and any ᾱ > 0. Our findings
in Fig. 2.6.3 do not support this type of model. The normal-inverse Gaus-
sian distributed log-returns of a model proposed in Barndorff-Nielsen (1995)
would generate points in the scatter plot of Fig. 2.6.3 for λ = −1

2 and α > 0.
However, there are also no points that come close to the line λ = −1

2 . One
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Table 2.6.2. The Ln test statistic for log-returns of the WSI in different currencies

Inverse Variance Degrees of
Country Student t Gaussian Hyperbolic Gamma Freedom

Argentina 0.000000 137.566726 377.265316 414.030946 3.215953
Australia 0.000000 24.403096 54.527486 73.900060 4.618187
Austria 1.272478 10.533450 43.923596 63.696828 4.177998
Belgian 0.000000 15.755730 41.664530 59.922270 4.639238
Brazil 0.000000 132.348986 430.843576 444.117392 2.937178
Canada 0.000000 42.829996 80.784298 110.357598 4.927523
Denmark 0.000000 29.607334 72.807340 96.852868 4.328256
Finland 0.000000 130.807532 286.692740 326.546792 3.707350
France 0.303708 12.578282 42.737860 61.753332 4.329017
Germany 0.000000 17.945998 45.546996 64.739532 4.620013
Greece 0.000000 60.072066 120.786456 150.578024 4.340990
Hong Kong 0.000000 31.399542 84.191740 111.611116 4.080899
Hungary 0.002812 33.488642 102.407366 132.556744 3.827598
India 0.000000 218.752194 1096.862148 962.798700 2.283747
Indonesia 0.000000 54.595328 121.131360 148.098694 4.062652
Ireland 0.031796 16.660834 53.818850 76.062630 4.187040
Italy 0.002606 19.207820 60.267448 83.332082 4.172936
Japan 0.000000 24.017652 60.214094 81.351358 4.392711
Korea S. 0.000000 129.955438 386.626152 425.311040 3.265655
Malaysia 0.000000 56.525498 149.299592 189.659002 3.786499
Mexico 0.000000 440.818300 2132.850298 1746.118774 2.207160
Netherlands 0.000000 15.802518 41.848016 60.873070 4.611005
Norway 0.000000 27.920608 71.785758 96.835862 4.256095
Philippines 0.017290 52.048754 167.407546 199.781080 3.458544
Portugal 1.582056 13.129484 54.154638 76.914946 4.071114
Singapore 0.000000 30.656496 73.326620 99.354034 4.396040
Spain 0.000000 70.602362 139.884600 165.163122 4.206288
Sweden 0.000000 66.852560 130.642934 166.827332 4.468983
Switzerland 0.144462 15.390592 46.179620 67.726852 4.471172
Taiwan 0.000000 33.290522 82.900518 110.434774 4.224246
Thailand 0.000000 100.851126 282.814096 314.709524 3.298124
Turkey 0.000000 152.625500 493.285862 506.466162 2.893205
UK 0.000000 21.124390 47.980512 68.613654 4.868241
US 0.000000 31.352956 75.539480 102.259640 4.323809

must emphasize that all the above discussed log-return densities are strongly
leptokurtic and already rather close to the underlying type of log-return den-
sity. Still, the above analysis points clearly in the direction of a Student t
density as the best fitting log-return density. Given the high significance level
the demonstrated Student t property of daily index log-returns establishes a
stylized empirical fact that has to be explained in an advanced financial mar-
ket model. We shall explain later in Sect. 13.2 the findings by the minimal
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market model, see Platen (2001, 2002), which describes in some sense the op-
timal dynamics of a financial market. To do this properly, we need to apply
the theory of stochastic processes and use stochastic differential equations for
modeling.

2.7 Convergence of Random Sequences

As we have already seen in the LLN and the CLT, questions about the con-
vergence of random sequences arise naturally in both theory and applications.
This is certainly true in the area of quantitative finance, where uncertainty is
the key feature that has to be modeled and large numbers of random variables
arise.

Different Types of Convergence

In contrast to a deterministic setting one faces in a stochastic environment
several different types of convergence, which is sometimes confusing. For this
reason, we summarize several different types of convergence that are com-
monly used. Some of these we have already introduced previously. In what
follows we assume that the random variables X1, X2, . . . and X are all de-
fined on the same probability space (Ω,A, P ).

I. The sequence X1, X2, . . . converges in probability to X if for every ε > 0

lim
n→∞

P (|Xn −X| > ε) = 0. (2.7.1)

In this case we write X P= limn→∞Xn.
II. The sequence X1, X2, . . . converges with probability one to X if

P
(

lim
n→∞

Xn = X
)

= 1. (2.7.2)

For this type of convergence we write X a.s.= limn→∞Xn or say that the
sequence converges almost surely, that is P -a.s. or a.s. to X.

III. For p ∈ (0,∞) the sequence X1, X2, . . . converges in mean order p to X
if

lim
n→∞

E (|Xn −X|p) = 0. (2.7.3)

Here we write X
Lp

= limn→∞Xn. For p = 2, this is convergence in the
mean square sense, that is X m.s.= limn→∞Xn, see (2.1.7).

IV. The sequence X1, X2, . . . converges in distribution to X if

lim
n→∞

E(f(Xn)) = E(f(X)) (2.7.4)
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for every bounded continuous function f : � → �. In this case we write
X

d= limn→∞Xn. It can be shown, see Shiryaev (1984), that this is equiv-
alent to

lim
n→∞

FXn(x) = FX(x) (2.7.5)

for all continuity points of x ∈ �.

For the above types of convergence the following implications, denoted by
=⇒, can be shown, see Shiryaev (1984):

X
a.s.= lim

n→∞
Xn =⇒ X

P= lim
n→∞

Xn

X
Lp

= lim
n→∞

Xn =⇒ X
P= lim

n→∞
Xn

X
P= lim

n→∞
Xn =⇒ X

d= lim
n→∞

Xn (2.7.6)

for p ∈ (0,∞). Furthermore, it can be shown, see Shiryaev (1984), that if
X

P= limn→∞Xn, then there exists a subsequence Xi1 , Xi2 , . . . with X
a.s.=

limk→∞Xik
. By the implications (2.7.6) it follows if X Lp

= limn→∞Xn, then
there exists also such a subsequence.

Note that for X P= limn→∞Xn and Y
P= limn→∞ Yn it follows that

X + Y
P= lim

n→∞
(Xn + Yn) and X Y

P= lim
n→∞

Xn Yn. (2.7.7)

Similarly, for X a.s.= limn→∞Xn and Y
a.s.= limn→∞ Yn one has

X + Y
a.s.= lim

n→∞
(Xn + Yn) and X Y

a.s.= lim
n→∞

Xn Yn. (2.7.8)

In particular, the limits (2.7.8) allow us to work with a rich variety of equations
that involve almost surely asymptotically determined random variables.

The Borel-Cantelli Lemma states for a sequence of events A1, A2, . . . in A
that

(i) if
∑∞

k=1 P (Ak) < ∞, then the event that consists of the realization of
infinitely many of the events A1, A2, . . . has probability zero, that is

P
(
ω : there exists a j ∈ N such that ω ∈ Ai for all i ≥ j

)
= 0

(ii) if
∑∞

k=1 P (Ak) = ∞ and A1, A2, . . . are independent, then the event that
consists of the realization of infinitely many of the events A1, A2, . . . has
probability one, that is

P
(
ω : there exists a j ∈ N such that ω ∈ Ai for all i ≥ j

)
= 1.
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Limits under Expectation (*)

For many results in quantitative finance one needs to deal with limits and
expectations. Therefore, let us formulate some fundamental results, which
allow us to interchange limits and expectations, see Shiryaev (1984). First we
mention the Monotone Convergence Theorem.

Theorem 2.7.1. (Monotone Convergence) Let Y , X, X1, X2, . . . be ran-
dom variables.

(i) If Xn ≥ Y for all n ∈ N , E(Y ) > −∞ and the sequence (Xn)n∈N is
monotone increasing, where limn→∞Xn

a.s.= X, then

lim
n→∞

E(Xn) = E(X). (2.7.9)

(ii) If Xn ≤ Y for all n ∈ N , E(Y ) < ∞ and the sequence (Xn)n∈N is
monotone decreasing, where limn→∞Xn

a.s.= X, then

lim
n→∞

E(Xn) = E(X). (2.7.10)

Let us denote by lim inf the lower limit and by lim sup the upper limit
when a sequence has several limits. The following fundamental result on in-
equalities when interchanging limits and expectations is known as Fatou’s
Lemma.

Lemma 2.7.2. (Fatou) Let Y , X1, X2, . . . be random variables.

(i) If Xn ≥ Y for all n ∈ N and E(Y ) > −∞, then

E
(
lim inf
n→∞

Xn

)
≤ lim inf

n→∞
E(Xn). (2.7.11)

(ii) If Xn ≤ Y for all n ∈ N and E(Y ) < ∞, then

lim sup
n→∞

E(Xn) ≤ E

(
lim sup

n→∞
Xn

)
. (2.7.12)

(iii) If |Xn| ≤ Y for all n ∈ N and E(Y ) < ∞, then

E
(
lim inf
n→∞

Xn

)
≤ lim inf

n→∞
E(Xn) ≤ lim sup

n→∞
E(Xn) ≤ E

(
lim sup

n→∞
Xn

)
.

(2.7.13)

We now mention Lebesgue’s Dominated Convergence Theorem that under-
pins a range of practically important results in quantitative finance.

Theorem 2.7.3. (Lebesgue) Let Y , X, X1, X2, . . . be random variables
such that |Xn| ≤ Y , E(Y ) < ∞ and limn→∞Xn

a.s.= X, then we have
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E(|X|) < ∞, (2.7.14)

lim
n→∞

E(|Xn −X|) = 0 (2.7.15)

and thus
lim

n→∞
E(Xn) = E(X). (2.7.16)

Definition 2.7.4. A family (Xn)n∈N of random variables is said to be uni-
formly integrable if

lim
q→∞

(
sup
n∈N

E
(
|Xn| I{|Xn|>q}

)
)

= 0. (2.7.17)

Obviously, if |Xn| ≤ Y for n ∈ N and E(Y ) < ∞, then the family of
random variables (Xn)n∈N is uniformly integrable. This observation allows
the proof of Fatou’s Lemma and Lebesgue’s Dominated Convergence Theorem
by the following general result.

Theorem 2.7.5. Let X, X1, X2, . . . denote nonnegative random variables
with limn→∞Xn

a.s.= X and E(Xn) < ∞ for all n ∈ N , then it holds

lim
n→∞

E(Xn) = E(X) (2.7.18)

if and only if the family of random variables (Xn)n∈N is uniformly integrable.

Extreme Value Theorem (*)

The understanding of the occurrence of extreme losses is the key to many risk
management problems. It is important, for instance, in Value at Risk analysis
and the evaluation of catastrophic insurance claims. We call a random vari-
able or distribution nondegenerate if its probability is not concentrated in one
single value. Let us assume that catastrophic insurance losses, say for hurri-
canes, are modeled by an i.i.d. sequence of nondegenerate random variables
X1, X2, . . . with distribution function FX . Given a number n ∈ {1, 2, . . .} of
loss data X1, X2, . . . , Xn we are interested in the maximum

Mn = max(X1, X2, . . . , Xn) (2.7.19)

of these losses. The minimum can be studied using a maximum by transform-
ing the sequence such that

min(X1, X2, . . . , Xn) = −max(−X1,−X2, . . . ,−Xn). (2.7.20)

The following theorem is known as the Extreme Value Theorem or Fisher-
Tippett Theorem, see Embrechts, Klüppelberg & Mikosch (1997) for further
details.
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Fig. 2.7.1. Density of the Fréchet distribution in dependence on α

Theorem 2.7.6. (Fisher-Tippett) If there exist sequences of norming
constants cn > 0, dn ∈ � for n ∈ {2, 3, . . .} and some random variable H
with nondegenerate distribution function FH such that

lim
n→∞

(cn Mn + dn) d= H, (2.7.21)

then FH belongs to the type of one of the following three distribution functions:

(i) the Fréchet distribution

FH(x) =

{
0 for x ≤ 0,

exp{−x−α} for x > 0,
(2.7.22)

with α > 0,
(ii) the Weibull distribution

FH(x) =

{
exp{−(−x)α} for x ≤ 0,

1 for x > 0,
(2.7.23)

with α > 0 or
(iii) the Gumbel distribution

FH(x) = exp{−e−x} (2.7.24)

for x ∈ �.

This is a remarkable and rather fundamental result. Whatever underlying
loss distribution is given, there is only one of the above three limit distribu-
tions that is possible for its maxima. In Fig. 2.7.1, we show the density of the
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Fig. 2.7.2. Density of the Weibull distribution

Fig. 2.7.3. Density of the Gumbel distribution

Fréchet distribution in dependence on the parameter α. Note that the max-
ima have here only positive values. Figure 2.7.2 displays the Weibull density.
This density captures only negative maxima. For the Gumbel distribution the
density is plotted in Fig. 2.7.3. In this case the maxima can be positive or
negative.

The Extreme Value Theorem raises the question whether a distribution
FX of losses is in the domain of attraction of a given extreme value distri-
bution. For a detailed answer we refer to Embrechts et al. (1997). However,
let us mention that appropriately normalized maxima of the Cauchy distribu-
tion are, for instance, in the domain of attraction of the Fréchet distribution.
Normalized minima of the Student t distribution correspond to the Weibull
distribution. Adequately normalized maxima of the normal, gamma, lognor-
mal and exponential distribution are captured by the Gumbel distribution.
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It is important to know for risk management purposes which extreme value
distribution attracts a given loss distribution. This knowledge is extremely
useful, for instance, in insurance premium calculations or in Value at Risk
analysis. One knows from Theorem 2.7.6 that one needs only to consider one
of the described three extreme value distributions in a specific application
when one deals with extreme values.

2.8 Exercises for Chapter 2

2.1. Consider a sequence of independent random variables X1, X2, . . . with
mean μ and variance Var(Xi) ≤ K < ∞. What is the almost sure limit of the
sample mean μ̂n = 1

n

∑n
i=1 Xi of that sequence?

2.2. For a sequence of independent identically distributed random variables
X1, X2, . . . with mean μ ∈ � and variance σ2 > 0 characterize for the sequence
of random variables

Ŷn =
√
n

(
1
n

n∑

i=1

Xi − μ

)

for n → ∞ the limit.

2.3. Consider a Gaussian random variable Z with known mean E(Z) and
known variance Var(Z). Provide the 99% confidence interval for 2Z.

2.4. For the random variable Z in Exercise 2.3 calculate the one sided con-
fidence interval with 99% confidence such that Z is at least as large as
−VaR((1 − α)%), that is

P (Z ≥ −VaR((1 − α)%)) = 1 − α.



3

Modeling via Stochastic Processes

In this chapter the fundamental concept of a stochastic process is introduced.
We show how stochastic processes can be applied in the context of asset price
modeling. The notions of processes with independent increments, stationary
processes and Markov processes are explained. Essentially, stochastic pro-
cesses provide the mathematical framework that allows us to model financial
quantities as families of random variables that evolve over time.

3.1 Introduction to Stochastic Processes

To remind us how typical asset prices evolve, we show in Fig.3.1.1, the history
of the S&P500 index from 1993 to 1997. Note that this process appears to be
continuous but also seems far from being differentiable.

Fig. 3.1.1. The S&P500 index for 1993–1997

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,
Springer Finance,
© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010



100 3 Modeling via Stochastic Processes

A natural question to ask is: What are appropriate mathematical objects
that would allow us to model asset price dynamics? Since asset prices evolve
randomly over time, in the early development of the theory of finance it was
already realized that the best representation of price behavior would be a
probabilistic one. As early as 1900 Bachelier proposed a model for the motion
of stock prices. It probably was the first work that involved a mathematical
object that is today known as Brownian motion. Only later Einstein, Wiener
and others studied the same fundamental mathematical object to describe
continuous and strongly fluctuating random dynamics. Today the theory of
stochastic processes provides a general mathematical framework that allows
us to build and investigate models that involve Brownian motion and more
complicated families of random variables.

Stochastic Process

Throughout the following we shall assume that there exists a common underly-
ing probability space (Ω,A, P ) consisting of the sample space Ω, the collection
of events A and the probability measure P , as discussed in Sect. 1.1.

A collection of random variables Xt0 , Xt1 , . . . can be conveniently used to
describe the evolution of an observed asset price, for instance, daily clos-
ing values for the S&P500 index over any given set of observation times
t0 < t1 < . . ..

Definition 3.1.1. We call a family X = {Xt, t ∈ T } of random variables
Xt ∈ � a stochastic process, where the totality of its finite-dimensional dis-
tribution functions

FXti1
,...,Xtij

(xi1 , . . . , xij ) = P (Xti1
≤ xi1 , . . . , Xtij

≤ xij ) (3.1.1)

for ij ∈ {0, 1, . . .}, j ∈ N , xij ∈ � and tij ∈ T determines its probability law,
see (1.4.36)–(1.4.40).

The stochastic process X is indexed by the time t and we call T the time
set. The state space of X is here the one-dimensional Euclidean space � or a
subset of it. As in Definition 3.1.1 we define analogously a stochastic process
X = {Xt, t ∈ T } where Xt ∈ �d, d ∈ N , t ∈ T .

Since asset prices can be observed at any time instant, it is desirable that
stochastic processes can be defined for all time instants in an interval which,
for example, can be the finite time set T = [0, 1] or an infinite set such as
T = [0,∞). In these cases we call the process a continuous time stochastic
process. We typically consider stochastic processes on a time set T = [0,∞)
or T = [0, T ] with T ∈ (0,∞). The benchmark approach, which we develop
later in a continuous time setting, will allow us to consider the evolution of
financial markets on [0,∞).

As an example for T = [0, T ] we can take the linearly interpolated path
of the S&P500 daily prices in Fig. 3.1.1, which represents a realization of
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a stochastic process on the finite time set T = [1993, 1998] for the time
period from 1993 up until 1998. We could also choose a discrete time set
T = {0, 1, . . .} to number, for instance, the observation days. In Sect. 2.5
we have used a discrete time set to model financial markets. However, time
evolves continuously and we shall concentrate later on a framework for con-
tinuous time financial market models.

The most fundamental characteristic of a stochastic process X is the to-
tality of its finite-dimensional distribution functions given in (3.1.1). These
have according to (1.4.39) the consistency property

FXti1
,...,Xtik

(xi1 , . . . , xik
) = lim

xi→∞
FXt1 ,...,Xtn

(x1, . . . , xn) (3.1.2)

for {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n} with k ∈ {1, 2, . . . , n}, where the limit has
to be taken for all i ∈ {i1, i2, . . . , ik}. The following fundamental result, which
is due to Kolmogorov, shows that under the above consistency property a
given family of finite dimensional distribution functions is that of a stochas-
tic process. This is an important statement that gives access to the direct
construction of particular stochastic processes.

Theorem 3.1.2. (Kolmogorov) Let there be a given family of finite-
dimensional distribution functions {FXti1

,...,Xtik
(xi1 , . . . , xik

)} satisfying the
consistency property (3.1.2). Then there exists a probability space (Ω,A, P )
and a stochastic process X = {Xt, t ∈ [0,∞)} such that (3.1.1) is satisfied.

The families of random variables that we are going to consider satisfy the
consistency property (3.1.2) and are therefore stochastic processes. A trivial
example of a stochastic process arises if the daily closing prices of an asset
are taken to be independent and identically distributed. In such a model,
what happens at present is completely unaffected by what has happened in
the past. The corresponding probability law is then quite simple, since the
finite-dimensional distribution function is here given by the product

FXti1
,Xti2

,...,Xtij
(xi1 , xi2 , . . . , xij ) = FXti1

(xi1)FXti2
(xi2) · · ·FXtij

(xij ),
(3.1.3)

where F is the common distribution of the independent random variables.
Such an asset price model appears to be rather unrealistic since consecutive
values of prices can reasonably be expected to be related. A sequence of inde-
pendent random variables to be used for modeling increments of asset prices
would seem to be more realistic. Since the consistency property (3.1.2) is sat-
isfied in both cases, the corresponding models form stochastic processes on the
probability space (Ω,A, P ). The discrete time models introduced in Sect. 2.5
provide further examples for stochastic processes.

A model that is generating a sequence of independent outcomes would
much better fit, for example, daily increments or log-returns rather than ac-
tual values of asset prices themselves. Note that the variances of price incre-
ments are much larger than those of log-returns if the corresponding prices
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Fig. 3.1.2. Interpolated independent standard Gaussian outcomes

Fig. 3.1.3. Log-returns of the S&P500 index for 1997

are large. In Fig. 3.1.2 we show a linearly interpolated path of a sequence of
256 independent standard Gaussian distributed outcomes.

For comparison we show in Fig. 3.1.3 the linearly interpolated log-returns
of the S&P500 for the year 1997, these are the increments of the logarithm of
the index. Note that they show some similarity with a sequence of independent
Gaussian distributed random variables as shown in Fig. 3.1.2. In both cases
the values change drastically over time. However, in the case of the S&P500
we seem to observe extreme log-returns.
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Fig. 3.1.4. Path of a symmetric random walk

Symmetric Random Walk and Binomial Tree

An asset price model that has been widely used arises if we assume that the
logarithm Xtn+1 of the asset price of the (n + 1)th trading day results from
an equally probable up or downward move by a certain fixed amount relative
to the previous logarithm Xtn of the price, see, for example, Cox, Ross &
Rubinstein (1979). This corresponds to the well-known symmetric random
walk, which is characterized by a first order difference equation for the log-
return Rtn of the form

Rtn = Xtn+1 −Xtn = a ξn, (3.1.4)

where a > 0 is the fixed amount for the daily absolute log-price increment. The
variables ξn, n ∈ {0, 1, . . .}, are independent, two-point distributed random
variables with the probabilities

P (ξn = ±1) =
1
2
, (3.1.5)

corresponding to either up or downward moves. Here the initial value of the
log-price is of the form Xt0 = ka for some given integer k ∈ N . A linearly
interpolated sample path obtained for the symmetric random walk is shown
in Fig. 3.1.4 for the parameters k = 0 and a = 1. Note that such a random
walk admits only states given by integer multiples of the amount a and does
not take other values.

A symmetric random walk is therefore still a rather restrictive log-price
model since, in practice, log-returns usually vary considerably as we have seen
in Sect. 2.6. Figure 3.1.5 shows the possible paths that a random walk could
traverse. Note that the random walk forces the log-asset values to evolve only
in the bounded cone of possible paths. For this reason the symmetric random
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Fig. 3.1.5. Binomial tree

walk is sometimes referred to as a symmetric binomial tree. Such binomial
trees are widely used in quantitative finance for pricing options and other
derivatives under various models. We shall describe later examples of how
this can be done.

Gaussian and Student t Random Walk

We can construct a more realistic model for the logarithm of an asset price by
allowing Gaussian, instead of two-point distributed independent log-returns,
which then result in a Gaussian random walk. Here, in principle, any real
value can occur. The Gaussian random walk can be formally characterized
again by the difference equation (3.1.4), but the random variables aξn are
now taken to be independent Gaussian N(μ, σ2) distributed random variables
for n ∈ {0, 1, . . .}. Figure 3.1.6 shows a linearly interpolated sample path of
a standard Gaussian random walk. Note that here the daily log-returns vary
when compared with Fig.3.1.4 for the symmetric random walk. In our example
the signs of the upward and downward moves in Fig. 3.1.4 and Fig. 3.1.6
coincide. Of course, one can take any distribution for the log-returns. As we
have seen in Sect.2.6 the Student t(4) distribution matches well the estimation
of index log-returns. In Fig. 3.1.7 we show a random walk with Student t(4)
distributed increments.

Note that the Student t(4) distributed random increments are generated
by multiplying the independent Gaussian increments in Fig. 3.1.6 with the
square root of the inverse of a chi-square distributed random variable with four
degrees of freedom. Such chi-square distributed random variable is obtained as
the sum of the four squared independent standard Gaussian random variables,
as described in Sect. 1.2.
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Fig. 3.1.6. Path of a Gaussian random walk

Fig. 3.1.7. Path of a Student t(4) random walk

Realizations of Stochastic Processes

As mentioned at the beginning of this section, a stochastic process is a family
of random variables which is indexed by a time parameter and has to satisfy
the consistency property (3.1.2). In principle, it is a function X : T × Ω →
�d with some technical measurability constraints. For a fixed sample point
ω ∈ Ω we call X·(ω) : T → �d a realization, sample path or trajectory of
the stochastic process. The curves plotted in Fig. 3.1.4 and Fig. 3.1.5 or the
history of the S&P500 in Fig. 3.1.1 can be interpreted as specific realizations
of corresponding stochastic processes. For fixed time t ∈ T the quantity Xt(·)
is a random variable with Xt(·) : Ω → �d with all properties of random
variables as discussed in Chap. 1.
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Recall by (3.1.2) that the function X : T ×Ω → �d cannot be completely
arbitrary. If we do not state anything else, then we shall consider stochastic
processes with right-continuous sample paths that equal at any time t ∈ T
their right hand limits, that is

Xt = lim
ε→0+

Xt+ε,

having left hand limits
Xt− = lim

ε→0−
Xt−ε,

where both limits are finite for each ω ∈ Ω and t ∈ T with ε > 0.
To be mathematically precise we would have to refer to some technically

demanding notation and results from measure theory, see Doob (1994), which
are similar to those already applied to random variables in Sect.1.1. Similarly
to random variables, which we defined in Chap.1, we assume that a stochastic
process is measurable. We do not further specify this here and refer instead
to Karatzas & Shreve (1991). All stochastic processes that we consider have
this measurability property.

The question of when two stochastic processes model the same dynamics
is an important one for modeling in quantitative finance. Any ambiguity could
lead to potential problems for practical applications. Let us suppose that there
are two stochastic processes X and Y defined on the same probability space
(Ω,A, P ) taking values in �d, d ∈ N . In the given probabilistic setting X
and Y can be distinguished in a number of different ways. One possibility is
to say that the processes X and Y are indistinguishable for the time set T if

Xt(ω) = Yt(ω) (3.1.6)

a.s. for all t ∈ T , that is, all their sample paths coincide a.s.
Let us note that if two stochastic processes X and Y are equal a.s. for

all t ∈ [0,∞), then if they are right continuous they are indistinguishable.
This is a useful fact that we exploit because we consider typically only right-
continuous stochastic processes with left hand limits.

3.2 Certain Classes of Stochastic Processes

It is useful to distinguish between various classes of stochastic processes ac-
cording to their specific temporal relationships. This is important for appli-
cations in finance because we need to find classes of stochastic processes that
we can use as basic building blocks for realistic market models. Furthermore,
it is essential that we find classes of stochastic processes that are for constant
parameters analytically tractable. This allows us to establish fast and effi-
cient numerical methods to calculate important characteristics as moments,
probabilities, option prices or other important financial quantities.
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Moments of Stochastic Processes

Some important information about a stochastic process can be provided by
the mean

μ(t) = E(Xt) (3.2.1)

and the variance

v(t) = Var(Xt) = E
(
(Xt − μ(t))2

)
(3.2.2)

for t ∈ T and the covariance

C(s, t) = Cov(Xs, Xt) = E((Xs − μ(s))(Xt − μ(t))) (3.2.3)

for s, t ∈ T . Obviously, these quantities only make sense if they are finite. For
instance, the fourth moment of the increments of the Student t(4) random
walk in Fig. 3.1.7 do not theoretically exist. The stochastic process formed by
the independent standard Gaussian outcomes plotted in Fig. 3.1.2 has mean
μ(ti) = 0, variance v(ti) = 1 and covariances C(ti, tk) = 0 for i = k.

Stationary Processes

An important class of stochastic processes is that of stationary processes since
they represent a form of probabilistic equilibrium. This property is appealing
and is often useful in a financial modeling context. For instance, interest rates,
dividend rates, inflation rates, volatilities and credit spreads are likely to be
modeled by stationary processes since they typically exhibit some equilibrium
type dynamics.

Definition 3.2.1. We say that a stochastic process X = {Xt, t ∈ T } is
stationary if its joint distributions are all invariant under time displacements,
that is if

FXt1+h,Xt2+h,...,Xtn+h
= FXt1 ,Xt2 ,...,Xtn

(3.2.4)

for all h > 0, ti ∈ T , i ∈ {1, 2, . . . , n} and n ∈ N .

In particular, the random variables Xt have the same distribution for all
t ∈ T and thus, means, variances and covariances satisfy the equations

μ(t) = μ(0), v(t) = v(0) and C(s, t) = c(t− s) (3.2.5)

for all s, t ∈ T , where c : � → � is a function.
For example, a sequence of i.i.d. random variables forms a stationary

stochastic process on a discrete time set T = {0, 1, . . .}.
For comparison, in Fig. 3.2.1 we show a trajectory of a stationary con-

tinuous Gaussian process with mean μ(t) = 0.05. It can be interpreted as a
sample path of interest rates obtained from the Vasicek model, see Vasicek
(1977). We describe the Vasicek model in the next chapter. Note that the
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Fig. 3.2.1. Sample path for the Vasicek interest rate model

process appears to be oscillating around a reference level over time. Its key
feature as a stationary process is that we could continue to observe its move-
ments over longer and longer time horizons but its distributional properties
and thus its mean, variance and covariance would not change. More precisely,
its probabilistic features would be time shift invariant.

Processes with Stationary Independent Increments

Processes with stationary independent increments form another important
class of stochastic processes. These processes have outstanding mathemat-
ical properties that make them suitable as fundamental building blocks in
financial modeling. For these processes the random increments Xtj+1 − Xtj ,
j ∈ {0, 1, . . . , n−1}, are independent for any combination of time instants
t0 < t1 < . . . < tn in T for all n ∈ N . If t0 is the smallest time instant in T ,
then the initial value Xt0 and the random increments Xtj −Xt0 for any other
tj ∈ T are also required to be independent. The increments are assumed to
be stationary, that is Xt+h − Xt has the same distribution as Xh − X0 for
all h > 0 and t ≥ 0. On the basis of Kolmogorov’s theorem, that is Theo-
rem 3.1.2, it follows that the resulting model forms a stochastic process on
the given probability space (Ω,A, P ).

Wiener Process

The so-called Brownian motion was discovered by Robert Brown in the early
19th century when observing, under a microscope, the motion of pollen grains
that were subject to a large number of small random molecular collisions.
The displacement of such a particle over time, say in a north-south direc-
tion, resembles much that of the paths of the Wiener process as is given in
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Fig. 3.2.2. Sample paths of the Wiener process

Fig. 3.2.2. For this reason the Wiener process that we introduce now is also
called Brownian motion.

The most important continuous process with independent increments is the
Wiener process. It is a continuous time stochastic process with independent
Gaussian distributed increments and continuous sample paths.

Definition 3.2.2. We define the standard Wiener process W = {Wt,
t ∈ [0,∞)} as a process with Gaussian stationary independent increments and
continuous sample paths for which

W0 = 0, μ(t) = E(Wt) = 0, Var(Wt −Ws) = t− s (3.2.6)

for all t ∈ [0,∞) and s ∈ [0, t].

In Fig.3.2.2 we display 20 trajectories of a Wiener process. Each trajectory
is highly erratic but always forms a continuous path. In Bachelier (1900), a
linearly transformed Wiener process of the type

Yt = Y0 + bWt (3.2.7)

was employed to model stock prices observed at the Paris Bourse. Only later
an object like the Wiener process was used in physics by Einstein (1905). In
Fig.3.2.3 a sample path for such a transformed Wiener process with Y0 = 100
and b = 20 for a period of T = 1 year is displayed.

The Wiener process has fundamental mathematical properties and is used
in many applications in finance. Often one uses also the name Brownian mo-
tion to characterize it. Note that the Wiener process is not a stationary pro-
cess, as can be seen from its increasing variance, see (3.2.6).
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Fig. 3.2.3. Sample path of a transformed Wiener process

3.3 Discrete Time Markov Chains

Markov Processes

Very suitable processes for financial modeling are the, so-called, Markov pro-
cesses. Some classes of Markov processes will be considered in the following
section. As we shall see, they provide a high degree of tractability. In the
context of stochastic processes it is the Markov property that allows us to
specify the future evolution of an asset price only in dependence on its present
value and, therefore, not depending on any past information. In the follow-
ing we shall discuss different classes of Markov processes including discrete
and continuous time Markov chains and later also diffusion processes. The
class of Markov processes has great significance for financial modeling. These
processes offer an efficient way of characterizing properties of state variables
without the need to consider or memorize their entire past history. For the
implementation of tractable quantitative methods this is a crucial advantage.

We first consider the Markov property in a discrete time setting because
this can be more easily explained.

Discrete Time Markov Property

To analyze the relationships between the random variables of a stochastic
process at different time instants, the corresponding conditional probabilities
are often used. We consider a sequence of random variables Xt0 , Xt1 , . . . taking
values in a discrete set of states

X = {. . . , y−j , y−(j−1), . . . , y−1, y0, y1, . . . , yj−1, yj , . . .}. (3.3.1)

To illustrate this, let us consider the symmetric random walk as given in
(3.1.4). Here we have yj = ja for j ∈ {. . . ,−1, 0, 1, . . .} = N̄ . Suppose that
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we observe at a time instant tn the present outcome xn, that is the value of
Xtn = xn, as well as the past outcomes Xt0 = x0, Xt1 = x1, . . ., Xtn−1 =
xn−1 for x0, x1, . . . , xn ∈ X . By using this information we want to describe
the probabilistic properties of the future values, say log-asset prices Xtn+1 ,
Xtn+2 , . . .. The value of the next immediate future log-asset price Xtn+1 is of
particular interest. We can write the corresponding conditional probabilities
in the form
P
(
Xtn+1 = xn+1

∣
∣Xt0 = x0, Xt1 = x1, . . . , Xtn = xn

)

=
P
(
Xt0 = x0, Xt1 = x1, . . . , Xtn = xn, Xtn+1 = xn+1

)

P (Xt0 = x0, Xt1 = x1, . . . , Xtn = xn)
(3.3.2)

for each x0, x1, . . . , xn+1 ∈ X and n ∈ {0, 1, . . .}. For our example, the sym-
metric random walk, we obtain due to the difference equation (3.1.4) and the
independence property a one-step transition probability

P
(
Xtn+1 = xn+1

∣
∣
∣Xtn = xn

)
=P
(
Xtn+1 = xn+1

∣
∣
∣Xt0 = x0, . . . , Xtn =xn

)

(3.3.3)
for each n ∈ {0, 1, . . .} and x0, x1, . . . , xn+1 ∈ X . That is, the future log-
asset price value Xtn+1 does not depend on the past if the present log-asset
price value Xtn is known. We call property (3.3.3) the discrete time Markov
property.

More generally, a discrete time stochastic process satisfying condition
(3.3.3) with a discrete set X of possible states, is called a discrete time Markov
chain. The set X of states can be finite or infinite and quite different from
what is used for our symmetric random walk.

Probabilities of a Markov Chain

For a discrete time Markov chain let us denote for each n ∈ {0, 1, . . .} the
transition probability at time tn by

pi,j(n) = P
(
Xtn+1 = yj

∣
∣
∣Xtn = yi

)
(3.3.4)

for integers i and j, where pi,j(n) denotes the probability of moving from state
yi to state yj at time tn. In our example of a symmetric random walk only the
one step upward or downward transition probabilities, pi,i+1(n) and pi,i−1(n)
respectively, are not zero. Obviously, we have

0 ≤ pi,j(n) ≤ 1 (3.3.5)

for all integers i and j and n ∈ {0, 1, . . .}. Since Xtn+1 can only attain states
in X we also have ∑

j∈N̄

pi,j(n) = 1 (3.3.6)

for each integer i and n ∈ {0, 1, . . .}.
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For n ∈ {0, 1, . . .} let

pi(n) = P (Xtn = yi) (3.3.7)

be the probability that the log-asset price, or more generally the value Xtn , of
the Markov chain X at time tn equals yi. Then the probability pj(n+1), that
at the next time instant tn+1 the Markov chain is in the state yj , is related
to pi(n) through the equation

pj(n+ 1) =
∑

i∈N̄

pi(n) pi,j(n) (3.3.8)

for all integers j. Hence, if we know the initial probabilities pi(0), for all
integers i, then we obtain by application of (3.3.8) in several steps

pj(n+ 1) =
∑

i0∈N̄

pi0(0)
∑

i1∈N̄

pi0,i1(0) · · ·
∑

in−1∈N̄

pin−2,in−1(n− 2)

·
∑

in∈N̄

pin−1,in(n− 1) pin,j(n) (3.3.9)

for all integers j with ∑

j∈N̄

pj(n+ 1) = 1 (3.3.10)

for n ∈ {0, 1, . . .}. The relations (3.3.5)–(3.3.10) permit, in principle, a rather
efficient computation of probabilities and related functionals for a discrete
time Markov chain. In the case of the symmetric random walk this will be
extremely simple as we shall see below.

Probabilities of a Symmetric Binomial Tree

The symmetric random walk is an important example of a discrete time
Markov chain that is frequently applied in finance, see Cox, Ingersoll & Ross
(1985), mainly because of its simplicity. We have seen in Fig. 3.1.5 the range
of possible paths that can be traversed. This simple log-asset price model pro-
vides easy access to the computation of a wide range of derivative prices as
we shall see later. However, due to the simplicity of the model these prices
can be rather inaccurate.

The one step transition probability for a symmetric random walk or equiv-
alently a symmetric binomial tree, see (3.1.5), is given by

pi,j(n) =

{
1
2 for j ∈ {i− 1, i+ 1}

0 otherwise
(3.3.11)

for n ∈ {0, 1, . . .}.
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Let us now compute the probabilities that correspond to specific log-asset
price values in the binomial tree using (3.3.9) and (3.3.11). We assume that
X starts at time t0 = 1, with initial value Xt0 = ka ∈ X with probability
pk(0) = 1 and pi(0) = 0 for i = k.

The total number of upward plus downward moves until time tn equals the
number n. Obviously, the value of the log-asset price at time tn is a function
of the number of upward moves of the random walk. Since a jump at any time
step is assumed to be independent from the other jumps we can compute the
corresponding probability for the log-asset price value being in a particular
state. This probability follows from the binomial probabilities given in (2.1.32)
with p = 0.5. More precisely, the log-asset price takes at time tn the value
Xtn = aj with probability

pj(n) =
n!

(
j−(k−n)

2

)
!
(
n− j−(k−n)

2

)
!

(
1
2

)n

(3.3.12)

for n ∈ {0, 1, . . .} and

j ∈ {k − n, k − (n− 2), k − (n− 4), . . . , k + (n− 4), k + (n− 2), k + n},

where, as mentioned earlier, i! = 1·2·. . .·(i−1)·i and 0! = 1. Recall that some
binomial probabilities are displayed in Fig. 2.1.5, which indicates that after
only a few time steps binomial probabilities resemble Gaussian ones. This is a
consequence of the Central Limit Theorem, as pointed out in Sect.2.1. In this
sense the symmetric random walk can also be interpreted as an approximation
of a transformed Wiener process.

As previously noted, the symmetric binomial tree or random walk is a
powerful but simple model for log-asset prices. Its probabilities are easily
computed and the possible log-price movements are kept to a minimum as
these can occur in only a fixed up or down jump. In the context of derivative
pricing and hedging, binomial, trinomial and other types of discrete time
Markov chains are often used as approximations for log-asset price or asset
price models. Later we shall give examples for such discrete time Markov
chains tailored to suit particular models.

3.4 Continuous Time Markov Chains

Let us now study the Markov property in a continuous time setting where
only discrete levels can be reached.

Continuous Time Markov Property

A continuous time Markov chain is a continuous time stochastic process
X = {Xt, t ∈ [0,∞)}, which takes values in a finite set of states X =
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{y1, y2, . . . , yN} such that its values jump at random time instants from one
state to another. For instance, this could be a model for the short term inter-
est rate that is set by a Central Bank. It could also model the credit ratings
for a company. The random jump times are not known in advance. In this
context the continuous time Markov property takes the form

P
(
Xtn+1 = xn+1

∣
∣Xt0 = x0, . . . , Xtn = xn

)
= P

(
Xtn+1 = xn+1

∣
∣Xtn = xn

)

(3.4.1)
for all 0 ≤ t0 < t1 < . . . < tn < tn+1 < ∞ and x0, x1, . . . , xn+1 ∈ X , where
n ∈ {0, 1, . . .}. Note that in (3.4.1), given the present, the past does not affect
the transition probability that there is a jump from state xn at time tn to
state xn+1 at time tn+1.

Transition Probability Matrix

To make this more precise let us define for 0 ≤ t0 < t1 < ∞ an N×N transition
probability matrix P (t0; t1) = [pi,j(t0; t1)]Ni,j=1 componentwise by

pi,j(t0; t1) = P (Xt1 = yj |Xt0 = yi)

for i, j ∈ {1, 2, . . ., N}. Obviously, P (t0; t0) = I is the unit matrix. Let us
introduce for t ≥ 0 and yi ∈ X the probability

pi(t) = P (Xt = yi) (3.4.2)

and form the probability vector

p(t) = (p1(t), p2(t), . . . , pN (t))�. (3.4.3)

The probability vectors p(t0) = (p1(t0), p2(t0), . . . , pN (t0))� and p(t1) for
0 ≤ t0 < t1 < ∞ are related by the equation

p(t1)� = p(t0)� P (t0; t1).

Using this result for t0 < t1 < t2 we have p(t2)� = p(t0)�P (t0; t2) and

p(t2)� = p(t1)� P (t1; t2) = p(t0)� P (t0; t1)P (t1; t2) (3.4.4)

for any initial probability vector p(t0). It can be shown that the transition
probability matrices satisfy the relationship

P (t0; t2) = P (t0; t1)P (t1; t2) (3.4.5)

for all t0 < t1 < t2. In the special case where the transition matrices P (t0; t1)
depend only on the time difference t1 − t0, that is P (t0; t1) = P (0; t1 − t0)
for all 0 ≤ t0 < t1 < ∞, we say that the continuous time Markov chain is
homogeneous and write P (t) for P (0; t). Then relation (3.4.5) can be reduced
to the matrix equation



3.4 Continuous Time Markov Chains 115

P (s+ t) = P (s)P (t) = P (t)P (s) (3.4.6)

for all s, s + t ∈ [0,∞). We note that the transition probability matrix of
a continuous time Markov chain satisfies a particular product relationship,
which is a reflection of its Markov property. It leads to the following system
of ODEs.

Kolmogorov Equations

For a homogeneous continuous time Markov chain it can be shown that there
exists an N×N intensity matrix A = [ai,j ]Ni,j=1 with

ai,j =

⎧
⎪⎨

⎪⎩

limt→0
pi,j(t)
t for i = j

limt→0
pi,i(t) − 1

t for i = j

(3.4.7)

for i, j ∈ {1, 2, . . . , N} which, together with the initial probability vec-
tor p(0), completely characterizes its random behavior. Note that for each
i ∈ {1, 2, . . . , N} the transition intensities always add up to zero, that is

N∑

j=1

ai,j = 0. (3.4.8)

If the diagonal components ai,i of the intensity matrix A are finite for each
i ∈ {1, 2, . . . , N}, then the transition probabilities satisfy the Kolmogorov
forward equation

dpi,j(t)
dt

−
N∑

k=1

pi,k(t) ak,j = 0 (3.4.9)

and the Kolmogorov backward equation

dpi,j(t)
dt

−
N∑

k=1

ai,k pk,j(t) = 0 (3.4.10)

for all i, j ∈ {1, 2, . . . , N} and t ∈ [0,∞). We can then write by (3.4.9)

dP (t)
dt

= P (t)A

and, thus, by (3.4.4)

dp(t)�

dt
=

d(p(0)� P (t))
dt

= p(0)� P (t)A = p(t)� A.

This yields for the probability vector p(t) the vector ODE



116 3 Modeling via Stochastic Processes

dp(t)
dt

= A� p(t) (3.4.11)

for t ∈ [0,∞) with p(0) ∈ [0, 1]N .
Another consequence of the Markov property is that the waiting times

of a homogeneous continuous time Markov chain, defined as the times be-
tween transitions from a given level yi to any other level, are exponentially
distributed, see (1.2.4), with intensity parameter

λi =
∑

j �=i

ai,j (3.4.12)

for i ∈ {1, 2, . . . , N}.

An Interest Rate Example

Let us consider an interest rate example by assuming that the interest rate
process X = {Xt, t ∈ [0,∞)} takes only the two values y1 = 0.05 and y2 =
0.06 with probabilities (p1(t), p2(t))� = p(t). Switching between these levels
proceeds according to the time homogeneous transition matrix

P (t) =

[
1+e−10t

2
1−e−10t

2
1−e−10t

2
1+e−10t

2

]

(3.4.13)

for t ∈ [0,∞). Using the definition (3.4.7) of the intensity matrix and L’Hôpi-
tal’s rule, one obtains the intensity matrix in this case in the form

A =
[−5 5

5 −5

]
. (3.4.14)

For the special initial probability vector p(0) = p̄ = (0.5, 0.5)�, that is, the
initial interest rate takes each of both possible levels with equal probability,
we see that

p̄� P (t) = p(t)� = p̄� (3.4.15)

for all t ∈ [0,∞). A probability vector p̄, which solves (3.4.15), is called a
stationary probability vector. This means that the above interest rate example
forms a stationary process with stationary probability vector p̄ = (0.5, 0.5)�.
Note that stationarity requires here exactly this choice for the initial proba-
bility vector.

In Fig.3.4.1 we plot a typical path for this simple continuous time Markov
chain. As previously mentioned, the waiting times between jumps are expo-
nentially distributed with an intensity of λ1 = λ2 = 5 jumps per year, that is,
with a mean waiting time of 1

λ1
= 1

λ2
= 1

5 = 0.2 years, see Table 1.3.1.
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Fig. 3.4.1. Sample path of the continuous time Markov chain

A Model for the Default of a Company

Let us mention also another example. A simple way of modeling the de-
fault risk of a company is to assume that the company might default ac-
cording to a given intensity a1,2, the default intensity. Let us denote by
X = {Xt, t ∈ [0,∞)} the default process, which has only two possible values.
The value Xt = 1 = y1 describes the state when there has been no default up
to time t. However, from the time of default τ onwards we set Xt = 0 = y2

for all times t ≥ τ . This means, y2 = 0 is the second possible state for X. One
can say that Xt is the indicator for the event that there is no default up until
time t. Then X can be shown to form a two-state homogeneous continuous
time Markov chain with initial probability vector

p(0) = (p1(0), p2(0))� = (1, 0)� (3.4.16)

and intensity matrix

A =
[
−a1,2 a1,2

0 0

]
. (3.4.17)

This means, the state 0, that is default, is an absorbing state. Once it is
reached, the process X will never leave this state as follows from the zero
intensity a2,1 = 0 in (3.4.17). According to the Kolmogorov forward equa-
tion (3.4.9) we obtain

dp1,1

dt
(t) = −p1,1(t) a1,2. (3.4.18)

That is, we obtain from (3.4.17) and (3.4.18) the explicit transition probability
for not having a default until time t in the form

p1,1(t) = exp{−a1,2 t}. (3.4.19)
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Fig. 3.4.2. Default probability for a1,2 = 0.4

Thus, the probability for a default until time t is

p1,2(t) = 1 − p1,1(t) = 1 − exp{−a1,2 t} (3.4.20)

for t ∈ [0,∞). Fig. 3.4.2 displays the probability of default for a low rated
company with default intensity a1,2 = 0.4 over a period of 10 years. One
notes that in this case the probability of default is rather high after several
years.

Changes in the Credit Rating of a Firm

Rating agencies publish, at regular intervals, ratings for the credit worthiness
of a firm. These ratings are important for the pricing of debt securities. The
credit rating usually changes over time according to the performance and
management of the firm. These changes can be interpreted as jumps that
occur with certain intensities. Again, a homogeneous continuous time Markov
chain can be used to model these changes. As a simple example let us consider
the following four categories for the possible credit ratings of a firm, y1 = AA,
y2 = B, y3 = C, y4 = D with D denoting default.

The intensity matrix A, see (3.4.7), of the Markov chain could be, for
instance, of the form given in Table 3.4.1. Note that the elements of each row
add up to 0 and y4 = D is obviously the absorbing state. Assuming an initial
probability vector p(0) one can apply the Kolmogorov forward equation (3.4.9)
to obtain the transition probabilities for this Markov chain.

Figure 3.4.3 displays a typical sample path for this Markov chain with the
levels 3, 2, 1 and 0 corresponding to the ratings AA, B, C and D, respectively.
Note that after about 17 years the rating process reaches in this figure the
state 0, that is the state D, which corresponds to default.
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Table 3.4.1. Credit rating transition matrix

AA B C D

AA -0.06 0.03 0.02 0.01
B 0.1 -0.4 0.2 0.1
C 0.2 0.4 -1.0 0.4
D 0 0 0 0

Fig. 3.4.3. Credit ratings for a firm

Ergodicity of Continuous Time Markov Chains (*)

A stochastic process X that describes some equilibrium often enjoys a pow-
erful and important property called ergodicity, which we mention briefly. For
a continuous time Markov chain X, a time T ∈ (0,∞) and any bounded,
measurable function f : X → � we can define the corresponding time average
over the interval (0, T ] as

Af (T ) =
1
T

∫ T

0

f(Xt) dt. (3.4.21)

Such time averages are random and often refer to important quantities in
economic or financial applications. For instance, certain statistics describe
the average growth rate, average interest rate or the average inflation rate
over longer time periods. An important theoretical and practical question is:
What happens with these averages if the length T of the observation interval
(0, T ] becomes large, that is as T → ∞? This question can be answered for
those stochastic processes that satisfy the following ergodicity property:

A continuous time Markov chainX taking values in the set X = {y1, y2, . . .,
yN} is called ergodic if

lim
T→∞

Af (T ) = lim
T→∞

1
T

∫ T

0

f(Xt) dt =
N∑

i=1

f(yi) p̄i (3.4.22)
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Fig. 3.4.4. Time average of an ergodic interest rate process

a.s. for all bounded, measurable functions f : X → �. Here p̄ denotes the
stationary probability vector, which satisfies the relation

p̄ P (t) = p̄ (3.4.23)

for all t ∈ [0,∞). That is, the random time average Af (T ) converges as
T → ∞, towards the spatial average appearing on the right hand side of equa-
tion (3.4.22). This spatial average on the right hand side of equation (3.4.22)
is the expectation of a random variable f(X), where X has as probabilities
those of the stationary probability vector p̄.

Let us show for T → ∞ a typical convergence pattern of the time average
(3.4.22) for the interest rate example that was given in Fig.3.4.1. Figure 3.4.4
displays a corresponding trajectory of the time average Af (T ) for the mean,
that is f(y) = y, for a three year time interval. We see that the long-term
time average converges to the stationary mean of the interest rate process,
which has according to (3.4.22), the theoretical value μ = 0.055.

3.5 Poisson Processes

The Wiener process is the fundamental mathematical object to model con-
tinuous uncertainty with independent increments, see Sect. 3.2. As we have
discussed already in previous sections, we need to be able to model in finance
various random events, such as defaults, operational failures, insurance claims
and trading times.

A stochastic process with independent increments, see Sect.3.2, that counts
events can be used to model event driven uncertainty. We call this fundamental
process a Poisson process.
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Fig. 3.5.1. Standard Poisson process with intensity λ = 20

Standard Poisson Process

Definition 3.5.1. A standard Poisson process N = {Nt, t ∈ [0,∞)} with
intensity λ > 0 is a process with stationary independent increments with initial
value N0 = 0 such that Nt −Ns is Poisson distributed with intensity λ(t− s),
see (1.1.30), that is with probability

P (Nt −Ns = k) =
e−λ (t−s) (λ (t− s))k

k!
(3.5.1)

for k ∈ {0, 1, . . .}, t ∈ [0,∞) and s ∈ [0, t].

For the Poisson process N with intensity λ we have the mean

μ(t) = E(Nt) = λ t, (3.5.2)

see (1.3.3), and the variance

v(t) = Var(Nt) = E
(
(Nt − μ(t))2

)
= λ t, (3.5.3)

see (1.3.16), for t ∈ [0,∞).
In Fig. 3.5.1 we plot a graph for a standard Poisson process with intensity

λ = 20. That means, according to (3.5.2), we should expect on average 20
events to happen during the time period [0, 1], which is almost the case for
this trajectory.

A standard Poisson process N is a counting process. It generates an in-
creasing sequence of jump times τ1, τ2, . . . with each event that it counts.
Thus, Nt equals the number of events that occurred up until time t ∈ [0,∞).
Here for t ∈ [0,∞) the time τNt denotes the last time that N made a jump
such that

τk = inf{ t ∈ [0,∞) : Nt ≥ k} (3.5.4)

for k ∈ N .
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Transformed Poisson Process

In some applications, as in the modeling of defaults, the intensity λ(t) that a
certain type of event occurs may dependent on the time t ∈ [0,∞). This leads
to a time transformed Poisson process N = {Nt, t ∈ [0,∞)}, where

P (Nt −Ns = k) =
exp
{
−
∫ t

s
λ(z) dz

}(∫ t

s
λ(z) dz

)k

k!
(3.5.5)

for k ∈ {0, 1, . . .}, t ∈ [0,∞) and s ∈ [0, t].
Additionally, the mark ξk of the kth event, for instance, the recovery rate

of the kth default, may also depend on the number of events that occurred.
For the moment let us assume that ξk is deterministic, k ∈ {1, 2, . . .}. We can
then consider the transformed Poisson process Y = {Yt, t ∈ [0,∞)} with

Yt =
Nt∑

k=1

ξk (3.5.6)

for t ∈ [0,∞). If the intensity process λ = {λ(t), t ∈ [0,∞)} is deterministic
and the kth mark ξk is deterministic for each k ∈ {1, 2, . . .}, then it follows
from (3.5.5) that the mean μ(t) of Yt is given by the expression

μ(t) = E(Yt) =
∞∑

k=1

ξk P (Nt = k), (3.5.7)

where the above probabilities are expressed in (3.5.5). In this case Y is a
process with independent increments. If one chooses ξ1 = 1 and ξk = 0 for
k ∈ {2, 3, . . .}, then this allows us to model some kind of credit worthiness
C(t) of a company at time t by setting

C(t) = 1 − Yt.

The credit worthiness may start at time zero with C(0) = 1 and declines then
to zero at the time when the first default arises. In this simple example the
expected value E(C(t)) of credit worthiness at time t equals by (3.5.7) and
(3.5.5) the probability

E(Yt) = P (Nt = 0) = exp
{
−
∫ t

0

λ(z) dz
}

for t ∈ [0,∞).

Compound Poisson Process

It is often important to differentiate in a sequence of events various types of
events, for instance, the different recovery rates of a default. One also needs to
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Fig. 3.5.2. Compound Poisson process

allocate a corresponding intensity to the occurrence of each type of possible
event. Changes in credit ratings could be interpreted as such types of events.
Similarly, one could also model operational failures of different kinds, which
may occur in a company or institution, as particular types of events. Another
example is the varying severity of certain damages in insurance claims.

To construct a process that models sequences of different types of events,
let us consider a Poisson process N with intensity λ > 0, together with a
sequence of i.i.d. random variables ξ1, ξ2, . . . that are independent of N . Here

P (ξ1 ≤ z) = Fξ1(z) (3.5.8)

denotes for z ∈ � the given distribution function of ξ1. We now construct the
compound Poisson process Y = {Yt, t ∈ [0,∞)}, where Y0 = 0 and

Yt =
Nt∑

k=1

ξk (3.5.9)

for t ∈ [0,∞). A compound Poisson process generates a sequence of pairs
(τk, ξk)k∈N of jump times τk and marks ξk. In Fig. 3.5.2 we show the trajec-
tory of a compound Poisson process Y where the i.i.d. random variables are
uniformly U(0, 1) distributed, see (1.2.3), and N is as in Fig. 3.5.1.

In insurance, a simple version of the Cramér-Lundberg model for the risk
reserve or surplus Xt at time t of an insurance company can be described in
the form

Xt = X0 + c t− Yt, (3.5.10)

where the claim process Y = {Yt, t ∈ [0,∞)} is a compound Poisson process
with i.i.d. claim sizes ξk > 0, k ∈ N . Here c is the premium rate that describes
the premium payments per unit of time that the insurance company collects.
We show in Fig. 3.5.3 the trajectory of a risk reserve process X when setting
c = 10 and X0 = 100.
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Fig. 3.5.3. Risk reserve process

Fig. 3.5.4. Pairs of jump times and marks

In Fig. 3.5.4 we plot the points for the pairs of jump times and marks
of the path of the compound Poisson process Y shown in Fig. 3.5.2. These
correspond also to the risk reserve process X in Fig. 3.5.3.

A compound Poisson process is an example of a so-called marked point pro-
cess. Its trajectory is fully characterized by the sequence of pairs (τk, ξk)k∈N .
As already mentioned, one could think of accumulated insurance claims that
are presented to an insurance company. Here the marks are the claim sizes and
the jump times the instances when claims arise. In Sect. 3.7 we shall present
some mathematical results for the Cramér-Lundberg model that allow to cal-
culate quantities of interest in insurance or operational risk modeling.

Poisson Measure (*)

In the remainder of this section we list briefly some notions and results that
prepare the ground for introducing general event driven processes that be-
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come increasingly common in quantitative finance. To deal properly with the
modeling of many events arising with high intensity the notion of a random
measure is needed. For this purpose let us extend our example of a compound
Poisson process.

It is a fundamental feature of the Poisson process, given in Definition 3.5.1,
that due to the independence of its increments the location of the set of points
in the time interval [0, 1], see Fig. 3.5.4, is such as if one has generated N1

independent uniformly U(0, 1) distributed random variables. On the other
hand, the marks ξk of the compound Poisson process Y used in Fig. 3.5.4
are also uniformly distributed on [0, 1], that is ξk ∈ U(0, 1). Consequently,
the pairs (τk, ξk), for k ∈ N , which are generated by the compound Poisson
process Y during the time period [0, 1], shown in Fig. 3.5.4, are uniformly
distributed in the square [0, 1]× [0, 1]. Such a graph can be interpreted as the
trajectory of some Poisson measure.

The notion of a Poisson measure will appear to be quite technical. However,
this notion is essential if one aims to consider the important class of stochastic
processes that will be introduced in the next section.

We now introduce the mark set

E = �\{0}. (3.5.11)

Here the element {0} is excluded to avoid in some modeling applications jumps
of size zero. Let B(Γ ) denote the smallest sigma-algebra containing all open
sets of a set Γ . Now, we construct a Poisson measure pϕ(dv×dt) on E× [0,∞)
with intensity measure

νϕ(dv × dt) = ϕ(dv) dt. (3.5.12)

Here ϕ(·) is a measure on B(E) with
∫

E
min(1, v2)ϕ(dv) < ∞. (3.5.13)

The random Poisson measure pϕ(·) is assumed to be such that for each set A
from the product-sigma-algebra of B(E) and B([0, T ]), see Protter (2004), the
random variable pϕ(A), which counts the number of points in A, is Poisson
distributed with intensity

νϕ(A) =
∫ T

0

∫

E
1{(v,t)∈A} ϕ(dv) dt, (3.5.14)

that is, one has

P (pϕ(A) = ) =
νϕ(A)�

 !
e−νϕ(A) (3.5.15)

for  ∈ {0, 1, . . .} and each T ∈ [0,∞), see (1.1.30). For disjoint setsA1, . . . , Ar,
r ∈ N , the random variables pϕ(A1), . . . , pϕ(Ar) are here assumed to be in-
dependent.
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For example, the points in Fig. 3.5.4 can be interpreted as a realization of
a Poisson measure on [0, 1] × [0, 1] with ϕ(dv) = λdv, where ϕ(dv)

dv = λ = 20
and T = 1. We shall use throughout the following the notations p(dv, dt) =
pϕ(dv, dt) = pϕ(dv × dt) for a Poisson measure and νϕ(dv, dt) = νϕ(dv × dt)
for the corresponding intensity measure, whenever it is convenient.

3.6 Lévy Processes (*)

We now introduce the class of Lévy processes, which has been used by a num-
ber of researchers in financial modeling, see, for instance, Barndorff-Nielsen
& Shephard (2001), Geman et al. (2001) and Eberlein (2002). It includes as
special cases, for instance, the Poisson process and the Wiener process. Lévy
processes are processes with stationary independent increments which enjoy
a number of elegant mathematical properties. In the market microstructure
of tick by tick intraday data the piecewise constant path of an intraday stock
price resembles that of paths of certain Lévy processes. The following defini-
tion refers to Sect. 3.2 and the concept (2.7.1) of convergence in probability.

Definition 3.6.1. A stochastic process X = {Xt, t ∈ [0,∞)} with X0 = 0
a.s. is called a Lévy process if

1. X is a process with independent increments, where Xt −Xs for 0 ≤ s <
t < ∞ is independent of the past, that is the Xr with 0 ≤ r ≤ s;

2. X has stationary increments, which means that Xt −Xs has for 0 ≤ s <
t < ∞ the same distribution as Xt−s;

3. X is continuous in probability, that is Xs
P= limt→s Xt for s ∈ [0,∞).

This definition generalizes that of the Wiener process, see Definition 3.2.2,
and also that of the standard Poisson process, see Definition 3.5.1.

A popular asset price model is that of an exponential Lévy model S = {St,
t ∈ [0,∞)}, where

St = S0 exp{Xt} (3.6.1)

for t ∈ [0,∞). This kind of model has been studied, for instance, in Madan
& Seneta (1990) and Eberlein & Keller (1995) among others. By taking the
exponential in (3.6.1) the asset price is guaranteed to stay positive.

Lévy Decomposition (*)

Let X be a Lévy process. Then it can be shown that X has a decomposition
of the form

Xt = α t+ βWt +
∫ t

0

∫

|v|<1

v (pϕ(dv, ds) − ϕ(dv) ds) +
∫ t

0

∫

|v|≥1

v pϕ(dv, ds)

(3.6.2)
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Fig. 3.6.1. A linearly interpolated sample path of a Lévy process

for t ∈ [0,∞), see, for instance, Protter (2004). Here W = {Wt, t ∈ [0,∞)}
is a standard Wiener process. Furthermore, pϕ is a Poisson measure as de-
fined at the end of the previous section. Therefore, for any set A ∈ E the
process pϕ(A) = {pϕ(A, [0, t]), t ∈ [0,∞)} is a Poisson process independent
of W with intensity ϕ(A), where ϕ(dv) is called the Lévy measure. It is de-
fined on E assuming that (3.5.13) holds. Note that for disjoint sets A,B ∈ E
the corresponding Poisson processes pϕ(A) and pϕ(B) are independent. Equa-
tion (3.6.2) shows that a Lévy process is a superposition of a constant trend
process, a multiple of a Wiener process and some generalized marked point
process.

A Lévy process is fully characterized by the parameters α, β ∈ � together
with the Lévy measure ϕ. In the case β = 0 and ϕ(A) = 0 for all A ∈ E , the
Lévy process value Xt at time t equals the linear trend function Xt = α t.
If ϕ(A) = 0 for all A ∈ E , then the Lévy process is a transformed Wiener
process of the form Xt = α t + βWt. This is the only possible form that a
continuous Lévy process can have. As an example, for α = β = 0 and ϕ(E) =
ϕ({1}) ∈ (0,∞) the Lévy process X = pϕ({1}) = {pϕ({1}, [0, t]), t ∈ [0,∞)}
is a Poisson process with intensity ϕ({1}). In Fig. 3.6.1 the path of a Lévy
process is shown for the case α = 0, β = 1 and

ϕ(dv) =

{
λ dv for v ∈ (0, 1)

0 otherwise,

where λ = 20. Note that we used in this example the jump times and marks of
the compound Poisson process exhibited in Figs. 3.5.2 and 3.5.4. This means
that a compound Poisson process is a Lévy process. A compound Poisson pro-
cess assumes finite intensity for the underlying Poisson process that generates
the events. A Lévy process can also model the case where certain extremely
small jumps may arise with unlimited intensity. This is potentially the case for
price processes observed from tick by tick data if one tries to avoid a Wiener



128 3 Modeling via Stochastic Processes

process for modeling. Such prices can be modeled via the use of a Lévy mea-
sure. A simple asset price model is obtained by the exponential Lévy process
Y = {Yt, t ∈ [0,∞)} with

Yt = Y0 exp{Xt}, (3.6.3)

where Y0 > 0 and Xt is the value of a Lévy process at time t ∈ [0,∞),
see (3.6.1). Such exponential Lévy processes have been used in asset price
modeling, for instance, in Kou (2002).

Lévy processes have a range of elegant mathematical properties, which
make these processes theoretically attractable for financial modeling. A dis-
advantage of Lévy processes arises from the fact that the Lévy measure is
difficult to estimate in practice. Furthermore, financial models that are based
on Lévy processes can become mathematically very challenging when used for
derivative pricing and portfolio optimization.

Special Lévy processes, as the Wiener process, Poisson process and com-
pound Poisson process, seem to be often sufficient as building blocks for so-
phisticated models in many areas of finance and insurance. These particular
Lévy processes often allow us to construct fast and accurate computational
methods. In some cases they provide analytic solutions.

It is advisable to model in finance important single events that arise
with finite intensity together with continuous noise, which aggregates most
of the many small events in a compact manner. This way of modeling reduces
strongly the complexity of a model and, potentially, secures its tractability.

3.7 Insurance Risk Modeling (*)

In this section we examine actuarial quantities which are important to insurers
under the classical insurance risk model. Complex quantities and functionals
can be accessed under the given framework. It is worthwhile mentioning that
the methods and techniques employed in the following can also be applied to
quantify some types of operational risk and credit risk.

Classical Insurance Risk Model (*)

Let (Ω,A, P ) be a probability space underlying all mathematical objects that
will be introduced in the following. We study the classical model of insurance
risk theory, the Cramér-Lundberg model, see (3.5.10). Here Xa = u ≥ 0 is the
insurer’s initial capital. The premiums are received continuously at a constant
rate c ≥ 0 per unit time. The aggregate claims constitute a compound Poisson
process Y = {Yt, t ∈ [0,∞)} characterized by the Poisson intensity parameter
λ > 0 and the individual claim amount distribution function Fξ(z), z ∈ (0,∞)
with Fξ(0) = 0 and mean value μ. That is,
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Yt =
Nt∑

k=1

ξk (3.7.1)

for t ∈ [0,∞), where N = {Nt, t ∈ [0,∞)} is a Poisson process with intensity
λ. The claim amounts (ξk)k≥1 are independent, identically distributed ran-
dom variables with common distribution function Fξ. Then for t ∈ [0,∞), the
surplus or risk reserve at time t for the insurer is given in the form

Xt = u+ c t− Yt, (3.7.2)

which represents according to (3.5.10) the Cramér-Lundberg model, see Gerber
(1979) or Grandell (1991).

For simplicity we assume that the distribution function Fξ is differentiable
with fξ(z) = dFξ(z)

dz being the individual claim amount probability density.
Consequently, for every t ∈ [0,∞) and y > 0 the compound Poisson process
value Yt has the probability density

fYt(y) = e−λt
∞∑

n=0

(λt)n

n !
fn∗

ξ (y), (3.7.3)

where fn∗(y) denotes the n-fold convolution of the claim amount probabil-
ity density fξ(y) with itself. By convention, we define f0∗

ξ (y) = 1. Similarly,
we shall use “*” more generally to denote the convolution operation in the
following. Throughout the section we assume that N = {Nt, t ∈ [0,∞)} and
(ξk)k≥1 are independent and that

c > λμ. (3.7.4)

Under this assumption it follows for X = {Xt, t ∈ [0,∞)} from the strong
Law of Large Numbers, see (2.1.13), that

P
(

lim
t→∞

Xt = ∞
)

= 1. (3.7.5)

In our modeling we allow the surplus process X still to continue even if
the surplus reaches a negative value. A typical realization of the surplus or
risk reserve process is given in Fig. 3.5.3.

Let τ denote the time of ruin and � be the time of the surplus process
X = {Xt, t ∈ [0,∞)} leaving zero ultimately, which is called the ultimate
leaving-time, that is,

τ = inf{t ≥ 0 : Xt < 0}, (3.7.6)

where τ = ∞ if the set is empty, and

� = sup{t ≥ 0 : Xt < 0} (3.7.7)

with � = 0 if the set is empty.
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Let us abbreviate the phrase “there exists” by ∃. For X0 = u ≥ 0 the
quantity

Ψ(u) = P
(
∃t > 0, Xt < 0

∣
∣X0 = u

)
= P

(
τ < ∞

∣
∣X0 = u

)
(3.7.8)

denotes the probability of ruin with initial capital u. Then

Φ(u) = 1 − Ψ(u) (3.7.9)

is the non-ruin probability, also called survival probability. It follows from
Grandell (1991) that

Φ(0) =
c− λμ

c
and Ψ(0) =

λμ

c
. (3.7.10)

Actuarial Diagnostics (*)

In the given classical insurance risk model it is possible to calculate a num-
ber of important quantities, which are called actuarial diagnostics. Let us
consider the random variable Xτ−, which is the surplus immediately prior to
ruin. Furthermore, |Xτ | denotes the deficit at ruin. We denote by sup0≤t<τ Xt

the maximum profit before ruin. Similarly, inf0≤t<τ Xt is the minimum profit
before ruin. Furthermore, sup0≤t<� Xt denotes the maximum profit after ruin.
Finally, inf0≤t<� Xt is the maximum loss after ruin and before the ultimate
leaving time. For x > u = X0, let π(u;x, t) denote the probability density that
the surplus process crosses upward the level x at t for the first time. According
to Gerber (1979) it follows that

π(u;x, t) = π(u;x− u, t) =
x− u

t
fXt (u+ c t− x). (3.7.11)

Let
τ1 = inf{t ≥ 0 : Xt < 0}

with τ1 = ∞ if the set is empty, and

τ0
1 = inf{t > 0 : Xt = 0},

where τ0
1 = ∞ if the set is empty. Obviously, we have τ1 = τ . In general, for

k ≥ 2, define recursively

τk = inf{t > τ0
k−1 : Xt < 0}

with τk = ∞ if the set is empty, and

τ0
k = inf{t > τ0

k−1 : Xt = 0},

where τ0
k = ∞ if the set is empty. We consider
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κ = sup{k : τ0
k < ∞}

with κ = 0 if the set is empty, as the total number of zeros of the surplus
process X = {Xt, t ∈ [0,∞)}. It follows from (3.7.5) that P (κ < ∞) = 1.
Furthermore, we have τ0

κ < ∞, τ0
κ+1 = ∞ when κ > 0 and � = τ0

κ when � > 0.
With any initial value u ∈ � we have

P
(
τk < τ0

k

∣
∣ τk < ∞

)
= 1,

for all k ≥ 1.
In insurance risk analysis, there is an increasing interest in the distribu-

tions of functionals related to the surplus process for providing information
about an insurer’s risk. These include the distribution of the surplus immedi-
ately prior to ruin, the distribution of the deficit at ruin and the distribution
of the maximum profits before ruin. References on this topic include Dickson
(1992, 1993), Gerber & Shiu (1997) and Picard (1994). Using techniques de-
scribed, for instance, in Wei & Wu (2002) one can derive explicit expressions
for the joint distributions of almost all of these actuarial diagnostics and can
give the exact results when the individual claim amounts are exponentially
distributed. As already indicated, these techniques appear to have also rele-
vance for operational risk and credit risk evaluations.

3.8 Exercises for Chapter 3

3.1. Show that a standard Wiener process W has covariance C(s, t) =
min{s, t}.

3.2. Is the Wiener process stationary?

3.3. Derive the probabilities for the symmetric random walk.

3.4. Compute the probability for having j ∈ {0, 1, . . . , n} upward moves in a
non-symmetric random walk after n time steps with probability p ∈ (0, 1) for
an upward move.

3.5. Determine the mean and variance for the stationary continuous time
Markov chain interest rate example.

3.6. What is the long term time average of the squared interest rate in the
interest rate example?

3.7. For a Poisson process with intensity λ > 0 derive a formula for its second
moment at time t > 0.

3.8. Compute the first moment for a compound Poisson process with intensity
λ > 0 and U(0, 1) distributed i.i.d. marks.
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3.9. What is the probability for a compound Poisson process with intensity
λ > 0 and U(0, 1) distributed i.i.d. marks to have no jump until time t > 0?

3.10. (*) For a Lévy process with α = 1, β = 1 and

ϕ(dv) =

{
λ for v = 1

2

0 otherwise

with λ > 0 calculate the mean and the variance.
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Diffusion Processes

In this chapter diffusion processes are introduced. These are potential candi-
dates for the modeling of asset prices, interest rates and other financial quan-
tities. We cover examples on geometric Brownian motion, Ornstein-Uhlenbeck
and square root processes.

4.1 Continuous Markov Processes

A Markov process that evolves in continuous time and has continuous tra-
jectories is called a continuous Markov process. This type of process would
appear to be well suited for the modeling of a range of financial quantities
such as stock prices, exchange rates and interest rates. Unlike Markov chains,
that have discontinuous paths, it allows us to model continuous random move-
ments of stock prices. The typical trajectory of a transformed Wiener process,
as given in Fig. 3.2.3, would seem to be a reasonable candidate for the repre-
sentation of asset price dynamics, for example, the path of the S&P500 index
that was displayed in Fig. 3.1.1.

The Wiener process evolves in continuous time and has continuous tra-
jectories. That is, it has paths without any jumps. Since it has independent
increments it is also a Markov process. However, the transformed Wiener pro-
cess given in Sect. 3.2 can take negative values. To see this better we plot in
Fig. 4.1.1 the Gaussian transition densities for the standard Wiener process
for the time interval [0.1, 3.0]. The figure shows that for negative values to
be obtained there is a positive probability. This observation also applies to a
transformed Wiener process. It indicates that the Wiener process or a trans-
formed Wiener process would not be suitable for the modeling of asset price
dynamics.

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,
Springer Finance,
© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010
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Fig. 4.1.1. Probability densities for the standard Wiener process

Black-Scholes Model

It is intuitively appealing to assume that asset prices can be modeled using
some positive process which changes its value proportionally to its current
value. On the basis of this assumption it makes sense to exponentially trans-
form the Wiener process W to ensure positive asset price values. That is, we
consider the random variable

Xt = exp{g t+ bWt} (4.1.1)

for t ∈ [0,∞). Here g denotes the growth rate and b is known as the volatil-
ity of the asset price process X. In Samuelson (1955, 1965a) this model
was suggested for asset prices. Later, it was used in Merton (1973b) and
Black & Scholes (1973) as a stock price model in their Nobel prize winning
work on option pricing. The stochastic process given in (4.1.1) is called geomet-
ric Brownian motion. The corresponding asset price model is the lognormal
or Black-Scholes model.

In Fig. 4.1.2 we show a path for geometric Brownian motion over a period
of ten years with growth rate g = 0.05 and volatility b = 0.2. Note that the
fluctuations become larger for larger values of the asset price.

To have flexibility in using different initial values in the lognormal model
we define geometric Brownian motion more generally by the expression

Xt = Xt0 exp{g (t− t0) + b (Wt −Wt0)} (4.1.2)

for t ∈ [t0,∞) with initial asset price Xt0 > 0, growth rate g and volatility b,
where W denotes a standard Wiener process.
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Fig. 4.1.2. A path of geometric Brownian motion

Markov Property

Geometric Brownian motion is an example of a continuous Markov process,
a class of stochastic processes widely used for asset price modeling. Let us
suppose that the share price of a stock is at present $1 and follows a con-
tinuous Markov process. Then it is reasonable to assume that predictions of
future stock price values should only depend on the present share price and
be unaffected by the price one year, one month or one week ago. The only rel-
evant information is that the price at present is $1. Any predictions of future
prices are uncertain, however, they can be expressed in terms of a probability
distribution. The Markov property then implies that the probability distribu-
tion of the stock price at a particular future time depends only on the current
stock price. This simplifies considerably the modeling, statistical inference and
numerical analysis that typically arise.

The Markov property has a natural economic interpretation in the mod-
eling of asset prices: The present price of a stock encapsulates all of the infor-
mation contained in the knowledge of past prices. This does not exclude the
possibility of using certain statistical properties of the stock price history to
determine, that is calibrate, model parameters, for instance, the growth rate
or the volatility of the lognormal model.

In what follows we shall suppose that for k ∈ {0, 1, . . .} every joint dis-
tribution FXt0 ,Xt1 ,...,Xtk

(x0, x1, . . ., xk) of the process X = {Xt, t ∈ [0,∞)}
under consideration has a density p(t0, x0; t1, x1; . . . ; tk, xk). This allows us
to define the conditional probability distribution in the form

P
(
Xtn+1 < xn+1 |Xt0 = x0, Xt1 = x1, . . . , Xtn = xn

)

=

∫ xn+1

−∞
p(t0, x0; t1, x1; . . . ; tn, xn; tn+1, y) dy

∫ ∞

−∞
p(t0, x0; t1, x1; . . . ; tn, xn; tn+1, y) dy

(4.1.3)
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for all time instants 0 ≤ t0 < t1 < . . . < tn < tn+1 < ∞, n ∈ {0, 1, . . .}, and
all states x0, x1, . . ., xn+1 ∈ �, provided the denominator is nonzero. Now,
the Markov property can be formulated in the form

P
(
Xtn+1 < xn+1 |Xt0 = x0, Xt1 = x1, . . . , Xtn = xn

)

= P
(
Xtn+1 < xn+1 |Xtn = xn

)
(4.1.4)

for all time instants 0 ≤ t0 < t1 < . . . < tn < tn+1 < ∞, n ∈ {0, 1, . . .}
and all states x0, x1, . . ., xn+1 ∈ � for which the conditional probabilities are
defined.

For a continuous Markov process X we write its transition probability
distribution in the form

P (s, x; t, (−∞, y)) = P (Xt < y |Xs = x),

for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ �. If for s, x and t the probability dis-
tribution function P (s, x; t, ·) has a probability density p(s, x; t, ·), called the
transition density, then it holds

P (s, x; t, (−∞, y)) =
∫ y

−∞
p(s, x; t, u) du (4.1.5)

for all y ∈ �, t ∈ [0,∞) and s ∈ [0, t].

Chapman-Kolmogorov Equation

The transition matrix equation (3.4.5) for continuous time Markov chains has
a counterpart for the transition densities of continuous Markov processes. This
continuous version is called the Chapman-Kolmogorov equation and has the
form

p(s, x; t, y) =
∫ ∞

−∞
p(s, x; τ, z) p(τ, z; t, y) dz (4.1.6)

for 0 ≤ s ≤ τ ≤ t < ∞ and x, y ∈ �, which follows directly from the Markov
property. The Chapman-Kolmogorov equation is a fundamental relation that
is used to derive important properties of continuous Markov processes.

4.2 Examples for Continuous Markov Processes

Let us discuss some examples of continuous Markov processes that, as we shall
see later, are diffusion processes and play a role in financial modeling.
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Fig. 4.2.1. Transition density for geometric Brownian motion

Wiener Process

An example of a continuous Markov process is given by the standard Wiener
process defined in (3.2.6). The Wiener process obtains the Markov property
from its independent increments. It has the Gaussian transition density

p(s, x; t, y) =
1

√
2π(t− s)

exp
{
− (y − x)2

2(t− s)

}
, (4.2.1)

for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ �. Figure 4.1.1 shows the transition density
for a Wiener process that starts at time 0 with the initial value 0.

Geometric Brownian Motion

Geometric Brownian motion, see (4.1.2), is also a continuous Markov process.
As we see later, it can be expressed as an exponential of a linearly transformed
Wiener process, which gives it its Markov property. It has the transition den-
sity

p(s, x; t, y) =
1

√
2π(t− s) b y

exp
{
− (ln(y) − ln(x) − g(t− s))2

2 b2(t− s)

}
, (4.2.2)

for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ (0,∞). Figure 4.2.1 shows the transition
density for a geometric Brownian motion with growth rate g = 0.05, volatility
b = 0.2 and initial value x = 1 at time s = 0 for the period from 0.1 to 3
years.
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Fig. 4.2.2. Transition density of standard OU process starting at (s, x) = (0, 0)

Standard Ornstein-Uhlenbeck Process

Let us consider an example of another continuous Markov process which is
also a Gaussian process. This is the standard Ornstein-Uhlenbeck (OU) process
X = {Xt, t ∈ [0,∞)}, where we start from an initial value X0. Since it is a
Gaussian process it can be characterized by the mean and the variance of its
increments. More precisely, its Gaussian transition density is defined in the
form

p(s, x; t, y) =
1

√
2π
(
1 − e−2(t−s)

) exp

{

−
(
y − xe−(t−s)

)2

2
(
1 − e−2(t−s)

)

}

, (4.2.3)

for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ �, with mean x e−(t−s) and variance
1 − e−2(t−s).

To illustrate the stochastic dynamic of this process we show in Fig. 4.2.2
the transition density of a standard OU process for the period from 0.1 to 3
years with initial value x = 0 at time s = 0. As can be seen from Fig. 4.2.2
that the transition densities for the standard OU process seem to stabilize
after a period of about one year. In fact, as can be seen from (4.2.3) these
transition densities asymptotically approach, as t → ∞, a standard Gaus-
sian density. This is in contrast, for example, to transition densities for the
Wiener process, which do not converge to a stationary density, see (4.2.1) and
Fig. 4.1.1. For illustration, we plot in Fig. 4.2.3 the transition density for a
standard OU process that starts at the initial value x = 2 at time t = 0. Note
how the transition density evolves towards a median that is close to 0.

In Fig. 4.2.4 a path of a standard OU process is shown. It can be observed
that this trajectory fluctuates around some reference level. Indeed, as already
indicated, the standard OU process has a stationary density. This can be
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Fig. 4.2.3. Transition density of standard OU process starting at (s, x) = (0, 2)

Fig. 4.2.4. Path of a standard Ornstein-Uhlenbeck process

seen from (4.2.3) when t → ∞. Note also that the Gaussian property of the
standard OU process means that even a scaled and shifted OU process may
become negative.

More generally, as we shall describe later in Sect. 7.2, an Ornstein-
Uhlenbeck (OU) process is a Gaussian process that is mean reverting to a
reference level and its fluctuations can be more or less intense than that of
a standard OU process. Such a model is suitable, for instance, for an infla-
tion rate or a real interest rate. The fact that the OU process leads into an
equilibrium dynamics is important for such modeling purposes.

Geometric Ornstein-Uhlenbeck Process

An asset price model that both has a stationary density and is positive is
obtained by the geometric Ornstein-Uhlenbeck process. It is expressed as the
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Fig. 4.2.5. Transition density of the geometric Ornstein-Uhlenbeck process

Fig. 4.2.6. Path of a geometric Ornstein-Uhlenbeck process

exponential of a standard OU process, that is, it has the lognormal transition
density

p(s, x; t, y) =
1

y
√

2π (1 − e−2(t−s))
exp

{

−
(
ln(y) − ln(x) e−(t−s)

)2

2
(
1 − e−2(t−s)

)

}

,

(4.2.4)
for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ (0,∞). In Fig. 4.2.5 we display the cor-

responding probability densities for the time period from 0.1 to 3 years with
initial value x = 1 at time s = 0. In this case the transition density converges
over time to a limiting lognormal density as stationary density, as can be seen
from (4.2.4). Figure 4.2.6 shows a trajectory for the geometric OU process.
We note that it stays positive and shows large fluctuations for large values.
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This process was, for instance, interpreted in Föllmer & Schweizer (1993)
as an asset price model. However, it is still somewhat restrictive in that it
is not possible to model changes in the trend or volatility of the asset price.
This will be conveniently achieved in the context of more general diffusion
processes, which form a class of special continuous Markov processes and will
be considered below.

4.3 Diffusion Processes

It is not surprising that the Wiener process serves as a prototype example of a
diffusion process since it can model the diffusive motion of Brownian particles.
As we attempt to show, diffusion processes form a powerful class of stochastic
processes that can be applied to a range of financial modeling problems.

Characterization of Diffusion Processes

Definition 4.3.1. A continuous time Markov process with transition den-
sity p(s, x; t, y) is called a diffusion process if the following three limits exist
for all ε > 0, s ∈ [0,∞) and x ∈ � :

lim
t↓s

1
t− s

∫

|y−x|>ε

p(s, x; t, y) dy = 0, (4.3.1)

lim
t↓s

1
t− s

∫

|y−x|<ε

(y − x)p(s, x; t, y) dy = a(s, x) (4.3.2)

and
lim
t↓s

1
t− s

∫

|y−x|<ε

(y − x)2p(s, x; t, y) dy = b2(s, x), (4.3.3)

where a and b2 are integrable functions.

The condition (4.3.1) prevents the diffusion process from having jumps. At
time s and position x the quantity a(s, x) in (4.3.2) is called the drift coefficient
and b(s, x) in (4.3.3) the diffusion coefficient. Condition (4.3.2) implies that
the drift coefficient is given by the limit of the conditional expectation

a(s, x) = lim
t↓s

1
t− s

E
(
Xt −Xs

∣
∣
∣Xs = x

)
. (4.3.4)

This means that the drift a(s, x) is the instantaneous rate of change in the
conditional mean of the diffusion process given that Xs = x.

Similarly, it follows from (4.3.3) that

b2(s, x) = lim
t↓s

1
t− s

E
(
(Xt −Xs)2

∣
∣
∣Xs = x

)
, (4.3.5)
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which denotes the limit of the second moment of the increments of the diffusion
process normalized by the time t−s, given that Xs = x. Thus b(s, x) measures
the average size of the fluctuations of the diffusion process. In fact it can be
shown that b2(s, x) is approximately the normalized variance of its increments
Xt−Xs as t → s. Furthermore, it can be shown under fairly general conditions
that for a given initial value X0, drift a(·, ·) and diffusion coefficient b(·, ·) the
diffusion process X is uniquely determined, for instance, in a mean square
sense as will be discussed later.

Roughly speaking, the increment Xt − Xs of a diffusion process over a
small time interval of length h = t−s can be interpreted approximately as
a conditionally Gaussian random variable with mean a(s,Xs)h and variance
b2(s,Xs)h. This can be expressed as

Xt −Xs ≈ a(s,Xs)h+ b(s,Xs)
√
h ξ, (4.3.6)

where ξ is an independent standard Gaussian random variable. This equation
is useful as a first approximation of increments of diffusion processes, to guide
intuition and to indicate a relationship with the classical Taylor series expan-
sion. Note however, in this simplified form no information is given about the
corresponding error term.

Examples of One-Factor Asset Price Models

Let us list together with the already mentioned examples a few additional one-
dimensional diffusion processes that have been applied in asset price modeling:
The linearly transformed Wiener process, see Fig. 3.2.3, is an example of a
diffusion process with drift a(s, x) = 0 and diffusion coefficient b(s, x) = b. As
previously mentioned, it was used in Bachelier (1900) for stock price modeling.
One of the disadvantages of this asset price model is given by the fact that
it generates negative asset prices. In a very simplistic way it is sometimes
argued that if one freezes the trajectory of this Bachelier model when it first
hits zero, then one obtains a very basic asset price model. This model has
many deficiencies. In particular, the asset price will hit zero with positive
probability. This is usually not intended when modeling asset prices.

It can be shown that geometric Brownian motion or the Black-Scholes
(BS) model as given in (4.1.2) is a diffusion process with drift

a(s, x) = x

(
g +

1
2
b2
)

(4.3.7)

and diffusion coefficient
b(s, x) = x b. (4.3.8)

As previously mentioned, the BS model was suggested in Samuelson (1955,
1965a) and used in Black & Scholes (1973). Despite the fact that this model
became the standard financial market model, it does not generate a random,
fluctuating volatility, which is usually observed in practice.
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The geometric Ornstein-Uhlenbeck (GOU) model, see (4.2.4), can be shown
to have drift coefficient

a(s, x) = x (1 − ln(x)) (4.3.9)

and diffusion coefficient
b(s, x) =

√
2x. (4.3.10)

This asset price model permits an equilibrium type dynamics. It was used, as
already mentioned, in Föllmer & Schweizer (1993), Platen & Rebolledo (1996)
and Fleming & Sheu (1999). A disadvantage is again that it does not generate
a fluctuating volatility.

The constant elasticity of variance (CEV) model introduced in Cox (1975),
see also Schroder (1989), has drift

a(s, x) = x r (4.3.11)

and diffusion coefficient
b(s, x) = σ xα (4.3.12)

with constants r, σ and α ∈ (0, 1). It does generate a fluctuating volatility.
The elasticity of the changes of the variance of log-returns can be shown to be
constant due to the power structure of the diffusion coefficient. However, as
shown in Delbaen & Shirakawa (2002), the model has a deficiency since the
asset price will hit zero with positive probability in finite time, which is not
what one usually intends to model.

The minimal market model (MMM) introduced in Platen (2001, 2002) has
in its stylized version the drift

a(s, x) = αs (4.3.13)

and the diffusion coefficient

b(s, x) =
√
αs x (4.3.14)

with αs = α0 exp{η s}, for initial trend α0 > 0 and net growth rate η > 0.
This model generates a realistic, fluctuating volatility and does not hit zero.
In particular, its volatility dynamics match closely that of observed index
volatility and yields realistic option prices, as we shall see later.

Examples of One-Factor Short Rate Models

A large variety of short rate models has been developed that are formed by
diffusion processes. In the following we shall mention several one-factor short
rate models by specifying their drift and diffusion coefficients.

One of the simplest stochastic short rate models arises if the Wiener
process is linearly transformed by assuming a deterministic drift coefficient
a(s, x) = as and a deterministic diffusion coefficient b(s, x) = bs. This leads to
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the Merton model, see Merton (1973a), or to some specification of the contin-
uous time version of the Ho-Lee model, see Ho & Lee (1986). Here the short
rate does not remain positive, as one would expect.

A widely used short rate model is the Vasicek model, see Vasicek (1977),
or the extended Vasicek model, which is an Ornstein-Uhlenbeck process with
linear drift coefficient a(s, x) = γs (x̄s − x) and deterministic diffusion coef-
ficient b(s, x) = bs. Also this model has a Gaussian transition density and,
thus, allows negative interest rates.

In Black (1995) it was suggested that one considers the nonnegative value
of a short rate like an option value, which only takes the positive part of
an underlying quantity. This Black model results, when using an Ornstein-
Uhlenbeck process u = {ut, t ∈ [0, T ]} as underlying shadow short rate and a
short rate of the form xs = (us)+ = max(0, us). Such type of short rate mod-
els, which allow the consideration of low interest rate regimes, have been stud-
ied, for instance, in Gorovoi & Linetsky (2004) and Miller & Platen (2005).

Cox et al. (1985) suggested the CIR model, which uses a square root pro-
cess, see (4.4.6) below. Its drift coefficient a(s, x) = γs (x̄s − x) is affine,
which means that it is linear, and its diffusion coefficient is of the form
b(s, x) = bs

√
x. In the next section we shall describe the transition densi-

ties of the CIR model. This model has the desirable feature that it excludes
negative interest rates. Furthermore, it yields an equilibrium dynamics. Un-
fortunately, when calibrated to market data, it shows a number of deficien-
cies which concern the possible shapes of the, so-called, forward rate or yield
curves.

A translated or extended model of the CIR type is the Pearson-Sun model,
see Pearson & Sun (1989), which assumes a(s, x) = γ (x̄s − x) and b(s, x) =√
b1 + b2 x. Here the parameters are usually assumed to be constants which

fulfill certain conditions, such as γ(x̄+ b1
b2

) > 0. These ensure that the solution
is contained in a certain region. Duffie & Kan (1994) generalized this model,
which belongs to the affine class of diffusion processes, because the drift a and
squared diffusion coefficient b2 are affine. This model is therefore often called
an affine model.

Marsh & Rosenfeld (1983) and also Dothan (1978) considered a short rate
model with a(s, x) = asx and b(s, x) = bsx. This specification is known as the
lognormal model. Here the short rate remains positive, however, it does not
admit a stationary regime.

A generalized lognormal model, also called the Black-Karasinski model, see
Black & Karasinski (1991), is obtained by setting a(s, x) = x (as + gs ln(x))
and b(s, x) = bsx. This generates a geometric Ornstein-Uhlenbeck process, see
Sect.4.2. If gs = − b′s

bs
, then the above model is also called the continuous-time

version of the Black-Derman-Toy model, see Black, Derman & Toy (1990).
This type of model keeps interest rates positive and allows them to have an
equilibrium.
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Another model arises if one sets a(s, x) = γs (x̄s − x) and b(s, x) = bsx. In
the case of constant parameters this formulation is known as the Courtadon
model, see Courtadon (1982). The Longstaff model, see Longstaff (1989) is
obtained by setting a(s, x) = γs (

√
x̄s −

√
x) and b(s, x) = bs

√
x.

A rather general model is the Hull-White model, see Hull & White (1990).
It has linear mean-reverting drift a(s, x) = γs (x̄s−x) and diffusion coefficient
b(s, x) = bsx

q for some choice of exponent q ≥ 0. Obviously, this structure
includes several of the above models. In the case q = 0 the Hull-White model
is also called the extended Vasicek model, as already mentioned above.

The Sandmann-Sondermann model, see Sandmann & Sondermann (1994),
was motivated by the aim to consider annual, continuously compounded in-
terest rates. It has drift a(s, x) = (1 − e−x)(as − 1

2 (1 − e−x) b2s) and diffusion
coefficient b(s, x) = (1 − e−x)cs.

An alternative short rate model was proposed in Platen (1999), which
suggests a drift a(s, x) = γ(x − as)(cs − x) and a diffusion coefficient of the
type b(s, x) = bs|x − cs|

3
2 . The Platen model provides a reasonably accurate

reflection of the short rate drift and diffusion coefficient as estimated from
market data in Ait-Sahalia (1996).

As can be seen by these examples one can, in principle, choose quite general
functions for the drift and diffusion coefficients to form meaningful diffusion
models of asset prices, short rates and other financial quantities. These func-
tions then characterize, together with the initial conditions, the dynamics of
the diffusion process in an elegant and efficient way. This characterization
is more compact than, for instance, that given by a transition matrix of a
discrete or continuous time Markov chain. As we shall see, it also allows the
exploitation of smoothness and other regularity properties of the transition
densities for functionals of diffusions. We shall later aim to identify an optimal
diffusion type dynamics of a financial market that takes advantage of these
powerful mathematical features.

4.4 Kolmogorov Equations

In this section we describe some important results, which show that the tran-
sition densities for diffusion processes satisfy certain partial differential equa-
tions (PDEs).

Kolmogorov Equations

When the drift coefficient a(·) and diffusion coefficient b(·) of a diffusion pro-
cess are appropriate functions, as will be discussed later, then its transition
density p(s, x; t, y) satisfies certain PDEs. These are the Kolmogorov forward
equation or Fokker-Planck equation
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∂p(s, x; t, y)
∂t

+
∂

∂y
(a(t, y) p(s, x; t, y)) − 1

2
∂2

∂y2

(
b2(t, y) p(s, x; t, y)

)
= 0,

(4.4.1)
for (s, x) fixed, and the Kolmogorov backward equation

∂p(s, x; t, y)
∂s

+ a(s, x)
∂p(s, x; t, y)

∂x
+

1
2
b2(s, x)

∂2p(s, x; t, y)
∂x2

= 0, (4.4.2)

for (t, y) fixed. Obviously, the initial or terminal condition for this PDE equals
the Dirac delta function

p(s, x; s, y) = δ(y − x) =

{
∞ for y = x

0 for y = x,
(4.4.3)

where ∫ ∞

−∞
δ(y − x) dy = 1 (4.4.4)

for given x.
The first PDE (4.4.1) describes the forward evolution of the transition

density with respect to the final time and state (t, y) and the second provides
the backward evolution with respect to the initial time and position (s, x). The
forward equation (4.4.1) is commonly called the Fokker-Planck equation. Both
Kolmogorov equations follow from the Chapman-Kolmogorov equation (4.1.6)
and the conditions (4.3.1)–(4.3.3). The Kolmogorov backward equation plays,
in an extended form with other boundary conditions, an essential role in
derivative pricing.

A few diffusion processes, for instance, those that arise from transfor-
mations of either Gaussian or square root processes have known transition
densities. It is convenient to use such transformed diffusions with explicitly
known transition densities to model financial quantities. As long as one is able
to stay in such a framework the resulting quantitative methods are usually
superior to numerical methods for solving PDEs. However, when the drift or
diffusion coefficients become more complex or time dependent, then numerical
methods have to be employed to approximate the solutions of the PDEs.

Transition Densities for the Square Root Process

Let us consider the square root (SR) process that appears in the CIR model
mentioned in the previous section. Here we use the specification of the drift
coefficient a(s, x) = γ(x̄ − x) and the diffusion coefficient b(s, x) = β

√
x

for s ≥ 0, x > 0, with constant reference level x̄ > 0, speed of adjustment
γ > 0 and scaling parameter β > 0. A key feature of the SR process is
that it is linear mean-reverting and can be shown to be nonnegative, see
Borodin & Salminen (2002). For a value x above the reference level x̄ the drift
coefficient is negative and drives the process back to x̄. For a value x = 0,
the diffusion coefficient is zero and the drift coefficient is positive. Intuitively,
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Fig. 4.4.1. Transition density of a square root process

the process is then driven back to its reference level x̄. One can show that for
γ x̄
β2 ≥ 1

2 the SR process remains strictly positive, see Revuz & Yor (1999) or
Borodin & Salminen (2002).

The quantity

n =
4 γ x̄
β2

(4.4.5)

is referred to as the dimension of the SR process. For the SR process with
γ x̄
β2 ≥ 1

2 the corresponding transition density p(s, x; t, y) is available in analytic
form. In fact, it is given by

p(s, x; t, y)=
1

2(τ(t) − τ(s))
exp
{
γ t− x exp{γ s} + y exp{γ t}

2(τ(t) − τ(s))

}

×
(
y exp{γ (t− s)}

x

) ν
2

Iν

(√
x y exp{γ (t+ s)}
τ(t) − τ(s)

)

(4.4.6)

with

τ(t) =
(exp{γ t} − 1)β2

4 γ
(4.4.7)

for t ∈ [0,∞), s ∈ [0, t], x > 0, y > 0 and modified Bessel function of the first
kind Iν(z) with index

ν =
2
β2

γ x̄− 1 =
n

2
− 1, (4.4.8)

see (1.2.15). Here Γ (·) is the gamma function, see (1.2.10). One can show
that the above transition density satisfies the Kolmogorov equations (4.4.1)–
(4.4.4).
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Fig. 4.4.2. Sample path of a square root process of dimension four

Figure 4.4.1 shows the transition density of an SR process for the period
from 0.1 to 3.0 years, with initial value X0 = 1.0, reference level x̄ = 1.0 and
parameters γ = 2 and β =

√
2. By (4.4.5) this means that we consider an

SR process of dimension n = 4. Figure 4.4.2 displays a sample path for the
SR process.

Generalized Square Root Processes (*)

As we have seen above, for asset price modeling and short rate modeling
but also for squared volatility modeling, positive diffusion processes, which
potentially allow some equilibrium, have a great appeal. Therefore, we add
the following explicit transition densities for generalized square root processes.
Some of these have been recently derived in Craddock & Platen (2004) by
symmetry group methods. Such transition densities can be potentially rather
useful in quantitative finance.

Let us consider a generalized square root process, which is a diffusion pro-
cess X = {Xt, t ∈ [0,∞)} with a square root function as diffusion coefficient
of the form

b(t, x) =
√

2x (4.4.9)

for all t ≥ 0 and x ∈ [0,∞). Here the drift function a(t, x) = a(x) is time
homogeneous but otherwise rather flexible. This drift will be specified below
for certain cases.

It is of interest to identify those drift functions a(·), where one has an
analytic solution of the Kolmogorov backward PDE for the corresponding
time homogeneous transition density p(0, x; t, y), which can be written as

− ∂p(0, x; t, y)
∂t

+ x
∂2p(0, x; t, y)

∂x2
+ a(x)

∂p(0, x; t, y)
∂x

= 0 (4.4.10)

for t ∈ (0,∞) with
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Fig. 4.4.3. Transition density for a squared Bessel process, case (i)

p(0, x, y) = δ(x− y) (4.4.11)

for x, y ∈ (0,∞). In Craddock & Platen (2004) for the following ten particular
cases analytical solutions have been identified:

(i) When the drift function is a constant

a(x) = α > 0, (4.4.12)

then we have a, so-called, squared Bessel process of dimension n = 2α
with transition density

p(0, x; t, y) =
1
t

(
x

y

) 1−α
2

Iα−1

(
2
√
x y

t

)
exp
{
− (x+ y)

t

}
. (4.4.13)

Here Iα−1 is again the modified Bessel function of the first kind with
index α − 1, see (1.2.15). In Fig. 4.4.3 we plot the transition density
p(0, x; t, y) for x = 1 and α = 3

2 , that is, for a squared Bessel process of
dimension n = 3.

(ii) When we set the drift function to

a(x) =
μx

1 + μ
2 x

(4.4.14)

for μ > 0, then we obtain the transition density

p(0, x; t, y) =
exp
{
− (x+y)

t

}

(
1 + μ

2 x
)
t

[(√
x

y
+
μ
√
x y

2

)
I1

(
2
√
x y

t

)
+ t δ(y)

]

(4.4.15)
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Fig. 4.4.4. Transition density for case (ii)

with δ(·) denoting the Dirac delta function. For y = 0 one can interpret
exp{− x

t }
(1+ μ

2 x) as the probability of absorption at zero. In Fig. 4.4.4 we show

the above transition density for x = 1 and μ = 1.
(iii) In the case of the drift function

a(x) =
1 + 3

√
x

2 (1 +
√
x)
, (4.4.16)

one obtains the transition density

p(0, x; t, y) =
cosh

(
2
√

x y

t

)

√
π y t (1 +

√
x)

(
1 +

√
y tanh

(
2
√
x y

t

))

× exp
{
− (x+ y)

t

}
. (4.4.17)

In Fig. 4.4.5 we display the corresponding transition density for x = 1.
(iv) When we choose as drift function

a(x) = 1 + μ tanh
(
μ+

1
2
μ ln(x)

)
(4.4.18)

for μ = 1
2

√
5
2 , then we obtain the transition density

p(0, x; t, y) =
(
x

y

)μ
2
[
I−μ

(
2
√
x y

t

)
+ e2 μ yμ Iμ

(
2
√
x y

t

)]

×
exp{−x+y

t }
(1 + exp{2μ}xμ) t

. (4.4.19)
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Fig. 4.4.5. Transition density for case (iii)

The shape of the density (4.4.19) for x = 1 looks quite similar to that
in Fig. 4.4.5.

(v) For the drift function

a(x) =
1
2

+
√
x, (4.4.20)

one obtains the transition density

p(0, x; t, y) = cosh
(

(t+ 2
√
x)

√
y

t

)
exp{−

√
x}√

π y t
exp
{
− (x+ y)

t
− t

4

}
.

(4.4.21)
Also the transition density (4.4.21) for x = 1 shows a lot of similarity
with that in Fig. 4.4.5.

(vi) In the case where the drift function is set to

a(x) =
1
2

+
√
x tanh(

√
x), (4.4.22)

we obtain the transition density

p(0, x; t, y) =
cosh

(
2
√

x y

t

)

√
π y t

cosh(
√
y)

cosh(
√
x)

exp
{
− (x+ y)

t
− t

4

}
. (4.4.23)

The above transition density (4.4.23) for x = 1 has also a similar shape
as that in Fig. 4.4.5.

(vii) For the drift function

a(x) =
1
2

+
√
x coth(

√
x) (4.4.24)

the process has the transition density
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Fig. 4.4.6. Transition density for case (viii)

p(0, x; t, y) =
sinh

(
2
√

x y

t

)

√
π y t

sinh(
√
y)

sinh(
√
x)

exp
{
− (x+ y)

t
− t

4

}
. (4.4.25)

This transition density has for x = 1 some similarity with that shown
in Fig. 4.4.3.

(viii) When we use as drift function

a(x) = 1 + cot(ln(
√
x)) (4.4.26)

for x ∈ (exp{−2π}, 1), then we obtain the real valued transition density

p(0, x; t, y) =
exp{− (x+y)

t }
2 ı t sin(ln(

√
x))

(
y

ı
2 Iı

(
2
√
x y

t

)
− y−

ı
2 I−ı

(
2
√
x y

t

))
,

(4.4.27)
where ı denotes the imaginary unit.
We plot in Fig.4.4.6 the transition density (4.4.27) for x = 1

2 . Note that
the process X lives on the bounded interval (exp{−2π}, 1).

(ix) If we choose the drift function

a(x) = x coth
(x

2

)
, (4.4.28)

then we obtain the transition density

p(0, x; t, y) =
sinh(y

2 )
sinh(x

2 )
exp
{
− (x+ y)

2 tanh( t
2 )

}

×
[

exp{ t
2}

exp{t} − 1

√
x

y
I1

( √
x y

sinh( t
2 )

)
+ δ(y)

]
, (4.4.29)
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Fig. 4.4.7. Transition density for case (x)

where δ(·) is again the Dirac delta function. In Fig. 4.4.3 we displayed
a transition density of similar shape.

(x) Finally, let us set the drift function to

a(x) = x tanh
(x

2

)
(4.4.30)

to obtain the transition density

p(0, x; t, y) =
cosh(y

2 )
cosh(x

2 )
exp
{
− (x+ y)

2 tanh( t
2 )

}

×
[

exp{ t
2}

exp{t} − 1

√
x

y
I1

( √
x y

sinh( t
2 )

)
+ δ(y)

]
. (4.4.31)

We plot in Fig. 4.4.7 the transition density for x = 1.

All ten cases that we described above provide examples for generalized
square root processes with diffusion coefficient function b(x) =

√
2x. In all

these cases we have for the prescribed drift coefficient function an explicitly
known transition density. This list of explicitly known transition densities pro-
vides valuable information for a quantitative analyst when a model needs to
be designed with a square root diffusion coefficient. One can try to choose
one of the above models to reflect the given dynamics. As we shall see later,
by applications of stochastic calculus one can describe analytically the tran-
sition densities of a much wider class of diffusion processes that arise as twice
differentiable functions of the above generalized square root processes.
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4.5 Diffusions with Stationary Densities

Let us now consider diffusion processes that can model an equilibrium. Such
stationary processes are important when the probabilistic features of a dif-
fusion process do not change after a shift in time. In finance such processes
are needed to model volatilities, short rates, credit spreads, inflation rates,
market activity and other key quantities.

Stationary Density

When we use diffusion processes to provide models for financial quantities
that can evolve into some equilibrium, then we restrict considerably the class
of diffusion processes that we consider. For example, as previously noted, the
standard and the geometric OU processes are diffusion processes with transi-
tion densities that converge over long periods of time towards corresponding
stationary densities, see (4.2.3) and (4.2.4). The transition density of the stan-
dard OU process is shown in Fig.4.2.2. In this figure we observe for increasing
time the convergence of the transition density towards some stationary den-
sity, which in this case is the standard Gaussian density. Similarly, one notes in
Fig. 4.2.5, the convergence of the transition density of the geometric OU pro-
cess towards another stationary density, which is here the lognormal density.
Also the SR process, see (4.2.4), has a stationary density.

More precisely, for a diffusion process that permits some equilibrium its
stationary density p̄(y) is defined as the solution of the integral equation

p̄(y) =
∫ ∞

−∞
p(s, x; t, y) p̄(x) dx

for t ∈ [0,∞), s ∈ [0, t] and y ∈ �. This means, if one starts with the station-
ary density, then one obtains again the stationary density as the probability
density of the process after any given time period. A stationary diffusion pro-
cess is, therefore, obtained when the corresponding diffusion process starts
with its stationary density. We shall not call a stationary diffusion process a
diffusion process with stationary density that starts with a given fixed value.
We rather say in this case that the process has a stationary density.

One can identify the stationary density p̄ by noting that it satisfies the
corresponding stationary, or time-independent, Kolmogorov forward equation,
see (4.4.1). This stationary Fokker-Planck equation reduces to the ordinary
differential equation (ODE)

d

dy
(a(y) p̄(y)) − 1

2
d2

dy2

(
b2(y) p̄(y)

)
= 0 (4.5.1)

with drift a(x) = a(s, x) and diffusion coefficient b(x) = b(s, x). Consequently,
it is necessary that equation (4.5.1) is satisfied to ensure that a diffusion has
a stationary density. We assume in the following that a unique stationary
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density exists for the diffusion processes to be considered in the remainder of
this section.

Note that since p̄ is a probability density it must satisfy the relation
∫ ∞

−∞
p̄(y) dy = 1. (4.5.2)

Analytic Stationary Densities

Fortunately, one can identify for a large class of stationary diffusion processes
the analytic form of their stationary density p̄(y). To do this, one notes from
equation (4.5.1) when setting

H(y) = a(y)p̄(y) − 1
2

d

dy

(
b2(y) p̄(y)

)

that
d

dy
H(y) = 0 (4.5.3)

for y ∈ � so that
H(y) = H = const. (4.5.4)

As y → ∞ then p̄(y) → 0 and also dp̄(y)
dy → 0. This implies that H = 0 and

one can therefore show that the stationary density is given by the explicit
expression

p̄(y) =
C

b2(y)
exp
{

2
∫ y

y0

a(u)
b2(u)

du

}
. (4.5.5)

This density satisfies the Fokker-Planck equation (4.5.1) for y ∈ � with some
fixed value y0 ∈ �. Here y0 is some appropriate point in the interval, where the
process X is defined. The constant C can be obtained from the normalization
condition (4.5.2). The formula (4.5.5) is useful in a number of applications
since it allows one to obtain explicit analytic representations for the station-
ary density of diffusions. Moreover, if one observes from data the stationary
density of a diffusion and has either its drift or its diffusion coefficient function
given, then one can deduce the form of the missing diffusion or drift coefficient
function, respectively.

Examples of Stationary Densities

Specifications for both the drift and diffusion coefficients are needed to deter-
mine the stationary density. For instance, in the case of the standard OU pro-
cess, see (4.2.3), with a(s, x) = a(x) = −x and b(s, x) = b(x) =

√
2 the

stationary probability density is the standard Gaussian density

p̄(y) =
1√
2π

exp
{
−y2

2

}
(4.5.6)

for y ∈ �, see Fig. 1.2.3.
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For the SR process, see (4.4.6), with a(s, x) = a(x) = γ (1−x) and b(s, x) =
b(x) = β

√
x we obtain from (4.5.5) the stationary density

p̄(y) = C y
2γ

β2 −1 exp
{
−2γ
β2

y

}
(4.5.7)

for y ∈ (0,∞), where we assume 2γ
β2 > 1. This is a gamma density, see (1.2.9),

with α = p = 2γ
β2 .

An interesting class of diffusion processes with stationary density is ob-
tained for a linear mean reverting drift

a(x) = γ(x̄− x) (4.5.8)

and a squared diffusion coefficient of the form

b2(x) = 2(b0 + b1x+ b2x
2), (4.5.9)

which is quadratic in x ∈ �. In this case, it can be shown that the corre-
sponding stationary density p̄ turns out to be a Pearson type density for an
appropriate choice of constants γ, x̄, b0, b1 and b2. This class includes the
normal, chi-square, gamma, Student t, uniform and exponential, but also the
power exponential, beta, arcsin, Erlang and Pareto probability densities.

In Fig. 4.5.1 we show three stationary densities for specific choices of drift
and diffusion coefficients. The stationary density for an Ornstein-Uhlenbeck
process, labelled OU is obtained, using γ = 2 and x̄ = 1 in (4.5.8) and b1 =
b2 = 0 and b0 = 1 in (4.5.9). The stationary density of a square root process,
labelled SR, is produced with the choices γ = 2 and x̄ = 1 in (4.5.8) and
b0 = b2 = 0 and b1 = 1 in (4.5.9). Finally, the stationary density of a geometric
OU process, labelled GOU, is generated if we set in (4.5.5) a(x) = x(1− ln(x))
and b(x) = 2x2. We see in Fig.4.5.1 the different shapes of stationary densities
that can be obtained.

Ergodicity of a Diffusion Process (*)

In Sect. 3.4 we introduced the notation of ergodicity in the context of con-
tinuous time Markov chains. This property can be analogously defined for
diffusion processes with stationary densities. A diffusion process X = {Xt,
t ∈ [0,∞)} is called ergodic if it has a stationary density p̄ and

lim
T→∞

1
T

∫ T

0

f(Xt) dt =
∫ ∞

−∞
f(x) p̄(x) dx, (4.5.10)

for all bounded measurable functions f : � → �. That is, the limit as T → ∞,
of the random time average specified on the left hand side of relation (4.5.10)
equals the spatial average with respect to p̄, as given on the right hand side of
(4.5.10). Ergodicity is an important property that allows us to describe and
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Fig. 4.5.1. Stationary density for OU, SR and GOU process

quantify functionals of equilibrium states of diffusion processes. It involves
an expectation with respect to the stationary density. However, it does not
require the diffusion process to be stationary. The process only needs to have
a stationary density but it is not required to start with an initial value having
the stationary density as its density.

Note that the widely used lognormal model, described in (4.1.2), does
not yield an ergodic process, since it does not have a stationary density. For
this reason its use and applicability, for instance, in long term short rate,
volatility, credit spread or market activity modeling is limited. For instance,
the geometric OU process discussed in (4.2.4) may be a better candidate
for this type of modeling when aiming to use a diffusion coefficient that is
multiplicative in the state variable.

Now we describe a result that permits us to identify a diffusion process
with drift function a(·) and diffusion coefficient function b(·) as being ergodic.
For this purpose we introduce the scale measure s : � → �+ given by

s(x) = exp
{
−2
∫ x

y0

a(y)
b2(y)

dy

}
(4.5.11)

for x ∈ � with y0 as in (4.5.5). The following result can be found in Borodin
& Salminen (2002).

Theorem 4.5.1. A diffusion process with scale measure s(·) satisfying the
following two properties:

∫ ∞

y0

s(x) dx =
∫ y0

−∞
s(x) dx = ∞ (4.5.12)

and ∫ ∞

−∞

1
s(x) b2(x)

dx < ∞ (4.5.13)

is ergodic and its stationary density p̄ is given by the expression (4.5.5).
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Theorem 4.5.1 is formulated for diffusions with a state space that equals
the set � of all real numbers. In the case of diffusions that are confined to
a smaller set of subintervals, the above conditions can be reformulated by
including relevant boundary conditions.

Affine Diffusions (*)

Let us now introduce the important class of affine diffusions. An affine func-
tion is a linear function added to some constant. Here we have the affine drift
function

a(x) = θ1 + θ2 x (4.5.14)

and the affine squared diffusion function

b2(x) = θ3 + θ4 x. (4.5.15)

The parameter vector θ = (θ1, θ2, θ3, θ4)� ∈ �4 is chosen so that the diffusion
process X = {Xt, t ∈ [0,∞)} has a stationary density. In particular, we set

θ2
θ4

< 0 (4.5.16)

and

η =
2
θ4

(
θ1 −

θ2 θ3
θ4

)
> 1 (4.5.17)

with
θ3 ≥ 0 and θ4 ≥ 0. (4.5.18)

Then it can be shown that the process X is defined on the interval (y0,∞)
with y0 = − θ3

θ4
, see Borodin & Salminen (2002). One obtains from (4.5.2) and

(4.5.5) the stationary density for such an affine diffusion in the form

p̄(x) =
g(x)

∫∞
y0

g(y) dy
(4.5.19)

with

g(x) =

(
−2 θ2

θ4

)η (
x+ θ3

θ4

)η−1

exp
{

2 θ2
θ4

(
x+ θ3

θ4

)}

Γ (η)
(4.5.20)

for x ∈ (y0,∞), where Γ (·) denotes the gamma function, see (1.2.10). We plot
in Fig. 4.5.2 the stationary density p̄(x) for θ1 = −θ2 = 1, θ4 = 1 − θ3 and
θ3 ∈ [0, 0.85].

If we denote by E∞ the expectation under the corresponding stationary
distribution, then we have the stationary mean
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Fig. 4.5.2. Stationary density for θ1 = −θ2 = 1, θ4 = 1 − θ3 and θ3 ∈ [0, 0.85]

E∞(X∞) =
∫ ∞

−∞
x p̄(x) dx = −θ1

θ2
(4.5.21)

and the stationary second moment

E∞((X∞)2) =
(2 θ1 + θ4) θ1 − θ3 θ2

2 (θ2)2
. (4.5.22)

Obviously, in the case θ4 = 0 we obtain an OU process, see (4.2.3), with
Gaussian stationary density. For the case when θ3 equals zero we have an
SR process, see (4.4.6), of dimension

n = 4
θ1
θ4

> 2, (4.5.23)

which has the gamma density, see (1.2.9), as stationary density. The OU and
the SR process are ergodic diffusions, which have explicit expressions for their
transition densities. This makes these two ergodic affine diffusion processes
attractive for a wide range of applications in finance. We remark that at the
end of Sect. 4.4 additional diffusion processes are mentioned that also have
explicit transition densities and could be linked to ergodic diffusions.

4.6 Multi-Dimensional Diffusion Processes (*)

Vector Diffusion (*)

In financial and insurance markets one observes a large number of quantities
concurrently, including equity prices, exchange rates, market indices, volatili-
ties, credit spreads and short rates. These quantities influence each other and



160 4 Diffusion Processes

can be modeled as a vector stochastic process because interactions need to be
considered. For this type of modeling one can use a d-dimensional diffusion
process

X =
{

Xt =
(
X1

t , X
2
t , . . . , X

d
t

)�
, t ∈ [0,∞)

}

that generalizes the one-dimensional diffusion process introduced in the pre-
vious section. We call such a continuous time process with continuous paths
a vector diffusion. Here superscripts index the components of the vector.

The transition density for the vector Markov process X to move from the
state x ∈ �d at time s to the state y ∈ �d at the later time t is denoted
by p(s,x; t,y). The continuous time Markov property for this vector process
can be restated in a similar manner as given in (4.1.3) and we require the
following limits to exist for any ε > 0, s ≥ 0 and x ∈ �d, see (4.3.1)–(4.3.3):

lim
t↓s

1
t− s

∫

|y−x|>ε

p(s,x; t,y) dy = 0, (4.6.1)

lim
t↓s

1
t− s

∫

|y−x|≤ε

(y − x) p(s,x; t,y) dy = a(s,x) (4.6.2)

and

lim
t↓s

1
t− s

∫

|y−x|≤ε

(y − x)(y − x)�p(s,x; t,y) dy = S�(s,x)S(s,x).

(4.6.3)
Here a is a d-dimensional vector valued function and D = [di,j ]di,j=1 =
S�S is a symmetric d×d-matrix valued function. Each component of these
functions must satisfy appropriate measurability and integrability condi-
tions, see Stroock & Varadhan (1982). We used above the Euclidean norm
| · |, see (1.4.63), and interpret the vectors as column vectors, for example,
(y − x)(y − x)� is a d×d-matrix with (i, j)th component (yi − xi)(yj − xj).
The drift vector a and the covariance matrix D = S�S have similar in-
terpretations to their one-dimensional counterparts in the previous section.
However, we note that the components of D are the conditional covariances
or variances of the increments of corresponding components of the vector dif-
fusion, that is

di,j(s, x) = lim
t↓s

1
t− s

E
((
Xi

t −Xi
s

) (
Xj

t −Xj
s

) ∣∣
∣Xs = x

)
,

where di,j(s, x) = dj,i(s, x). They indicate which components of the vector
diffusion are correlated.

Kolmogorov Equations (*)

For vector diffusions the transition densities satisfy the multi-dimensional Kol-
mogorov forward equation, also known as Fokker-Planck equation, given by
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∂p(s,x; t,y)
∂t

+
d∑

i=1

∂

∂yi

(
ai(t,y)p(s,x; t,y)

)

− 1
2

d∑

i,j=1

∂2

∂yi∂yj

(
di,j(t,y)p(s,x; t,y)

)
= 0 (4.6.4)

for (s,x) ∈ (0,∞)×�d fixed and (t,y) ∈ (s,∞)×�d with the initial condition

lim
t↓s

p(s,x; t,y) = δ(x − y)

for x,y ∈ �d. Here δ(z) denotes again the Dirac delta function but now on
�d, which defines a measure that has a mass of one concentrated at the point
(0, . . . , 0)� ∈ �d.

We can write the parabolic partial differential equation (4.6.4) more com-
pactly in operator form as

∂p(s,x; t,y)
∂t

− L∗p(s,x; t,y) = 0

for (s,x) ∈ [0,∞) × �d fixed and (t,y) ∈ (s,∞) × �d. Here L∗ is the formal
adjoint of the operator L0 defined as

L0u(s,x) =
d∑

i=1

ai(s,x)
∂u(s,x)
∂xi

+
1
2

d∑

i,j=1

di,j(s,x)
∂2u(s,x)
∂xi∂xj

(4.6.5)

for (s,x) ∈ (0,∞) × �d. The Kolmogorov backward equation, which as previ-
ously mentioned plays a central role in derivative pricing, is given by

∂u(s,x)
∂s

+ L0 u(s,x) = 0 (4.6.6)

for (s,x) ∈ (0, t) × �d with u(s,x) = p(s,x; t,y) for fixed t ∈ [0,∞) and
y ∈ �d.

To model and analyze the quantities in a financial market purely via cor-
responding partial differential equations is rather complex. A more elegant
and also more general framework for modeling stochastic dynamics is pro-
vided when using stochastic calculus, which will be introduced in the following
chapters.

4.7 Exercises for Chapter 4

4.1. Verify that the standard Ornstein-Uhlenbeck process is a diffusion process
with stationary density and identify its mean and its variance.
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4.2. Identify the drift and diffusion coefficient for the standard Wiener process
as a specific diffusion process.

4.3. Compute the drift and diffusion coefficients for the standard Ornstein-
Uhlenbeck process.

4.4. Prove that the transition density of the standard Wiener process solves
the Kolmogorov forward equation and the Kolmogorov backward equation.

4.5. Formulate the Kolmogorov forward equation for the transition density of
the standard Ornstein-Uhlenbeck process.

4.6. Verify that the transition density of the standard Ornstein-Uhlenbeck
process satisfies the corresponding Kolmogorov backward equation.

4.7. Determine the stationary density for the standard Ornstein-Uhlenbeck
process.

4.8. Does geometric Brownian motion have a stationary density?

4.9. Verify whether the geometric Ornstein-Uhlenbeck process has a station-
ary density.

4.10. (*) Is the geometric Brownian motion an ergodic process?

4.11. (*) Prove that the transition density p(s, x; t, y) of the standard Wiener
process satisfies the Chapman-Kolmogorov equation.

4.12. (*) Is the standard Ornstein-Uhlenbeck process an ergodic process?

4.13. (*) Show that the stationary density p̄ of a one dimensional diffusion
process solves the time-independent Kolmogorov forward equation.

4.14. (*) Show that a geometric Brownian motion with growth rate g and
volatility b has the drift a(s, x) = x(g + 1

2b
2).
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Martingales and Stochastic Integrals

In this chapter we consider a class of continuous stochastic processes, called
martingales, which play a central role in finance. We also define the gains
realized from trading as a stochastic integral. Stochastic integration and mar-
tingales provide key tools for the analysis of the continuous time evolution of
financial markets.

5.1 Martingales

One of the fundamental concepts in modern finance is the notion of a martin-
gale. This is a stochastic process that, with its last observed value, provides
the best forecast for its future values. Martingales exhibit the property of
having no systematic trends in their dynamics. It is obvious that financial
quantities, such as asset prices, are driven primarily by information. Forecast-
ing a quantity, for example, the value of a derivative price when expressed in
units of the market portfolio, is strongly dependent on the information that
is available at the present time. This forces one to use a detailed notion for
the information structure related to the evolution of the underlying stochastic
processes.

Information Sets and Filtrations

On a given probability space (Ω,A, P ), as introduced in Sect. 1.1, let us con-
sider a financial market model that is based on the observation of a continuous
time stochastic vector process X = {Xt ∈ �n, t ∈ [0,∞)}, n ∈ N , typically
expressing asset price processes. We denote by Ât the time t information set,
which is the sigma-algebra of events that are known to the market partici-
pants at time t ∈ [0,∞). Our interpretation of Ât is that it represents the
information obtained from the values of the vector process X up to time t.
More precisely, it is the sigma-algebra

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,
Springer Finance,
© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010
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Ât = σ{Xs : s ∈ [0, t]}

generated from all observations of X in the market up to time t. In a general
financial market model the components of X could include diverse quanti-
ties, for instance, security prices, interest rates, indicators for certain political
events, market activity, corporate data, employment figures, insurance claims,
balance sheets of companies or trade balances.

Assuming that information is not lost, then the increasing family

Â = {Ât, t ∈ [0,∞)}

of information sets Ât, which are sub-sigma-algebras of Â∞ satisfy, for any
sequence 0 ≤ t1 < t2 < . . . < ∞ of observation times, the relation Ât1 ⊆
Ât2 ⊆ . . . ⊆ Â∞ = ∪ t∈[0,∞)Ât.

Furthermore, to avoid technical subtleties, we introduce the information
set At as the augmented sigma-algebra of Ât for each t ∈ [0,∞). This means
that it is augmented by every null set in Â∞ such that it belongs to A0, and so
to each At. We define At+ = ∩ε>0At+ε to be the sigma-algebra of events im-
mediately after t ∈ [0,∞). We say that the family A = {At, t ∈ [0,∞)} is right
continuous if At = At+ holds for every t ∈ [0,∞). Such a right-continuous
family A = {At, t ∈ [0,∞)} of information sets we call a filtration. Thus, a fil-
tration models the evolution of information as it becomes available over time.
For simplicity, we define A as the smallest sigma-algebra that contains A∞
= ∪ t∈[0,∞)At.

The above technical assumptions allow convenient mathematical deriva-
tions and do not restrict our practical modeling potential. From now on, if not
stated otherwise, we shall assume a filtered probability space (Ω,A,A, P ) to be
given, where the filtration A characterizes the evolution of the corresponding
information. The capturing of the evolution of this information is essential for
the modeling of financial markets since it is information that drives most of
its dynamics.

Any given stochastic process Y = {Yt, t ∈ [0,∞)} generates a filtration
AY = {AY

t , t ∈ [0,∞)}. Here AY
t = σ{Ys : s ∈ [0, t]} is the information set,

that is the sigma-algebra, generated by Y up to time t. This information set
can be interpreted as a complete record of all movements of the process Y up
until time t. AY is also called the natural filtration for the process Y . For a
given model with a vector process X that describes the total evolution of the
model and, thus, the corresponding increasing family of information sets, we
write A = AX and set At = AX

t , similarly as above.
If for a process Z = {Zt, t ∈ [0,∞)} and each time t ∈ [0,∞) the ran-

dom variable Zt is AX
t -measurable, then Z is called adapted to AX =

{AX
t , t ∈ [0,∞)}. In intuitive terms this means that the history of the process

Z until time t is covered by the information set AX
t . As a consequence, for an

AX -adapted process Z the value Zt is known, given the information set AX
t

up to and including time t. We mention that the completeness of the informa-
tion set AX

t , which includes all null events, allows us to conclude that for two
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random variables Z1 and Z2, where Z1 = Z2 a.s. and Z1 is AX
t measurable,

Z2 is also AX
t -measurable.

If the process X is Markovian, then the relevant information needed to
determine properties of its future values reduces to the knowledge of the value
Xt at the present time t. This makes it possible to express and store the
relevant information in a compact form. It also highlights the importance of
Markovianity for the tractability of a wide range of financial models.

In financial modeling we shall typically use later a filtered probability
space (Ω,A, A, P ), where the sources of continuous uncertainty are indepen-
dent standard Wiener processes W 1,W 2, . . . ,Wm and the sources of event
driven uncertainty are independent Poisson processes Nm+1, Nm+2, . . . , Nd,
d ∈ {1, 2, . . .}, m ∈ {1, 2, . . . , d}. We shall always assume that these Wiener
and Poisson processes are A-adapted and that their increments (W j

t −W j
s )

are independent of As, see (1.1.16), for t ∈ [0,∞), s ∈ [0, t] and j ∈
{1, 2, . . . ,m}. We call then W = {W t = (W 1

t ,W
2
t , . . . ,W

m
t )�, t ∈ [0,∞)} an

m-dimensional standard Wiener process on (Ω,A,A, P ) or an (A, P )-Wiener
process.

Continuous Time Martingales

In financial markets, investors have to determine best estimates for the actual
value of future payoffs. If they were to use different information sets, then
they might generate different value estimates. For simplicity, let us assume
that they all use the same information sets. Furthermore, a value estimate
needs to be based on a corresponding benchmark or numeraire, which pro-
vides the units in which the investor formulates his or her best estimates. We
shall later discuss cases where one uses the savings account or the market
portfolio as numeraire. Finally, an investor has also to employ a probability
measure for forming some expectation when identifying the best estimate, as
we shall see below. Let us use the numeraire for which it is appropriate to
form an expectation under the real world probability measure when searching
for the best estimate of a future payoff. We shall see later that an appropriate
numeraire is the market portfolio. More generally, given an information set, a
probability measure and a numeraire, we shall ask what is at present the best
estimate for the value of a future cash flow or payoff.

To answer this question in a mathematically precise manner we define the
quantity Fs for s ∈ [0,∞) as the least-squares estimate, see (1.3.72), of the
future value Xt at the later time t ∈ [s,∞) under the information given by As.
This best estimate is As-measurable and minimizes the expected least-squares
error

εs = E
(
(Xt − Fs)2

)

over all possible As-measurable estimates. Note that we need here to assume
that Xt is square integrable, see (1.3.7). The random variable Fs is simply
the least-squares projection of Xt given the information at time s ∈ [0, t]. It
is obtained by the conditional expectation
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Fs = E(Xt

∣
∣As), (5.1.1)

for all s ∈ [0, t].
In a price system a candidate for a reasonable price at time s ∈ [0, t]

for the future value Xt at time t is the least-squares estimate Fs that can
be formed on the basis of the information contained in As. This means, one
obtains realistic prices when setting Xs = Fs by forming the price process
X = {Xt, t ∈ [0,∞)} which satisfies the conditional expectation

Xs = E(Xt

∣
∣As) (5.1.2)

for all s ∈ [0, t] and t ∈ [0,∞).

Definition 5.1.1. We call a continuous time stochastic process X = {Xt,
t ∈ [0,∞)}, which satisfies the property (5.1.2) and the integrability condition

E(|Xt|) < ∞ (5.1.3)

for all t ∈ [0,∞), a martingale or more precisely an (A, P )-martingale.

If for a martingale X in addition the random variable Xt is square inte-
grable for all t ∈ [0,∞), that is

E
(
|Xt|2

)
< ∞ (5.1.4)

for all t ∈ [0,∞), then we call X a square integrable martingale. Note by
(5.1.1) and (5.1.2) that for a square integrable martingale the least-squares
estimate of its future values is always given by its last available observation.

A martingale is defined with respect to a given filtration A, which denotes
the family of relevant information sets, and a probability measure P , which
expresses the likelihood of events. The conditional expectation is then taken
under P . Since both ingredients are essential we shall call a martingale an
(A, P )-martingale if it is defined with respect to the filtration A and the
probability measure P . This is sometimes important because it is not always
clear from the context which filtration and probability measure are chosen.
If one changes the filtration A or the probability measure P , then a given
martingale will usually no longer remain a martingale.

The martingale relation (5.1.2) is fundamental in finance, in particular, in
derivative pricing. Under the benchmark approach we shall ask later deriva-
tive prices, when expressed in units of the benchmark, to form martingales.
Different pricing rules are obtained by selecting different reference units or
numeraires, an issue that will be discussed later in detail.

Examples of Martingales

As an example of a continuous time martingale, let us consider a Wiener
process W = {Wt, t ∈ [0,∞)} on a filtered probability space (Ω,A,A, P ).
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Fig. 5.1.1. Paths of Xt = W 2
t − t, W 2

t and t

Here, as previously mentioned, we assume that Wt+h −Wt is independent of
At for all t ∈ [0,∞) and h ∈ [0,∞). Furthermore, the natural filtration AW

of W is such that AW
t ⊆ At for each t ∈ [0,∞).

Note that W is A-adapted, which means that Wt is At-measurable for
t ∈ [0,∞). We can show by the linearity and independence properties of con-
ditional expectations, see (1.3.69) and (1.3.67), that

E(Wt

∣
∣As) = E

(
Wt −Ws

∣
∣As

)
+E

(
Ws

∣
∣As

)

= E (Wt −Ws) + E
(
Ws

∣
∣As

)

= Ws (5.1.5)

for s ∈ [0,∞) and t ∈ [s,∞). From (5.1.5) it follows by Definition 5.1.1 that
the above Wiener process W is a martingale, or more precisely an (A, P )-
martingale.

There are many other continuous time stochastic processes that form mar-
tingales. For example, using again the standard Wiener process W it can be
demonstrated that the process

X =
{
Xt = W 2

t − t, t ∈ [0,∞)
}

(5.1.6)

is an (A, P )-martingale. In Fig. 5.1.1 we show a typical path for this process
together with W 2

t and t.
The process

X̄ =
{
X̄t = exp

{
σWt −

1
2
σ2t

}
, t ∈ [0,∞)

}
,

which is an exponential of a transformed Wiener process, is also an (A, P )-
martingale. Note that this is a specific geometric Brownian motion with
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Fig. 5.1.2. Path of X̄t = exp
˘

σWt − 1
2

σ2t
¯

volatility σ, negative growth rate μ = −1
2σ

2 and initial value X̄0 = 1. Fig-
ure 5.1.2 displays a sample path for this process with volatility σ = 0.2.

Super- and Submartingales

In practice asset prices are usually not completely trendless. For instance,
the price of a zero coupon bond, which pays one dollar at a fixed maturity
date, increases on average over time until it reaches at maturity the value one.
These types of systematically trending stochastic processes are captured by
the following definition of super- and submartingales.

Definition 5.1.2. One calls an A-adapted process X = {Xt, t ∈ [0,∞)}
an (A, P )-supermartingale (submartingale) if

Xs

(≤)
≥ E

(
Xt

∣
∣As

)
(5.1.7)

and
E(|Xt|) < ∞ (5.1.8)

for s ∈ [0,∞) and t ∈ [s,∞).

This means, on average, a supermartingale (submartingale) decreases (in-
creases) its value over time. In comparison with a martingale the equality
in (5.1.2) is replaced by the inequality (5.1.7). We call a supermartingale
(submartingale) a strict supermartingale (submartingale) if the inequality in
(5.1.7) is a strict inequality.

As an example for a submartingale we show in Fig.5.1.3 for some geometric
Brownian motion with
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Fig. 5.1.3. Path of Xt for a submartingale

Xt = exp
{(

r − 1
2
σ2

)
t+ σWt

}
(5.1.9)

a sample path over a period of ten years with expected rate of return
r = 0.05 and volatility σ = 0.2. This example illustrates some features
that are typical for asset price scenarios. They seem to exhibit larger fluc-
tuations for larger asset price values, as is the case for the S&P500 index
shown in Fig. 3.1.1. If the submartingale X is discounted by the process
B = {Bt = exp{r t}, t ∈ [0,∞)}, which is simply a savings account with
continuously compounding constant interest rate r > 0, then the discounted
process X̄ = {X̄t = Xt

Bt
, t ∈ [0,∞)} is a martingale. Let us mention that

Fig. 5.1.2 displays the sample path for X̄t, where Xt is shown in Fig. 5.1.3.
As we shall see later in Chaps. 9 to 14, in financial market models super-

martingales play a natural role. They appear when securities are expressed
in units of a particular benchmark, which is the, so-called, growth optimal
portfolio (GOP). This is the portfolio that maximizes the expected logarithm
of its value at future dates, see Kelly (1956), Long (1990). By interpreting a
diversified market index as the GOP it has been suggested in Platen (2004c)
that the savings account B, when expressed in units of the market index
should be modeled to form a strict supermartingale and not a martingale, as
the classical risk neutral theory assumes, and will be explained in Chap. 9.

Compensated Poisson Process

In Fig. 3.5.1 we plotted the path of a Poisson process N = {Nt, t ∈ [0,∞)}
with intensity λ > 0, see Definition 3.5.1. We have assumed for any Poisson
process N that N is A-adapted and such that for t ∈ [0,∞) and h ∈ [0, T − t]
the At+h-measurable random variable Nt+h − Nt is independent of At. We
can then show for 0 ≤ s < t < ∞ by using (3.5.2) that
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Fig. 5.1.4. Path of a compensated Poisson process

E
(
Nt

∣
∣As

)
= E

(
Nt −Ns

∣
∣As

)
+Ns = E (Nt −Ns) +Ns

= λ(t− s) +Ns ≥ Ns, (5.1.10)

which proves that the Poisson process is a submartingale.
On the other hand, the compensated Poisson process q = {qt, t ∈ [0,∞)}

with
qt = Nt − λ t (5.1.11)

is a martingale since we have by similar arguments as in (5.1.10)

E
(
qt

∣
∣As

)
= E

(
qt − qs

∣
∣As

)
+ qs

= E (Nt −Ns) − λ (t− s) + qs = qs (5.1.12)

for 0 ≤ s ≤ t < ∞. In Fig. 5.1.4 we plot the path of a compensated Poisson
process q with intensity λ = 20, where Fig. 3.5.1 shows the corresponding
trajectory of the Poisson process N .

Stopping Times

Random times naturally appear in financial and insurance applications, for
instance, as time of default of a company. We refer to Sect.3.7 for an insurance
example. Also the first hitting time of a critical barrier by an underlying
asset price is a random time. Since the information structure is essential in
stochastic modeling such random times have to be properly defined.

This leads us to the notion of stopping times. Let us consider a filtered
probability space (Ω,A,A, P ) as introduced above.

Definition 5.1.3. A random variable τ : Ω → [0,∞) is called a stopping
time with respect to the filtration A if for all t ∈ [0,∞)

{τ ≤ t} ∈ At. (5.1.13)
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Fig. 5.1.5. First hitting time of a Wiener path

The relation (5.1.13) means that for all ω ∈ Ω the event τ ≤ t is in At,
which expresses the fact that it is At-measurable and thus observable at time
t. The information set, that is, the sigma-algebra associated with a stopping
time τ is defined as

Aτ = σ {A ∈ A : A ∩ {τ ≤ t} ∈ At for t ∈ [0,∞)}. (5.1.14)

It represents the information available before and at the stopping time τ . For
instance, the kth jump time τk of a Poisson process N , as defined in Sect. 3.5,
is a stopping time. This could be the time when the kth company collapses in
a given year. One can show that a counting process is adapted if and only if
the associated jump times are stopping times.

The first time
τ(a) = inf{t ≥ 0 : Wt = a} (5.1.15)

when a Wiener process W reaches a level a ∈ � is a stopping time. In Fig.5.1.5
we display the first time τ(1.0) ≈ 5.8 of a Wiener path hitting the level a = 1.0.
Similarly, the default time of a company is a stopping time.

Predictable Processes

The allocation of assets in a portfolio can, in practice, only be performed in
a predictable way. That means, the investor has to decide in advance what
allocation will be pursued. To make this notion of predictability precise for
stopping times, we call a sigma-algebra predictable when it is generated by left-
continuous A-adapted processes with right hand limits. Roughly speaking, we
exclude in a predictable sigma-algebra all information about the time instant
when a sudden not predictable event, like a default, occurs. Note however,
immediately after the event a predictable sigma-algebra already contains also
this information. A stochastic process X = {Xt, t ∈ [0,∞)}, where Xτ is
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for each stopping time τ measurable with respect to a predictable sigma-
algebra, is called predictable. For instance, all continuous stochastic processes
are predictable. From a right-continuous process with left hand limits X =
{Xt, t ∈ [0,∞)} we obtain its predictable version X̃ = {X̃t, t ∈ [0,∞)} by
taking at each time point the left hand limit, that is

X̃t = Xt− (5.1.16)

for all t ∈ [0,∞). Later when we form stochastic integrals we shall typically
request that the integrands are predictable processes. In the case when a
given potential integrand is not predictable, then its left-continuous version
is chosen as integrand. This is similar to the natural request that an investor
has to decide about his or her portfolio allocation of stocks at the beginning
of any trading period and cannot revise it afterwards.

A stopping time is called predictable, if Aτ is predictable. This means, Aτ

is generated by left-continuous stochastic processes with right hand limits. A
stopping time that is not predictable is called inaccessible. The jump times
of a Poisson process are inaccessible. Here Aτ cannot be generated by left-
continuous processes. However, the first hitting time τ(a) of the continuous
Wiener process W , given in (5.1.15), is predictable.

Properties of Stopping Times (*)

For a, b ∈ � we employ the notation a ∧ b = min(a, b) and a ∨ b = max(a, b).
One can derive the following useful properties of stopping times τ and τ ′, see
Karatzas & Shreve (1991) and Elliott (1982).

(i) τ is Aτ -measurable.
(ii) For a continuous A-adapted process X = {Xt, t ∈ [0,∞)} the random

variable Xτ is Aτ -measurable.
(iii) If P (τ ≤ τ ′) = 1, then Aτ ⊆ Aτ ′ .
(iv) The random variables τ ∧ τ ′, τ ∨ τ ′ and (τ + τ ′) are stopping times.
(v) If for a real valued random variable Y we have E(|Y |) < ∞

and P (τ ≤ τ ′) = 1, then

E(Y | Aτ ) = E(Y | Aτ∧τ ′) (5.1.17)

and
E
(
E(Y | Aτ )

∣
∣Aτ ′

)
= E(Y | Aτ ). (5.1.18)

Optional Sampling Theorem (*)

If X = {Xt, t ∈ [0,∞)} is a right continuous (A, P )-supermartingale, then the
supermartingale property (5.1.2) is also true if the times s and t in (5.1.2) are
stopping times. More precisely, Doob’s Optional Sampling Theorem states the
following result, see Doob (1953), Elliott (1982) or Karatzas & Shreve (1991).
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Theorem 5.1.4. (Doob) If X = {Xt, t ∈ [0,∞)} is a right continuous
(A, P )-supermartingale on (Ω,A,A, P ), then it holds for two bounded stopping
times τ and τ ′ with τ ≤ τ ′ almost surely that

E(Xτ ′ | Aτ ) ≤ Xτ (5.1.19)

almost surely. Furthermore, if X is also an (A, P )-martingale, then equality
holds in (5.1.19).

This theorem is important if one wants to apply a pricing rule at a stopping
time or the payoff that one aims to price matures at a stopping time. Such
case arises for American options that allow exercising the payoff at any time
prior to maturity.

Martingale Inequalities (*)

For a given underlying financial quantity, or more generally, a given stochastic
process X, it is important to have some upper bounds for its maximum. If
X = {Xt, t ∈ [0,∞)} is a right continuous supermartingale, then it can be
shown, see Doob (1953) or Elliott (1982), that for any λ > 0 it holds

λP

(

sup
t∈[0,∞)

Xt ≥ λ
∣
∣A0

)

≤ E
(
X0

∣
∣A0

)
+ E

(
max(0,−X0)

∣
∣A0

)
. (5.1.20)

By exploiting the martingale property (5.1.19) one can prove the following
powerful martingale inequalities, see Doob (1953) or Elliott (1982). A contin-
uous martingale X = {Xt, t ∈ [0,∞)} with finite pth moment satisfies the
maximal martingale inequality

P

(

sup
s∈[0,t]

|Xs| > a

)

≤ 1
ap

E(|Xt|p) (5.1.21)

and the Doob inequality

E

(

sup
s∈[0,t]

|Xs|p
)

≤
(

p

p− 1

)p

E(|Xt|p) (5.1.22)

for a > 0, p > 1 and t ∈ [0,∞). If X is a continuous martingale, then the
maximal martingale inequality provides an estimate for the probability that
a level a will be exceeded by the maximum of X. In particular the Doob
inequality provides for p = 2 for the squared maximum the estimate

E

(

sup
s∈[0,t]

|Xs|2
)

≤ 4E
(
|Xt|2

)

for t ∈ [0,∞). These inequalities are important for deriving a number of fun-
damental results in stochastic calculus and quantitative finance.
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5.2 Quadratic Variation and Covariation

Quadratic Variation

The notion of the, so-called, quadratic variation of a given stochastic process
X plays a fundamental role in stochastic calculus and, therefore, in finance as
well. It is a characteristic of the fluctuating part of a stochastic process and
can be easily observed. In this capacity it will be useful for measuring locally
in time the risk of an asset price.

To introduce this notion in a simple manner let us consider an equidistant
time discretization

{tk = k h : k ∈ {0, 1, . . .}}, (5.2.1)

with small time steps of lengths h > 0, such that 0 = t0 < t1 < t2 < . . ..
Thus, we have the discretization times tk = k h for k ∈ {0, 1, . . .}. The specific
structure of the time discretization is in fact not essential for the definition of
the quadratic variation that we shall use, as long as the maximum time step
size vanishes a.s. when approaching the limit. We employ the equidistant time
discretization here to simplify our presentation. Other time discretizations
with vanishing step size yield the same limit.

For a given stochastic process X the quadratic variation process [X] =
{[X]t, t ∈ [0,∞)} is defined as the limit in probability, see (2.7.1), as h → 0
of the sums of squared increments of the process X, provided this limit exists
and is unique. For details we refer to Jacod & Shiryaev (2003) and Protter
(2004). For instance, for semimartingales, which form a very general class of
stochastic processes that we shall introduce in Sect.5.5, the quadratic variation
is uniquely defined. We have at time t the quadratic variation

[X]t
P= lim

h→0
[X]h,t, (5.2.2)

where the approximate quadratic variation [X]h,t is given by the sum

[X]h,t =
it∑

k=1

(Xtk
−Xtk−1)

2. (5.2.3)

Here it denotes the integer

it = max{k ∈ N : tk ≤ t} (5.2.4)

of the last discretization point before or including t ∈ [0,∞).

Examples of Quadratic Variations

As an example, Fig. 5.2.1 shows for a standard Wiener process W = {Wt,
t ∈ [0,∞)} a sample path and its approximate quadratic variation [W ]h,t

with time step size h = 0.02 on the interval [0, 10]. Note that the approximate
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Fig. 5.2.1. A Wiener path Wt and its approximate quadratic variation [W ]h,t

Fig. 5.2.2. Transformed Wiener process Yt and its approximate quadratic variation
[Y ]h,t

quadratic variation in Fig. 5.2.1 forms almost a straight line with slope one.
Indeed, it can be shown, see Karatzas & Shreve (1991) or Elliott (1982), that
the value of the quadratic variation process [W ] = {[W ]t, t ∈ [0,∞)} at time
t for a standard Wiener process W is given by the relation

[W ]t = t (5.2.5)

for t ∈ [0,∞). Thus, for finer time discretizations, the approximate quadratic
variation becomes almost a perfect straight line.

In Fig. 5.2.2, a sample path of a transformed Wiener process Y =
{Yt, t ∈ [0,∞)} with values

Yt = Wt + t

together with its approximate quadratic variation are displayed. Observe that
the drift, which was added to the Wiener process, had practically no impact on
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the approximate quadratic variation, when compared to Fig.5.2.1. This effect
can be explained by noting that for a stochastic process F = {Ft, t ∈ [0,∞)}
its, so-called, total variation is

[F ]
1
2
t

P= lim
h→0

it∑

k=1

∣
∣Ftk

− Ftk−1

∣
∣ (5.2.6)

for t ∈ [0,∞). Note that in the case where Ft = t for t ∈ [0,∞) the total

variation [F ]
1
2
t = t is bounded. However, Ft = t has zero quadratic variation

since

[F ]t
P= [t]t

P= lim
h→0

it∑

k=1

(tk − tk−1)2 = 0. (5.2.7)

One notes that a differentiable function has finite total variation but zero
quadratic variation. In contrast to that one can show that the strongly fluc-
tuating Wiener process has no finite total variation but some finite quadratic
variation.

It is then possible to show that the above transformed Wiener process Y
has the finite quadratic variation

[Y ]t
P= lim

h→0

it∑

k=1

(Ytk
− Ytk−1)

2

P= lim
h→0

it∑

k=1

(
(Wtk

−Wtk−1)
2 + 2 (Wtk

−Wtk−1) (tk − tk−1) + (tk − tk−1)2
)

P=[W ]t, (5.2.8)

for t ∈ [0,∞), which is the same as that for the Wiener process. Here only the
sum of the squared Wiener process increments does not vanish asymptotically.
We note that only the martingale term in the transformed Wiener process,
which is in the above example the Wiener process itself, contributes to the
quadratic variation.

Another Martingale

Starting with a continuous, square integrable (A, P )-martingale X, another
(A, P )-martingale can be constructed by using its quadratic variation [X] if
E([X]T ) < ∞ for each T ∈ [0,∞). More precisely, a new continuous (A, P )-
martingale Y = {Yt, t ∈ [0,∞)} is obtained by setting

Yt = (Xt)2 − [X]t (5.2.9)

for t ∈ [0,∞), see Protter (2004).
In the case of a standard Wiener process W , we obtain the martingale

Y = {Yt = (Wt)2− t, t ∈ [0,∞)}, see (5.1.6). The type of martingale property
of Y given in (5.2.9) is fundamental to stochastic calculus.
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Fig. 5.2.3. Path of a geometric Brownian motion and its quadratic variation

Quadratic Variation and Geometric Brownian Motion

The quadratic variation turns out to be one of the most important charac-
teristics of a martingale. The standard market model for an asset price is the
Black-Scholes (BS) model, given by a geometric Brownian motion. To high-
light the usefulness of the quadratic variation in such a financial context we
consider as a model for an asset price Xt at time t the BS model, see (4.1.2),
which we write in the form

Xt = X0 exp{Lt}, (5.2.10)

where
Lt = g t+ σWt (5.2.11)

for t ∈ [0,∞). Here W = {Wt, t ∈ [0,∞)} denotes again a standard Wiener
process. With the choice of the growth rate g = r− 1

2 σ
2 this provides the same

dynamics as was given in (5.1.9). When we use the initial value X0 = 1, the
expected rate of return r = 0.05 and the volatility σ = 0.2, then the quadratic
variation [X] for X is shown in Fig. 5.2.3. Also displayed in Fig. 5.2.3 is the
sample path for X, see also Fig. 5.1.3. Note that the quadratic variation is
not linear. However, if we visualize the quadratic variation of the logarithm
ln(Xt) of Xt, then we obtain, as can be seen in Fig. 5.2.4, an almost perfect
straight line. The reason for this effect can be directly seen when using the
following identities

[ln(X)]t = [L]t = σ2 [W ]t = σ2 t (5.2.12)

for t ∈ [0,∞). These relations hold because Lt = ln(Xt) forms a linearly
transformed Wiener process and we can use the fact that [W ]t = t, see (5.2.5).
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Fig. 5.2.4. Path of ln(X) and [ln(X)]

Volatility

The key quantity for the parametrization of the BS model, which was the
standard market model for many decades, is the volatility. We observe in
(5.2.12) that under the BS model the squared volatility is the time derivative
of the quadratic variation of the logarithm of the asset price. We can express
this important observation in the form

σ2 =
d

dt
[ln(X)]t. (5.2.13)

This relation can still be used theoretically as a definition for the volatil-
ity of a continuous asset price process, even if its dynamics is not that of a
geometric Brownian motion.

To be more precise, we define the historical volatility VolX(t) at a given
time t ∈ [0,∞) of a given continuous asset price process X, as the square root
of the left hand derivative of the quadratic variation of the logarithm of X.
That is, we define the historical volatility in the form

VolX(t) =

√
d

dt
[ln(X)]t (5.2.14)

for t ∈ [0,∞). A common market practice for estimating squared volatility,
see for instance Hull (2000), is that one estimates the sample variance of log-
returns, see (2.1.19). Note that VolX(t) is by (5.2.3) and (5.2.2) asymptotically
equivalent to the way that volatility is calculated in practice. However, it
is well-known, see for instance, Corsi, Zumbach, Müller & Dacorogna (2001)
and Barndorff-Nielsen & Shephard (2003), that the estimation of volatility is
in practice a very delicate task.

The definition of volatility in (5.2.14) is quite general and can be used for
all continuous asset price processes. It has the advantage that it is independent
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Fig. 5.2.5. IBM log-share price and its quadratic variation

of the specific choice of the underlying asset price model and also the time
discretization employed. In the particular case of geometric Brownian motion
it leads us directly to the constant volatility of the BS model, as can be seen
from (5.2.12). We shall see, that the above definition of historical volatility is
useful for the study of the actual volatility dynamics in asset price models.
Furthermore, the approximate quadratic variation (5.2.3) can be directly used
to construct a volatility estimator.

It is well-known that in reality, volatility is stochastic, as can be seen from
the changing slope of the quadratic variation of the logarithm of asset prices.
This indicates that the standard market model with its constant volatility
can only be considered to be used as a first, rough approximation of the ex-
isting market dynamics. As another example for an application of the above
definition of historical volatility, Fig. 5.2.5 shows the logarithm ln( Xt

Xt0
) of the

IBM share price Xt from 1993 up until 1998 together with its approximate
quadratic variation based on daily observations. According to the definition
of historical volatility in (5.2.14) we can interpret the square root of the slope
in Fig. 5.2.5 as an empirical volatility estimate of the IBM share price dur-
ing the corresponding time period. By estimating the observed slope of the
quadratic variation in Fig. 5.2.5, an annualized average volatility of approxi-

mately
√

0.5
5 =

√
0.1 ≈ 0.32 is inferred.

To illustrate further the type of information that the quadratic variation
provides we show in Fig. 5.2.6 the logarithm ln( Xt

Xt0
) of the S&P500 index

for the period from 1993 up until 1998 together with its quadratic variation.
Note that the average slope of the quadratic variation in Fig. 5.2.6, that is
its squared volatility, is much smaller than that for the IBM share price in
Fig. 5.2.5. This is mainly due to the effect of diversification for the index.
Again, an approximate estimate for the average volatility of the S&P500 index
can be obtained from the square root of the slope of the quadratic variation
shown in Fig. 5.2.6. Thus, we estimate an annualized average volatility of
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Fig. 5.2.6. Logarithm of S&P500 and its quadratic variation

about
√

0.05
5 =

√
0.01 = 0.1, which is about a third of the estimated volatility

of the IBM share price.

Covariation

In a similar manner as the quadratic variation the covariation of two continu-
ous stochastic processes can be defined. This is another important tool which
turns out to be useful for the characterization of dependencies between two
stochastic processes, for instance, between asset prices. It allows the, locally
in time, measurement of associations between the random fluctuations of two
different continuous processes.

For the definition of covariation the same equidistant time discretization,
as given in (5.2.1), is now used. That is, we set tk = kh for k ∈ {0, 1, . . .},
h > 0. For continuous stochastic processes Z1 and Z2 the covariation pro-
cess [Z1, Z2] = {[Z1, Z2]t, t ∈ [0,∞)} is defined as the limit in probability,
see (2.7.2), as h → 0 of the values of the approximate covariation process
[Z1, Z2]h,· with

[Z1, Z2]h,t =
it∑

k=1

(Z1(tk) − Z1(tk−1))(Z2(tk) − Z2(tk−1)) (5.2.15)

for t ∈ [0,∞) and h > 0, given by the sums of the products of the increments
of the processes Z1 and Z2. Here the integer it is as introduced in (5.2.4).
More precisely, we define at time t ∈ [0,∞) the covariation

[Z1, Z2]t
P= lim

h→0
[Z1, Z2]h,t, (5.2.16)

where [Z1, Z2]h,t is the approximate covariation.
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Fig. 5.2.7. Covariation between logarithms of S&P500 and IBM share price

As an example, we display in Fig. 5.2.7 the approximate covariation be-
tween the logarithms of the S&P500 index, see Fig. 5.2.6, and the IBM share
price, see Fig. 5.2.5, for the period from 1993 up until 1998 using daily ob-
servations. Note that the average slope of the covariation seems to be here
almost always positive, which indicates some association between the move-
ments of the IBM share price and those of the S&P500 index. Summarizing
these observations, it appears that the covariation provides a useful tool for
measuring the degree of association of the fluctuations of two stochastic pro-
cesses locally in time. Obviously, if the processes Z1 and Z2 are identical, then
their covariation coincides with their quadratic variation.

Covariation for Processes with Jumps (*)

For any right-continuous stochastic process ξ = {ξ(t), t ∈ [0,∞)} we denote
by

ξ(t−) a.s.= lim
h→0+

ξ(t− h) (5.2.17)

the almost sure left hand limit of ξ(t) at time t ∈ (0,∞). The jump size Δξ(t)
at time t is then defined as

Δξ(t) = ξ(t) − ξ(t−) (5.2.18)

for t ∈ (0,∞).
In the case of a pure jump process p = {pt, t ∈ [0,∞)} the corresponding

quadratic variation is obtained as

[p]t =
∑

0≤s≤t

(Δps)2 (5.2.19)

for t ∈ [0,∞), where Δps = ps −ps−. In the case when p is a Poisson process,
its quadratic variation equals the process itself, that is, [N ]t = Nt for all
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Fig. 5.2.8. Quadratic variation of a compound Poisson process

t ∈ [0,∞). We show in Fig.5.2.8 the quadratic variation [Y ]t of the trajectory
of the compound Poisson process Y shown in Fig. 3.5.2.

It is preferable to separate the jump part of a process when computing its
quadratic variation. For a general stochastic process the quadratic variation
consists of the sum of the quadratic variations of its continuous and its pure
jump part. This will be made more precise below.

Let us denote by Z1 and Z2 two stochastic processes with continuous part

Zc
i (t) = Zi(t) − Zi(0) −

∑

0<s≤t

ΔZi(s) (5.2.20)

for t ∈ [0,∞) and i ∈ {1, 2}. Here the jump size at time s is given as

ΔZi(s) = Zi(s) − Zi(s−) (5.2.21)

for s ∈ [0,∞) and we assume that the sum in (5.2.20) is almost surely finite.
The covariation [Z1, Z2]t of Z1 and Z2 at time t is then defined as

[Z1, Z2]t = [Zc
1, Z

c
2]t +

∑

0<s≤t

(ΔZ1(s)) (ΔZ2(s)) (5.2.22)

for t ∈ [0,∞), as long as the quantities involved are almost surely finite. This
also means that the quadratic variation of a process Z1 equals the quadratic
variation [Zc

1]t of its continuous part Zc
1 plus the sum of the squares of its

jumps, that is
[Z1]t = [Zc

1]t +
∑

0<s≤t

(ΔZ1(s))2 (5.2.23)

for t ∈ [0,∞). Again, we assume that the expressions involved are almost
surely finite. The above notion of covariation for processes with jumps is
convenient and useful. Obviously, if the processes Z1 and Z2 are identical,



5.2 Quadratic Variation and Covariation 183

then their quadratic variation coincides with their covariation. The quadratic
variation [q]t of the compensated Poisson process q = {qt, t ∈ [0,∞)}, shown
in Fig. 5.1.4, equals that of the Poisson process N shown in Fig. 3.5.1, that is
[N ]t = [q]t for t ∈ [0,∞).

We emphasize that the covariation of a process with continuous and jump
part is an important characteristic in financial modeling, see Cont & Tankov
(2004) and Ait-Sahalia (1996).

pth Variation (*)

We call for p > 0 and a stochastic process X = {Xt, t ∈ [0,∞)} the process
[X]

p
2
h =

{
[X]

p
2
h,t, t ∈ [0,∞)

}
with

[X]
p
2
h,t =

it∑

k=1

|Xtk
−Xtk−1 |p (5.2.24)

for t ∈ [0,∞) the approximate pth variation process of X. Then the pth vari-
ation process [X]

p
2 =

{
[X]

p
2
t , t ∈ [0,∞)

}
is for each t ∈ [0,∞) defined as the

limit in probability
[X]

p
2
t

P= lim
h→0

[X]
p
2
h,t, (5.2.25)

see (2.7.1). The first order variation process [X]
1
2 is called total variation, see

(5.2.6). For instance, the time t with Xt = t is a process with total variation

[X]
1
2
t = t < ∞ a.s. for t ∈ [0,∞). Furthermore, any differentiable process

can be shown to have finite total variation. Note that the Wiener process
W = {Wt, t ∈ [0,∞)} does not have finite total variation, however, it has
finite quadratic variation, as shown in (5.2.5). On the other hand, a Poisson
process with finite intensity does have finite total variation.

Local Martingales (*)

As we shall see later, in quantitative finance stochastic processes naturally
appear that are not martingales but become martingales if they are properly
stopped. These local martingales are locally in time similar to martingales.

Definition 5.2.1. A stochastic process X = {Xt, t ∈ [0,∞)} is an (A, P )-
local martingale if there exists an increasing sequence (τn)n∈N of stopping
times, that may depend on X, such that limn→∞ τn

a.s.= ∞ and each stopped
process

Xτn = {Xτn
t = Xt∧τn , t ∈ [0,∞)} (5.2.26)

is an (A, P )-martingale, where t ∧ τn = min(t, τn).
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Fig. 5.2.9. Two trajectories of a strict local martingale

If X is a local martingale, then the value Xs does, in general, not equal the
conditional expectation E(Xt|As) for s ∈ [0,∞) and t ∈ [s,∞). Note that an
(A, P )-martingale is also an (A, P )-local martingale. However, an (A, P )-local
martingale is not always an (A, P )-martingale. A local martingale that is not
a martingale is called a strict local martingale.

To provide an example for such a strict local martingale X = {Xt,
t ∈ [0,∞)} we form the sum of the squares of four independent Wiener pro-
cesses W 1, W 2, W 3, W 4 which start each at the value W i

0 = 5, i ∈ {1, 2, 3, 4}.
By taking the inverse of this sum, that is

Xt =

(
4∑

i=1

(
W i

t + 5
)2
)−1

(5.2.27)

for t ∈ [0,∞), we shall show later that this inverse of a squared Bessel process
of dimension four forms a strict local martingale, see Revuz & Yor (1999). Two
paths of such a process X = {Xt, t ∈ [0,∞)} are shown in Fig. 5.2.9. They
both look rather different but are both constructed according to (5.2.27).
It appears that they can mimic very different behaviors, in particular, over
the initial time period. As we discuss later in the context of squared Bessel
processes, this process has peculiar properties that differentiate it from a mar-
tingale, see Revuz & Yor (1999).

One can formulate the following statements, see Protter (2004), that will
become relevant when dealing with local martingales in financial modeling
under the benchmark approach.

Lemma 5.2.2.

(i) An almost surely nonnegative (negative) (A, P )-local martingale is an
(A, P )-supermartingale (submartingale).
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Fig. 5.2.10. Quadratic variations of two trajectories of a strict local martingale

(ii) An a.s. uniformly bounded (A, P )-local martingale is an (A, P )-martin-
gale.

(iii) A square integrable (A, P )-local martingale X is a square integrable
(A, P )-martingale if and only if

E([X]T ) < ∞ (5.2.28)

for all T ∈ [0,∞).

We prove the assertion (i) at the end of this section. The Definition 5.2.1 of
a local martingale is rather technical and somehow difficult to verify. However,
the statement (iii) of the above lemma is quite useful in practice because local
martingales that one typically faces in finance seem to be square integrable.
The statement (iii) means that if the fluctuations of a square integrable local
martingale are so strong that the mean of its quadratic variation does not
exist, then it cannot be a martingale and is therefore a strict local martingale.
In Fig. 5.2.10 we show the quadratic variation of the two paths of the strict
local martingale shown in Fig.5.2.9. Note that its quadratic variation appears
to be highly dependent on the particular path. As we shall see later, one can
show for the given example that E([X]t) = ∞ for t ∈ (0,∞). This means
that the quadratic variation of different paths varies so strongly that no finite
expectation can be calculated.

We face here a subtle but important property, which will be highly rele-
vant for the understanding of the typical dynamics of financial markets as it
becomes visible under the benchmark approach.
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Nonnegative Local Martingales are Supermartingales (*)

As we shall see later the statement (i) in Lemma 5.2.2 is crucial for the
benchmark approach when it establishes no-arbitrage. For completeness we
provide here a proof.

Lemma 5.2.3. A nonnegative (A, P )-local martingale X = {Xt, t ∈ [0,∞)}
with E(Xt|As) < ∞ for all 0 ≤ s ≤ t < ∞ is an (A, P )-supermartingale.

Proof: Consider a nonnegative (A, P )-local martingale X = {Xt, t ∈
[0,∞)}. Then there exists an increasing sequence (τn)n∈N of stopping times,
with respect to the filtration A, such that each stopped process Xτn = {Xτn

t =
Xt∧τn , t ∈ [0,∞)} is an (A, P )-martingale and we have τn → ∞ almost surely.
Consequently, for each n ∈ N and 0 ≤ s ≤ t < ∞ we have

E(Xt

∣
∣As) = E

(
1{τn≥t}Xt

∣
∣
∣As

)
+E

(
1{τn<t}Xt

∣
∣
∣As

)

= E
(
1{τn≥t}X

τn
t

∣
∣
∣As

)
+ E

(
1{τn<t}Xt

∣
∣
∣As

)

≤ E
(
Xτn

t

∣
∣
∣As

)
+ E

(
1{τn<t}Xt

∣
∣
∣As

)

= Xτn
s +E

(
1{τn<t}Xt

∣
∣
∣As

)
. (5.2.29)

Since we have for each t ∈ [0,∞) by definition that 1{τn≥t}Xt approaches Xt

almost surely from below as n → ∞ it follows by (5.2.29) and the Monotone
Convergence Theorem, see (2.7.9), that the difference

E(Xt

∣
∣As) − E

(
1{τn<t}Xt

∣
∣
∣As

)
= E

(
1{τn≥t}Xt

∣
∣
∣As

)

approaches almost surely the conditional expectation E(Xt

∣
∣As) from be-

low as n → ∞. As a consequence of that, the conditional expectation
E(1{τn<t}Xt

∣
∣As) is for n → ∞ decreasing and converges almost surely to

zero. By using the fact that limn→∞Xτn
s

a.s.= Xs yields in (5.2.29) the inequal-
ity E(Xt

∣
∣As) ≤ Xs when letting n tend to infinity. This proves the lemma.

��

In Rogers & Williams (2000) one can find an alternative proof of this re-
sult based on Fatou’s Lemma, see (2.7.11). We emphasize that it is essential
in Lemma 5.2.3 that one defines the local martingale over the infinite time
interval [0,∞) and not on [0,∞] or [0, T ] with T ∈ (0,∞) since the above
result does not hold in these cases.
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Fig. 5.3.1. Gains from trade of one share of IBM stock during 1993 - 1998

5.3 Gains from Trade as Stochastic Integral

One of the most fundamental notions in finance is that of gains from trade.
In stochastic calculus this corresponds exactly to the notion of a stochastic
integral, the Itô integral, which is therefore highly relevant in finance.

Gains from Trade

Let us consider an investor who holds during the time period [0, T ] a constant
number ξ(0) of units of an asset with price process X = {Xt, t ∈ [0, T ]}. The
investor’s allocation strategy ξ = {ξ(t) = ξ(0), t ∈ [0, T ]}, characterized by
the number of units of the asset held, is assumed to be constant in this case.
Then the investor’s gains from trade over the period [0, t] equals

Iξ,X(t) = ξ(0) {Xt −X0}, (5.3.1)

for t ∈ [0, T ]. This provides the first step towards an appropriate definition
of a stochastic integral, which we shall call later Itô integral. Formally, we
interpret the above gains from trade Iξ,X(t) as an Itô integral of the integrand
ξ with respect to the integrator X over the time interval [0, t], and use the
following notation

Iξ,X(t) =
∫ t

0

ξ(s) dXs. (5.3.2)

To illustrate the above construction we show in Fig.5.3.1 the gains from trade
obtained from IBM share holdings over the period from 1993 to 1998. This
refers to a constant allocation strategy which is holding ξ(t) = 1 share.



188 5 Martingales and Stochastic Integrals

Fig. 5.3.2. Gains from trade of ten and later one share of IBM stock

Piecewise Constant Allocation Strategies

Now, let us allow the investor to change his or her strategy so that it becomes
a piecewise constant allocation process ξ = {ξ(t), t ∈ [0, T ]} with ξ(t) = ξ(tk)
units of shares held at time t ∈ [tk, tk+1), k ∈ {0, 1, . . .} and tk = kh for
h > 0. Here the reallocation times tk form an equidistant time discretization,
as given in (5.2.1). Obviously, the gains from trade over the period [0, t] can
be expressed in the form

∫ t

0

ξ(s) dXs =
it∑

k=1

ξ(tk−1) {Xtk
−Xtk−1} + ξ(tit) {Xt −Xtit

}, (5.3.3)

where
it = max{k ∈ N : tk ≤ t} (5.3.4)

is the integer index of the latest discretization time before and including t,
see (5.2.4). Here we formally interpret the gains from trade as an Itô integral
in the same form as in (5.3.2) with integrand ξ and integrator X covering the
interval [0, t].

In Fig. 5.3.2, the gains from trade are displayed when during the first half
of the time period, that is until mid 1995, ten shares of IBM were held and
in the second half only one share. One observes during the first period strong
fluctuations of the gains from trade when compared to the second half of that
time period.

Itô Integral as a Limit

It is sufficient in many applications to use a Wiener process as integrator.
Therefore, we use in a standard setting often the Itô integral with respect to
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the Wiener process W = {Wt, t ∈ [0,∞)} as integrator over the interval [0, t]
for a wide range of integrands ξ = {ξ(t), t ∈ [0,∞)}.

Definition 5.3.1. For a left continuous stochastic process ξ = {ξ(t), t ∈
[0,∞)} as integrand with

∫ T

0

ξ(s)2 ds < ∞ (5.3.5)

for all T ∈ [0,∞) almost surely, the Itô integral with respect to the Wiener
process W is defined as the left continuous limit in probability

∫ t

0

ξ(s) dWs
P= lim

h→0

it∑

k=1

ξ(tk−1) {Wtk
−Wtk−1} (5.3.6)

of the sequence of corresponding approximating sums for t ∈ [0,∞).

For details on the definition of Itô integrals we refer to Karatzas & Shreve
(1991), Kloeden & Platen (1999) or Protter (2004). We see that the right hand
sides of both (5.3.3) and (5.3.6) are very similar and coincide in the case of
piecewise constant integrands. Consequently, the Itô integral can be seen as
a limit in probability of gains from trade, taken over progressively finer time
discretizations.

An important characteristic of the Itô integral is that the evaluation point
tk−1 for the integrand ξ is always taken at the left hand side of the discretiza-
tion interval [tk−1, tk). This feature is natural for finance applications because
an investor needs to decide at the beginning of an investment period how
many units of a security he or she wants to hold. It distinguishes the Itô in-
tegral from other stochastic integrals, see Protter (2004). The choice of the
evaluation point at the left hand side corresponds in finance to the economi-
cally given fact that once an allocation is made it remains constant for some
period of time and cannot be changed retrospectively in a legal manner. As
we shall see later, this fact is essential for establishing the martingale property
for Itô integrals with respect to Wiener processes.

The above definition of Itô integrals can be extended to include more
general classes of integrators rather than just the Wiener process, see Protter
(2004), which will be discussed later.

Explicit Value for an Itô Integral

To give a simple example of how the Itô integral differs from the classical,
say, Riemann-Stieltjes integral, let us consider a trading strategy, where the
number of shares held in an asset equals its price. For simplicity, we assume
the asset price to be modeled by the Wiener process W . Then according to
(5.3.6) we obtain

∫ t

0

Ws dWs
P= lim

h→0

it∑

k=1

Wtk−1(Wtk
−Wtk−1) (5.3.7)
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for t ∈ [0,∞). If W were differentiable, then we would obtain from the de-
terministic integration rule the quantity 1

2 W
2
t as the value of this integral at

time t. However, in the stochastic case the correct value will be much less, as
we shall see. This means that the gains from trade under this strategy do not
accumulate in the same way as they would for differentiable asset prices or
under the classical integration rule.

The following calculation demonstrates this important effect in more de-
tail. By subtracting and adding W 2

tk
and completing the square on the right

hand side of (5.3.7) for each time step we see that

∫ t

0

Ws dWs
P= lim

h→0

1
2

it∑

k=1

{(
W 2

tk
−W 2

tk−1

)
− (Wtk

−Wtk−1)
2
}

P=
1
2
W 2

t − 1
2
W 2

0 − lim
h→0

1
2

it∑

k=1

(Wtk
−Wtk−1)

2,

where all except the first and last terms in the first sum cancel each other.
From the definition of the approximate quadratic variation of standard Wiener
processes in (5.2.3) we have [W ]t = t, see (5.2.5), and W0 = 0, see (3.2.6).
Consequently, the value of the Itô integral (5.3.7) is

∫ t

0

Ws dWs =
1
2
W 2

t − 1
2

[W,W ]t =
1
2
W 2

t − 1
2

[W ]t =
1
2
W 2

t − 1
2
t. (5.3.8)

The quantity on the right hand side of this equation is clearly less than 1
2 W

2
t ,

which would be expected for a differentiable function under classical integra-
tion. Note that the difference is equal to half the covariation of integrand and
integrator. We shall see below that this property holds more generally.

The above example exhibits striking differences between the Itô integral
and the classical integral. Since, in practice, asset price processes with prop-
erties similar to those of Wiener processes are typically encountered, these
differences turn out to be crucial for the rigorous modeling in finance. For
instance, the computation of derivative prices, values of portfolios and other
financial quantities may become incorrect, if these differences were ignored.
Stochastic calculus which we introduce in this and the following two chapters
will allow us to obtain correct quantities.

To illustrate these differences we show in Fig. 5.3.3 the path of a Wiener
process together with half of its squared value and the Itô integral

IW,W (t) =
∫ t

0

Ws dWs =
∫ t

0

∫ s

0

dWz dWs, (5.3.9)

for t ∈ [0, 1]. Note in this figure the significant difference between the Itô inte-
gral IW,W (t) and the value 1

2 W
2
t that would be obtained under the classical

integration rule.



5.3 Gains from Trade as Stochastic Integral 191

Fig. 5.3.3. Paths of W , 1
2

W 2 and IW,W

In the following analysis it will be shown that the differences between Itô
and classical integration relate to the covariation of the processes involved as
integrand and integrator. These differences are crucial and impact significantly
the area of quantitative finance due to the nature of asset prices.

General Itô Integrals and Differentials

The definition of an Itô integral as gains from trade, given in (5.3.6), can
naturally be extended to include more general integrators. Let us again use, for
simplicity, the equidistant time discretization (5.2.1) and denote, as previously,
by Yt− the left hand limit of the value of a process Y = {Yt, t ∈ [0,∞)} at
time t ∈ [0,∞). We define for a stochastic process X = {Xt, t ∈ [0,∞)} as
integrator and a predictable process ξ = {ξ(t), t ∈ [0,∞)} as integrand with

∫ T

0

ξ(s)2 d[X]s < ∞ (5.3.10)

for all T ∈ [0,∞) a.s., the Itô integral as the limit in probability

∫ t

0

ξ(s) dXs
P= lim

h→0

it∑

k=1

ξ(tk−1) (Xtk
−Xtk−1) (5.3.11)

for t ∈ [0,∞), provided this limit exists. For details we refer the reader to
Protter (2004). Here it is the integer index given by (5.3.4) for t ∈ [0,∞).
We emphasize that in financial applications the Itô integral can be naturally
interpreted as gains from trade. Furthermore, one can use almost any adapted
process ξ, which satisfies (5.3.10), to form an integrand by using its predictable
version with left hand limits.



192 5 Martingales and Stochastic Integrals

Let e = {et, t ∈ [0,∞)} and f = {ft, t ∈ [0,∞)} be predictable stochastic
processes. Consider a stochastic process Y = {Yt, t ∈ [0,∞)}, where

Yt = y0 +
∫ t

0

es ds+
∫ t

0

fs dWs (5.3.12)

for t ∈ [0,∞) and initial value Y0 = y0. Here W = {Wt, t ∈ [0,∞)} is a stan-
dard Wiener process and we assume that appropriate measurability and inte-
grability conditions apply so that the above integrals exist. In particular, the
first integral is a random ordinary Riemann-Stieltjes integral for t ∈ [0,∞).
It exists if ∫ t

0

|es| ds < ∞ (5.3.13)

for all t ∈ [0,∞) a.s. The second integral is an Itô integral with respect to the
Wiener process W , see (5.3.6), where we assume that

∫ t

0

|fs|2 ds < ∞ (5.3.14)

for all t ∈ [0,∞) a.s. It is common to use the following more compact way
of expressing the integral equation (5.3.12): The Itô differential dYt of Y at
time t is given by the expression

dYt = et dt+ ft dWt (5.3.15)

for t ∈ [0,∞) with Y0 = y0. This is simply another symbolic way of writing
(5.3.12), where one should not forget to add the specification of the initial
value Y0. The processes e and f are called drift and diffusion coefficients of
the Itô differential (5.3.15), respectively. The concept of an Itô differential
is very powerful. It leads to a compact characterization that can be used to
succinctly express the dynamics of rather complicated stochastic processes.
Note that no Markovianity is required to characterize a process Y via its
stochastic differential. This allows the modeling of very general dynamics and
corresponding gains from trade.

For the above process Y , given in (5.3.12), consider the Itô integral defined
in (5.3.11) with Y replacing X. Under rather general conditions it can be
shown that ∫ t

0

ξ(s) dYs =
∫ t

0

ξ(s) es ds+
∫ t

0

ξ(s) fs dWs (5.3.16)

a.s. for all t ∈ [0,∞), see Protter (2004). Therefore, an Itô integral of the
above type can be expressed as the sum of a random ordinary Riemann-
Stieltjes integral with respect to time and a standard Itô integral with respect
to the Wiener process W .

These definitions and formulations extend to the case of multi-dimensional
integrands ξ and integration with respect to several independent standard
Wiener processes. Furthermore, they can be generalized also to hold for more
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Fig. 5.3.4. Log IBM share price Xt,
1
2

(Xt)
2 and IX,X(t)

general processes as integrators including those with jumps, as we shall see
later.

In Fig. 5.3.4 we consider the logarithm Xt of the IBM share price between
1977 and 1997 when normalized to the value one at the beginning. Using Xt

we compute also half of its squared value, that is 1
2 (Xt)2, and plot these values

in Fig. 5.3.4 together with the Itô integral IX,X(t) of X with respect to itself.
One notes in Fig. 5.3.4 that there is a clear difference between the Itô integral
IX,X(t) and what one would expect from a classical integral of a function,
which would result in the value 1

2 (Xt)2 at time t. The Itô integral provides
here the smaller values, similar as in Fig. 5.3.3.

5.4 Itô Integral for Wiener Processes

The Itô integral exhibits a number of important properties and features that
are essential in stochastic calculus and thus also for many applications in
quantitative finance. The following properties will be repeatedly exploited
later, for instance, in the context of pricing and hedging of derivatives.

Properties of Itô Integrals with Respect to Wiener Processes

Let us consider two A-adapted independent Wiener processes W 1 and W 2.
Recall that (W i

t − W i
s) is independent of As for t ∈ [0,∞), s ∈ [0, t] and

i ∈ {1, 2}.
It is useful to specify for T ∈ [0,∞) the class L2

T of predictable, square
integrable stochastic processes f = {ft, t ∈ [0, T ]} in the form that

∫ T

0

E
(
(ft)2

)
dt < ∞. (5.4.1)
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Note that it is convenient to work in a world of square integrable stochastic
processes as long as this is possible for the problem at hand. Let us now
summarize some fundamental properties of Itô integrals, which are essential
and often used in derivations in quantitative finance.

1. Linearity property: For T ∈ (0,∞), t ∈ [0, T ], s ∈ [0, t], Z1, Z2 ∈ L2
T and

As-measurable, square integrable random variables A and B it is
∫ t

s

(AZ1(u) +B Z2(u)) dW 1
u = A

∫ t

s

Z1(u) dW 1
u +B

∫ t

s

Z2(u) dW 1
u .

(5.4.2)
2. Martingale property: For T ∈ (0,∞), t ∈ [0, T ], s ∈ [0, t] and ξ ∈ L2

T one
has

E

(∫ t

0

ξ(u) dW 1
u

∣
∣As

)
=
∫ s

0

ξ(u) dW 1
u . (5.4.3)

3. Correlation property: For T ∈ (0,∞), t ∈ [0, T ], independent Wiener
processes W 1 and W 2 and Z1, Z2 ∈ L2

T the conditional correlation of two
Itô integrals is given by

E

(∫ t

0

Z1(u) dW i
u

∫ t

0

Z2(u) dW j
u

∣
∣
∣As

)

=

⎧
⎨

⎩

∫ t

0
E
(
Z1(u)Z2(u)

∣
∣
∣As

)
du for i = j

0 otherwise
(5.4.4)

with i, j ∈ {1, 2}.
4. Covariation property: For t ∈ [0,∞), independent Wiener processes W 1

and W 2 and predictable integrands Z1 and Z2 with
∫ t

0
|Z1(u)Z2(u)| du <

∞ a.s. the covariation of two Itô integrals is
[∫

0

Z1(u) dW i
u,

∫

0

Z2(u) dW j
u

]

t

=

{∫ t

0
Z1(u)Z2(u) du for i = j

0 otherwise
(5.4.5)

with i, j ∈ {1, 2}.
5. Finite variation property: For t ∈ [0,∞) the covariation between an Itô

and a random ordinary Riemann-Stieltjes integral with respect to time
vanishes. That is, for predictable Z1 and Z2 one has

[∫

0

Z1(u) dW 1
u ,

∫

0

Z2(u) du
]

t

= 0. (5.4.6)

In (5.4.5) and (5.4.6) we take the upper end of the integration interval
as the time parameter when forming the covariation. Using the martingale
property (5.4.3) it can be shown that an Itô integral process is an (A, P )-
martingale if the integrand is in L2

T . The above imposed measurability and
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integrability conditions can be weakened for some of the above stated prop-
erties, see Protter (2004).

The following important property of an Itô integral with respect to a
Wiener process is very useful in finance. It involves again the notion of a
predictable process, as was introduced in Sect. 5.1.

Lemma 5.4.1. If ξ is predictable and it holds for this integrand that
∫ T

0

ξ(u)2 du < ∞ (5.4.7)

a.s. for all T ∈ [0,∞), then the corresponding Itô integral process Iξ,W =
{Iξ,W (t) =

∫ t

0
ξ(s)dWs, t ∈ [0,∞)} is an (A, P )-local martingale.

The proofs for the above properties and lemma take advantage of the prop-
erties of increments of Wiener processes and their relationship to the filtra-
tion A. Details can be found in Karatzas & Shreve (1991), Kloeden & Platen
(1999) or Protter (2004). By application of the Statement (iii) of Lemma 5.2.2
one can derive directly the following result.

Corollary 5.4.2. Assume that Iξ,W is square integrable, then Iξ,W is a
square integrable (A, P )-martingale if and only if

E

(∫ T

0

ξ(u)2 du

)

< ∞ (5.4.8)

for all T ∈ [0,∞).

Covariation Property

To illustrate the covariation property (5.4.5), Fig. 5.4.1 shows a sample path
of a Wiener process together with an Itô integral with respect to this Wiener
process using an integrand with value 10 for the first half of the period and
value 1 for the rest of the period. The covariation of the Wiener process with
this Itô integral is then shown in Fig. 5.4.2. Note that the slope of the covari-
ation is proportional to the integrand of the Itô integral, as is suggested by
formula (5.4.5). In Fig.5.4.3, the quadratic variation of the Itô integral, shown
in Fig. 5.4.1, is displayed. Again, as indicated by (5.4.5), the time derivative
of the quadratic variation is proportional to the square of the integrand. Con-
sequently, the slope of the quadratic variation in the second period is rather
small, about 1% of that of the first period.

Itô and Deterministic Calculus

The rules that apply to Itô integrals form most of what is called the Itô or
stochastic calculus. This calculus specifies rules for handling stochastic quanti-
ties, which involves integration over time. The key relationships in quantitative
finance are strongly influenced by these rules.
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Fig. 5.4.1. Wiener process and Itô integral

Fig. 5.4.2. Covariation of Wiener process and Itô integral

As previously mentioned the rules of Itô calculus are different from those of
classical calculus, which is, in general, built on Riemann-Stieltjes integration
requiring finite total variation of the integrator. The differences are primarily
due to the fact that the Wiener process is of infinite total variation and has
trajectories of non-zero, finite quadratic variation, see (5.2.2) and (5.2.25).
Thus, the Itô integral has, in general, non-vanishing covariation between its
integrand and integrator. The Wiener process and the Itô integral with re-
spect to the Wiener process are continuous processes but not differentiable.
Therefore, to ask for the slope or time derivative of a Wiener process, an Itô
integral or an asset price when modeled by such process, is a meaningless
question.
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Fig. 5.4.3. Quadratic variation of an Itô integral

However as described earlier, the Itô integral is well defined without having
to require differentiability of its integrator. As we shall see later, the rules of
stochastic calculus provide answers to important problems in quantitative
finance, such as how the pricing and hedging of a derivative can be performed
or what is the typical dynamics of an asset price or optimal portfolio.

5.5 Stochastic Integrals for Semimartingales (*)

In this section we introduce general Itô integrals. These are useful for the
formulation of general statements. The most general class of stochastic pro-
cesses that we mention is that of semimartingales. For details on the following
results we refer to Protter (2004).

Semimartingales (*)

From the practical point of view the following class of semimartingales is a
very rich class of processes. It turns out to be sufficient for the modeling of
most finite dimensional problems that appear in finance, insurance, portfolio
optimization and other areas of risk management. As we shall see later, staying
within this class, is rewarded by rather general and elegant results.

As usual, we assume a filtered probability space (Ω,A,A, P ) as introduced
in Sect. 5.1. In the following definition of a semimartingale we refer to several
notions that we have introduced earlier in this chapter.

Definition 5.5.1. A semimartingale is an A-adapted, right-continuous sto-
chastic process X = {Xt, t ∈ [0,∞)} with left hand limits, where Xt can be
expressed as a sum of the form
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Xt = X0 +At +Mt (5.5.1)

for all t ∈ [0,∞). Here A = {At, t ∈ [0,∞)} is a process of finite total varia-
tion and M = {Mt, t ∈ [0,∞)} is an (A, P )-local martingale.

When A is predictable, then X is called a special semimartingale and the
decomposition (5.5.1) is unique. If the discontinuous part

Ad
t =

∑

0≤s≤t

ΔAs

of A and the discontinuous part

Md
t =

∑

0≤s≤t

ΔMs

of M are almost surely finite, then each of the processes A and M can be split
into a continuous and discontinuous part, that is,

At = Ac
t +Ad

t (5.5.2)

and
Mt = M c

t +Md
t (5.5.3)

for t ∈ [0,∞), respectively.
The above defined class of semimartingales includes all stochastic processes

that we have introduced so far, in particular, it covers discrete and continuous
time Markov chains, diffusion processes, compound Poisson processes and
Lévy processes. Note that semimartingales do not need to be Markovian.

For instance, the Wiener process W = {Wt, t ∈ [0,∞)}, given in Defini-
tion 3.2.2, is a semimartingale. Here the decomposition (5.5.1) is simply so
that X0 = 0, At = 0 and Mt = M c

t = Wt. The Wiener process is a martingale
and, thus, by Definition 5.1.2 a local martingale.

A Poisson process N with intensity λ, as given by Definition 3.5.1, and
the compensated Poisson process q, defined in (5.1.11), are semimartingales.
For the latter, we have q0 = X0 = 0, where Mt = Md

t = Nt − λt = qt is
the local martingale, which is here a martingale. Furthermore, At = Ac

t = λt
characterizes the predictable process A of finite total variation.

In the case of a Lévy process X with the notation given in (3.6.2) and
almost surely finite discontinuous martingale part

Md
t =

∫ t

0

∫

E
v(pϕ(dv, ds) − ϕ(dv) ds), (5.5.4)

the initial value is X0 = 0. The continuous local martingale part of X is then
of the form

M c
t = βWt (5.5.5)
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and the predictable finite total variation term is continuous and equals

At = Ac
t = α t+

∫ t

0

∫

|v|≥1

v ϕ(dv) ds (5.5.6)

for t ∈ [0,∞), assuming At to be finite.
It turns out that the class of semimartingales is stable with respect to im-

portant operations and transformations. It is closed with respect to stochastic
integration, which when applied to semimartingales as integrands and inte-
grators, generates again semimartingales. Further examples of transformations
that map into the class of semimartingales include the application of smooth
functions, equivalent changes of measure and time changes. These properties
show that the class of semimartingales is a very special class and also highly
suitable for financial modeling. The class of semimartingales includes all fi-
nancial models that we shall cover. However, there are non-semimartingale
models being actively studied, such as those based on fractional Brownian
motion, see Heyde (1999), Heyde & Liu (2001) and Elliott & van der Hoek
(2003).

Itô Integral for Semimartingales (*)

For an A-adapted, right-continuous stochastic process ξ = {ξ(t), t ∈ [0,∞)}
let

ξ(t−) a.s.= lim
h→0+

ξ(t− h)

denote again the almost sure left hand limit of ξ(t) at time t. Similarly
as in (5.3.11), we define for semimartingales X = {Xt, t ∈ [0,∞)} and
ξ = {ξ(s), s ∈ [0,∞)} the corresponding Itô integral as limit in probabil-
ity

Iξ,X(t) =
∫ t

0

ξ(s−) dXs
P= lim

h→0

it∑

k=1

ξ(tk−1) (Xtk
−Xtk−1), (5.5.7)

using an equidistant time discretization with step size h. What is important
here is that the integrand is effectively a predictable stochastic process, see
Sect. 5.1, since we take always the left hand value in a discretization interval.
We could have asked ξ to be a predictable process and could then write in
(5.5.7) instead of ξ(s−) simply ξ(s).

The Itô integral enjoys important properties. Most importantly, it is again
a semimartingale. If the integrator X is an (A, P )-local martingale, then the
Itô integral is also an (A, P )-local martingale if the integrand is, for example,
continuous or locally bounded, see Protter (2004). In the case when X is of
finite total variation, then the Itô integral coincides with the random ordinary
Riemann-Stieltjes integral.
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Itô Integral for Jump Processes (*)

Let us consider the case when a semimartingale X has jumps, that is, the
difference

ΔXt = Xt −Xt− (5.5.8)

does not vanish for all t ∈ [0,∞). In this case, the following important prop-
erty of the jumps of the Itô integral Iξ,X(t) applies:

ΔIξ,X(t) = Iξ,X(t) − Iξ,X(t−) = ξ(t−)ΔXt (5.5.9)

for t ∈ [0,∞). This means that at a jump time the value of the Itô integral
increases by the value of the integrand before the jump multiplied by the
jump size of the integrator. For example, if N is a Poisson process, as given
in Definition 3.5.1, then at its kth jump time τk we have

ΔNτk
= Nτk

−Nτk−1 = 1

for k ∈ {1, 2, . . .}. Consequently, it follows in this case from (5.5.9) that the
Itô integral for an integrand ξ = {ξ(t), t ∈ [0,∞)} takes simply the form

Iξ,N (t) =
∫ t

0

ξ(s−) dNs =
Nt∑

k=1

ξ(τk−)ΔNτk
=

Nt∑

k=1

ξ(τk−) (5.5.10)

for t ∈ [0,∞). Consider the special case of a finite pure jump process X =
{Xt =

∑
0≤s≤t ΔXs, t ∈ [0,∞)}, which jumps at the jump times τ1, τ2, . . . of

a counting process p = {pt, t ∈ [0,∞)} with jump size ΔXτk
= c(k, τk−), we

obtain for an integrand ξ = {ξ(t), t ∈ [0,∞)} the Itô integral

Iξ,X(t) =
∫ t

0

ξ(s−) dXs =
pt∑

k=1

ξ(τk−)ΔXτk
=

pt∑

k=1

ξ(τk−) c(k, τk−) (5.5.11)

for t ∈ [0,∞). Here it is important to assume that the terms involved
are almost surely finite. This means that the sums

∑pt

k=1 ξ(τk−)ΔXτk
and∑pt

k=1 ΔXτk
almost surely converge to a finite value for all t ∈ [0,∞). Note

that the integral (5.5.11) covers also the cases of inaccessible, predictable, as
well as, deterministic jump times. Thus, discrete time Markov chains and con-
tinuous time Markov chains are covered as integrators by the above formula.

Itô Integral for Poisson Measures (*)

In the case when jump sizes are continuously distributed, as is the case for
general Lévy processes, we need to consider the stochastic integration with
respect to a Poisson measure. Assume that pϕ(dv, dt) is the Poisson measure
on E × [0,∞) with intensity measure qϕ(dv, dt) = ϕ(dv) dt, as introduced at
the end of Sect.3.5, satisfying condition (3.5.13). Here E = �\{0} is the mark
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set. We again assume that a Poisson measure is such that for all h ∈ [0,∞)
and any set B ∈ B(E) the At+h-measurable random variable pϕ(B, [0, t+h])−
pϕ(B, [0, t]) is independent of At for all t ∈ [0,∞).

In generalization of relation (5.5.9), we define for a family (ξ(v))v∈E of a.s.
finite adapted processes ξ(v) = {ξ(v, t), t ∈ [0,∞)} with v ∈ E the Itô integral

Iξ,pϕ(t) =
∫ t

0

∫

E
ξ(v, s−) pϕ(dv, ds) (5.5.12)

with respect to pϕ, such that

ΔIξ,pϕ(t) =
∫ t

0

∫

E
ξ(v, s−) pϕ(dv, ds) −

∫ t−

0

∫

E
ξ(v, s−) pϕ(dv, ds)

=
∫

E
ξ(v, t−) pϕ(dv, {t}) (5.5.13)

for all t ∈ [0,∞). This means that if at a jump time τ the Poisson measure
pϕ generates an event with mark v, then the change of the value of the cor-
responding Itô integral is given by the value ξ(v, τ−) of the integrand ξ for
the mark v just before the jump time. Note that we do not have to write al-
ways ξ(v, s−) for the integrands in (5.5.9) and (5.5.13) if ξ(v, ·) is predictable.
However, to emphasize the fact that the integrand has in the case of a jump
its value always taken before the jump time, we prefer often the above nota-
tion. We refer to Protter (2004) for more details on Itô integrals for Poisson
measures.

To illustrate the above definition for the case when E = (0, λ) with λ ∈
(0,∞), where

ϕ(v) =

{
1 for v ∈ E

0 otherwise,

we obtain for the special case ξ(v, t) = 1 the Itô integral

I1,pϕ(t) =
∫ t

0

∫ λ

0

pϕ(dv, ds) = Nt (5.5.14)

for t ∈ [0,∞). Here

N = {Nt = pϕ((0, λ) × [0, t]), t ∈ [0,∞)} (5.5.15)

is a Poisson process with intensity λ.
As another example let us form the Itô integral for the simple integrand

ξ(v, t) = t and use the previous integrator pϕ. This leads to the Itô integral

It,pϕ(t) =
∫ t

0

∫ λ

0

s pϕ(dv, ds) =
Nt∑

k=1

τk, (5.5.16)
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Fig. 5.5.1. Itô integral of ξ(v, t) = t with respect to pϕ

which equals the sum of the jump times of the above Poisson process N given
in (5.5.15). Figure 5.5.1 displays for the path of the Poisson process N , shown
in Fig. 3.5.1, the resulting value of the Itô integral over time. Note that the
jump sizes in Fig. 5.5.1 increase as the jump times increase.

Finally, let us discuss an example where the integrand depends on the
mark v. We choose as integrand the simple function ξ(v, t) = v

λ . This leads to
the Itô integral I v

λ ,pϕ(t), which is equivalent to a compound Poisson process,
as defined in (3.5.9). Here we have uniformly U(0, 1) distributed jump sizes.
An example for a path of such an Itô integral can be found in Fig. 3.5.2.

Itô Integral for a Lévy Process (*)

Similarly as above, we can introduce for a Lévy process X = {Xt, t ∈ [0,∞)}
as integrator with decomposition (3.6.2) and for some stochastic process ξ =
{ξ(t), t ∈ [0,∞)} the Itô integral

∫ t

0

ξ(s−) dXs =
∫ t

0

ξ(s)αds+
∫ t

0

ξ(s)β dWs

+
∫ t

0

∫

|v|<1

ξ(s−) v (pϕ(dv, ds) − ϕ(dv) ds)

+
∫ t

0

∫

|v|≥1

ξ(s−) v pϕ(dv, ds) (5.5.17)

for t ∈ [0,∞), see Protter (2004). Recall that the Poisson measure pϕ(·, ·) is
specified in (3.6.2) under the condition (3.5.13). Here we have split the jump
terms according to the representation (3.6.2). In the same manner as for Lévy
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processes one obtains the Itô integral for general semimartingales by using
the decomposition (5.5.1)–(5.5.3) and calculating the different contributing
terms.

5.6 Exercises for Chapter 5

5.1. If we assume that W i = {W i
t , t ∈ [0,∞)}, i ∈ {1, 2}, are standard

Wiener processes, is the process Y = {Yt = α1 W
1
t + α2 W

2
t , t ∈ [0,∞)} for

α1, α2 ∈ � a martingale?

5.2. For a standard Wiener process W , is the process Y = {Yt = (Wt)2,
t ∈ [0,∞)} a martingale, submartingale or supermartingale?

5.3. Show that M = {Mt = (Wt)2 − t, t ∈ [0,∞)} is a martingale, if W is a
standard Wiener process.

5.4. Let (Ω,A,A, P ) be a filtered probability space with standard Wiener
process W , geometric Brownian motion X = {Xt = exp{(r− 1

2 σ
2) t+ σWt},

t ∈ [0,∞)} and a money account B = {Bt = exp{r t}, t ∈ [0,∞)} with inter-
est rate r. Is the discounted process X̄ = {X̄t = Xt

Bt
, t ∈ [0,∞)} a martingale,

submartingale or supermartingale? Use the fact that an N(0, 1) distributed
Gaussian random variable Y has Laplace transform

E(exp{σ Y }) = exp
{

1
2
σ2

}
,

see (1.3.76).

5.5. Compute the quadratic variation [Y ] for a transformed Wiener process
Y = {Yt = a t+ bWt, t ∈ [0,∞)}, where W is a standard Wiener process.

5.6. Determine the covariation [Y,W ] between the transformed Wiener pro-
cess Y from Exercise 5.5 and the standard Wiener process W .

5.7. If X = {Xt, t ∈ [0,∞)} is a martingale and g(·) a convex function, is the
process

g(X) = {g(Xt), t ∈ [0,∞)}
a martingale, supermartingale, submartingale or none of these?

5.8. (*) Prove the martingale property for Itô integrals with piecewise con-
stant deterministic integrands and the Wiener process as integrator.

5.9. (*) Show that the correlation property holds for Itô integrals with piece-
wise constant deterministic integrands and the Wiener process as integrator.

5.10. (*) Derive the linearity property for Itô integrals with piecewise constant
deterministic integrands and the Wiener process as integrator.

5.11. (*) For a Lévy process X = {Xt, t ∈ [0,∞)} with E(Xt | A0) = 0 for
all t ∈ [0,∞) prove that X is a martingale.



6

The Itô Formula

The price of a security, for instance, a zero coupon bond which generates some
future payoff at a maturity date, is often dependent on the value of an under-
lying process. In many applications, the effect of changes in the underlying
process on this price needs to be quantified. In deterministic calculus this type
of problem is handled by the chain rule. In stochastic calculus the correspond-
ing generalization of the chain rule is given by the Itô formula. This stochastic
chain rule contains terms reflecting the effect due to the stochastic processes
involved having non-zero quadratic variation. In this chapter we introduce,
apply and derive the Itô formula. It is widely regarded as the main tool in
stochastic calculus and is therefore highly important in quantitative finance.

6.1 The Stochastic Chain Rule

The Classical Chain Rule

First consider an example, where the classical deterministic chain rule applies.
Suppose we observe in the market the price of a savings account Bt = exp{r t},
where r denotes a constant continuously compounding interest rate. Then

dBt = r Bt dt (6.1.1)

for t ∈ [0,∞) with B0 = 1. Also suppose that we are interested in a financial
quantity u(Bt), where u : � → � is some differentiable function. For instance,
such a quantity could be the square of the value of the savings account, that
is, u(Bt) = (Bt)2. Furthermore, suppose that we need to express the evolution
of this quantity in terms of properties of u and B with respect to time. In
this case, by using the well-known chain rule of deterministic calculus, we can
write the equations

u(Bt) = u(B0) +
∫ t

0

u′(Bs) dBs = u(B0) +
∫ t

0

u′(Bs) r Bs ds (6.1.2)

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,
Springer Finance,
© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010
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for t ∈ [0,∞). Note from the first line in (6.1.2) that the value of the quantity
u(Bt) can be interpreted as the gains from trade with integrand u′(Bt) and
integrator Bt for t ∈ [0,∞). This means for our simple deterministic example
that

(Bt)2 = (B0)2 + 2
∫ t

0

Bs dBs (6.1.3)

for t ∈ [0,∞).

A Stochastic Example

In Sect. 5.3 we considered the Itô integral

IW,W (t) =
∫ t

0

Ws dWs,

which is the double Wiener integral for a Wiener process W = {Wt, t ∈
[0,∞)}. This stochastic integral was interpreted as the gains from trade, where
the number of shares held in the asset whose price was W was equal to its
price. By rewriting equation (5.3.8) we obtain

(Wt)2 = 2
∫ t

0

Ws dWs + [W ]t = 2
∫ t

0

Ws dWs +
∫ t

0

ds (6.1.4)

for t ∈ [0,∞). Using the Itô differentials dWt and d(Wt)2 the equation (6.1.4)
can be expressed in the equivalent Itô differential form

d(Wt)2 = 2Wt dWt + dt (6.1.5)

for t ∈ [0,∞) with initial value (W0)2 = 0. As previously explained, the equa-
tion (6.1.5) is nothing more than an abbreviated form of the stochastic integral
equation (6.1.4). This integral equation involves an Itô integral, which is well
defined, as discussed in the previous chapter. As a rule in stochastic calculus
we shall see later that one can treat (dWt)2 as d[W ]t = dt, see (5.4.5). Note
however that d(Wt)2 is different to (dWt)2. Another rule will suggest setting
(dt)2 = d[·]t = 0 and dWtdt = d[W, t]t = 0.

Heuristic Derivation of the Itô Formula

One of the key features of the Itô integral with respect to the Wiener process
is its martingale property, described in (5.4.3), which makes it an essential
tool for pricing in finance. However, as previously indicated, this fundamental
property does not come freely, namely the chain rule of classical calculus does
not apply when using Itô integrals. Instead, the stochastic chain rule, the Itô
formula, has to be applied. We now provide a heuristic derivation of the Itô
formula. In Sect. 6.6 a proof of this formula will be presented.
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Let X = {Xt, t ∈ [0,∞)} be a stochastic process that is characterized by
the Itô differential

dXt = et dt+ ft dWt (6.1.6)

for t ∈ [0,∞) with initial valueX0 = x0, see (5.3.15). Here e = {et, t ∈ [0,∞)}
and f = {ft, t ∈ [0,∞)} are two stochastic processes with appropriate measur-
ability and integrability properties. Consider a finite difference approximation
of the Itô differential (6.1.6) of the form

ΔXtk
= Xtk+1 −Xtk

≈ etk
h+ ftk

(Wtk+1 −Wtk
) (6.1.7)

for tk from an equidistant time discretization {t� =  h,  ∈ {0, 1, . . .}} with
step size h > 0, as introduced in (5.2.1).

We focus our attention on changes in the value u(t,Xt) for a function
u : [0,∞)×� → �, resulting from changes in the time t and the value of the
underlying Xt. Assume that u is differentiable with respect to time t and twice
continuously differentiable with respect to the spatial component x, that is,
the functions ∂u

∂t , ∂u
∂x and ∂2u

∂x2 exist and are continuous.
To quantify the changes in u(t,Xt) caused by changes in Xt we consider

over small time intervals [tk, tk+1) the differences

Δu(tk, Xtk
) = u(tk+1, Xtk+1) − u(tk, Xtk

) (6.1.8)

for k ∈ {0, 1, . . .}. Since u is assumed to be sufficiently differentiable we can
apply a Taylor expansion to obtain the expansion

Δu(tk, Xtk
) =

∂u(tk, Xtk
)

∂t
h+

∂u(tk, Xtk
)

∂x
ΔXtk

+
1
2
∂2u(tk, Xtk

)
∂x2

(ΔXtk
)2 +Rtk

, (6.1.9)

where Rtk
is the corresponding remainder term.

If the quadratic variation of X were zero, then h → 0 would imply
(ΔXtk

)2 → 0 asymptotically and hence the corresponding term in (6.1.9)
would not influence the movements of u(t,Xt). However, in the given stochas-
tic setting this is not the case and, therefore, we need to consider the approx-
imation

(ΔXtk
)2 ≈ [X]h,tk+1 − [X]h,tk

≈ (ftk
)2 h, (6.1.10)

where [X]h,t denotes the approximate quadratic variation, see (5.2.3). Substi-
tuting this expression, together with (6.1.7) into (6.1.9) yields the relation

Δu(tk, Xtk
) =
(
∂u(tk, Xtk

)
∂t

+ etk

∂u(tk, Xtk
)

∂x
+

1
2
(ftk

)2
∂2u(tk, Xtk

)
∂x2

)
h

+ ftk

∂u(tk, Xtk
)

∂x
(Wtk+1 −Wtk

) + R̄tk
, (6.1.11)

where R̄tk
is the corresponding remainder term.
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Itô Formula

Letting the time discretization become finer and finer in (6.1.11), that is h →
0, results in the one-dimensional version of the Itô formula

du(t,Xt) =
(
∂u(t,Xt)

∂t
+ et

∂u(t,Xt)
∂x

+
1
2

(ft)2
∂2u(t,Xt)

∂x2

)
dt

+ ft
∂u(t,Xt)

∂x
dWt (6.1.12)

for t ∈ [0,∞). This formula will be derived rigorously towards the end of this
chapter.

Note again that the Itô differential in (6.1.12) is only a shorthand notation
for the integral representation of the Itô formula given as

u(t,Xt)=u(s,Xs) +
∫ t

s

(
∂u(z,Xz)

∂t
+ ez

∂u(z,Xz)
∂x

+
1
2

(fz)2
∂2u(z,Xz)

∂x2

)
dz

+
∫ t

s

fz
∂u(z,Xz)

∂x
dWz (6.1.13)

for t ∈ [0,∞) and s ∈ [0, t]. We remark that by using the notion of quadratic
variation, introduced in the previous chapter, we can write the Itô formula
(6.1.12) in the compact form

du(t,Xt) =
∂u(t,Xt)

∂t
dt+

∂u(t,Xt)
∂x

dXt +
1
2
∂2u(t,Xt)

∂x2
d[X]t (6.1.14)

for t ∈ [0,∞). One can read off the following rule

(dXt)2 = d[X]t

if X is a continuous process. This generalizes the rule that we mentioned
after equation (6.1.5). As shown in Föllmer (1981), the Itô formula holds very
generally in a pathwise sense requiring almost no technical assumptions.

Example for a Stochastic Exponential

Let us consider the one dimensional Itô differential

dXt = et dt+ ft dWt (6.1.15)

for t ∈ [0,∞) with initial value X0 = x0. Note by (5.4.5) that

d[X]t = (ft)2 d[W ]t = (ft)2 dt.

The exponential
Yt = u(Xt) = exp{Xt} (6.1.16)
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has then by application of the Itô formula (6.1.12) the Itô differential

dYt = d(exp{Xt})

= exp{Xt}
(
et +

1
2

(ft)2
)
dt+ exp{Xt} ft dWt

= Yt

(
et +

1
2

(ft)2
)
dt+ Yt ft dWt (6.1.17)

for t ∈ [0,∞) with initial value Y0 = exp{x0}. In the case when et = e and
ft = f are constants, the process X = {Xt, t ∈ [0,∞)} is a transformed
Wiener process, see (3.2.7), and Y = {Yt, t ∈ [0,∞)} is a geometric Brownian
motion, as is employed under the BS model. One can interpret Y as a solution
of a stochastic differential equation (SDE) since here some feedback in the drift
and diffusion coefficient is built in. In the next chapter we shall study SDEs
of more general form.

Example for Powers of Processes

Let us give another example, where we start again from the Itô differential
(6.1.15) for the process X = {Xt, t ∈ [0,∞)}. Now we consider for some
exponent k = 0 the power

Yt = u(Xt) = (Xt)k (6.1.18)

for t ∈ [0,∞). By application of the Itô formula (6.1.12) we obtain the Itô
differential

dYt = k (Xt)k−1 (et dt+ ft dWt) +
1
2
k (k − 1) (Xt)k−2 (ft)2 dt

= k (Yt)
k−1

k (et dt+ ft dWt) +
1
2
k (k − 1) (Yt)

k−2
k (ft)2 dt (6.1.19)

for t ∈ [0,∞) with Y0 = (x0)k.

6.2 Multivariate Itô Formula

In the context of financial modeling, the discussion of functionals of two or
more underlying stochastic processes, such as a stock price and a stochastic
interest rate, is often required. To enable us to treat such problems properly we
consider multi-dimensional stochastic processes or, equivalently, vector valued
Itô integrals. For this reason we introduce multi-component Itô differentials
with respect to multi-dimensional standard Wiener processes. These then will
appear in a multivariate version of the Itô formula to be formulated below.
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Multi-Dimensional Wiener Process

Definition 6.2.1. We call the vector process W = {W t = (W 1
t ,W

2
t , . . .,

Wm
t )�, t ∈ [0,∞)} an m-dimensional standard Wiener process if each of its

components W j = {W j
t , t ∈ [0,∞)}, j ∈ {1, 2, . . . ,m} is a scalar A-adapted

standard Wiener process and the Wiener processes W k and W j are indepen-
dent for k = j, k, j ∈ {1, 2, . . . ,m}.

This means that according to Definition 3.2.2 of a Wiener process, each
random variable W j

t is Gaussian and At-measurable with

E
(
W j

t

∣
∣A0

)
= 0 (6.2.1)

and we have independent increments W j
t −W j

s such that

E
(
W j

t −W j
s

∣
∣As

)
= 0 (6.2.2)

for t ∈ [0,∞), s ∈ [0, t] and j ∈ {1, 2, . . . ,m}. Moreover, we have here addi-
tionally the property that

E
((
W i

t −W i
s

) (
W j

t −W j
s

) ∣
∣As

)
=
{

(t− s) for i = j
0 otherwise (6.2.3)

for t ∈ [0,∞), s ∈ [0, t] and i, j ∈ {1, 2, . . . ,m}.
Note that the covariation between different components of the above stan-

dard Wiener process is zero, see (5.4.5), that is

[W i,W j ]t =
{
t for i = j
0 for i = j

(6.2.4)

for t ∈ [0,∞) and i, j ∈ {1, 2, . . . ,m}.
To illustrate the above notion in preparation of future examples, Fig. 6.2.1

shows the sample paths of the two components of a two-dimensional stan-
dard Wiener process. Each of these two components forms a standard one-
dimensional Wiener process and both Wiener processes are independent.

Figure 6.2.2 presents a different visualization of the same pair of trajec-
tories for the two-dimensional Wiener process. Here W 1

t and W 2
t represent

the x and y coordinates at time t, respectively, that generate a trace similar
to the motion of a pollen particle under the microscope. Recall that such a
motion was originally observed by Robert Brown, giving rise to it the name
Brownian motion. As indicated above, it can be modeled by two independent
Wiener processes.

Vector Itô Differentials

Consider a d-dimensional vector function e : [0,∞)×Ω → �d with predictable
components ek, k ∈ {1, 2, . . . , d}. We have to assume that the components
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Fig. 6.2.1. Components of a two-dimensional standard Wiener process

Fig. 6.2.2. Trace of a two-dimensional Wiener process

satisfy appropriate integrability and measurability conditions. These are sim-
ilar to those we introduced for the one-dimensional case. For simplicity, we
assume here that ∫ T

0

|ek
z | dz < ∞ (6.2.5)

almost surely for k ∈ {1, 2, . . . , d} and F : [0, T ] ×Ω → �d×m to be a d×m
matrix valued function with

∫ T

0

(
F i,j

z

)2
dz < ∞ (6.2.6)

almost surely for i ∈ {1, 2, . . . , d}, j ∈ {1, 2, . . . ,m} and all T ∈ (0,∞),
see Protter (2004). This allows us to introduce a d-dimensional stochastic
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vector process X = {Xt = (X1
t , X

2
t , . . . , X

d
t )�, t ∈ [0,∞)}, where the kth

component Xk is defined via the Itô integral equation

Xk
t −Xk

0 =
∫ t

0

ek
z dz +

m∑

j=1

∫ t

0

F k,j
z dW j

z (6.2.7)

for t ∈ [0,∞) and given A0-measurable initial value Xk
0 ∈ �, k ∈ {1, 2, . . . , d}.

Analogous to the scalar case we denote by et and F t for a given time
t ∈ [0,∞) the vector and matrix valued random variables, respectively. Then
we write the vector valued stochastic integral equation in the form

Xt − X0 =
∫ t

0

ez dz +
∫ t

0

F z dWz (6.2.8)

for any t ∈ [0,∞) with initial value X0 = (X1
0 , . . . , X

d
0 )�. This can be ex-

pressed equivalently as the d-dimensional vector Itô differential given by

dXt = et dt+ F t dWt, (6.2.9)

for t ∈ [0,∞) with initial value X0 ∈ �d. Choosing the dimension d = 1,
leads to the case of a scalar Itô differential with respect to several independent
Wiener processes.

Multivariate Itô Formula

In the previous section it was noted that for the scalar case with one driving
Wiener process the Itô formula involves the quadratic variation of this Wiener
process. In the multivariate case, with a multi-dimensional driving Wiener
process, it turns out that the covariations between different components of the
vector stochastic differential appear in the following multivariate Itô formula.

Theorem 6.2.2. Assume that the function u : [0,∞) × �d → � has con-
tinuous partial derivatives ∂u

∂t , ∂u
∂xk and ∂2u

∂xk ∂xi for k, i ∈ {1, 2, . . . , d} and
x = (x1, x2, . . . , xd)�. Define a scalar stochastic process Y = {Yt, t ∈ [0,∞)}
by setting

Yt = u(t,X1
t , X

2
t , . . . , X

d
t ), (6.2.10)

for t ∈ [0,∞), where the vector Xt = (X1
t , X

2
t , . . . , X

d
t )� satisfies the vector

Itô differential (6.2.9). Then the Itô differential for Y is of the form

dYt = du(t,X1
t , X

2
t , . . . , X

d
t )

=

⎧
⎨

⎩
∂u

∂t
+

d∑

k=1

ek
t

∂u

∂xk
+

1
2

m∑

j=1

d∑

i,k=1

F i,j
t F k,j

t

∂2u

∂xi ∂xk

⎫
⎬

⎭
dt

+
m∑

j=1

d∑

i=1

F i,j
t

∂u

∂xi
dW j

t , (6.2.11)
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for t ∈ [0,∞) with Y0 = u(0, X1
0 , X

2
0 , . . . , X

d
0 ). Here the partial derivatives in

(6.2.11) are evaluated at (t,X1
t , X

2
t , . . . , X

d
t ).

An informal derivation of this formula, similar to that for the scalar case
presented earlier in (6.1.12), provides a quick and insightful way to understand
where the various terms appearing in (6.2.11) come from. To see this easily
one has simply to apply the corresponding Taylor expansion for the function
u and use the rules

dW i
t dW

j
t ≈

{
dt for i = j
0 for i = j

(6.2.12)

and
dW i

t dt ≈ 0. (6.2.13)

As previously explained, these rules of stochastic calculus yield terms in ad-
dition to those usually observed in the deterministic chain rule because of the
effects of the covariations between the integrands and integrators involved.

Similar as in formula (6.1.14), by using the notion of covariation, we can
write the multivariate Itô formula (6.2.11) in the form

du(t,X1
t , X

2
t , . . . , X

d
t ) =

∂u

∂t
dt+

d∑

i=1

∂u

∂xi
dXi

t +
1
2

d∑

i,k=1

∂2u

∂xi ∂xk
d[Xi, Xk]t

(6.2.14)
for all t ∈ [0,∞). Here the partial derivatives of u on the right hand side of
(6.2.14) are taken at (t,X1

t , X
2
t , . . . , X

d
t ).

6.3 Some Applications of the Itô Formula

Integration-by-Parts Formula

Let us consider two continuous processes X1 = {X1
t , t ∈ [0,∞)} and X2 =

{X2
t , t ∈ [0,∞)} having an Itô differential and finite covariation. Suppose that

the Itô differential of the product

Yt = u(t,X1
t , X

2
t ) = X1

t X
2
t

is required. The Itô formula (6.2.14) can then be used to derive for the above
product the following integration-by-parts formula

d(X1
t X

2
t ) = X1

t dX
2
t +X2

t dX
1
t + d[X1, X2]t. (6.3.1)

We consider as an example three cases, where X1 and X2 are standard Wiener
processes:

1. First assume that the two Wiener processes are the same, that is X1
t =

X2
t = W 1

t , where W 1
t is a standard Wiener process. This case was considered

in (6.1.5). By rewriting this equation we obtain
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Fig. 6.3.1. Product of two independent Wiener processes

dYt = d(W 1
t )2 = 2W 1

t dW
1
t + dt (6.3.2)

for t ∈ [0,∞). Recall that Fig. 5.3.3 displayed a sample path for 1
2 Yt =

1
2 (W 1

t )2.

2. In the second case we assume that the two Wiener processes X1 = W 1

and X2 = W 2 are independent, that is W 1 and W 2 are two independent
standard Wiener processes. This then leads by application of the integration-
by-parts formula (6.3.1) to the Itô differential

dYt = d(W 1
t W

2
t ) = W 1

t dW
2
t +W 2

t dW
1
t (6.3.3)

for t ∈ [0,∞). Note that there is no drift on the right hand side of (6.3.3)
since the covariation between the two independent Wiener processes is zero.
The formula (6.3.3) coincides with the classic integration by parts formula
because there is zero covariation between W 1 and W 2. In Fig. 6.3.1 we use
the same sample path of the two-dimensional standard Wiener process that
was shown in Fig. 6.2.1 and Fig. 6.2.2 to generate a corresponding path for
the product Yt = W 1

t W
2
t .

3. The third case assumes that the two standard Wiener processes are
correlated, that is we set X1

t = �W 1
t +

√
1 − �2 W 2

t and X2
t = W 1

t , where
W 1 and W 2 are independent standard Wiener processes and � ∈ [−1, 1] is the
correlation coefficient, see (1.4.39). We then obtain by the formula (6.3.1) the
Itô differential

dYt = d(X1
t X

2
t )

= X1
t dW

1
t +X2

t

(
� dW 1

t +
√

1 − �2 dW 2
t

)
+ � dt

= X1
t dX

2
t +X2

t dX
1
t + � dt (6.3.4)
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Fig. 6.3.2. Product of correlated Wiener processes and their approximate covaria-
tion

for t ∈ [0,∞). It is easy to see that both (6.3.2) and (6.3.3) are included in
formula (6.3.4) for the choices of � = 1 and � = 0, respectively. Note that for
the product of Wiener processes, the correlation coefficient � appears as the
drift coefficient in the resulting Itô differential.

Finally, to demonstrate the covariation of correlated Wiener processes,
we show in Fig. 6.3.2 the approximate covariation [X1, X2]h,t, see (5.2.15),
together with the product X1

t X
2
t for the correlation coefficient � = 1

2 .

Example for Geometric Brownian Motion

Let us consider a one-dimensional Itô differential that uses two independent
standard Wiener processes and is given by

dXt = e1t dt+ F 1,1
t dW 1

t + F 1,2
t dW 2

t (6.3.5)

with initial value X0 = 0. The functional

Yt = exp{Xt} (6.3.6)

has by the Itô formula (6.2.11) the Itô differential

dYt = d (exp{Xt})

= Yt

(
e1t +

1
2

((
F 1,1

t

)2

+
(
F 1,2

t

)2
))

dt+ Yt F
1,1
t dW 1

t + Yt F
1,2
t dW 2

t

(6.3.7)

for t ∈ [0,∞), with initial value Y0 = 1. Note that the process Y is a diffu-
sion process. More precisely, it is a generalized version of geometric Brownian
motion, introduced in (4.1.2). Here we have the drift coefficient
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a(t, x) = x

(
e1t +

1
2

((
F 1,1

t

)2

+
(
F 1,2

t

)2
))

, (6.3.8)

that can be compared to (4.3.7). The diffusion coefficients corresponding to
W 1 and W 2 are given by

b1(t, x) = xF 1,1
t (6.3.9)

and
b2(t, x) = xF 1,2

t , (6.3.10)

respectively. These diffusion coefficients generalize what was obtained in
(4.3.8), where we had only one driving Wiener process.

For the above Itô differential both the drift and diffusion coefficients ap-
pear as products of the asset price with some constants, as was the case in
(6.3.7). The constant associated with the drift coefficient is often called the
appreciation rate or expected rate of return. Recall that the constant associated
with a diffusion coefficient is the volatility component for this diffusion term. If
appreciation rate and volatilities are constants, then the corresponding model
is called the Black-Scholes (BS) model.

If one looks at the stochastic differential (6.3.7), then a certain feedback
in the drift and diffusion term is modeled. We call an Itô differential that
involves some feedback from the state variable, here Yt, a stochastic differential
equation (SDE). It will be our focus in the next chapter to present results on
SDEs. However, within this chapter we continue to study the Itô formula
applied to stochastic differentials which cover also SDEs.

Product of Two Geometric Brownian Motions

Since the Black-Scholes model plays such a central role in asset price modeling,
we go in detail through a number of almost elementary applications of the Itô
formula. Consider two asset price processes X1 and X2 that are defined as
geometric Brownian motions by functionals of the type

Xi
t = exp

{
μi t+ σi,1 W 1

t + σi,2 W 2
t

}

for i ∈ {1, 2} and t ∈ [0,∞), where W 1 and W 2 denote two independent
standard Wiener processes.

By the Itô formula (6.2.11) we obtain, similarly to (6.3.7), the Itô differ-
entials

dXi
t = Xi

t

(
μi +

1
2
(
(σi,1)2 + (σi,2)2

)
)
dt+Xi

t σ
i,1 dW 1

t +Xi
t σ

i,2 dW 2
t

(6.3.11)
for i ∈ {1, 2} and t ∈ [0,∞).

We compute the Itô differential of the product Yt = X1
t X

2
t . Again, by

application of the Itô formula (6.2.11) we obtain
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dYt = d(X1
t X

2
t )

= Yt

(
μ1 + μ2 +

1
2
(
σ1,1 + σ2,1

)2
+

1
2
(
σ1,2 + σ2,2

)2
)
dt

+Yt

(
σ1,1 + σ2,1

)
dW 1

t + Yt

(
σ1,2 + σ2,2

)
dW 2

t (6.3.12)

for t ∈ [0,∞). Consequently, the product of two geometric Brownian motions
is a geometric Brownian motion, since the drift and diffusion coefficients in
(6.3.12) appear as products of Yt together with some constants. Note also
that the appreciation rates and the volatilities of the product of two geomet-
ric Brownian motions are obtained by summing the appreciation rates and
volatilities of their components.

Powers of Geometric Brownian Motion

We have seen that products of two geometric Brownian motions are also geo-
metric Brownian motions. We now show that the power of a geometric Brow-
nian motion is also a geometric Brownian motion.

Let X denote a scalar geometric Brownian motion characterized by the
Itô differential

dXt = Xt a dt+Xt σ dWt, (6.3.13)

for t ∈ [0,∞) with appreciation rate a, volatility σ and initial value X0 =
x, where W is a standard Wiener process. Then by application of the Itô
formula (6.2.11) we obtain for any real valued exponent k and

Yt = (Xt)k (6.3.14)

the Itô differential

dYt = d(Xt)k = Yt

(
k a+

1
2
k (k − 1)σ2

)
dt+ Yt k σ dWt (6.3.15)

for t ∈ [0,∞). This shows that Y is again a geometric Brownian motion,
because the drift and diffusion coefficients in (6.3.15) are expressed as products
of constants and Yt.

Inverse of a Geometric Brownian Motion

An interesting phenomenon is observed when considering the dynamics of an
inverse of a given geometric Brownian motion, which follows for the exponent
k = −1 from equation (6.3.15). Taking the stochastic differentials (6.3.12) and
(6.3.15) into account, it is clear that not only powers and products but also
ratios of geometric Brownian motions are again geometric Brownian motions.
These convenient properties certainly had some influence on the historical
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Fig. 6.3.3. A geometric Brownian motion and its inverse

Fig. 6.3.4. Approximate covariation between 1
X

and X

development of quantitative finance. In particular, they helped to make the
BS model the standard market model.

Figure 6.3.3 shows a sample path of a geometric Brownian motion X =
{Xt, t ∈ [0,∞)} with X0 = 1, a = 0, σ = 0.2 together with its inverse 1

Xt
.

As is apparent from (6.3.15), in this case the inverse X−1
t has an appreciation

rate equal to σ2 and is negatively correlated to Xt. This negative correlation
is visualized in Fig. 6.3.4, which displays the covariation [X−1, X]t between
X−1

t and Xt. This covariation, see (5.4.5), is given by

[X−1, X]t = −σ2 t. (6.3.16)
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Fig. 6.3.5. Savings account

Black-Scholes Model for a Stock Market

Let us now model a stock market in continuous time with asset prices that
follow geometric Brownian motions. The fluctuations of stock prices in the
market are driven by continuous trading uncertainty, which is modeled by
d ∈ N independent standard Wiener processes W 1,W 2, . . . ,W d.

For simplicity, we consider a deterministic, constant short rate r. We as-
sume that the interest is continuously accrued. To model the accumulation of
interest we form the savings account S0

t at time t as the exponential

S0
t = exp

{
X0

t

}
(6.3.17)

with
X0

t = r t (6.3.18)

for t ∈ [0,∞). Obviously,
dX0

t = r dt

and, therefore, by the Itô formula when applied to the exponential function
(6.3.17), we obtain the differential equation

dS0
t = S0

t r dt (6.3.19)

for t ∈ [0,∞) with S0
0 = 1. In Fig. 6.3.5 we plot the resulting savings account

for a period of T = 34 years when choosing a constant interest rate of r = 0.05.
Note that an initial investment of one dollar in the savings account would have
resulted over the given period in a value of about 5.5 dollars. The logarithm
X0

t = ln(S0
t ) of the savings account is a linear increasing function, see (6.3.18),

with slope equal to the short rate r.
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Fig. 6.3.6. Stock prices

Now we visualize in Fig.6.3.6 eight cum dividend stock price processes over
the period of 34 years. Here we reinvest all dividends. The jth stock price at
time t is denoted by Sj

t for t ∈ [0,∞) and j ∈ {1, 2, . . . , d}. For simplicity, we
have chosen the volatility matrix to be of the form b = σI, where σ = 0.2
is the volatility parameter and I the unit matrix. In this simple setting each
stock evolves independently from all the others. For the simulated scenario
we used the volatility parameter σ = 0.2, the short rate r = 0.05 and have set
the growth rates to gj = 0.1. As we shall see later, this is a rather poor stock
market model since no correlations between the log-returns are modeling the
example. Nevertheless such models have been used in practice. It is noticeable
in Fig. 6.3.6 that extreme differences in stock prices over the 34 year period
can occur. However, it is impossible to predict at any time which of the stocks
will outperform the others in the future. They all have in our example the
same appreciation rate and volatility.

One notes that the prices in Fig. 6.3.6 evolve quite differently. On average
they seem to increase. We constructed these stock prices as exponentials of
transformed Wiener processes Xj = {Xj

t , t ∈ [0,∞)}, j ∈ {1, 2, . . . , d}, where

Xj
t = gj t+

d∑

k=1

bj,k W k
t (6.3.20)

and the jth stock price is given as
Sj

t = exp{Xj
t } (6.3.21)

with Sj
0 > 0.

The log-price Xj
t of the jth stock at time t, j ∈ {1, 2, . . . , d}, is therefore

modeled by the Itô differential

dXj
t = gj dt+

d∑

k=1

bj,k dW k
t (6.3.22)
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Fig. 6.3.7. Logarithms of stock prices

for t ∈ [0,∞) with initial value Xj
0 = ln(Sj

0) ∈ �, j ∈ {1, 2, . . . , d}. The jth
growth rate gj and the j, kth volatilities bj,k are deterministic constants for
j, k ∈ {1, 2, . . . , d}. Here we have the jth growth rate

gj = r + pj − 1
2

d∑

k=1

(bj,k)2. (6.3.23)

This leads by application of the Itô formula to the function (6.3.21) for the
jth stock price to its Itô differential or SDE

dSj
t = Sj

t

(

(r + pj) dt+
d∑

k=1

bj,k dW k
t

)

(6.3.24)

for t ∈ [0,∞) and j ∈ {1, 2, . . . , d}. The appreciation rate of the jth stock
then equals the sum

aj = r + pj , (6.3.25)

where pj is the jth risk premium or jth expected excess return. The matrix
b = [bj,k]dj,k=1 denotes the volatility matrix. In Fig.6.3.7 we plot the logarithms
Xi

t of the eight stock prices over time.

Covariation between a Wiener Process and a Functional (*)

Let g denote a twice continuously differentiable function and W a standard
Wiener process. Then the covariation, see (5.2.16), between g(Wt) and Wt is
given by

[g(W ),W ]t =
∫ t

0

g′(Ws) ds (6.3.26)
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for t ∈ [0,∞). This can be easily derived by application of both the Itô formula
(6.1.12) together with the covariation property (5.4.5) of Itô integrals, which
yields

d(g(Wt)) =
1
2
g′′(Wt) dt+ g′(Wt) dWt (6.3.27)

for t ∈ [0,∞). One can also formulate similar statements when the standard
Wiener process is substituted by more general processes.

6.4 Extensions of the Itô Formula

Let us mention in this section some extensions of the Itô formula that will
allow us to derive powerful results for models with jumps covering stochastic
processes that are needed for modeling event driven uncertainty in finance
and insurance.

Itô Formula for Jump Processes

The Itô formula can be easily generalized to the case of jump processes. Let
us use again our standard notation for the jump size

ΔZt = Zt − Zt− (6.4.1)

at time t ∈ [0,∞) of a given process Z = {Zt, t ∈ [0,∞)}. Here Zt− denotes,
as usual, the left hand limit of the process Z at time t. Then the value Xt of
a pure jump process X = {Xt, t ∈ [0,∞)} can be written at time t ∈ [0,∞)
as

Xt =
∑

s∈[0,t]

ΔXs (6.4.2)

if this sum converges almost surely for all t ∈ [0,∞). This then allows us to
formulate the Itô formula for the given pure jump process in such a simple
form that does not need any extra proof.

Lemma 6.4.1. For a pure jump process X and a measurable function u :
� → � we have the Itô formula

u(Xt) = u(X0) +
∑

s∈(0,t]

Δu(Xs) (6.4.3)

for t ∈ [0, T ], where Δu(Xt) = u(Xt) − u(Xt−).

One notes that almost no assumptions are imposed on the function u(·)
and the process X. What happens in (6.4.3) is that the jumps of X are simply
transferred through the function u as they arise.
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Fig. 6.4.1. Path of an exponential of a Poisson process

Exponential of a Poisson Process

Let us consider an example where a pure jump process plays a role. We denote
by N = {Nt, t ∈ [0,∞)} a Poisson process with intensity λ as introduced in
Sect.3.5. A path of such a process for λ = 20 is shown in Fig.3.5.1. Let us now
apply the Itô formula (6.4.2) to obtain for N the differential of the exponential
u(Nt) = exp{cNt} with c > 0. Since N is a pure jump process that counts
the arrival of events we have only to transform its jumps into the jumps of the
exponential of N . Thus, at the kth jump time τk of N we have the identity

exp{cNτk
} = exp{cNτk−} + exp{cNτk−}

(
exp{cNτk

}
exp{cNτk−}

− 1
)
. (6.4.4)

In Fig. 3.5.1 we showed a trajectory of a Poisson process N . In Fig. 6.4.1 we
plot now the corresponding exponential with c = 0.1.

By (6.4.4) we obtain the relationship

exp{cNt} = exp{cN0} +
∫ t

0

(exp{cNs} − exp{cNs−}) dNs

= exp{cN0} +
∫ t

0

exp{cNs−}
(

exp{cNs}
exp{cNs−}

− 1
)
dNs. (6.4.5)

Equivalently, with the notation (6.4.1) we can write the corresponding Itô
differential

d(exp{cNt}) = Δ(exp{cNt})

= exp{cNt−} (ψexp(t−) − 1)ΔNt (6.4.6)

for t ∈ [0,∞) with jump ratio
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ψexp(τk−) =
exp{cNτk

}
exp{cNτk−}

= exp{cNτk
− cNτk−} = exp{c} = ec (6.4.7)

with τk as kth jump time. Note that the use of the notion of a jump ratio for
the parametrization of the jump size is rather convenient.

Itô Formula for Semimartingales (*)

After having seen that the inclusion of jumps does not create major prob-
lems for an Itô formula, the Itô formula can now be generalized to the
case of semimartingales, see Definition 5.5.1. Assume that the vector pro-
cess X = {Xt = (X1

t , . . . , X
�
t )

�, t ∈ [0,∞)} has as its ith component the
semimartingale Xi with the following decomposition

Xi
t = Xi

0 +Xi,c
t +Xi,d

t (6.4.8)

for t ∈ [0,∞), i ∈ {1, 2, . . . , }. Here

Xi,c
t = Ai,c

t +M i,c
t (6.4.9)

denotes the ith component of the continuous part of Xi
t and Xi,d

t that of the
pure jump part. This means, we have all jumps absorbed in the term

Xi,d
t =

∑

s∈[0,t]

ΔXi
s (6.4.10)

for t ∈ [0,∞) and i ∈ {1, 2, . . . , }. Furthermore, M i,c denotes in (6.4.9) a
continuous (A, P )-local martingale, see (5.2.26), and Ai,d a continuous process
of finite total variation, see (5.2.25).

Theorem 6.4.2. For a twice continuously differentiable function u : [0,∞)
×�� → �, with continuous first derivative with respect to time and second
continuous derivatives with respect to the spatial variables, we have the Itô
formula
u(t,X1

t , . . . , X
�
t ) = u(0, X1

0 , . . . , X
�
0)

+
∫ t

0

∂

∂t
u(s,X1

s , . . . , X
�
s) ds+

�∑

i=1

∫ t

0

∂

∂xi
u(s,X1

s , . . . , X
�
s) dX

i,c
s

+
1
2

∫ t

0

�∑

i,k=1

∂2

∂xi ∂xk
u(s,X1

s , . . . , X
�
s) d[M

i,c,Mk,c]s

+
∑

s∈(0,t]

Δu(s,X1
s , . . . , X

�
s) (6.4.11)

for t ∈ [0,∞). Here the jump size Δu of u at time s is defined as in (5.5.8),
namely

Δu(s,X1
s , . . . , X

�
s) = u(s,X1

s , . . . , X
�
s) − u(s−, X1

s−, . . . , X
�
s−). (6.4.12)
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A proof of the general Itô formula (6.4.11) can be found, for instance, in
Protter (2004). We remark that in (6.4.11) the jumps are simply transferred
through the function u whenever they occur. The Itô formula is almost identi-
cal to that for diffusions if there were no jumps. The above general Itô formula
can be essential for situations where continuous and event driven uncertainty
arises in a model. Similarly to (6.2.14) we can write the Itô formula (6.4.11)
in the form

du(t,X1
t , . . . , X

�
t ) =

∂

∂t
u(t,X1

t , . . . , X
�
t ) dt+

�∑

i=1

∂

∂xi
u(t,X1

t , . . . , X
�
t ) dX

i,c
t

+
1
2

�∑

i,k=1

∂2

∂xi ∂xk
u(t,X1

t , . . . , X
�
t ) d[X

i,c, Xk,c]t +Δu(t,X1
t , . . . , X

�
t )(6.4.13)

for t ∈ [0,∞).

Exponential of Compensated Poisson Process (*)

Let us continue the example concerning the exponential of a Poisson process
by considering the compensated Poisson process q = {qt, t ∈ [0,∞)}, which
is a jump martingale, where

dqt = dNt − λ dt (6.4.14)

for t ∈ [0,∞). By the Itô formula (6.4.11) we obtain for u(qt) = exp{c qt} the
stochastic differential

d (exp{c qt}) = − exp{c qt−}λ dt+ exp{c qt−} (ψexp(t−) − 1) dNt

= exp{c qt−}λ (ψexp(t−) − 2) dt

+ exp{c qt−} (ψexp(t−) − 1) dqt

= exp{c qt−}λ (ec − 2) dt+ exp{c qt−} (ec − 1) dqt (6.4.15)

for t ∈ [0,∞). Here the jump ratio ψexp(t−) = ec remains as in the case of
the exponential of a Poisson process. Note that the last part of the sum on
the right hand side of (6.4.15) is a martingale differential.

Exponential for Wiener Process with Jumps (*)

To provide another example for the above Itô formula (6.4.11) let us add to
the dynamics of a Poisson process a Wiener process W = {Wt, t ∈ [0,∞)} and
a trend. We consider now the exponential of the process X = {Xt, t ∈ [0,∞)}
with Itô differential

dXt = g dt+ σ dWt + c (dNt − λ dt) (6.4.16)



226 6 The Itô Formula

for t ∈ [0,∞). Here we use as additional parameters the growth rate g, the
intensity λ and the volatility σ. The Itô formula (6.4.11) yields for the expo-
nential

u(Xt) = exp{Xt}
the stochastic differential

d (exp{Xt}) = exp{Xt}
(
g +

1
2
σ2 + λ (ψexp(t) − 2)

)
dt+ exp{Xt}σ dWt

+ exp{Xt−} (ψexp(t−) − 1) dqt

= exp{Xt−}
((

g +
1
2
σ2 + λ (ec − 2)

)
dt+ σ dWt + (ec − 1) dqt

)

(6.4.17)

for t ∈ [0,∞). We observe that besides the jump terms all other terms are as
in the earlier versions of the Itô differential for geometric Brownian motion, see
(6.1.17). Therefore, we could call the above exponential a geometric Brownian
motion with jumps. The jumps of Xt are transformed by the exponential
function, analogous as described already by the identity (6.4.4).

This example indicates that the Itô formula is a powerful tool that allows
us to determine the stochastic differential of a function of a given stochastic
differential even when jumps are present. We emphasize that the jumps are
directly transferred through the given function, which makes the jump part
in (6.4.17) very simple to interpret. The above jump diffusion dynamics in
(6.4.16) is a special case of the Merton model, see Merton (1976), which we
shall study later.

Itô Formula for Poisson Jump Measure (*)

A particular case of the Itô formula (6.4.11) is obtained when only Wiener
processes and Poisson jump measures are involved. Let us assume that W =
{W t = (W 1

t , . . . , W
m
t )�, t ∈ [0,∞)} is an m-dimensional standard Wiener

process and pr
ϕr

(dv, dt) denotes a Poisson measure on E× [0,∞) with intensity
measure

νr
ϕr

(dv, dt) = ϕr(dv) dt, (6.4.18)

r ∈ {m + 1,m + 2, . . . , ̄}, as introduced in Sect. 3.5 and used in Sect. 5.5.
Suppose that the ith component Xi

t at time t of the process X has the rep-
resentation

Xi
t = Xi

0 +
∫ t

0

ai
s ds+

m∑

k=1

∫ t

0

bi,ks dW k
s +

�̄∑

r=m+1

∫ t

0

∫

E
ci,r(v, s−) pr

ϕr
(dv, ds)

(6.4.19)
for t ∈ [0,∞) and i ∈ {1, 2, . . . , }, where ai, bi,j and ci,r are appropriately
chosen adapted processes and the mark space is given as E = �\{0}. Then
the following version of the Itô formula follows from (6.4.11).
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Corollary 6.4.3. For a function u : [0,∞) × �� → �, which is assumed
to be differentiable with respect to t and twice differentiable with respect to x,
for the above process X the Itô formula has the form

u(t,X1
t , . . . , X

�
t ) = u(0, X1

0 , . . . , X
�
0) +

∫ t

0

(
∂u(s,X1

s , . . . , X
�
s)

∂t

+
�∑

i=1

ai
s

∂

∂xi
u(s,X1

s , . . . , X
�
s)

+
1
2

�∑

i,j=1

m∑

k=1

bi,ks bj,ks

∂2u(s,X1
s , . . . , X

�
s)

∂xi ∂xj

⎞

⎠ ds

+
m∑

k=1

�∑

i=1

∫ t

0

bi,ks

∂u(s,X1
s , . . . , X

�
s)

∂xi
dW k

s

+
�̄∑

r=m+1

∫ t

0

∫

E

(
u(s,X1

s , . . . , X
�
s)

−u(s,X1
s−, . . . , X

�
s−)
)
pr

ϕr
(dv, ds) (6.4.20)

for t ∈ [0,∞).

By using (6.4.20) it is straightforward to handle problems which include
Lévy processes as underlying factors.

6.5 Lévy’s Theorem (*)

Identification of Martingales as Wiener Processes (*)

The Wiener process is a basic building block in financial modeling and plays
a central role in stochastic calculus. A definition of the Wiener process is
given via the properties (3.2.6). By (5.1.5) we saw that the Wiener process is
a martingale and from (5.2.5) it followed that its quadratic variation equals
time t. Note that the converse of this result can be shown, namely that a
continuous martingale with a quadratic variation that equals time, is a Wiener
process. Lévy’s Theorem provides this important result, which we formulate
below for multi-dimensional continuous martingales. Its derivation relies on
an application of the multivariate Itô formula.

Theorem 6.5.1. (Lévy) For m ∈ N let A be a given m-dimensional
vector process A = {At = (A1

t , A
2
t , . . . , A

m
t )�, t ∈ [0,∞)} on a filtered prob-

ability space (Ω,A,A, P ). If each of the processes Ai = {Ai
t, t ∈ [0,∞)} is a
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continuous, square integrable (A, P )-martingale that starts at 0 at time t = 0
and their covariations are of the form

[Ai, Ak]t =
{
t for i = k
0 for i = k

(6.5.1)

for i, k ∈ {1, 2, . . . ,m}, t ∈ [0,∞), then the vector process A is an m-
dimensional standard Wiener process on [0,∞). This means that each pro-
cess Ai is a one-dimensional Wiener process that is independent of the other
Wiener processes Ak for k = i.

In particular, one can show that this result implies that a continuous pro-
cess X = {Xt, t ∈ [0,∞)} is a one-dimensional Wiener process if and only
if both the process X and the process Y = {Yt = X2

t − t, t ∈ [0,∞)} are
martingales. Furthermore, if one is able to construct for an observed vector
process a transformation such that the transformed processes are square in-
tegrable continuous martingales with covariations of the form (6.5.1), then
one has found the basic building blocks of the given dynamics in the form of
a vector of independent Wiener processes. In this case one needs then only
to take the inverse of that transformation to arrive at a realistic model. It is
a challenge in financial modeling to construct a parsimonious market model
with the above property.

Proof of Lévy’s Theorem (*)

To indicate the proof of the above theorem we consider the characteristic
function

φAt−As(θ) = E

(

exp

{

ı

m∑

k=1

θk (Ak
t −Ak

s)

}∣
∣
∣
∣As

)

(6.5.2)

for θ ∈ �m, t ∈ [0,∞) and s ∈ [0, t], with ı denoting the imaginary unit, see
(1.3.77).

By application of a complex valued version of the Itô formula (6.4.11) for
semimartingales we obtain

exp

{

ı

m∑

k=1

θk Ak
t

}

−exp

{

ı

m∑

k=1

θk Ak
s

}

=
m∑

k=1

∫ t

s

ı θk exp

{

ı

m∑

l=1

θl Al
u

}

dAk
u

+
1
2

m∑

k=1

∫ t

s

(
−(θk)2

)
exp

{

ı

m∑

l=1

θl Al
u

}

du. (6.5.3)

We have introduced the Itô integral with respect to general integrators in
(5.3.11). The martingale property for Itô integrals, which follows for inte-
grators that are Wiener processes and integrands that are from L2

T , when
considered on [0, T ] with T ∈ (0,∞), can be naturally extended to cover the
wider class of square integrable martingale integrators with integrands that
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appear in (6.5.3), see Protter (2004). This means that the terms in the first
sum on the right hand side of (6.5.3) are martingales and we have

E

(∫ t

s

exp

{

ı

m∑

l=1

θl Al
u

}

dAk
u

∣
∣
∣As

)

= 0. (6.5.4)

Let us now choose any event F ∈ As and denote by 1F the indicator function
that equals one if F occurs. Then multiplying both sides of (6.5.3) by

1F exp

{

−ı
m∑

k=1

θk Ak
s

}

and taking expectations yields

G(t) − P (F) = −1
2

m∑

k=1

(θk)2
∫ t

s

G(u) du,

where

G(u) = E

(

exp

{

ı

m∑

k=1

θk (Ak
u −Ak

s)

}

1F

)

for u ∈ [0, t]. The solution to this ordinary integral equation is given by

G(t) = P (F) exp

{

−1
2

m∑

k=1

(θk)2 (t− s)

}

.

Consequently, by the Bayes’s formula for conditional means, see (1.1.13) or
Karatzas & Shreve (1991), we obtain

E

(

exp

{

ı

m∑

k=1

θk (Ak
t −Ak

s)

}∣
∣
∣
∣F
)

=
G(t)
P (F)

= exp

{

−1
2

m∑

k=1

(θk)2 (t− s)

}

.

Clearly, this result holds for any F ∈ As. Therefore, we have shown that for
all θ ∈ �m, t ∈ [0,∞) and s ∈ [0, t] the characteristic function of the vector
increment At − As is of the form

φAt−As(θ) = exp

{

−1
2

m∑

k=1

(θk)2 (t− s)

}

. (6.5.5)

It is known, see (1.4.58), that this is the characteristic function of a vector
of independent Gaussian distributed random variables, each with mean zero
and variance (t − s). Since the characteristic function of a random vector
identifies uniquely the joint distribution of this random vector, we see by
the Definition 6.2.1 that the process A is an m-dimensional standard Wiener
process. ��



230 6 The Itô Formula

6.6 A Proof of the Itô Formula (*)

Since the Itô formula is extremely important in quantitative finance we
highlight in the following the main steps of a classical proof of this fun-
damental tool. For simplicity, we consider the scalar, continuous process
X = {Xt, t ∈ [0,∞)}, given in (6.1.6), that is

Xt = X0 +
∫ t

0

es ds+
∫ t

0

fs dWs (6.6.1)

for t ∈ [0,∞) with initial value X0 = x0, standard Wiener process W = {Wt,
t ∈ [0,∞)} and predictable processes e and f , where the second integral is an
Itô integral. The proof of the multi-dimensional Itô formula stated in (6.2.11)
is a straightforward generalization of what will be given below.

Theorem 6.6.1. If we assume that u : [0, T ]×� → � is a function of time
t ∈ [0, T ] and state variable x ∈ � such that the partial derivatives ∂u(t,x)

∂t ,
∂u(t,x)

∂x and ∂2u(t,x)
∂x2 exist and are continuous for all (t, x) ∈ [0, T ] × � and√

|e|, f ∈ L2
T , see (5.4.1), then the Itô formula can be written in the form

du(t,Xt) =
(
∂u(t,Xt)

∂t
+ et

∂u(t,Xt)
∂x

+
1
2

(ft)2
∂2u(t,Xt)

∂x2

)
dt

+ ft
∂u(t,Xt)

∂x
dWt (6.6.2)

for t ∈ [0, T ].

A Lemma (*)

Before we begin with the proof of the Itô formula given in Theorem 6.6.1 let
us summarize some application of the Taylor series expansion and the Mean
Value Theorem of classical calculus in a simple lemma.

Lemma 6.6.2. Let the function u : [0, T ] × � → � be as in Theorem 6.6.1.
Then for any t, t + Δt ∈ [0, T ] and x, x + Δx ∈ � there exist constants
α, β ∈ [0, 1] such that

u(t+Δt, x+Δx) − u(t, x) =
∂u(t+ αΔt, x)

∂t
Δt+

∂u(t, x)
∂x

Δx

+
1
2
∂2u(t, x+ βΔx)

∂x2
(Δx)2.
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Proof of Theorem 6.6.1 (*)

1. First assume that e and f are deterministic constants, that is, they do not
depend on t. We choose a continuous sample-path of X and fix a subinterval
[s, t] ⊆ [0, T ], for which we consider partitions of the form s = t

(n)
1 < t

(n)
2 <

. . . < t
(n)
n+1 = t with Δt

(n)
j = t

(n)
j+1 − t

(n)
j and δ(n) = max1≤j≤n Δt

(n)
j , where

limn→∞ δ(n) a.s.= 0. Then

u (t,Xt) − u (s,Xs) =
n∑

j=1

Δu
(n)
j ,

where
Δu

(n)
j = u

(
t
(n)
j+1, Xtn

j+1

)
− u
(
t
(n)
j , Xtn

j

)

for j ∈ {1, 2, . . . , n}. Applying Lemma 6.6.2 on each subinterval [t(n)
j , t

(n)
j+1] for

each ω ∈ Ω, we have α(n)
j , β(n)

j ∈ [0, 1] such that

Δu
(n)
j =

∂u

∂t

(
t
(n)
j + α

(n)
j Δt

(n)
j , Xtn

j

)
Δt

(n)
j

+
∂u

∂x

(
t
(n)
j , Xtn

j

)
ΔX

(n)
j

+
1
2
∂2u

∂x2

(
t
(n)
j , Xtn

j
+ β

(n)
j ΔX

(n)
j

)(
ΔX

(n)
j

)2

, (6.6.3)

almost surely, where ΔX
(n)
j = Xtn

j+1
− Xtn

j
for j ∈ {1, 2, . . . , n}. By the

continuity of ∂u
∂t and ∂2u

∂x2 , and the sample-path continuity of X, we have for
each j ∈ {1, 2, . . . , n}

lim
n→∞

∂u

∂t

(
t
(n)
j + α

(n)
j Δt

(n)
j , Xtn

j

)
− ∂u

∂t

(
t
(n)
j , Xtn

j

)
a.s.= 0, (6.6.4)

and

lim
n→∞

∂2u

∂x2

(
t
(n)
j , Xtn

j
+ β

(n)
j ΔX

(n)
j

)
− ∂2u

∂x2

(
t
(n)
j , Xtn

j

)
a.s.= 0. (6.6.5)

Since e and f are independent of t, the increments of X are of the form

ΔX
(n)
j = eΔt

(n)
j + fΔW

(n)
j ,

where ΔW
(n)
j = Wtn

j+1
−Wtn

j
for j ∈ {1, 2, . . . , n}. Consequently, it can be

shown that the sum
n∑

j=1

{(
ΔX

(n)
j

)2

−
(
fΔW

(n)
j

)2
}

= e2
n∑

j=1

(
Δt

(n)
j

)2

+ 2ef
n∑

j=1

ΔW
(n)
j Δt

(n)
j

(6.6.6)
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tends to 0 in probability for δ(n) → 0 as n → ∞. By combining rela-
tions (6.6.3)–(6.6.6) we see that under convergence in probability

u(t,Xt) − u(s,Xs)
P= lim

n→∞

n∑

j=1

Δu
(n)
j

P= lim
n→∞

n∑

j=1

{
∂u

∂t

(
t
(n)
j , Xtn

j

)
+ e

∂u

∂x

(
t
(n)
j , Xtn

j

)

+
1
2
f2 ∂

2u

∂x2

(
t
(n)
j , Xtn

j

)}
Δt

(n)
j

+ lim
n→∞

n∑
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. (6.6.7)

The first two terms on the right hand side of (6.6.7) are the terms on the right
hand side of (6.6.2). We shall show that the last term in (6.6.7) converges to
zero in probability for n → ∞. Let us write Γ (n)

j = (ΔW (n)
j )2 − Δt

(n)
j with

1(N)
n,j denoting the indicator function of the set

A
(N)
n,j =

{
ω ∈ Ω :

∣
∣Xtn

i

∣
∣ ≤ N for i ∈ {1, 2, . . . , j}

}

for j ∈ {1, 2, . . . , n}. For fixed n the random variables Γ (n)
j are independent

with mean E
(
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(n)
j

)
= 0 and variance E

((
Γ

(n)
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)2
)

= 2
(
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(n)
j

)2

for j ∈

{1, 2, . . . , n}. Using this result we obtain the estimate
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2CN |t− s| δ(n) P= 0.
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Here we have used the upper bound

CN = max
s≤z≤t
|x|≤N

∣
∣
∣
∣
∂2u

∂x2 (z, x)
∣
∣
∣
∣

2

< ∞.

As mentioned in Sect. 2.1, for an event D its complement denoted by Dc is
given by Dc = {ω ∈ Ω : ω ∈ D}. Since

n⋃

j=1

(
A

(N)
n,j

)c

⊆ B(N) =
{
ω ∈ Ω : sup

s≤z≤t
|Xz| > N

}
,

so that limN→∞ P
(
B(N)

)
= 0, then limN→∞ P (A(N)

n,j ) = 1. Combining these
two results it can be shown that the last term in (6.6.7) converges to zero
in probability n → ∞. For e and f , which do not depend on t, the proof
is thus complete. We can show that a similar result holds for random step
functions e and f since these remain constant within partition subintervals,
when conditioned on the sigma-algebra of the last discretization point.

2. For general e and f with
√

|e|, f ∈ L2
T we can construct sequences of

step functions (
√

|e(n)|), (f (n)) in L2
T such that the integrals

lim
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∣e(n)
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∣
∣ dz
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and
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n→∞

∫ t

s

∣
∣
∣f (n)

z − fz

∣
∣
∣
2

dz
P= 0

converge in probability to zero. This is because p-mean convergence for p = 1
implies convergence in probability, see (2.7.6). Then we can show that the
sequence defined by

X(n)
r = Xs +

∫ r

s

e(n)
z dz +

∫ r

s

f (n)
z dWz

converges in probability to Xr as n → ∞ for each r ∈ [0, t] and s ∈ [0, r],
that is limn→∞X

(n)
r

P= Xr. Since the Itô formula has been shown for step
functions, then

u
(
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dz
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z

∂u

∂x
(z,X(n)

z ) dWz, (6.6.8)
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almost surely for each n. Now, from the convergence of X(n)
z to Xz in proba-

bility as n → ∞ for z ∈ [s, t] it follows convergence in probability for the left
hand side of (6.6.8), that is

lim
n→∞

(u(t,X(n)
t ) − u(s,X(n)

s )) P= u(t,Xt) − u(s,Xs). (6.6.9)

Using similar arguments as given in the first part of this proof it can be
shown that under convergence in probability
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and

lim
n→∞
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s

f (n)
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∂u
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(
z,X(n)

z

)
dWz

P=
∫ t

s

fz
∂u

∂x
(z,Xz) dWz. (6.6.11)

As explained at the end of Sect.2.1, by taking subsequences the above conver-
gences in probability can be considered to hold a.s. Thus, we see by passing
to the limit on both sides of equation (6.6.8) for n → ∞ it follows that equa-
tion (6.6.2) holds a.s. The processes on the two sides of equation (6.6.2) are
continuous and, thus, indistinguishable, see (3.1.6). Note that the integrals
appearing on the right hand side of (5.4.1) are well defined as limits in prob-
ability. This means that these integrals can be interpreted in a wider sense,

namely as limits in probability, when either
√∣
∣
∣∂u(·,X(·))

∂t

∣
∣
∣,
√∣
∣
∣e(·) ∂u(·,X(·))

∂x

∣
∣
∣,

√
f2(·)

∣
∣
∣∂

2u(·,X(·))
∂x2

∣
∣
∣ or

∣
∣
∣f(·) ∂u(·,X(·))

∂x

∣
∣
∣ are not elements of the space L2

T . In

cases where the integrals in (5.4.1) exist in the mean square sense, as described
in Sect. 5.3, these limits coincide almost surely with the limits in probability.
��

6.7 Exercises for Chapter 6

6.1. Derive the Itô differential for (Yt)2 if Y = {Yt = a t + bWt, t ∈ [0,∞)}
denotes a transformed Wiener process, where W is a standard Wiener process.

6.2. Determine for a geometric Brownian motion Zt = Z0 exp{μ t+σWt} the
Itô differential for Zt and ln(Zt) by the use of the Itô formula, where W is a
standard Wiener process.

6.3. What is the Itô differential for the square (Zt)2 of the geometric Brownian
motion in Exercise 6.2?
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6.4. Derive the Itô differential for the inverse (Zt)−1 of the geometric Brow-
nian motion in Exercise 6.2.

6.5. Compute the Itô differential of the product Yt Zt of the transformed
Wiener process Y in Exercise 6.1 and the geometric Brownian motion Zt in
Exercise 6.2.

6.6. Consider two transformed Wiener processes with Y 1
t = a1 t+ b1 W

1
t and

Y 2
t = a2 t+ b2 W

2
t , where W 1 and W 2 are two independent standard Wiener

processes. What is the Itô differential for Y 1
t Y 2

t ?

6.7. Assume the same transformed Wiener processes as in Exercise 6.6 and
compute the Itô differential for the expression exp{Y 1

t } exp{Y 2
t }.

6.8. Calculate the covariation between a standard Wiener process and its
square.

6.9. (*) Assume ξ : [0,∞) → � is a given deterministic function of time and
that X is given by an Itô integral, such that

Xt =
∫ t

0

ξ(s) dWs

for t ∈ [0,∞), where W is a standard Wiener process. Show that Y = {Yt =
X2

t − [X]t, t ∈ [0,∞)} is a martingale.

6.10. (*) For a process X = {Xt, t ∈ [0,∞)} with Xt = σWt+ξ Nt, where W
is a standard Wiener process and N a Poisson process with intensity λ > 0,
characterize the stochastic differential of its exponential when σ, ξ > 0.

6.11. (*) For the sum Xt = aN1
t + bN2

t , where N1 and N2 are two in-
dependent Poisson processes with intensity λ > 0, compute the stochastic
differential of the exponential.
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Stochastic Differential Equations

Stochastic differential equations provide a powerful mathematical framework
for the continuous time modeling of asset prices and general financial markets.
We consider both scalar and vector stochastic differential equations which al-
low us to model feedback effects in the market. Explicit solutions will be given
in certain cases. Furthermore, questions related to the existence and unique-
ness of solutions will be discussed. We also mention stochastic differential
equations with jumps which allow us to model event driven uncertainty.

7.1 Solution of a Stochastic Differential Equation

Feedback in Asset Price Dynamics

The modeling of changes in financial quantities which depend on their actual
values can be achieved by using stochastic differential equations (SDEs), see
for instance (6.1.17) and (6.3.7). This allows us to discuss situations where
the evolution of the asset price depends on some feedback, which arises in
any realistic market dynamics. The solution of an SDE coincides with a corre-
sponding stochastic integral equation or Itô differential with integrands that
may be functions of the financial quantity itself. The specification of these
functions allows the modeling of feedback effects.

As an equation, an SDE contains an unknown, which is its solution process.
Therefore, the notion of a solution of an SDE is more complex than that
of an Itô differential. It needs additional mathematical clarification. In any
case, a solution of an SDE is a stochastic process. To be useful in practical
modeling, such a solution needs to exist in an appropriate mathematical sense.
Furthermore, the uniqueness of the solution for an SDE has to be examined
to make sure that one achieves the targeted modeling goal.

It is highly efficient, and also rather elegant, to model financial quantities
via SDEs rather than discrete time stochastic processes. This does not dimin-
ish the important contribution and lasting impact of time series type models in

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,
Springer Finance,
© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010
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finance, as developed in Engle (1982) and Bollerslev (1986). However, time is
evolving continuously. For different observation time step sizes, for instance,
daily or hourly, discrete time models provide often rather different calibra-
tion results and thus possibly inconsistent answers. A financial market model
should be robust when observed for small time step sizes. The framework of
SDEs yields such robustness. It is also more compact than the discrete time
series approach. In particular, it permits general transformations and other
manipulations in continuous time via stochastic calculus without the need to
deal with resulting error terms that arise from time discretizations. This has
been pointed out by Merton in his important work on continuous time finance
summarized in Merton (1992). Continuous dynamics can be efficiently mod-
eled by the drift and diffusion coefficient functions that determine an SDE.
Later we shall point out that under the benchmark approach one often needs
only to specify the diffusion coefficients in a model. The drift coefficients are
automatically determined by the general nature of the market dynamics.

A Discrete Time Approximation of an SDE

First, as an introduction, let us consider an asset price process Xh = {Xh(t),
t ∈ [0,∞)}, which is recursively defined for discrete time points tk = k h,
k ∈ {0, 1, . . .}, with time step size h > 0, by the relation

ΔXh(tk) = Xh(tk+1)−Xh(tk) = aXh(tk)h+σXh(tk) (Wtk+1 −Wtk
) (7.1.1)

for k ∈ {0, 1, . . .} with initial value Xh(0) = x0. For simplicity, between dis-
cretization points one may interpret the solution as being piecewise constant.
Here the parameter a is the appreciation rate and σ is the volatility parameter,
see Sect. 6.3. The process W = {Wt, t ∈ [0,∞)} denotes a standard Wiener
process.

Inspection of the stochastic difference equation (7.1.1) reveals that the in-
crement ΔXh(tk) is conditionally Gaussian distributed with mean aXh(tk)h
and variance σ2 (Xh(tk))2 h. Depending on what the actual value Xh(tk) of
the asset price is at time tk, its increment has a mean that is proportional to
this value. Similarly, its deviation σXh(tk)

√
h is also proportional to its cur-

rent value. Consequently, current asset price values influence the increments of
the asset price. In this manner they are producing a feedback effect. Note that
for a given Wiener path a specific trajectory for Xh is obtained recursively
for all discretization points tk, k ∈ {0, 1, . . .}, by the corresponding solution
of the stochastic difference equation (7.1.1).

Stochastic difference equations of the type (7.1.1) can be used for the
simulation of asset prices. Many of the figures that we provide within this book
are simply generated by an Euler-Maruyama scheme, which is a generalization
of (7.1.1). For detailed information on the numerical solution of SDEs we refer
to Kloeden & Platen (1999) and our introduction to numerical methods in
quantitative finance in Chap. 15.
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Limit of a Discrete Time Approximation

In the above example, an important question is: what would be obtained if
the time step size h were to converge to zero? It can be shown, see Kloeden
& Platen (1999), that Xh converges, for instance, in mean square sense, see
(2.7.3), to the process X = {Xt, t ∈ [0,∞)} that satisfies the Itô differential

dXt = aXt dt+ σXt dWt (7.1.2)

for t ∈ [0,∞) and X0 = x0. By comparing (7.1.1) with (7.1.2) this is also
what one would naturally expect. As indicated earlier, since there is some
feedback captured in the Itô differential (7.1.2) it will be called a stochastic
differential equation (SDE).

In some sense the SDE (7.1.2) can be interpreted as the asymptotic char-
acterization of the discretely observed stochastic difference equation (7.1.1).
Most importantly, for small time step size h, it does not significantly depend
on the grid parameter h.

This is different to the time series approach, which is, see Engle & Boller-
slev (1986), usually dependent on the chosen time step size. In some cases it is
possible to identify limiting SDEs for popular time series models. By appropri-
ately normalizing the parameters, Nelson (1990) has identified such limiting
SDEs for some time series involved models. We shall study such dynamics in
Sect. 12.4.

Since we want to take full advantage of the power and elegance of stochas-
tic calculus we shall build financial market models directly in continuous time
by using SDEs. This then avoids any discretization effects in the model de-
scription and gives full access to manipulations via stochastic calculus when
transforming financial quantities.

Let us show that (7.1.2) is the SDE that has geometric Brownian motion
as its explicit solution, see (4.1.2). For this purpose we rewrite equation (4.1.2)
for geometric Brownian motion in the form

Xt = X0 exp{Lt} (7.1.3)

with some transformed Wiener process L = {Lt, t ∈ [0,∞)}, which is charac-
terized by the Itô differential

dLt = g dt+ b dWt (7.1.4)

for t ∈ [0,∞) with L0 = ln(x0). By application of the Itô formula (6.1.12) the
corresponding Itô differential for Xt is obtained as

dXt = Xt

(
g +

1
2
b2
)
dt+Xt b dWt (7.1.5)

for t ∈ [0,∞) with X0 = x0. Comparing (7.1.2) and (7.1.5) reveals that the
SDE (7.1.2) has a solution, which is a geometric Brownian motion, see (4.1.2),
with growth rate g = a− 1

2 σ
2, volatility b = σ and initial value X0 = x0.
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When combining (7.1.3) and (7.1.4), one can identify at time t an explicit
solution of the SDE (7.1.5) as a function of the standard Wiener process value
Wt that is given in the form

Xt = x0 exp
{(

a− 1
2
σ2

)
t+ σWt

}
(7.1.6)

for t ∈ [0,∞). Since this function is a solution for the SDE (7.1.2), it also
means that there exists a stochastic process X = {Xt, t ∈ [0,∞)} such that
(7.1.2) is satisfied for all t ∈ [0,∞). Note that the appreciation rate a =
g + 1

2 σ
2 is larger than the growth rate g. This is an effect that results from

stochastic calculus and would not appear if Wt were differentiable.
The existence of a solution of an SDE does not automatically mean that

this solution is also unique. There may also be other solutions that satisfy
the given SDE. However, as we shall see later, the above solution is indeed
unique. Recall that we have previously displayed sample paths of geometric
Brownian motions, for instance, in Fig. 4.1.2. These paths can be interpreted
as trajectories of the solution of an SDE of the form (7.1.5).

Solution of an SDE

More generally, we say that a stochastic process Y = {Yt, t ∈ [t0,∞)} is a
solution of a given SDE

dYt = μ(t, Yt) dt+ b(t, Yt) dWt (7.1.7)

for t ∈ [t0,∞), with initial value Yt0 = y0, 0 ≤ t0 < ∞, and driving standard
Wiener process W , if the process Y has for all t ∈ [t0,∞) an Itô differential
of the form (7.1.7). More precisely, a solution of the SDE (7.1.7) is a pair
(Y,W ) of adapted stochastic processes that are defined on the given filtered
probability space (Ω,A,A, P ). This pair needs to be such that W is a standard
Wiener process and the continuous process Y satisfies a.s. for each t ∈ [t0,∞)
the Itô integral equation

Yt = y0 +
∫ t

t0

μ(s, Ys) ds+
∫ t

t0

b(s, Ys) dWs. (7.1.8)

Here we need to assume that both integrals on the right hand side of (7.1.8)
exist. For instance, it is sufficient when the processes

√
|μ| and b are chosen

from a set L2
T , see (5.4.1), for some T ∈ [0,∞). However, weaker assumptions

are also sufficient, see Chap. 5.
As was the case for Itô differentials, the SDE (7.1.7) is only a shorthand

notation for the integral equation (7.1.8). Conditions that ensure the existence
and uniqueness of a solution of an SDE will be discussed later.
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7.2 Linear SDE with Additive Noise

Linear SDEs are those that have linear drift and diffusion coefficients. The
BS-SDE (7.1.2) is an example of a linear SDE. We call a solution of an SDE
an explicit solution, if it has an analytic representation which does not use the
solution itself. Linear SDEs form a class of SDEs that have explicit solutions.
When an SDE has an explicit solution, then not only the question of the exis-
tence of a solution is resolved, one also can efficiently study most quantitative
problems related to this SDE. In this section we shall study some properties
of linear SDEs.

Linear SDE with Additive Noise

Let us first consider the linear SDE with additive noise

dXt = (a1(t)Xt + a2(t)) dt+ b2(t) dWt (7.2.1)

for t ∈ [t0,∞), where the coefficients a1, a2 and b2 are deterministic functions
of time t. In the drift coefficient we have a feedback effect introduced, which
is linear in Xt. Here the initial value Xt0 is a given constant and W is a
standard Wiener process. The SDE (7.2.1) covers, for instance, the Ornstein-
Uhlenbeck process, see (4.2.3), and short rate models proposed in Merton
(1973a), Ho & Lee (1986) and Vasicek (1977).

We form a homogeneous equation from (7.2.1) by setting a2(t) = b2(t) = 0.
For this ordinary differential equation (ODE) of the form

dΦt,t0 = a1(t)Φt,t0 dt (7.2.2)

with initial condition Φt0,t0 = 1 we obtain its fundamental solution

Φt,t0 = exp
{∫ t

t0

a1(s) ds
}

for t ∈ [t0,∞), which is unique due to the linearity of (7.2.2). Assume that
a solution of the SDE (7.2.1) exists. Applying the Itô formula (6.1.13) to the
transformation U(t, x) = Φ−1

t,t0 x for the solution Xt of (7.2.1), we obtain

d
(
Φ−1

t,t0Xt

)
=

(
dΦ−1

t,t0

dt
Xt + (a1(t)Xt + a2(t))Φ−1

t,t0

)

dt+ b2(t)Φ−1
t,t0 dWt

= a2(t)Φ−1
t,t0 dt+ b2(t)Φ−1

t,t0 dWt, (7.2.3)

since
dΦ−1

t,t0

dt
= −Φ−1

t,t0 a1(t)

for t ∈ [t0,∞).
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Explicit Solution

The right hand side of the SDE (7.2.3) only involves known functions of time
t as integrands. Consequently, these can be integrated to give

Φ−1
t,t0 Xt = Φ−1

t0,t0 Xt0 +
∫ t

t0

a2(s)Φ−1
s,t0 ds+

∫ t

t0

b2(s)Φ−1
s,t0 dWs.

Since Φt0,t0 = 1 this leads to the explicit solution

Xt = Φt,t0

(
Xt0 +

∫ t

t0

a2(s)Φ−1
s,t0 ds+

∫ t

t0

b2(s)Φ−1
s,t0 dWs

)
(7.2.4)

for t ∈ [t0,∞) for the linear SDE (7.2.1) with additive noise.

Ornstein-Uhlenbeck Examples

As an example we consider a standard Ornstein-Uhlenbeck process, see (4.2.3)
and (4.5.6). This is a diffusion process with drift function a(s, x) = −x and
diffusion coefficient function b(s, x) =

√
2. Taking into account our discussion

on diffusion processes in the context of relations (4.3.6) and (7.1.7), one notes
that the standard OU process solves a linear SDE with additive noise given
by

dXt = −Xt dt+
√

2 dWt (7.2.5)

for t ∈ [t0,∞) with initial value Xt0 at time t0. From the relation (7.2.4) we
obtain the explicit solution of (7.2.5) in the form

Xt = exp{−(t− t0)}Xt0 +
∫ t

t0

√
2 exp{−(t− s)} dWs (7.2.6)

for t ∈ [t0,∞). Recall that a sample path of a standard OU process was shown
in Fig. 4.2.4 and that the transition density of the standard OU process is
Gaussian, see (4.2.3).

More generally, one can show that the SDE

dXt = γt (X̄t −Xt) dt+ βt dWt (7.2.7)

of an Ornstein-Uhlenbeck (OU) process for t ∈ [t0,∞) with initial value Xt0

at time t0 ∈ [0,∞) has the explicit solution

Xt = Xt0 exp
{
−
∫ t

t0

γs ds

}
+
∫ t

t0

exp
{
−
∫ t

s

γu du

}
γs X̄s ds

+
∫ t

t0

exp
{
−
∫ t

s

γu du

}
βs dWs (7.2.8)
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Fig. 7.2.1. Vasicek interest rate dynamics

for t ∈ [t0,∞). Here γt is the speed of adjustment at time t, X̄t the reference
level or mean reversion level and βt the diffusion coefficient at time t. For
γt > 0 the solution of the OU SDE reverts always back to the reference level
X̄t. The transition density for the solution of the OU SDE, see also (4.2.3), is
Gaussian with mean and variance that can be obtained from (7.2.8), as will
be discussed below. The SDE (7.2.7) with solution (7.2.8) can be interpreted
as that of the Vasicek (1977) interest rate model when setting the parameters
constant. The reference level X̄t = X̄ is then the long-term average value of
the interest rate. The parameter βt = β characterizes the magnitude of the
fluctuations of the short rate. The speed of adjustment parameter γt = γ
determines how long it takes for a shock to the short rate loses its impact. In
Fig. 7.2.1 we show typical short rate dynamics under the Vasicek model with
t0 = 0, X̄ = X0 = 0.05, β = 0.01 and γ = 2. Note the mean reverting feature
of the path of the OU process.

7.3 Linear SDE with Multiplicative Noise

General Linear SDE

We now consider a general linear SDE which also covers the case of multi-
plicative noise. It is given by

dXt = (a1(t)Xt + a2(t)) dt+ (b1(t)Xt + b2(t)) dWt (7.3.1)

for t ∈ [t0,∞), where a1, a2, b1 and b2 are appropriate deterministic func-
tions of time and W is a standard Wiener process. We assume that for the
possibly random initial value Xt0 its mean and variance are given and Xt0 is
independent of the Wiener process W .
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Explicit Solution

Using similar arguments to those above, it can be shown by the Itô formula
that the linear SDE (7.3.1) has an explicit solution of the form

Xt = Ψt,t0

(
Xt0 +

∫ t

t0

(a2(s) − b1(s) b2(s))Ψ−1
s,t0 ds+

∫ t

t0

b2(s)Ψ−1
s,t0 dWs

)
,

(7.3.2)
where

Ψt,t0 = exp
{∫ t

t0

(
a1(s) −

1
2
b21(s)

)
ds+

∫ t

t0

b1(s) dWs

}
(7.3.3)

for t ∈ [t0,∞). It is easy to see for b1(s) = 0 that for s ∈ [0,∞) that the
expression (7.3.2) reduces to equation (7.2.4).

Moment Equations

The explicit solution (7.2.4) turns out to be a Gaussian process whenever
the initial value Xt0 is either a constant or a Gaussian random variable. Its
mean and second moment both satisfy ODEs. These are stated below for the
general linear SDE (7.3.1). We remark that the solution of the general linear
SDE given by (7.3.2) and (7.3.3) is not always Gaussian.

If we take the expectation of the integral form of equation (7.3.1) and use
the fact that X can be shown to be square integrable, then the martingale
property (5.4.3) of an Itô integral can be exploited and we obtain for the mean

μ(t) = E(Xt) (7.3.4)

the ODE
dμ(t) = (a1(t)μ(t) + a2(t)) dt (7.3.5)

for t ∈ [t0,∞) with μ(t0) = E(Xt0).
Figure 7.3.1 shows the mean μ(t) for an OU process with initial value

t0 = 0, Xt0 = 1, where a1(t) = −1, a2(t) = 0, b1(t) = 0 and b2(t) =
√

2 for
t ∈ [t0, 5]. Note that in this example the mean converges exponentially over
time, according to the formula μ(t) = exp{−t}, towards the reference level or
mean reversion level, which is here zero. More generally, the solution of the
ODE (7.3.5) for the mean has the form

μ(t) = E(Xt0) exp
{∫ t

t0

a1(s) ds
}

+
∫ t

t0

a2(s) exp
{∫ t

s

a1(u) du
}
ds (7.3.6)

for t ∈ [t0,∞).
By similar arguments it can also be shown that the second moment

P (t) = E(X2
t ) (7.3.7)
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Fig. 7.3.1. Mean and variance of an Ornstein-Uhlenbeck process

satisfies the ODE

dP (t) =
((

2a1(t) + b21(t)
)
P (t)+2μ(t) (a2(t) + b1(t) b2(t))+ b22(t)

)
dt (7.3.8)

for t ∈ [t0,∞) and
P (t0) = E

(
X2

t0

)
.

To derive (7.3.8) we apply the Itô formula to obtain an SDE for (Xt)2 and
then take the expectation of the integral form of this equation. Here we use
the fact that Xt can be shown to be square integrable. Both (7.3.5) and (7.3.8)
are linear ODEs and can be solved explicitly as a special case of the linear
SDE (7.2.1).

Figure 7.3.1 displays also the variance v(t) for an OU process. It is easy
to see that the variance

v(t) = P (t) − (μ(t))2 = 1 − e−2(t−t0) (7.3.9)

starts at zero and converges to its long term average value of one.
More generally, the solution of the ODE (7.3.8) is

P (t) = P (t0) exp
{∫ t

t0

(
2 a1(s) + b21(s)

)
ds

}

+
∫ t

t0

(
2μ(s) (a2(s) + b1(s) b2(s)) + b22(s)

)

× exp
{∫ t

s

(
2 a1(u) + b21(u)

)
du

}
ds (7.3.10)

for t ∈ [t0,∞). Therefore, we obtain the variance as the difference
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Fig. 7.3.2. Mean and variance in Black-Scholes model

v(t) = P (t) − (μ(t))2 (7.3.11)

for t ∈ [t0,∞), which uses (7.3.10) and the square of (7.3.6).

Moments of Black-Scholes Model

As an example of a particular linear SDE that is important in finance consider
the SDE of the BS model given by

dXt = aXt dt+ σXt dWt, (7.3.12)

for t ∈ [t0,∞). Using the moment equations (7.3.6), (7.3.9) and (7.3.10), it is
easy to see that we have the mean

μ(t) = Xt0 exp{a (t− t0)} (7.3.13)

and variance

v(t) = P (t) − (μ(t))2 = (Xt0)
2 exp {2 a (t− t0)}

(
exp{σ2 (t− t0)} − 1

)

(7.3.14)
for t ∈ [t0,∞). These formulas show for a > 0 that the mean and the variance
both diverge as t → ∞. These two quantities are shown in Fig.7.3.2 for t0 = 0,
Xt0 = 1, a = 0.07 and σ = 0.2.

7.4 Vector Stochastic Differential Equations

Vector SDE

Obviously, multi-dimensional versions of stochastic processes as solutions of
SDEs are needed for the modeling of financial markets. The relationship be-
tween vector and scalar SDEs is analogous to that between vector and scalar
Itô differentials.
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We recall that W = {W t = (W 1
t ,W

2
t , . . . ,W

m
t )�, t ∈ [t0,∞)} is an m-

dimensional standard Wiener process with components W 1, W 2, . . ., Wm.
These are independent scalar Wiener processes, as described in Sect. 5.1.

We use a d-dimensional vector function a : [t0,∞) × �d → �d and a
d×m-matrix function b : [t0,∞)×�d → �d×m to form a d-dimensional vector
stochastic differential equation

dXt = a(t,Xt) dt+ b(t,Xt) dW t (7.4.1)

for t ∈ [t0,∞) with initial value Xt0 ∈ �d. As was the case for Itô differentials
we have to interpret the differential (7.4.1) as an Itô integral equation of the
form

Xt = Xt0 +
∫ t

t0

a(s,Xs) ds+
∫ t

t0

b(s,Xs) dW s, (7.4.2)

for t ∈ [t0,∞). Here the random ordinary Riemann-Stieltjes integral and the
Itô integral are determined componentwise. The ith component of (7.4.2) is
then given by the SDE

Xi
t = Xi

t0 +
∫ t

t0

ai(s,Xs) ds+
m∑

�=1

∫ t

t0

bi,�(s,Xs) dW �
s , (7.4.3)

for t ∈ [t0,∞) and i ∈ {1, 2, . . . , d}. This equation shows how the different
components of the vector solution of the SDE feed into the elements of the
drift and diffusion coefficients and how the different Wiener processes drive the
components of the vector solution. Note that the drift and diffusion coefficients
of each component can also depend on all other components. The form of
the vector SDE given in (7.4.1) provides a compact description of the set of
components expressed by (7.4.3).

Questions concerning the existence and uniqueness of solutions of vector
SDEs naturally arise. It can be shown under appropriate assumptions that a
unique solution of the vector SDE (7.4.1) exists. For details we refer to the
existence and uniqueness theorem at the end of this chapter, see also Krylov
(1980).

Explicit Solutions of Multi-Dimensional Linear SDEs

Consider a d-dimensional linear SDE of the form

dXt = (At Xt + αt) dt+
m∑

�=1

(B�
t Xt + β�

t) dW
�
t , (7.4.4)

where A, B1, B2, . . ., Bm are d× d-matrix and α, β1, β2, . . ., βm d-
dimensional vector valued deterministic functions of time. Similar as was
shown in Sect. 7.3 for the scalar case, we obtain an explicit solution of (7.4.4)
in the form
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Xt = Ψ t,t0

(

Xt0 +
∫ t

t0

Ψ−1
s,t0

(

αs −
m∑

�=1

B�
s β�

s

)

ds+
m∑

�=1

∫ t

t0

Ψ−1
s,t0 β�

s dW
�
s

)

(7.4.5)
for t ∈ [t0,∞). Here Ψ t,t0 is the d×d fundamental matrix at time t with Ψ t0,t0

= I, where I is denoting the unit matrix. The fundamental matrix satisfies
the matrix SDE

dΨ t,t0 = At Ψ t,t0 dt+
m∑

�=1

B�
t Ψ t,t0 dW

�
t , (7.4.6)

which can be interpreted elementwise similar to a vector SDE, see (7.4.1) and
(7.4.3). One can check the above explicit solution by applying the Itô formula
(6.2.11).

Moments of Multi-Dimensional Linear SDEs

For the vector SDE (7.4.4), we can derive vector and matrix ODEs for the
vector mean

μ(t) = E(Xt)

and the d×d matrix of second moments

P (t) = E(Xt X�
t ),

respectively.
Recall that for d-dimensional vectors x and y the product xy� is a d×d

matrix with (i, j)th component xiyj . One can then show that the vector mean
satisfies the vector ODE

dμ(t) = (Atμ(t) + αt) dt. (7.4.7)

Furthermore, the matrix of second moments satisfies the matrix ODE

dP (t) =

(

At P (t) + P (t)A�
t +

m∑

�=1

B�
t P (t)

(
B�

t

)�
+ αt μ(t)� + μ(t)α�

t

+
m∑

�=1

(
B�

t μ(t)
(
β�

t

)�
+ β�

t μ(t)� B�
t + β�

t

(
β�

t

)�)
)

dt, (7.4.8)

with initial conditions μ(t0) = E (Xt0) and P (t0) = E
(
Xt0 X�

t0

)
.

7.5 Constructing Explicit Solutions of SDEs

In Kloeden & Platen (1999) a collection of explicit solutions of SDEs is given.
It appears that many of these are, in principle, transformations of the solutions
of systems of linear SDEs obtained via the Itô formula. The following property
of certain linear SDEs has importance in modeling financial markets.
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Commutativity

If the matrices A, B1,B2, . . ., Bm are constant and commute, that is, if

At B�
t = B�

t At and B�
t Bk

t = Bk
t B�

t (7.5.1)

for all k,  ∈ {1, 2, . . . ,m} and t ∈ [0,∞), then an explicit solution of the
fundamental matrix SDE (7.4.6) can be obtained. It is at time t given by the
fundamental matrix

Ψ t,t0 = exp

{∫ t

t0

(

As −
1
2

m∑

�=1

(
B�

s

)2
)

ds+
m∑

�=1

∫ t

t0

B�
s dW

�
s

}

, (7.5.2)

where the exponential is taken elementwise. In the special case, where the
matrices B�

t ,  ∈ {1, 2, . . . ,m}, are all identically zero this formula reduces to
the matrix expression

Ψ t,t0 = exp
{∫ t

t0

As ds

}
, (7.5.3)

which is the fundamental solution of the deterministic linear vector ODE

dΨ t,t0 = At Ψ t,t0 dt

for t ∈ [t0,∞).
The relations (7.4.5)–(7.5.2) have demonstrated that an explicit solution

can be obtained for a multi-dimensional linear SDE with matrices that com-
mute in the sense of (7.5.1). However, even if the matrices in (7.4.6) do not
commute, then the first and second moment relations (7.4.7) and (7.4.8) re-
main valid and can be conveniently exploited.

Multi-Asset Black-Scholes Model

The risky assets in a BS model that corresponds to a setup similar to that
mentioned in Sect. 6.3, can be written in the form (7.4.4), where At, B1

t , . . .,
Bm

t are diagonal matrices and the vectors αt = β1
t = . . . = βm

t are zero
vectors.

To be precise, we denote by St a diagonal matrix with jth diagonal element
Sj

t , j ∈ {1, 2, . . . , d}, representing the jth stock price at time t ∈ [0,∞). The
vector of appreciation rates at time t is given as at = (a1

t , a
2
t , . . . , a

d
t )

�. The
vector of volatilities with respect to the kth Wiener process is described as
bk

t = (b1,k
t , b2,k

t , . . . , bd,k
t )�. The SDE for the jth Black-Scholes asset price Sj

t

is then defined in the form

dSj
t = Sj

t

(

aj
t dt+

d∑

k=1

bj,kt dW k
t

)

(7.5.4)
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for t ∈ [0,∞) and j ∈ {1, 2, . . . , d}. To fit this type of SDE into the framework
given by the fundamental matrix SDE (7.4.6) we use now the diagonal matrices
At = [Ai,j

t ]di,j=1 with

Ai,j
t =

{
aj

t for i = j
0 otherwise

(7.5.5)

and Bk
t = [Bk,i,j

t ]di,j=1 with

Bk,i,j
t =

{
bj,kt for i = j
0 otherwise

(7.5.6)

for k, i, j ∈ {1, 2, . . . , d} and t ∈ [0,∞). Note that these matrices commute
due to their diagonal structure. This allows us to write the SDE (7.5.4) as
matrix SDE

dSt = At St dt+
d∑

k=1

Bk
t St dW

k
t (7.5.7)

for t ∈ [0,∞). We note that this corresponds to the matrix SDE (7.4.6) for the
fundamental matrix solution. Consequently, by (7.5.2) we obtain the explicit
solution

Sj
t = Sj

0 exp

{∫ t

0

(

aj
s −

1
2

d∑

k=1

(
bj,ks

)2
)

ds+
d∑

k=1

bj,ks dW k
s

}

(7.5.8)

for t ∈ [0,∞) and j ∈ {1, 2, . . . , d}. Thus, an explicit solution is available for
the BS model when formulated for an entire market. This is important from
the practical point of view and supports the fact that the BS model is the
standard market model.

A Representation of the Square Root Process

Let us now study another process, which is highly important in finance. It
appears, for instance, in the Cox, Ingersoll, Ross (CIR) interest rate model,
see also Sect. 4.5. We shall need this process below to describe the dynamics
of a particular financial market model, which we shall later derive under the
benchmark approach.

We have seen in Chap. 6 that the Itô formula can be used to create new
diffusion processes as functionals of known ones. In addition, it can also be
used to understand links between certain diffusion processes and their func-
tionals, as will be shown below. We shall relate the dynamics of the square
root (SR) process, see Sect. 4.4, to that of OU processes, see Sect. 4.2.

Consider n OU processes of the form

dXi
t = −cXi

t dt+ b dW i
t (7.5.9)

for t ∈ [0,∞), with Xi
0 = x0, c > 0, b > 0, and independent standard Wiener

processes W i for i ∈ {1, 2, . . . , n}. We show in Fig. 7.5.1 the sample paths of
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Fig. 7.5.1. Four independent Ornstein-Uhlenbeck processes

n = 4 independent standard OU processes, see (4.2.3). These will be used to
construct an SR process.

Consider now the square of each of the above OU processes, which by
(6.2.11) satisfy the Itô differential

d(Xi
t)

2 =
(
−2c (Xi

t)
2 + b2

)
dt+ 2bXi

t dW
i
t , (7.5.10)

for t ∈ [0,∞) and i ∈ {1, 2, . . . , n}. We shall now form the sum

Yt =
n∑

i=1

(Xi
t)

2 (7.5.11)

of the n squared OU processes. Figure 7.5.2 displays the sample path of this
sum Yt for the paths shown in Fig.7.5.1. The value Yt satisfies by (7.5.10) and
(7.5.11) the Itô differential

dYt = d

(
n∑

i=1

(Xi
t)

2

)

=

(
n∑

i=1

(
−2c (Xi

t)
2
)

+ n b2

)

dt+ 2b
n∑

i=1

Xi
t dW

i
t (7.5.12)

for t ∈ [0,∞). To simplify this Itô differential let W̄ = {W̄t, t ∈ [0,∞)} denote
the process that is given by the expression

W̄t =
∫ t

0

dW̄s =
n∑

i=1

∫ t

0

Xi
s√
Ys

dW i
s (7.5.13)

for t ∈ [0,∞)
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Fig. 7.5.2. Sum of four squared Ornstein-Uhlenbeck-processes

Fig. 7.5.3. The process W̄ and its quadratic variation [W̄ ]

Figure 7.5.3 displays the approximate quadratic variation of W̄t. Note that
it seems almost exactly to equal the quadratic variation of a standard Wiener
process with [W̄ ]t = t. Indeed it turns out that W̄ is a continuous martingale
that starts at zero and has quadratic variation

[W̄ ]t =
∫ t

0

n∑

i=1

(Xi
s)

2

Ys
ds = t. (7.5.14)

By applying Lévy’s Theorem, see (6.2.1), we see that W̄ is a standard Wiener
process.

From (7.5.13) and (7.5.14) it is apparent that the Itô differential (7.5.12)
has the form
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dYt = (n b2 − 2 c Yt) dt+ 2 b
√
Yt dW̄t (7.5.15)

for t ∈ [0,∞) with Y0 = n (x0)2. One observes that the process Y is an SR
process similar to that used in the CIR short rate model, as can be seen from its
drift and diffusion coefficient, see Sect.4.3 and Sect.4.4. It is important to note
that the SR process is linear mean reverting in its drift with reference level
n b2

2 c and speed of adjustment 2c. This result shows that the sum of squared
OU processes yields an SR process. Since the independent OU processes, given
by (7.5.12), have Gaussian transition densities the resulting SR process must
have a chi-square transition density with n degrees of freedom, see Sect. 1.2.
Indeed, it can be shown that the transition density given in formula (4.4.6)
is exactly of this type for n ∈ {2, 3, . . .}. One calls n the dimension of the
SR process. Later we shall consider SR processes of general dimension n ∈
(0,∞).

Minimal Market Model

By the use of a square root (SR) process one can formulate a stylized version of
the minimal market model (MMM), as suggested in Platen (2001, 2002). We
shall show later in Chap. 13 that this model arises naturally from economic
considerations. It is a model that expresses the dynamics of a normalized
market index

To describe the model we introduce a Wiener process W . This Wiener
process drives an SR process Y = {Yt, t ∈ [0,∞)}, which expresses the nor-
malized index. Here we set

dYt = (1 − η Yt) dt+
√
Yt dWt (7.5.16)

for t ∈ [0,∞) with Y0 > 0, where the net growth rate η > 0 is the key param-
eter. One notes that 1

η is the reference level for the SR process Y and η is the
speed of adjustment of Y . Let us denote by B = {Bt, t ∈ [0,∞)} the savings
account process with constant short rate rt = r ≥ 0, such that

Bt = exp{r t} (7.5.17)

for t ∈ [0,∞). Under the stylized MMM the market index S = {St, t ∈ [0,∞)}
is modeled as the product

St = Bt Yt α(t) (7.5.18)

with an exponential function

α(t) = α0 exp{η t} (7.5.19)

for t ∈ [0,∞) with α0 > 0. One notes that the function Btα(t), when used for
normalization, yields the normalized market index Yt = St

Btα(t) .
Using the Itô formula for the discounted market index it follows from

(7.5.18) and (7.5.16) that
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Fig. 7.5.4. Market index under the MMM

S̄t =
St

Bt
= Yt α(t), (7.5.20)

where

dS̄t = d(Yt α(t)) = Yt α(t)
((

1
Yt

− η + η

)
dt+

1√
Yt

dWt

)

= S̄t

(
1
Yt

dt+
1√
Yt

dWt

)
= α(t) dt+

√
α(t) S̄t dWt (7.5.21)

for t ∈ [0,∞). In (7.5.21) we see that 1√
Yt

is the volatility of S̄. In this sense
the MMM has a stochastic volatility. The market index St = S̄tBt satisfies
then, by (7.5.21) and application of the Itô formula, the SDE

d(Yt α(t)Bt) = dSt = St

(
r dt+

1√
Yt

(
1√
Yt

dt+ dWt

))
(7.5.22)

for t ∈ [0,∞). Note that under the MMM the volatility 1√
Yt

of the market
index equals the inverse of the square root of the normalized index. Con-
sequently, the market index and its volatility are negatively correlated. In
Fig. 7.5.4 we show a trajectory of a simulated market index for η = 0.05,
α0 = 10, r = 0.05 and Y0 = 20. To visualize the resulting negative correlation
of the market index with its volatility, we plot the corresponding volatility

1√
Yt

in Fig. 7.5.5.

7.6 Jump Diffusions (*)

Merton’s Jump Diffusion Model (*)

One of the pioneers in the use of continuous time models in finance, in par-
ticular, for asset prices with jumps, has been Merton, see Merton (1976). He
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Fig. 7.5.5. Volatility of market index under the MMM

modeled the dynamics of a stock price St by an SDE of the type

dSt = St− (a dt+ σ dWt + dYt) (7.6.1)

for t ∈ [0,∞) and S0 > 0. In this Merton model (MM) Y = {Yt, t ∈ [0,∞)}
denotes a compound Poisson process, see (3.5.9), where

Yt =
Nt∑

k=1

ξk (7.6.2)

and thus
dYt = ξNt−+1 dNt (7.6.3)

for t ∈ [0,∞). The process N = {Nt, t ∈ [0,∞)} is a Poisson process, see
(3.5.1), with intensity λ > 0 and ξ1, ξ2, . . . are i.i.d random variables with
mean

ξ̂ = E(ξi) < ∞,

which are independent of W and N . The constant a is the instantaneous
expected rate of return of the stock if there were no jumps, whereas σ is the
constant volatility parameter. The compound Poisson process Y has finite
total variation, see (5.2.25). Therefore, the Itô differential dYt, see Sect. 5.5,
can be interpreted in the ordinary Riemann-Stieltjes sense. As usual, we take
S, N and Y to be right continuous. Recall that the left hand limit St− of
St at time t denotes the value just before a potential jump at time t. Let us
denote the kth jump time of the Poisson process N by τk. Then we have for
Y the jump size

ΔYτk
= Yτk

− Yτk− = ξk (7.6.4)

at time τk for k ∈ {1, 2, . . .}. The dynamics specified in (7.6.1) yields, therefore,
for S the kth jump increment
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Fig. 7.6.1. Path of Merton’s jump diffusion model

ΔSτk
= Sτk

− Sτk− = Sτk−ΔYτk
= Sτk− ξk

at time τk and thus
Sτk

= Sτk− (ξk + 1). (7.6.5)

One can interpret

Ψ(τk−) =
Sτk

Sτk−
= ξk + 1 (7.6.6)

as the jump ratio of S at τk. To ensure that St does not become negative one
needs to assume that

ξk ≥ −1, (7.6.7)

or equivalently that the jump ratio is nonnegative, that is, by (7.6.6) and
(7.6.5)

Ψ(τk−) ≥ 0 (7.6.8)

for all k ∈ {1, 2, . . .}. The value λξ̂t compensates the accumulated jumps of
Y until time t in the sense that

Ỹt = Yt − λ ξ̂ t (7.6.9)

forms an (A, P )-martingale. This means that we can rewrite (7.6.1) in the
form

dSt = St (a+ λ ξ̂) dt+ St σ dWt + St− dỸt (7.6.10)

for t ∈ [0,∞). The last two terms on the right hand side of the SDE (7.6.10)
each form a martingale and the expected return of S over a period of length
Δ equals (a+ λ ξ̂)Δ.

In Fig.7.6.1 we show a path of a solution of the SDE (7.6.10) with S0 = 1,
a = 0.1, σ = 0.2, λ = 0.1 and ξk = −0.5. It could model the stock of a company
that at default recovers half of its previous value. In the above example there
is on average one default in 10 years and we observe in Fig. 7.6.1 one such
default or credit event. Of course, for another scenario a different number of
jumps may arise.
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Explicit Solution of Merton’s Jump Diffusion Model (*)

In the given case we have the explicit solution of the SDE (7.6.1) in the form

St = S0 exp
{(

a− 1
2
σ2

)
t+ σWt

} Nt∏

k=1

(ξk + 1) (7.6.11)

for t ∈ [0,∞). The explicit solution in (7.6.11) generalizes that of the geo-
metric Brownian motion in (7.1.6). Additionally, the product of the jump
ratios, see (7.6.6), appears. Solutions of this type were used by Merton to
derive a formula for the value of an option on S. Important is the question
of how to specify realistically the distribution of the random variables ξk. In
Merton (1976) it was assumed that the kth jump ratio Ψ(τk−) = ξk + 1 is
lognormal, whereas, for instance, in Kou (2002) a log-Laplace distribution is
assumed. The above model can also be interpreted as an extension of the
Cramér-Lundberg model for the surplus process of an insurance company, see
(3.5.10), where the surplus has some continuous uncertainty.

SDE with Jumps (*)

Let us consider a stochastic process Z = {Zt, t ∈ [0,∞)} with jumps with
stochastic differential

dZt = gt dt+ σt dWt + ct− dNt (7.6.12)

for t ∈ [0,∞) with Z0 = z0 ∈ �. Here W is a standard Wiener process and
N a Poisson process with intensity λ > 0, see Definition 3.5.1. The functions
g, σ and c are assumed to be given deterministic functions of time. It then
follows for the exponential

Xt = exp{Zt} (7.6.13)

by application of the Itô formula (6.4.20) the SDE

dXt = Xt−

[(
gt +

1
2
σ2

t

)
dt+ σt dWt + (exp{ct−} − 1) dNt

]
(7.6.14)

for t ∈ [0,∞), see (6.4.6). Note that since W is a martingale and the compen-
sated Poisson process q = {qt, t ∈ [0,∞)} with

qt = Nt − λ t

is also a martingale. The equation for the mean μ(t) = E(Xt) follows from
(7.6.14). It is the ODE

dμ(t) = μ(t)
(
gt +

1
2
σ2

t + λ(exp{ct} − 1)
)
dt (7.6.15)
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for t ∈ [0,∞) with μ(0) = exp{z0}. Obviously, by (7.6.13),

X2
t = exp{2Zt} (7.6.16)

and by similar arguments as above we obtain for the second moment

P (t) = E(X2
t )

of Xt the ODE

dP (t) = P (t)
(
2
(
gt + σ2

t

)
+ λ (exp{2 ct} − 1)

)
dt (7.6.17)

for t ∈ [0,∞) with P (0) = exp{2 z0}. From the above ODEs one can obtain
the expression for the variance of Xt and other functionals.

SDE for Jump Diffusions (*)

It is important to incorporate event driven uncertainty not only for credit
risk but also for insurance risk and operational risk. Such uncertainty gen-
erate not only defaults or rating changes but also insurance claims, opera-
tional failures and catastrophes. Additionally, some continuous uncertainty
from trading noise is often present in an asset price dynamics. As we have
seen previously, SDEs for realistic asset prices should be such that their co-
efficients do not only depend on time but generate also a feedback effect in
dependence on the level of the asset price itself.

To give an example, let W = {Wt, t ∈ [0,∞)} denote a standard Wiener
process and N = {Nt, t ∈ [0,∞)} a Poisson process with intensity λ > 0. A
typical scalar SDE for an asset price Xt could then take the form

dXt = a(t,Xt) dt+ b(t,Xt) dWt + c(t−, Xt−) dNt (7.6.18)

for t ∈ [0,∞), with initial value X0 ∈ (0,∞). Here a(·, ·) is called the drift
coefficient and b(·, ·) the diffusion coefficient, which controls the magnitude
of continuous fluctuations. Furthermore, c(·, ·) denotes the jump coefficient,
which determines the jump size at an event. An example for such an SDE was
given by (7.6.14) with the solution shown in Fig. 7.6.1. We call the resulting
process X a jump diffusion or an Itô process with jumps.

Multi-Dimensional SDEs for Jump Diffusions (*)

To model a financial market, many sources of continuous and event driven
uncertainty have to be taken into account. Furthermore, there are several in-
teracting factors that need to play a role in a reasonably realistic financial
market model. Let us denote by W 1, . . . ,Wm independent standard Wiener
processes. Furthermore, N1, . . . , Nn denote n Poisson processes with corre-
sponding intensities λ1(t,Xt), . . ., λn(t,Xt) at time t. These intensities de-
pend on time and also on the vector Xt = (X1

t , X
2
t , . . ., Xd

t )� of factors. The
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model for the factors is conveniently described by an SDE. For the ith factor
the SDE has the form

dXi
t = ai(t,Xt) dt+

m∑

k=1

bi,k(t,Xt) dW k
t +

n∑

�=1

ci,�(t−,Xt−) dN �
t (7.6.19)

for t ∈ [0,∞) with Xi
0 ∈ � and i ∈ {1, 2, . . . , d}. Obviously, the drift co-

efficients ai(·, ·), diffusion coefficients bi,k(·, ·) and jump coefficients ci,�(·, ·)
need to satisfy appropriate conditions. These must ensure the existence and
uniqueness of the solution of the system of SDEs (7.6.19). In Sect.7.7 we shall
mention appropriate conditions that allow us to work with an SDE of the
above type, see also Ikeda & Watanabe (1989).

SDE of Exponential Lévy Models (*)

One direction for the generalization of Merton’s jump diffusion model (7.6.11)
is to use an exponential, as in (3.6.1), of the form

St = S0 exp{Xt}, (7.6.20)

where X = {Xt, t ∈ [0,∞)} is a Lévy process, as defined in (3.6.2). This
means, one considers the exponential of the expression

Xt = α t+ βWt +
∫ t

0

∫

|v|<1

v(pϕ(dv, ds) − ϕ(dv) ds) +
∫ t

0

∫

|v|≥1

v pϕ(dv, ds)

(7.6.21)
for t ∈ [0,∞). Recall that W is a standard Wiener process, pϕ a Poisson
measure with Lévy measure ϕ(dv) so that (3.5.13) is satisfied. By application
of the Itô formula (6.4.11) we obtain for the resulting exponential Lévy model
the SDE

dSt = St−

[(

α+
1
2
β2 −

∫

|v|<1

v ϕ(dv)

)

dt+ β dWt

+
∫ ∞

−∞
(exp{v} − 1) pϕ(dv, dt)

]
(7.6.22)

for t ∈ [0,∞). We assume that all expressions on the right hand sides of
(7.6.21) and (7.6.22) exist. Note that formula (7.6.20) together with (7.6.21)
provide an explicit solution for the SDE (7.6.22) and, thus, for the asset price
under the exponential Lévy model.

Asset price models of the type (7.6.21) have been proposed and studied
by many authors, for instance, by Madan & Seneta (1990), Madan & Milne
(1991), Eberlein & Keller (1995) and Barndorff-Nielsen & Shephard (2001)
and Miyahara & Novikov (2002).
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General SDEs Driven by Jump Measures (*)

In the case when there are events with state dependent intensities that are
related, which may impact several factors at the same time, it is appropriate
to use SDEs driven by Poisson measures, as described in Sect. 3.5. To give an
example, we extend the SDE (7.6.19) for jump diffusions and use instead of
Poisson processes Poisson jump measures p�

ϕ�
(·, ·),  ∈ {1, 2, . . . , n}. Leaving

the other terms in the SDE (7.6.19) unchanged we arrive at a general SDE
for the ith factor in the form

dXi
t = ai(t,Xt) dt+

m∑

k=1

bi,k(t,Xt) dW k
t +

n∑

�=1

∫

E
ci,�(v, t−,Xt−) p�

ϕ�
(dv, dt)

(7.6.23)
for t ∈ [0,∞) with Xi

t ∈ �, i ∈ {1, 2, . . . , d}. Here the (i, )th jump coefficient
is not only a function of time and factors but also depends on the mark v ∈ E
as an element of the mark set E = �\{0}, see (3.5.11). It is important to
satisfy condition (3.5.13), that is,

∫

E
min(1, v2)ϕ�(dv) < ∞ (7.6.24)

for  ∈ {1, 2, . . . , n}. This condition guarantees the existence of the integrals
under consideration. Similarly, as with the SDE for Lévy processes, one can
model by the SDE (7.6.23) certain dynamics that involve infinitely many small
jumps. Furthermore, the intensity for those jumps that impact the factors is
controllable via the jump coefficients since these depend on the mark v. Even
though we model the Poisson jump measure p�

ϕ�
in a standard way, its impact

on the factors can depend in a very flexible manner on the actual values of all
factors. It is clear that if we choose

ϕ�(dv) = 1{v∈[0,λ]} dv,

and the jump coefficients independent of the marks, then we recover the SDE
(7.6.19) for jump diffusions. Such SDEs that are driven by jump measures
have been used in financial modeling, for instance, in Björk, Kabanov & Rung-
galdier (1997) or Christensen & Platen (2005).

Stochastic Exponentials of Semimartingales (*)

As we have already seen in Sect. 5.5 and Sect. 6.4, semimartingales form an
extremely rich class of stochastic processes. We shall now mention a few results
on solutions of SDEs for semimartingales. These SDEs generalize, in principle,
all previously mentioned types of SDEs and permit the formulation of very
general models and statements.

For simplicity, we consider the one-dimensional case. The corresponding
multi-dimensional generalization is rather obvious, but requires cumbersome
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notation. Let Z = {Zt, t ∈ [0,∞)} denote a one-dimensional semimartingale,
see (5.5.1), where Zc denotes its continuous part, which can be expressed in
the form

Zc
t = Zt −

∑

0<s≤t

ΔZs − Z0 (7.6.25)

if its discontinuous part
∑

0≤s≤t ΔZs is almost surely finite for all t ∈ [0,∞).
Here we assume that Z0 ∈ � and use again our notation for the jump size

ΔZt = Zt − Zt−

for a potential jump of Z at time t. Consider now the stochastic process
X = {Xt, t ∈ [0,∞)} with

Xt = exp{Zt} = X0 exp {Zc
t }

∏

0<s≤t

exp{ΔZs} (7.6.26)

for t ∈ [0,∞), where we assume the product
∏

0<s≤t exp{ΔZs} to be almost
surely finite for all t ∈ [0,∞). The SDE for Xt then follows by the Itô formula
for semimartingales (6.4.11) in the form

dXt = Xt dZ
c
t +

1
2
Xt d[Zc

t ] +Xt− (exp{ΔZt} − 1) (7.6.27)

for t ∈ [0,∞) with initial value X0 = exp{Z0}. Note that the last expression
on the right hand side of (7.6.27) for the jumps changes the value of Xt− by
the jump ratio exp{ΔZt} if there is a jump at time t.

In the above sense the expression (7.6.26), which we call the stochas-
tic exponential of Z, provides an explicit solution for the semimartingale
SDE (7.6.27). Note that the process X = {Xt, t ∈ [0,∞)} in (7.6.26) remains
always strictly positive. In the stochastic exponential (7.6.26) the terms are
similar to those usually observed for a geometric Brownian motion. Only the
product of the exponentials of the jumps ΔZt appears as an extra factor. The
exponentials of the jumps ΔZt represent the jump ratios for Xt, see (7.6.6).
The expression (7.6.26) provides an explicit solution for the SDE (7.6.27).
Note that for a strictly positive process X, satisfying an SDE of the form
(7.6.27), we can identify the process Z = {Zt, t ∈ [0,∞)} with the logarithm
of X, that is

Zt = ln(Xt) = Z0 + Zc
t +

∑

0<s≤t

ΔZs (7.6.28)

for t ∈ [0,∞) if
∑

0<s≤t ΔZs is almost surely finite.

7.7 Existence and Uniqueness (*)

For any model that uses an SDE it is essential that it has a solution. Fur-
thermore, it is important that it has a unique solution according to some
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appropriate criterion. One such criterion is described below in detail, which
is based on a notion of strong uniqueness. Usually one can only formulate
sufficient conditions to establish uniqueness. The techniques presented in the
literature for proving existence and uniqueness of a solution of an SDE are
rather similar. They typically assume Lipschitz continuity of the drift and
diffusion coefficients. We aim to provide here some insight into typical issues
that arise when ensuring the existence and uniqueness of a solution of an
SDE. We shall outline the typical arguments that are used when proving the
existence and uniqueness of a solution of an SDE.

On the Existence of Solutions of SDEs (*)

As before we work in a filtered probability space (Ω,A,A, P ). For simplicity,
we focus on a scalar SDE of the form

dXt = a(t,Xt) dt+ b(t,Xt) dWt (7.7.1)

for t ∈ [t0, T ] with fixed T ∈ (t0,∞), t0 ∈ [0,∞). Note that analogous results
hold in the case of vector SDEs, as given in (7.4.1) and for SDEs with jumps
as mentioned in Sect. 7.6. For more general SDEs the techniques are rather
similar, see Protter (2004). The above Wiener process W is assumed to be
A-adapted and the increments (Wt − Ws) are supposed to be independent
of As for t ∈ [t0, T ], s ∈ [t0, t]. Recall that the SDE (7.7.1) is a short hand
notation for the Itô integral equation

Xt = Xt0 +
∫ t

t0

a(s,Xs) ds+
∫ t

t0

b(s,Xs) dWs, (7.7.2)

where the first integral is a random ordinary Riemann-Stieltjes integral and
the second integral is an Itô integral. For (7.7.2) to make sense X needs to be
A-adapted. This leads us to the following definition.

Definition 7.7.1. We call a pair (X,W ), consisting of a stochastic process
X = {Xt, t ∈ [t0, T ]} and an A-adapted standard Wiener process W , a strong
solution of the Itô integral equation (7.7.2) if X is A-adapted, the integrals on
the right hand side are well-defined and the equality in (7.7.2) holds almost
surely.

As discussed previously, the mentioned integrals are, for instance, well-
defined if

√
|a(·, X·)| and b(·, X·) belong to the set L2

T , see (5.4.1), for all
T ∈ (0,∞).

On the Uniqueness of Solutions of SDEs (*)

For fixed coefficient functions a and b, any solution X will usually depend on
the particular initial value Xt0 and the sample path of the Wiener process W
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under consideration. For a specified initial value Xt0 the uniqueness of strong
solutions of the SDE (7.7.1) refers to the indistinguishability , see (3.1.6), of
the solution processes.

Definition 7.7.2. If any two strong solutions X and X̃ are indistinguish-
able on [t0, T ], that is if

Xt = X̃t (7.7.3)

a.s. for all t ∈ [t0, T ], then we say that the solutions of (7.7.1) are path-
wise unique on [t0, T ]. In general, we call a pathwise unique strong solution a
unique strong solution.

In some papers one considers the uniqueness in law for a given SDE. This
kind of uniqueness arises if whenever (X,W ) and (X̃, W̃ ) are two solutions,
which may be defined on different probability spaces with Xt0 = X̃t0 and the
laws of X and X̃ are equal. Such a solution is referred to as a unique weak
solution.

The following result is due to Yamada & Watanabe (1971). It illustrates
the advantage of having strong uniqueness for the solutions of an SDE.

Theorem 7.7.3. Suppose that strong uniqueness holds for the solutions of
the SDE (7.7.1). Then their uniqueness in law follows.

Example for a Unique Weak Solution (*)

Let W = {Wt, t ∈ [0,∞)} denote a Wiener process. The following well-known
example, which is due to Tanaka (1963), is quite illustrative. For Tanaka’s
SDE

Xt =
∫ t

0

sgn(Xs) dWs (7.7.4)

with

sgn(x) =

{
1 for x ≥ 0

−1 for x < 0

strong uniqueness does not hold. Indeed, if (X,W ) is a solution of (7.7.4),
then (−X,W ) is also a solution. Note however that one can show that (7.7.4)
possesses a unique weak solution, see Revuz & Yor (1999). We emphasize that
X is here a Wiener process.

Standard Assumptions (*)

Let us now formulate the typical hypotheses of an existence and uniqueness
theorem. The coefficient functions a, b : [t0, T ]×� → � are assumed to be
given.

(I) Measurability : The coefficient functions a and b are assumed to be
jointly L2

T -measurable in (t, x) ∈ [t0, T ] ×�.
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(II) Lipschitz condition: There exists a finite constant K > 0 such that

|a(t, x) − a(t, y)| ≤ K |x− y|

and
|b(t, x) − b(t, y)| ≤ K |x− y|

for all t ∈ [t0, T ] and x, y ∈ �.
(III) Linear growth bound : There exists a constant K > 0 such that

|a(t, x)|2 ≤ K2(1 + |x|2)

and
|b(t, x)|2 ≤ K2(1 + |x|2)

for all t ∈ [t0, T ] and x ∈ �.
(IV) Initial value: Xt0 is At0 -measurable with E(|Xt0 |

2) < ∞.

Note that in the case of vector SDEs the above norms appear as Euclidean
norms. If the drift function a(·, ·) has a bounded first derivative with respect
to x, then it is obviously Lipschitz continuous. In particular, assumptions (II)
and (III) ensure that a solution of an SDE does not explode.

Gronwall Inequality (*)

To prove an existence and uniqueness result for the SDE (7.7.1) under the
above conditions, typically the Gronwall inequality is exploited, which we
state in the following lemma.

Lemma 7.7.4. Let α, β : [t0, T ] → � be integrable functions with the prop-
erty

0 ≤ α(t) ≤ β(t) + L

∫ t

t0

α(s) ds

for t ∈ [t0, T ] and some fixed L > 0. Then

α(t) ≤ β(t) + L

∫ t

t0

exp{L(t− s)}β(s) ds

for t ∈ [t0, T ].

Strong Uniqueness (*)

Using the measurability assumption (I) and the Lipschitz condition (II) and
assuming that solutions of (7.7.2) exist, one can show their strong uniqueness.
This result is formulated in the following lemma.
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Lemma 7.7.5. If conditions (I), (II) and (IV) hold, then the solutions of
(7.7.2) with sample paths corresponding to the same initial value and the same
Wiener process are strongly unique.

Proof: Let X and X̃ be two solutions of (7.7.2) on [t0, T ], which have con-
tinuous sample paths. Since they may not have finite second moments, we
shall use the following localization method:
For N > 0 and t ∈ [t0, T ] define

1(N)
t =

{
1 for |Xu|, |X̃u| ≤ N and u ∈ [t0, t]

0 otherwise.

Obviously, 1(N)
t is At-measurable and 1(N)

t = 1(N)
t 1(N)

s for s ∈ [t0, t]. Conse-
quently, using the Lipschitz condition (II) the integrals in the equation

Z
(N)
t = 1(N)

t (Xt − X̃t)

= 1(N)
t

∫ t

t0

1(N)
s

(
a(s,Xs) − a(s, X̃s)

)
ds

+1(N)
t

∫ t

t0

1(N)
s

(
b(s,Xs) − b(s, X̃s)

)
dWs, (7.7.5)

are well-defined for t ∈ [t0, T ]. Applying again the Lipschitz condition (II), we
obtain

max

{∣
∣
∣1(N)

s

(
a(s,Xs) − a(s, X̃s)

)∣∣
∣ ,
∣
∣
∣1(N)

s

(
b(s,Xs) − b(s, X̃s)

)∣∣
∣

}

≤ K 1(N)
s

∣
∣
∣Xs − X̃s

∣
∣
∣ ≤ 2KN (7.7.6)

for s ∈ [t0, t]. Therefore, the second moment exists for Z(N)
t and thus also the

two integrals in (7.7.5). Using (7.7.5), the inequality (a+ b)2 ≤ 2(a2 + b2), the
inequality (1.4.65) with r = 2 and the correlation property (5.4.4) of an Itô
integral we can write by applying Fubini’s Theorem

E

(∣
∣
∣Z(N)

t

∣
∣
∣
2
)

≤ 2E

(∣
∣
∣
∣

∫ t

t0

1(N)
s

(
a(s,Xs) − a(s, X̃s)

)
ds

∣
∣
∣
∣

2
)

+2E

(∣
∣
∣
∣

∫ t

t0

1(N)
s (b(s,Xs) − b(s, X̃s)) dWs

∣
∣
∣
∣

2
)

≤ 2(T − t0)
∫ t

t0

E

(∣
∣
∣1(N)

s

(
a(s,Xs) − a(s, X̃s)

)∣∣
∣
2
)
ds

+2
∫ t

t0

E

(∣
∣
∣1(N)

s

(
b(s,Xs) − b(s, X̃s)

)∣∣
∣
2
)
ds
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for t ∈ [t0, T ]. This estimate can be combined with (7.7.6) to obtain

E

(∣
∣
∣Z(N)

t

∣
∣
∣
2
)

≤ L

∫ t

t0

E

(∣
∣
∣Z(N)

s

∣
∣
∣
2
)
ds (7.7.7)

for t ∈ [t0, T ], where L = 2(T − t0 + 1)K2.
Now, applying the Gronwall inequality given in Lemma 7.7.4 with α(t) =

E(|Z(N)
t |2) and β(t) ≡ 0 we can conclude that

E

(∣
∣
∣Z(N)

t

∣
∣
∣
2
)

= E

(∣
∣
∣1(N)

t

(
Xt − X̃t

)∣∣
∣
2
)

= 0,

for t ∈ [t0, T ], and hence 1(N)
t Xt = 1(N)

t X̃t a.s. for each t ∈ [t0, T ].
Since the sample paths are continuous they are also bounded for each

ω ∈ Ω. This allows us to make the probability

P
(
1(N)

t = 1 for all t ∈ [t0, T ]
)
≤P

(

sup
t∈[t0,T ]

|Xt| > N

)

+P

(

sup
t∈[t0,T ]

∣
∣
∣X̃t

∣
∣
∣ > N

)

arbitrarily small by taking the truncation level N sufficiently large. Therefore,
since

P (Xt = X̃t) = P
(
1(N)

t (Xt − X̃t) = 0
)

+ P
((

1 − 1(N)
t

)
(Xt − X̃t) = 0

)

≤ P
(
1(N)

t (Xt − X̃t) = 0
)

+ P (1(N)
t = 1),

we obtain P (Xt = X̃t) = 0 for each t ∈ [t0, T ] and hence P (Xt = X̃t for all t ∈
D) = 0 for any countable dense subset D of [t0, T ].

Since the solutions are continuous and coincide on a dense subset of [t0, T ],
they must coincide a.s. on the entire interval [t0, T ] that means they are indis-
tinguishable, see (3.1.6). Thus (7.7.3) holds, that is the two solutions X and
X̃ of (7.7.2) are strong unique. ��

Existence and Uniqueness Theorem (*)

So far it has not been clarified whether the SDE (7.7.1) has a strong solution.
The following result establishes this property and uses also the uniqueness,
which we had established already.

Theorem 7.7.6. Under conditions (I) - (IV), the SDE (7.7.1) has a unique
strong solution X = {Xt, t ∈ [t0, T ]} on [t0, T ] with

sup
t∈[t0,T ]

E
(
|Xt|2

)
< ∞.
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Proof:
1. Because of Lemma 7.7.5 we only have to establish the existence of a
strong solution X on [t0, T ] for a given Wiener process W = {Wt, t ∈ [t0, T ]}.
We shall do this by the method of successive approximations.

2. Define X(0)
t = Xt0 and recursively

X
(n+1)
t = Xt0 +

∫ t

t0

a
(
s,X(n)

s

)
ds+

∫ t

t0

b
(
s,X(n)

s

)
dWs (7.7.8)

for n ∈ {0, 1, . . .}. If for a fixed n ≥ 0 the approximation X(n)
t is At-measurable

and continuous on [t0, T ], then it follows from assumptions (I), (II) and (III)
that the integrals in (7.7.8) are well-defined and that the resulting process
X(n+1) is A-adapted and can be chosen to be continuous on [t0, T ]. As X(0)

t

is At-measurable and continuous on [t0, T ], it follows by induction that each
X

(n)
t for n ∈ N is also At-measurable and continuous.

From assumption (IV) and the definition of X(0)
t it is clear that

sup
t∈[t0,T ]

E

(∣
∣
∣X(0)

t

∣
∣
∣
2
)
< ∞.

Applying the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2), the inequality (1.4.65)
with r = 2, the identity (5.4.4) and the linear growth bound (III) to (7.7.8)
we obtain

E

(∣
∣
∣X(n+1)

t

∣
∣
∣
2
)

≤ 3E
(
|Xt0 |

2
)

+ 3E

(∣
∣
∣
∣

∫ t

t0

a
(
s,X(n)

s

)
ds

∣
∣
∣
∣

2
)

+3E

(∣
∣
∣
∣

∫ t

t0

b
(
s,X(n)

s

)
dWs

∣
∣
∣
∣

2
)

≤ 3E
(
|Xt0 |

2
)

+ 3(T − t0)E
(∫ t

t0

∣
∣
∣a
(
s,X(n)

s

)∣∣
∣
2

ds

)

+3E
(∫ t

t0

∣
∣
∣b
(
s,X(n)

s

)∣∣
∣
2

ds

)

≤ 3E
(
|Xt0 |

2
)

+ 3(T − t0 + 1)K2E

(∫ t

t0

(
1 +
∣
∣
∣X(n)

s

∣
∣
∣
2
)
ds

)

for n ∈ {0, 1, . . .}. By induction this means that

sup
t∈[t0,T ]

E

(∣
∣
∣X(n)

t

∣
∣
∣
2
)

≤ C0 < ∞ (7.7.9)

for n ∈ N , where C0 is a constant that does not depend on n.
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Using similar arguments to those that were applied to prove inequality
(7.7.7) we can show that

E

(∣
∣
∣X(n+1)

t −X
(n)
t

∣
∣
∣
2
)

≤ L

∫ t

t0

E

(∣
∣
∣X(n)

s −X(n−1)
s

∣
∣
∣
2
)
ds (7.7.10)

for t ∈ [t0, T ] and n ∈ N , where L = 2(T − t0 + 1)K2. Application of the
Cauchy formula

∫ t

t0

∫ tn−1

t0

· · ·
∫ t1

t0

f(s) ds dt1 . . . dtn−1 =
1

(n− 1)!

∫ t

t0

(t− s)n−1f(s) ds

in repeated iterations of the inequality (7.7.10), shows that

E

(∣
∣
∣X(n+1)

t −X
(n)
t

∣
∣
∣
2
)

≤ Ln

(n− 1)!

∫ t

t0

(t− s)n−1E

(∣
∣
∣X(1)

s −X(0)
s

∣
∣
∣
2
)
ds

(7.7.11)
for t ∈ [t0, T ] and n ∈ N .

Using the growth condition (III) instead of the Lipschitz condition (II) in
the derivation of (7.7.10) for n = 0, we note that

E

(∣
∣
∣X(1)

t −X
(0)
t

∣
∣
∣
2
)

≤ L

∫ t

t0

(
1 +E

(∣
∣
∣X(0)

s

∣
∣
∣
2
))

ds

≤ L (T − t0)
(
1 +E

(
|Xt0 |

2
))

= C1.

Substituting this result into (7.7.11) provides the estimate

E

(∣
∣
∣X(n+1)

t −X
(n)
t

∣
∣
∣
2
)

≤ C1L
n(t− t0)n

n!

for t ∈ [t0, T ] and n ∈ {0, 1, . . .} and therefore

sup
t∈[t0,T ]

E

(∣
∣
∣X(n+1)

t −X
(n)
t

∣
∣
∣
2
)

≤ C1L
n(T − t0)n

n!
(7.7.12)

for n ∈ {0, 1, . . .}. This result establishes in a mean square sense the conver-
gence of the successive approximations on [t0, T ].

3. To prove almost sure convergence of the sample paths of the successive
approximations uniformly on [t0, T ] we define

Zn = sup
t∈[t0,T ]

∣
∣
∣X(n+1)

t −X
(n)
t

∣
∣
∣

for n ∈ {0, 1, . . .}, such that, from (7.7.8)
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Zn ≤
∫ T

t0

∣
∣
∣a(s,X(n)

s ) − a(s,X(n−1)
s )

∣
∣
∣ ds

+ sup
t∈[t0,T ]

∣
∣
∣
∣

∫ t

t0

(
b(s,X(n)

s ) − b(s,X(n−1)
s )

)
dWs

∣
∣
∣
∣ .

By application of the inequality (1.4.65) with r = 2, (5.4.4), (5.2.12) and the
Lipschitz condition (II) we obtain the estimate

E
(
|Zn|2

)
≤ 2 (T − t0)K2

∫ T

t0

E

(∣
∣
∣X(n)

s −X(n−1)
s

∣
∣
∣
2
)
ds

+2K2

∫ T

t0

E

(∣
∣
∣X(n)

s ) −X(n−1)
s

∣
∣
∣
2
)
ds

≤ 2 (T − t0 + 1)K2

∫ T

t0

E

(∣
∣
∣X(n)

s −X(n−1)
s

∣
∣
∣
2
)
ds.

This result can be combined with (7.7.12) so that

E
(
|Zn|2

)
≤ C2 L

n−1(T − t0)n−1

(n− 1)!
(7.7.13)

for n ∈ N , where C2 = 2C1K
2(T − t0 +4)(T − t0). Now, applying the Markov

inequality (1.3.57) to each term and summing up, we have the inequality

∞∑

n=1

P

(
Zn >

1
n2

)
≤ C2

∞∑

n=1

n4

(n− 1)!
Ln−1(T − t0)n−1,

where the series on the right hand side converges. Therefore the series on the
left hand side also converges. Hence by the Borel-Cantelli Lemma, stated in
Sect. 2.7, we can conclude that the Zn converge a.s. to zero. This means, the
successive approximations X(n)

t converge almost surely uniformly on [t0, T ] to
the limit X̃t defined by

X̃t = Xt0 +
∞∑

n=0

{
X

(n+1)
t −X

(n)
t

}
. (7.7.14)

4. We obtain from (7.7.9) that X̃ is mean square bounded on [0,∞). As the
almost sure limit of A-adapted processes, X̃ is A-adapted. The uniform limit
of continuous processes X̃ is also continuous. Taking this into account and
also the growth condition (III), the right-hand side of the integral equation
(7.7.2) is well defined if we replace the process X with X̃. It remains to prove
that it then equals the left hand side of (7.7.2). However, taking the almost
sure limit as n → ∞ on both sides of (7.7.8) it can be shown that X̃ is indeed
a solution of (7.7.2).
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To see this, note that the left hand side of (7.7.8) converges a.s. to X̃t

uniformly on [t0, T ]. Comparing the right hand sides of (7.7.2) and (7.7.8), we
obtain by the Lipschitz condition (II) the estimates

∣
∣
∣
∣

∫ t

t0

a(s,X(n)
s ) ds−

∫ t

t0

a(s, X̃s) ds
∣
∣
∣
∣ ≤ K

∫ t

t0

∣
∣
∣X(n)

s − X̃s

∣
∣
∣ ds (7.7.15)

and
∫ t

t0

∣
∣
∣b(s,X(n)

s ) − b(s, X̃s)
∣
∣
∣
2

ds ≤ K2

∫ t

t0

∣
∣
∣X(n)

s − X̃s

∣
∣
∣
2

ds, (7.7.16)

which both converge a.s. to zero as n → ∞ for each t ∈ [t0, T ]. This implies
that we have the limits

lim
n→∞

∫ t

t0

a(s,X(n)
s ) ds a.s.=

∫ t

t0

a(s, X̃s) ds

and

lim
n→∞

∫ t

t0

b(s,X(n)
s ) dWs

a.s.=
∫ t

t0

b(s, X̃s) dWs

for each t ∈ [t0, T ]. By choosing an appropriate subsequence we have the
last limit also converging a.s. for this subsequence, see Sect. 2.7. Therefore,
the right-hand side of (7.7.8) converges a.s. to the right-hand side of (7.7.2).
Thus, the limit process X̃ satisfies the stochastic integral equation (7.7.2) a.s.

��

Note that with the exception of the square integrability of X, the main
result of Theorem 7.7.6 may remain valid if we impose certain weaker assump-
tion instead of the square integrability of the initial value Xt0 .

Yamada Condition (*)

Several financial models that are of practical interest have factors that sat-
isfy SDEs, which do not have Lipschitz continuous coefficient functions. An
example of such an SDE is given by the square root process, see Sect. 4.4,
which appears, for instance, in the CIR model and the MMM, see Sect. 4.3
and Sect. 7.5. Its diffusion coefficient function, which is the square root of
the process value itself, has infinite slope at zero. Consequently, the Lipschitz
condition (II) is not satisfied. Another example, where the Lipschitz condition
may fail is the CEV model, see (4.3.12).

It is possible to replace the Lipschitz condition (II) on the diffusion coef-
ficient b by the weaker Yamada condition, which assumes that there exists an
increasing function � : [0,∞) → � with

�(0) = 0 and
∫ ε

0

�−2(u) du = +∞
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for any ε > 0 such that

|b(t, x) − b(t, y)| ≤ � (|x− y|) (7.7.17)

for all x, y ∈ � and t ∈ [t0, T ]. This condition is sufficient to establish an
existence and uniqueness theorem for solutions of corresponding SDEs. For
example, � may be given by �(u) = uα for α ∈ [ 12 , 1] or �(u) =

√
|u ln(u)|.

With the first of these choices, for instance, it can be concluded that the SDE

dXt = |Xt|α dWt (7.7.18)

has a pathwise unique solution for Xt0 > 0 when α ∈ [ 12 , 1). Counterexamples
exist which show that this is not the case for α < 1

2 . Making zero an absorbing
state for X leads to a unique solution for α ∈ (0, 1

2 ).
Note that the CEV model, see (4.3.11) and (4.3.12), has an SDE similar

to the above SDE (7.7.18). Therefore, one has to be careful in constructing
an asset price model which relies on a diffusion coefficient that resembles a
power of the asset price itself. In particular, it appears to be critical when the
exponent α is below one half. Using the Yamada condition, the existence and
uniqueness of the solution of the SDE (7.5.15) for the square root process can
be shown. Corresponding proofs can be found in Karatzas & Shreve (1991),
Ikeda & Watanabe (1989) or Cherny (2000). We shall see in Sect. 8.7 that SR
processes are transformations of squared Bessel processes.

It is not trivial to establish the existence and uniqueness of the solution
of an SDE for a Bessel process Z = {Zt, t ∈ [0,∞)} of dimension δ > 1. A
Bessel process is the square root of a squared Bessel process, see Sect.8.7. The
SDE of Zt is of the form

dZt =
δ − 1
2Zt

1{Zt �=0} dt+ dWt (7.7.19)

for t ∈ [0,∞) with Z0 > 0. In Cherny (2000) the following results are shown.

Lemma 7.7.7. (Cherny)

(i) For δ ≥ 2 the SDE (7.7.19) has a unique strong solution.
(ii) If δ ∈ (1, 2) or Z0 = 0, then there exist other strong solutions of the SDE

(7.7.19) with the same Z0 and Wiener process W = {Wt, t ∈ [0,∞)}.

This result indicates that one has to be careful when describing a stochastic
process via some SDE without properly checking the existence and uniqueness
of its solutions. For instance, one can show that the squared Bessel process,
which corresponds to the square of the solution of (7.7.19), has an SDE with
a unique strong solution. However, the square root of this process, that is
the Bessel process itself, satisfies an SDE where the uniqueness of its strong
solutions breaks down for a range of dimensions and some initial value. This
is not a purely technical issue. It is highly relevant in practice because Bessel
processes arise naturally as factors in financial modeling, as we shall see later.
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The above discussion also indicates that it is preferable to work, when possi-
ble, in the modeling of financial quantities with squared Bessel processes as
underlying factors instead of Bessel processes.

7.8 Markovian Solutions of SDEs (*)

For many index, equity, foreign exchange rate and interest rate models the
solutions of the corresponding SDEs are Markov processes. This is an impor-
tant property since it allows the application of powerful analytical tools to
solutions and functionals of these types of SDEs.

Underlying SDE (*)

To illustrate the Markov property of solutions of SDEs consider the scalar
SDE

dXt = a(t,Xt) dt+ b(t,Xt) dWt (7.8.1)

for t ∈ [t0, T ], with initial value Xt0 = x0, where W denotes a standard Wiener
process.

Under the standard assumptions (I) - (IV) in Sect. 7.7 one can prove that
the solution of the SDE (7.8.1) is a diffusion process, which is a Markov
process. That is, its transition density satisfies the conditions (4.3.1)–(4.3.3)
for the drift and diffusion coefficients. For the corresponding proof and for
applications it is helpful to have some basic estimates for the higher order
moments of solutions of the above SDE, which we summarize below.

Bounds on Higher Order Moments (*)

The following lemma provides an example of some useful upper estimates for
the higher even moments of the solution of the SDE (7.8.1).

Lemma 7.8.1. Suppose that the Standard Assumptions (I)–(IV) of Sect.7.7
hold and that the 2nth initial moment

E
(
|Xt0 |

2n
)
< ∞

is finite for some integer n ≥ 1. Then the 2nth moment of the solution X of
(7.8.1) at time t ∈ [t0, T ] satisfies the inequality

E
(
|Xt|2n

)
≤
(
1 +E

(
|Xt0 |

2n
))

exp{C (t− t0)} (7.8.2)

and also the estimate

E
(
|Xt −Xt0 |

2n
)
≤ D

(
1 +E

(
|Xt0 |

2n
))

(t− t0)n exp{C (t− t0)}, (7.8.3)

where T < ∞, C = 2n(2n+1)K2 and D is a positive constant depending only
on n, K and T − t0.
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Here the constant K appears in the standard conditions (II) and (III). Con-
sequently, if the initial value Xt0 is a constant, then this lemma implies the
existence of all higher order moments. The proof of the above lemma uses
techniques similar to those applied in the proof of Theorem 7.7.6, see Kloeden
& Platen (1999).

Solutions of SDEs as Diffusion Processes (*)

We now formulate a theorem that characterizes the solution of the SDE (7.8.1)
as a diffusion process, see Sect.4.3. The conditions (II) and (III) and the addi-
tional assumption that the drift and diffusion coefficient functions are contin-
uous in time imply condition (I), which already follows for time homogeneous
drift and diffusion coefficient functions from the Lipschitz condition (II). Pro-
vided a unique strong solution of the SDE (7.8.1) exists, the assumptions
needed to prove the result below can be considerably weakened.

Theorem 7.8.2. Assume that the coefficient functions a and b are contin-
uous and conditions (II) and (III) of the Standard Assumption in Sect. 7.7
hold. Then for any fixed initial value Xt0 the solution X of (7.8.1) is a dif-
fusion process on [t0, T ] with drift coefficient a(t, x) and diffusion coefficient
b(t, x).

Proof of Theorem 7.8.2 (*)

Let us denote by
Xs,x = {Xs,x

t , t ∈ [s, T ]}

a stochastic process that starts at time s ∈ [t0, T ] with initial value

Xs,x
s = x.

Under the assumption of Theorem 7.7.6 one can show that for t ∈ [t0, T ] and
s ∈ [t0, t] we have that

Xt0,x
t = X

s,Xs,x
s

t (7.8.4)

a.s., see Rogers & Williams (2000), which encapsulates the Markov property.

1. From the inequality (7.8.3) with n = 2 we have

E
(
|Xs,x

t − x|4
)
≤ C |t− s|2

for t ∈ [t0, T ], s ∈ [t0, t] and some constant C, which depends on t0, T and x.
Hence, for any ε > 0 the transition density p(s, x; t, y) satisfies the inequalities
∫

|y−x|>ε

p(s, x; t, y) dy ≤ ε−4

∫

	
|y − x|4 p(s, x; t, y) dy ≤ C ε−4 |t− s|2,
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so that
lim
t↓s

1
t− s

∫

|y−x|>ε

p(s, x; t, y) dy = 0,

which is condition (4.3.1) in Sect. 4.3.

2. To verify the other two limits it suffices to show that

lim
t↓s

1
t− s

E (Xs,x
t − x) = a(s, x) (7.8.5)

and
lim
t↓s

1
t− s

E
(
|Xs,x

t − x|2
)

= b2(s, x). (7.8.6)

Taking the expectation on both sides of the integral version of equation (7.8.1),
and using the martingale property (5.4.3) of Itô integrals, we obtain

E (Xs,x
t − x) = E

(∫ t

s

a(u,Xs,x
u ) du

)

= (t− s)E
(∫ 1

0

a
(
s+ v(t− s), Xs,x

s+v(t−s)

)
dv

)
. (7.8.7)

Since the sample paths of Xs,x are a.s. continuous and the function a is
continuous, then

lim
t↓s

a
(
s+ v(t− s), Xs,x

s+v(t−s)

)
a.s.= a(s, x).

3. Furthermore, from the growth condition (III) it can be concluded that

∣
∣
∣a
(
s+ v(t− s), Xs,x

s+v(t−s)

)∣∣
∣
2

≤ K2

(
1 +
∣
∣
∣Xs,x

s+v(t−s)

∣
∣
∣
2
)

a.s. Combining this with the mean-square boundedness of the solution Xs,x,
see (7.8.2), we have

E

(∫ 1

0

∣
∣
∣a
(
s+ v(t− s), Xs,x

s+v(t−s)

)∣∣
∣
2

dv

)
< ∞.

Hence by Fubini’s theorem and using the growth condition (II) and (7.8.2)
we can interchange in (7.8.7) the order of integration to conclude with the
Dominated Convergence Theorem that

lim
t↓s

E

(∫ 1

0

a
(
s+ v(t− s), Xs,x

s+v(t−s)

)
dv

)
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= lim
t↓s

∫ 1

0

E
(
a
(
s+ v(t− s), Xs,x

s+v(t−s)

))
dv

=
∫ 1

0

lim
t↓s

E
(
a
(
s+ v(t− s), Xs,x

s+v(t−s)

))
dv

=
∫ 1

0

a(s, x) dv = a(s, x)

from which (7.8.5) then follows.

4. The remaining limit (7.8.6) can be established in a similar way. How-
ever, here one should first use the Itô formula to obtain a stochastic integral
equation for (Xs,x

t − x)2. ��

7.9 Exercises for Chapter 7

7.1. Compute the mean and variance as functions of time of the standard
Ornstein-Uhlenbeck process with initial value Xt0 = 1.

7.2. Determine the mean and the variance as functions of time for a geometric
Brownian motion with appreciation rate a = 0.05, volatility σ = 0.2 and initial
value X0 = 1.

7.3. Solve explicitly the scalar SDE

dXt = −1
2
Xt dt+Xt dW

1
t +Xt dW

2
t ,

where W 1 and W 2 are independent standard Wiener processes.

7.4. (*) Let N = {Nt, t ∈ [0,∞)} be a Poisson process with intensity λ > 0
and W a standard Wiener process. For the process Z = {Zt, t ∈ [0,∞)} with

Zt = a t+ bWt + cNt

compute the SDE for X = {Xt = exp{k Zt}, t ∈ [0,∞)} for a, b, c, k > 0.

7.5. (*) For the process X in Exercise 7.4 compute the expectation

u(t) = E(Xt).

7.6. (*) Show the explicit solution of the SDE

dXt = (a1 Xt + a2) dt+ (b1 Xt + b2) dWt

for t ∈ [0,∞) with X0 > 0 and prove that this solution solves the above SDE.
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Introduction to Option Pricing

In the previous chapters we have prepared mathematical tools that allow us
to model in continuous time the dynamics of financial securities, for instance,
stocks. Now, we shall study prices of derived financial securities. A derivative
security, for instance an option, is a financial instrument whose value is de-
pendent upon the values of an underlying more fundamental security. In this
chapter we give an introduction into derivatives, in particular, European op-
tions. For simplicity, we focus our discussion on options under the BS model.
Furthermore, we introduce at the end of the chapter important results on
squared Bessel processes because these will be crucial for the understanding
of the following chapters.

8.1 Options

Options have been introduced to provide some optionality to the buyer or
seller of a security. In the simplest case the holder of an option has the right
but not the obligation to buy or sell an underlying security for an agreed price
at a preset date. We discuss now options as a particular type of derivative to
highlight important general features of derivative securities.

European Call Option

Let us denote by St, the price of a security at time t ∈ [0,∞), measured in
units of the domestic currency. This can be, for instance, a stock index. We call
S = {St, t ∈ [0,∞)} the price process of the underlying security. A European
call option on an underlying security S gives the owner the right to buy the
security at a preset strike price K at the expiration date T ∈ (0,∞). The price
at time t for this right is the European call option price cT,K(t, St), which is
paid when the option contract is entered at time t. Note that there is an initial
payment at the time when the contract is signed. An American option has
the same payoff function as a European option. However, the holder has the

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,
Springer Finance,
© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010
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Fig. 8.1.1. Payoff function of a European call option for K = 1

right to exercise it at any time before the maturity date. Figure 8.1.1 shows
the payoff function of a call option

H(S) = (S −K)+ (8.1.1)

with strike price K = 1, where we use the notation a+ = max(0, a).
A European call option with expiration date T ∈ (0,∞) is at time t ∈ [0, T ]

said to be in-the-money, at-the-money or out-of-the-money, if St > K, St = K
or St < K, respectively. The function

H(St) = (St −K)+ (8.1.2)

is called the intrinsic value of the call option at time t ∈ [0, T ].
As an example, consider a European call option at the beginning of 1995

on the S&P500 index, displayed in Fig. 3.1.1, with a strike price of K = 400
and expiration date at the end of 1995. Figure 3.1.1 shows that the S&P500
was at the end of 1995 approximately at $500. This means that the value of the
option was at the end of 1995 at a level of about $100. We shall see from the
theoretical pricing formulas presented in this chapter that the realized payoff
of about $100 would have considerably exceeded the original price of the
option at the beginning of 1995. Of course, if the S&P500 stayed below $400
during 1995, then the owner of the call option would have received nothing
and would have lost the original option price that he or she paid when the
option contract was written. This shows that there is substantial leverage
involved when using options.

European Put Option

For market participants who aim to sell an underlying security at a future
date, the purchase of a European put option might be of advantage. This
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Fig. 8.1.2. Payoff function of a European put option, K = 1

financial contract is similar to the European call option but gives the holder
the right to sell a security for a specified strike price K at an expiration
date T . We denote the European put option price by pT,K(t, St). Figure 8.1.2
displays the payoff function of a European put option

H(ST ) = (K − ST )+ (8.1.3)

with strike price K = 1. A European put option is at time t ∈ [0, T ] in-the-
money, at-the-money or out-of-the money if St < K, St = K or St > K,
respectively. The quantity

H(St) = (K − St)+ (8.1.4)

is called the intrinsic value of a put option at time t ∈ [0, T ].
It is important to specify whether someone is the owner of an underlying

security or derivative. A market participant is long in a security, if he or she
is the owner of that security. On the other hand, one is short in a security if
one borrows it, sells it and has the obligation of giving it back at a later date.
Owning a negative unit of a security is therefore possible through the practice
of short-selling.

Combinations of European Put and Call Options

To implement special hedging or speculative trading strategies it is common to
form portfolios that consist of combinations of European call and put options.
As an example, a butterfly spread is constructed by buying a call with strike
price K1, selling two calls with strike price K2 > K1 and buying another call
with strike price K3 > K2. Figure 8.1.3 shows the resulting payoff function
H(S) of a butterfly spread with K1 = 0.6, K2 = 1, K3 = 1.4. The butterfly
spread has zero payoff outside the interval [K1,K3]. It allows to create at
maturity a cash flow when the underlying security is near the strike price.



280 8 Introduction to Option Pricing

Fig. 8.1.3. Payoff of a butterfly spread

Theoretically one can approximate almost any reasonable payoff function
at a given expiration date by portfolios of European calls and puts because a
corresponding portfolio of butterfly spreads can concentrate a desired payoff
close to each possible value of the underlying security.

Options

More generally, we call a derivative a European option if it gives the right to
realize a given payoff according to a given function H : [0,∞) → � of the
underlying ST at a specified expiration date T ∈ [0,∞). If the payoff can be
exercised on or before the expiration date, then the contract is called an Amer-
ican option. The call and put options, introduced previously, are examples of
European options. An American option is, in general, more expensive than
a corresponding European option because it provides additionally the right
to exercise early. One can show that the price of an American call option
on an underlying security that pays no dividend is the same as its European
counterpart.

In the following we denote by V (t, St) the value at time t ∈ [0, T ] of
a European option with payoff function H and maturity date T ∈ [0,∞).
Here H has to fulfill some integrability condition which we do not specify
at this stage. The pricing function V : [0, T ) × [0,∞) → � for a European
option can, in general, be shown to be differentiable with respect to time and
twice differentiable with respect to the underlying security. This smoothness
property will be exploited later for its computation. The efficient evaluation
of this function is of importance both for the pricing and the hedging of these
contracts. We shall show later that in certain cases explicit pricing formulas
are available. However, in general, one needs to apply numerical methods.
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8.2 Options under the Black-Scholes Model

We now consider options for the particular dynamics of the Black-Scholes
(BS) model for the underlying security.

Black-Scholes Model

For simplicity, let us use the BS model, see Sect. 7.5, as a description for the
dynamics of the underlying security. It has been established historically as the
standard market model for option pricing, see Black & Scholes (1973). This
model supposes that the underlying security price S = {St, t ∈ [0, T ]} follows
a geometric Brownian motion, see (6.3.6), with time dependent, determinis-
tic appreciation rate a = {at, t ∈ [0, T ]} and strictly positive, deterministic
volatility σ = {σt, t ∈ [0, T ]}, that is

dSt = at St dt+ σt St dWt (8.2.1)

for t ∈ [0, T ] with given initial value S0 > 0. Here W denotes a standard
Wiener processW = {Wt, t ∈ [0, T ]}. Furthermore, there is a domestic savings
account B = {Bt, t ∈ [0, T ]}, which accrues the deterministic interest r =
{rt, t ∈ [0, T ]}. We assume

dBt = rt Bt dt (8.2.2)

for t ∈ [0, T ] with initial value

B0 = 1. (8.2.3)

The domestic savings account is also called the locally riskless asset since there
is no noise term in its differential equation (8.2.2). Typically, in the standard
BS model one sets the volatility σ, the appreciation rate a and the short
rate r to be constant, which yields the basic model for option pricing. In the
following analysis we typically allow these parameters to be time dependent.
We shall later show in Sect.10.6 that the savings account can be defined more
precisely as a limit of a roll-over short term bond account.

Hedge Portfolio

For the following let us fix the maturity date at T . From the practical point
of view it is most important to realize that the writer of a European option
can replicate the payoff H(ST ) at the expiration date T . To achieve this, a
hedge portfolio has to be established, which consists at time t of δ1

t units of
the underlying security St and δ0

t units of the domestic savings account Bt.
At time t ∈ [0, T ] the value of this portfolio is then set to the value V (t, St)
of the option. That is, the hedge portfolio has the value

V (t, St) = δ0
t Bt + δ1

t St (8.2.4)
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at time t ∈ [0, T ]. By the Itô formula (6.4.11) we obtain

dV (t, St) = δ0
t dBt + δ1

t dSt +Bt dδ
0
t + St dδ

1
t + d[δ1, S]t (8.2.5)

at time t ∈ [0, T ].

Self-Financing Portfolios

We assume that the hedge portfolio is self-financing. This means that all
changes in the value of the portfolio are caused by gains from trade, that is,
by changes in the savings account B and the underlying security S. We can
express the self-financing property of the portfolio V (t, St) in differential form
by assuming the SDE

dV (t, St) = δ0
t dBt + δ1

t dSt (8.2.6)

for t ∈ [0, T ]. Note that by (8.2.6) and (8.2.5) for the above hedge portfolio
to be self-financing we have to satisfy the condition

Bt dδ
0
t + St dδ

1
t + d[δ1, S]t = 0 (8.2.7)

for all time t ∈ [0, T ].
We call the process δ = {δt = (δ0

t , δ
1
t )�, t ∈ [0, T ]} a self-financing strategy

if δ0 = {δ0
t , t ∈ [0, T ]} and δ1 = {δ1

t , t ∈ [0, T ]} are predictable processes
and both are such that the hedge portfolio, whose value is given in (8.2.4),
satisfies (8.2.6). We say that the hedge portfolio replicates the payoff H(ST )
at the expiration date T , if

V (T, ST ) = H(ST ). (8.2.8)

Furthermore, we need to assume the existence of the involved gains from trade
or, equivalently, the corresponding Itô integrals. For our setup it is sufficient to
assume that δ1(·)σ(·)S(·),

√
δ1(·) a(·)S(·) and

√
|δ0(·) r(·)B(·)| are in L2

T , see
(5.4.1). Note however, for other models one may require weaker integrability
conditions. Without further mentioning, we consider in the following only
self-financing portfolios and strategies and omit the phrase self-financing.

We allow the hedge portfolio to be rebalanced continuously. Furthermore,
we assume, for simplicity, that there are no additional costs, such as trans-
action costs, involved in hedging. One typically characterizes this setup as
continuous hedging in a frictionless market.

Discounted Value Function

To identify in a simple way an appropriate hedging strategy it is convenient
to consider the corresponding discounted value function V̄ : [0, T ]× [0,∞) →
[0,∞) given by
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V̄ (t, S̄t) =
V (t, St)
Bt

(8.2.9)

and the discounted underlying security

S̄t =
St

Bt
(8.2.10)

for t ∈ [0, T ]. By the Itô formula (6.2.11) we obtain from (8.2.1) and (8.2.2)
the SDE

dS̄t = (at − rt) S̄t dt+ σt S̄t dWt (8.2.11)

for t ∈ [0, T ] with S̄0 = S0. By discounting with the savings account one is
taking the time value of money into account. This is extremely important for
an investor who always can invest into the locally riskless asset, the savings
account B. In this sense it is understandable when investors prefer to denom-
inate a security in units of the savings account instead of denominating it in
units of the currency.

Profit and Loss Process

A hedger who has an option in her or his trading book faces at time t a profit
and loss (P&L) that is denoted by Ct for t ∈ [0, T ]. The ultimate goal of
the hedger is to achieve zero P&L throughout the hedge. Then the selling of
options and hedging these becomes ideally a riskless business.

To take for the P&L the time value of money into account, we consider
the discounted profit and loss

C̄t =
Ct

Bt
(8.2.12)

at time t. For a given strategy δ the discounted P&L C̄t at time t ∈ [0, T ] is
obtained as the corresponding discounted value of the hedge portfolio minus
the discounted gains from trade and minus the initial value of the discounted
portfolio. It can be written in the form

C̄t = V̄ (t, S̄t) − Iδ1,S̄(t) − V̄ (0, S̄0) (8.2.13)

for t ∈ [0, T ]. Here we use the gains from trade Iδ1,S̄ , see (5.3.11), with respect
to the discounted security S̄, which according to (8.2.11) is of the form

Iδ1,S̄(t) =
∫ t

0

δ1
u dS̄u =

∫ t

0

δ1
u (au − ru) S̄u du+

∫ t

0

δ1
u σu S̄u dWu (8.2.14)

for t ∈ [0, T ]. Obviously, with respect to the constant discounted domestic
savings account

B̄t = 1 (8.2.15)

there is zero gains from trade Iδ0,B̄(t) = 0 for t ∈ [0, T ].
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When the option contract is established at time t = 0, then the hedger
receives from the buyer of the option the payment V (0, S0). This is equivalent
to the discounted value

V̄ (0, S̄0) =
V (0, S0)

B0
,

see (8.2.9) and (8.2.3). Thus, we have according to (8.2.13) and (8.2.14) zero
initial discounted P&L

C̄0 = 0. (8.2.16)

The discounted P&L C̄t is then the actual discounted portfolio value that a
hedger holds at time t.

No-Arbitrage for P&L Process

Now, let us discuss some notion of arbitrage, which is fundamental for the
modeling of financial markets. If a market participant is able to generate by
her or his nonnegative total portfolio of investable securities some strictly pos-
itive wealth out of nothing, then this is interpreted as arbitrage. Any reason-
able financial market model should avoid the modeling of arbitrage. We shall
introduce a precise definition of arbitrage later in Sect. 10.2. At the present
introductory level we call it an arbitrage if the market model allows to form
a nonnegative portfolio that starts at zero and attains with strictly positive
probability a strictly positive value at some later date. The nonnegativity of
the portfolio reflects the limited liability of each investor for her or his total
portfolio of investable wealth.

By excluding arbitrage a hedger can run a nonnegative hedge book with
zero total initial value only such that its value remains always zero. This
means that the P&L process of this business starts at zero and remains at
zero all the time. Therefore, we aim to identify under no arbitrage a hedging
strategy δ for which the discounted P&L remains zero, that is,

C̄t = 0 (8.2.17)

for all t ∈ [0, T ]. We call this a perfect hedge and the corresponding hedge
portfolio V = {V (t, St), t ∈ [0, T ]} that returns the payoff at maturity T is
then a replicating portfolio.

Discounted P&L Increments

We shall now demonstrate how an appropriate hedging strategy δ can be
constructed. For this purpose we examine the increments of the discounted
P&L process C̄. With the definition of the discounted P&L given in (8.2.13)
its increments can be expressed in the form

C̄t − C̄s = V̄ (t, S̄t) − V̄ (s, S̄s) −
∫ t

s

δ1
u dS̄u (8.2.18)
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for t ∈ [0, T ] and s ∈ [0, t]. Assuming that the discounted pricing function
V̄ (·, ·) is differentiable with respect to time and twice differentiable with re-
spect to the discounted underlying security value, the Itô formula (6.2.11) can
be applied and we obtain from (8.2.18) the relation

C̄t − C̄s =
∫ t

s

[
∂V̄ (u, S̄u)

∂u
+

1
2
σ2

u S̄
2
u

∂2V̄ (u, S̄u)
∂S̄2

+(au − ru) S̄u

(
∂V̄ (u, S̄u)

∂S̄
− δ1

u

)]
du

+
∫ t

s

σu S̄u

(
∂V̄ (u, S̄u)

∂S̄
− δ1

u

)
dWu (8.2.19)

for t ∈ [0, T ), s ∈ [0, t]. The formula (8.2.19) provides an explicit representa-
tion for the increments of the discounted P&L.

Discounted Black-Scholes PDE

Note that a strategy δ that minimizes the fluctuations of the discounted P&L
process C̄ is obtained if the second integral on the right hand side of (8.2.19)
vanishes for the choice of the hedge ratio δ1

t given by

δ1
t =

∂V̄ (t, S̄t)
∂S̄

(8.2.20)

for t ∈ [0, T ). It can be seen that when taking (8.2.20) into account, then the
first term in (8.2.19) disappears if the discounted value function V̄ satisfies
the PDE

∂V̄ (t, S̄)
∂t

+
1
2
σ2

t S̄
2 ∂

2V̄ (t, S̄)
∂S̄2

= 0 (8.2.21)

for t ∈ [0, T ) and S̄ ∈ (0,∞). The resulting PDE (8.2.21) is not sufficient
to determine fully the function V̄ (·, ·). However, it would keep by (8.2.19)
and (8.2.20) any discounted P&L constant. Additionally, some condition at
the terminal time T needs to be specified to make sure that we start from a
zero initial discounted P&L. To ensure this and, thus, the replication of the
payoff at the expiration date T , see (8.2.8) and (8.2.9), we have to satisfy the
terminal condition

V̄ (T, S̄) =
H(S̄ BT )

BT
=

H(S)
BT

(8.2.22)

for S̄ ∈ (0,∞). We call the PDE (8.2.21) together with its terminal condition
(8.2.22) the discounted Black-Scholes partial differential equation (discounted
BS-PDE). This PDE determines a discounted pricing function V̄ (·, ·) that
allows a perfect hedge for the corresponding European payoff.

For instance, for European call and put options it can be shown that the
discounted BS-PDE has a unique solution and, thus, determines uniquely the
option price. The uniqueness of the solution of a PDE in the above form is,
in general, not trivially established, as we shall see in Chap. 12.
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Black-Scholes PDE

By a transformation of variables, see (8.2.9) and (8.2.10), the above discounted
BS-PDE can be rewritten for the undiscounted option pricing function V (·, ·)
in the form

∂V (t, S)
∂t

+ rt S
∂V (t, S)

∂S
+

1
2
σ2

t S
2 ∂

2V (t, S)
∂S2

− rt V (t, S) = 0 (8.2.23)

for t ∈ [0, T ) and S ∈ (0,∞) with terminal condition, see (8.2.8),

V (T, S) = H(S) (8.2.24)

for S ∈ (0,∞). We call (8.2.23) together with (8.2.24) the BS-PDE. Note
that the BS-PDE and the discounted BS-PDE do not depend on the values of
the appreciation rate at of the underlying security. This is a remarkable fact,
which results from the choice of δ1

t in (8.2.20) that eliminated in (8.2.19) any
potential impact of at.

Option Price

In the formula (8.2.20) for the hedge ratio we describe the number δ1
t of units

to be held in the underlying security. By dividing equation (8.2.4) on both
sides by the savings account and using equations (8.2.10) and (8.2.9), we can
now determine the number of units that needs to be held in the domestic
savings account. It is given by the relation

δ0
t = δ0

t B̄t = V̄ (t, S̄t) − δ1
t S̄t (8.2.25)

for t ∈ [0, T ].
The option price obtained at time t is, of course, just V (t, St). The appro-

priate value of the hedge portfolio at time t in units of the domestic currency
can, therefore, be calculated, see (8.2.9), via the formula

V (t, St) = V̄ (t, S̄t)Bt (8.2.26)

for t ∈ [0, T ].

Numeraire Invariance

Let us now check whether the above construction of a hedge portfolio identifies
a self-financing strategy δ. As mentioned previously, this is a strategy that
changes the portfolio value only through changes in gains from trade, see
(8.2.6) and (8.2.7). For our discounted securities we have from (8.2.18) because
of zero discounted P&L C̄t = 0 for all t ∈ [0, T ] that

dV̄ (t, S̄t) = δ1
t dS̄t (8.2.27)
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for all t ∈ [0, T ]. This means that the portfolio V̄ (t, S̄t) is self-financing when
denominated in units of the savings account, because all changes in V̄ (t, S̄t)
are due to changes in S̄t. It is now of interest that the portfolio is also shown
to be self-financing when using other numeraires, for instance, if denominated
in units of the domestic currency. For this case we multiply V̄ (t, St) by the
savings account Bt and obtain from (8.2.26) and (8.2.27) by the integration-
by-parts formula (6.3.1) the SDE

dV (t, St) = d(V̄ (t, S̄t)Bt)

= Bt dV̄ (t, S̄t) + V̄ (t, S̄t) dBt + d[B·, V̄ (·, S̄·)]t

= Bt δ
1
t dS̄t + (δ0

t + δ1
t S̄t) dBt + δ1

t d[B, S̄]t

= δ0
t dBt + δ1

t

(
Bt dS̄t + S̄t dBt + d[B, S̄]t

)

= δ0
t dBt + δ1

t d(Bt S̄t)

= δ0
t dBt + δ1

t dSt (8.2.28)

for t ∈ [0, T ]. This proves the condition (8.2.7), which ensures that the result-
ing portfolio is self-financing when expressed in units of the domestic currency.

Consequently, the changes in the portfolio value are only a result of gains
from trade in the underlying security S and the savings account B. The above
result in (8.2.28) is important, since it shows that a portfolio that is self-
financing in one denomination is also self-financing in another denomination.
Note that such a result holds more generally, as will be shown in (9.6.18) and
towards the end of Chap.14. This means that a change in numeraire does not
impact on the self-financing property. We could select any strictly positive
portfolio as numeraire and would see, similarly as above, that a portfolio,
which is self-financing in one denomination is also self-financing under this
numeraire.

The discounted P&L process C̄t starts at zero, see (8.2.16), and has zero
increments, see (8.2.19)–(8.2.21). Therefore, it is zero for the above identified
hedging strategy. The undiscounted P&L process C = {Ct, t ∈ [0, T ]} with

Ct = C̄t Bt = 0 (8.2.29)

for t ∈ [0, T ], see (8.2.12) and (8.2.17), equals then also zero. Consequently,
the resulting nonnegative P&L process does not permit arbitrage, as was
required.

The above hedging approach for determining the value of an option is
essentially based on the Itô formula. This fundamental tool allows us to obtain
in continuous time a perfect hedging strategy together with the corresponding
option price. Note that no expectation has been taken to determine the option
price.

We shall see later in Chap.10 that the above approach for finding a perfect
hedge and a corresponding price for a derivative security can be generalized to
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more complex payoff structures and more general asset price models. Certain
PDEs, similar to those given in (8.2.21) and (8.2.22), arise also for other
payoffs and security dynamics. What differs are the volatility specification
and the boundary conditions.

8.3 The Black-Scholes Formula

In this section we study the solution of the BS-PDE (8.2.23) with its terminal
condition (8.2.24) in the case of a European call option.

Black-Scholes Formula

Let us describe the price of a European call option for an underlying security
S = {St, t ∈ [0, T ]} that follows the SDE (8.2.1). The payoff is according to
(8.1.1) of the form

H(S) = (S −K)+ (8.3.1)

for S ∈ (0,∞) with strike price K > 0 and matures at the terminal date T .
In their Nobel prize winning work Black, Scholes and Merton provided

the explicit description of the price cT,K(t, St) at time t for the European call
option with expiry date T and strike price K, see Black & Scholes (1973) and
Merton (1973b). This result is widely known as the Black-Scholes formula
(BS formula). It takes the form

cT,K(t, St) = St N(d1(t)) −K
Bt

BT
N(d2(t)) (8.3.2)

with

d1(t) =
ln
(

St

K

)
+
∫ T

t

(
rs + 1

2 σ
2
s

)
ds

√∫ T

t
σ2

s ds
(8.3.3)

and

d2(t) = d1(t) −

√∫ T

t

σ2
s ds (8.3.4)

for t ∈ [0, T ). Here Bt is again the domestic savings account at time t, see
(8.2.2). Furthermore, N(·) denotes the standard Gaussian distribution func-
tion, see (1.2.7), with density

N ′(x) =
1√
2π

exp
{
−x2

2

}
(8.3.5)

for all x ∈ �, see (1.2.8). It can be shown by direct calculation that the above
European call option pricing function cT,K(·, ·) solves the BS-PDE given in
(8.2.23) for the payoff function (8.3.1), see Exercise 8.1. One observes in the
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Fig. 8.3.1. Black-Scholes European call option price

BS formula that the option price does not depend on the specific choice of the
appreciation rate at of the underlying security, which we explained earlier.

Noting the form of the BS formula (8.3.2), a heuristic guess for the number
δ1
t of units of the risky asset to be held in the hedge portfolio would be
N(d1(t)). We show below that this is correct. However, this result is not as
obvious as it may seem because d1(t) and d2(t) depend on St.

For small values of St, the expressions d1(t) and d2(t) and also N(d1(t))
and N(d2(t)) are small, see Fig. 1.2.4. Thus, for small St the European call
option has almost no value. However, for large underlying security price St

the quantities d1(t) and d2(t) are both large so that N(d1(t)) and N(d2(t))
are approximately one, as can be seen in Fig. 1.2.4. Consequently, by (8.3.2)
the option value equals approximately St −K Bt

BT
in this case.

The BS formula (8.3.2) can be interpreted as being an analytical formula.
However, the Gaussian distribution function N(·) needs still to be approx-
imated by other more basic functions or obtained by numerical evaluation
of the integral of the Gaussian density N ′(·) given in (8.3.5). In (1.2.7) a
reasonably accurate and efficient approximation for the standard Gaussian
distribution function has been provided.

European Call Option Price

To give an idea about the shape of the pricing function cT,K we show in
Fig. 8.3.1 the European call option price as a function of time t and the un-
derlying security price S with volatility σ = 0.2, strike price K = 1, expiration
date T = 10 years and short rate r = 0.05. Figure 8.3.1 depicts prices for up
to ten years to display some long term features of the typical Black-Scholes
option price. Note that close to the expiration date T = 10 the option price
has approximately the value of the hockey stick like payoff function (8.3.1). As
previously mentioned, for small values of the underlying security the option
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price remains close to zero and for large security prices S the option has a
price close to S −K Bt

BT
.

8.4 Sensitivities for European Call Option

The pricing function cT,K , see (8.3.2), for the European call option depends
on several variables. These are the underlying security price St, the time to
maturity T − t, the volatility σ of the underlying security, the interest rate r
and the strike price K. Changes in any of these variables influence the option
price. Therefore, it is of practical importance to know how sensitive the pricing
function cT,K is with respect to these variables.

It is informative to use the classical Taylor formula to expand the in-
crements of the value of the derivative security over a small time interval
[t, t+h] in dependence on the above mentioned variables. By omitting higher
order terms one obtains

V (t+ h, St+h) − V (t, St)

≈ ∂V (t, St)
∂S

(St+h − St) +
1
2
∂2V (t, St)

∂S2
(St+h − St)2

+
∂V (t, St)

∂t
h+

∂V (t, St)
∂σ

(σt+h − σt) +
∂V (t, St)

∂r
(rt+h − rt)

= Δ(St+h − St) +
1
2
Γ (St+h − St)2 − Θh+ V (σt+h − σt) + � (rt+h − rt),

(8.4.1)

where

Δ =
∂V (t, St)

∂S
, Γ =

∂2V (t, St)
∂S2

, Θ =
∂V (t, St)

∂t
,

V =
∂V (t, St)

∂σ
and � =

∂V (t, St)
∂r

for t ∈ [0, T ]. Here the letters Δ, Γ , Θ, V and � denote the corresponding par-
tial derivatives which are called sensitivities or greeks. The expansion (8.4.1)
shows how the above greeks influence the increments of the Black-Scholes op-
tion price. Note that for obtaining a first order approximation one needs to
include the second order derivative Γ since the conditional expectation

E
(
(St+h − St)2

∣
∣At

)
≈ σ2

t S
2
t h.

is of order h.
In the following we discuss some of the above greeks for the Black-Scholes

European call option price. In the figures displayed below, we choose as default
parameter the strike price K = 1 and maturity date T = 10. We consider the
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Fig. 8.4.1. Delta as a function of t and St

parameters a, σ and r to be constant and fix T and K, unless we study a
sensitivity with respect to such a parameter. This means, we study sensitivities
for the standard BS model.

Delta

The delta has been previously mentioned as hedge ratio, see (8.2.20). It mea-
sures the sensitivity of the option price with respect to changes in the price
of the underlying security St. We set

Δ =
∂V (t, St)

∂S
= δ1

t (8.4.2)

and obtain from (8.3.2) and (8.3.3) the expression

Δ = N(d1(t)), (8.4.3)

which can be shown to equal the partial derivative appearing in (8.2.20), see
Exercise 8.2.

Figure 8.4.1 shows for constant σ = 0.2 and r = 0.05 the delta for the
European call option as a function of time t and asset price St.

Note that the delta for a European call option is always positive and
bounded by one. Close to expiration and strike price K = 1, delta behaves
almost like a step function moving from level zero to one. This makes hedging
quite difficult in this situation.

Gamma

The sensitivity of the hedge ratio delta, with respect to the security price
St is called gamma. This greek is important for the length of re-balancing
intervals in practical hedging under transaction costs. A large gamma reflects
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Fig. 8.4.2. Gamma as a function of t and St

large changes in the hedge ratio and thus typically large transaction costs.
The gamma is set to

Γ =
∂Δ

∂S
=

∂2V (t, St)
∂S2

. (8.4.4)

Using (8.4.3) and (8.3.3), it can be shown that

Γ = N ′(d1(t))
1

St σ
√
T − t

(8.4.5)

for t ∈ [0, T ). Note that gamma is always positive. Figure 8.4.2 displays
gamma for the European call option as a function of time t and the un-
derlying security price St, using the same parameter values as in Fig. 8.4.1.

Close to maturity the gamma has a profile in spatial direction similar to
that of the bell shaped curve of the Gaussian density, see Fig.1.2.3. It becomes
extremely large close to expiration for security prices that are near the strike
price, which is here set to K=1.

Theta

The theta of a hedge portfolio measures the dependence of the option price on
the remaining time to expiration (T − t). The parameter theta, often called
the time decay of the portfolio, provides an estimate of the time sensitivity of
the option price and is given by the expression

Θ = −∂V (t, St)
∂(T − t)

. (8.4.6)

From (8.3.2) we obtain
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Fig. 8.4.3. Theta as a function of t and St

Θ = −N ′(d1(t))
St σ

2
√
T − t

− rK exp{−r(T − t)}N(d2(t)) (8.4.7)

for t ∈ [0, T ). Figure 8.4.3 displays theta for the European call option as a
function of time t and security price St for the same parameter values as used
in Fig. 8.4.1.

Vega

In the standard BS model a constant volatility σ is assumed. However, in
practice volatility is difficult to estimate and changes over time. It is important
to see how differences in volatilities influence derivative prices. The sensitivity
of the option price with respect to volatility is called vega, which is given by

V =
∂V (t, St)

∂σ
. (8.4.8)

Using (8.3.2), it can be shown that

V = N ′(d1(t))St

√
T − t (8.4.9)

for t ∈ [0, T ). Figure 8.4.4 shows vega as a function of the volatility σ and the
time t, where we have set r = 0.05, K = 1 and St = 1. Vega is positive and
decreases substantially close to expiration. Its maximum value can be found
for a volatility value that is close to

√
2 r.

Rho

In the standard BS model interest rates are assumed to be constant. However,
in practice interest rates vary. The sensitivity of the option price with respect
to the interest rate r can be analyzed through rho, which is defined as
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Fig. 8.4.4. Vega as a function of t and σ

Fig. 8.4.5. Rho as a function of t and r

� =
∂V (t, St)

∂r
.

From (8.3.2), the rho can be derived as the expression

� = N(d2(t)) (T − t)K exp{−r (T − t)} (8.4.10)

for t ∈ [0, T ). Note that rho is always positive for a European call option.
Figure 8.4.5 shows rho as a function of time t and interest rate r for σ = 0.2,
K = 1 and St = 1. Rho appears to be larger for large time to maturity and
largest for an interest rate close to 1

2σ
2.
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8.5 European Put Option

In this section we present a key relationship between European put and call
options under the BS model. Additionally, the greeks of put options and their
properties will be discussed.

Put-Call Parity

Put-call parity provides a simple way to determine the price of a European put
option if the corresponding call option price for the same strike and maturity
has been already computed. For the BS model the put-call parity relation can
be expressed in the form

cT,K(t, St) = pT,K(t, St) + St −K
Bt

BT
(8.5.1)

for t ∈ [0, T ]. This relation can be derived from the fact that the payoff
function for the terminal value of the quantity on the left hand side of equation
(8.5.1) equals the payoff function of that on the right hand side, which is

(ST −K)+ = (K − ST )+ + ST −K. (8.5.2)

For a wide range of models a similar put-call parity holds. This property of
put and call prices is not restricted to the BS model because it reflects the
general relationship (8.5.2) between their payoffs.

European Put Option Price

Using put-call parity, the pricing function pT,K for a European put option for
the BS model with constant volatility σ and constant interest rate r is given
by the formula

pT,K(t, St) = St (N(d1(t)) − 1) −K
Bt

BT
(N(d2(t)) − 1)

= −St N(−d1(t)) +K
Bt

BT
N(−d2(t)), (8.5.3)

where d1(t) and d2(t) are given in (8.3.3) and (8.3.4). Figure 8.5.1 shows the
European put option price as a function of time t and security price St for
volatility σ = 0.2, strike price K = 1, expiration date T = 10 and interest
rate r = 0.05.

It is interesting to compare the European call option price in Fig. 8.3.1
with the corresponding put option price displayed in Fig. 8.5.1. Inspection of
both figures shows that, at the expiration date, the corresponding ramp like
payoff functions are matched by the pricing functions.
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Fig. 8.5.1. European put option price

Fig. 8.5.2. Delta for the European put as a function of t and St

Greeks for the European Put Option

As with European calls, the sensitivities of the Black-Scholes European put
option price (8.5.3) can be examined with respect to changes in various vari-
ables using the same notation. By using the put-call parity in (8.5.1) or the
European put price (8.5.3) one obtains easily the corresponding sensitivities.
The delta for the European put option is, according to (8.4.2) and (8.5.1),
given by

Δ =
∂pT,K

∂S
= N(d1(t)) − 1. (8.5.4)

Figure 8.5.2 shows the delta for the European put option as a function of time
t and security price St. Note for the European put option that delta is always
negative and bounded between −1 and 0. Comparing formulas (8.4.3) with
(8.5.4) reveals that the delta of the put equals that of the call minus one.

The sensitivity of the delta with respect to the underlying security price
St is again called gamma, which for European puts, see (8.4.4) and (8.5.4), is
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given by the expression

Γ =
∂2pT,K

∂S2
= N ′(d1(t))

1
St σ

√
T − t

. (8.5.5)

This is the same formula as that for the European call given in (8.4.5). Thus,
Fig. 8.4.2 also shows the shape of the gamma for the European put.

The other greeks for European puts, similar to those mentioned earlier,
are given by the relations:

Θ =
∂pT,K

∂(T − t)
= N ′(d1(t))

St σ

2
√
T − t

+ rK exp{−r (T − t)} (N(d2(t)) − 1),

(8.5.6)

V =
∂pT,K

∂σ
= N ′(d1(t))St

√
T − t (8.5.7)

and

� =
∂pT,K

∂r
= (T − t)K exp{r (T − t)} (N(d2(t)) − 1). (8.5.8)

Bounds for European Calls and Puts

There exist some simple bounds for European call and put option prices on a
stock that pays no dividends. From the BS formula (8.3.2) it follows for the
European call

cT,K(t, St) ≤ St (8.5.9)

for t ∈ [0, T ]. By forming at time t a portfolio that consists of a European
call together with K Bt

BT
units of the savings account, the payoff at maturity

T will be
max(ST ,K) ≥ ST .

Therefore, it follows that

cT,K(t, St) ≥
(
St −K

Bt

BT

)+

(8.5.10)

for t ∈ [0, T ]. This holds for all European call option prices. Any derivative
that gives the holder more rights is more expensive. Therefore, an American
call price CT,K(t, St) at time t with maturity T and strike K is larger than
the corresponding European call and by (8.5.10) we obtain

CT,K(t, St) ≥ cT,K(t, St) ≥
(
St −K

Bt

BT

)+

≥ (St −K)+ (8.5.11)

for t ∈ [0, T ]. This means, the American call price CT,K(t, St), see Sect. 8.1,
is always larger than the intrinsic value (St −K)+ and will therefore never be
early exercised. Thus, we have
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CT,K(t, St) = cT,K(t, St) (8.5.12)

for t ∈ [0, T ]. This interesting feature is not model dependent.
On the other hand, from (8.5.3) the upper bound

pT,K(t, St) ≤ K
Bt

BT
(8.5.13)

for t ∈ [0, T ] can be obtained. By put-call parity and the positivity of call
prices it also follows that

pT,K(t, St) ≥ K
Bt

BT
− St. (8.5.14)

for t ∈ [0, T ].
Note that the above bounds do, in principle, not depend on the choice of

the model for the underlying security dynamics if one substitutes Bt

BT
by the

corresponding zero coupon bond of the respective model. They hold gener-
ally because they are a consequence of the shape of the put and call payoff
functions.

8.6 Hedge Simulation

In Sect. 8.1 we identified by hedging arguments the discounted BS-PDE for
discounted option prices. This led in Sect. 8.3 to the BS formula, which pro-
vides the solution for the BS-PDE. By using a hedge simulation we show now
how a hedge portfolio works in detail. This type of continuous trading is called
delta hedging . In the following, we construct a hedge portfolio for a European
call option under the standard BS model with constant appreciation rate a,
volatility σ and short rate r. We examine the evolution of the hedge port-
folio for two different scenarios along an equidistant time discretization with
tk = k h, k ∈ {0, 1, . . .}, for some small time step size h > 0. In this sense
we shall perform an approximate hedge, which can be interpreted as a con-
tinuous hedge in a frictionless market. For each of the two scenarios we shall
check whether the payoff is replicated by the hedge portfolio and the P&L
remains approximately zero as predicted by the theoretical results presented
in Sect. 8.1.

Hedging Strategy

The hedge ratio, that is the delta δ1
t , has according to (8.2.20), (8.4.3) and

(8.3.3) the value

δ1
t = N(d1(t))

= N

(
ln
(

St

K

)
+
(
r + 1

2 σ
2
)
(T − t)

σ
√
T − t

)

(8.6.1)
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for t ∈ [0, T ). For the number of units held in the domestic savings account
we obtain from (8.2.25), (8.2.26), (8.2.10), (8.3.2) and (8.6.1) the relation

δ0
t = − K

BT
N(d2(t))

= − K

BT
N

(
ln
(

St

K

)
+
(
r − 1

2 σ
2
)
(T − t)

σ
√
T − t

)

(8.6.2)

for t ∈ [0, T ]. Recall that the price of the call option at time t ∈ [0, T ), see
(8.2.4), is given by

cT,K(t, St) = δ1
t St + δ0

t Bt. (8.6.3)

Furthermore, from (8.2.13) the discounted P&L takes the form

C̄t = V̄ (t, S̄t) −
∫ t

0

δ1
s dS̄s − V̄ (0, S̄0) (8.6.4)

for t ∈ [0, T ). Let us now recall that the discounted P&L remains zero. This fol-
lows, for instance, by a straightforward application of the Itô formula (6.2.11)
for V̄ , where we obtain

V̄ (t, S̄t) = V̄ (0, S̄0) +
∫ t

0

δ1
s dS̄s (8.6.5)

and, thus, with (8.6.4) it must hold

C̄t = 0 (8.6.6)

for t ∈ [0, T ]. As previously explained, this is a consequence of the fact that
the terms on the right hand side of (8.2.19) vanish by the choice of the hedging
strategy.

In-the-Money Scenario

For illustration, let us generate linearly interpolated values of the underlying
security price St, say a stock index, from a sample path of a geometric Brow-
nian motion starting at S0 = 1 with appreciation rate a = 0.05 and volatility
σ = 0.2, using the time points ti = i h ∈ [0, 10] for i ∈ {0, 1, . . . , 500} with
time step size h = 0.02. This path is shown in Fig. 8.6.1 together with the
corresponding hedge ratio δ1

t , see (8.6.1), for the European call option with
expiration date T = 10, strike price K = 1 and interest rate r = 0.05. Note
that for the given sample path the security price ends up in-the-money, that is
we have ST > K. For this scenario we observe that the hedge ratio converges
to the value δ1

T = 1 as t tends to T . This is the correct value for the hedge
ratio since the security price ends up in-the-money and the option will be
exercised.
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Fig. 8.6.1. Underlying security and hedge ratio for in-the-money call

Fig. 8.6.2. Price, intrinsic value and P&L for in-the-money call

The evolution of the value of the corresponding hedge portfolio, which
equals the call option price cT,K(t, St), is shown in Fig. 8.6.2 in dependence
on time t. For comparison, Fig. 8.6.2 also displays the intrinsic value of the
call option, that is the value

H(St) = (St −K)+

for t ∈ [0, T ], see (8.1.2). Figure 8.6.2 shows for this sample path that the
hedge portfolio replicates the payoff of the option at the expiration date T =
10 since the option price converges to its intrinsic value for t approaching T .

For illustration, Fig.8.6.2 also displays for the obtained self-financing strat-
egy δ the P&L Ct of the hedge portfolio. According to (8.2.13), the discounted
P&L equals the value of the discounted portfolio minus the gains from trade in
the discounted security S̄ using the strategy δ minus the initial price. Note in
Fig.8.6.2 that the P&L remains almost perfectly zero over time as is expected
from equation (8.6.6).
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Fig. 8.6.3. Underlying security and hedge ratio for out-of-the-money call

Out-of-the-Money Scenario

The replication of the payoff through delta hedging does not depend on the
sample path of the underlying security, as can be seen from (8.2.19). To il-
lustrate this we change the sample path by assuming a zero appreciation rate
a = 0 in the above example. This brings the previous sample path of the
underlying security down, as is evident from Fig.8.6.3 and Fig.8.6.1. It shows
that the call option expires now out-of-the-money, that is ST < K = 1. Con-
sequently, the delta, that is the hedge ratio δ1

t , converges to zero for t tending
towards T . Figure 8.6.4 shows the corresponding sample path of the call option
price cT,K(t, St) and its intrinsic value

H(St) = (St −K)+

together with the P&L for the hedge portfolio. It is apparent that also in
this case the payoff is replicated at the expiration date T = 10 and the P&L
remains approximately zero over time, see (8.6.6).

We have used the same sample path of the driving Wiener process to
generate both the in- and out-of-the-money scenarios for a = 0.05 and a = 0,
respectively. The hedge simulations can be compared with each other via the
corresponding graphs in Figs. 8.6.1–8.6.4. Note that the initial option prices
cT,K(0, S0) at time t = 0 for both scenarios are the same. Changing the
appreciation rate a in the BS model has not altered any part of our formulas
and final hedging results. This striking phenomenon is a key feature of hedging.
Independently of the realized scenario and the underlying appreciation rate
the previously identified perfect hedge replicates the given payoff.

Hedging a European Call Option on the S&P500

Let us now apply the above Black-Scholes delta hedging to an S&P500 index
option. Figure 3.1.1 shows this index for the years from 1993 up until 1998
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Fig. 8.6.4. Price, intrinsic value and P&L for out-of-the-money call

Fig. 8.6.5. Normalized S&P500 and hedge ratio for K = 1.2

and Fig. 5.2.6 its logarithm and quadratic variation. To make the following
study similar to the above hedge simulation we divide the S&P500 data by
its value at January, 3, 1994 and use the 520 observations of the normalized
index for the years 1994 and 1995 as scenario of the underlying security.
Figure 8.6.5 depicts the normalized S&P500 values for these two years and
Fig. 8.6.6 the approximate quadratic variation, see (5.2.3), of the logarithm
of the normalized S&P500. The quadratic variation seems to be reasonably
linear for this period. According to formula (5.2.14), which provides some
definition of volatility, we can read off from the plotted graph of the quadratic

variation in Fig. 8.6.6 an average volatility of approximately σ ≈
√

0.016
2 ≈

0.09. Furthermore, we set the USD short rate to the constant value r ≈ 0.05,
which is reasonable for the period under consideration.

Now, let us consider a European call option on the normalized S&P500
sample path as underlying security, which expires at the end of the period,
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Fig. 8.6.6. Quadratic variation of log-S&P500

Fig. 8.6.7. Call price on S&P500, intrinsic value and P&L

that is in December 1995. We perform delta hedging according to what would
be obtained for the BS model with the above parameters and use the same pro-
cedure that was employed for the previous hedge simulation. To study an in-
the-money call option scenario we consider first a strike price of K = 1.2. Fig-
ure 8.6.5 shows the hedge ratio δ1

t for this European call option. Figure 8.6.7
displays the corresponding evolution of the call option price, intrinsic value
and P&L similar to Fig.8.6.2 and Fig.8.6.4. Note that the payoff is reasonably
well replicated at the expiration date. However, the P&L is not as close to
zero as was the case for the simulated BS model, previously examined. Note
from Fig. 8.6.6 that the volatility of the underlying security was not fluctu-
ating greatly during the chosen period. For longer dated options over longer
time periods changes in the P&L can be shown to be more dramatic and the
BS model is then not sufficient to provide an acceptable hedge. The nonzero
P&L is clearly a consequence of the fact that the S&P500 does not exactly
follow the BS model. The result can only be improved by using alternative
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asset price models which allow a volatility that is stochastic and reflects better
reality. A paper by Bakshi, Cao & Chen (1997) shows that for the hedging of
short dated options the BS model performs reasonably well. However, for the
prices of these options the authors pointed out that the BS model seems to
be not sufficiently accurate.

We shall later study various models that generate volatility which is
stochastic. Some of these models involve squared Bessel processes, which we
introduce in the following section.

8.7 Squared Bessel Processes (*)

As we shall see, many quantities that involve Bessel processes can be expressed
in terms of Bessel functions. This gives this class of processes its name. We
summarize in this section important results on squared Bessel processes be-
cause some of these will be crucial for the understanding of the following
chapters presenting the benchmark approach.

To facilitate the explicit computation of derivative prices and other quan-
tities under various models, including the CIR model, the CEV model and
the MMM, we list in this section properties of square root and squared Bessel
processes. Most of these properties are scattered in the literature. Some of
them can be found, for instance, in Karatzas & Shreve (1991), Revuz & Yor
(1999) or Jeanblanc, Yor & Chesney (2009).

The following results on time transformed squared Bessel processes will
also be important for the understanding of the typical dynamics of financial
markets. We shall give an example for a local martingale that is not a mar-
tingale. This example will turn out to be potentially closely linked to the real
market dynamics.

Squared Bessel Process (*)

Let us introduce the squared Bessel process (BESQδ
x) X = {Xϕ, ϕ ∈ [0,∞)}

of dimension δ ≥ 0 given by the SDE

dXϕ = δ dϕ+ 2
√
|Xϕ| dWϕ (8.7.1)

for ϕ ∈ [0,∞) with X0 = x ≥ 0, where W = {Wϕ, ϕ ∈ [0,∞)} is a standard
Wiener process on (Ω,A,A, P ) starting at the initial ϕ-time, ϕ = 0, at zero.
This means for ϕ ∈ [0,∞) that

[W ]ϕ = ϕ

for all ϕ ∈ [0,∞). Here we assume that X is reflected at zero if it reaches the
level zero. It turns out that the absolute sign under the square root in (8.7.1)
can be removed. Xϕ remains nonnegative in this case and (8.7.1) has a unique
strong solution, see Revuz & Yor (1999).
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We have the following scaling property:
If X = {Xϕ, ϕ ∈ [0,∞)} is a BESQδ

x, then Z = {Zϕ, ϕ ∈ [0,∞)} with
Zϕ = 1

aXaϕ is a BESQδ
x
a

for all a > 0.
For δ ∈ N and x ≥ 0 the dynamics of a BESQδ

x X can be expressed as
the sum of the squares of δ independent standard Wiener processes W 1, W 2,
. . ., W δ, where

x =
δ∑

k=1

(wk)2. (8.7.2)

Here one sets

Xϕ =
δ∑

k=1

(wk +W k
ϕ)2 (8.7.3)

for ϕ ∈ [0,∞). Note that this construction is invariant with respect to the
particular choice of wk, k ∈ {1, 2, . . . , δ}, when (8.7.2) is satisfied. Clearly, the
function (8.7.3) is a function of components of the solution of a simple linear
system of SDEs, where each component represents a Wiener process. By an
application of the Itô formula we obtain

dXϕ = δ dϕ+ 2
δ∑

k=1

(
wk +W k

ϕ

)
dW k

ϕ (8.7.4)

for ϕ ∈ [0,∞) with

X0 =
δ∑

k=1

(wk)2 = x. (8.7.5)

By setting

dWϕ = |Xϕ|−
1
2

δ∑

k=1

(
wk +W k

ϕ

)
dW k

ϕ (8.7.6)

we obtain the SDE (8.7.1). Note that we have for Wϕ the quadratic variation

[W ]ϕ =
∫ ϕ

0

1
Xs

δ∑

k=1

(
wk +W k

s

)2
ds = ϕ.

Thus, Wϕ in (8.7.6) forms by Lévy’s theorem, see Theorem 6.5.1, a Wiener
process in the ϕ time scale.

In Fig. 8.7.1 we show the path of a squared Bessel process of dimension
δ = 4 in the ϕ time scale, which starts at X0 = 100, where we set wk = 5 for
k ∈ {1, 2, 3, 4}. Note the tendency of the process to increase over time, which
is typical.

Squared Bessel processes have the following important additivity property,
see Shiga & Watanabe (1973):
Let X = {Xϕ, ϕ ∈ [0,∞)} be a BESQδ

x and Y = {Yϕ, ϕ ∈ [0,∞)} an
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Fig. 8.7.1. Squared Bessel process of dimension δ = 4 in ϕ-time

independent BESQδ′

y with x, y, δ, δ′ ≥ 0. Then the process Z = {Zϕ, ϕ ∈
[0,∞)} where Zϕ = Xϕ + Yϕ is a BESQδ+δ′

x+y .
It can be shown that a squared Bessel process BESQδ

x of dimension δ > 2
with X0 = x > 0 stays always strictly positive, that is

P

(
inf

0≤ϕ<∞
Xϕ > 0

)
= 1, (8.7.7)

see Karatzas & Shreve (1998). In this case Xϕ tends to infinity as ϕ goes to
infinity. For the case δ = 2 one has

P

(
inf

0≤ϕ<∞
Xϕ > 0

)
= 0.

Furthermore, for a BESQδ
x X process with δ ∈ [0, 2) and X0 = x > 0, there

is a strictly positive probability that X will hit zero before any fixed ϕ-time
ϕ′ ∈ (0,∞), that is

P

(
inf

0≤ϕ≤ϕ′
Xϕ = 0

)
> 0. (8.7.8)

This means Xϕ reaches zero in finite time with strictly positive probability.
For δ > 0 and x > 0 the transition density for a BESQδ

x process X starting
at the ϕ-time � ∈ [0,∞) in x being at time ϕ ∈ (�,∞) in y is given as

pδ(�, x;ϕ, y) =
1

2(ϕ− �)

(y
x

) ν
2

exp
{
− x+ y

2(ϕ− �)

}
Iν

( √
x y

ϕ− �

)
, (8.7.9)

see Revuz & Yor (1999), where Iν is the modified Bessel function of the first
kind, see (1.2.15), with index ν. Here the index is defined as

ν =
δ

2
− 1. (8.7.10)
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Fig. 8.7.2. Transition density of squared Bessel process for δ = 4

In Fig. 8.7.2 we show the transition density of a squared Bessel process of
dimension four, δ = 4, which means index ν = 1, starting at x = 100.

For small values of z one has

Iν(z) ≈ 1
ν Γ (ν)

(z
2

)ν

(8.7.11)

for ν > 0. Therefore, the transition density of a BESQδ
0 process X, which

starts at time zero at x = 0, is

pδ(0, 0;ϕ, y) = (2ϕ)−
δ
2
y

δ
2−1

Γ ( δ
2 )

exp
{
− y

2ϕ

}
. (8.7.12)

From (8.7.9) and (1.2.14) one notices that for fixed δ > 2, x, y ≥ 0 and
ϕ > 0 the transition density pδ(0, x;ϕ, y) is the density of a non-central chi-
square distributed random variable Y = Xϕ

ϕ , see (1.2.13) with dimension δ,
and non-centrality parameter  = x

ϕ . Consequently, by (1.2.13) we obtain

P

(
Xϕ

ϕ
< u

)
=

∞∑

k=0

exp
{
− �

2

} (
�
2

)k

k !

(

1 −
Γ
(

u
2 ; δ+2k

2

)

Γ
(

δ+2k
2

)

)

, (8.7.13)

where Γ (·; ·) is the incomplete gamma function, see (1.2.12).
Furthermore, for α > − δ

2 , ϕ ∈ (0,∞) and δ > 2 one can show that

E
(
Xα

ϕ

∣
∣A0

)
=

⎧
⎨

⎩
(2ϕ)α exp

{
−X0
2 ϕ

}∑∞
k=0

(
X0
2 ϕ

)k Γ(α+k+ δ
2 )

k ! Γ(k+ δ
2 )

for α > − δ
2

∞ for α ≤ − δ
2 ,

(8.7.14)
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see Exercise 8.8. By (8.7.1) it follows that

E
(
Xϕ

∣
∣A0

)
= X0 + δ ϕ (8.7.15)

for ϕ ∈ [0,∞). Thus, for α ∈ (− δ
2 , 0], ϕ ∈ (0,∞) and δ > 2 it follows by the

monotonicity of the gamma function

E
(
Xα

ϕ

∣
∣A0

)
≤ (2ϕ)α exp

{
−X0

2ϕ

}(
Γ
(
α+ δ

2

)

Γ
(

δ
2

) + exp
{
X0

2ϕ

})

< ∞, (8.7.16)

see Exercise 8.8. Let us remark, by using the property Γ (k+1)
Γ (k+2) = 1

k+1 of the
gamma function and an expansion of the exponential function, that one ob-
tains from (8.7.14) for δ = 4 the explicit expression

E
(
X−1

ϕ

∣
∣A0

)
= X−1

0

(
1 − exp

{
−X0

2ϕ

})
(8.7.17)

for ϕ ∈ (0,∞).
If one absorbs a squared Bessel process with dimension δ ∈ [0, 2) at zero,

the transition density (8.7.9) changes, see Borodin & Salminen (2002), such
that I|ν| appears in the formula instead of Iν . That is, one has for x > 0 and
ϕ ∈ [0,∞)

pδ(0, x;ϕ, y) =
1

2ϕ

(y
x

) ν
2

exp
{
−x+ y

2ϕ

}
I|ν|

(√
x y

ϕ

)
. (8.7.18)

Let P δ
x denote the law of a BESQδ

x process X = {Xϕ, ϕ ∈ [0,∞)} of
dimension δ with initial value X0 = x > 0 at time ϕ = 0. In Revuz & Yor
(1999) one can find the following important result. If we introduce the stopping
time τ = inf{ϕ ∈ [0,∞) : Xϕ = 0}, then for δ > 2 the relation holds:

P 4−δ
x

∣
∣
∣
∣
Aϕ∩{ϕ<τ}

=
(

x

Xϕ

) δ
2−1

P δ
x

∣
∣
∣
∣
Aϕ

(8.7.19)

for all ϕ ∈ (0,∞). In principle, on the left hand side of the above relation-
ship we consider squared Bessel processes with absorption at zero and on
the right hand side squared Bessel processes that never reach zero. The same
relationship (8.7.19) yields for δ < 2 the equation

P δ
x

∣
∣
∣
∣
Aϕ∩{ϕ<τ}

=
(

x

Xϕ

)1− δ
2

P 4−δ
x

∣
∣
∣
∣
Aϕ

, (8.7.20)

see also Exercises 8.9 and 8.10.
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Fig. 8.7.3. Inverse of a squared Bessel process of dimension δ = 4 in ϕ-time

Examples of Strict Local Martingales (*)

We now present an example of a local martingale that is not a martingale,
see Definition 5.1.1 and Definition 5.2.1. We consider the inverse Z = {Zϕ =
X−1

ϕ , ϕ ∈ [0,∞)} of a squared Bessel process X = {Xϕ, ϕ ∈ [0,∞)} of
dimension four, as given in (8.7.1), with X0 > 0. Then it follows by the Itô
formula that

dZϕ = −2Z
3
2
ϕ dWϕ (8.7.21)

for ϕ ∈ [0,∞), where
Z0 = X−1

0 . (8.7.22)

By the driftless SDE (8.7.21) the process Z turns out to be a local martingale
in ϕ time, see Sect.5.2 and Sect.5.5 or Protter (2004). From (8.7.17) it follows
that

E
(
Zϕ

∣
∣A0

)
= E

(
X−1

ϕ

∣
∣A0

)

= Z0

(
1 − exp

{
−1

2Z0 ϕ

})
< Z0 (8.7.23)

for ϕ ∈ (0,∞). This relation is not consistent with Z being an (A, P )-martin-
gale. It actually proves that Z cannot be a martingale according to equation
(5.1.2). Thus, the inverse Z of a squared Bessel process of dimension four
is a continuous local martingale that is not a martingale. We say that such
a local martingale is a strict local martingale. This observation will be very
important for realistic financial modeling and derivative pricing, as we shall
see later. Similarly, from relations (5.1.7) and (8.7.23) we can conclude that
Z is a strict supermartingale.

In Fig. 8.7.3 we exhibit the inverse of the path of a squared Bessel process
of dimension four in ϕ-time, which refers to the example with the path in
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Fig. 8.7.4. Expectation of the inverse of the squared Bessel process for δ = 4 in
ϕ-time

Fig. 8.7.1. Note that this path is typical of that of a strict supermartingale.
Here its current observation is larger than the best forecast of its future values.

In Fig. 8.7.4 we plot for the above example, by using formula (8.7.23), the
expectation at time 0 of the inverse of the four dimensional squared Bessel
process for varying ϕ-time. We clearly see the decline in this expectation over
ϕ-time as was already indicated by the sample path in Fig. 8.7.3.

More generally, see Göing-Jaeschke & Yor (2003), for real valued dimen-
sion δ > 2 one can show that the process

Z = {Zϕ = X
1− δ

2
ϕ , ϕ ∈ [0,∞)} (8.7.24)

is a strict local martingale if X = {Xϕ, ϕ ∈ [0,∞)} is a BESQδ
x process of

dimension δ > 2 with X0 = x > 0. One can see this from the relationship
(8.7.19) since the expectation of Zϕ is strictly less than one, because of the
possible absorption of a squared Bessel process of dimension 4 − δ < 2, see
(8.7.8). Alternatively, by application of the transition density (8.7.9) it follows
that

E
(
Zϕ

∣
∣A0

)
= E

(
X

1− δ
2

ϕ

∣
∣
∣A0

)
=
∫ ∞

0

y1− δ
2 pδ(0, x;ϕ, y) dy

= x1− δ
2

∫ ∞

0

p4−δ(0, y;ϕ, x) dy

= x1− δ
2

(

1 −
Γ ( δ

2 − 1; x
2 ϕ )

Γ ( δ
2 − 1)

)

< x1− δ
2 (8.7.25)

for ϕ ∈ (0,∞). Here Γ (·) is again the gamma function, see (1.2.10), and Γ (·; ·)
is the incomplete gamma function, see (1.2.12). Note that for the special case
δ = 4 we obtain from (8.7.25) and (1.2.12) the relation (8.7.23). Furthermore,
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the inequality in (8.7.25) is strict for ϕ > 0, which shows that Z is a strict
supermartingale.

Time Transformation (*)

Using a squared Bessel process we can derive by transformations more general
processes. These include, for instance, the square root (SR) process that was
mentioned previously in (4.4.6).

Let b : [0,∞) → � and c : [0,∞) → (0,∞) be given deterministic func-
tions of time. We introduce the exponential

st = s0 exp
{∫ t

0

bu du

}
(8.7.26)

and the ϕ-time

ϕ(t) = ϕ(0) +
1
4

∫ t

0

c2u
su

du (8.7.27)

for t ∈ [0,∞) and s0 > 0 in dependence on time. Note that by (8.7.27) and
(8.7.26) we have for constant b < 0 and c = 0 that

ϕ(t) = ϕ(0) +
c2

4 b s0
(1 − exp{−b t}) (8.7.28)

for t ∈ [0,∞) and the time

t(ϕ) = −1
b

ln
(

1 − 4 b s0
c2

(ϕ− ϕ(0))
)

(8.7.29)

for ϕ ∈ [ϕ(0),∞). For illustration we plot in Fig. 8.7.5 the time in units of
ϕ-time, when we set ϕ(0) = 0, c = 1, b = −0.05 and s0 = 0.2.

In Fig. 8.7.6 we show the path Xϕ(t) of the squared Bessel process X in
dependence on time t. It will be suggested in Sect. 13.2 under the MMM that
such a time transformed squared Bessel process of dimension δ = 4 is closely
matching the dynamics of the discounted market portfolio. For comparison
we plot for the previous example of a squared Bessel process in Fig. 8.7.7 the
expected value E(Xϕ(t)|A0) of Xϕ(t), see (8.7.15), in dependence on time t
when using the above default parameters.

Let us visualize for the above example in Fig.8.7.8 also the expected value
of the squared Bessel process of dimension δ = 4 with respect to time t. If one
compares the Figs. 8.7.4 and 8.7.8, then one notes that after about five years,
that is t = 5, the expected value of the inverse of the squared Bessel process
starts to decline noticeably in our example.

We then show in the case of our example for comparison the inverse of
the squared Bessel process of dimension δ = 4, which we plotted in Fig. 8.7.3
in ϕ-time, in Fig. 8.7.9 in dependence on time t. One observes the typical
systematic decline of a strict supermartingale.
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Fig. 8.7.5. Time t(ϕ) against ϕ time

Fig. 8.7.6. Squared Bessel process in dependence on time t

Square Root Process (*)

We shall now demonstrate the close relationship of a square root (SR) pro-
cess with a squared Bessel process X. Given a squared Bessel process X of
dimension δ > 0 and using our previous notation we introduce then the SR
process

Y =
{
Yt = st Xϕ(t), t ∈ [0,∞)

}

of dimension δ > 0 in dependence on time t, by the transformation

Yt = st Xϕ(t) (8.7.30)

for t ∈ [0,∞), see also Delbaen & Shirakawa (1997). Using (8.7.1), (8.7.26),
(8.7.27), (8.7.30) and applying the Itô formula (6.2.11), the SDE for the SR
process Y follows as
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Fig. 8.7.7. Expectation of a squared Bessel process in dependence on time t

Fig. 8.7.8. Expectation of the inverse of a squared Bessel process in dependence
on time t

dYt = st dXϕ(t) +Xϕ(t) dst

= st δ dϕ(t) + st 2
√
Xϕ(t) dWϕ(t) +Xϕ(t) st bt dt

=
(
δ

4
c2t + bt Yt

)
dt+ ct

√
Yt

√
4 st

c2t
dWϕ(t) (8.7.31)

for t ∈ [0,∞) and Y0 = s0 Xϕ(0) > 0. Note that W = {Wϕ, ϕ ∈ [ϕ(0),∞)}
is a Wiener process in the transformed ϕ-time ϕ(t) ∈ [ϕ(0),∞), which is
linked to the time t by (8.7.27). The martingale U = {Ut, t ∈ [0,∞)} with
the stochastic differential

dUt =

√
4 st

c2t
dWϕ(t) (8.7.32)
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Fig. 8.7.9. Inverse of squared Bessel process in dependence on time t

Fig. 8.7.10. Sample path of a square root process in dependence on time t

has the quadratic variation

[U ]t =
∫ t

0

4 sz

c2z
dϕ(z) = t. (8.7.33)

By Lévy’s theorem, see Theorem 6.5.1, the process U = {Ut, t ∈ [0,∞)} is
then a Wiener process with respect to t ∈ [0,∞) on (Ω,A,A, P ). Thus, we
have from (8.7.31) and (8.7.32) the SDE

dYt =
(
δ

4
c2t + bt Yt

)
dt+ ct

√
Yt dUt (8.7.34)

for t ∈ [0,∞) for the SR process Y with Y0 = s0 Xϕ(0). For an appropriate
choice of b, c and δ the process Y expresses the SR process mentioned in
(4.4.6) and (7.5.15). Figure 8.7.10 displays for our example the path of the
corresponding SR process of dimension δ = 4 in dependence on time t. For the
visualization of the transition density of an SR process we refer to Fig. 4.4.1.
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For δ > 2 the transformation (8.7.30) allows us to reduce the character-
ization of the probability density for Yt, see (8.7.43), to that of determining
pδ(ϕ(0), Y0

s0
;ϕ(t), Yt

st
), which is given in (8.7.9). It follows from (8.7.27), (8.7.14)

and (8.7.16) for α > − δ
2 , t ∈ (0,∞) and δ > 2 the αth moment

E
(
Y α

t

∣
∣A0

)
= (2 ϕ̄t s̄t)α exp

{
− Y0

2 ϕ̄t

} ∞∑

k=0

(
Y0

2 ϕ̄t

)k Γ (α+ k + δ
2 )

k!Γ (k + δ
2 )

(8.7.35)

and if additionally α ∈ (− δ
2 , 0) the estimate

E
(
Y α

t

∣
∣A0

)
≤ (2 ϕ̄t s̄t)α exp

{
− Y0

2 ϕ̄t

}(
Γ (α+ δ

2 )
Γ ( δ

2 )
+ exp

{
Y0

2 ϕ̄t

})

< ∞, (8.7.36)

where

s̄t =
st

s0
= exp

{∫ t

0

bu du

}
(8.7.37)

and

ϕ̄t = s0 (ϕ(t) − ϕ(0)) =
1
4

∫ t

0

c2u
s̄u

du (8.7.38)

for t ∈ [0,∞). Note that ϕ̄t and the above moments do not depend on the
choice of the parameter s0, which cancels due to the structure of the functions
ϕ(t) and st.

By using the SDE (8.7.34) the first moment of the SR process value Yt

can be shown to have the form

E
(
Yt

∣
∣A0

)
= E

(
Y0

∣
∣A0

)
exp
{∫ t

0

bs ds

}
+
∫ t

0

δ

4
c2s exp

{∫ t

s

bz dz

}
ds

(8.7.39)
for t ∈ [0,∞).

For the special case δ = 4 and α = −1 we obtain from (8.7.17) and
(8.7.27)–(8.7.30) the first order negative moment of Yt in the form

E
(
Y −1

t

∣
∣A0

)
=

1 − exp
{
− Y0

2 ϕ̄t

}

Y0 s̄t
. (8.7.40)

For δ > 2, c2t = c2 > 0 and bt = b < 0 the resulting SR process Y =
{Yt, t ∈ [0,∞)} with SDE (8.7.34) is ergodic, see Sect. 4.5. For the case δ = 4
it has linear mean reversion with speed of adjustment parameter −b and
reference level − c2

b . Thus, we obtain by (8.7.39) for an ergodic SR process Y
the long term mean

lim
t→∞

E
(
Yt

∣
∣A0

)
= −c2

b
(8.7.41)
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and the first order negative moment

lim
t→∞

E
(
Y −1

t

∣
∣A0

)
= −2

b

c2
. (8.7.42)

We have for the SR process Y = {Yt, t ∈ [0,∞)} an analytical transition
density p(s, Ys; t, Yt) that follows from (8.7.9) and (8.7.30) in the form

p(s, Ys; t, Yt) =
pδ

(
ϕ(s), Ys

ss
;ϕ(t), Yt

st

)

st
(8.7.43)

for 0 ≤ s < t < ∞. In the case when δ > 2, bt = b < 0 and ct = c = 0 the
ergodic SR process Y has the transition density

p(0, x; t, y) =
1

2s̄t ϕ̄t

(
y

x s̄t

) ν
2

exp

{

−
x+ y

s̄t

2 ϕ̄t

}

Iν

⎛

⎝

√
x y

s̄t

ϕ̄t

⎞

⎠ (8.7.44)

for 0 < t < ∞ and x, y ∈ (0,∞), where ν = δ
2 − 1, s̄t = exp{b t} and

ϕ̄t = c2

4 b (1 − 1
s̄t

). It has then as stationary density a gamma density, which
can be obtained via (4.5.20) in the form

pY∞(y) =

(−2 b
c2

) δ
2 y

δ
2−1

Γ ( δ
2 )

exp
{

2 b
c2

y

}
. (8.7.45)

The variance equals in this case

E
(
(Yt −E(Yt))2

∣
∣A0

)
= Y0

c2

b
(exp{2 b t} − exp{b t}) +

δ c4

8 b2
(1 − exp{b t})2

(8.7.46)
for t ∈ [0,∞).

Affine Process (*)

Let us now further transform the above SR process given by (8.7.30) to cover
the class of affine processes, see Duffie & Kan (1994) and Sect.4.5. These pro-
cesses have affine, that is linear, drift and linear squared diffusion coefficient
functions. Here, we simply shift the SR process by a nonnegative, differen-
tiable, deterministic function of time a : [0,∞) → [0,∞) defined through its
derivative

a′t =
dat

dt
(8.7.47)

for t ∈ [0,∞) with a0 ∈ [0,∞). More precisely, we define the process R =
{Rt, t ∈ [0,∞)} with

Rt = Yt + at (8.7.48)
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for t ∈ [0,∞). Since Y is nonnegative also R remains nonnegative. By the Itô
formula we obtain from (8.7.48) and (8.7.47) the SDE

dRt =
(
δ

4
c2t + a′t − bt at + bt Rt

)
dt+ ct

√
Rt − at dUt (8.7.49)

for t ∈ [0,∞) with R0 = Y0 + a0. This means that the transform

Rt = st Xϕ(t) + at (8.7.50)

of a squared Bessel process X of dimension δ yields an affine diffusion process,
see (4.5.14) and (4.5.15), which satisfies the SDE (8.7.49).

8.8 Exercises for Chapter 8

8.1. Show for the BS model that the discounted European call option price
of the discounted Black-Scholes formula satisfies the discounted Black-Scholes
partial differential equation with corresponding terminal condition.

8.2. Derive the expression for the hedge ratio of the European call option in
the BS model using the discounted BS-PDE.

8.3. Derive the gamma of a European put option for the BS model.

8.4. Compute, for a European put option under the BS model, the number
of units δ0

t to be held at a given time t in the domestic savings account.

8.5. Transform the discounted BS-PDE for a discounted European option
price into a corresponding BS-PDE for the corresponding undiscounted option
price as a function of time and undiscounted underlying security.

8.6. Show for the European put option under the BS model that the corre-
sponding P&L process is zero.

8.7. Derive the first moment of a square root process with constant parameters
c > 0, b < 0 and dimension δ > 2 satisfying the SDE

dYt =
(
δ

4
c2 + b Yt

)
dt+ c

√
Yt dWt

for t ∈ [0,∞) and Y0 > 0, where W is a Wiener process.

8.8. (*) Derive the moments for the squared Bessel process with dimension
δ > 2 including moments of negative order, as long as they exist, and show
estimates of the type (8.7.16).
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8.9. (*) Show by using the transition density pδ of a squared Bessel process
of dimension δ > 2 that

∫ ∞

0

y1− δ
2 pδ(0, x;ϕ, y) dy = x1− δ

2

∫ ∞

0

pδ(0, y;ϕ, x) dy.

8.10. (*) Show with the transition density pδ of a squared Bessel process of
dimension δ > 2 that

∫ ∞

0

pδ(0, y;ϕ, x) dy =

⎛

⎝1 −
Γ
(

δ
2 − 1, x

2ϕ

)

Γ ( δ
2 − 1)

⎞

⎠ .
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Various Approaches to Asset Pricing

A fundamental result of this chapter is that prices can be generally obtained
under the benchmark approach in situations where other approaches are not
available. This chapter also clarifies relationships between real world pricing
under the benchmark approach and the pricing by other means in the areas of
finance and insurance. Furthermore, it presents the Girsanov transformation,
the change of numeraire technique and the Feynman-Kac formula, which are
all highly relevant to derivative pricing.

9.1 Real World Pricing

Various Pricing Approaches

In the literature, pricing concepts for risky securities have been developed
in several seemingly different approaches. Often one determines the price of
an asset by reference to its underlying economic value. General equilibrium
based models, such as the intertemporal capital asset pricing model (ICAPM),
see Merton (1973a), provide examples of this approach. The actuarial pricing
approach, see Bühlmann (1970) and Gerber (1997), which is common in insur-
ance and accounting, provides another important example in this direction.
The above mentioned approaches aim to provide an economic explanation for
the value of prices and why asset prices move if changes in economic variables
occur.

A much less ambitious question is asked in pricing approaches which arise
when one is marking to market. Given the prices of some assets that se-
curitize uncertainty in the market, one analyzes under such approach what
consequences this has for the values of other securities in this market. The
securities to be priced are typically derivatives. The previously described op-
tion pricing methodology of Chap. 8 provides an example for such a pricing
approach, which is based on the assumption that there is no arbitrage, see
Ross (1976), Harrison & Kreps (1979) and Harrison & Pliska (1981). As we

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,
Springer Finance,
© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010
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shall see in Sect. 9.4, within the arbitrage pricing theory (APT) the risk neu-
tral pricing approach has been developed that allows convenient numeraire
changes and corresponding changes of pricing measures.

It is a challenge to reconcile presently used different pricing approaches
and to highlight their specific features in a consistent framework. The bench-
mark approach uses the growth optimal portfolio (GOP) as reference unit or
numeraire. As we shall see, the GOP is the portfolio that maximizes expected
logarithmic utility from terminal wealth, see Kelly (1956) and Long (1990).
The GOP exists in all financial market models that we shall consider. In the
next chapter it will be made clear for a continuous market what is the com-
position of the GOP. Chapter 14 will generalize this result to jump diffusion
markets. For the purpose of this chapter we keep the market model as BS
model and, therefore, the GOP very simple. We shall unify in a natural way
some of the mentioned pricing methods under the benchmark approach by
using the concept of real world pricing. To illustrate the different asset pric-
ing methodologies we explore in this chapter various alternative ways to price
a future payoff. We discuss the different approaches typically in the context
of the BS model, which considerable simplifies our presentation. However,
most of the conclusions apply also for other models, as we shall see later in
Chaps. 10–14.

First, we introduce in the following the real world pricing concept that
allows prices for payoffs to be obtained as conditional expectations under
the real world probability measure. We then show in later sections how the
benchmark approach relates to other pricing concepts. The advantage of the
benchmark approach is that as soon as the GOP exists one can always perform
real world pricing. Other approaches may have extra conditions to satisfy
which may not allow to form derivative prices for certain models of interest.

Portfolios under the BS Model

In the previous chapter, we have identified via no-arbitrage and hedging ar-
guments a price for a European option under the BS model. If one wants to
exclude arbitrage, then there is no alternative to this price. We now translate
this result into a pricing concept that is based on some conditional expec-
tation. To achieve this we express this price as a conditional expectation of
the option payoff. The expectation will be taken under the real world prob-
ability measure P . This is the probability measure that models the market
as it evolves and as we can observe it by exploiting empirical evidence. Only
under this measure one can estimate model parameters historically. We shall
show later in Sect.10.6 how to obtain the GOP without reference to a specific
model and the estimation of particular parameters. The key question that has
to be resolved is: In the denomination of which numeraire should one express
the payoff to apply an expectation under the real world probability measure?

With this goal in mind, we ask whether there exists a strictly positive
process, for instance, a market index, which when used as numeraire or bench-
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mark, generates realistic benchmarked derivative price processes that are mar-
tingales with respect to the real world probability measure. This means that
benchmarked derivative prices then represent the best forecast of their future
benchmarked values. In this way a natural pricing method could be estab-
lished via conditional expectation under the real world probability measure.
The described use of the GOP as numeraire portfolio follows the line of argu-
ments in Long (1990), Bajeux-Besnainou & Portait (1997), Becherer (2001)
and Bühlmann & Platen (2003). Since in the case of a European option un-
der the BS model we have already identified the corresponding no-arbitrage
price, we now aim to identify the corresponding benchmark that, when used
as numeraire, yields this price that allows to replicate the given payoff.

As already indicated, for simplicity, we consider here a simple Black-
Scholes (BS) market. It contains an underlying security with price process
S = {St, t ∈ [0, T ]}, as given by (8.2.1), which satisfies the SDE

dSt = at St dt+ σt St dWt (9.1.1)

for t ∈ [0, T ] with S0 > 0, where T ∈ [0,∞). Furthermore, our BS model
has a domestic savings account with value process B = {Bt, t ∈ [0, T ]}, see
(8.2.2), where

dBt = rt Bt dt (9.1.2)

for t ∈ [0, T ] and B0 = 1.
A self-financing strategy δ = {δt = (δ0

t , δ
1
t )�, t ∈ [0, T ]}, see (8.2.4)–

(8.2.7), with δ0
t units held at time t in the domestic savings account and δ1

t

units invested in the underlying security, has the corresponding portfolio value

Sδ
t = δ0

t Bt + δ1
t St (9.1.3)

with

dSδ
t = δ0

t dBt + δ1
t dSt

= (δ0
t rt Bt + δ1

t at St) dt+ δ1
t σt St dWt

= Sδ
t

(
(π0

δ (t) rt + π1
δ (t) at) dt+ π1

δ (t)σt dWt

)
(9.1.4)

for t ∈ [0, T ]. Note that the SDE (9.1.4) is such that it guarantees the self-
financing property of the portfolio, where all changes of its value are due to
changes in the securities. Here we use the corresponding fractions

π0
δ (t) = δ0

t

Bt

Sδ
t

(9.1.5)

and
π1

δ (t) = δ1
t

St

Sδ
t

(9.1.6)

that are held in the respective securities. Obviously, these fractions add up to
one, that is,
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π0
δ (t) + π1

δ (t) = 1 (9.1.7)

for t ∈ [0, T ]. Note that the notion of a fraction makes only sense as long as
the portfolio value is not zero.

Growth Optimal Portfolio

Let us derive for the given BS market the growth optimal portfolio (GOP)
which will be shown in Chap. 10 to be the portfolio that maximizes the drift
of its logarithm, see Long (1990), Karatzas & Shreve (1998) or Platen (2002).
By the Itô formula we obtain from (9.1.4) and (9.1.7) for the logarithm ln(Sδ

t )
of a strictly positive portfolio the SDE

d ln(Sδ
t ) = gδ

t dt+ π1
δ (t)σt dWt (9.1.8)

with growth rate

gδ
t = rt + π1

δ (t) (at − rt) −
1
2

(π1
δ (t))2 σ2

t (9.1.9)

for t ∈ [0, T ].

Definition 9.1.1. Under the BS model the GOP is the portfolio process
Sδ∗ = {Sδ∗

t , t ∈ [0, T ]} with optimal growth rate gδ∗
t at time t such that

gδ
t ≤ gδ∗

t (9.1.10)

almost surely for all t ∈ [0, T ] and strictly positive portfolio processes Sδ.

Let us now choose the fraction π1
δ (t) such that the growth rate gδ

t is maxi-
mized for each t ∈ [0, T ], which will give us the GOP. Note that the choice of
the reference unit is not relevant for the corresponding optimization problem.
By application of the first order condition to maximize the growth rate gδ

t in
(9.1.9) with respect to the fraction π1

δ (t) we obtain the condition

∂gδ
t

∂π1
δ (t)

= at − rt − π1
δ∗(t)σ

2
t = 0 (9.1.11)

for t ∈ [0, T ]. Therefore, we obtain the optimal fraction in the underlying
security

π1
δ∗(t) =

at − rt

σ2
t

(9.1.12)

and, thus, by (9.1.7) the optimal fraction in the savings account

π0
δ∗(t) = 1 − π1

δ∗(t) (9.1.13)

for t ∈ [0, T ]. Because of (9.1.9) and (9.1.12) the optimal growth rate is then
of the form
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gδ∗
t = rt +

1
2

(
at − rt

σt

)2

(9.1.14)

for t ∈ [0, T ]. Now, we obtain from (9.1.4), (9.1.12) and (9.1.13) the GOP as
the wealth process Sδ∗ = {Sδ∗

t , t ∈ [0, T ]}, which satisfies the SDE

dSδ∗
t = Sδ∗

t

(
(rt + θ2

t ) dt+ θt dWt

)
(9.1.15)

with initial value Sδ∗
0 > 0 and GOP volatility

θt = π1
δ∗(t)σt =

at − rt

σt
(9.1.16)

for t ∈ [0, T ]. The quantity θt in (9.1.16) is the, so-called, market price of risk
at time t.

According to (9.1.14) and (9.1.16) the optimal growth rate for the given
BS model equals

gδ∗
t = rt +

1
2
θ2

t (9.1.17)

for t ∈ [0, T ]. This reveals a close link between the squared volatility and the
optimal growth rate of the GOP. For the discounted GOP

S̄δ∗
t =

Sδ∗
t

Bt
(9.1.18)

we derive by the Itô formula with (9.1.15) and (9.1.2) the SDE

dS̄δ∗
t = S̄δ∗

t θt (θt dt+ dWt) (9.1.19)

for t ∈ [0, T ], see (10.2.8). Note that the drift of the discounted GOP is
determined as the square of its diffusion coefficient. This observation is crucial
and holds also more generally for continuous financial markets, as we shall
see in Chap. 10. Within this chapter we keep our BS market very simple.
Therefore, the GOP is here only a composition of two securities.

Benchmarked Savings Account

Let us now introduce the notion of benchmarking. Any security when expressed
in units of the GOP we call a benchmarked security. For instance, the savings
account B, when denominated in units of the GOP, is called the benchmarked
savings account Ŝ0 = {Ŝ0

t , t ∈ [0, T ]}, where

Ŝ0
t =

Bt

Sδ∗
t

(9.1.20)

for t ∈ [0, T ]. By application of the Itô formula (6.2.11) to the inverse of S̄δ∗
t

in (9.1.19) or the relation (9.1.20), the differential equation (9.1.2) and the
SDE (9.1.15), it follows for the benchmarked savings account Ŝ0

t the SDE
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dŜ0
t = −θt Ŝ

0
t dWt (9.1.21)

for t ∈ [0, T ]. This means that the benchmarked savings account is driftless.
Since the process Ŝ0 = {Ŝ0

t , t ∈ [0, T ]} is a geometric Brownian motion
it follows by (5.4.1) and (7.3.8) that Ŝ0 ∈ L2

T . Thus, the Itô integral on the
right hand side of the integral version of (9.1.21) is, by the martingale property
(5.4.3) of Itô integrals, a martingale. This means that the benchmarked savings
account process Ŝ0 is under the given BS model an (A, P )-martingale. We
shall see later that this is a particular property of the BS model and may not
hold for other models.

Benchmarked Underlying Security

Let us now benchmark in our BS market the underlying security S. That is,
we consider the benchmarked security price

Ŝ1
t =

St

Sδ∗
t

(9.1.22)

for t ∈ [0, T ]. Then by the Itô formula (6.2.11) together with (9.1.1), (9.1.15)
and equation (9.1.16) the SDE for Ŝ1

t becomes

dŜ1
t = Ŝ1

t

(
(at − rt − σt θt) dt+ (σt − θt) dWt

)

= Ŝ1
t (σt − θt) dWt (9.1.23)

for t ∈ [0, T ]. Consequently, according to (9.1.23), the GOP when used as
benchmark, has the property that the resulting SDE for the benchmarked
security Ŝ1 is driftless. By similar arguments as above one can show that
the geometric Brownian motion Ŝ1 is in L2

T . The process Ŝ1 is, therefore, by
(5.4.3) an (A, P )-martingale.

Benchmarked Option Price

Consider a European option on the underlying security S under the BS model
with value for its hedge portfolio

V (t) = V (t, St), (9.1.24)

as determined in Sect. 8.2 by equation (8.2.4). Using (8.2.9) and (9.1.20), we
obtain for the benchmarked European option price the expression

V̂ (t) =
V (t)
Sδ∗

t

=
V (t, St)
Sδ∗

t

= V̄ (t, S̄t) Ŝ0
t (9.1.25)

for t ∈ [0, T ]. Here we have the benchmarked payoff
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V̂ (T ) =
H(ST )
Sδ∗

T

(9.1.26)

at maturity T . By application of the Itô formula (6.2.11) we obtain from
(8.2.11) and (8.2.21) for the discounted value V̄ (t, S̄t) = V (t,St)

Bt
of the option

with S̄t = St

Bt
the SDE

dV̄ (t, S̄t) =
(
∂V̄ (t, S̄t)

∂t
+ (at − rt) S̄t

∂V̄ (t, S̄t)
∂S̄

+
1
2
σ2

t S̄
2
t

∂2V̄ (t, S̄t)
∂S̄2

)
dt

+σt S̄t
∂V̄ (t, S̄t)

∂S̄
dWt

=
∂V̄ (t, S̄t)

∂S̄
S̄t ((at − rt) dt+ σt dWt) (9.1.27)

for t ∈ [0, T ]. On the other hand, by using the Itô formula (6.2.11) and also
the relations (9.1.25), (9.1.27), (8.2.9), (9.1.16) and (9.1.21) we obtain the
SDE

dV̂ (t) = d(V̄ Ŝ0
t )

= Ŝ0
t dV̄ + V̄ dŜ0

t + d[V̄ , Ŝ0]t

= Ŝ0
t (at − rt) S̄t

∂V̄

∂S̄
dt+ Ŝ0

t σt S̄t
∂V̄

∂S̄
dWt

− θt V̄ Ŝ0
t dWt − σt S̄t

∂V̄

∂S̄
Ŝ0

t θt dt (9.1.28)

for t ∈ [0, T ), where, for simplicity, we have suppressed in our notation the
dependence of V̄ on (t, S̄t). By using (9.1.16) the SDE (9.1.28) can be rewritten
in the form

dV̂ (t) = Ŝ0
t

(
σt S̄t

∂V̄ (t, S̄t)
∂S̄

− θt V̄ (t, S̄t)
)
dWt (9.1.29)

for t ∈ [0, T ). Note that the SDE for the benchmarked option price is driftless.
Also here one can show that the diffusion coefficient in (9.1.29) is in L2

T .
Therefore, by (5.4.3), the benchmarked option price process V̂ = {V̂ (t), t ∈
[0, T ]}, is an (A, P )-martingale.

We have seen that the property of the GOP when used as numeraire or
benchmark, to convert benchmarked prices into martingales, seems to apply
quite generally under the BS model. In the literature the GOP is therefore
also known as the numeraire portfolio, see Long (1990).

Real World Pricing

Summarizing the above analysis, we conclude under the BS model that the
GOP is the numeraire portfolio for the domestic savings account B, the un-
derlying security price S and the option price V . When used as denominator
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it makes the corresponding benchmarked price processes Ŝ0, Ŝ1 and V̂ into
(A, P )-martingales. This implies, by the martingale property (5.1.2), that
these prices, when expressed in units of the GOP, are the best forecast of
their future benchmarked values. We obtain this remarkable fact as a conse-
quence of outstanding properties of the GOP, which we shall discuss in the
next chapter.

Intuitively, the martingale property of benchmarked prices relates to the
common notion of what constitutes a fair price. The following definition will
be applied generally throughout the book for all models and not only for the
BS model.

Definition 9.1.2. A security price process V = {Vt, t ∈ [0,∞)} is called
fair if its benchmarked value V̂t = Vt

Sδ∗
t

forms an (A, P )-martingale.

This leads by application of the martingale property of V̂ directly to the
following pricing formula.

Corollary 9.1.3. For any fair security price process V = {Vt, t ∈ [0,∞)}
one has for any time t ∈ [0,∞) and T ∈ (t,∞) the real world pricing formula

Vt = Sδ∗
t E

(
VT

Sδ∗
T

∣
∣
∣At

)

. (9.1.30)

It is most important to emphasize that the expectation in (9.1.30) is taken
under the real world probability measure P . The numeraire is here the GOP.
Note that by application of the optional sampling theorem, see (5.1.19), it
follows that T can also be a bounded stopping time in the real world pricing
formula (9.1.30).

Under the BS model the savings account, the underlying security and
European option price form fair price processes since their benchmarked price
processes are (A, P )-martingales. Note that a real world option price forms a
fair price process and is under the given BS model consistent with the hedging
arguments previously applied in Chap. 8. In this sense the real world or fair
option price is a no-arbitrage price.

As we shall see later in this chapter, real world pricing can be generally
applied and will turn out to be the natural pricing concept under the bench-
mark approach. It only requires the existence of a GOP, as can be seen from
the real world pricing formula (9.1.30).

A Martingale Representation

The SDE (9.1.29) for the benchmarked option price process V̂ can be rewritten
by using (9.1.20), (8.2.9) and (8.2.10) in the integral form

V̂ (T ) = V̂ (t) +
∫ T

t

(
σz

Sz

Sδ∗
z

∂V̄ (z, S̄z)
∂S̄

− θz V̂ (z)
)
dWz (9.1.31)
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for t ∈ [0, T ]. This provides a representation of the benchmarked option payoff

V̂ (T ) =
H(ST )
Sδ∗

T

.

Since V̂ is a martingale under the real world probability P , we call (9.1.31)
the real world martingale representation of H(ST )

Sδ∗
T

. By taking the conditional

expectation E(·
∣
∣At) on both sides of equation (9.1.31), it follows by the

martingale property of V̂ that

E
(
V̂ (T )

∣
∣At

)
= V̂ (t) (9.1.32)

for t ∈ [0, T ]. Now, when we multiply both sides of equation (9.1.32) by Sδ∗
t ,

then we obtain by (9.1.25) the fair option price V (t) at time t in the form

V (t) = Sδ∗
t V̂ (t) = Sδ∗

t E
(
V̂ (T )

∣
∣At

)
(9.1.33)

for t ∈ [0, T ]. Therefore, due to (9.1.25) and (8.2.24), we can express the
European option price with payoff H(ST ) at maturity T by

V (t) = Sδ∗
t E

(
H(ST )
Sδ∗

T

∣
∣
∣At

)

(9.1.34)

for all t ∈ [0, T ]. This recovers the real world pricing formula (9.1.30). It is
most important to emphasize that this pricing formula uses the conditional
expectation under the real world probability measure P and not under any
transformed measure.

The fair price V (t), when expressed in units of the domestic currency at
time t, is simply obtained by multiplying the fair benchmarked price V̂ (t) by
the GOP value Sδ∗

t , that is

V (t) = Sδ∗
t V̂ (t) (9.1.35)

for t ∈ [0, T ], as is described by the real world pricing formula (9.1.34), see
also (9.1.25) and (9.1.33).

We shall apply the real world pricing formula later quite generally when
determining the fair price of derivatives. Once the GOP is identified in a
model one can determine the fair value of any integrable benchmarked payoff
by the real world pricing formula. As we shall see, it is possible to derive from
this pricing formula several other common derivative pricing and asset pricing
rules.

Benchmarked Portfolios

For a given general portfolio Sδ we can also compute the SDE for its bench-
marked value
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Ŝδ
t =

Sδ
t

Sδ∗
t

(9.1.36)

for t ∈ [0, T ]. It follows from (9.1.4), (9.1.15), (9.1.16), (9.1.6) and by appli-
cation of the Itô formula that

dŜδ
t = Ŝδ

t

(
π1

δ (t)σt − θt

)
dWt =

(
δ1
t Ŝ

1
t σt − Ŝδ

t θt

)
dWt (9.1.37)

for t ∈ [0, T ] with Ŝδ
0 = Sδ

0

Sδ∗
0

. Obviously, Ŝδ is an (A, P )-local martingale, see
Lemma 5.4.1. It follows by Lemma 5.2.3 that under the given BS model any
nonnegative benchmarked portfolio is an (A, P )-supermartingale.

In the case when Ŝδ is such that the conditions (ii) or (iii) of Lemma 5.2.2
are satisfied, then Ŝδ is also a true (A, P )-martingale and not just a super-
martingale. This indicates that there may exist portfolio processes that when
benchmarked are not martingales.

An Unfair Portfolio

The following simple example demonstrates that even in a simple BS market
there exist perfectly reasonable nonnegative portfolio processes that are un-
fair, which means that they are not fair. Since we have above observed that
nonnegative benchmarked portfolios are always supermartingales an unfair
portfolio is a supermartingale that is not a martingale.

To provide an example, let us introduce the inverse Z = {Zt, t ∈ [0, T ]} of
a squared Bessel process of dimension four, which we have shown in Sect. 8.7
to be a strict local martingale, see also Revuz & Yor (1999). It satisfies the
SDE

dZt = −2 (Zt)
3
2 dWt (9.1.38)

for t ∈ [0, T ], where we set Z0 = 1. The process Z is an (A, P )-local mar-
tingale but not an (A, P )-martingale. By Lemma 5.2.3 it is a strict (A, P )-
supermartingale.

We can now identify a strategy δ with initial benchmarked portfolio value

Ŝδ
0 = Z0 = 1 (9.1.39)

that matches in the SDE (9.1.37) the diffusion coefficient such that

Ŝδ
t

(
π1

δ (t)σt − θt

)
= −2 (Zt)

3
2 (9.1.40)

for all t ∈ [0, T ]. Then it follows for the fraction

π1
δ (t) =

(

θt −
2 (Zt)

3
2

Ŝδ
t

)
1
σt

(9.1.41)

of wealth that is invested in the underlying security that the resulting self-
financing portfolio Sδ has at time t the benchmarked value
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Ŝδ
t = Zt (9.1.42)

for all t ∈ [0, T ]. This means, Ŝδ equals the strict supermartingale Z, see
(8.7.21). Note by (9.1.42) and (9.1.41) that the fraction simplifies in this case
to the expression

π1
δ (t) =

1
σt

(
θt − 2

√
Zt

)
, (9.1.43)

for t ∈ [0, T ]. We emphasize that this yields a perfectly reasonable self-
financing portfolio. As we have pointed out in Sect. 8.7, the formula (8.7.17)
for the first negative moment of a squared Bessel processes of dimension four
yields

E
(
Ŝδ

t

∣
∣A0

)
= E

(
Ŝδ

t

)
= Ŝδ

0

(

1 − exp

{
−1

2 Ŝδ
0 t

})

< Ŝδ
0 (9.1.44)

for t ∈ (0, T ].
By the strict inequality (9.1.44) we see that the (A, P )-supermartingale

Ŝδ is here not a martingale. This example demonstrates that even under a
BS model not all integrable, nonnegative, benchmarked portfolios are (A, P )-
martingales.

We shall see later that generally under the benchmark approach all non-
negative benchmarked portfolios are supermartingales. This is a fundamental
property for the wide class of financial market models that we consider in this
book. There exist several popular pricing concepts that we shall discuss below.
For some of these we can show that they correspond to real world pricing in
the sense that their benchmarked price processes are martingales under the
real world probability measure.

9.2 Actuarial Pricing

In this section we show that the common actuarial pricing or net present value
pricing methodology, which is widely used in insurance and accounting, can
be derived from real world pricing.

Setup for the GOP

To illustrate the actuarial pricing method in a simple, familiar setting we
consider again a BS market. The underlying security St is not of relevance for
the following analysis since the payoff H that shall be priced, will be assumed
to be independent of the GOP. However, it will be essential for our arguments
that the financial market model has a GOP Sδ∗ = {Sδ∗

t , t ∈ [0, T ]} which, for
simplicity, we assume to be of the same form as in the SDE (9.1.15). Since the
GOP satisfies then a Black-Scholes dynamics of the type (7.3.12) we obtain
from (7.3.3) an explicit expression for the GOP value at time t in the form
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Sδ∗
t = Sδ∗

0 exp
{∫ t

0

(
rs +

θ2
s

2

)
ds+

∫ t

0

θs dWs

}
(9.2.1)

for t ∈ [0, T ].

Fair Zero Coupon Bond

To illustrate the actuarial pricing methodology let us at first determine at
time t the fair value of a zero coupon bond. This is the value at time t for
the payment of one monetary unit at time T , obtained under the real world
pricing formula (9.1.34). Obviously, this corresponds to a European payoff
H = 1. If we denote the fair value of this payoff at time t ∈ [0, T ] by P (t, T ),
then we obtain by (9.1.34) the fair zero coupon bond price in the form

P (t, T ) = Sδ∗
t E

(
1
Sδ∗

T

∣
∣
∣
∣At

)

. (9.2.2)

In the given case we can explicitly compute this value. Since r and θ are
deterministic, it follows from (9.2.2) and (9.2.1) that

P (t, T ) = E

(

exp

{

−
∫ T

t

rs ds−
1
2

∫ T

t

θ2
s ds−

∫ T

t

θs dWs

}∣
∣
∣
∣At

)

= exp

{

−
∫ T

t

rs ds

}

E

(

exp

{

−
∫ T

t

θ2
s

2
ds−

∫ T

t

θs dWs

}∣
∣
∣
∣At

)

(9.2.3)

for t ∈ [0, T ]. Using the Laplace transform (1.3.76) of a Gaussian random
variable it follows that the conditional expectation on the right hand side of
(9.2.3) equals the real value one. Alternatively, we can use the fact that the
exponential under the conditional expectation forms an (A, P )-martingale,
see Sect. 5.1. Therefore, we obtain as fair zero coupon bond price at time t
the value

P (t, T ) = exp

{

−
∫ T

t

rs ds

}

=
Bt

BT
. (9.2.4)

Note that the value exp{−
∫ T

t
rsds}, if invested at time t = 0 in a savings

account, has the value of one monetary unit at time T . Under the benchmark
approach it will be always possible to establish the fair price of a zero coupon
bond. However, if the exponential under the conditional expectation in (9.2.3)
is a strict supermartingale, then the conditional expectation is less than one
and P (t, T ) is less than the right hand side of (9.2.4). This is similar to the
effect that yielded inequality (9.1.44). We shall study such cases later in more
detail.
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Fair Price of an Independent Payoff

Now, let us consider at the fixed maturity date T a random AT -measurable
payoff H > 0, which is independent of the GOP value Sδ∗

T . For instance, this
could be a life insurance claim or a payoff based on a weather index. Such a
claim may be by its nature independent of the GOP. The payoff H at time
T could also model operational failures in a company during a period that
finishes at maturity T . Alternatively, it could, for instance, model the total
sum of insurance claims from a particular group of cars in the year prior to T .
The key assumption is here that the above random payoff H is independent
of the random value Sδ∗

T of the GOP at the maturity date T . To be precise,
we assume that H is independent of Sδ∗

T , see (1.1.13) and (1.4.22), and that
the expectation of the benchmarked payoff

E

(∣∣
∣
∣
∣
H

Sδ∗
T

∣
∣
∣
∣
∣

)

< ∞ (9.2.5)

is finite.
Then we can compute the fair price UH(t) at time t ∈ [0, T ] for the payoff

H according to the real world pricing formula (9.1.30). We obtain its fair price
in the form

UH(t) = Sδ∗
t E

(
H

Sδ∗
T

∣
∣
∣
∣At

)

.

Recall that the expectation of a product of independent random variables is
the product of their expectations, see (1.4.25). Since we have assumed that H
is independent of Sδ∗

T we obtain by this property the expression

UH(t) = Sδ∗
t E

(
1
Sδ∗

T

∣
∣
∣
∣At

)

E
(
H
∣
∣At

)
.

By using now the fair zero coupon bond price P (t, T ) in (9.2.2), it follows the
widely used actuarial pricing formula

UH(t) = P (t, T )E
(
H
∣
∣At

)
. (9.2.6)

Under this formula one computes the conditional expectation of a future cash
flow at time T and discounts it back to the present time t by using the corre-
sponding fair zero coupon bond price. This takes into account the evolution
of the time value of money. The procedure is also known as net present value
calculation. It is widely used in practice. Thus, we recover from real world pric-
ing in the case of independence of payoff and GOP, the well-known formula
of actuarial and net present value pricing.

Note that in the actuarial pricing formula (9.2.6) we do not require the
knowledge of the dynamics of the GOP. We even do not need to observe the
GOP in this case. One only needs to know the expectation of the payoff under
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the real world probability measure and the fair price of a zero coupon bond,
which is given in the market.

In our simple BS model we obtain from (9.2.6) the following version of the
actuarial pricing formula

UH(t) =
Bt

BT
E
(
H
∣
∣At

)
(9.2.7)

for t ∈ [0, T ]. We see in formula (9.2.7) the simple discounting rule for the
expected future payoff, as is most common in actuarial and accounting prac-
tice. We emphasize that the conditional expectations in (9.2.6) and (9.2.7)
are taken with respect to the real world probability measure P and that these
formulas are derived for the case when the payoff H is independent of the
GOP value Sδ∗

T . The actuarial pricing formula (9.2.6) can be shown to hold
generally for payoffs independent of the GOP for the models that we con-
sider in this book. In this sense actuarial pricing turns out to be a particular
case of real world pricing. On the other hand, when starting from a bench-
marked actuarial price process ÛH = {ÛH(t) = UH(t)

Sδ∗
t

, t ∈ [0,∞)} with H

independent of Sδ∗
T , it follows from the actuarial pricing formula (9.2.6) that

the benchmarked actuarial price

ÛH(t) =
P (t, T )
Sδ∗

t

E
(
H
∣
∣At

)
(9.2.8)

is, as the product of independent martingales, an (A, P )-martingale.

9.3 Capital Asset Pricing Model

Risk Premium for the GOP

Later we shall derive for a general continuous financial market the influential
intertemporal capital asset pricing model (ICAPM), see Merton (1973a). It is
the continuous time generalization of the capital asset pricing model (CAPM),
due to Sharpe (1964), Lintner (1965) and Mossin (1966). In practice, the
ICAPM has been widely used for pricing securities in an approximate sense.
We illustrate in the context of the BS model how the ICAPM can be used for
pricing.

First, let us define what we mean by a risk premium. The risk premium
pV (t) at time t for a security price process V = {V (t), t ∈ [0, T ]} is defined
as the expected excess return above the short rate rt, which is given as the
almost sure limit

pV (t) a.s.= lim
h↓0

1
h
E

(
V (t+ h) − V (t)

V (t)

∣
∣
∣
∣At

)
− rt (9.3.1)

for t ∈ [0, T ].
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The GOP value Sδ∗
t at time t satisfies according to (9.1.15) the SDE

dSδ∗
t = Sδ∗

t

(
(rt + pSδ∗ (t)) dt+

√
pSδ∗ (t) dWt

)
(9.3.2)

for t ∈ [0, T ] with risk premium

pSδ∗ (t) = θ2
t =

(
at − rt

σt

)2

, (9.3.3)

see (9.1.16). Note that the risk premium pSδ∗ (t) in the SDE (9.3.2) of the
GOP equals the square of its volatility.

Risk Premium of the Underlying Security

By using in the SDE (9.1.1) of the underlying security St the formula (9.1.16)
for the GOP volatility θt, we obtain the SDE

dSt = St (rt dt+ σt (θt dt+ dWt)) (9.3.4)

for t ∈ [0, T ]. It follows that the risk premium pS(t) of the underlying security
S equals according to (9.3.1) and (9.3.4) the product

pS(t) a.s.= lim
h↓0

1
h
E

(
St+h − St

St

∣
∣
∣
∣At

)
− rt

a.s.= σt θt (9.3.5)

almost surely for all t ∈ [0, T ]. Note that the risk premium of the underlying
security equals, as h → 0, the normalized covariance of the returns of the
underlying security and the GOP, that is,

pS(t) a.s.= lim
h↓0

1
h
E

((
St+h − St

St

)(
Sδ∗

t+h − Sδ∗
t

Sδ∗
t

)∣
∣
∣
∣At

)

a.s.= lim
h↓0

1
h
E

(∫ t+h

t

σs dWs

∫ t+h

t

θs dWs

∣
∣
∣
∣At

)
a.s.= σt θt (9.3.6)

almost surely for t ∈ [0, T ].
There is also an alternative way of characterizing the risk premium (9.3.5).

The risk premium can be obtained by forming the time derivative of the
covariation between the logarithm ln(St) of the underlying security and the
logarithm ln(Sδ∗

t ) of the GOP. More precisely, by the Itô formula and the
covariation property (5.4.5) of Itô integrals we can express the risk premium
of S in the form

pS(t) =
d

dt

[
ln(S), ln(Sδ∗)

]
t
= σt θt (9.3.7)

for t ∈ [0, T ]. We shall see later that such a result holds generally in a con-
tinuous financial market.
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Risk Premium of a Portfolio

Now, let us calculate risk premia for portfolios. It follows for a portfolio value
Sδ

t at time t from the SDE (9.1.4) and equation (9.1.7) and (9.1.16) the SDE

dSδ
t = Sδ

t

(
rt dt+ π1

δ (t)σt (θt dt+ dWt)
)

(9.3.8)

for t ∈ [0, T ]. As defined above in (9.3.1), its risk premium pSδ (t) at time t
equals the expected excess return

pSδ (t) a.s.= lim
h↓0

1
h
E

(
Sδ

t+h − Sδ
t

Sδ
t

∣
∣
∣
∣At

)

− rt (9.3.9)

for t ∈ [0, T ). It follows from (9.3.8) and (9.3.9) that we obtain for the fraction
π1

δ (t) the risk premium
pSδ (t) = π1

δ (t)σt θt (9.3.10)

at time t ∈ [0, T ]. The risk premium of a portfolio equals the product of
market price of risk and portfolio volatility. As in (9.3.7), it follows from the
form of the portfolio SDE (9.3.8) that this risk premium equals the normalized
covariance between the return of the portfolio and that of the GOP. We have
then

pSδ (t) a.s.= lim
h↓0

1
h
E

((
Sδ

t+h − Sδ
t

Sδ
t

)(
Sδ∗

t+h − Sδ∗
t

Sδ∗
t

) ∣
∣
∣
∣At

)
a.s.= π1

δ (t)σt θt

(9.3.11)
for t ∈ [0, T ). Alternatively, by the Itô formula and the covariation property
(5.4.5) of Itô integrals it also follows

pSδ (t) =
d

dt

[
ln(Sδ), ln(Sδ∗)

]
t
= π1

δ (t)σt θt (9.3.12)

for t ∈ [0, T ]. As we shall see later, this type of formula holds in a general
continuous financial market and not only under the BS model.

Note that it follows from the above formula (9.3.12) that the risk premium
pB(t) of the savings account is zero, as should be expected.

Portfolio Beta

The ICAPM uses the market portfolio (MP) as reference portfolio. One can
choose, for instance, the MP as the portfolio of all tradable securities. In
practice, this is convenient but difficult to specify explicitly. One can always
argue about the exact composition of the MP. In any case, in reality the
MP is a reasonably broadly diversified portfolio. The Morgan Stanley capital
weighted world stock accumulation index (MSCI) arises as a possible proxy
for the MP. We shall show later, see also Platen (2005b), that diversified
portfolios can be expected in reality to be close to each other and also close to
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the GOP. This means, under general assumptions we shall see that diversified
portfolios approximate the GOP. This fundamental fact is model independent.
In the following, we use the GOP as proxy for the MP. Its movements can be
interpreted to model the movements of the market as a whole, thus, modeling
general market risk or systematic risk. We shall later consider specific market
risk, which describes the movements of a portfolio that are not in line with
those of the market index, see Platen & Stahl (2003).

When using the ICAPM one aims to measure for a given portfolio Sδ
t its

systematic risk parameter βSδ(t), which is the, so-called, beta. The beta equals
the ratio of covariations

βSδ (t) =
d[ln(Sδ),ln(Sδ∗ )]t

dt

d[ln(Sδ∗)]t
(9.3.13)

for t ∈ [0, T ]. Obviously, the beta equals one if the portfolio Sδ moves similarly
to the market as a whole. If Sδ moves totally independent of the GOP, then
its beta is zero. By using (9.3.12) it follows that

βSδ(t) =
π1

δ (t)σt θt

θ2
t

=
pSδ(t)
pSδ∗ (t)

(9.3.14)

for t ∈ [0, T ]. This means that the portfolio beta is the normalized risk pre-
mium, where the normalizing quantity is the risk premium of the MP.

Obviously, the beta for the savings account is zero, that is

βB(t) = 0 (9.3.15)

for t ∈ [0, T ]. This expresses the fact that there is no systematic risk in the
savings account. Under the given BS model the beta of the underlying security
S is by (9.3.14) and (9.3.5) obtained as

βS(t) =
σt

θt
(9.3.16)

for t ∈ [0, T ]. This beta is close to one if the underlying security fluctuates
similarly to the GOP and, thus, the MP.

A portfolio has a small absolute value of beta if its fluctuations are al-
most independent of those of the GOP. This means that there is then little
systematic or general market risk in this portfolio.

ICAPM Pricing Rule

By using relation (9.3.14) we obtain for the risk premium pSδ (t) of a portfolio
Sδ the ICAPM formula

pSδ (t) = βSδ(t) pSδ∗ (t) (9.3.17)
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for t ∈ [0, T ]. The portfolio beta βSδ (t), as defined in (9.3.14), has in the given
case for a portfolio Sδ with fraction π1

δ (t) the value

βSδ(t) = π1
δ (t)

σt

θt
(9.3.18)

for t ∈ [0, T ].
Under the given BS model a portfolio beta is all that needs to be known

about the portfolio’s risk characteristics when using the ICAPM formula. The
formula (9.3.17) does not contain prices explicitly. It only refers to risk premia.
However, the ICAPM can be used in practice for approximate asset pricing.
To explain this, we go back to the definition of a return. By the ICAPM
formula (9.3.17) we have approximately for a portfolio Sδ with fraction π1

δ (t)
over a small period [t, t+ h] the expected return

E

(
Sδ

t+h − Sδ
t

Sδ
t

∣
∣
∣
∣At

)

=
E
(
Sδ

t+h

∣
∣At

)
− Sδ

t

Sδ
t

≈ (rt + pSδ (t))h = (rt + βSδ(t) pSδ∗ (t))h.

Therefore, it follows for small h > 0 by (9.3.3) and (9.3.18) that approximately

E
(
Sδ

t+h

∣
∣At

)

Sδ
t

≈ 1 + (rt + βSδ(t) pSδ∗ (t))h = 1 +
(
rt +

δ1
t St σt θt

Sδ
t

)
h.

This yields the ICAPM pricing rule

Sδ
t ≈

E
(
Sδ

t+h

∣
∣At

)

1 + (rt + βSδ(t) θ2
t )h

(9.3.19)

or, similarly, by using the above relations and (9.1.16), the self-interpreting
pricing rule

Sδ
t ≈

E
(
Sδ

t+h

∣
∣At

)
− δ1

t St (at − rt)h
1 + rt h

(9.3.20)

for t ∈ [0, T ]. We emphasize that (9.3.19) and (9.3.20) are approximate for-
mulas. It is interesting to note that the ICAPM pricing rule (9.3.19) uses the
portfolio beta and the expected future value of the portfolio as main inputs.
Notice that the conditional expectation of the future portfolio value is taken
under the real world probability measure, as is the case under real world
pricing.

Via the benchmark approach we derive in Sect. 11.2 under general as-
sumptions the ICAPM for continuous financial markets. This means we shall
provide the basis for the ICAPM pricing rule (9.3.19). This approximate pric-
ing formula is, of course, not fully consistent with real world pricing. However,
it is a reasonable description of the fair price when h is small. The ICAPM
pricing rule (9.3.19) is widely applied in practice. It provides another example
where commonly accepted relationships in finance, insurance or accounting
can be naturally derived under the benchmark approach by using the GOP
as central building block.
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9.4 Risk Neutral Pricing

By referring to the results from Chap.8 on option pricing under the BS model,
we now illustrate the widely used standard risk neutral pricing methodology,
which one could interpret as the core of the arbitrage pricing theory (APT)
and its generalizations, see for instance, Black & Scholes (1973), Ross (1976),
Harrison & Kreps (1979), Harrison & Pliska (1981), Föllmer & Sondermann
(1986), Föllmer & Schweizer (1991) and Delbaen & Schachermayer (1994,
1998, 2006).

Drifted Wiener Process

In the classical literature on derivative pricing it has been standard to use the
domestic savings account B = {Bt, t ∈ [0, T ]} as reference unit or numeraire.
For obtaining an option price one introduces an appropriate probability mea-
sure, the risk neutral probability measure Pθ. It allows to interpret the Black-
Scholes pricing formula as a conditional expectation under this measure. As
we shall see, this method provides an elegant and compact description of op-
tion prices in the case of the BS model. We shall show that the change to
the risk neutral probability measure Pθ is equivalent to a change of variables
with a corresponding probabilistic interpretation. Most importantly, we shall
emphasize the fact that a number of assumptions have to be made to perform
this change of variables, which may not be satisfied for realistic models.

Let us reformulate the SDE (9.1.1) for the underlying security S under the
BS model, where we assume now, for simplicity, constant short rate r, constant
volatility σ, constant appreciation rate a and, therefore, also constant market
price of risk θ. We perform this change of variable in such a way that the
SDE (9.1.1) shows formally the same appreciation rate r as the domestic
savings account B, see (9.1.2). To achieve this it is necessary to introduce a
corresponding driving process Wθ that no longer equals the Wiener process
W . This is the, so-called, drifted Wiener process Wθ = {Wθ(t), t ∈ [0, T ]}
with

Wθ(t) = Wt + θ t (9.4.1)

for t ∈ [0, T ]. Recall that the market price of risk is for our BS model of the
form

θ =
a− r

σ
, (9.4.2)

see (9.1.16). This allows us to rewrite the SDE (9.1.1) for the underlying
security in the form

dSt = (a− σ θ)St dt+ σ St dWθ(t) = r St dt+ σ St dWθ(t) (9.4.3)

for t ∈ [0, T ]. According to (6.3.7), (6.3.6) and (9.4.1), the geometric Brownian
motion S = {St, t ∈ [0, T ]} has then the explicit representation
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St = S0 exp
{(

r − 1
2
σ2

)
t+ σWθ(t)

}
(9.4.4)

for t ∈ [0, T ]. Note that for θ = 0 the process Wθ is not a Wiener process
under the real world probability measure P .

Radon-Nikodym Derivative

We shall show that the process Wθ is a standard Wiener process under the
risk neutral measure Pθ. This measure is characterized by its Radon-Nikodym
derivative

Λθ(T ) =
dPθ

dP

∣
∣
∣
∣
AT

=
Ŝ0

T

Ŝ0
0

. (9.4.5)

Recall that
Ŝ0

T =
BT

Sδ∗
T

is the benchmarked domestic savings account at time T , see (9.1.22). The
Radon-Nikodym derivative Λθ(T ) defines the risk neutral measure Pθ, which
is given in the form

Pθ(A) =
∫

A

Λθ(T ) dP (ω) =
∫

A

dPθ(ω)
dP (ω)

dP (ω) (9.4.6)

for all subsets A ∈ Ω.
Note that the measure Pθ is not automatically a probability measure. For

risk neutral pricing to be useful in practice, we need the property that the risk
neutral measure Pθ is a probability measure. This is equivalent to the request
that a corresponding change of variables in an integration can be performed.

The following definition will be used generally throughout the book.

Definition 9.4.1. Two measures are equivalent if they have the same sets
of events of measure zero.

The equivalence of the risk neutral and the real world probability measure
is a fundamental requirement of the risk neutral approach. In the case of
the above BS model one is able to apply the risk neutral approach since the
measure Pθ is a probability measure and equivalent to P . The model generates
geometric Brownian motions on [0, T ] under P and under Pθ with the same
sets of events that have probability zero under both measures. However, there
is already a problem even under the BS model if one wants to extend the time
horizon T to infinity and aims to consider asymptotics for T → ∞. Details on
a construction allowing some risk neutral pricing in such a case can be found,
for instance, in Karatzas & Shreve (1998).

As discussed in Sect. 9.1, under the BS model the benchmarked savings
account Ŝ0 = {Ŝ0

t , t ∈ [0, T ]} is an (A, P )-martingale with initial value
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Ŝ0
0 =

1
Sδ∗

0

. (9.4.7)

Thus, for the BS model due to (9.4.5) the Radon-Nikodym derivative process
Λθ = {Λθ(t), t ∈ [0, T ]} with

Λθ(t) =
Ŝ0

t

Ŝ0
0

(9.4.8)

is an (A, P )-martingale that starts at Λθ(0) = 1.
We shall see later that the martingale property of the Radon-Nikodym

derivative process is crucial for the risk neutral approach. It makes sure that
the measure Pθ is having a total mass of one, allowing it to be a probability
measure.

We remark that the Radon-Nikodym derivative process is referred to in
the literature also as state price density, pricing kernel , deflator or stochas-
tic discount factor, see Hansen & Jagannathan (1991), Constatinides (1992),
Rogers (1997), Cochrane (2001) and Duffie (2001).

Later it will become clear that the just mentioned Radon-Nikodym process
simply expresses the benchmarked savings account when normalized to one.
The corresponding risk neutral pricing method can, thus, be derived from real
world pricing.

Risk Neutral Measure Transformation

To illustrate the measure transformation that is performed under the risk
neutral approach, let us demonstrate under the given BS model that Wθ is
a Wiener process under the risk neutral probability measure Pθ. The above
Radon-Nikodym derivative process Λθ, see (9.4.8), has the representation

Λθ(t) = exp
{
−1

2
θ2 t− θWt

}
(9.4.9)

for t ∈ [0, T ]. By using the Laplace transform (1.3.76) of a Gaussian ran-
dom variable we have by the martingale property of Λθ the total risk neutral
probability

Pθ(Ω) = E(Λθ(T )) = E(Λθ(T )
∣
∣A0) = Λθ(0) = 1. (9.4.10)

This shows that Pθ is a probability measure.
For fixed ỹ ∈ �, t ∈ [0, T ] and s ∈ [0, t) let A be the event

A = {ω ∈ Ω : Wθ(t, ω) −Wθ(s, ω) < ỹ}.

Here we indicate in the notation Wθ(t, ω) its dependence on the outcome
ω ∈ Ω. Using relation (9.4.1), this event can equivalently be written in the
form
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A = {ω ∈ Ω : W (t, ω) −W (s, ω) < ỹ − θ (t− s)} .
Since W is a Wiener process on (Ω,A,A, P ), then A ∈ At where A is indepen-
dent of As. Combining these facts, it follows by using the indicator function
1A, with Eθ denoting expectation under Pθ, that

Pθ(A) = Eθ(1A) = E(Λθ(T )1A)

= E

(
Λθ(t)1A

Λθ(T )
Λθ(t)

)
= E(Λθ(t)1A)

= E

(
Λθ(s)

Λθ(t)
Λθ(s)

1A

)
= E (Λθ(s)) E

(
Λθ(t)
Λθ(s)

1A

)

= E

(
Λθ(t)
Λθ(s)

1A

)
. (9.4.11)

We know that Wt −Ws is Gaussian distributed with mean zero and variance
(t− s). Therefore, we obtain for the event A with (9.4.9) the Pθ-probability

Pθ(A) =
∫ ỹ−θ(t−s)

−∞
exp
{
−θ2

2
(t− s) − θ y

}
1

√
2π (t− s)

exp
{
− y2

2 (t− s)

}
dy

=
∫ ỹ−θ(t−s)

−∞

1
√

2π (t− s)
exp
{
− (y + θ (t− s))2

2 (t− s)

}
dy

=
∫ ỹ

−∞

1
√

2π (t− s)
exp
{
− z2

2 (t− s)

}
dz. (9.4.12)

This equation shows that Wθ(t)−Wθ(s) is Gaussian distributed under Pθ with
mean zero and variance (t − s). Note that we have only changed variables
for the integration in (9.4.12), which is permitted due to the properties of
the Gaussian density. From the properties (3.2.6) of the Wiener process W
and relation (9.4.1) we conclude under the given BS model that Wθ(0) = 0.
Using arguments similar to those applied in (9.4.11), it follows that Wθ has
independent increments. Therefore, by using (3.2.6), we can formulate the
following simple version of the following Cameron-Martin Girsanov Theorem
when applied to the BS model.

Theorem 9.4.2. (Cameron-Martin Girsanov) Under the BS model the
process Wθ is a standard Wiener process in the filtered probability space
(Ω,A,A, Pθ), which is defined under the risk neutral probability measure Pθ.

In the next section we shall provide a more general version of this theorem.

Risk Neutral Pricing Formula

As previously mentioned, the probability measure Pθ, which is called the
risk neutral probability measure, can be used for option pricing. This is the
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probability measure under which the process Wθ, see (9.4.1), becomes an
(A, Pθ)-Wiener process. Let us now obtain from the real world pricing formula
(9.1.34) the price of a European option with payoff H(ST ) under the given
BS model.

Using (9.4.5), (9.4.9) and the explicit expression (9.4.4) for the geometric
Brownian motion S, see (9.4.3), we can rewrite the real world pricing formula
(9.1.34) for t = 0 in the form

V (0, S0) = E

(
Sδ∗

0

Sδ∗
T

H(ST )
∣
∣
∣A0

)

= E

⎛

⎝
BT

Sδ∗
T

B0

Sδ∗
0

(
H(ST )
BT

) ∣
∣
∣A0

⎞

⎠

= E

(
Ŝ0

T

Ŝ0
0

(
H(ST )
BT

) ∣
∣
∣A0

)

= E

(
Λθ(T )
Λθ(0)

(
H(ST )
BT

) ∣
∣
∣A0

)

= E

(
exp
{
−θ2

2
T − θWT

}
(
exp{−r T}H(ST )

) ∣∣
∣A0

)

=
∫ ∞

−∞

[
exp{−r T}H

(
S0 exp

{(
a− 1

2
σ2

)
T + σ y

})]

× exp
{
−θ2

2
T − θ y

}
1√
T
N ′
(

y√
T

)
dy.

With the change of variables ỹ = y + θ T = y + (a−r
σ )T we then obtain

V (0, S0) = exp{−r T}
∫ ∞

−∞

[
H

(
S0 exp

{(
r − 1

2
σ2

)
T + σ ỹ

})]

× 1√
T
N ′
(

ỹ√
T

)
dỹ.

When written in the following form, the above result provides the risk
neutral pricing formula

V (0, S0) = exp{−r T}Eθ

(
H(ST )

∣
∣A0

)
= Eθ

(
H(ST )
BT

∣
∣
∣A0

)
. (9.4.13)

Here Eθ denotes the expectation with respect to the risk neutral probability
measure Pθ and N ′(·) is the standard Gaussian density, see (1.2.8).

The above derivation shows that the fair price at time t = 0 of an option
under the BS model can be rewritten as a conditional expectation Eθ under
the risk neutral probability measure Pθ of a savings account discounted payoff
H(ST )

BT
. The above risk neutral pricing formula has been widely used in deriva-

tive pricing. In the current literature the risk neutral pricing formula appears
to be the standard pricing tool. However, note that certain assumptions need
to be satisfied to apply this pricing formula.
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We exploited a number of mathematical properties that are automatically
guaranteed under the BS model. As we shall see later, for certain more realistic
asset price models, for instance the MMM, the martingale property of the
Radon-Nikodym derivative Λθ, does not hold and an equivalent risk neutral
probability measure does not exist. Since the real world pricing concept does
not require the existence of an equivalent risk neutral probability measure one
can always apply the real world pricing formula as long as the GOP exists
and the expectation of the benchmarked payoff is finite.

Risk Neutral SDEs

Note that under the risk neutral probability measure Pθ the discounted un-
derlying security price S̄, see (8.2.10), satisfies under the BS model according
to (9.4.3) and by application of the Itô formula the SDE

dS̄t = σ S̄t dWθ(t) (9.4.14)

for t ∈ [0, T ]. Thus, S̄ is driftless under Pθ and can be shown for the BS model
to be an (A, Pθ)-martingale, see Exercise 9.1. Furthermore, it follows by the
Itô formula, (8.2.21) and (9.4.1) that the SDE for the discounted option price
V̄ , see (8.2.9), is given by

dV̄ (t, S̄t) =
∂V̄ (t, S̄t)

∂S̄
σ S̄t dWθ(t) (9.4.15)

for t ∈ [0, T ]. This means that also the SDE for V̄ is driftless under Pθ. One
can show for the given BS model that V̄ is an (A, Pθ)-martingale, see Exer-
cise 9.2. Obviously, the discounted savings account B̄, see (8.2.15), is a con-
stant and, thus, trivially an (A, Pθ)-martingale. For both (A, Pθ)-martingales
V̄ and B̄ it is easy to see from Sect. 9.1 that their benchmarked values
V̂ (t) = V̄ (t,S̄t)

S̄δ∗
t

and Ŝ0
t = B̄t

S̄δ∗
t

form (A, P )-martingales.

Risk Neutral SDE for Portfolios

Generally, for the above BS model all discounted portfolio prices can be shown
to form (A, Pθ)-local martingales. This property follows from the SDE (9.1.37)
and Lemma 5.4.1 since by application of Itô’s formula

dS̄δ
t = d(S̄δ∗

t Ŝδ
t )

= S̄δ
t π

1
δ (t)σ (θ dt+ dWt)

= S̄δ
t π

1
δ (t)σ dWθ(t) (9.4.16)

for t ∈ [0, T ]. By Lemma 5.2.3 any nonnegative discounted portfolio is, there-
fore, an (A, P )-supermartingale. If S̄δ is an (A, Pθ)-martingale, then the risk
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Fig. 9.4.1. A Radon-Nikodym derivative process for a BS model

neutral pricing formula (9.4.13) holds for S̄δ. Furthermore, since the Radon-
Nikodym derivative process Λθ is here an (A, P )-martingale, we shall see later
that in this case the benchmarked portfolio value Ŝδ

t = S̄δ

S̄δ∗
t

forms an (A, P )-
martingale.

We have seen that the real world pricing formula (9.1.34) does not hold
for an unfair portfolio as constructed in (9.1.38)–(9.1.43). Similarly, for such
a portfolio also the risk neutral pricing formula fails. Thus, one should not
expect all discounted portfolios to be automatically (A, Pθ)-martingales un-
der the risk neutral probability measure Pθ, even under a simple BS model.
Unfortunately, some literature gives the impression that this is the case.

Observe in the derivation of (9.4.13) that we have performed a change of
variables from Wt to Wθ(t) with the interpretation that W and Wθ are Wiener
processes under P and Pθ, respectively. The only variable that is random in
the risk neutral pricing formula (9.4.13) is ST , as compared to the real world
pricing formula (9.1.34), where also the random GOP value Sδ∗

T is involved.
Thus, the computation of option prices by using the risk neutral approach
is simplified for the case of the BS model. This simplification relies on the
existence of the equivalent risk neutral probability measure Pθ under the BS
model.

We shall see in the next chapter that the benchmark approach, with its
real world pricing concept, handles more general models than those permitted
under the risk neutral approach. An equivalent risk neutral probability mea-
sure need not exist under the benchmark approach. This freedom in modeling
will become important when we are going to model realistically the typical
market dynamics.

In Fig.9.4.1 we show a path of an exponential martingale from a geometric
Brownian motion with volatility θ = 0.2. We know that the path in Fig. 9.4.1
is that of a martingale. Here the actual value is the best forecast of future
values. Similar to equation (9.4.8) one can show that the candidate Radon-
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Fig. 9.4.2. Candidate Radon-Nikodym derivative of hypothetical risk neutral mea-
sure

Nikodym derivative process Λ = {Λt, t ∈ [0, T ]} for a hypothetical equivalent
risk neutral probability measure for a range of continuous financial markets is
given by the benchmarked savings account, see (9.4.8) and Karatzas & Shreve
(1998), normalized at the initial time to one. An indication for the potential
nonexistence of an equivalent risk neutral probability measure for the real
market is given by the following important observation:

If the GOP is proxied by a diversified world stock index, as we shall suggest
in the next chapter, then one can observe the benchmarked savings account for
the world market and, thus, the candidate Radon-Nikodym derivative of its
hypothetical risk neutral measure. We show in Fig.9.4.2 the candidate Radon-
Nikodym derivative of the hypothetical risk neutral measure of the world stock
market with respect to the US dollar as domestic currency when using the
Morgan Stanley capital weighted world stock accumulation index (MSCI) as
proxy for the GOP. The path of this process seems to trend systematically
downward, which is not typical for a martingale. However, for economic rea-
sons the graph in Fig. 9.4.2 is rather typical, as we shall discuss below. In the
long run the benchmarked savings account must be expected to decline sys-
tematically in reality. Otherwise, investors have no reason to invest in the stock
market. This has been empirically confirmed by Dimson, Marsh & Staunton
(2002), who showed that the market capitalization weighted world stock index,
when discounted by the US dollar savings account, showed an annually dis-
cretely compounded net growth rate of about 0.049 over the last century. From
economic reasoning it does not appear to be natural that the trajectory of the
benchmarked savings account should form in reality a martingale. However,
this martingale property is needed for the application of the Cameron-Martin
Girsanov Theorem.

The downward trending trajectory in Fig. 9.4.2 resembles more the path
of a strict supermartingale. Of course, a single path cannot prove that the
candidate Radon-Nikodym derivative of the hypothetical risk neutral measure
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is a strict supermartingale. However, based on the economic argument that
stock market investments grow in the long term faster than a savings account,
one should be prepared to acknowledge such possibility, when developing long
term market models. Of course, even if we agree that the benchmarked savings
account is not a martingale under the real world probability measure, this is
insufficient to infer that no equivalent risk neutral probability measure exists.
But it is certainly enough evidence for us to consider this possibility seriously,
which we acknowledge by working under the benchmark approach with its
real world pricing concept.

What we have just observed creates serious concerns about the practical
applicability of the risk neutral pricing methodology that has been the pre-
vailing approach in finance for several decades. Within this book we aim to
provide with the benchmark approach a framework that allows to handle not
only models that have an equivalent risk neutral probability measure but also
models for which this is not the case. The real world pricing concept makes
financial modeling, derivative pricing and calibration less complicated since a
measure transformation is not required.

Under the benchmark approach some potential model risk is removed
which could be caused by the fact that an equivalent risk neutral probability
measure may not exist for the existing financial market.

9.5 Girsanov Transformation and Bayes Rule (*)

In the previous section, an equivalent probability measure transformation
was applied, which is also known as Girsanov transformation. The following
section describes such transformation more generally. It will also introduce
Bayes’s Theorem, which is needed to interpret conditional expectations under
a given measure by using those defined under another measure. Both results
are important for equivalent probability measure changes.

Change of Probability Measure (*)

We denote by W = {W t = (W 1
t , . . . ,W

m
t )�, t ∈ [0, T ]} an m-dimensional

standard Wiener process on a filtered probability space (Ω,A,A, P ), as given
in Sect. 5.1, with A0 being the trivial σ-algebra, augmented by the sets of
zero probability. For an A-predictable m-dimensional stochastic process θ =
{θt = (θ1

t , . . . , θ
m
t )�, t ∈ [0, T ]} with

∫ T

0

m∑

i=1

(θi
t)

2 dt < ∞ (9.5.1)

almost surely, we assume that the strictly positive Radon-Nikodym derivative
process Λθ = {Λθ(t), t ∈ [0, T ]}, where
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Λθ(t) = exp
{
−
∫ t

0

θ�
s dW s −

1
2

∫ t

0

θ�
s θs ds

}
< ∞ (9.5.2)

almost surely for t ∈ [0, T ] is an (A, P )-martingale. By the Itô formula (6.2.11)
it follows from (9.5.2) that

Λθ(t) = 1 −
m∑

i=1

∫ t

0

Λθ(s) θi
s dW

i
s (9.5.3)

for t ∈ [0, T ]. Since Λθ is by the above assumption an (A, P )-martingale we
have

E
(
Λθ(t)

∣
∣As

)
= Λθ(s) (9.5.4)

for t ∈ [0, T ] and s ∈ [0, t] and, in particular,

E
(
Λθ(t)

∣
∣A0

)
= Λθ(0) = 1. (9.5.5)

Now, we define a measure Pθ via the Radon-Nikodym derivative

dPθ

dP
= Λθ(T ), (9.5.6)

by setting
Pθ(A) = E(Λθ(T )1A) = Eθ(1A) (9.5.7)

for A ∈ AT . Recall that 1A is the indicator function for A and Eθ means
expectation with respect to Pθ.

Note that Pθ is not just a measure but also a probability measure because

Pθ(Ω) = E(Λθ(T )) = E
(
Λθ(T )

∣
∣A0

)
= Λθ(0) = 1 (9.5.8)

due to the martingale property of Λθ. This indicates why the martingale
property of the Radon-Nikodym derivative is so important. It guarantees that
the resulting risk neutral measure is a probability measure.

If the Radon-Nikodym derivative for the candidate risk neutral measure
is a strict supermartingale, then the equality (9.5.8) does not hold and Pθ(Ω)
is strictly less than one. As we shall see, this case arises, for instance, under
the MMM, see Fig. 13.3.2.

Bayes’s Theorem (*)

As seen in the risk neutral pricing formula (9.4.13), it is useful to be able
to change the probability measure for conditional expectations. For a simple
case this is indicated by formula (9.5.7). There exists a general tool, which is
the following Bayes rule, that allows one to establish a relationship between
conditional expectations with respect to different equivalent probability mea-
sures.
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Theorem 9.5.1. (Bayes) Assume that a given strictly positive Radon-
Nikodym derivative process Λθ is an (A, P )-martingale determining a corre-
sponding equivalent probability measure Pθ. Then for any given stopping time
τ ∈ [0, T ] and any Aτ -measurable random variable Y , satisfying the integra-
bility condition

Eθ(|Y |) < ∞, (9.5.9)

one can apply the Bayes rule

Eθ

(
Y
∣
∣As

)
=

E
(
Λθ(τ)Y

∣
∣As

)

E
(
Λθ(τ)

∣
∣As

) (9.5.10)

for s ∈ [0, τ ].

Proof of Bayes’s Theorem (*)

We indicate here a proof of Bayes’s Theorem. For a stopping time τ ∈ [s, T ]
and given fixed time s ∈ [0, T ] one can prove Bayes’s theorem by using formula
(9.5.7) for the probability Pθ(A) together with the properties (1.3.63)–(1.3.66)
of conditional expectations and the martingale property of Λθ. Then for each
Aτ -measurable random variable Y and a set A ∈ As with some fixed time
s ∈ [0, T ] we can show that both sides of (9.5.10) are identical for any such
set A, that is,

1A Eθ

(
Y
∣
∣As

)
= Eθ

(
1A Y

∣
∣As

)
= E

(
1A Y Λθ(T )

∣
∣As

)

= E
(
1A Y Λθ(τ)

∣
∣As

)
= E

(
1A E

(
Y Λθ(τ)

∣
∣As

) ∣∣As

)

= E

(
Λθ(s)

(
1A

Λθ(s)
E
(
Y Λθ(τ)

∣
∣As

)
) ∣∣
∣
∣As

)

= Eθ

(
1A

Λθ(s)
E
(
Y Λθ(τ)

∣
∣As

)
∣
∣
∣
∣As

)

= Eθ

(

1A

E
(
Λθ(τ)Y

∣
∣As

)

E
(
Λθ(τ)

∣
∣As

)
∣
∣
∣
∣As

)

= 1A

E
(
Λθ(τ)Y

∣
∣As

)

E
(
Λθ(τ)

∣
∣As

) .

This proves Theorem 9.5.1. ��

Girsanov Theorem (*)

The following important result is known as Girsanov Theorem for which we
shall indicate a proof at the end of the section. A simple version of the Girsanov
Theorem has been already given with the Cameron-Martin Girsanov Theorem,
see Theorem 9.4.2. The Girsanov Theorem allows us to perform a measure
transformation, which transforms an (A, P )-drifted Wiener process, as given
in (9.4.1), into a Wiener process under a new probability measure Pθ. Such a
transformation is called Girsanov transformation.
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Theorem 9.5.2. (Girsanov) If for T ∈ (0,∞) a given strictly positive
Radon-Nikodym derivative process Λθ is an (A, P )-martingale, then the m-
dimensional process W θ = {W θ(t), t ∈ [0, T ]}, given by

W θ(t) = W t +
∫ t

0

θs ds (9.5.11)

for all t ∈ [0, T ], is an m-dimensional standard Wiener process on the filtered
probability space (Ω,A,A, Pθ).

Note that certain assumption needs to be satisfied before one can ap-
ply the above Girsanov Theorem. The sole key assumption is that Λθ must
be a strictly positive (A, P )-martingale. For instance, if the Radon-Nikodym
derivative process is almost surely only a strictly positive local martingale,
then this does not guarantee that Pθ is a probability measure.

Novikov Condition (*)

As just mentioned, a key assumption of the risk neutral approach is that
Λθ has to be a strictly positive (A, P )-martingale. A sufficient condition for
the Radon-Nikodym derivative process Λθ to be an (A, P )-martingale is the
Novikov condition, see Novikov (1972), which requires that

E

(

exp

{
1
2

∫ T

0

θ�
s θs ds

})

< ∞. (9.5.12)

This condition is fulfilled for the BS model, as was given in (9.1.1), since the
market price of risk θ, given in (9.1.16), is a constant. For the case, when
Λθ is already known to be a strictly positive (A, P )-local martingale, then
some other sufficient conditions can potentially be applied. Some conditions
of this kind are given in Lemma 5.2.2. Further conditions can be found in
Revuz & Yor (1999).

Proof of the Girsanov Theorem (*)

For simplicity, we only indicate the proof of Theorem 9.5.2 for the one-
dimensional case, that is m = 1. Furthermore, we assume for simplicity that
Λθθ, Λθ, ΛθWθθ, Λθ(Wθ)2θ ∈ L2

T and that P is equivalent to Pθ. The general
case is obtained by similar arguments, see Karatzas & Shreve (1991).

1. First, let us show that Pθ is a probability measure. It follows by
application of the Itô formula (6.2.11) to the expression (9.5.2) that

dΛθ(t) = −Λθ(t) θt dWt (9.5.13)

with Λθ(0) = 1. For the strictly positive process Λθ we have a.s. the inequality
Λθ(t) > 0 and from equation (9.5.5) the property
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E(Λθ(t)) = 1 (9.5.14)

for all t ∈ [0, T ]. From equation (9.5.7) we conclude for any event A ∈ A that

Pθ(A) =
∫

Ω

1A(ω)Λθ(T ) dP (ω) ≥ 0, (9.5.15)

where 1A(ω) is the indicator function for ω being in A. This combined with
the property (9.5.14) shows that

Pθ(Ω) =
∫

Ω

Λθ(T ) dP (ω) = E(Λθ(T )) = 1. (9.5.16)

Therefore, Pθ(·) is a well-defined probability measure on (Ω,A).
2. We now consider the product Λθ(t)Wθ(t) and show that it forms a

martingale. By the Itô formula (6.2.11) and equations (9.5.11) and (9.5.13)
the SDE for ΛθWθ can be written in the form

d(Λθ(t)Wθ(t)) = Λθ(t) dWθ(t) +Wθ(t) dΛθ(t) + d[Λθ,Wθ]t

= Λθ(t) dWt + Λθ(t) θt dt−Wθ(t)Λθ(t) θt dWt − Λθ(t) θt dt

= Λθ(t) (1 −Wθ(t) θt) dWt (9.5.17)

for t ∈ [0, T ]. Thus, since Λθ(1 − Wθθ) ∈ L2
T it follows by the martingale

property (5.4.3) of Itô integrals that the process ΛθWθ is an (A, P )-martingale.
3. For t ∈ [0, T ] and s ∈ [0, t], using the equivalence of Pθ, we obtain

with Theorem 9.5.1 from the martingale property of ΛθWθ the conditional
expectation

Eθ

(
Wθ(t)

∣
∣As

)
= E

(
Λθ(t)Wθ(t)

∣
∣As

)

= E
(
Λθ(s)Wθ(s)

∣
∣As

)

= Eθ

(
Wθ(s)

∣
∣As

)
= Wθ(s). (9.5.18)

Note that Wθ is an (A, Pθ)-martingale. Note that it is not only a martingale
with respect to the filtration that it generates.

4. Let us now show that Wθ is under Pθ a continuous square integrable
martingale. Note that we obtain from (9.5.17) and (9.5.11) by the Itô formula

d
(
Λθ(t) (Wθ(t))2

)
= Λθ(t) dt+ Λθ(t) (Wθ(t))2 θt dWt (9.5.19)

for t ∈ [0, T ]. Now, the square integrability of Wθ under Pθ follows, so
(Wθ)2 Λθ θ ∈ L2

T . From (9.5.19) we can conclude that Wθ is a continuous,
square integrable (A, Pθ)-martingale, see (5.1.2) with Wθ(0) = 0, see (9.5.11).

5. The quadratic variation process [Wθ] = {[Wθ]t, t ∈ [0, T ]}, see (5.2.2)
and (5.2.8), of the continuous (A, Pθ)-martingale Wθ is, according to (9.5.11),
of the form

[Wθ]t = t (9.5.20)

for t ∈ [0, T ]. It then follows by Lévy’s Theorem, see Theorem 6.5.1, that Wθ

is a standard Wiener process on the probability space (Ω,A,A, Pθ). ��
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9.6 Change of Numeraire (*)

It became clear in our previous discussion on real world pricing and risk
neutral pricing that there exist equivalent ways of obtaining derivative prices
as conditional expectations under certain probability measures by using corre-
sponding numeraires. This has been formalized in Geman, El Karoui & Rochet
(1995). Each of these alternative choices of numeraires result in corresponding
SDEs for the prices. Often, different numeraires can be used to characterize the
same derivative price. Some numeraire choices can provide significant analytic
or computational advantages. The expectations involved are simply different
ways of representing the same integral value. What actually happens in a nu-
meraire change is a change of variables in an integration. We emphasize that
certain conditions have to be satisfied to perform a numeraire change. This is
analogous to the well-known fact that not all changes of variables are feasible
for certain integrations.

Benchmarked PDE (*)

To illustrate the change of numeraire technique, let us recall from the real
world pricing formula (9.1.34) that the benchmarked option price can be
expressed as conditional expectation of the benchmarked payoff. We shall
now show for the BS model, as introduced in Sect. 9.1, that the bench-
marked pricing function V̂ : [0, T ] × (0,∞) × (0,∞) → [0,∞), obtained as
V̂ (t, St, S

δ∗
t ) = V̂ (t), can be expressed as a PDE solution.

With a view on (9.1.32)–(9.1.34) let us determine whether there exists
a sufficiently often differentiable benchmarked pricing function V̂ (·, ·, ·) such
that

V̂ (t) = V̂ (t, St, S
δ∗
t ) = E

(
H(ST )
Sδ∗

T

∣
∣
∣
∣At

)

, (9.6.1)

for t ∈ [0, T ] with St and Sδ∗
t satisfying the SDEs (9.1.1) and (9.1.15), respec-

tively.
Application of the Itô formula to the function V̂ (t, S, Sδ∗) yields, as in

(9.1.31), the equation

H(ST )
Sδ∗

T

= V̂ (T, ST , S
δ∗
T )

= V̂ (t, St, S
δ∗
t ) +

∫ T

t

L̃0 V̂ (s, Ss, S
δ∗
s ) ds

+
∫ T

t

(
∂V̂ (s, Ss, S

δ∗
s )

∂S
σs Ss +

∂V̂ (s, Ss, S
δ∗
s )

∂Sδ∗
θs S

δ∗
s

)

dWs (9.6.2)

with operator
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L̃0 V̂ (t, S, Sδ∗) =
∂V̂ (t, S, Sδ∗)

∂t
+ at S

∂V̂ (t, S, Sδ∗)
∂S

+
1
2
σ2

t S
2 ∂

2V̂ (t, S, Sδ∗)
∂S2

+(rt + θ2
t )Sδ∗

∂V̂ (t, S, Sδ∗)
∂Sδ∗

+
1
2
θ2

t (Sδ∗)2
∂2V̂ (t, S, Sδ∗)

∂(Sδ∗)2

+σt θt S S
δ∗
∂2V̂ (t, S, Sδ∗)

∂S ∂Sδ∗
(9.6.3)

for t ∈ [0, T ) and S, Sδ∗ ∈ (0,∞).
Since the process V̂ = {V̂ (t, St, S

δ∗
t ), t ∈ [0, T ]} is an (A, P )-martingale,

see (9.6.1), it follows from (9.6.2) that we obtain the benchmarked PDE

L̃0 V̂ (t, S, Sδ∗) = 0 (9.6.4)

for (t, S, Sδ∗) ∈ (0, T )× (0,∞)× (0,∞) with benchmarked terminal condition

V̂ (T, S, Sδ∗) =
H(S)
Sδ∗

(9.6.5)

for (S, Sδ∗) ∈ (0,∞) × (0,∞). Note that we have linked the conditional ex-
pectation (9.6.1) to the PDE (9.6.4)–(9.6.5). Such a relationship is generally
known as a Feynman-Kac formula, which we shall describe in the next section.
In the above case the numeraire at time t is the GOP Sδ∗

t and the pricing
measure is the real world probability measure P .

Recovering the BS-PDE (*)

Now, we use a transformation of variables to confirm that the benchmarked
PDE (9.6.4)–(9.6.5) is for the given BS model simply a transformation of the
BS-PDE (8.2.23)–(8.2.24). Using the formula (9.1.25), we obtain

V̂ (t, S, Sδ∗) =
V (t, S)
Sδ∗

(9.6.6)

for (t, S, Sδ∗) ∈ (0, T )×(0,∞)×(0,∞). Then the PDE (9.6.4)–(9.6.5) becomes

1
Sδ∗

(
∂V (t, S)

∂t
+ at S

∂V (t, S)
∂S

+
1
2
σ2

t S
2 ∂

2V (t, S)
∂S2

− (rt + θ2
t )V (t, S) + θ2

t V (t, S) − σt θt S
∂V (t, S)

∂S

)
= 0 (9.6.7)

for (t, S, Sδ∗) ∈ (0, T ) × (0,∞) × (0,∞) with terminal condition

V (T, S) = H(S) (9.6.8)

for S ∈ (0,∞). Consequently, by (9.1.16) and (9.6.7), the function V (t, S)
must satisfy the PDE
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∂V (t, S)
∂t

+ rt S
∂V (t, S)

∂S
+

1
2
σ2

t S
2 ∂

2V (t, S)
∂S2

− rt V (t, S) = 0 (9.6.9)

for (t, S) ∈ (0, T ) × (0,∞) with terminal condition (9.6.8). This recovers the
BS-PDE (8.2.23) with terminal condition (8.2.24). It confirms that the bench-
mark approach provides an alternative way of obtaining the BS-PDE for the
pricing function of a European option.

Risk Neutral PDE (*)

By using the savings account B as numeraire in the BS model, let us now
recall what we obtained under the risk neutral probability measure Pθ. We
have established through the risk neutral pricing formula a link between the
conditional expectation (9.4.13) under Pθ and the BS-PDE (8.2.21)–(8.2.22).

By similar arguments that provided (9.4.13), it holds for the discounted
option price V̄ (t, S̄t) that

V̄ (t, S̄t) = Eθ

(
H(S̄T BT )

BT

∣
∣
∣
∣At

)
(9.6.10)

for t ∈ [0, T ]. On the other hand, we obtain for the discounted pricing function
V̄ (t, S̄) by (8.2.21)–(8.2.22) the, so-called, risk neutral PDE

∂V̄ (t, S̄)
∂t

+
1
2
σ2

t S̄
2 ∂

2V̄ (t, S̄)
∂S̄2

= 0 (9.6.11)

for (t, S̄) ∈ [0, T ) × (0,∞) with terminal condition

V̄ (T, S̄) =
H(S̄ BT )

BT
(9.6.12)

for S̄ ∈ (0,∞). As we shall see in Sect. 9.7, also the conditional expectation
(9.6.10) refers to a Feynman-Kac formula, here under the risk neutral proba-
bility measure Pθ. In the above case the numeraire is the savings account B
and the pricing measure is the risk neutral probability measure Pθ.

Change of Numeraire Technique (*)

The above discussed possibility to use various strictly positive portfolios as
numeraire to compute option prices, provides theoretical and computational
freedom for finding convenient ways of derivative pricing. This has been ob-
served by practitioners and researchers who realized that the risk neutral
probability measure is not necessarily the most convenient probability mea-
sure for pricing certain payoffs. Geman et al. (1995) developed this into a
general technique which is called the change of numeraire technique.

In general, a numeraire S δ̄ = {S δ̄
t , t ∈ [0, T ]} is in this book a strictly

positive portfolio process with a corresponding strategy δ̄ = {δ̄t, t ∈ [0, T ]}.
Intuitively, a numeraire is used as a reference to normalize all other portfolios
with respect to it. By choosing a numeraire S δ̄ one considers the relative price
of a portfolio Sδ

t

Sδ̄
t

.
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Self-Financing under Numeraire Change (*)

Now, we shall show that self-financing portfolios remain self-financing after
a numeraire change. This is a desirable but not obvious feature of continuous
time financial market models. We have seen an example of this kind in (8.2.28).
To illustrate this property more generally, consider under the given BS model
a numeraire S δ̄ and a portfolio Sδ. Then we have by (9.1.3)

Sδ
t = δ0

t Bt + δ1
t St (9.6.13)

and by (9.1.4)
dSδ

t = δ0
t dBt + δ1

t dSt (9.6.14)

and
dS δ̄

t = δ̄0
t dBt + δ̄1

t dSt (9.6.15)

for t ∈ [0, T ]. By the Itô formula it follows for the ratio Sδ
t

Sδ̄
t

that

d

(
Sδ

t

S δ̄
t

)
=

1
S δ̄

t

dSδ
t + Sδ

t d

(
1
S δ̄

t

)
+ d

[
1
S δ̄

, Sδ

]

t

. (9.6.16)

By (9.6.14) and (9.6.13) we obtain

d

(
Sδ

t

S δ̄
t

)
= δ0

t

(
1
S δ̄

t

dBt +Bt d

(
1
S δ̄

t

))

+ δ1
t

(
1
S δ̄

t

dSt + St d

(
1
S δ̄

t

)
+ d

[
1
S δ̄

, S

]

t

)
. (9.6.17)

Application of the Itô formula to the ratios Bt

Sδ̄
t

and St

Sδ̄
t

allows us to conclude
that

d

(
Sδ

t

S δ̄
t

)
= δ0

t d

(
Bt

S δ̄
t

)
+ δ1

t d

(
St

S δ̄
t

)
(9.6.18)

for t ∈ [0, T ]. This confirms that the portfolio Sδ, when denominated in units
of the numeraire S δ̄, is changing its value only due to the gains from trade
in B

Sδ̄ and S
Sδ̄ . Thus, the portfolio is also in the denomination of another

numeraire S δ̄ a self-financing portfolio. By using the Itô formula this property
can be shown to hold generally for any model that we consider.

Numeraire Pairs (*)

When presenting the above pricing rules we always have considered numeraire
pairs (S δ̄, Pθδ̄

). This means, when we selected a numeraire S δ̄, then there was
also a corresponding candidate for a related pricing measure Pθδ̄

. In the real
world pricing formula (9.1.34) this pair consists of the GOP Sδ∗ as numeraire
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and the real world probability measure P as pricing measure, thus, resulting
in the numeraire pair (Sδ∗ , P ). This is the only case where we are always sure
that the pricing measure is an equivalent probability measure because there
is no measure change involved.

In the derivation of the risk neutral measure Pθ in Sect. 9.4 we used the
savings account B as numeraire, which yields the numeraire pair (B,Pθ). This
is just another possible choice for a numeraire. Note that we have to make
sure that Pθ is an equivalent probability measure when using this numeraire
pair.

There can be also other numeraires that are convenient for the pricing of
certain classes of derivatives, for instance, for the computation of interest rate
term structure derivatives.

The following result provides a useful tool for the construction of numeraire
pairs. From the real world pricing formula (9.1.34) it follows that

V (t)
Sδ∗

t

= E

(
H(ST )
Sδ∗

T

∣
∣
∣
∣At

)

(9.6.19)

for all t ∈ [0, T ]. We now introduce a strictly positive portfolio S δ̄, which we
use as numeraire. The numeraire, when benchmarked and normalized to the
initial value one, has the form

Λθδ̄
(t) =

Ŝ δ̄
t

Ŝ δ̄
0

=
S δ̄

t

Sδ∗
t

Sδ∗
0

S δ̄
0

(9.6.20)

for t ∈ [0, T ]. Then we can write by using (9.6.19) and (9.6.20)

V (t)
S δ̄

t

= E

(
Sδ∗

t

S δ̄
t

S δ̄
T

Sδ∗
T

H(ST )
S δ̄

T

∣
∣
∣
∣At

)

= E

(
Λθδ̄

(T )
Λθδ̄

(t)
H(ST )
S δ̄

T

∣
∣
∣
∣At

)

. (9.6.21)

The benchmarked numeraire Λθδ̄
(t) satisfies by (9.1.37) the SDE

dΛθδ̄
(t) = d

(
Ŝ δ̄

t

Ŝ δ̄
0

)

= Λθδ̄
(t)
(
π1

δ̄ (t)σt − θt

)
dWt (9.6.22)

for t ∈ [0, T ]. Note by Lemma 5.4.1 that Λθδ̄
is an (A, P )-local martingale

because the SDE (9.6.22) is driftless. Assume now that we have chosen a nu-
meraire S δ̄ such that Λθδ̄

is an (A, P )-martingale. This allows us to show that
Pθδ̄

is a probability measure when defined via the Radon-Nikodym derivative

dPθδ̄

dP
= Λθδ̄

(T ). (9.6.23)

We then can introduce the drifted Wiener process Wθδ̄
= {Wθδ̄

(t), t ∈
[0, T ]} with
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dWθδ̄
(t) = dWt + θδ̄(t) dt, (9.6.24)

where
θδ̄(t) = θt − π1

δ̄ (t)σt (9.6.25)

for t ∈ [0, T ]. Now, we are in a position to apply Theorem 9.5.2 to conclude
that by the Girsanov transformation (9.6.24) Wθδ̄

is a standard Wiener process
under the probability measure Pθδ̄

. This provides us, rather generally, with
the numeraire pair (S δ̄, Pθδ̄

).
Obviously, there is no measure transformation involved if we choose the

GOP Sδ∗ as numeraire since in this case we have from (9.6.25)

θδ∗(t) = 0

for all t ∈ [0, T ].
If we use the savings account B as numeraire, then π1

δ̄
(t) = 0 and we

obtain from (9.6.25)
θδ̄(t) = θt.

This is the risk neutral measure change, where the probability measure Pθδ̄
=

Pθ equals the risk neutral probability measure.
We could also use, for instance, the underlying security S as numeraire,

where π1
δ̄
(t) = 1 and we obtain by (9.6.25)

θδ̄(t) = θt − σt.

This also would provide under the above BS model an appropriate measure
transformation.

Note however, the situation is different, if we choose the unfair portfolio
S δ̄

t = Sδ∗
t Zt given in (9.1.42)–(9.1.43). Obviously, by (9.1.44) this numeraire,

when benchmarked is not an (A, P )-martingale. By (8.7.23) it is a strict super-
martingale. The pricing measure Pθδ̄

is in this case not a probability measure.
In particular, we have

Pθδ̄
(Ω) = E

(
Λθδ̄

(T )
∣
∣A0

)
< Λθδ̄

(0) = 1.

Consequently, the Girsanov Theorem cannot be applied.

Change of Numeraire Pricing Formula (*)

Using a strictly positive numeraire S(δ) and noting that Λθδ̄
(0) = 1 we can

always rewrite the real world pricing formula (9.1.34) in the form

V (0, S0) = E

(
Sδ∗

0

Sδ∗
T

H(ST )A0

)

= E

(

Λθδ̄
(T )

H(ST )
S δ̄

T

∣
∣
∣
∣A0

)

. (9.6.26)

Note that the quantity
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Sδ∗
0

Sδ∗
T

=
Λθδ̄

(T )

S δ̄
T

(9.6.27)

remains numeraire invariant under all above discussed numeraire changes.
Let us compute the expectation on the right hand side of (9.6.26) by appli-
cation of Bayes’s Theorem and formula (9.5.10). The required corresponding
conditional expectation is of the form

E

(

Λθδ̄
(T )

H(ST )
S δ̄

T

∣
∣
∣
∣A0

)

= Eθδ̄

(
H(ST )
S δ̄

T

∣
∣
∣
∣A0

)

,

where Eθδ̄
denotes expectation under Pθδ̄

. For this formula to be valid it
is necessary that the assumptions of the Girsanov Theorem and the Bayes
Theorem can be verified. This requires Λθδ̄

to form an (A, P )-martingale to
guarantee that Pθδ̄

is an equivalent probability measure. If this is the case,
then we obtain the change of numeraire pricing formula

V (0, S0) = Eθδ̄

(
H(ST )
S δ̄

T

∣
∣
∣
∣A0

)

. (9.6.28)

We learned from our previous discussion and example (9.1.38)–(9.1.43) in
Sect. 9.1 that not all benchmarked numeraires form (A, P )-martingales. This
indicates that the change of numeraire pricing formula (9.6.28) may fail to
hold in certain cases. One needs to check carefully the assumptions that are
needed for choosing a numeraire pair. Otherwise, an inappropriate numeraire
choice, like the unfair portfolio in (9.1.42), may lead to wrong prices.

In the risk neutral case the Radon-Nikodym derivative process Λθ for the
candidate risk neutral measure Pθ needs to be an (A, P )-martingale to provide
the risk neutral pricing formula (9.4.13). Consequently, by (9.6.20) it is nec-
essary that the benchmarked savings account Bt

Sδ∗
t

forms an (A, P )-martingale
to allow the use of the standard risk neutral approach.

9.7 Feynman-Kac Formula (*)

As previously shown, several of the existing pricing approaches can be ex-
pressed via pricing formulas that have the form of conditional expectations.
These conditional expectations lead to pricing functions that satisfy certain
PDEs, which are usually Kolmogorov backward equations, as was shown for
real world pricing and for risk neutral pricing. The link between the condi-
tional expectations and respective PDEs can be interpreted as an applica-
tion of the, so-called, Feynman-Kac formula. In this section we formulate the
Feynman-Kac formula under rather general assumptions, allowing also first
exit times and jump diffusions. For a wide range of models this formula pro-
vides the Kolmogorov backward PDEs that characterize pricing functions of
derivatives.
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SDE for Factor Process (*)

At first we consider a fixed time horizon T ∈ (0,∞) and a d-dimensional
Markov process Xt,x = {Xt,x

s , s ∈ [t, T ]} describing some factors, which
satisfies the vector SDE

dXt,x
s = a(s,Xt,x

s ) ds+
m∑

k=1

bk(s,Xt,x
s ) dW k

s (9.7.1)

for s ∈ [t, T ] with initial value Xt,x
t = x ∈ �d at time t ∈ [0, T ], see (7.8.1)–

(7.8.4). The process W = {W t = (W 1
t , . . ., W

m
t )�, t ∈ [0, T ]} is assumed

to represent an m-dimensional standard Wiener process on the filtered prob-
ability space (Ω,A,A, P ). One can show, similarly as in the proof of Theo-
rem 7.8.2, that under appropriate assumptions, which will be described below,
the process Xt,x is a diffusion process with drift coefficient a(·, ·) and diffu-
sion coefficients bk(·, ·), k ∈ {1, 2, . . . ,m}. In general, a = (a1, . . . , ad)� and
bk = (b1,k, . . . , bd,k)�, k ∈ {1, 2, . . . ,m} represent vector valued functions on
[0, T ] × �d into �d, such that a pathwise unique solution of the SDE (9.7.1)
exists. Usually, the components of the SDE (9.7.1) are the factors in a financial
market model.

Terminal Payoff Function (*)

Let us describe the case for a European option, where we have a terminal
payoff H(Xt,x

T ) at the maturity date T with some given payoff function H :
�d → [0,∞) such that

E(|H(Xt,x
T )|) < ∞. (9.7.2)

We can then introduce the pricing function u : [0, T ] ×�d → [0,∞)

u(t,x) = E
(
H(Xt,x

T )
∣
∣At

)
(9.7.3)

for (t,x) ∈ [0, T ] × �d. The Feynman-Kac formula for this payoff structure
refers to the fact that under sufficient regularity of a, b1, . . . , bm and H the
function u : (0, T ) ×�d → [0,∞) satisfies the PDE

L0 u(t,x) =
∂u(t,x)

∂t
+

d∑

i=1

ai(t,x)
∂u(t,x)
∂xi

+
1
2

d∑

i,k=1

m∑

j=1

bi,j(t,x) bk,j(t,x)
∂2u(t,x)
∂xi∂xk

= 0 (9.7.4)

for (t,x) ∈ (0, T ) ×�d with terminal condition
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u(T,x) = H(x) (9.7.5)

for x ∈ �d. This type of European payoff will be covered by a general version
of the Feynman-Kac formula that we present later in this section. For instance,
it can be applied to determine the discounted pricing function for risk neutral
pricing with zero interest rate when the expectation is taken for the discounted
payoff with respect to the equivalent risk neutral probability measure. Under
the real world pricing of the benchmark approach the above version of the
Feynman-Kac formula would allow the calculation of the benchmarked pricing
function under the real world probability measure.

Discounted Payoff Function (*)

Let us now generalize the above payoff function by discounting it with a given
discount rate process r, which is obtained as a function of the given vector
diffusion process Xt,x, that is r : [0, T ] × �d → �. For instance, in a risk
neutral setting the discount rate is given by the short term interest rate.

Over the period [t, T ] we obtain for the discounted payoff

exp

{

−
∫ T

t

r(s,Xt,x
s ) ds

}

H(Xt,x
T )

the pricing function

u(t,x) = E

(

exp

{

−
∫ T

t

r(s,Xt,x
s ) ds

}

H(Xt,x
T )
∣
∣
∣
∣At

)

(9.7.6)

for (t,x) ∈ [0, T ]×�d. Under conditions that we shall specify below, it follows
that the pricing function u satisfies the PDE

L0 u(t,x) = r(t,x)u(t,x) (9.7.7)

for (t,x) ∈ (0, T ) ×�d with terminal condition

u(T,x) = H(x) (9.7.8)

for x ∈ �d, where the PDE operator L0 is given in (9.7.4). Also this version
of the Feynman-Kac formula is covered by a more general result that follows
later.

Terminal Payoff and Payoff Rate (*)

Now, we add to the above discounted payoff structure some payoff stream,
which continuously pays with a payoff rate g : [0, T ] × �d → [0,∞) some
amount per unit of time. This can model, for instance, an income stream in
a company, continuous dividend payments for a share or continuous interest
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payments. The corresponding discounted payoff with payoff rate is then at
time t ∈ [0, T ] of the form

exp

{

−
∫ T

t

r(s,Xt,x
s ) ds

}

H(Xt,x
T )+

∫ T

t

exp
{
−
∫ s

t

r(z,Xt,x
z ) dz

}
g(s,Xt,x

s ) ds.

This leads to the pricing function

u(t,x) = E

(

exp

{

−
∫ T

t

r(s,Xt,x
s ) ds

}

H(Xt,x
T )

+
∫ T

t

exp
{
−
∫ s

t

r(z,Xt,x
z ) dz

}
g(s,Xt,x

s ) ds
∣
∣
∣
∣At

)

(9.7.9)

for (t,x) ∈ [0, T ] × �d. As we show below, this pricing function satisfies the
PDE

L0 u(t,x) + g(t,x) = r(t,x)u(t,x) (9.7.10)

for (t,x) ∈ (0, T ) ×�d with terminal condition

u(T,x) = H(x) (9.7.11)

for x ∈ �d.

SDE with Jumps (*)

We consider now jump diffusions. Let Γ denote an open connected subset
of �d and T ∈ (0,∞) a fixed time horizon. We consider for a d-dimensional
process Xt,x = {Xt,x

s , s ∈ [t, T ]}, see (6.4.19), the vector SDE

dXt,x
s = a(s,Xt,x

s ) ds+
m∑

k=1

bk(s,Xt,x
s ) dW k

s

+
�∑

j=1

∫

E
cj(v, s−,Xt,x

s−) pj
ϕj

(dv, ds) (9.7.12)

for t ∈ [0, T ], s ∈ [t, T ] and x ∈ Γ with value

Xt,x
t = x (9.7.13)

at time t, see (7.6.23). Here W = {W t = (W 1
t , . . . ,W

m
t )�, t ∈ [0, T ]} is

again an m-dimensional standard Wiener process on a filtered probability
space (Ω,A,A, P ) as introduced in Sect. 5.1. Furthermore, pj

ϕj
(·, ·) denotes

a Poisson measure, j ∈ {1, 2, . . . , }, as introduced in Sect. 3.5, satisfying
condition (3.5.14). Here a = (a1, . . . , ad)� and bk = (b1,k, . . . , bd,k)�, k ∈
{1, 2, . . . ,m}, are vector valued functions from [0, T ] × Γ into �d and cj =
(c1,j , . . . , cd,j)�, j ∈ {1, 2, . . . , }, is a vector valued function on E × [0, T ]×Γ ,
E = �\{0}.
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Feynman-Kac Formula with Jumps (*)

For the above payoff structure with discounted terminal payoff and a given
payoff rate, we can form the pricing function

u(t,x) = E

(

exp

{

−
∫ T

t

r(s,Xt,x
s ) ds

}

H(Xt,x
T )

+
∫ T

t

exp
{
−
∫ s

t

r(z,Xt,x
z ) dz

}
g(s,Xt,x

s ) ds
∣
∣
∣
∣At

)

(9.7.14)

for t ∈ [0, T ] × �d. It turns out under appropriate conditions, as will be de-
scribed below, that u satisfies the partial integro differential equation (PIDE)

L0 u(t,x) + g(t,x) = r(t,x)u(t,x) (9.7.15)

for (t,x) ∈ (0, T ) with terminal condition

u(T,x) = H(x) (9.7.16)

for x ∈ �d. Here the operator L0 is given in the form

L0u(t,x) =
d∑

i=1

ai(t,x)
∂u(t,x)
∂xi

+
1
2

d∑

i,k=1

m∑

j=1

bi,j(t,x) bk,j(t,x)
∂2u(t,x)
∂xi ∂xk

+
∂u(t,x)

∂t
+

�∑

j=1

∫

E

[
u(s, x1 + c1,j(v, s,x), . . . , xd + cd,j(v, s,x))

−u(s, x1, . . . , xd)
]
ϕj(dv), (9.7.17)

where we abuse slightly the notation by writing u(s, (x1, . . . , xd)�) =
u(s, x1, . . . , xd). Note that an extra integral term is generated by the jumps
as a consequence of the Itô formula with jumps, see (6.4.11) and (6.4.20).

Functional with First Exit Time (*)

Assume that there is a, so-called, continuation region Φ, which is an open
connected subset of [0, T ] × Γ . We continue to receive payments as long as
the process Xt,x stays in the continuation region in Φ. For instance, in the
case of a, so-called, knock-out-barrier option this would mean that Xt,x

s has
to stay below a given critical barrier to receive the terminal payment. Then
we define the first exit time τ t

Φ from Φ after t as

τ t
Φ = inf{s ∈ [t, T ] : (s,Xt,x

s ) ∈ Φ}, (9.7.18)

which is a stopping time, see (5.1.13).
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To characterize a general payoff structure we use a terminal payoff function
H : (0, T ]×Γ → [0,∞) for payments at time τ t

Φ, a payoff rate g : [0, T ]×Γ →
[0,∞) for incremental payments during the time period [t, τ t

Φ) and a discount
rate r : [0, T ] × Γ → �. These quantities are all assumed to be measurable
functions. Assume that the process Xt,x does not explode or leave Γ before
time T . We then define the pricing function u : Φ → [0,∞) by

u(t,x) = E

(

H(τ t
Φ,X

t,x
τt

Φ
) exp

{

−
∫ τt

Φ

t

r(s,Xt,x
s ) ds

}

+
∫ τt

Φ

t

g(s,Xt,x
s ) exp

{
−
∫ s

t

r(z,Xt,x
u ) dz

}
ds

∣
∣
∣
∣
∣
At

)

(9.7.19)

for (t,x) ∈ Φ.

General Feynman-Kac Formula (*)

For the formulation of the PIDE for the function u we use the operator L0

given in (9.7.17). Under sufficient regularity of Φ, a, b1, . . ., bm, c1, . . . , c�,
H, g, ϕ1, . . ., ϕ� and r one can show by application of the Itô formula (6.4.11)
that the pricing function u satisfies the PIDE

L0u(t,x) + g(t,x) = r(t,x)u(t,x) (9.7.20)

for (t,x) ∈ Φ with boundary condition

u(t,x) = H(t,x) (9.7.21)

for (t,x) ∈ ((0, T ] × Γ )\Φ. This result links the functional (9.7.19) to the
PIDE (9.7.20)–(9.7.21) and can again be called a Feynman-Kac formula.

The above Feynman-Kac formula also holds for a partly negative terminal
payoff function H and payoff rate g. One can split these payoffs into their
negative and positive parts, where each can be separately handled by the above
result. The Feynman-Kac formula can be conveniently derived by application
of the Itô formula (6.4.20). Due to the complexity of boundary conditions that
one has to deal with, such a derivation is useful, in principle, only for particular
classes of asset price models and functionals. Therefore, we do not state here an
extremely general and, consequently, very technical theorem that formulates a
fully general Feynman-Kac formula for SDEs with jump component. However,
it is clear that under similar conditions, as we formulate for the already rather
general case below, that one obtains the Feynman-Kac formula also in the case
with jumps by using the smoothness of the PIDE solution, the Itô formula
and the martingale property of the resulting functional.
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Conditions for the Feynman-Kac Formula (*)

For the case Φ = (0, T )×Γ and assuming no jumps, that is c1 = . . . = c� = 0
and τ t

Φ = T , let us now formulate some technical conditions that ensure that
the Feynman-Kac formula holds.

(A) The drift coefficient a and diffusion coefficients bk, k ∈ {1, 2, . . . ,m}, are
assumed to be on [0, T ] × Γ locally Lipschitz-continuous in x, uniformly
in t. That is, for each compact subset Γ 1 of Γ there exists a constant
KΓ 1 < ∞ such that

|a(t,x) − a(t,y)| +
m∑

k=1

|bk(t,x) − bk(t,y)| ≤ KΓ 1 |x − y| (9.7.22)

for all t ∈ [0, T ] and x,y ∈ Γ 1.
(B) For all (t,x) ∈ [0, T ) × Γ the solution Xt,x of (9.7.12) neither explodes

nor leaves Γ before T , that is

P

(
sup

t≤s≤T
|Xt,x

s | < ∞
)

= 1 (9.7.23)

and
P (Xt,x

s ∈ Γ for all s ∈ [t, T ]) = 1. (9.7.24)

(C) There exists an increasing sequence (Γn)n∈N of bounded, open and con-
nected domains of Γ such that ∪∞

n=1Γn = Γ , and for each n ∈ N the
PDE

L0un(t,x) + g(t,x) = r(t,x)un(t,x) (9.7.25)

has a unique solution un, see Friedman (1975), on (0, T )×Γn with bound-
ary condition

un(t,x) = u(t,x) (9.7.26)

on ((0, T ) × ∂Γn) ∪ ({T} × Γn), where ∂Γn denotes the boundary of Γn.
(D) The process bi,k(·,X ·)

∂u(·,X ·)
∂xi is from L2

T for all i ∈ {1, 2, . . . , d} and
k ∈ {1, 2, . . . ,m}.

For the following theorem, which is similar to a result in Heath & Schweizer
(2000), we shall give a proof at the end of the section.

Theorem 9.7.1. In the case without jumps under the conditions (A), (B),
(C) and (D), the function u given by (9.7.19) is the unique solution of the
PDE (9.7.20) with boundary condition (9.7.21), where u is differentiable with
respect to t and twice differentiable with respect to the components of x.

Condition (A) is satisfied if, for instance, a and b = (b1, . . . , bm) are dif-
ferentiable in x on the open set (0, T )×Γ with derivatives that are continuous
on [0, T ] × Γ .

To establish condition (B) one needs to exploit specific properties of the
process Xt,x given by the SDE (9.7.12).

Condition (C) can be shown to be implied by the following assumptions:
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(C1) There exists an increasing sequence (Γn)n∈N of bounded, open and con-
nected subdomains of Γ with Γn∪∂Γn ⊂ Γ such that ∪∞

n=1Γn = Γ , and
each Γn has a twice differentiable boundary ∂Γn.

(C2) For each n ∈ N the functions a and bb� are uniformly Lipschitz-
continuous on [0, T ] × (Γn ∪ ∂Γn).

(C3) For each n ∈ N the function b(t,x)b(t,x)� is uniformly elliptic on �d

for (t,x) ∈ [0, T ] × Γn, that is there exists a δn > 0 such that

y�b(t,x) b(t,x)�y ≥ δn |y|2 (9.7.27)

for all y ∈ �d.
(C4) For each n ∈ N the functions r and g are uniformly Hölder-continuous

on [0, T ]×(Γn∪∂Γn), that is there exists a constant K̄n and an exponent
qn > 0 such that

|r(t,x) − r(t,y)| + |g(t,x) − g(t,y)| ≤ K̄n |x − y|qn (9.7.28)

for t ∈ [0, T ] and x,y ∈ (Γn ∪ ∂Γn).
(C5) For each n ∈ N the function u is finite and continuous on ([0, T ] ×

∂Γn) ∪ ({T} × (Γn ∪ ∂Γn)).

Condition (D) is satisfied when

∫ T

0

E

((
bi,k(t,Xt)

∂u(t,Xt)
∂xi

)2
)

dt < ∞

for all i ∈ {1, 2, . . . , d} and k ∈ {1, 2, . . . ,m}. This condition ensures that the
process u(·,X ·) is a martingale and the PDE (9.7.20)–(9.7.21) has a unique
solution.

On the Proof of Theorem 9.7.1 (*)

Let us now indicate the proof of Theorem 9.7.1. It follows from condition (A)
that (9.7.12) has a unique solution up to an explosion time, see Theorem II.5.2
in Kunita (1984). Due to (B) this explosion time has to be greater than T
almost surely so that the stochastic process Xt,x is well defined on [t, T ]. The
expectation in (9.7.19) is then also well-defined with values in [0,∞) because
H and g are nonnegative. Condition (C) implicitly contains the assumption
that for all n ∈ N and (t,x) ∈ ((0,∞) × ∂Γn) ∪ ({T} × Γn) the function
u(t,x) is finite, that is u(t,x) < ∞. For fixed (t,x) ∈ (0, T )×Γ the condition
(C) allows us then to find an n ∈ N such that x ∈ Γn.

Let us denote by

τ t
Γn

= inf{s ∈ [t, T ] : Xt,x
s ∈ Γn} (9.7.29)

the first exit time of (s,Xt,x
s ) from [t, T ) × Γn, see (9.7.18). Due to the con-

tinuity of Xt,x it is
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(
τ t
Γn
,Xt,x

τt
Γn

)
∈ ((0, T ) × ∂Γn) ∪ ({T} × Γn)

such that
u
(
τ t
Γn
,Xt,x

τt
Γn

)
< ∞.

We then have by application of the Itô formula (6.2.11) to un, condi-
tions (9.7.25) and (9.7.26) that

un(t,x) = E
(
u
(
τ t
Γn
,Xt,x

τt
Γn

) ∣∣
∣At

)
, (9.7.30)

where the appearing Itô integral is, due to the boundedness of Γn, an (A, P )-
martingale.

Because of (A) and (B) it follows that Xt,x is a strong Markov process, see
Theorem IV.2.3 and the remark after Theorem IV.6.1 in Ikeda & Watanabe
(1989). This means that the Markov property still holds when the present
time is chosen to be a stopping time. These results are stated for a and b not
depending on t and x from �d, but the condition (B) allows us to replace �d

by Γ . Then the results can be shown to hold for time dependent a and b, as
in Chap. 6 of Stroock & Varadhan (1982). Therefore, by the strong Markov
property we obtain

E

(

H(T,Xt,x
T ) exp

{

−
∫ T

t

r(s,Xt,x
s ) ds

}

−
∫ T

t

g(s,Xt,x
s ) exp

{
−
∫ s

t

r(u,Xt,x
u ) du

}
ds

∣
∣
∣
∣Aτt

Γn

)

= u
(
τ t
Γn
,Xt,x

τt
Γn

)

and, thus, by (9.7.19) and (9.7.30)

u(t,x) = E
(
u
(
τ t
Γn
,Xt,x

τt
Γn

) ∣
∣At

)
= un(t,x).

Hence for all n ∈ N the functions u and un coincide on (0, T )×Γn. This implies
by (C) that u satisfies (9.7.20) on (0, T ) × Γ . From (9.7.12) and (9.7.19) we
obtain then the boundary condition (9.7.21) and also the uniqueness of u, if
we exploit the fact that u(·,X ·) is a martingale due to (D). ��

9.8 Exercises for Chapter 9

9.1. Prove for the BS model with constant volatility σt > 0 appreciation rate
a and short rate r that the domestic savings account discounted stock price
process S̄ is an (A, Pθ)-martingale under the risk neutral probability measure
Pθ.
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9.2. Show that the discounted European call option price process for the
BS model with constant parameters is a martingale under the risk neutral
probability measure.

9.3. Formulate the SDE for the European put option price for the BS model
with constant parameters under the risk neutral probability measure Pθ and
under the original probability measure P .

9.4. Starting from the risk neutral SDE for the stock price verify that the
benchmarked stock price for the BS model is an (A, P )-martingale.

9.5. Compute the European call option price as an expectation under the risk
neutral probability measure for the BS model.

9.6. (*) Write down for the BS model the Itô SDE for the Radon-Nikodym
derivative process of the risk neutral measure.

9.7. (*) Use under the BS model with constant interest rate r the zero coupon
bond price P (t, T ) with maturity T as numeraire, t ∈ [0, T ]. Describe the
corresponding numeraire pair. What is the relationship of the resulting pricing
measure with the risk neutral probability measure?

9.8. (*) Apply for the BS model the Feynman-Kac formula to compute the
PDE for the price V (t, St) at time t of the payoff H(ST ) = S2

T of the square
of the underlying security at maturity T . Can you explicitly solve the corre-
sponding PDE?
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Continuous Financial Markets

This and the following three chapters present a range of new concepts and
ideas that do not fit under presently prevailing approaches. They derive a
general, unified framework for modeling continuous financial markets.

Since the middle of the last century there have been substantial develop-
ments in portfolio theory and derivative pricing. Some of these developments
did not take much notice of the others. This chapter introduces the benchmark
approach which attempts to unify and generalize these seemingly different
theories and approaches. As we shall see, the benchmark approach suggests
a change in the common practice of derivative pricing using the more general
real world pricing concept. This allows a wider class of financial market mod-
els that cover realistic models. Since this may appear to be quite radical for
some readers, we first demonstrate the benchmark approach for the case of
a general continuous financial market. In particular, in the next chapter we
emphasize a deep link between derivative pricing and portfolio optimization.

At the end of this chapter a Diversification Theorem shows that diversi-
fied portfolios approximate the growth optimal portfolio (GOP). One can show
that the GOP exists in any reasonable financial market model. The bench-
mark approach uses this remarkable portfolio as a benchmark in several ways
and employs it as central building block in financial modeling. In portfolio
optimization it will be used as a classical benchmark for fund management.
In derivative pricing it will be selected as the numeraire, allowing us to use
the real world probability measure as pricing measure.

10.1 Primary Security Accounts and Portfolios

Trading Uncertainty

For the modeling of a financial market over an infinite time interval [0,∞) we
rely on a filtered probability space (Ω,A,A, P ). The filtration A = (At) t∈[0,∞)

is assumed to satisfy the usual conditions, see Sect.5.1. If not otherwise stated,

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,
Springer Finance,
© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010
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A0 is assumed to be the trivial sigma-algebra. The filtration A describes the
structure of information entering the market, in the sense that the sigma-
algebra At expresses the information relevant to the market at time t. For
simplicity, we restrict ourselves in this chapter to markets with continuous
security prices. Trading uncertainty is expressed by the independent standard
(A, P )-Wiener processes W k = {W k

t , t ∈ [0,∞)}, for k ∈ {1, 2, . . . , d} and
d ∈ N . Note that there may be additional nontraded uncertainty present in the
market. Such uncertainty can model randomness, for instance, in volatilities,
appreciation rates, short rates or other quantities.

Primary Security Accounts

We consider a market comprising d + 1 primary security accounts. These in-
clude a savings account S0 = {S0

t , t ∈ [0,∞)}, which is a locally riskless pri-
mary security account whose value at time t is given by

S0
t = exp

{∫ t

0

rs ds

}
< ∞ (10.1.1)

for t ∈ [0,∞), where r = {rt, t ∈ [0,∞)} denotes the adapted short rate,
also called the short term interest rate. For an interpretation of the savings
account as the limit of a roll-over short term bond account we refer to the end
of Sect. 10.4.

The market also includes d nonnegative, risky primary security account
processes Sj = {Sj

t , t ∈ [0,∞)}, j ∈ {1, 2, . . . , d}, each of which contains
units of one type of security. It is important to note that in a primary secu-
rity account all proceeds are reinvested. Typically, these securities are stocks
with all dividends reinvested. However, foreign savings accounts, bonds and,
possibly even, derivatives may also form primary security accounts.

To specify the dynamics of continuous primary securities in the given mar-
ket, we assume very generally that the jth primary security account value Sj

t ,
j ∈ {1, 2, . . . , d}, satisfies the SDE

dSj
t = Sj

t

(

aj
t dt+

d∑

k=1

bj,kt dW k
t

)

(10.1.2)

for t ∈ [0,∞) with Sj
0 > 0. Here the process bj,k = {bj,kt , t ∈ [0,∞)} is the

volatility of the jth primary security account with respect to the kth Wiener
process W k. Suppose that bj,k is a given predictable process that satisfies the
integrability condition

∫ T

0

d∑

j=1

d∑

k=1

(
bj,kt

)2

dt < ∞ (10.1.3)
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almost surely, for all j, k ∈ {1, 2, . . . , d} and T ∈ [0,∞). Furthermore, we
assume that the appreciation rate aj = {aj

t , t ∈ [0,∞)}, j ∈ {1, 2, . . . , d}, is a
predictable process such that

∫ T

0

d∑

j=0

|aj
s| ds < ∞ (10.1.4)

almost surely, for all T ∈ [0,∞). For instance, a Black-Scholes (BS) model, see
(7.5.4), is obtained if one assumes the appreciation rates, the short rate and
the volatilities to be constants. The dynamics of the above primary security
accounts can be very general, because appreciation rates and volatilities can
be chosen quite freely as predictable stochastic processes.

Market Price of Risk

We use the same number d of Wiener processes for the modeling of trading
uncertainty as there are risky primary security accounts. If the number of
securities were greater than the number of Wiener processes, then we would
have redundant securities that can be removed from the set of primary secu-
rity accounts. Alternatively, if there were fewer risky securities than Wiener
processes, then the market would be in some sense incomplete with respect
to trading uncertainty. The core analysis of this chapter is then still valid, al-
though, some additional considerations arise. We shall discuss certain aspects
of incomplete markets in Sect. 11.5.

The following assumption avoids redundant primary security accounts. It
is also the key assumption which the existence of a GOP secures in our market
and, therefore, the absence of arbitrage, as we shall see later.

Assumption 10.1.1. The volatility matrix bt = [bj,kt ]dj,k=1 is invertible for
Lebesgue-almost every t ∈ [0,∞), with inverse matrix b−1

t = [b−1 j,k
t ]dj,k=1.

Let S = {St = (S0
t , S

1
t , . . . , S

d
t )�, t ∈ [0,∞)} denote the vector of primary

security account processes. Let a = {at = (a1
t , . . . , a

d
t )�, t ∈ [0,∞)} denote

the vector of appreciation rate processes. Let b = {bt, t ∈ [0,∞)} denote the
volatility matrix process and let r = {rt = (rt, r

1
t , r

2
t , . . . , r

d
t )�, t ∈ [0,∞)}

denote the vector of short rate and dividend rate processes with respect of
the primary security accounts. All of the above processes are assumed to be
A-adapted. Note that rt is the short rate of the domestic currency, while rj

t

represents the adapted dividend rate of the jth stock.

Definition 10.1.2. We call the above market SC
(d) = (S,a, b, r,A, P ), with

d risky primary security accounts, a continuous financial market (CFM) when
it satisfies Assumption 10.1.1.
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Assumption 10.1.1 allows us in a CFM to introduce the kth market price
of risk θk

t with respect to the kth trading uncertainty, which is the kth Wiener
process W k, via the equation

θk
t =

d∑

j=1

b−1 j,k
t

(
aj

t − rt

)
, (10.1.5)

which we can write conveniently by using the unit vector 1 = (1, . . . , 1)� as

θt =
(
θ1

t , . . . , θ
d
t

)�
= b−1

t (at − rt 1) (10.1.6)

for t ∈ [0,∞) and k ∈ {1, 2, . . . , d}. Recall that b−1
t is the inverse of the

volatility matrix bt. We shall see that the market prices of risk are central
invariants in a CFM, where they are uniquely determined. This uniqueness
is a consequence of Assumption 10.1.1. Since the market price of risk only
needs to be determined with respect to each source of trading uncertainty, it
is sufficient to use the same number of Wiener processes as there are primary
security accounts. Uncertainty that does not appear as trading uncertainty
does not have a market price of risk until it becomes securitized.

Now, we can rewrite the SDE (10.1.2) for the jth primary security account
in the form

dSj
t = Sj

t

(

rt dt+
d∑

k=1

bj,kt

(
θk

t dt+ dW k
t

)
)

(10.1.7)

for t ∈ [0,∞) and j ∈ {1, 2, . . . , d}. We emphasize that (10.1.7) describes the
same dynamics as the SDE (10.1.2). We have just reparameterized the latter
equation in terms of the market prices of risk.

Self-Financing Strategies and Portfolios

We call a predictable stochastic process δ = {δt = (δ0
t , δ

1
t , . . . , δd

t )�, t ∈ [0,∞)}
a strategy, if for each j ∈ {0, 1, . . . , d} the Itô integral

Iδj ,Sj (t) =
∫ t

0

δj
s dS

j
s (10.1.8)

exists, see Sect.5.3. Here δj
t , j ∈ {0, 1, . . . , d}, is the number of units of the jth

primary security account that are held at time t ∈ [0,∞) in the corresponding
portfolio Sδ = {Sδ

t , t ∈ [0,∞)}. The value Sδ
t of this portfolio at time t is given

by

Sδ
t =

d∑

j=0

δj
t S

j
t . (10.1.9)

A strategy δ and the corresponding portfolio Sδ are said to be self-financing
if
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dSδ
t =

d∑

j=0

δj
t dS

j
t (10.1.10)

for t ∈ [0,∞). This means that all changes in portfolio value are due to gains
or losses from trade in the primary security accounts. We make the following
standing assumption, which may be interpreted as a law of conservation of
value.

Assumption 10.1.3. All strategies and portfolios are self-financing.

Due to this assumption we shall simply omit the phrase “self-financing” in
the remainder of the book. By (10.1.10) and (10.1.7) the value of a portfolio
Sδ

t satisfies the SDE

dSδ
t = Sδ

t rt dt+
d∑

k=1

d∑

j=0

δj
t S

j
t b

j,k
t

(
θk

t dt+ dW k
t

)
(10.1.11)

for t ∈ [0,∞). Note that we do not impose any restrictions on the sign of the
portfolio value. In general, a portfolio can become zero or negative in value.
In what follows, we denote by V+ the set of all strictly positive portfolios.

Fractions

Let Sδ ∈ V+ be a strictly positive portfolio process. In this case it is often
convenient to introduce the fraction πj

δ,t of Sδ
t that is invested in the jth

primary security account Sj
t , j ∈ {0, 1, . . . , d}, at time t. This fraction is given

by the expression

πj
δ,t = δj

t

Sj
t

Sδ
t

(10.1.12)

for j ∈ {0, 1, . . . , d}. Note that fractions can be negative, but must always
sum to one, that is

d∑

j=0

πj
δ,t = 1 (10.1.13)

for t ∈ [0,∞). Applying (10.1.10), (10.1.7) and (10.1.12) to (10.1.11) gives the
SDE

dSδ
t = Sδ

t

⎛

⎝rt dt+
d∑

k=1

d∑

j=1

πj
δ,t b

j,k
t

(
θk

t dt+ dW k
t

)
⎞

⎠ (10.1.14)

for t ∈ [0,∞).
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10.2 Growth Optimal Portfolio

Kelly (1956) discovered an important portfolio that will be the central ob-
ject of study in the benchmark approach presented in this book, see Defini-
tion 9.1.1. Later in Latané (1959), Breiman (1960), Thorp (1961), Markowitz
(1976) and Long (1990) it was applied to gambling, portfolio optimization
and derivative pricing. This portfolio is the growth optimal portfolio (GOP).
It may be characterized as the portfolio maximizing the expected log-utility
from terminal wealth, that is the quantity E(ln(Sδ

T )), for any T ∈ [0,∞) over
all strictly positive portfolios Sδ.

The GOP has been a fascinating object for theoreticians and practitioners
alike, because it possesses a number of remarkable properties. For instance,
it is the portfolio that has the maximal expected growth rate over any time
horizon. This strictly positive portfolio almost surely outperforms any other
strictly positive portfolio over a sufficiently long time horizon. A review on
the GOP can be found, for instance, in Hakansson & Ziemba (1995). The
paper by Kelly (1956) was motivated by questions arising in information the-
ory. It derived the striking result that there is an optimal gambling strategy,
see Thorp (1961), that almost surely accumulates finally more wealth than
any other strategy. This is the GOP strategy which maximizes the geometric
mean of weighted primary security accounts in a portfolio. In this respect it
was already pointed out in Williams (1936) that one should concentrate on
maximizing the geometric mean.

GOP in a CFM

To identify the GOP in a CFM SC
(d) consider Sδ ∈ V+ and apply the Itô

formula to obtain the SDE for ln(Sδ
t ) in the form

d ln(Sδ
t ) = gδ

t dt+
d∑

k=1

d∑

j=1

πj
δ,t b

j,k
t dW k

t (10.2.1)

with growth rate

gδ
t = rt +

d∑

k=1

⎛

⎜
⎝

d∑

j=1

πj
δ,t b

j,k
t θk

t − 1
2

⎛

⎝
d∑

j=1

πj
δ,t b

j,k
t

⎞

⎠

2
⎞

⎟
⎠ (10.2.2)

at time t ∈ [0,∞), see Exercise 10.1. This allows us to define a GOP in a
CFM, see Definition 9.1.1.

Definition 10.2.1. In a CFM SC
(d) a strictly positive portfolio process

Sδ∗ = {Sδ∗
t , t ∈ [0,∞)} ∈ V+ is called a GOP, if for all t ∈ [0,∞) and

all strictly positive portfolios Sδ ∈ V+, the growth rates satisfy the inequality
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gδ∗
t ≥ gδ

t (10.2.3)

almost surely.

We shall see later that this is a convenient definition for the case of a CFM,
but there are alternative ways to characterize a GOP. These alternatives allow
to guarantee, for instance, the existence of a GOP in a general semimartingale
market, see Platen (2004a). Let us now identify the GOP for the given CFM.

SDE of a GOP

By using the first order conditions obtained from differentiating the growth
rate gδ

t in (10.2.2) with respect to the fractions πj
δ,t of the risky primary

security accounts, we obtain

0 =
d∑

k=1

bj,kt

(

θk
t −

d∑

�=1

π�
δ,t b

�,k
t

)

(10.2.4)

for all t ∈ [0,∞) and j ∈ {1, 2, . . . , d}. From (10.2.4) one can conclude that
the optimal fractions satisfy the vector equation

θt = b�t πδ∗,t. (10.2.5)

This means that the jth optimal fraction has the form

πj
δ∗,t =

d∑

k=1

θk
t b

−1 j,k
t (10.2.6)

for j ∈ {1, 2, . . . , d}, which we can write with (10.1.6) in vector form as

πδ∗,t =
(
b−1

t

)�
θt =

(
b−1

t

)�
b−1

t (at − rt 1) (10.2.7)

for all t ∈ [0,∞). By substituting these optimal fractions into the SDE
(10.1.14) it is straightforward to show that Sδ∗

t satisfies the SDE

dSδ∗
t = Sδ∗

t

(

rt dt+
d∑

k=1

θk
t

(
θk

t dt+ dW k
t

)
)

(10.2.8)

for t ∈ [0,∞). Obviously, the GOP is uniquely determined up to its initial
value Sδ∗

0 > 0. In the given CFM the value of the GOP, as well as its fractions,
are uniquely determined. In more general models with redundant securities
one can show that the value process for the GOP is still uniquely determined
when maximizing the growth rate. However, there are then several ways of
selecting the fractions. By choosing a set of primary security accounts one
also ensures uniqueness of the fractions.

We shall see later that the structure of the SDE (10.2.8) of the GOP is of
crucial importance for understanding the typical dynamics of the market. It
is remarkable that as a result of the above optimization of the growth rate,
the risk premium, see (9.3.1), of the GOP is simply the square of its volatility.
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Fig. 10.2.1. Two asset BS model, S0, S1 and GOP

Example of a Two Asset Black-Scholes Model

For illustration let us consider a very basic CFM with d = 1 risky primary
security account, constant appreciation rates, constant volatilities and a con-
stant short rate. This is then a BS model. The savings account satisfies here
the differential equation

dS0
t = S0

t r dt (10.2.9)

for t ∈ [0,∞) and S0
0 = 1. We assume that the risky primary security account

S1
t satisfies the SDE

dS1
t = S1

t

(
a1 dt+ b1,1 dW 1

t

)
, (10.2.10)

with constant, deterministic volatility b1,1 > 0, and we set S1
0 = 1. In

Fig. 10.2.1 we show simulated paths of S0
t and S1

t , where r = 0.05, b1,1 = 0.2
and a1 = 0.07.

The volatility bt = b1,1 is invertible and so Assumption 10.1.1 is satisfied.
By (10.2.8) the GOP Sδ∗

t is determined by the SDE

dSδ∗
t = Sδ∗

t (r dt+ θ1 (θ1 dt+ dW 1
t )) (10.2.11)

for t ∈ [0,∞) and Sδ∗
0 > 0 with market price of risk

θ1 =
a1 − r

b1,1
, (10.2.12)

see (10.1.5). In Fig. 10.2.1 we also chart the path of the GOP. Its volatility is
θ1 = 0.1, and we have chosen Sδ∗

0 = 1. The figure shows that the GOP Sδ∗

and the primary security account S1 exhibit perfectly correlated fluctuations
in this simple BS model. This, of course, will be no longer the case for a typical
example with d > 1.
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10.3 Supermartingale Property

Benchmarking

In this book we employ the GOP as a benchmark for problems in derivative
pricing and portfolio optimization, and refer to the resulting methodology as
the benchmark approach. The GOP serves as a benchmark in several ways.
In the previous chapter we used it as a numeraire portfolio for the pricing of
derivatives. In Sect. 10.5 we shall see that it is the best performing portfolio
according to several performance measures and, thus, an ideal benchmark for
investment management.

As in Sect. 9.1, we call any security, when expressed in units of the GOP,
a benchmarked security and refer to this procedure as benchmarking. The
benchmarked portfolio value of a portfolio Sδ is given by the ratio

Ŝδ
t =

Sδ
t

Sδ∗
t

(10.3.1)

at time t. By the Itô formula it satisfies the SDE

dŜδ
t =

d∑

j=0

δj
t Ŝ

j
t

d∑

k=1

(
bj,kt − θk

t

)
dW k

t (10.3.2)

for t ∈ [0,∞), see Exercise 10.2. Note that this SDE holds in general, even
for portfolios that can become zero or negative.

Benchmarked Portfolios as Supermartingales

Since (10.3.2) is a driftless SDE it follows from Lemma 5.4.1 that any bench-
marked portfolio is an (A, P )-local martingale. The set of nonnegative port-
folios, denoted by V, is of particular importance. For instance, the portfolios
of total tradable wealth of investors are nonnegative. Since any nonnegative
local martingale is an (A, P )-supermartingale according to Lemma 5.2.3, we
obtain the following fundamental statement directly.

Theorem 10.3.1. In a CFM SC
(d) it follows that Ŝδ is an (A, P )-supermar-

tingale for any nonnegative portfolio Sδ ∈ V.

The supermartingale property of benchmarked nonnegative securities is
fundamental. A number of important results follow directly from it. We shall
derive some of these in the sequel.
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Arbitrage

For a financial market model to be viable one needs to exclude some basic
form of arbitrage. This is of particular importance for the portfolios of to-
tal tradable wealth of investors. The investors, sometimes also called market
participants, are the only agents who could exploit potential arbitrage oppor-
tunities in the market. The nonnegativity of their portfolios is legally enforced
by their limited liability. Since we consider the total tradable wealth, limited
liability does not permit a market participant to trade any longer if her or his
total portfolio of tradable wealth becomes negative. She or he has to declare
bankruptcy in such a case. This is an extremely important feature of any real
market which should be reflected in a market model. The limited liability of
investors is also essential for the functioning of the market. We conclude from
Theorem 10.3.1 that the benchmarked portfolio of total tradable wealth of
each investor is a supermartingale. This fact will play an important role in
ensuring the absence of arbitrage. The definition of arbitrage given below fo-
cuses on nonnegative portfolios. These are the only portfolios that we have to
consider, due to the limited liability of investors. We introduce the following
rather weak notion of arbitrage, as described in Platen (2002).

Definition 10.3.2. A nonnegative portfolio Sδ ∈ V is an arbitrage if it
starts at zero, that is Sδ

0 = 0 almost surely, and is strictly positive with strictly
positive probability at a later bounded stopping time τ ∈ (0,∞), that is,

P (Sδ
τ > 0) > 0. (10.3.3)

We shall apply this notion of arbitrage generally throughout the book, not
only for CFMs. Note that we do not consider arbitrage for negative portfo-
lios or portfolios that can be positive and negative. Such portfolios cannot
represent the total tradable wealth of investors, who are the only ones who
could exploit potential arbitrage opportunities. A similar arbitrage definition
as above was used in Loewenstein & Willard (2000).

No Arbitrage in a CFM

Using Theorem 10.3.1 and Definition 10.3.2, we now prove an important result.

Corollary 10.3.3. A CFM SC
(d) does not allow arbitrage with any of its

nonnegative portfolios.

Proof: For any nonnegative portfolio Sδ ∈ V, with Sδ
0 = 0 almost surely, it

follows from the supermartingale property of Ŝδ, see Theorem 10.3.1, and the
Optional Sampling Theorem, see (5.1.9), that

0 = Ŝδ
0 ≥ E

(
Ŝδ

τ

∣
∣A0

)
= E

(
Ŝδ

τ

)
≥ 0
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for any bounded stopping time τ ∈ [0,∞). Therefore, due to the fact that Ŝδ

is nonnegative and Sδ∗ strictly positive it follows that

P (Sδ
τ > 0) = P (Ŝδ

τ > 0) = 0. (10.3.4)

��

This demonstrates that all trajectories of the portfolio of tradable wealth
of an investor are absorbed at zero when reaching zero.

A Classical Form of Arbitrage (*)

As we shall see in the next chapter, due to the possibility of allowing bench-
marked savings accounts to be strict supermartingales, the benchmark ap-
proach provides a richer modeling framework than the classical no-arbitrage
approach. The classical arbitrage pricing theory (APT) is described, for in-
stance, in Harrison & Kreps (1979), Harrison & Pliska (1981) and Delbaen
& Schachermayer (1994, 1998, 2006). The no free lunch with vanishing risk
(NFLVR) concept provides the most general formulation of the APT and is
linked to the fundamental theorem of asset pricing in Delbaen & Schacher-
mayer (1998, 2006). This theorem states essentially that NFLVR is equivalent
to the existence of an equivalent risk neutral probability measure.

Note that the no-arbitrage criterion resulting from Definition 10.3.2 is
weaker than the NFLVR condition. This means that some financial mar-
ket models that exclude arbitrage in the sense of Definition 10.3.2 may in
fact not admit any equivalent risk neutral probability measure. This creates
no problem from the viewpoint of the benchmark approach. As argued in
Loewenstein & Willard (2000) the real economic content of a no-arbitrage
condition lies in the existence of a competitive equilibrium in the sense that
an investor who prefers more to less should find an optimal trading strategy
if and only if arbitrage opportunities similar to those in Definition 10.3.2 are
excluded. We shall see later that the existence of the GOP allows the investor
to find a strategy that optimizes her or his wealth for a range of different
objectives and models. However, when the GOP explodes, then portfolio op-
timization does not make sense and there is arbitrage. In this case we no
longer have a reasonable model.

In the APT negative portfolios are not excluded in its typical definition
of arbitrage. Furthermore, under the APT one guarantees NFLVR in the de-
nomination of, say, a given currency with some quite subjectively chosen lower
bound. It seems not trivial to make this choice invariant under different de-
nominations of the securities. Theoretically and also practically this may be
not completely satisfactory. The arbitrage concept in Definition 10.3.2 does
not have such a problem. The lower bound for the total tradable wealth of an
investor is zero, which expresses her or his limited liability. This lower bound
is also zero in any currency or other denomination.
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The extra modeling freedom that the benchmark approach provides will
be essential for accommodating alternative models that may be realistic de-
scriptions of the typical market dynamics. We shall demonstrate that financial
market modeling, derivative pricing, hedging and portfolio optimization can
be conveniently performed under the real world probability measure without
assuming the existence of an equivalent risk neutral probability measure. The
existence of such a probability measure is not relevant from an economic point
of view. However, in the historical development of the APT it has been a con-
venient and very helpful assumption. As we shall see, this assumption seems
to be too restrictive for the construction of realistic models for the long term
dynamics of observed markets.

We may summarize the above discussion by saying that the existence of
an equivalent risk neutral probability measure is a mathematical convenience,
but not a necessity. What is important in a market model is the existence
of a GOP. This provides the supermartingale property of the benchmarked
portfolios of total tradable wealth of investors. As we shall see, the GOP
is crucial for determining optimal investment strategies and for pricing and
hedging of derivatives.

10.4 Real World Pricing

Fair Prices are Minimal Prices

In Definition 9.1.2 we introduced the key notion of a fair security price pro-
cess. According to this definition, the GOP is used for benchmarking, and
benchmarked securities that form martingales are called fair. By its martin-
gale property the benchmarked value of a fair price is the best forecast of its
future benchmarked values. Let H denote an Aτ -measurable payoff payable
at a bounded stopping time τ , with E( H

Sδ∗
τ

) < ∞. Then the real world pricing
formula (9.1.30) expresses the fair price UH(t ∧ τ) of H at time t ∈ [0,∞) as

UH(t ∧ τ) = Sδ∗
t∧τ E

(
H

Sδ∗
τ

∣
∣
∣
∣At

)
, (10.4.1)

where t∧τ = min(t, τ). If the CFM represents a Markovian system of stochas-
tic processes, then the Feynman-Kac formula, see Sect. 9.7, allows us to cal-
culate the benchmarked fair pricing function by using the real world pricing
formula (9.1.34). We have seen such calculations in Sect.9.1 for options under
the BS model. In the next chapter we shall study real world pricing for other
models.

We recall from Theorem 10.3.1 that any nonnegative benchmarked port-
folio in a CFM is a supermartingale. Let us compare a nonnegative su-
permartingale X = {Xt, t ∈ [0,∞)} and a nonnegative martingale M =
{Mt, t ∈ [0,∞)} that both have almost surely the same random value at some
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bounded stopping time τ ∈ (0,∞), that is P (Xτ = Mτ ) = 1. It follows from
the supermartingale inequality (5.1.7), the martingale equality (5.1.2) and the
Optional Sampling Theorem, see (5.1.19), that the initial value of the mar-
tingale cannot be greater than that of the supermartingale. This means, that
for t ∈ [0,∞) one has

Mt∧τ = E
(
Mτ

∣
∣At

)
= E

(
Xτ

∣
∣At

)
≤ Xt∧τ . (10.4.2)

Let us summarize this important result in the following lemma.

Lemma 10.4.1. A martingale is the minimal nonnegative supermartingale
that reaches at a bounded stopping time a given nonnegative integrable value.

The fundamental fact that a nonnegative martingale is the minimal non-
negative supermartingale that matches a given random variable at a bounded
stopping time allows us to draw the following conclusion.

Corollary 10.4.2. Consider a nonnegative fair portfolio Sδ ∈ V in a CFM
and let Sδ′ ∈ V be a second nonnegative portfolio such Sδ

τ = Sδ′

τ almost surely
at some bounded stopping time τ . Then at t ∈ [0,∞) we have

Sδ
t∧τ ≤ Sδ′

t∧τ (10.4.3)

almost surely.

As we shall see later, there are, in general, also other portfolios that can
generate the same future payoff. However, when these other portfolios are
benchmarked, they will turn out to be strict supermartingales and will have,
therefore, an initial value above that of the fair portfolio. It follows that fair
prices are minimal in the above sense. Accordingly, it is clear that a rational
investor, who wants to obtain a certain future payoff should always form a
fair portfolio with her or his total tradable wealth.

By these arguments it becomes also clear that in a competitive market the
fair price of a hedgable derivative is the economically correct price. Therefore,
we shall price hedgable derivatives in this way. As we shall see in Sect. 11.4
the fair price is consistent with utility indifference pricing for nonhedgable
payoffs.

Risk Neutral Pricing

Consider for the moment in this subsection the case when an equivalent risk
neutral probability measure Pθ exists with Radon-Nikodym derivative

Λθ(t) =
dPθ

dP

∣
∣
∣
At

=
Ŝ0

t

Ŝ0
0

=
S0

t S
δ∗
0

Sδ∗
t S0

0

, (10.4.4)

see Sect. 9.4. By the Girsanov Theorem and the Bayes Rule, described in
Sect. 9.5, the risk neutral derivative price of an AT -measurable payoff H sat-
isfies the risk neutral pricing formula
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UH(t) = Eθ

(
S0

t

S0
T

H
∣
∣
∣At

)

for t ∈ [0, T ]. By application of Bayes’s Theorem, see (9.5.10), with Radon-
Nikodym derivative (10.4.4), we see that the risk neutral price equals the fair
price

UH(t) = E

(
Λθ(T )
Λθ(t)

S0
t

S0
T

H

∣
∣
∣
∣At

)

= E

(
S0

T Sδ∗
t

Sδ∗
T S0

t

S0
t

S0
T

H

∣
∣
∣
∣At

)

= Sδ∗
t E

(
H

Sδ∗
T

∣
∣
∣
∣At

)

(10.4.5)

for t ∈ [0, T ]. Consequently, risk neutral pricing is a special case of real world
pricing in a CFM.

In the literature it is common practice to specify a model directly under
an equivalent risk neutral probability measure, thereby begging the question
about the existence of such an object. In our view this is not satisfactory,
since the risk neutral approach breaks down when the Radon-Nikodym deriva-
tive process is not an (A, P )-martingale. We shall demonstrate this later in
Chap. 12 for realistic models. Under the benchmark approach, the Radon-
Nikodym derivative process becomes an object for explicit modeling.

Zero Coupon Bond and Actuarial Pricing

Let us discuss an important example of real world pricing. Further issues on
pricing and hedging will be discussed in Sects. 11.4 and 11.5. The simplest
derivative payoff is that of a zero coupon bond, which pays one unit of the
domestic currency at maturity T ∈ [0,∞).

Using the real world pricing formula (10.4.1), the fair price P (t, T ) at time
t of such an instrument is given by the equation

P (t, T ) = Sδ∗
t E

(
1
Sδ∗

T

∣
∣
∣
∣At

)

(10.4.6)

for t ∈ [0, T ]. Furthermore, for any AT -measurable payoff H that is indepen-
dent of Sδ∗

T we obtain from the real world pricing formula (10.4.1) and (10.4.6)
the pricing formula

UH(t) = Sδ∗
t E

(
1
Sδ∗

T

∣
∣
∣
∣At

)

E
(
H
∣
∣At

)
= P (t, T )E

(
H
∣
∣At

)
(10.4.7)

for t ∈ [0, T ] and T ∈ [0,∞), see (9.2.6). This is known as the actuarial
pricing formula or net present value formula and is widely used in many
areas, including insurance and accounting.



10.4 Real World Pricing 381

Zero Coupon Bond SDE

If we benchmark the fair zero coupon bond price (10.4.6), then we obtain

P̂ (t, T ) =
P (t, T )
Sδ∗

t

= E

(
1
Sδ∗

T

∣
∣
∣
∣At

)

(10.4.8)

for t ∈ [0, T ]. The benchmarked zero coupon bond price process P̂ (·, T ) =
{P̂ (t, T ), t ∈ [0, T ]} is an (A, P )-martingale. For particular models, we shall
calculate benchmarked zero coupon bond prices explicitly in later chapters.
Since these models will be Markovian, the Feynman-Kac formula, see Sect.9.7,
is applicable for this purpose.

By assuming that bonds are traded securities, it is reasonable to assume
that for each t ∈ [0, T ] and k ∈ {1, 2, . . . , d}, there exists a unique, predictable
benchmarked bond volatility process σk(·, T ) = {σk(t, T ), t ∈ [0, T ]}, such that

dP̂ (t, T ) = −P̂ (t, T )
d∑

k=1

σk(t, T ) dW k
t (10.4.9)

and thus

P̂ (t, T ) = −P̂ (0, T ) exp

{

−
d∑

k=1

(∫ t

0

(σk(s, T ))2

2
ds+

∫ t

0

σk(s, T ) dW k
s

)}

(10.4.10)
for t ∈ [0, T ]. Then by (10.4.8), (10.4.9) and (10.2.8) and application of the
Itô formula we obtain the SDE

dP (t, T ) = P (t, T )

(

rt dt+
d∑

k=1

(
θk

t − σk(t, T )
) (
θk

t dt+ dW k
t

)
)

(10.4.11)

for t ∈ [0, T ].

Forward Rate Equation

Zero coupon bond prices are not the most common way to express the interest
rate term structure, that is, the information about fixed term borrowing and
lending of domestic currency. A more convenient representation is in terms of
the family of forward rates or the forward rate curve. Yield curves, discretely
compounded forward rates or, so-called, LIBOR rates are also common. These
representations are all closely related, see Musiela & Rutkowski (2005) and
Brigo & Mercurio (2005).

The time t forward rate f(t, T ) for the maturity date T ∈ [0,∞) is defined
as

f(t, T ) = − ∂

∂T
ln(P (t, T )). (10.4.12)
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Fig. 10.4.1. Forward rate curve evolution from 1982 until 2002

This yields

P (t, T ) = exp

{

−
∫ T

t

f(t, u) du

}

(10.4.13)

for all t ∈ [0, T ]. Figure 10.4.1 plots the US dollar forward rate curve out to
30 years over the period from 1982 until 2002. We see that the forward rates
are stochastic.

From (10.4.10) and (10.4.12) and an application of the Itô formula and
the generalized Fubini theorem one obtains the forward rate equation

f(t, T ) = − ∂

∂T
ln(P̂ (t, T ))

= − ∂

∂T

(

ln(P̂ (0, T )) +
d∑

k=1

(
−1

2

∫ t

0

(σk(s, T ))2 ds−
∫ t

0

σk(s, T ) dW k
s

))

= f(0, T ) +
d∑

k=1

∫ t

0

(
∂

∂T
σk(s, T )

)
(
σk(s, T ) ds+ dW k

s

)
(10.4.14)

for t ∈ [0, T ], see Platen (2002). Here, and in what follows, we shall use
∂

∂T f(·, ·) to denote the partial derivative of f(·, ·) with respect to the second
variable.

According to (10.4.14) the drift and diffusion coefficients of the forward
rates depend only on the volatilities of the benchmarked zero coupon bonds.
Note that W 1, . . . ,W d are Wiener processes under the real world probability
measure.

The shortest forward rate is the short rate. We obtain the following ex-
pression for the short rate rt from (10.4.14):
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rt = f(t, t) = f(0, t) +
d∑

k=1

∫ t

0

(
∂

∂T
σk(s, t)

)
(σk(s, t) ds+ dW k

s ) (10.4.15)

for t ∈ [0,∞). By noting that a zero coupon bond close to maturity has a
very small volatility it follows from (10.4.11) that

σk(t, t) = θk
t (10.4.16)

for t ∈ [0,∞) and k ∈ {1, 2, . . . , d}. Therefore, the SDE for the short rate is

drt =
∂

∂T
f(0, t) dt+

d∑

k=1

(
∂

∂T
σk(t, t)

)
(θk

t dt+ dW k
t ) (10.4.17)

for t ∈ [0,∞). This SDE is interesting, because it tells us that the slope
∂

∂T f(0, t) of the initial forward rate curve and the slope ∂
∂T σk(t, t) of the

volatility of the benchmarked short term bond are essential ingredients for
modeling the short rate dynamics.

Heath-Jarrow-Morton Equation (*)

Equation (10.4.14) resembles the Heath-Jarrow-Morton (HJM) equation, see
Heath, Jarrow & Morton (1992), which was derived under the assumption
that an equivalent risk neutral probability measure Pθ exists. In a CFM the
candidate risk neutral measure Pθ may be not equivalent to P . This does not
create a problem for the benchmark approach, since we use real world pricing.

It is sometimes suggested in the literature that we are free to choose the
drift coefficients of the forward rates under the real world probability mea-
sure P . Under the benchmark approach, as (10.4.14) shows, this is not the
case. The drift and diffusion coefficients are determined by the volatilities of
benchmarked zero coupon bonds.

Let us now recover the HJM equation from (10.4.14). For this purpose we
introduce the bond volatility

σ̃k(t, T ) = σk(t, T ) − θk
t (10.4.18)

for t ∈ [0, T ], T ∈ [0,∞) and k ∈ {1, 2, . . . , d}, see (10.4.11). The HJM equa-
tion follows directly from (10.4.14) and (10.4.18) in the form

f(t, T ) = f(0, T ) +
d∑

k=1

∫ t

0

(
∂

∂T
σ̃k(s, T )

)(
σ̃k(s, T ) ds+ dW̃ k

t

)
(10.4.19)

with
dW̃ k

t = θk
t dt+ dW k

t (10.4.20)

for t ∈ [0, T ]. If there exists an equivalent risk neutral probability measure
Pθ, then W̃ k is a Wiener process under Pθ. We have shown in (10.4.14)
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that a HJM-type equation holds in a more general setting than considered
in Heath et al. (1992). In particular, (10.4.14) does not require the existence
of an equivalent risk neutral probability measure. We shall see in Sect. 13.3
that the removal of this assumption allows the total market price of risk to
impact the forward rate curve, which is economically reasonable. Most con-
tinuous interest rate term structure models in the literature, see, for instance,
Musiela & Rutkowski (2005) and Sect. 4.3, fit into the framework above.

Annuity and Savings Account (*)

Market conventions determine the maturity dates applicable to different con-
tracts. These can have, for instance, a daily, weekly, monthly or yearly pattern.
Typically, the maturity is selected from a set of possible dates {T0, T1, . . .}. For
simplicity, let us assume that the possible maturity dates are equally spaced
with

Ti = i h, (10.4.21)

for i ∈ {0, 1, . . .}, where h > 0. Given such a set of possible maturity dates let

it = max{i ∈ N : Ti ≤ t} (10.4.22)

denote the index of the last maturity date before t ∈ [0,∞).
Now, consider the annuity Bh = {Bh(t), t ∈ [0,∞)}, which is an account

of short term bonds that are rolled over as soon as they mature, that is,

Bh(t) = P (t, Tit+1)
it+1∏

k=1

1
P (Tk−1, Tk)

(10.4.23)

for t ∈ [0,∞), see Jamshidian (1989). This expresses the evolution of a roll-
over zero coupon bond account. Here one starts with one dollar and continually
invests in the zero coupon bond with the shortest maturity date. At maturity
one is rolling over the wealth into the next zero coupon bond.

Since h is small in practice, typically one day, it is theoretically convenient
to work with the almost sure limit S0

t of the annuity Bh(t). To formalize this,
we assume that Bh(t) converges almost surely to some limit S0

t as h → 0 for
all t ∈ [0,∞), see (2.7.1). Now, define the savings account

S0
t

a.s.= lim
h→0

Bh(t) (10.4.24)

at time t ∈ [0,∞). This also shows that the value S0
t of a savings account at

time t has to be interpreted as a limit, which is obtained from a sequence of
roll-over short term fair zero coupon bond accounts. Assume that the resulting
domestic savings account value S0

t forms a continuous, adapted stochastic
process and recall from (10.4.15) that the shortest forward rate equals the
short rate rt = f(t, t). From (10.4.23) and (10.4.24) it follows that the savings
account satisfies the differential equation
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dS0
t = S0

t rt dt (10.4.25)

for t ∈ [0,∞) with initial condition S0
0 = 1. This coincides with formula

(10.1.1) as expected.
The domestic savings account process S0 = {S0

t , t ∈ [0,∞)} provides a
theoretical characterization of the time value of money. For convenience we
interpret the savings account as a primary security account. This also means
by (10.4.23) that, in reality, one has with S0 an annuity which evolves over
short time periods, say daily, like a fair bond. We shall see later for reasonable
models that the savings account is not always a fair price process.

Finally, we mention that one can define an annuity similar to that in
(10.4.23) in the denomination of units of a given primary security, for instance,
in units of a foreign currency. In the case of a foreign currency the limit of
the annuity yields the corresponding foreign savings account. In the case of a
stock as primary security a corresponding share savings account is obtained.

Forward Contract (*)

Let us introduce a forward contract on a given portfolio Sδ, written at time
t ∈ [0, T ) with delivery date T ∈ (0,∞). The forward price F δ(t, T ) at time
t ∈ [0, T ] is the At-measurable value that makes the fair value at time t of the
payoff H = Sδ

T − F δ(t, T ) to zero. This means that for fixed t ∈ [0, T ) and
T ∈ (0,∞) by the real world pricing formula (10.4.1) that

0 = Sδ∗
t E

(
H

Sδ∗
T

∣
∣
∣At

)

= Sδ∗
t E

(
Sδ

T − F δ(t, T )
Sδ∗

T

∣
∣
∣At

)

. (10.4.26)

By using the fair zero coupon bond price it follows the forward price

F δ(t, T ) =
Sδ∗

t E
(
Ŝδ

T

∣
∣At

)

Sδ∗
t E

(
1

Ŝδ
T

∣
∣At

) =
Sδ

t E
(

Ŝδ
T

Ŝδ
t

∣
∣At

)

P (t, T )
. (10.4.27)

For a fair portfolio Sδ this provides the forward price

F δ(t, T ) =
Sδ

t

P (t, T )
. (10.4.28)

In the case when we have an explicit formula for the zero coupon bond the
forward pricing formula is explicit, as long as Sδ is fair. In the case when Sδ

is not fair, then there is still a fair price USδ
T
(t) at time t for the payoff Sδ

T ,
where by the real world pricing formula we obtain

USδ
T
(t) = Sδ∗

t E
(
Ŝδ

T

∣
∣At

)
. (10.4.29)

Thus, we obtain from (10.4.27) the forward price
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F δ(t, T ) =
USδ

T
(t)

P (t, T )
(10.4.30)

for t ∈ [0, T ].

10.5 GOP as Best Performing Portfolio

We shall now show that the GOP is not only the numeraire of choice for
real world pricing, it is also a natural benchmark in portfolio optimiza-
tion. We shall see that the GOP is the best investment portfolio under sev-
eral objectives. This is also in line with views expressed, for instance, in
Markowitz (1959, 1976), Latané (1959), Breiman (1961), Hakansson (1971),
Thorp (1972), Rubinstein (1976), Cover (1991), Ziemba & Mulvey (1998),
Browne (1999) and Stutzer (2000). We prove here such properties by us-
ing the fundamental supermartingale property of benchmarked, nonnegative
portfolios.

Outperforming Growth Rate and Expected Return

The GOP can be considered to be the best performing portfolio in various
ways. In the following, we describe some mathematical manifestations of this
fact in the setting of a CFM. Here appreciation rates, volatilities and short
rates are allowed to be very flexible stochastic processes. Almost all of the
following results hold also for more general financial markets, as we shall see
for the case of jump diffusion markets in Sect. 14.1.

By inequality (10.2.3) it follows for any strictly positive portfolio process
Sδ ∈ V+ that its growth rate gδ

t at any time t is never greater than the growth
rate gδ∗

t of the GOP. This yields a first characterization of best performance
shown in terms of growth rates.

From Theorem 10.3.1 we know that any strictly positive benchmarked
portfolio Ŝδ forms an (A, P )-supermartingale. This means that the expected
return

E

(
Ŝδ

t+h − Ŝδ
t

Ŝδ
t

∣
∣
∣
∣At

)

≤ 0 (10.5.1)

is always nonpositive over any time period [t, t+h] ⊆ [0,∞) with length h > 0.
This provides a second characterization of outperformance where the GOP,
when used as benchmark, does not allow any strictly positive benchmarked
portfolio to generate expected returns greater than zero.

Outperforming the Long Term Growth Rate

Define for a strictly positive portfolio Sδ ∈ V+ in a CFM its long term growth
rate g̃δ as the almost sure upper limit
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g̃δ a.s.= lim sup
T→∞

1
T

ln
(
Sδ

T

Sδ
0

)
, (10.5.2)

assuming that this limit exists for the GOP.
Note that this pathwise defined quantity does not involve any expectation.

For example, in the special case of a BS model, as discussed in Chap. 9 with
constant short rate r and constant total market price of risk |θ|, the GOP
has by the Law of Large Numbers, see Sect. 2.1, the long term growth rate
g̃δ∗ = r + |θ|2

2 .
The following result presents the fascinating property of the GOP that

after sufficient long time its trajectory attains almost surely pathwise a value
not less than that of any other strictly positive portfolio.

Theorem 10.5.1. In a CFM SC
(d) the GOP Sδ∗ attains almost surely the

greatest long term growth rate compared with all other strictly positive portfo-
lios Sδ ∈ V+, that is

g̃δ∗ ≥ g̃δ, (10.5.3)

almost surely.

Proof: Similarly to, for instance, Karatzas & Shreve (1998) we consider a
strictly positive portfolio Sδ ∈ V+ with

Sδ
0 = Sδ∗

0 . (10.5.4)

By Theorem 10.3.1 the strictly positive benchmarked portfolio Ŝδ is an (A, P )-
supermartingale. As a supermartingale it satisfies by (10.5.4) and (5.1.20) the
inequality

exp{ε k}P
(

sup
k≤t<∞

Ŝδ
t > exp{ε k}

∣
∣A0

)
≤ E

(
Ŝδ

k

∣
∣A0

)
≤ Ŝδ

0 = 1 (10.5.5)

for all k ∈ N and ε ∈ (0, 1). For fixed ε ∈ (0, 1) one finds

∞∑

k=1

P

(
sup

k≤t<∞
ln
(
Ŝδ

t

)
> εk

∣
∣A0

)
≤

∞∑

k=1

exp{−ε k} < ∞. (10.5.6)

Now, the Borel-Cantelli Lemma, see Sect. 2.7, implies the existence of a ran-
dom variable Kε such that

ln
(
Ŝδ

t

)
≤ ε k ≤ ε t

for all k ≥ Kε and t ≥ k, almost surely. Thus, one has almost surely

sup
T≥k

1
T

ln
(
Ŝδ

T

)
≤ ε

for all k ≥ Kε, and therefore
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lim sup
T→∞

1
T

ln
(
Sδ

T

Sδ
0

)
≤ lim sup

T→∞

1
T

ln

(
Sδ∗

T

Sδ∗
0

)

+ ε (10.5.7)

almost surely. Noting that relation (10.5.7) holds for all ε ∈ (0, 1) the inequal-
ity (10.5.3) follows by (10.5.2). ��

This provides a third characterization of best performance via long term
growth rates. It expresses a most desirable pathwise feature of the GOP for
a long term investor. Since there is only one path of the GOP that the world
market ever experiences, Theorem 10.5.1 makes the strong statement that the
GOP provides the portfolio that almost surely delivers the best outcome after
a sufficiently long time. An important practical problem then is: what time
horizon is necessary so that one can benefit with reasonable probability from
the above property of the GOP. This, of course, depends on the dynamics of
the underlying market.

Systematic Outperformance

For an investor it is of interest to know also over short time periods whether
there exists no other portfolio that can systematically outperform the best per-
forming portfolio with some strictly positive probability. If there were no such
best performing portfolio, then one could say that the market permits some
form of arbitrage, in the sense that there would be always a better performing
portfolio, if compared to any given candidate of a best performing portfolio.
To formulate rigorously this fourth characterization of best performance of
the GOP, we introduce the following definition, see Platen (2004a).

Definition 10.5.2. A strictly positive portfolio Sδ ∈ V+ is said to system-
atically outperform another strictly positive portfolio S δ̄ ∈ V+ if for some
bounded stopping times τ ∈ [0,∞) and σ ∈ [τ,∞) with

Sδ
τ = S δ̄

τ (10.5.8)

and
Sδ

σ ≥ S δ̄
σ (10.5.9)

almost surely, it holds that

P
(
Sδ

σ > S δ̄
σ

∣
∣Aτ

)
> 0. (10.5.10)

According to Definition 10.5.2, if a nonnegative portfolio systematically
outperforms the GOP, then, with some strictly positive probability, it can
generate wealth that is strictly greater than that accrued via the GOP over
some period. We can now prove the following result.

Corollary 10.5.3. In a CFM SC
(d) no strictly positive portfolio systemati-

cally outperforms the GOP.
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Proof: Consider a benchmarked, nonnegative portfolio Ŝδ = {Ŝδ
t , t ∈

[0,∞)} with benchmarked value

Ŝδ
τ = 1 (10.5.11)

almost surely at a stopping time τ ∈ [0,∞). Assume for a bounded stopping
time σ ∈ [τ,∞) the inequality

Ŝδ
σ ≥ 1, (10.5.12)

almost surely. From the supermartingale property of Ŝδ that is provided
by Theorem 10.3.1, the Optional Sampling Theorem, see (5.1.19), and from
(10.5.11) and (10.5.9) it follows that

0 ≥ E
(
Ŝδ

σ − Ŝδ
τ

∣
∣Aτ

)
= E

(
Ŝδ

σ − 1
∣
∣Aτ

)
≥ 0. (10.5.13)

Due to (10.5.13) and (10.5.12), the benchmarked value Ŝδ
σ cannot be strictly

greater than Ŝδ
τ = 1 with any strictly positive probability. Thus, it follows by

(10.5.12) that Ŝδ
σ = 1 almost surely, which means that Sδ

σ = Sδ∗
σ . This proves

the statement of Corollary 10.5.3 by Definition 10.5.2. ��
Note that in Fernholz, Karatzas & Kardaras (2005) a notion of relative

arbitrage has been introduced that turns out to be similar to the above notion
of systematic outperformance, see Platen (2004a). Another notion of relative
arbitrage in the Fernholz et al. (2005) paper is related to the long term growth
rates of portfolios, as discussed in Theorem 10.5.1 and Platen (2004a). It
has been shown in Fernholz et al. (2005) that for particular models certain
proposed portfolios can systematically outperform the market portfolio (MP).
This is consistent with Corollary 10.5.3 as long as the MP does not equal the
GOP. However, if the MP equals the GOP, then by Corollary 10.5.3 this is
not possible.

Finally, we remark that Delbaen & Schachermayer (1995) used an inter-
esting notion of a maximal element, which is related to that of a portfolio
which cannot be systematically outperformed. The GOP turns out to be a
maximal element in the sense of Delbaen & Schachermayer (1995).

10.6 Diversified Portfolios in CFMs

Sequence of CFMs

Diversification is an ancient concept in portfolio optimization that has been
successfully applied for centuries. To demonstrate its power we consider a
market with a large number of primary security accounts.

Given our discussion on the ICAPM in Sect. 9.3, it would be desirable to
extract a result that links the GOP closely to the market portfolio (MP) of
tradable wealth. We shall show in this section that one can establish asymp-
totically such a result in a sequence of markets by exploiting diversification.
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Without particular modeling assumptions it will be shown under some
regularity condition that diversified portfolios (DPs) approximate the GOP.
This will provide a robustness property for sequences of DPs and will identify
these as proxies of the GOP, see Platen (2004c, 2005b).

For the construction of a sequence of CFMs we rely again on a filtered
probability space (Ω,A,A, P ) with filtration A = (At) t∈[0,∞), satisfying the
usual conditions, see Sect. 5.1. The trading uncertainty is modeled by inde-
pendent standard Wiener processes W k = {W k

t , t ∈ [0,∞)}, k ∈ N .
In what follows, we consider a sequence of CFMs (SC

(d))d∈N indexed
by the number d of risky primary security accounts in SC

(d), see Defini-
tion 10.1.2. For a given value of d ∈ N , the corresponding dth CFM SC

(d)

comprises d + 1 primary security accounts. These include a savings account
S0

(d) = {S0
(d)(t), t ∈ [0,∞)}, which is locally riskless and at time t given as

S0
(d)(t) = exp

{∫ t

0

rs ds

}
(10.6.1)

for t ∈ [0,∞). Here r = {rt, t ∈ [0,∞)} denotes the short rate process, which
is assumed to be adapted. For simplicity, we keep the short rate process for
all CFMs in our sequence the same. The dth CFM also includes d nonneg-
ative, risky primary security account processes Sj

(d) = {Sj
(d)(t), t ∈ [0,∞)},

j ∈ {1, 2, . . . , d}, for which we shall rewrite the general SDE (10.1.7) in the
form

dSj
(d)(t) = Sj

(d)(t)

(

rt dt+
d∑

k=1

(
σ0,k

(d) (t) − σj,k
(d)(t)

)(
σ0,k

(d) (t) dt+ dW k
t

)
)

(10.6.2)
using the volatility

bj,k(d)(t) = σ0,k
(d) (t) − σj,k

(d)(t) (10.6.3)

and the market price of risk

θk
(d)(t) = σ0,k

(d) (t) (10.6.4)

for j, k ∈ {1, 2, . . . , d}, d ∈ N and t ∈ [0,∞).

General and Specific Market Risk

We shall see that the above representation of volatilities turns out to be con-
venient in what follows. One may call the market price of risk θk

t the general
market volatility with respect to the kth Wiener process. Since θk

t is the kth
volatility of the GOP one can interpret it as a measure of the kth general
market risk, that is the fluctuations of the market as a whole caused by W k.
We call the predictable process σj,k = {σj,k

(d)(t), t ∈ [0,∞)} the (j, k)th spe-
cific volatility, since it is the volatility of the GOP when denominated in units
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of the jth primary security account with respect to the kth Wiener process,
j ∈ {0, 1, . . . , d}, k ∈ {1, 2, . . . , d}. According to (10.3.2) this is the negative
kth volatility of the benchmarked jth primary security account, that is, when
δj
t = 1 and δi

t = 0 for i = j. Since σj,k measures the specific fluctuations of
the jth primary security account caused by W k that are not captured by the
GOP one can say that it measures the kth specific market risk with respect
to W k, see Platen & Stahl (2003).

Now, let us introduce the following definition.

Definition 10.6.1. We call a sequence (SC
(d))d∈N a sequence of CFMs if

in SC
(d) the primary security accounts satisfy SDEs of the type (10.6.2), the

d× d volatility matrix

b(d)(t) = [bj,k(d)(t)]
d
j,k=1 = [σ0,k

(d) (t) − σj,k
(d)(t)]

d
j,k=1 (10.6.5)

is invertible for Lebesgue-almost every t ∈ [0,∞), and for all j ∈ {0, 1, . . .},
k ∈ N and t ∈ [0,∞) the (j, k)th specific volatility σj,k

(d)(t) converges for all
t ∈ [0,∞) almost surely to a finite limit σj,k(t) as d → ∞, that is

lim
d→∞

σj,k
(d)(t)

a.s.= σj,k(t) < ∞. (10.6.6)

Key Relations in CFMs

Before we go any further, let us adapt our notation to the given setting of a
sequence of CFMs. In our extended setup we recall some of the key notations
and relationships in a CFM by using a slightly refined notation. For d ∈ N we
call a predictable process δ = {δt = (δ0

t , δ
1
t , . . . , δ

d
t )�, t ∈ [0,∞)} a strategy

under the dth CFM SC
(d) with portfolio

Sδ
(d)(t) =

d∑

j=0

δj
t S

j
(d)(t), (10.6.7)

see (10.1.9). Note that the strategy δ depends on d, however, for simpler
notation we shall suppress this dependence at the beginning of our discussion
until it becomes necessary. For a given strategy δ we use the jth fraction

πj
δ,t = δj

t

Sj
(d)(t)

Sδ
(d)(t)

(10.6.8)

for t ∈ [0,∞) and j ∈ {0, 1, . . . , d}, see (10.1.12).
As shown in Sect. 10.1, there exists in the dth CFM SC

(d) a strictly pos-

itive portfolio process Sδ∗
(d) = {Sδ∗

(d)(t), t ∈ [0,∞)}, the dth GOP, such that

any portfolio Sδ
(d)(t) in SC

(d), when expressed in units of Sδ∗
(d)(t), yields a cor-

responding benchmarked portfolio Ŝδ
(d) = {Ŝδ

(d)(t), t ∈ [0,∞)}, defined by
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Ŝδ
(d)(t) =

Sδ
(d)(t)

Sδ∗
(d)(t)

(10.6.9)

for t ∈ [0,∞). When strictly positive, this value satisfies by (10.3.2) and
(10.6.8) the driftless SDE

dŜδ
(d)(t) = −Ŝδ

(d)(t)
d∑

j=0

πj
δ,t

d∑

k=1

σj,k
(d)(t) dW

k
t (10.6.10)

for t ∈ [0,∞) with Ŝδ
(d)(0) > 0.

The dth GOP value Sδ∗
(d)(t) solves by (10.2.8) and (10.6.4) the SDE

dSδ∗
(d)(t) = Sδ∗

(d)(t)

(

rt dt+
d∑

k=1

σ0,k
(d) (t)

(
σ0,k

(d) (t) dt+ dW k
t

)
)

(10.6.11)

for t ∈ [0,∞). Here we assume, for simplicity, that Ŝ0
(d)(0) = 1, so that by

(10.6.9) and (10.6.1) we obtain the initial value Sδ∗
(d)(0) = 1. The value Sδ

(d)(t)
at time t of a strictly positive portfolio in the dth CFM satisfies by (10.1.14)
and (10.6.3) the SDE

dSδ
(d)(t) = Sδ

(d)(t)

⎛

⎝rt dt+
d∑

k=1

d∑

j=0

πj
δ,t

(
σ0,k

(d) (t) − σj,k
(d)(t)

)(
σ0,k

(d) (t) dt+ dW k
t

)
⎞

⎠

(10.6.12)
for t ∈ [0,∞).

By (10.6.12) and applications of the Itô formula, the logarithm ln(Sδ
(d)(t))

of a strictly positive portfolio Sδ
(d)(t) at time t satisfies then the SDE

d ln
(
Sδ

(d)(t)
)

= gδ
(d)(t) dt+

d∑

k=1

d∑

j=0

πj
δ,t

(
σ0,k

(d) (t) − σj,k
(d)(t)

)
dW k

t (10.6.13)

with growth rate

gδ
(d)(t) = rt +

d∑

k=1

⎡

⎣
d∑

j=1

πj
δ,t

(
σ0,k

(d) (t) − σj,k
(d)(t)

)
σ0,k

(d) (t)

− 1
2

⎛

⎝
d∑

j=1

πj
δ,t

(
σ0,k

(d) (t) − σj,k
(d)(t)

)
⎞

⎠

2 ]

(10.6.14)

for all t ∈ [0,∞). In the dth CFM the corresponding dth GOP Sδ∗
(d) achieves

the maximum growth rate gδ∗
(d)(t) for all t ∈ [0,∞). Thus, by (10.2.2), (10.2.6)

and (10.6.4) one obtains the inequality
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gδ
(d)(t) ≤ gδ∗

(d)(t) = rt +
d∑

k=1

1
2

(
σ0,k

(d) (t)
)2

(10.6.15)

for all t ∈ [0,∞) and all strictly positive portfolios Sδ
(d) in SC

(d).

Sequences of Diversified Portfolios

For a sequence of CFMs we aim now to identify a class of corresponding
sequences of portfolios that approximate the corresponding sequence of GOPs.
From now on we shall indicate the dependence of a strategy δd on the number
d when formed in the dth CFM SC

(d). Let us introduce the notion of a sequence
of diversified portfolios (DPs). These are portfolios with vanishing fractions
as d → ∞.

Definition 10.6.2. For a sequence of CFMs (SC
(d))d∈N we call a corre-

sponding sequence (Sδd

(d))d∈N of strictly positive portfolio processes Sδd

(d) with

Sδd

(d)(0) = 1 a sequence of diversified portfolios (DPs) if some constants
K1,K2 ∈ (0,∞) and K3 ∈ N exist, independent of d, such that for d ∈
{K3,K3 + 1, . . .} one has the estimate

∣
∣
∣πj

δd,t

∣
∣
∣ ≤

K2

d
1
2+K1

(10.6.16)

almost surely for all j ∈ {0, 1, . . . , d} and t ∈ [0,∞).

This means that the fraction πj
δd,t of the value of a DP, which is invested at

time t in the jth primary security account, j ∈ {0, 1, . . .}, vanishes sufficiently
fast as d tends to infinity. More precisely, the fraction needs to decrease slightly
faster than d−

1
2 . For example, condition (10.6.16) is satisfied by a sequence of

equally weighted portfolios, where πi
δd,t = πj

δd,t for all d ∈ N , t ∈ [0,∞) and
i, j ∈ {0, 1, . . . , d}. For a sequence (Sδd

(d))d∈N of DPs the fractions may still

vary considerably across the holdings of Sδd

(d) in primary security accounts. For
instance, they may increase up to a multiple a

d+1 of the average fraction 1
d+1

with some factor a ≥ 1. From a practical point of view, condition (10.6.16)
requires that the absolute fractions in a sequence of DPs are not of extreme
magnitude when compared to the value 1

d+1 .

Regular Sequence of CFMs

Consider the dth CFM SC
(d) for fixed d ∈ N as an element of a sequence of

CFMs (SC
(d))d∈N . Then the jth benchmarked primary security account process

Ŝj
(d) = {Ŝj

(d)(t), t ∈ [0,∞)}, with
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Ŝj
(d)(t) =

Sj
(d)(t)

Sδ∗
(d)(t)

, (10.6.17)

satisfies by (10.6.10) and (10.6.8) the SDE

dŜj
(d)(t) = −Ŝj

(d)(t)
d∑

k=1

σj,k
(d)(t) dW

k
t (10.6.18)

for t ∈ [0,∞) and j ∈ {0, 1, . . . , d}. One can say that the (j, k)th specific
volatility σj,k

(d)(t) of the benchmarked jth primary security account Ŝj
(d)(t)

measures its kth specific market risk at time t ∈ [0,∞), see the comments
after (10.6.4). It is the specific risk with respect to the kth Wiener process
for k ∈ {1, 2, . . . , d}. This is the risk that measures the fluctuations of Sj

(d)

against the market as a whole, see Basle (1995) and Platen & Stahl (2003).
In order to obtain reasonable limits for sequences of DPs, some condition

needs to be imposed on a given sequence of CFMs. For this purpose let us
introduce for all t ∈ [0,∞), d ∈ N and k ∈ {1, 2, . . . , d} the kth total specific
volatility for the dth CFM SC

(d) in the form

σ̂k
(d)(t) =

d∑

j=0

|σj,k
(d)(t)| (10.6.19)

k ∈ {1, 2, . . . , d}. This quantity sums the absolute values of the specific volatil-
ities with respect to the kth Wiener process in SC

(d). If the total specific volatil-
ity is small for some k, then only a few benchmarked primary security accounts
have a larger specific volatility with respect to the kth Wiener process.

Definition 10.6.3. A sequence of CFMs (SC
(d))d∈N is called regular if there

exists a constant K5 ∈ (0,∞), independent of d, such that

E

((
σ̂k

(d)(t)
)2
)

≤ K5 (10.6.20)

for all t ∈ [0,∞), d ∈ N and k ∈ {1, 2, . . . , d}.

Condition (10.6.20) expresses the property that, for a regular sequence of
CFMs, each of the independent sources of trading uncertainty influences only
a restricted group of benchmarked primary security accounts, see (10.6.17)
and (10.6.18). This condition appears to provide a reasonable assumption for
the existing global financial market.

Sequence of Approximate GOPs

For the application of the benchmark approach it is useful to be able to identify
in practical terms, at least approximately, the GOP as a tradable portfolio
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in the market. To determine the fractions of the GOP exactly one needs an
accurate model and accurate estimates of the volatilities and market prices of
risk. It is a challenge to provide such a precise model and the corresponding
required estimates from the available historical data. We propose here an
alternative route where we construct proxies for the GOP.

For given d ∈ N let us consider in the dth CFM SC
(d) a strictly positive

portfolio process Sδd

(d) with strategy δd = {δd(t) = (δ0
d(t), δ1

d(t), . . . , δd
d(t))�,

t ∈ [0,∞)} and
Sδ∗

(d)(0) = 1. (10.6.21)

We introduce the tracking rate Rδd

(d)(t) at time t for the portfolio Sδd

(d) by
setting

Rδd

(d)(t) =
d∑

k=1

⎛

⎝
d∑

j=0

πj
δd,t σ

j,k
(d)(t)

⎞

⎠

2

(10.6.22)

for t ∈ [0,∞). By (10.6.3), (10.6.4) and (10.2.7) it follows for all k ∈
{1, 2, . . . , d} that

d∑

j=0

πj
δ∗,d,t σ

j,k
(d)(t) = 0.

Therefore, the tracking rate in (10.6.22) is for the GOP Sδ∗
(d) zero, that is

Rδ∗
(d)(t) = 0 for all t ∈ [0,∞). By (10.6.10) it follows that the benchmarked

portfolio Ŝδd

(d) has quadratic variation

[
Ŝδd

(d)

]

t
=
∫ t

0

Rδd

(d)(s)
(
Ŝδd

(d)(s)
)2

ds (10.6.23)

for t ∈ [0,∞). One notes that a portfolio Sδd

(d) with Sδd

(d)(0) = 1 equals the dth
GOP almost surely if and only if

Rδd

(d)(t) = 0 (10.6.24)

almost surely for all t ∈ [0,∞). Taking this into account, a given portfolio
process Sδd

(d) can be expected to approximate the GOP Sδ∗
(d) if the tracking

rate Rδd

(d)(t) becomes small for d → ∞ and all t ∈ [0,∞). Let us formalize this
observation.

Definition 10.6.4. For a sequence of CFMs (SC
(d))d∈N we call a sequence

(Sδd

(d))d∈N of strictly positive portfolio processes, which start at the value one, a
sequence of approximate GOPs if for all t ∈ [0,∞) the corresponding sequence
of tracking rates vanishes in probability. That is, we have

lim
d→∞

Rδd

(d)(t)
P= 0 (10.6.25)

for all t ∈ [0,∞).



396 10 Continuous Financial Markets

Definition 10.6.4 will be exploited below.

Diversification Theorem

Now, we shall see that without any major assumptions on the dynamics of the
market, any sequence of DPs converges towards the sequence of GOPs. This
reveals a fundamental robustness property of DPs and provides a theoretical
basis for the intuitively known phenomenon of diversification in investment
management. We emphasize that this property is model independent. Only a
regularity condition for the market is required in the following Diversification
Theorem, see Platen (2005b).

Theorem 10.6.5. For a regular sequence of CFMs (SC
(d))d∈N , any sequence

(Sδd

(d))d∈N of DPs is a sequence of approximate GOPs.

Proof: First, let us estimate, for a given sequence (Sδd

(d))d∈N of DPs and for

d ∈ {K3,K3 + 1, . . .} the tracking rate Rδd

(d)(t) for Sδd

(d)(t), see (10.6.22), at
time t ∈ [0,∞). By (10.6.22) we see that

Rδd

(d)(t) ≤
d∑

k=1

⎛

⎝
d∑

j=0

|πj
δd,t| |σ

j,k
(d)(t)|

⎞

⎠

2

,

which leads by (10.6.16) and (10.6.19) to the inequality

E
(
Rδd

(d)(t)
)
≤ (K2)2

d1+2K1

d∑

k=1

E

((
σ̂k

(d)(t)
)2
)

≤ (K2)2

d2K1
K5 (10.6.26)

for all t ∈ [0,∞). Consequently, since by Definition 10.6.2 we have K1 > 0,
the expected tracking rate vanishes as d → ∞ for all t ∈ [0,∞). Thus, by
the Markov inequality (1.3.57) and Definition 10.6.4, a sequence of DPs is a
sequence of approximate GOPs for any given regular sequence of CFMs. ��

The above Diversification Theorem has some resemblance with the Central
Limit Theorem (CLT) that we introduced in Sect.2.1. If random variables are
sufficiently independent and have, say, second moments, then under the CLT
their equally weighted sum converges in distribution to a limit which has a
Gaussian distribution. The particular type of distribution of the independent
random variables in this weighted sum is not relevant. In this sense the CLT is
model independent. Similarly, the above Diversification Theorem identifies the
GOP as the limit of a sequence of approximately equally weighted portfolios
and does not require to specify the distribution for the benchmarked primary
security account processes. As long as the market is regular, Theorem 10.6.5
ensures that DPs converge towards the GOP. This is consistent with the well-
known fact that global market indices behave and fluctuate very similarly.
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The additional insight we obtain from Theorem 10.6.5 is that DPs approx-
imate the GOP. In reality this still leaves room for some differences between
the GOP and diversified portfolios, since the real market has a finite number
of securities. The Diversification Theorem provides a basis for exploiting the
closeness of DPs with the GOP.

A Sequence of Black-Scholes Models

To illustrate the effect of diversification stated by the above Diversification
Theorem we consider the following BS type CFM. It is obtained by choosing
a constant short rate rt = r for all t ∈ [0,∞), as well as constant volatilities.
Furthermore, for d ∈ N we choose the following volatility specification

σj,k
(d)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

σ√
d

for j = 0

0 for j = k

−σ for j = k > 1

(10.6.27)

for j ∈ {0, 1, . . . , d} and k ∈ {1, 2, . . . , d} with σ > 0. This yields the market
price of risk σ0,k

(d) (t) = σ√
d

with respect to the kth Wiener process for t ∈ [0,∞)

and k ∈ {1, 2, . . . , d}. When setting πj
δ,t = 1 and πi

δ,t = 0 for i = j in (10.6.12)
the jth primary security account in the dth CFM is obtained, which satisfies
the SDE

dSj
(d)(t) = Sj

(d)(t)

[(
r + σ2

(
1 +

1√
d

))
dt+

σ√
d

d∑

k=1

dW k
t + σ dW j

t

]

(10.6.28)
for t ∈ [0,∞), j ∈ {1, 2, . . . , d}.

Note that in the SDE (10.6.28) the noise term σ√
d

∑d
k=1 dW

k
t is common

to all stocks and reflects the general market risk. We shall see that it drives
the noise of the GOP. The GOP can typically be interpreted as the portfolio
that models the movements of the market as a whole. Thus, it models the
general market risk. The remaining noise term in (10.6.28), namely σdW j

t ,
generates the specific market risk of the jth primary security account. We see
also in (10.6.27) that the (j, j)th specific volatility equals −σ.

We can show for the given volatility structure with (10.6.27), where θk
t =

σ√
d
, that the fractions of the form

πj
δ∗,d,t =

(√
d
(
1 +

√
d
))−1

(10.6.29)

satisfy the equation (10.2.5). From (10.1.13) we then infer that

π0
δ∗,d,t =

(
1 +

√
d
)−1

(10.6.30)
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Fig. 10.6.1. Simulated primary security accounts

for t ∈ [0,∞). Recall that the GOP satisfies the SDE (10.6.11) with market
price of risk σ0,k

(d) (t) = θk
t = σ√

d
given in (10.6.27). That is, we obtain

dSδ∗
(d)(t) = Sδ∗

(d)(t)
((
r + σ2

)
dt+ σ dWt

)
, (10.6.31)

where

dWt =
1√
d

d∑

k=1

dW k
t

for t ∈ [0,∞).
To visualize some properties of the given sequence of BS models we sim-

ulate the risky primary security accounts of such a market for d = 50 over a
period of T = 20 years. Here we choose the volatility parameter σ = 0.15, the
initial values Sj

(d)(0) = 1 for j ∈ {1, 2, . . . , 50} and use the constant short rate
r = 0.05. Figure 10.6.1 displays the simulated sample paths of the first twenty
risky primary security accounts by using the explicit solution of the BS model.
The corresponding simulated GOP is shown in Fig. 10.6.3. As previously dis-
cussed, its fluctuations characterize the general market risk. It follows from
(10.6.19) and (10.6.27) that the kth total specific volatility is bounded, so that
the sequence of CFMs is regular, see Exercise 10.3.

The corresponding benchmarked primary security accounts, see (10.6.17),
are shown in Fig.10.6.2. By Definition 10.6.3 it follows that the given sequence
of CFMs is regular and Theorem 10.6.5 can be applied. This means that for
the given regular sequence of BS models a corresponding sequence of DPs is
a sequence of approximate GOPs.

Examples of Sequences of Approximate GOPs

Below we shall give examples for sequences of DPs which qualify as sequences
of approximate GOPs. First, we consider for d ∈ N the equi-value weighted
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Fig. 10.6.2. Simulated benchmarked primary security accounts

index (EWI) Sδd

(d). It is the portfolio with value S
δd

(d)(t) at time t that keeps
equal fractions of its value in each of the primary security accounts at all
times, that is,

πj
δd

(t) =
1

d+ 1
(10.6.32)

for all t ∈ [0,∞) and j ∈ {0, 1, . . . , d}. This means that the holdings of the
EWI are continuously reallocated, such that always an equal fraction of wealth
is invested in each primary security account. This simple, theoretically highly
important index is also called the equal value index or value line index. Its
return is the arithmetic average of the returns of the underlying securities.

Let us consider the EWI for the above sequence of BS models. In this case
the tracking rate of the EWI can be computed directly. According to (10.6.22)
and (10.6.28)–(10.6.31), the tracking rate satisfies the inequality

R
δ
(d)(t) =

d∑

k=1

(
1

d+ 1

(
σ0,k

(d) (t) + σk,k
(d) (t)

))2

= d

(
1

d+ 1

(
σ√
d
− σ

))2

≤ σ2

(d+ 1)
(10.6.33)

for each d ∈ N . Obviously, we have a vanishing tracking rate. Therefore,
according to Definition 10.6.4, the sequence of EWIs forms a sequence of
approximate GOPs.

For the case d = 50, Fig.10.6.3 displays the corresponding simulated GOP
and the EWI. One notes that both portfolios behave in a very similar manner,
as suggested by the Diversification Theorem. This shows that the convergence
can already be observed for relatively small values of d. The differences be-
tween the portfolios are, in fact, difficult to detect by visual inspection if one
chooses d significantly larger than 50.
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Fig. 10.6.3. Simulated GOP and EWI for d = 50

Fig. 10.6.4. Simulated accumulation index and GOP

Another possible candidate for an approximate GOP is an accumulation
index. To establish the property that a sequence of diversified accumulation
indices forms a sequence of approximate GOPs, one needs to prove that the
underlying portfolios have a vanishing tracking rate and that the given se-
quence of CFMs is regular. An illustrative example of an accumulation index
is given in Fig. 10.6.4 for the above BS model with d = 50. It uses the same
trajectories of primary security accounts that were previously simulated and
holds one unit of each primary security account for the entire period. In this
case, the fractions of the portfolio value invested in each security are con-
tinuously changing. Figure 10.6.4 illustrates for our example that also the
accumulation index provides a good approximation of the GOP.
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Approximate GOP for the World Stock Market

For regular sequences of CFMs it has been demonstrated that sequences of
diversified portfolios approximate the sequence of GOPs. We underline that
sequences of approximate GOPs do not depend on particular model assump-
tions. From this point of view, even if one may never find a perfectly accurate
model for the world stock market dynamics, a diversified world stock index,
when interpretable as a DP, represents a natural candidate for a proxy of the
GOP.

By assuming that the fluctuations of most tradable wealth are reflected
in stocks, this provides us with an argument why a diversified stock market
index or a diversified market portfolio (MP) of stocks are potentially good
proxies for the GOP. This argument does not depend on any particular model
assumptions or the requirement that all investors optimize their portfolios
in a certain manner. The diversified nature of the MP already makes it a
reasonable proxy for the GOP in a regular sequence of CFMs.

By the power of diversification, all DPs are asymptotically similar in a reg-
ular sequence of markets. The above Diversification Theorem emphasizes the
fact that for a sequence of CFMs corresponding sequences of DPs are rather
robust and yield portfolios that are close to each other. However, if a global
portfolio contains also a few stocks with relatively large market capitaliza-
tion, then the above Diversification Theorem suggests for a regular sequence
of markets that the GOP is likely to have a smaller fraction in these stocks.
This points into the direction of interesting empirical and theoretical results
in Fernholz (2002), where it is suggested that one reduces the fractions of the
large stocks in an MP and enlarges those of small stocks. This yields a better
diversified stock portfolio, which in Fernholz (2002) was shown to outperform
the MP.

Accumulation indices, also called, total return indices represent self-
financing portfolios with variations in their weights due to the method of con-
struction. The most common market capitalization weighted index is a market
capitalization weighted world stock index. Here regional market capitalization
weighted stock indices are weighted according to their corresponding market
capitalization. This construction leads to what we shall call a world stock
index (WSI). For the graphs to be shown the market capitalization weights
are adjusted annually, with weights and daily data provided by Thompson
Financial. The resulting WSI for the period from 1974 until 2004 is shown in
Fig. 10.6.5 together with the corresponding EWI.

The disadvantage of this way of construction is that certain regional mar-
kets can obtain in the WSI too much weight. The WSI may then no longer be
interpretable as a DP. This is likely to happen when there is a country wide
asset bubble as, for instance, was the case for Japanese stocks between 1984
and 1990. The upper graph in Fig. 10.6.5 was during this period the WSI. A
similar effect was observed around 2000 where again the WSI was above the
EWI. The long term growth rate of the EWI appears to be still as large as
that of the WSI. It was in 2004 above the WSI. The Diversification Theorem
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Fig. 10.6.5. WSI and EWI

provides support for this observation. It suggests to select a DP as a robust
choice for a good proxy of the GOP in favor of an index that allows very large
fractions. The EWI is a DP since it has equal fractions. Forthcoming work
will present constructions of DPs that can serve as proxies for the GOP, see
Le & Platen (2006). For many tasks with short time horizon it is not relevant
which particular approximation of the GOP one selects. The robustness and
model independence provided by the Diversification Theorem is sufficiently
powerful in such cases.

10.7 Exercises for Chapter 10

10.1. In a CFM derive the form of the growth rate gδ
t of a strictly positive

portfolio Sδ satisfying the SDE

dSδ
t = Sδ

t

⎛

⎝rt dt+
d∑

k=1

d∑

j=1

πj
δ,t b

j,k
t (θk

t dt+ dW k
t )

⎞

⎠ .

10.2. For a nonnegative portfolio Sδ
t with SDE as in Exercise 10.1 and the

GOP Sδ∗
t satisfying the SDE

dSδ∗
t = Sδ∗

t

(

rt dt+
d∑

k=1

θk
t (θk

t dt+ dW k
t )

)

,

show for the benchmarked portfolio value Ŝδ
t = Sδ

t

Sδ∗
t

its SDE. If Ŝδ is square

integrable does this SDE, in general, imply that Ŝδ is a submartingale, mar-
tingale or supermartingale?

10.3. Show that the sequence of Black-Scholes models in Sect.10.6 is a regular
sequence of CFMs.



11

Portfolio Optimization

This chapter derives and extends a range of classical results from portfolio
optimization and derivative pricing in incomplete markets in the context of
a CFM. First, we consider the question of how wealth should be optimally
transferred into the future given the preferences of an investor. This is a
central question in economics and finance and leads into the area of portfolio
optimization. We shall advocate the GOP as the best long term investment.
This is consistent with views formulated in Latané (1959), Breiman (1961),
Hakansson (1971) and Thorp (1972).

For the case when the investment horizon is short it was pointed out
in Samuelson (1963, 1969, 1979) that one should not use the GOP as the
only investment. We shall show that the optimal portfolio of an investor,
who maximizes an expected utility from discounted terminal wealth, can be
separated into two funds, the savings account and the GOP. This generalizes
earlier results in Tobin (1958b) and Sharpe (1964) to the continuous market
case. Such an optimal portfolio, which invests only into the GOP and the
savings account, turns out to be an efficient portfolio in a mean-variance
sense, see Markowitz (1959). It has always the maximum Sharpe ratio in the
sense of Sharpe (1964, 1966).

Furthermore, we generalize the intertemporal capital asset pricing model
(ICAPM) derived in Merton (1973a) under very weak assumptions. Under the
assumption that the fundamental relationships in the market are invariant
under changes of currency denomination, it is demonstrated that the GOP
matches the market portfolio.

Real world pricing emerges as the natural pricing concept when deriving for
a nonreplicable payoff its utility indifference price. The resulting benchmarked
prices are martingales, independent of the underlying utility of the investor.
This provides a fundamental relationship between portfolio optimization and
derivative pricing. The GOP is selected as numeraire and the real world prob-
ability measure is the pricing measure. The existence of an equivalent risk
neutral probability measure is not required.

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,
Springer Finance,
© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010
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11.1 Locally Optimal Portfolios

Within this section we aim to derive and generalize under weak assumptions
classical results on portfolio selection, these include Sharpe ratio maximiza-
tion, two fund separation, the Markowitz efficient frontier and the ICAPM.

Discounted Portfolios

Suppose investors select portfolios for the investment of their total tradable
wealth, which perform better than other portfolios in a sense specified below.
We aim to clarify when the MP approximates the GOP if all investors perform
some form of portfolio optimization.

We assume that an investor adjusts for the time value of money by consid-
ering discounted portfolios, where the savings account is used for discounting.
She or he can always invest in the locally riskless asset, which is the savings
account, without facing short term fluctuations. When accepting short term
fluctuations an investor expects a “better” portfolio performance than is pro-
vided by the savings account. Below we specify what we mean by “better”
performance. Given a strictly positive portfolio Sδ ∈ V+, its discounted value

S̄δ
t =

Sδ
t

S0
t

(11.1.1)

satisfies by (10.1.1), (10.1.14) and an application of the Itô formula the SDE

dS̄δ
t =

d∑

k=1

ψk
δ,t

(
θk

t dt+ dW k
t

)
(11.1.2)

with kth diffusion coefficient

ψk
δ,t =

d∑

j=1

δj
t S̄

j
t b

j,k
t (11.1.3)

for k ∈ {1, 2, . . . , d} and t ∈ [0,∞). Note that ψk
δ,t makes sense also in the

case when S̄δ
t equals zero.

Obviously, by (11.1.2) and (11.1.3) the discounted portfolio process S̄δ has
discounted drift

αδ
t =

d∑

k=1

ψk
δ,t θ

k
t (11.1.4)

at time t ∈ [0,∞), which measures its trend at time t. One can say that the
discounted drift models the increase per unit of time of the underlying value
of S̄δ at time t. This can be interpreted as the fundamental economic value of
the portfolio, which would be visible if one were able to remove the speculative
fluctuations
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M̄t =
d∑

k=1

∫ t

0

ψk
δ,s dW

k
s

from the discounted portfolio value

S̄δ
t = S̄δ

0 +
∫ t

0

αδ
s ds+ M̄t.

From an economic point of view αδ = {αδ
t , t ∈ [0,∞)} is a highly relevant

parameter process, since it describes the average discounted wealth that un-
derpins the market. It provides a natural link to the macro economy. We shall
use the underlying value in Chap. 13 to derive a parsimonious market model.

The magnitude of the trading uncertainty of a discounted portfolio S̄δ at
time t ∈ [0,∞) can be measured by its aggregate diffusion coefficient

γδ
t =

√√
√
√

d∑

k=1

(
ψk

δ,t

)2

(11.1.5)

or equivalently by its aggregate volatility

bδt =
γδ

t

S̄δ
t

(11.1.6)

for S̄δ
t > 0. The square (γδ

t )2 of the aggregate diffusion coefficient measures
the variance per unit of time of the fluctuating increments of S̄δ.

Locally Optimal Portfolios

Let us identify the typical SDE of a family of portfolios that capture the
objective of investors who locally in time on average prefer a larger discounted
wealth increase for the same risk level. This means that these investors prefer
a higher mean for the same variance. To characterize such a portfolio, which
performs “better” than others in the above sense, we introduce the following
definition, similar to those in Platen (2002, 2004a) and Christensen & Platen
(2007).

Definition 11.1.1. In a CFM SC
(d) we call a strictly positive portfolio S δ̃ ∈

V+ locally optimal, if for all t ∈ [0,∞) and all strictly positive portfolios
Sδ ∈ V+ with given aggregate diffusion coefficient value

γδ
t = γ δ̃

t (11.1.7)

it has the largest discounted drift, that is,

αδ
t ≤ αδ̃

t (11.1.8)

almost surely.



406 11 Portfolio Optimization

This type of local optimality can be interpreted as a continuous time gener-
alization of mean-variance optimality in the sense of Markowitz (1952, 1959).
Indeed, we shall see later that a locally optimal portfolio can be shown to
be an efficient portfolio in a generalized Markowitz mean-variance sense. A
discounted, locally optimal portfolio exhibits at all times the largest trend in
comparison with all other discounted strictly positive portfolios with the same
aggregate diffusion coefficient and, thus, with the same risk level.

Sharpe Ratio

An important investment characteristic is the Sharpe ratio sδ
t , see Sharpe

(1964, 1966). It is defined for any strictly positive portfolio Sδ ∈ V+ with
positive aggregate volatility bδt > 0 at time t as the ratio of the risk premium

pSδ(t) =
αδ

t

S̄δ
t

(11.1.9)

over its aggregate volatility bδt , see (11.1.6), that is,

sδ
t =

pSδ (t)
bδt

=
αδ

t

γδ
t

(11.1.10)

for t ∈ [0,∞), see (11.1.4)–(11.1.6). We observe that the Sharpe ratio equals
the ratio of the discounted drift over the aggregate diffusion coefficient. Under
the mean-variance approach of Markowitz, investors aim to maximize the
Sharpe ratio, which in a CFM corresponds by Definition 11.1.1 to the selection
of a locally optimal portfolio. Below we shall analyze Sharpe ratios of locally
optimal portfolios. We show that these are greater or equal to the Sharpe
ratios of other portfolios.

Portfolio Selection Theorem

In preparation for the Portfolio Selection Theorem, which we present below,
let us introduce the total market price of risk

|θt| =

√√
√
√

d∑

k=1

(
θk

t

)2 (11.1.11)

at time t ∈ [0,∞), which is by (10.2.8) and (11.1.6) the aggregate volatility
of the GOP. If the total market price of risk is zero, then all discounted
drifts are zero and all strictly positive portfolios are, by Definition 11.1.1,
locally optimal. To avoid such unrealistic dynamics we introduce the following
assumption.
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Assumption 11.1.2. Assume in a CFM SC
(d) for all t ∈ [0,∞) that the

total market price of risk is strictly greater than zero and finite almost surely,
with

0 < |θt| < ∞, (11.1.12)

and the fraction of the GOP wealth that is invested in the savings account
does not equal one, that is,

π0
δ∗,t = 1 (11.1.13)

almost surely.

We now formulate a Portfolio Selection Theorem, see Platen (2002), which
generalizes some classical results, for instance, given in Markowitz (1959),
Sharpe (1964), Merton (1973a) and Khanna & Kulldorff (1999), to the case
of a CFM.

Theorem 11.1.3. (Portfolio Selection Theorem) Consider a CFM SC
(d)

satisfying Assumption 11.1.2. For any strictly positive portfolio Sδ ∈ V+ with
nonzero aggregate diffusion coefficient and aggregate volatility bδt , see (11.1.6),
its Sharpe ratio sδ

t satisfies the inequality

sδ
t ≤ |θt| (11.1.14)

for all t ∈ [0,∞), where equality arises when Sδ is locally optimal. Further-
more, the value S̄δ

t at time t of a discounted, locally optimal portfolio satisfies
the SDE

dS̄δ
t = S̄δ

t

bδt
|θt|

d∑

k=1

θk
t

(
θk

t dt+ dW k
t

)
, (11.1.15)

with fractions

πj
δ,t =

bδt
|θt|

πj
δ∗,t (11.1.16)

for all j ∈ {1, 2, . . . , d} and t ∈ [0,∞). Each discounted portfolio that satisfies
an SDE of the type (11.1.15) is a locally optimal portfolio.

The proof of this theorem is given at the end of this section and can be
found in Platen (2002). It exploits the fact that at any time t the fractions of
the family of discounted, locally optimal portfolios S̄δ can be parameterized
by the aggregate volatility bδt . Obviously, for bδt = 0 one obtains the savings
account as locally optimal portfolio, whereas in the case bδt = |θt| it is the
GOP that arises.

Note that we would have obtained equivalent results if we searched for the
family of portfolios that minimizes the aggregate diffusion coefficient for given
discounted drift. Similarly, we could have minimized the aggregate volatility
for given risk premium. Furthermore, we shall show in Sect. 11.3 that also ex-
pected utility maximization leads to locally optimal portfolios. This robustness
of portfolio optimization in a CFM is very satisfying, because it demonstrates
the equivalence of several seemingly different objectives.
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Two Fund Separation and Fractional Kelly Strategies

By analyzing the structure of the fractions of a locally optimal portfolio, as
given in (11.1.16), and applying (10.1.13) we obtain for the fraction of wealth
held in the GOP the expression

bδt
|θt|

=
1 − π0

δ,t

1 − π0
δ∗,t

(11.1.17)

for t ∈ [0,∞). This leads directly to the following result.

Corollary 11.1.4. Under the assumptions of Theorem 11.1.3, any locally
optimal portfolio Sδ ∈ V+ can be decomposed at time t into a fraction of
wealth bδ

t

|θt|
that is invested in the GOP and a remaining fraction that is held

in the savings account. In particular, one has

π0
δ,t = 1 − bδt

|θt|
(
1 − π0

δ∗,t

)
(11.1.18)

for all t ∈ [0,∞).

Theorem 11.1.3 can be interpreted as a Two Fund Separation Theorem,
since only the two funds; the GOP and the savings account, are involved when
forming locally optimal portfolios. Such an investment strategy is also known
as a fractional Kelly strategy, see Kelly (1956), Latané (1959), Thorp (1972)
and Hakansson & Ziemba (1995). When all wealth is invested in the GOP,
then this corresponds to the Kelly strategy. Results on two fund separation
go back to Tobin (1958b), Breiman (1960), Sharpe (1964), Merton (1973a),
Khanna & Kulldorff (1999) and Nielsen & Vassalou (2004). An investor, who
forms with her or his total tradable wealth a locally optimal portfolio, has
according to Corollary 11.1.4 to choose the volatility bδt of the portfolio and
then invests the fraction of wealth bδ

t

|θt|
at time t in the GOP. The remainder

of her or his wealth is held in the savings account. We emphasize that only
these two funds are needed to form locally optimal portfolios. We shall see in
the next section that two fund separation also arises if an investor aims to
maximize expected utility from discounted terminal wealth.

Risk Aversion Coefficient

We can interpret

Jδ
t =

1 − π0
δ∗,t

1 − π0
δ,t

=
|θt|
bδt

(11.1.19)

as a risk aversion coefficient similar as in the sense of Pratt (1964) and Arrow
(1965). The risk aversion coefficient for obtaining the GOP equals one, and
when investing only in the savings account it equals infinity. The latter cor-
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responds to being infinitely risk averse. According to (11.1.15), (11.1.19) and
(11.1.17) a discounted locally optimal portfolio S̄δ

t satisfies then the SDE

dS̄δ
t = S̄δ

t

1
Jδ

t

|θt| (|θt| dt+ dWt), (11.1.20)

where

dWt =
d∑

k=1

θk
t

|θt|
dW k

t (11.1.21)

for t ∈ [0,∞). From the SDEs (11.1.20) and (10.2.8) it follows that the fraction
of wealth invested in the GOP is 1

Jδ
t
. This fraction is, therefore, the fraction

that characterizes at time t a fractional Kelly strategy.

Capital Market Line

Note that the expected rate of return or appreciation rate aδ
t of a portfolio Sδ

is at time t the sum of short rate and risk premium and, thus, given by the
expression

aδ
t = rt + pSδ (t) (11.1.22)

for t ∈ [0,∞).
One can visualize the relationship (11.1.22) by using (11.1.14) and (11.1.10)

for the family of locally optimal portfolios by the capital market line, see
Sharpe (1964). This line shows the expected return aδ

t , given in (11.1.22), of
a locally optimal portfolio Sδ in dependence on its aggregate volatility, see
(11.1.6). That is, by (11.1.10) and (11.1.14) we obtain the fundamental linear
relationship

aδ
t = rt + |θt| bδt (11.1.23)

for t ∈ [0,∞). Consequently, the slope of the capital market line equals the
total market price of risk, which is, in general, a fluctuating stochastic process.
The expected return for zero aggregate volatility is according to (11.1.23) the
short rate. It follows from (11.1.19) that a portfolio process Sδ at the capital
market line with volatility bδt has at time t the fraction 1

Jδ
t

= bδ
t

|θt|
invested in

the GOP, which characterizes its fractional Kelly strategy.

Markowitz Efficient Frontier

For a locally optimal portfolio process Sδ it follows from the SDE (11.1.15)
and (11.1.17) that at a given time t its aggregate volatility, see (11.1.6), equals

bδt =
1 − π0

δ,t

1 − π0
δ∗,t

|θt| (11.1.24)

and its risk premium pSδ (t) is
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pSδ (t) = bδt |θt| (11.1.25)

for t ∈ [0,∞).
Note that the risk premium, see (11.1.9), of a portfolio Sδ is the appreci-

ation rate of the corresponding discounted portfolio S̄δ. By analogy with the
one period mean-variance approach in Markowitz (1959), one can introduce in
a CFM a family of efficient portfolios, which is parameterized by the squared
aggregate volatility. When using formula (11.1.22) for the expected rate of
return this leads to the following definition:

Definition 11.1.5. In a CFM satisfying Assumption 11.1.2, an efficient
portfolio Sδ ∈ V+ is one whose expected rate of return aδ

t , as a function of its
squared volatility (bδt )2, lies on the efficient frontier aδ

t , defined as

aδ
t = rt +

√
(bδt )2 |θt| (11.1.26)

for all times t ∈ [0,∞).

By exploiting relations (11.1.25) and (11.1.26), the following result can be
directly obtained.

Corollary 11.1.6. Under the assumptions of Theorem 11.1.3 any locally
optimal portfolio Sδ ∈ V+ is also an efficient portfolio.

The relationship (11.1.26) can be interpreted as a generalization of the
Markowitz efficient frontier to the continuous time setting. It holds for lo-
cally optimal portfolios under rather weak assumptions. Due to the inequality
(11.1.14) in the Portfolio Selection Theorem and relation (11.1.10) it is not
possible to form a strictly positive portfolio that generates an expected rate
of return above the efficient frontier.

Each optimal portfolio Sδ has an expected rate of return aδ
t that is lo-

cated at the efficient frontier given in (11.1.26). Note that the efficient fron-
tier moves randomly up and down over time in dependence on the fluctuations
of the short rate rt. Its slope also changes over time according to the total
market price of risk |θt|, which is, generally, stochastic. For a fixed time in-
stant t ∈ [0,∞) the Fig. 11.1.1 shows the efficient frontier’s dependence on
the squared volatility |bδt |2 of a locally optimal portfolio, where the param-
eter values rt = 0.05 and |θt|2 = 0.04 are chosen. This graph also includes
the tangent of the efficient frontier with slope 1

2 at the point |bδt |2 = |θt|2
that corresponds to the squared volatility of the GOP. The reason why the
mean-variance approach holds generally in a CFM is that, due to the assumed
continuity of asset prices the asset dynamics resembles, locally in time, that
of a one period model with Gaussian log-returns.

Efficient Growth Rates

As we have seen in Theorem 10.5.1, the focus of the long term investor should
be the growth rate of her or his portfolio of tradable wealth. For illustration,
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Fig. 11.1.1. Efficient frontier

Fig. 11.1.2. Efficient growth rates

Fig. 11.1.2 shows for given t ∈ [0,∞) how the growth rate of a locally opti-
mal portfolio Sδ depends on its squared volatility |bδt |2, when using the same
default parameters as in Fig. 11.1.1. One could call these growth rates the ef-
ficient growth rates. The corresponding frontier in dependence on the squared
portfolio volatilities one can call the efficient growth rate frontier. The efficient
growth rates satisfy the expression

gδ
t = rt +

√
|bδt |2 |θt| −

1
2
|bδt |2 = rt +

|θt|2
Jδ

t

(
1 − 1

2 Jδ
t

)
, (11.1.27)

see (10.2.2), (11.1.16), (10.2.6) and (11.1.11). Note that for the value of the
squared volatility |bδt |2 = |θt|2, that is Jδ

t = 1, the efficient growth rates
achieve their maximum, yielding the growth rate of the GOP

gδ∗
t = rt +

1
2
|θt|2. (11.1.28)
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For the volatility value |bδt | = 2 |θt| the efficient growth rate equals the short
rate. As we have seen in Sect. 10.5, the GOP is the best performing portfolio
under various criteria, in particular, for long term growth. By choosing a
volatility value |bδt | > |θt| one is, in principle, overbetting. This means that
one faces larger fluctuations, which are more risky than those of the GOP due
to a short position in the savings account. Such a fractional Kelly strategy
does not perform as well as the Kelly strategy in the long term. Overbetting
diminishes the long term growth rate. However, some investors may achieve by
luck spectacular growth over some short period when overbetting but others
may fail dramatically.

We have seen that the GOP is a central object in a CFM which fa-
cilitates the intertemporal generalization of the classical Markowitz-Tobin-
Sharpe static mean-variance portfolio analysis, see Markowitz (1959), Tobin
(1958a) and Sharpe (1964). Due to two fund separation the GOP is also a
highly important benchmark for fund management. Two fund separation is
equivalent to some kind of a fractional Kelly strategy. In Theorem 10.5.1 it
was shown that the GOP almost surely outperforms pathwise any other port-
folio after a sufficiently long time. Furthermore, Corollary 10.5.3 showed that
even over any short time period it cannot be systematically outperformed by
any other portfolio.

Lagrange Multipliers and Optimization (*)

As we shall see, the proof of the Portfolio Selection Theorem uses only stan-
dard multivariate calculus and a basic understanding of stochastic calculus.
Before we give the proof of Theorem 11.1.3 let us mention a standard result
on Lagrange multipliers and optimization.

Let U : �n → � and g : �k → �k be differentiable functions. Further-
more, assume that U is strictly concave and that g is convex. Under these
assumptions we consider the problem of solving the optimization problem to
find the maximum

U(x∗) = max
x∈	n

U(x) (11.1.29)

such that
gi(x∗) = 0 (11.1.30)

for all i ∈ {1, 2, . . . , k} and x∗ ∈ �n. This problem is equivalent to finding a
zero of the gradient of the corresponding Lagrangian

L(x,λ) = U(x) − λ� g(x) (11.1.31)

for x = (x1, x2, . . . , xn)� ∈ �n and λ = (λ1, λ2, . . . , λk)� ∈ �k, see
Luenberger (1969). More precisely, if the pair (x∗,λ∗) ∈ �n × �n solves the
system of first order conditions

0 =
∂L(x,λ)

∂xi
=

∂U(x)
∂xi

−
k∑

�=1

λ� ∂g
�(x)
∂xi

(11.1.32)
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for i ∈ {1, 2, . . . , n} and

0 =
∂L(x,λ)
∂λi

= gi(x) (11.1.33)

for i ∈ {1, 2, . . . , k}, then x∗ is the unique maximizer of the optimization
problem.

In the case when the vector λ∗ of the Lagrangian multipliers consists
only of nonnegative components, then x∗ is also the unique maximizer of the
optimization problem

U(x∗) = max
x∈	n

U(x) (11.1.34)

such that
gi(x∗) ≤ 0 (11.1.35)

for all i ∈ {1, 2, . . . , k}.

Proof of Theorem 11.1.3 (*)

To prove the Portfolio Selection Theorem we follow essentially the proof given
in Platen (2002). To identify a discounted, locally optimal portfolio, as de-
scribed in Definition 11.1.1, we maximize locally in time the drift (11.1.4),
subject to the constraint (11.1.7). For this purpose we use the Lagrange mul-
tiplier λ, as described in the above subsection, and consider the function

L(ψ1
δ , . . . , ψ

d
δ , λ) =

d∑

k=1

ψk
δ θ

k + λ

(
(
γ δ̃
)2

−
d∑

k=1

(
ψk

δ

)2
)

(11.1.36)

by suppressing time dependence. For ψ1
δ , ψ

2
δ , . . . , ψ

d
δ to provide a maximum

for L(ψ1
δ , . . . , ψ

d
δ , λ) it is necessary that the first-order conditions

∂L(ψ1
δ , . . . , ψ

d
δ , λ)

∂ψk
δ

= θk − 2λψk
δ = 0 (11.1.37)

are satisfied for all k ∈ {1, 2, . . . , d} as well as

∂L(ψ1
δ , . . . , ψ

d
δ , λ)

∂λ
=
(
γ δ̃
)2

−
d∑

k=1

(
ψk

δ

)2
= 0. (11.1.38)

Consequently, a locally optimal portfolio S(δ̃), which maximizes the discounted
drift, must satisfy the relation

ψk
δ̃

=
θk

2λ
(11.1.39)

for all k ∈ {1, 2, . . . , d}. Furthermore, by (11.1.38) we must have
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d∑

k=1

(
ψk

δ̃

)2
=
(
γ δ̃
)2

. (11.1.40)

We can now use the constraint (11.1.7), together with (11.1.40), (11.1.5) and
(11.1.11), to obtain from (11.1.39) the relation

(
γ δ̃
)2

=
d∑

k=1

(
ψk

δ̃

)2
=
∑d

k=1(θ
k)2

4λ2
. (11.1.41)

By (11.1.12) we have |θ| =
√∑d

k=1(θk)2 > 0 and obtain by (11.1.39) and
(11.1.41) the equation

ψk
δ̃

=
γ δ̃

|θ| θ
k (11.1.42)

for all k ∈ {1, 2, . . . , d}. This yields at time t by (11.1.4) for a locally optimal
portfolio S δ̃ the discounted drift

αδ̃
t = γ δ̃

t

|θt|2
|θt|

= γ δ̃
t |θt|. (11.1.43)

This leads, by (11.1.10), to the equality in (11.1.14). Due to the above opti-
mization the inequality in (11.1.14) follows for any strictly positive portfolio
with nonzero aggregate diffusion coefficient.

Equation (11.1.42), when substituted into (11.1.2), provides by (11.1.5)
the SDE

dS̄ δ̃
t = γ δ̃

t

d∑

k=1

θk
t

|θt|
(θk

t dt+ dW k
t ). (11.1.44)

Using (11.1.6) this yields the SDE (11.1.15). Furthermore, it follows for k ∈
{1, 2, . . . , d} from (11.1.3), (10.1.12), (11.1.42) and (11.1.6) that

ψk
δ̃,t

=
d∑

j=1

δ̃j
t S̄

j
t b

j,k
t = S̄

(δ̃)
t

d∑

j=1

πj

δ̃,t
bj,kt =

γ δ̃
t

|θt|
θk

t = S̄
(δ̃)
t bδ̃t

θk
t

|θt|
. (11.1.45)

Using the invertibility of the volatility matrix one obtains, see Assump-
tion 10.1.1, the fraction

πj

δ̃,t
=

bδ̃t
|θt|

d∑

k=1

θk
t b

−1 j,k
t (11.1.46)

and, thus, by (10.2.6) the equation (11.1.16) for all j ∈ {1, 2, . . . , d} and
t ∈ [0,∞). Using the SDE of the discounted GOP one notes that an SDE of
the form (11.1.15) belongs to a discounted portfolio, which has for its given
aggregate diffusion coefficient the maximum discounted drift. Thus, by Defi-
nition 11.1.1 the corresponding portfolio is a locally optimal portfolio. ��
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11.2 Market Portfolio and GOP

In Sect. 9.3 we already considered a version of the intertemporal capital asset
pricing model (ICAPM). The capital asset pricing model (CAPM) was devel-
oped in one and multiperiod discrete time settings by Sharpe (1964), Lintner
(1965) and Mossin (1966). Its continuous time analog, the ICAPM, was es-
tablished for continuous markets in Merton (1973a) as an equilibrium model
of exchange using utility maximization and equilibrium arguments. Most of
the following results are established in Platen (2005c, 2006a, 2006b).

Intertemporal Capital Asset Pricing Model

By using a locally optimal portfolio as a reference portfolio, we shall now
derive the ICAPM for a CFM. For this purpose let us consider a strictly
positive, risky, locally optimal portfolio Sδ ∈ V+. Then by (11.1.9), (10.1.14),
(10.2.1) and (11.1.15) the risk premium pSδ (t) of a strictly positive portfolio
Sδ ∈ V+ can be expressed as

pSδ(t) =
d∑

k=1

d∑

j=1

πj
δ,t b

j,k
t θk

t =
d[ln(Sδ), ln(Sδ)]t

dt

|θt|
b
δ
t

(11.2.1)

at time t. Here [ln(Sδ), ln(Sδ)]t denotes the covariation at time t of the stochas-
tic processes ln(Sδ) and ln(Sδ), see Sect. 5.2. The time derivative of the co-
variation is the local, in time, analogue of the covariance of log-returns for
continuous time processes.

For a strictly positive portfolio Sδ ∈ V+ the systematic risk parameter
βSδ (t), also called the beta, is defined as the ratio of the covariations

βSδ(t) =
d[ln(Sδ),ln(Sδ)]t

dt
d[ln(Sδ)]t

dt

, (11.2.2)

for t ∈ [0,∞), where Sδ denotes again a strictly positive, risky, locally op-
timal portfolio. This allows us to deduce by (11.2.1) and (11.2.2) the core
relationship of the ICAPM.

Theorem 11.2.1. Under the assumptions of Theorem 11.1.3, for any strict-
ly positive portfolio Sδ ∈ V+ the portfolio beta with respect to a strictly posi-
tive, risky, locally optimal portfolio Sδ ∈ V+, with nonzero aggregate volatility,
has the form

βSδ(t) =
pSδ (t)
pSδ (t)

(11.2.3)

for t ∈ [0,∞).

The above expression for the portfolio beta is exactly what the ICAPM
suggests if the market portfolio (MP) is a locally optimal portfolio. In this
case, Theorem 11.2.1 already proves the ICAPM in a general CFM setting.
This raises the question: When is the MP a locally optimal portfolio?
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Market Portfolio

Let us assume the existence of n ∈ N investors who hold all tradable wealth in
the market, which is the total sum of all units of primary security accounts.
The portfolio of tradable wealth of the th investor is denoted by Sδ� ,  ∈
{1, 2, . . . , n}. Due to the limited liability of investors Sδ� ∈ V is nonnegative.
The total portfolio SδMP

t of the tradable wealth of all investors is then the
MP, which is given by the sum

SδMP
t =

n∑

�=1

Sδ�
t (11.2.4)

at time t ∈ [0,∞). We have seen in the previous section that Sharpe ratio
maximizing investors form locally optimal portfolios. We shall see in Sect.11.3
that also expected utility maximizing investors form locally optimal portfolios.
Therefore, it is natural to make the following assumption.

Assumption 11.2.2. Each investor forms a nonnegative, locally optimal
portfolio with her or his total tradable wealth.

Since the sum of locally optimal portfolios is again a locally optimal port-
folio we can prove the following result.

Theorem 11.2.3. For a CFM, where each investor holds a locally optimal
portfolio with respect to the domestic currency denomination, the MP is a
locally optimal portfolio.

Proof: The discounted MP S̄δMP
t = S

δMP
t

S0
t

at time t is under the assumptions
of the theorem by (11.1.15), (11.1.17) and (11.2.4) determined by the SDE

dS̄δMP
t =

n∑

�=1

dS̄δ�
t =

n∑

�=1

(
S̄δ�

t − δ0
�

)

(
1 − π0

δ∗,t

)
d∑

k=1

θk
t (θk

t dt+ dW k
t )

= S̄δMP
t

(
1 − π0

δMP,t

)

(
1 − π0

δ∗,t

)
d∑

k=1

θk
t (θk

t dt+ dW k
t ) (11.2.5)

for t ∈ [0,∞). This shows, by (11.1.15), that the MP SδMP
t has the SDE of

a locally optimal portfolio. This proves by Theorem 11.1.3 that the MP is a
locally optimal portfolio. ��

It is straightforward to draw the following conclusion from Theorem 11.2.1
and Theorem 11.2.3.

Corollary 11.2.4. Under the assumptions of Theorem 11.2.3 the ICAPM
relationship (11.2.3) holds when using the market portfolio as reference port-
folio.
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This proves the ICAPM under the assumptions of Theorem 11.2.3. It is
important to emphasize the fact that the derivation of this result does not
require any assumptions about expected utility maximization, equilibrium or
Markovianity, as typically imposed in the literature. Note also that no matter
what locally optimal portfolio the investor holds, the ICAPM follows with the
MP as reference portfolio.

Market Portfolio and GOP

It is reasonable to discuss the following invariance of a financial market model.
By invariance we mean here the property of the market that relationships that
hold for one currency denomination apply also for another currency denomi-
nation. This can be expressed by the following assumption.

Assumption 11.2.5. The fundamental relationships in the market are in-
variant under a change of currency denomination.

As the following theorem shows, this assumption has interesting conse-
quences.

Theorem 11.2.6. In a CFM where a strictly positive portfolio is locally
optimal in at least two currency denominations this portfolio must be a GOP.

This theorem will be derived at the end of this section. It allows us to
draw interesting conclusions. If one assumes that the investors optimize their
tradable wealth in two currency denominations by forming an MP that is a
locally optimal portfolio in each of the two currencies, then by Theorem 11.2.6
the MP is the GOP. Of course, the investors will never exactly form an MP
that is a perfect locally optimal portfolio in two currency denominations.
However, the reality may come close to this situation. This then allows the
conclusion that the MP may be not too far from the GOP.

In Sect. 10.6 we concluded under some regularity condition on the market
that a portfolio approximates the GOP purely on the basis of the assumption
that it is a diversified portfolio. The above optimal portfolio selection leads to
a complementing result, as long as the sequence of CFMs (SC

(d))d∈N is regular
and the corresponding sequence of MPs is that of diversified portfolios.

For the given world market the MP is, in principle, observable. For in-
stance, a potential proxy is given by the daily MSCI, which essentially reflects
the stock portfolio of the developed markets. For illustration, in Fig.11.2.1 we
show the MSCI in units of the US dollar savings account for the period from
1970 until 2003. We have alternatively studied the WSI and EWI in Sect.10.6
as potential proxies of the GOP. We have already seen that the differences
between all these proxies of the GOP are minor from a practical point of view.
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Fig. 11.2.1. Discounted MSCI

Proof of Theorem 11.2.6 (*)

Let us denote, the GOP at time t in the ith currency by Sδ∗
i (t) for i ∈ {0, 1}.

This satisfies by (10.2.8) the SDE

dSδ∗
i (t) = Sδ∗

i (t)

(

ri
t dt+

d∑

k=1

θk
i (t)

(
θk

i (t) dt+ dW k
t

)
)

(11.2.6)

for t ∈ [0,∞). Here ri
t is the ith short rate for the ith currency denomination

and θk
i (t) the market price of risk for the ith currency denomination with

respect to the kth Wiener process. Furthermore, we denote by Sj
i (t) the jth

savings account at time t, denominated in the ith currency, i, j ∈ {0, 1}.
A locally optimal portfolio S δ̃

0(t) at time t, when denominated in units of
the 0th currency, satisfies by Theorem 11.1.3, see (11.1.15), the SDE

dS δ̃
0(t) = S δ̃

0(t)

⎛

⎝r0t dt+

(
1 − π0

δ̃,t

)

(
1 − π0

δ∗,t

)
d∑

k=1

θk
0 (t)

(
θk
0 (t) dt+ dW k

t

)
⎞

⎠ (11.2.7)

for t ∈ [0,∞).
The exchange rate X1,0

t from the 0th into the first currency at time t can
be written as

X1,0
t =

Sδ∗
1 (t)

Sδ∗
0 (t)

. (11.2.8)

It satisfies by (11.2.6) and an application of the Itô formula the SDE

dX1,0
t = X1,0

t

(

(r1t − r0t ) dt+
d∑

k=1

(
θk
1 (t) − θk

0 (t)
) (
θk
1 (t) dt+ dW k

t

)
)

(11.2.9)

for t ∈ [0,∞).
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Denominating now the locally optimal portfolio S δ̃ in units of the first
currency yields by the Itô formula, (11.2.6) and (11.2.9) the SDE

dS δ̃
1(t) = d

(
S δ̃

0(t)X1,0
t

)

= S δ̃
1(t)

⎛

⎝r1t dt+
d∑

k=1

⎡

⎣

(
1 − π0

δ̃,t

)

(
1 − π0

δ∗,t

)
(
θk
0 (t)
)2

+
(
θk
1 (t) − θk

0 (t)
)
θk
1 (t)

+

(
1 − π0

δ̃,t

)

(
1 − π0

δ∗,t

)θk
0 (t)

(
θk
1 (t) − θk

0 (t)
)
⎤

⎦ dt

+
d∑

k=1

⎡

⎣

(
1 − π0

δ̃,t

)

(
1 − π0

δ∗,t

)θk
0 (t) + θk

1 (t) − θk
0 (t)

⎤

⎦ dW k
t

⎞

⎠

= S δ̃
1(t)

(

r1t dt+
d∑

k=1

(

θk
1 (t) − θk

0 (t)

(
π0

δ∗,t − π0
δ̃,t

1 − π0
δ∗,t

))
(
θk
1 (t) dt+ dW k

t

)
)

.

For S δ̃
1(t) to satisfy the SDE of a locally optimal portfolio in the first currency

denomination requires by (11.1.15) and (11.1.17) for t ∈ [0,∞) the equality

θk
1 (t) − θk

0 (t)

(
π0

δ∗,t − π0
δ̃,t

1 − π0
δ∗,t

)

=

(
1 − π1

δ̃,t

)

(
1 − π1

δ∗,t

) θk
1 (t).

To achieve this equality one needs to satisfy the equation

π0
δ∗,t = π0

δ̃,t
(11.2.10)

for all t ∈ [0,∞). This demonstrates by (11.2.7) and (11.2.6) that S δ̃ is under
the assumptions of Theorem 11.2.6 a GOP. ��

11.3 Expected Utility Maximization

Utility functions, as introduced in von Neumann & Morgenstern (1953), have
been widely used in portfolio optimization and economic modeling, see Merton
(1973a). We study now the type of portfolio that an expected utility maxi-
mizer forms in a CFM. We shall show under appropriate assumptions that this
will again be a locally optimal portfolio. As a consequence of Corollary 11.1.4
a two fund separation theorem holds also for expected utility maximization.
Therefore, when some investors maximize expected utility, others maximize
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Fig. 11.3.1. Examples for power utility (upper graph) and log-utility (lower graph)

Sharpe ratios and the rest maximizes the growth rate for a given portfolio
volatility, then the MP is still a locally optimal portfolio and, thus, a combi-
nation of the GOP and the savings account. As already mentioned, this can
also be interpreted as a fractional Kelly strategy, see Hakansson & Ziemba
(1995). Some of the following results appear in Platen (2006a, 2006c).

Utility Functions

A utility function is a real valued function U(·) which allocates a real number
to any nonnegative level of wealth. Once a utility function is chosen, then
all alternative wealth levels are ranked by evaluating their expected utility
values. It turns out that the following class of utility functions can express
the personal preferences of market participants.

Definition 11.3.1. A utility function U : [0,∞) → [−∞,∞) is a real
valued, twice differentiable, strictly increasing and strictly concave function,
where U ′(0) = ∞ and U ′(∞) = 0.

Examples of utility functions are given by the power utility

U(x) =
1
γ
xγ (11.3.1)

for γ = 0 and γ < 1 and the log-utility

U(x) = ln(x) (11.3.2)

for x ∈ [0,∞), where ln(0) is set to minus infinity. In Fig. 11.3.1 we show
with the upper graph an example for a power utility function with γ = 1

2 ,
together with the log-utility displayed as the lower curve. The properties of
a utility function given in Definition 11.3.1 have economic interpretations.
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The strict monotonicity reflects the natural preference of an investor for more
rather than less wealth. In this sense investors are nonsatiable. The concavity
of U(x) implies that U ′(x) is decreasing in x. This models the fact that a
typical investor has some risk aversion, which may depend on her or his level
of total tradable wealth. Note that the derivative U ′ of a utility function has
an inverse function U ′−1, which will be of importance in our analysis below.

Expected Utility Maximization

We aim to identify the portfolio which an expected utility maximizer con-
structs. Let us consider a utility function U : [0,∞) → [−∞,∞) and fix a
terminal time horizon T ∈ [0,∞).

An investor can always compare her or his investment strategy δ with
the one where all wealth is invested in the locally riskless security, that is,
the savings account S0. Therefore, we shall take the time value of money
into account by discounting with the savings account S0. This means, we
shall consider an investor who maximizes expected utility from discounted
terminal wealth. Furthermore, we assume that the investor maximizes only
over fair portfolios, since according to Corollary 10.4.2, these are the portfolios
that require the minimal initial investment to reach a desired future payoff.
This payoff is in our case the utility of discounted terminal wealth. It is not
rational to invest in an unfair portfolio, because there exists then a cheaper
fair portfolio that provides exactly the same utility.

Definition 11.3.2. Define the set V̄+
S0

of strictly positive, savings account
discounted, fair portfolios S̄δ with given initial value S̄δ

0 = S0 > 0.

We maximize now the expected utility

vδ̃ = max
S̄δ∈V̄+

S0

vδ (11.3.3)

with
vδ = E

(
U
(
S̄δ

T

) ∣∣A0

)
, (11.3.4)

where the maximum is taken over the set V̄+
S0

and is assumed to exist.
Furthermore, to obtain a tractable solution of the expected utility maxi-

mization problem, we assume in this section, for simplicity, that the discounted
GOP S̄δ∗ itself is a strictly positive Markov process with

dS̄δ∗
t = S̄δ∗

t θ(t, S̄δ∗
t )
(
θ(t, S̄δ∗

t ) dt+ dWt

)
(11.3.5)

for t ∈ [0,∞) and given volatility function θ : [0,∞) × (0,∞) → (0,∞). In
Chap. 13 we shall demonstrate by deriving the minimal market model that
this is an acceptable assumption. This assumption can be relaxed in many
ways yielding slightly more complex but similar results.
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The following theorem describes the structure of the optimal portfolio of
the expected utility maximizer. Its derivation follows the, so-called, martingale
approach in portfolio optimization as described, for instance, in Korn (1997),
Karatzas & Shreve (1998) and Zhao & Ziemba (2003). The theorem is derived
at the end of the section, see also Platen (2006c).

Theorem 11.3.3. Consider a CFM that satisfies the Assumption 11.1.2
and has a Markovian, strictly positive discounted GOP S̄δ∗ , satisfying (11.3.5).
Then the discounted, strictly positive, fair portfolio S̄ δ̃ ∈ V̄+

S0
, which maxi-

mizes the given utility function U(·), is a locally optimal portfolio in the sense
of Definition 11.1.1 and satisfies the SDE

dS̄ δ̃
t = S̄ δ̃

t

1

J δ̃
t

θ(t, S̄δ∗
t )
(
θ(t, S̄δ∗

t ) dt+ dWt

)
(11.3.6)

with risk aversion coefficient

J δ̃
t =

1

1 − Ŝ0
t

û(t,Ŝ0
t )

∂û(t,Ŝ0
t )

∂Ŝ0

, (11.3.7)

and benchmarked fair portfolio value

Ŝ δ̃
t = û(t, Ŝ0

t ) = E
(
U ′−1

(
λ Ŝ0

T

)
Ŝ0

T

∣
∣
∣At

)
(11.3.8)

at time t ∈ [0, T ]. The constant λ follows from the match of the initial value

S0 = û(0, Ŝ0
0)Sδ∗

0 . (11.3.9)

Note in (11.3.7) that the risk aversion coefficient is the inverse of the
fraction of S δ̃ that is invested in the GOP. We notice from (11.3.8) that the
problem of maximizing expected utility from discounted terminal wealth has
been transformed into that of hedging a particular payoff of the type

H = U ′−1(λŜ0
T )S0

T .

This demonstrates that there is a deep link between expected utility maxi-
mization and hedging. We shall discuss hedging issues in more detail in the
next section. Due to the Markovianity of S̄δ∗ one can in the given case calcu-
late û(·, ·) and replicate the payoff H by a fair, locally optimal portfolio. More
precisely, one can apply the Feynman-Kac formula, see Sect.9.7, to obtain the
function û(·, ·) as the solution of a PDE. From û(·, ·) one can then determine
the fraction of wealth to be held in the GOP and the remaining fraction that
has to be invested in the savings account. Note that if S̄δ∗ is driven by n ∈ N
tradable factors that form together a Markov process, then one obtains n+ 1
fund separation for the resulting optimal portfolios. However, as we will see
in Chap. 13 the MMM suggests in reality two fund separation.
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Examples on Expected Utility Maximization

A disadvantage of the expected utility approach is that only in rare cases one
can provide explicit results. To illustrate the above theorem we discuss two
simple examples.

1. In the first example we consider the log-utility function U(x) = ln(x).
Its derivative is U ′(x) = 1

x , which has the inverse U ′−1(y) = 1
y . Since the

second derivative U ′′(x) = − 1
x2 is negative, the utility function is concave, as

required in Definition 11.3.1. We recall that maximizing expected logarithmic
utility is equivalent to selecting the Kelly criterion for portfolio optimization,
see Kelly (1956) and Hakansson & Ziemba (1995).

According to (11.3.8) we obtain for t ∈ [0,∞) the conditional expectation

û(t, Ŝ0
t ) = E

(
U ′−1

(
λ Ŝ0

T

)
Ŝ0

T

∣
∣
∣At

)
= E

(
1

λ Ŝ0
T

Ŝ0
T

∣
∣
∣At

)

=
1
λ

(11.3.10)

for t ∈ [0, T ]. By equation (11.3.9) we obtain the Lagrange multiplier

λ =
S̄δ∗

0

S0
. (11.3.11)

By formula (11.3.7) the risk aversion coefficient equals the constant

J δ̃
t = 1, (11.3.12)

which shows that the corresponding expected log-utility maximizing portfolio
S δ̃ is a GOP, see (11.1.19). This allows us to interpret the GOP as the portfolio
which maximizes expected log-utility. Therefore, we could have defined earlier
the GOP as the strictly positive portfolio which maximizes expected log-
utility from discounted terminal wealth. Indeed, this idea has been followed
in Platen (2004a) in the case of other asset price dynamics, since such a
definition is generally applicable beyond the setting of a CFM. Note that in
the relationships of this example the particular dynamics of the GOP did not
play any role. We obtain the expected log-utility in the form

vδ̃ = E
(
ln
(
S̄δ∗

T

) ∣∣
∣A0

)
= ln(λ) + ln(S0) +

1
2

∫ T

0

E
((
θ(s, S̄δ∗

s )
)2 ∣∣
∣A0

)
ds

if the local martingale part in the SDE for ln(S̄δ∗
t ) forms a martingale, see

Exercise 11.1.

2. Our second example uses the power utility U(x) = 1
γx

γ for γ < 1 and
γ = 0. Its derivative is U ′(x) = xγ−1 and the corresponding inverse has the
form U ′−1(y) = y

1
γ−1 . The second derivative U ′′(x) = (γ−1)xγ−2 is negative,

which makes U(·) a suitable concave function.
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According to (11.3.8) we have

û(t, Ŝ0
t ) = E

⎛

⎝

(
λ

S̄δ∗
T

) 1
γ−1 1

S̄δ∗
T

∣
∣
∣
∣At

⎞

⎠ = λ
1

γ−1 E

((
S̄δ∗

T

) γ
1−γ

∣
∣
∣At

)
.

(11.3.13)
If there are analytic formulas for the conditional moments of the discounted
GOP S̄δ∗

T , then one can write down an explicit expression for the value of
û(t, Ŝ0

t ). Since S̄δ∗ is in Theorem 11.3.3 assumed to be Markovian, one can
apply the Feynman-Kac formula, see Sect. 9.7, to obtain the function û(·, ·).

For simplicity, let us consider here the case where S̄δ∗ is a geometric Brow-
nian motion with θ(t, S̄δ∗

t ) = θ > 0. Thus, we obtain from (11.3.13) the ex-
pression

û(t, Ŝ0
t ) = λ

1
γ−1

(
S̄δ∗

t

) γ
1−γ

E

(
exp
{

γ

1 − γ

(
θ2

2
(T − t) + θ (WT −Wt)

)} ∣∣
∣
∣At

)

= λ
1

γ−1

(
S̄δ∗

t

) γ
1−γ

exp
{
θ2

2
γ

(1 − γ)2
(T − t)

}
(11.3.14)

for t ∈ [0, T ]. By using (11.3.9) we obtain the Lagrange multiplier

λ = Sγ−1
0

(
S̄δ∗

0

)γ

exp
{
θ2

2
γ

1 − γ
T

}
. (11.3.15)

Furthermore, from (11.3.14) by noting that Ŝ0
t = (S̄δ∗

t )−1 we obtain, see
(10.3.1), the partial derivative

∂û(t, Ŝ0
t )

∂Ŝ0
=

û(t, Ŝ0
t )

Ŝ0
t

γ

γ − 1
. (11.3.16)

Therefore, by (11.3.7) for the power utility under the BS model we obtain the
risk aversion coefficient

J δ̃
t = 1 − γ (11.3.17)

and the expected utility

vδ̃ = E

(
1
γ

(
S̄ δ̃

T

)γ
∣
∣
∣
∣A0

)
=

1
γ

exp
{
θ2

2
γ

1 − γ
T

}
(S0)γ ,

see Exercise 11.2.
This recovers well-known results derived in Merton (1973a). One notes that

as γ → 0, the above risk aversion coefficient converges to one, which selects
asymptotically the GOP as the expected utility maximizing portfolio. Note
that for a power utility the particular dynamics of the discounted GOP are
relevant. In this special case we have then also the constant fraction 1

J δ̃
t

= 1
1−γ

of wealth invested in the GOP and the remainder in the savings account. This
is again a fractional Kelly strategy.
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Proof of Theorem 11.3.3 (*)

1. Since we only consider fair portfolios, we have a constrained optimization
problem. Let us apply in the following the, so-called, martingale approach, see
Karatzas & Shreve (1998). We express the constrained optimization problem
(11.3.3) by using a Lagrange multiplier λ ∈ �, see Sect. 11.1, and maximize
the functional

vδ = E
(
U
(
S̄δ

T

) ∣∣
∣A0

)
− λ

(

E

(
Sδ

T

Sδ∗
T

∣
∣
∣A0

)

− S0

Sδ∗
0

)

(11.3.18)

over the set V̄+
S0

of strictly positive, discounted, fair portfolios S̄δ starting with
S̄δ

0 = S0. Then (11.3.18) can be rewritten as

vδ = E

(

U
(
S̄δ

T

)
− λ

(
S̄δ

T

S̄δ∗
T

− S0

S̄δ∗
0

) ∣
∣
∣A0

)

. (11.3.19)

This means, we seek a discounted portfolio S̄ δ̃ ∈ V̄+
S0

so that

vδ̃ = max
S̄δ∈V̄+

S0

vδ ≤ E

(

max
S̄δ∈V̄+

S0

{

U
(
S̄δ

T

)
− λ

(
S̄δ

T

S̄δ∗
T

− S0

S̄δ∗
0

)}∣∣
∣
∣
∣
A0

)

≤ E

(

max
S̄δ

T >0

{

U
(
S̄δ

T

)
− λ

(
S̄δ

T

S̄δ∗
T

− S0

S̄δ∗
0

)}∣∣
∣
∣
∣
A0

)

. (11.3.20)

First let us solve a static optimization problem. This is an optimization that
maximizes in (11.3.20), the expression under the conditional expectation on
the right hand side of the last inequality, with respect to S̄δ

T . One can read
off the corresponding first order condition

U ′ (S̄δ
T

)
− λ

S̄δ∗
T

= 0, (11.3.21)

which for λ > 0 characterizes a maximum since U is concave, U ′(0) = ∞ and
U ′(∞) = 0. Note that due to the strict concavity of U its derivative U ′ has an
inverse function U ′−1. By applying the inverse function U ′−1 of U ′ it follows
from (11.3.21) that the value

S̄δ
T = U ′−1

(
λ

S̄δ∗
T

)

(11.3.22)

is the candidate for the optimal value of the discounted portfolio at time T
that an expected utility maximizer should replicate. It is very important to
realize that this candidate value turns out to be a function of the discounted
GOP value. In principle, we face now a hedging problem that replicates via
S̄δ the payoff given in (11.3.22).
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2. Since U ′−1 : [0,∞] → [0,∞], it makes only sense to consider in the
following strictly positive values of λ. Since Sδ is assumed to be a fair portfolio
one needs by (11.3.22) to choose the constant λ ∈ (0,∞) such that

S0

Sδ∗
0

=
Sδ

0

Sδ∗
0

= E

(
Sδ

T

Sδ∗
T

∣
∣
∣A0

)

= E

(
S̄δ

T

S̄δ∗
T

∣
∣
∣A0

)

= E

(

U ′−1

(
λ

S̄δ∗
T

)
1
S̄δ∗

T

∣
∣
∣A0

)

.

(11.3.23)

Due to the properties of U given in Definition 11.3.1, it follows that there
exists a λ ∈ (0,∞) such that (11.3.23) holds. Note that for very small λ > 0
one obtains extremely large payoffs U ′−1( λ

S̄δ∗
T

) 1

S̄δ∗
T

. With (11.3.23) we have

identified a candidate value for an expected utility maximizing portfolio.

3. We now show that there is a strategy δ̃ that replicates with its bench-
marked portfolio value Ŝ δ̃

T the payoff U ′−1( λ

S̄δ∗
T

) 1

S̄δ∗
T

in (11.3.22), such that

S̄ δ̃ ∈ V̄+
S0 . Since the benchmarked savings account Ŝ0

t = (S̄δ∗
t )−1 forms a

Markov process we obtain the (A, P )-martingale û(·, Ŝ0
· ) = {û(t, Ŝ0

t ), t ∈
[0, T ]} with

û(t, Ŝ0
t ) = Ŝ δ̃

t = E

(

U ′−1

(
λ

S̄δ∗
T

)
1
S̄δ∗

T

∣
∣
∣At

)

= E
(
U ′−1

(
λ Ŝ0

T

)
Ŝ0

T

∣
∣
∣At

)

(11.3.24)

for t ∈ [0, T ]. Here û(t, Ŝ0
t ) is a function of t and Ŝ0

t only, which can be
identified via the Feynman-Kac formula (9.7.3). By application of the Itô
formula and using the martingale property of û(·, Ŝ0

· ) we obtain

dû(t, Ŝ0
t ) =

∂û(t, Ŝ0
t )

∂Ŝ0
dŜ0

t

for t ∈ [0,∞). Hence, one can form the locally optimal portfolio S δ̃ by in-
vesting at time t in û(t, Ŝ0

t ) − Ŝ0
t

∂û(t,Ŝ0
t )

∂Ŝ0 units of the GOP and investing the

remaining wealth in ∂û(t,Ŝ0
t )

∂Ŝ0 units of the savings account. Note that we have

S̄ δ̃
t =

Ŝ δ̃
t

Ŝ0
t

=
û(t, Ŝ0

t )
Ŝ0

t

.

Consequently, the discounted, locally optimal portfolio S̄ δ̃
t satisfies the SDE
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dS̄ δ̃
t = û(t, Ŝ0

t ) dS̄δ∗
t + S̄δ∗

t dû(t, Ŝ0
t ) + d[S̄δ∗ , û]t

=

(

û(t, Ŝ0
t ) − Ŝ0

t

∂û(t, Ŝ0
t )

∂Ŝ0

)

dS̄δ∗
t

= S̄ δ̃
t

(

û(t, Ŝ0
t ) − Ŝ0

t

∂û(t, Ŝ0
t )

∂Ŝ0

)
S̄δ∗

t

S̄ δ̃
t

θ(t, S̄δ∗
t )
(
θ(t, S̄δ∗

t ) dt+ dWt

)

= S̄ δ̃
t

(
J δ̃

t

)−1

θ(t, S̄δ∗
t )
(
θ(t, S̄δ∗

t ) dt+ dWt

)
,

where û(t, Ŝ0
t ) = S̄δ̃

t

S̄δ∗
t

, with risk aversion coefficient

J δ̃
t =

û(t, Ŝ0
t )

û(t, Ŝ0
t ) − Ŝ0

t
∂û(t,Ŝ0

t )

∂Ŝ0

=

(

1 − Ŝ0
t

û(t, Ŝ0
t )

∂û(t, Ŝ0
t )

∂Ŝ0

)−1

for t ∈ [0,∞).

4. It follows from (11.3.24) that Ŝ δ̃ is a martingale. Furthermore, we note
by the nonnegativity of U ′−1 that S δ̃ is nonnegative. The solution that has
been obtained must be shown to belong to the set V̄+

S0
. For this purpose it

suffices to show that equality holds in (11.3.20). This is achieved by observing
that for positive λ, satisfying (11.3.9), one has

E

(

max
S̄δ

T >0

{

U
(
S̄δ

T

)
− λ

(
S̄δ

T

S̄δ∗
T

− S0

S̄δ∗
0

)}∣∣
∣
∣
∣
A0

)

= E

⎛

⎜
⎝U

(

U ′−1

(
λ

S̄δ∗
T

))

− λ

⎛

⎜
⎝
U ′−1

(
λ

S̄δ∗
T

)

S̄δ∗
T

− S0

S̄δ∗
0

⎞

⎟
⎠

∣
∣
∣
∣
∣
A0

⎞

⎟
⎠

= E

(

U
(
S̄ δ̃

T

)
− λ

(
S̄ δ̃

T

S̄δ∗
T

− S0

S̄δ∗
0

)∣∣
∣
∣
∣
A0

)

= E
(
U
(
S̄ δ̃

T

) ∣∣
∣A0

)
= vδ̃. ��

11.4 Pricing Nonreplicable Payoffs

This section addresses the problem of pricing nonreplicable payoffs. These
are payoffs that cannot be replicated by a fair portfolio of primary security
accounts. By utility indifference pricing we shall show that the concept of real
world pricing naturally applies to the pricing of nonreplicable payoffs.



428 11 Portfolio Optimization

Utility Indifference Price

In the following we shall continue to use our notation of the previous sections,
in particular Sect. 11.3, which considered expected utility maximization in
the framework of a CFM. Let us assume that the investor uses the utility
function U with time horizon T ∈ (0,∞), as defined in Definition 11.3.1. The
investor has the total tradable wealth S δ̃

t accumulated at time t ∈ [0,∞),
which she or he invests according to an expected utility maximizing strategy
δ̃, see Sect. 11.1.

We consider now the problem that the investor has to price a random,
discounted, nonnegative payoff H̄ that is AT -measurable and delivered at the
same time T which determines the time horizon for the expected utility func-
tion. We allow H̄ to be nonreplicable. This means that the discounted payoff
H̄ or parts of it cannot be replicated by a fair portfolio of primary security
accounts. Let us assume that the total face value of the discounted payoff that
the investor wants to purchase is vanishing small, that is, it amounts to εH̄
where ε � 1 is a very small real number.

We aim to identify a consistent price for the above payoff at time t = 0
from the viewpoint of the expected utility maximizer. For this purpose we
apply the concept of utility indifference pricing. This is a classical economic
concept that has been generating renewed interest in continues time finance
due to the important work in Davis (1997). The utility indifference price is
the price at which the investor is indifferent between buying the contract that
provides the discounted payoff εH̄, or not accepting the price when taking her
or his expected utility maximization objective into account.

Consider now a contract that can be purchased for a hypothetical price
V at time t = 0 and which delivers the discounted payoff H̄ at maturity
T ∈ (0,∞). Assume that the investor buys a vanishing fraction ε � 1 of
the contract at time t = 0 for the amount εV . This corresponds to the price
V at time t = 0 per total contract. She or he continues to invest the bulk
of the wealth with her or his locally optimal strategy δ̃, determined by the
expected utility maximization for the utility function U(·) with time horizon
T . Similarly to (11.3.3)–(11.3.4) we introduce the expected utility function

vδ̃
ε,V = E

(

U

(

(S0 − ε V )
S̄ δ̃

T

S0
+ εH̄

)∣
∣
∣
∣A0

)

(11.4.1)

for ε ≥ 0. Here S0 − εV is invested at time t = 0 in a portfolio which starts
at one and follows the locally optimal strategy δ̃. At the delivery date T the

discounted payoff εH̄ is added to the discounted payoff (S0 − εV ) S̄δ̃
T

S0
of the

investment in the locally optimal portfolio. Note that the purchasing price
εV is at time t = 0 subtracted from the locally optimal portfolio value. This
allows us to formulate the following definition of a utility indifference price.

Definition 11.4.1. In the above framework the value V is called the utility
indifference price for the discounted payoff H̄ if
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lim
ε→0

vδ̃
ε,V − vδ̃

0,V

ε
= 0 (11.4.2)

almost surely.

This means that the maximized expected utility of the investor changes
only by a small amount for prices that are in the neighborhood of the utility
indifference price. To see the structure of the resulting expected utility more
clearly, let us derive from (11.4.1), by a Taylor expansion, the representation

vδ̃
ε,V ≈ E

(

U
(
S̄ δ̃

T

)
+ U ′

(
S̄ δ̃

T

)
ε

(

H̄ − V
S̄ δ̃

T

S0

) ∣
∣
∣
∣A0

)

= vδ̃
0,V + εE

(

U ′
(
S̄ δ̃

T

)
(

H̄ − V
S̄ δ̃

T

S0

) ∣
∣
∣A0

)

. (11.4.3)

Here we neglect higher order terms in ε, assuming appropriate conditions.
This expansion allows us to identify the utility indifference price. It is clear
that for particular dynamics and specific utility functions, as well as payoffs,
one needs to check whether the above expansion applies.

Utility Indifference Pricing Formula

When appropriate conditions are imposed, one can derive for a given utility
function, discounted payoff H̄ and prescribed market dynamics a correspond-
ing utility indifference price. What is needed in such a derivation are suffi-
cient integrability and smoothness properties. For instance, for a BS model
and power utility such properties are guaranteed. For the utility indifference
price we derive its general formula heuristically by indicating the crucial steps
for its derivation without formulating any assumptions. However, this can be
done for particular classes of models, utilities and payoffs. The general result
that we shall obtain below will always be the same.

We obtain from the expansion (11.4.3) the relation

lim
ε→0

1
ε

(
vδ̃

ε,V − vδ̃
0,V

)
= E

(

U ′
(
S̄ δ̃

T

)
(

H̄ − V
S̄ δ̃

T

S0

) ∣
∣
∣
∣A0

)

. (11.4.4)

We emphasize that S δ̃ is here the locally optimal portfolio that maximizes
the given expected utility when ε is set to zero. From equation (11.4.4) and
Definition 11.4.1 we obtain then the utility indifference pricing formula in the
form

V =
E
(
U ′
(
S̄ δ̃

T

)
H̄
∣
∣A0

)

E

(
U ′
(
S̄ δ̃

T

)
S̄δ̃

T

S0

∣
∣A0

) . (11.4.5)
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This formula holds rather generally. It allows us to determine the utility indif-
ference price for a given utility and given discounted payoff H̄. We emphasize
that the payoff is possibly not replicable. If it were replicable, then the mini-
mal price for replicating this payoff is the fair price, which is given by the real
world pricing formula.

Real World Pricing of Nonreplicable Payoffs

For a general payoff H and a general utility function U(·) we obtain under
the assumptions of Theorem 11.3.3 by (11.3.8) that

S̄ δ̃
T = U ′−1

(
λ

S̄δ∗
T

)

. (11.4.6)

It follows from formula (11.4.5) that in a surprisingly simple way U ′ and U ′−1

offset each other in the following calculation

V =
E
(
U ′
(
U ′−1

(
λ

S̄δ∗
T

))
H̄
∣
∣
∣A0

)

E

(
U ′
(
U ′−1

(
λ

S̄δ∗
T

))
S̄δ̃

T

S0

∣
∣
∣A0

) =
E
(

λ

S̄δ∗
T

H̄
∣
∣
∣A0

)

E

(
λ

S̄δ∗
T

S̄δ̃
T

S0

∣
∣
∣A0

) .

Therefore, we obtain with (11.3.8) for V the expression

V =
E
(

H

Sδ∗
T

∣
∣
∣A0

)

1
S0

E
(
Ŝ δ̃

T

∣
∣A0

) =
E
(

H

Sδ∗
T

∣
∣
∣A0

)

1
S0

û(0, Ŝ0
0)

=
E
(

H

Sδ∗
T

∣
∣
∣A0

)

S0

S0 Sδ∗
0

. (11.4.7)

For the utility indifference price this yields by (11.3.9) the relation

V = Sδ∗
0 E

(
H

Sδ∗
T

∣
∣
∣A0

)

. (11.4.8)

We observe that this is the real world pricing formula (9.1.30). This means
that under utility indifference pricing payoffs, which are not replicable by a
fair portfolio of primary security accounts, are priced according to the real
world pricing formula. Most importantly, we see that the utility indifference
price does not depend on the utility function of the investor.

This is a very satisfying result not only from the theoretical but also from
the practical point of view. It extends real world pricing naturally to the case
of general nonreplicable payoffs. From a practical viewpoint it gives the buyer
and the seller an acceptable price for any nonreplicable payoff.

11.5 Hedging

One important feature of a market is the possibility to hedge future uncer-
tainties. In this section we study the hedging of uncertain payoffs.
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Hedge Portfolios

In the following we consider a CFM SC
(d), as defined in Sect. 10.1, and discuss

the problem of hedging. Let τ ∈ (0,∞) be a bounded stopping time and H
a nonnegative payoff that is paid at τ . By generalizing (8.2.8), we say that a
portfolio Sδ replicates a nonnegative payoff Hτ paid at a stopping time τ if

Sδ
τ = H (11.5.1)

almost surely. Note that a general payoff can always be decomposed into
its nonnegative and its negative part and considering nonnegative payoffs is
therefore no restriction. As previously, a nonnegative payoff is replicable if
there exists a nonnegative, replicating fair portfolio. We shall demonstrate
later that there may exist several self-financing portfolios in a CFM that
replicate a given nonnegative payoff. In the case of nonnegative replicating
portfolios it follows from Corollary 10.4.2 that for a nonnegative payoff H the
replicating, fair portfolio SδH is the minimal portfolio that replicates H. Note
that this portfolio process is uniquely determined as a value process. However,
there may be different securities that can be used for hedging.

Tradable Martingale Representation

For a nonnegative replicable payoff the real world pricing formula provides
the minimal nonnegative price process. From an economic point of view it is
in a competitive market the correct price process. We shall determine below
the strategy of the fair portfolio which hedges a given replicable nonnega-
tive payoff. Recall that the benchmarked fair price process forms an (A, P )-
martingale. It is of primary interest to find a representation for this martingale
process. There are various methods that can be used to find the martingale
representation of a benchmarked nonnegative payoff.

For instance, under the standard BS model, which we used for illustration
in Chap.9, we obtained in (9.1.31) a corresponding martingale representation
for the benchmarked European call option payoff. It was derived from the real
world pricing formula together with an application of the Itô formula to the
benchmarked pricing function.

More generally, in the case when the market dynamics can be expressed
via a set of Markovian factor processes, then one can apply the Feynman-
Kac formula, see Sect. 9.7. This yields the benchmarked, fair pricing function
of a corresponding replicable payoff. The corresponding benchmarked, fair
price process forms then a martingale and similarly to (9.1.31), a real world
martingale representation. We shall not present in this section any particular
example for such a martingale representation. However, the following two
chapters will discuss several such examples.

In a CFM not all Wiener processes which drive volatility processes and
short rates need to represent trading uncertainty. Therefore, in general, not all
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payoffs are replicable. Under rather general assumptions one can usually es-
tablish a real world martingale representation for reasonable payoffs in a CFM.
The particular structure of a martingale representation depends strongly on
the model dynamics and can become quite complex for certain payoffs. As
indicated, in a Markovian setting one can explicitly derive, via the Feynman-
Kac formula, martingale representations for nonreplicable payoffs.

The following definition of a tradable martingale representation allows us to
formulate general results on pricing and hedging of particular payoffs without
specifying the dynamics of the CFM.

Definition 11.5.1. We say that a given Aτ -measurable, nonnegative payoff
H, which matures at a bounded stopping time τ , has a tradable martingale
representation if there exists a predictable vector process xH = {xH(t) =
(x1

H(t), . . . , xd
H(t))�, t ∈ [0, τ ]}, where

∫ τ

0

d∑

k=1

(
xk

H(s)
)2

ds < ∞ (11.5.2)

almost surely such that

H

Sδ∗
τ

= ÛH(t) +
d∑

k=1

∫ τ

t

xk
H(s) dW k

s (11.5.3)

almost surely with

ÛH(t) = E

(
H

Sδ∗
τ

∣
∣
∣
∣
∣
At

)

< ∞ (11.5.4)

for all t ∈ [0, τ ].

Note that the above tradable martingale representation (11.5.3) is ex-
pressed with respect to trading uncertainty, that is with respect to the Wiener
processes W 1, . . ., W d. There are, in general, other sources of uncertainty in
the market that are not securitized and therefore not tradable. Consequently,
there exist, in general, nonnegative payoffs which do not have a tradable
martingale representation. We shall see below that such payoffs are not fully
replicable.

Hedging Strategy

By using the above notion of a tradable martingale representation we prove
the following result on the hedging of derivatives. In the corresponding proof,
which is given at the end of this section, we use the SDE (10.3.2) of a bench-
marked portfolio together with (11.5.3).
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Theorem 11.5.2. For a nonnegative payoff H with a tradable martingale
representation there exists a replicating, fair portfolio SδH , which satisfies at
time t ∈ [0, τ ] the real world pricing formula

SδH
t = Sδ∗

t ÛH(t) (11.5.5)

with ÛH(t) given in (11.5.4). This portfolio has the vector of fractions

πδH
(t) =

(
bδH

(t)� b−1
t

)�
, (11.5.6)

where the vector bδH
(t) = (b1δH

(t), . . . , bdδH
(t))� of portfolio volatilities has kth

component

bkδH
(t) =

d∑

j=1

δj
H(t) Ŝj

t

ÛH(t)
bj,kt =

xk
H(t)

ÛH(t)
+ θk

t (11.5.7)

for t ∈ [0, τ ] and k ∈ {1, 2, . . . , d}.

Theorem 11.5.2 states that a nonnegative payoff with tradable martingale
representation can be replicated. It also characterizes the minimal hedge port-
folio. We emphasize here again that for a CFM, which is built as a Markovian
factor model, one can obtain by the Feynman-Kac formula for each integrable
benchmarked payoff a corresponding martingale representation. This makes
it advisable to prefer Markovian factor models if one aims to construct com-
putationally tractable CFMs.

Martingale Representation Theorem (*)

By the following result we shall see that payoffs can be decomposed into the
sum of their hedgable part and their unhedgable part. Let us mention a Mar-
tingale Representation Theorem, for a proof see Karatzas & Shreve (1991),
which is convenient for establishing a real world martingale representation for
payoffs in a wide range of CFMs.

Theorem 11.5.3. (Martingale Representation Theorem) For T ∈ [0,∞)
assume that in a CFM SC

(d) with given filtered probability space (Ω,A,A, P )
the filtration A is the augmentation under P of the natural filtration AW

generated by the vector W = {W t = (W 1
t , . . . ,W

m
t )�, t ∈ [0, T ]} of Wiener

processes, m ∈ {d, d+1, . . .}. Then for any square integrable benchmarked fair
price process V̂t = {V̂t = Vt

Sδ∗
t

, t ∈ [0, T ]} there exists a predictable, measurable

process xVT
= {xVT

(t) = (x1
VT

(t), . . . , xd
VT

(t))�, t ∈ [0, T ]} such that

E

(∫ T

0

(
xk

VT
(s)
)2
ds

)

< ∞ (11.5.8)

for k ∈ {1, 2, . . . , d} and
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V̂t = V̂0 +
m∑

k=1

∫ t

0

xk
VT

(s) dW k
s (11.5.9)

for t ∈ [0, T ], where V̂ is almost surely continuous. Furthermore, if x̃k =
{x̃k(t), t ∈ [0, T ], k ∈ {1, 2, . . . , d}, are any other predictable measurable pro-
cesses satisfying (11.5.8) and (11.5.9), then

∫ T

0

m∑

k=1

∣
∣xk

VT
(s) − x̃k(s)

∣
∣2 ds = 0 (11.5.10)

almost surely.

Real World Martingale Decomposition (*)

Note that under the assumptions of the above theorem one has for any square
integrable, benchmarked payoff Ĥ = H

Sδ∗
T

paid at time T , the unique repre-

sentation (11.5.9), where

Ĥ = V̂T = V̂0 +
m∑

k=1

∫ t

0

xk
H(s) dW k

s . (11.5.11)

It is essential to realize that Theorem 11.5.3 assumes that only the m Wiener
processes W 1, . . . ,Wm generate the total uncertainty in the model. This is
why we have chosen in Theorem 11.5.3 the filtration A to be the augmentation
of the natural filtration AW . The Wiener processes W 1, . . . ,W d model the
trading uncertainty.

The real world martingale decomposition of the nonnegative, square inte-
grable benchmarked payoff Ĥ is then given by the sum

Ĥ = Ĥh + Ĥu. (11.5.12)

It consists of its hedgable part Ĥh = ÛHh
(T ), which we obtain at time t as

ÛHh
(t) = Û

(0)
Hh

+
d∑

k=1

∫ t

0

xk
H(s) dW k

s (11.5.13)

and its unhedgable part Ĥu = ÛHu(T ), which at time t ∈ [0, T ] is

ÛHu(t) =
m∑

k=d+1

∫ t

0

xk
H(s) dW k

s . (11.5.14)

The hedgable part Ĥh can be replicated according to Theorem 11.5.2. We use
in (11.5.13) for the nonnegative payoff H its benchmarked fair price ÛHh

(0)
at time t = 0, that is,
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ÛHh
(0) = E

(
Ĥ
∣
∣A0

)
. (11.5.15)

Then the benchmarked value

V̂t = ÛHh
(t) + ÛHu(t) (11.5.16)

corresponds to a fair process since it forms an (A, P )-martingale. As we have
seen in Sect. 5.1, this martingale minimizes the expected least squares er-
ror of the benchmarked hedge. The choice of the real world pricing formula
for the unhedgable part appears, therefore, as a projection in a least square
sense. More precisely, the benchmarked fair price V̂0 can be interpreted as
the projection of the benchmarked payoff into the space of A0-measurable,
tradable portfolio values. Note that the benchmarked fair price ÛHu(0) of the
unhedgable part is zero at time t = 0.

This means, when applying real world pricing for a payoff one is leav-
ing its unhedgable part totally untouched. This is reasonable because any
extra trading would create unnecessary uncertainty and potential costs. The
benchmarked unhedgable part has according to (11.5.14) zero conditional ex-
pectation

E
(
ÛHu(T )

∣
∣A0

)
= 0. (11.5.17)

In summary, we obtain from (11.5.12)–(11.5.17) for the benchmarked payoff
Ĥ payable at time T the real world martingale decomposition

Ĥ = ÛHh
(0) +

d∑

k=1

∫ T

0

xk
H(s) dW k

s +
m∑

k=d+1

∫ T

0

xk
H(s) dW k

s . (11.5.18)

Let us indicate that by pooling a wide variety of independent unhedgable parts
of payoffs, under appropriate integrability conditions, the Law of Large Num-
bers, see Sect. 2.1, makes their impact vanishing. For instance, the books of
large investment banks and insurance companies pool substantial unhedgable
payoffs and benefit from this effect.

Föllmer-Schweizer Decomposition (*)

In the case when an equivalent risk neutral probability measure exists in
a CFM, real world pricing coincides with the risk neutral pricing obtained
under the, so-called, minimal equivalent martingale measure of Föllmer and
Schweizer, see Föllmer & Schweizer (1991), Hofmann, Platen & Schweizer
(1992) and Heath, Platen & Schweizer (2001).

It has been shown in Föllmer & Schweizer (1991), by assuming the exis-
tence of an equivalent risk neutral probability measure Pθ, that the hedging
of a payoff is linked to the existence of a corresponding martingale represen-
tation under Pθ for the discounted payoff. This important representation is
known as the Föllmer-Schweizer decomposition, see Schweizer (1995). A simi-
lar decomposition exists for the benchmarked payoff in a general CFM, where
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one does not require the existence of an equivalent risk neutral probability
measure.

To formulate explicitly the Föllmer-Schweizer decomposition we consider
a CFM as assumed in Theorem 11.5.3 and multiply both sides of the represen-
tation (11.5.16) by the discounted GOP value and apply then the Itô formula.
This provides the decomposition

H̄ = Ĥ S̄δ∗
T

= ÛHh
(0) S̄δ∗

0 +
d∑

k=1

∫ T

0

S̄δ∗
t

(
xk

H(t) +
(
ÛHh

(t) + ÛHu(t)
)
θk

t

)

×
(
θk

t dt+ dW k
t

)
+

m∑

k=d+1

∫ T

0

S̄δ∗
t xk

H(t) dW k
t , (11.5.19)

which is a Föllmer-Schweizer decomposition for the discounted payoff H̄, see
Schweizer (1995) and Exercise 11.3.

Note that in the case when a risk neutral probability measure Pθ exists,
then the second term in the sum on the right hand side of (11.5.19) is a mar-
tingale under Pθ. The third term is then a martingale under P and under Pθ.
The, so-called, minimal equivalent martingale measure, see Schweizer (1995),
changes only the drift of the Wiener processes that model trading uncertainty.
The other sources of uncertainty remain unchanged.

Complete Market (*)

In the literature one is often using the notion of a complete market, which we
introduce now.

Definition 11.5.4. A CFM where all integrable, benchmarked nonnega-
tive payoffs have a tradable martingale representation in the sense of Defi-
nition 11.5.1, is called a complete CFM. Any other CFM we call incomplete.

Note that in some literature a market is called complete when a unique
equivalent risk neutral probability measure exists, see Harrison & Kreps (1979)
and Harrison & Pliska (1981, 1983). As we have seen in Sect. 10.3, there is no
economic necessity to insist on the existence of an equivalent risk neutral prob-
ability measure. Therefore, we defined here the completeness of a market in a
more practical way. By Theorem 11.5.2 we obtain now directly the following
result.

Corollary 11.5.5. In a complete CFM all integrable, nonnegative payoffs
can be perfectly replicated with the hedge portfolio characterized by relation
(11.5.6). The price for setting up this replicating portfolio at some time t ∈
[0, τ) is obtained by the real world pricing formula (9.1.30). This price is the
minimal price that permits the replication of a given payoff.
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This result emphasizes the fact that in a complete market all integrable
payoffs can be replicated. An equivalent risk neutral probability measure is
not required for the existence of a complete market. This is very important
from a practical point of view when hedging derivatives for advanced models,
as we shall see later. We have seen in our previous discussion, if the CFM
is incomplete, then one can still perfectly replicate the hedgable part of a
benchmarked payoff. Under real world pricing one leaves the unhedgable part
as it is.

Proof of Theorem 11.5.2 (*)

For a given payoff H, paid at a bounded stopping time τ ≥ 0, with tradable
martingale representation we use the martingale representation (11.5.3). This
leads us for a benchmarked hedge portfolio ŜδH , see (10.3.2), to the replication
condition

H

Sδ∗
τ

− ÛH(t) =
d∑

k=1

∫ τ

t

xk
H(s) dW k

s

=
d∑

k=1

∫ τ

t

ŜδH
s

(
bkδH

(s) − θk
s

)
dW k

s = ŜδH
τ − ŜδH

t (11.5.20)

for t ∈ [0, τ ]. The formulas (10.3.2), (11.5.7) and (10.1.12) provide by direct
comparison of the integrands in (11.5.20) the equation

(
π�

δH
(t) bt

)�
= bδH

(t)

for t ∈ [0, τ ]. By the invertibility of bt, see Assumption 10.1.1, this proves
(11.5.6), and thus with (11.5.1) equation (11.5.5). ��

11.6 Exercises for Chapter 11

11.1. Calculate the maximum expected log-utility for the BS model.

11.2. Compute the maximum expected power utility for the BS model.

11.3. (*) In the case when a risk neutral probability measure exists, derive
by using the setup of Theorem 11.5.3 a representation for a discounted payoff
H̄ = H

S0
T

, which is paid at time T ∈ (0,∞).
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Modeling Stochastic Volatility

This chapter introduces into the pricing and hedging of derivatives under
stochastic volatility. The emphasis is on standard derivatives for various in-
dex models. We choose as underlying security a diversified index, which we
interpret as GOP.

12.1 Stochastic Volatility

Stochastic Volatility of an Index

Since a diversified accumulation index can be interpreted as a diversified port-
folio we assume that its dynamics are closely approximated by that of a GOP.
The value Sδ∗

t of a GOP at time t satisfies by (10.2.8) the SDE

dSδ∗
t = Sδ∗

t (rt dt+ |θt| (|θt| dt+ dWt)) (12.1.1)

for t ∈ [0,∞) with Sδ∗
0 > 0. Here r = {rt, t ∈ [0,∞)} is the short term interest

rate process, which we assume in this chapter, for simplicity, to be constant,
such that rt = r ≥ 0 for all t ∈ [0,∞). Furthermore, |θt| denotes the volatility
of the GOP at time t, which is the, in general, stochastic total market price of
risk, see (11.1.11). Finally, W = {Wt, t ∈ [0,∞)} is a standard Wiener process
on (Ω,A,A, P ). Note that the volatility and the short rate characterize the
dynamics of the GOP in the denomination of the domestic currency.

If we consider the logarithm of the GOP, then the SDE follows by the Itô
formula and (12.1.1) in the form

d ln
(
Sδ∗

t

)
=
(
r +

1
2
|θt|2

)
dt+ |θt| dWt (12.1.2)

for t ∈ [0,∞), see Exercise 13.1. This allows us to obtain the GOP volatility
|θt| at time t by the volatility formula (5.2.14) as the time derivative of the
quadratic variation of ln(Sδ∗

t ), that is,

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,
Springer Finance,
© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010
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Fig. 12.1.1. Estimated volatility of WSI from 1973–2004

|θt| =

√
d

dt
[ln (Sδ∗)]t (12.1.3)

for t ∈ [0,∞). In Fig. 12.1.1 we plot for the WSI from Fig. 10.6.5, based on
daily observations, the volatility which was obtained numerically by using the
formula (12.1.3) for the period from 1973 until 2004. One observes that the
volatility of this stock index is not a constant or a simple deterministic function
of time. Obviously, it is a stochastic process with clusters of higher values.
Taking this into account, the BS model is certainly not a perfect description
of reality.

Leverage Effect

To illustrate systematic deviations of an index dynamics from the BS model
a study was undertaken by Kelly (1999). Using the standard BS model with
constant volatility the P&L, that is the hedge error, was minimized when
hedging a European call option with given strike K and given time to maturity
T , as described in Chap.8. By using daily data from 1990 until 1998 from the
S&P500 and a fixed volatility for the BS model the resulting average hedge
errors are shown in Fig. 12.1.2 with dependence on moneyness. These hedge
errors express the average P&L when exhausting all possible periods allowed
by the data for the hedge analysis. One notes that there is a strong negative
skew in the P&L from hedging European calls under the BS model. This
indicates that an improved model for such an index needs to account for this
stylized empirical feature, which one can also document for other time periods.
Note that in this simple experiment no traded option prices from the market
were involved.

The negative skew in Fig. 12.1.2 is a reflection of the leverage effect, see
Black (1976), which expresses a negative correlation between the index and
its volatility. When the index value increases the volatility decreases and vice
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Fig. 12.1.2. Estimated hedge error for S&P500 under BS model

versa. To give an economic interpretation of the leverage effect let us interpret
the index as a stock market index. If the index is relatively high, then the
average market value of companies is rather high and the debt that these
companies have, appears to be comparably low. Such a situation corresponds
to low risk, which is reflected in low volatility of the index. On the other hand,
there is a much higher risk associated with these companies if the market
index is relatively low. For a low stock market index level the debt of the
companies appears to be relatively high and the volatility, as a measure of
risk, is therefore comparably high. This basic economic relationship explains,
in principle, the observed negative correlation between the stock market index
and its volatility. The leverage effect has been empirically documented in
many ways, for instance, it was studied in Black (1976). It is a challenge for
an advanced index model to explain and reflect this effect in a consistent
and parsimonious manner, in particular, over long periods of time. A crucial
step would be to reveal a potential functional dependence between index and
volatility.

Implied Volatilities

Stylized facts on stochastic volatility for traded index options are well doc-
umented in the econometrics and finance literature. For example Bollerslev,
Chou & Kroner (1992) provide a survey using autoregressive conditional het-
eroscedastic (ARCH) models and Ghysels, Harvey & Renault (1996), Frey
(1997) and Cont & Tankov (2004) provide reviews on stochastic volatility
models.

In principle, the only parameter in the Black & Scholes (1973) option pric-
ing formula, see (8.3.2), that cannot be directly observed is the volatility. Thus,
by using certain given option prices the corresponding implied volatility can be
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obtained by inverting the Black-Scholes formula (8.3.2), as will be explained
below.

There exists a liquid market for European call and put options on most
stock indices. One can use the observed market prices to detect deviations
from the BS model that traders, who survived successfully in the market,
have learned to take into account. Let us denote by

cT,K(0, S, σ, r) = cT,K(0, S) (12.1.4)

the European call option price at time t = 0 obtained from the Black-Scholes
formula (8.3.2) when the volatility is σ > 0, the short rate r ∈ [0,∞), the
time to maturity T ∈ [0,∞), the actual value of the underlying index S > 0
and the strike price equals K > 0. From the traded European call option price
Vc,T,K(0, S0) with strike price K and time to maturity T , which is observed
in the market for an index with value S0 at the time t = 0, one can deduce
the implied volatility σcall

BS (0, S0, T,K, r) by setting

Vc,T,K(0, S0) = cT,K

(
0, S0, σ

call
BS (0, S0, T,K, r), r

)
. (12.1.5)

There is no explicit solution to this equation and one needs to find the implied
volatility σcall

BS (0, S0, T,K, r) by some root finding method. For instance, the
well-known Newton-Raphson iteration method can be used. Similarly, one
finds implied volatilities for European puts. One can also price European
call or put options according to a given model, for instance the MMM, and
calculate the corresponding implied volatilities.

In the market it is often observed that away-from-the-money equity and ex-
change rate options have higher implied volatilities than at-the-money options.
This phenomenon is commonly called the implied volatility smile, as for in-
stance discussed in Rubinstein (1985), Clewlow & Xu (1994), Derman & Kani
(1994a), Taylor & Xu (1994) or Platen & Schweizer (1998). For indices one
observes a negative skew in the implied volatilities. This is also consistent
with the pattern of hedge errors in Fig. 12.1.2 and is a manifestation of the
leverage effect.

For the S&P500 in Fig.12.1.3 we show implied volatilities for three months
to maturity European options for the period from 1997 until 1998 in depen-
dence on the moneyness K

S of the strike over the underlying index value. One
notes that the implied volatilities are not the same for different moneyness.
Furthermore, one notes that the negatively skewed implied volatility curves
evolve over time. In Fig.12.1.4 we show implied volatilities of one year options,
that is, for time to maturity T = 1, for the S&P500 during the same period.
Note that the curvature of these implied volatility curves is less pronounced
than that of the shorter dated options shown in Fig. 12.1.3. This leads to an
implied volatility term structure.

More precisely, at a fixed time one can generate an implied volatility sur-
face from observed option prices by interpolation over different maturities and
strikes. Such a surface reflects the deviations of traded option prices from BS
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Fig. 12.1.3. Implied volatilities for S&P500 three month options

Fig. 12.1.4. Implied volatilities for S&P500 one year options

option prices. In Cont & da Fonseca (2002) an average shape of the implied
volatility surface for European options on the S&P500 has been extracted. For
the one year period from March 2000 until February 2001 we plot in Fig.12.1.5
a graph that shows approximately the observed average shape of the implied
volatility surface. This surface is negatively skewed with less curvature for
larger times to maturity. For shorter times to maturity the implied volatil-
ity surface is more curved in a convex manner. At the money, the implied
volatility shows a slight systematic increase over time. These stylized empiri-
cal facts should be explained by an advanced index model. Additionally, it is
also observed that the implied volatility with fixed strike, say at-the-money,
and fixed maturity, for instance one month, changes randomly over time.
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Fig. 12.1.5. Average S&P500 implied volatility surface

Consequently, the implied volatility term structure appears to be rather com-
plex. Stylized facts on implied volatility surfaces are, for instance, documented
in Dumas, Fleming & Whaley (1998), Schönbucher (1999), Ait-Sahalia & Lo
(2000), Cont & da Fonseca (2002), Ledoit, Santa-Clara & Wolf (2003) and Le
(2005). It would be highly desirable if an asset price model could also provide
an economic interpretation for the volatility dynamics so that the trader can
develop a reasoning behind this important market feature. In the following we
shall discuss several volatility models which aim to match the type of implied
volatility surface, as shown in Fig. 12.1.5.

12.2 Modified CEV Model

CEV Model

We present in this section a modification of the well-known constant elasticity
of variance (CEV) model, as suggested in Heath & Platen (2002a). The CEV
model assumes constant elasticity of variance for log-returns. This means that
the volatility is a power function. This type of model seems to have first
appeared in Cox (1975) and Cox & Ross (1976). It is a natural one-factor
extension of the BS model that provides nonconstant stochastic volatilities
and, thus, nonconstant implied volatilities. It has been adapted and applied
more recently, for instance, in Andersen & Andreasen (2000), Lewis (2000),
Lo, Yuen & Hui (2000) and Brigo & Mercurio (2005).

The classical risk neutral approach to the pricing of derivatives under the
CEV model is described, for instance, in Beckers (1980) and Schroder (1989).
It should be emphasized that these classical formulations typically assume a
risk neutral dynamics of the underlying security, which in the case of the CEV
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model may reach zero with strictly positive probability. This can lead to prob-
lems in the pricing of derivatives, see Lewis (2000) and Delbaen & Shirakawa
(2002). The modified CEV model that we are going to consider does not have
an equivalent risk neutral probability measure, as we shall see, and we apply
real world pricing.

What makes the CEV type models attractive is that they easily generate
a leverage effect, that is, a negative correlation between the index and its
volatility, as discussed in Sect. 12.1.

Modified CEV Model

We consider a CFM, as introduced in Chap.10, with one source of uncertainty
W = {Wt, t ∈ [0,∞)}, modeled by a standard Wiener process under the real
world probability measure P on a filtered probability space (Ω,A,A, P ). The
deterministic savings account S0

t at time t is given by the differential equation

dS0
t = r S0

t dt (12.2.1)

for t ∈ [0,∞) with S0
0 = 1, where r denotes the constant short rate. By

introducing the total market price of risk process |θ| = {|θt|, t ∈ [0,∞)}, the
GOP Sδ∗

t satisfies the SDE (12.1.1). Recall that the total market price of risk
|θt| appears as the volatility at time t of the GOP. By introducing the drifted
Wiener process Wθ = {Wθ(t), t ∈ [0,∞)} with

dWθ(t) = |θt| dt+ dWt (12.2.2)

we obtain from (12.1.1) for the GOP the SDE

dSδ∗
t = Sδ∗

t (r dt+ |θt| dWθ(t)) (12.2.3)

for t ∈ [0,∞).
To illustrate the kind of problem that may arise if there is no risk neu-

tral probability measure under the classical formulation of the modified CEV
model, we consider the case where the GOP volatility |θt| is specified in the
form

|θt| = (Sδ∗
t )a−1 ψ (12.2.4)

for t ∈ [0,∞) with exponent a ∈ (−∞,∞) and scaling parameter ψ > 0. In
this case the appreciation rate of the GOP, see (12.1.1), is stochastic as long
as a = 1.

We then have for the GOP by (12.2.3) and (12.2.4) the dynamics

dSδ∗
t = Sδ∗

t r dt+ (Sδ∗
t )a ψ dWθ(t) (12.2.5)

for t ∈ [0,∞). The existence and uniqueness of a solution of the SDE (12.2.5)
is, in general, not automatically guaranteed without extra conditions on the
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behavior of the process Sδ∗ at zero, see Sect. 7.7 and Karatzas & Shreve
(1991).

In (12.2.5), the process Wθ = {Wθ(t), t ∈ [0,∞)} is usually interpreted in
the literature as a Wiener process under a risk neutral probability measure Pθ.
Let us follow this interpretation for the moment. However, it will be shown
that for a < 1 there is a major problem with the application of the risk
neutral methodology. The scaling parameter ψ is, for simplicity, assumed to
be constant.

Note that for the case a = 1 we have the BS model, which has a risk
neutral probability measure Pψ and constant market price of risk ψ. As we
shall see shortly, this is the only case where considering a risk neutral version
of the model makes sense.

By (12.1.1) and (12.2.4) the GOP satisfies the SDE

dSδ∗
t =

(
Sδ∗

t r + (Sδ∗
t )2a−1 ψ2

)
dt+ (Sδ∗

t )a ψ dWt (12.2.6)

for t ∈ [0,∞). The above choice (12.2.4) of the market price of risk con-
trasts with what is used in the classical formulation of the CEV model, see
Cox & Ross (1976) and Schroder (1989). For this reason we refer to (12.2.6)
as modified CEV model, which has been studied in Heath & Platen (2002a).
As we shall see, the real world dynamics of the GOP, governed by (12.2.6),
remains for a < 1 strictly positive. This is not the case for its hypothetical
risk neutral dynamics when Wθ is interpreted as a Wiener process under Pθ,
because Sδ∗ may be absorbed at zero with strictly positive Pθ probability, as
will become clear below.

Squared Bessel Process

We shall now show that the modified CEV model is closely related to squared
Bessel processes, see Sect. 8.7. By application of the Itô formula we obtain
from (12.2.6) for the quantity

Xt =
(
Sδ∗

t

)2 (1−a)

(12.2.7)

the SDE

dXt =
(
2(1 − a) r Xt + ψ2 (1 − a) (3 − 2a)

)
dt+2ψ (1−a)

√
Xt dWt (12.2.8)

for t ∈ [0,∞) with X0 = (Sδ∗
0 )2 (1−a) > 0. It follows from Sect. 8.7 that X =

{Xt, t ∈ [0,∞)} is a time transformed, squared Bessel process of dimension

δ =
3 − 2 a
1 − a

(12.2.9)

for a = 1. Note that the SDE (12.2.8) has for a = 1 a nonnegative, unique
strong solution, see Sect.7.7, which for a > 1 we assume remains at zero when
it reaches zero. By (12.2.7) the GOP can be expressed in the form



12.2 Modified CEV Model 447

Sδ∗
t = (Xt)q, (12.2.10)

where
q =

1
2 (1 − a)

(12.2.11)

for t ∈ [0,∞) and a = 1. One notes that for extremely small a < 1 the
dimension δ of the squared Bessel process X equals approximately two, which
yields strongly leptokurtic log-returns for the GOP. However, for the exponent
a when approaching one from below, the dimension δ tends to infinity, which
yields lognormal dynamics for the GOP and, thus, Gaussian log-returns.

Hypothetical Risk Neutral Measure Transformation

In this setting the candidate Radon-Nikodym derivative process Λθ = {Λθ(t),
t ∈ [0,∞)}, which determines the hypothetical risk neutral measure Pθ for the
pricing of options with maturity T with

dPθ

dP

∣
∣
∣
∣
AT

= Λθ(T ), (12.2.12)

is given by

Λθ(t) =
Sδ∗

0

Sδ∗
t

S0
t (12.2.13)

for t ∈ [0,∞), see (9.4.5). This means that by (12.2.10), the candidate Radon-
Nikodym derivative equals the power of a time transformed, squared Bessel
process of dimension δ, that is

Λθ(t) = S0
t

(
X0

Xt

)q

(12.2.14)

for t ∈ [0,∞), where q is given in (12.2.11).
Using (12.2.2) and (12.2.4) one can now rewrite the SDE (12.2.8) with

respect to the drifted Wiener process Wθ, see (12.2.2), in the form

dXt =
(
2 (1 − a) r Xt + ψ2 (1 − a)(1 − 2 a)

)
dt+ 2ψ (1 − a)

√
Xt dWθ(t)

(12.2.15)
for t ∈ [0,∞). Consequently, if one interprets the process X as a time trans-
formed, squared Bessel process under a hypothetical risk neutral probability
measure Pθ, then it would have the dimension

δθ =
1 − 2 a
1 − a

(12.2.16)

for a = 1. In Fig. 12.2.1 we show the dimensions δ and δθ, see (12.2.9) and
(12.2.16), of the above discussed time transformed, squared Bessel processes
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Fig. 12.2.1. Dimensions δ and δθ as a function of the exponent a

as a function of the exponent a, see Heath & Platen (2002b) and also Lewis
(2000).

Note from Fig. 12.2.1 that if a < 1 then δ > 2 and δθ < 2, and if a > 1
then δ < 2 and δθ > 2. These inequalities follow from (12.2.9) and (12.2.16).
It is known, see (8.7.7), that a time transformed, squared Bessel process with
a dimension greater than two remains strictly positive. However, a time trans-
formed, squared Bessel process with a dimension less than two hits zero with
some strictly positive probability, see (8.7.8).

Hypothetical Risk Neutral Measure

In most of the previously mentioned literature one performs the modeling
under a hypothetical risk neutral probability measure Pθ. This allows one to
express the hypothetical risk neutral probability Pθ(A) for an event A in the
form

Pθ(A) =
∫

A

dPθ(ω) =
∫

A

dPθ(ω)
dP (ω)

dP (w) =
∫

A

Λθ(T ) dP (ω), (12.2.17)

where Λθ(T ) is the candidate Radon-Nikodym derivative described in (12.2.14)
at time T ∈ (0,∞). Then one can ask for the total risk neutral measure. By
(12.2.17) one obtains

Pθ(Ω) =
∫

Ω

Λθ(T ) dP (ω) = E
(
Λθ(T )

∣
∣A0

)
. (12.2.18)

If Λθ were an (A, P )-martingale, then Pθ(Ω) would equal Λθ(0) = 1 and Pθ

would be a probability measure. However, for a < 1 it follows from (12.2.14)
and Sect. 8.7 that Λθ is an (A, P )-strict local martingale, see (8.7.25), and,
thus, by Lemma 5.2.3 an (A, P )-strict supermartingale. Consequently, we have
for the total hypothetical risk neutral measure Pθ(Ω) < 1. This means that Pθ

is for the given modified CEV model not a probability measure. Consequently,
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for this model there does not exist an equivalent risk neutral probability mea-
sure Pθ for a < 1.

In addition, for a > 1 the dimension δ is less than two and the exponent
q appearing in (12.2.10) is negative. It therefore follows from (8.7.8) that the
GOP explodes for this parameter choice at some time with strictly positive
P -probability. Consequently, the choice a > 1 does not lead to a viable model
for the GOP. For this reason, we consider only the case a < 1 in the remainder
of this section.

Real World Pricing

As we have seen previously, with its real world pricing concept the benchmark
approach provides a consistent pricing framework without requiring the ex-
istence of an equivalent risk neutral probability measure. For T ∈ [0,∞) let
H = H(Sδ∗

T ) denote a nonnegative payoff with

E

(
H(Sδ∗

T )
Sδ∗

T

)

< ∞. (12.2.19)

Recall from Sect. 9.1 that a price process is fair if, when expressed in units of
the GOP, it is an (A, P )-martingale. Then the fair, benchmarked price ÛH(t)
at time t of this payoff is given by the conditional expectation

ÛH(t) = E

(
H(Sδ∗

T )
Sδ∗

T

∣
∣
∣
∣At

)

(12.2.20)

for t ∈ [0, T ], see Definition 9.1.2. By using the transition density (8.7.9) of a
squared Bessel process X of dimension δ = 3−2a

1−a one can for some given payoff
H(Sδ∗

T ) explicitly calculate the benchmarked price ÛH(t) for any t ∈ [0, T ].
The fair price UH(t) of the payoff H, when expressed in units of the do-

mestic currency, is then obtained by the real world pricing formula

UH(t) = Sδ∗
t ÛH(t) (12.2.21)

for t ∈ [0, T ], see (9.1.31) or (10.4.1).

PDE for Benchmarked Pricing Function

As an alternative to the use of the transition density of the squared Bessel
process X one can exploit the Markovianity of the GOP Sδ∗ . This permits the
application of the Feynman-Kac formula (9.7.3)–(9.7.4) to obtain the bench-
marked price ÛH(t) = ûH(t, Sδ∗

t ) as a function ûH : [0, T ] × [0,∞) → [0,∞)
of the time t and the value Sδ∗

t of the GOP. To formulate this method
of calculation we define the operator L0 on a sufficiently smooth function
f : [0, T ) × (0,∞) → � by



450 12 Modeling Stochastic Volatility

L0 f(t, S) =
∂f(t, S)

∂t
+
(
r S + ψ2 S2a−1

) ∂f(t, S)
∂S

+
1
2
ψ2 S2a ∂

2f(t, S)
∂S2

(12.2.22)
for (t, S) ∈ (0, T ) × (0,∞).

Applying the above operator L0 to the benchmarked pricing function
ûH(·, ·) by using (12.2.20), (12.2.6) and the Feynman-Kac formula, yields the
PDE

L0 ûH(t, S) = 0 (12.2.23)

for (t, S) ∈ (0, T ) × (0,∞) with the terminal condition

ûH(T, S) =
H(S)
S

(12.2.24)

for S ∈ (0,∞). It remains to solve the PDE (12.2.23)–(12.2.24), which, for
instance, can be achieved by a finite difference method, as will be described
in Sect. 15.7.

Martingale Representation

From the Feynman-Kac formula it follows that the benchmarked pricing func-
tion ûH : [0, T ] × [0,∞) → [0,∞) is differentiable with respect to time t and
twice differentiable with respect to Sδ∗

t on (0, T ) × (0,∞). Consequently, by
application of the Itô formula, using (12.2.6), we obtain the representation

ûH(t, Sδ∗
t ) = ûH(0, Sδ∗

0 ) +
∫ t

0

(Sδ∗
s )a ψ

∂ûH(s, Sδ∗
s )

∂Sδ∗
dWs (12.2.25)

for t ∈ [0, T ]. This is the martingale representation of the benchmarked price,
as discussed in Sect. 11.4. By Theorem 11.5.2 this representation provides the
information about the hedge that enables one to replicate the payoff.

Hedge Portfolio

Obviously, by (12.2.1) and (12.2.6), the benchmarked savings account Ŝ0
t sat-

isfies by the Itô formula the SDE

dŜ0
t = −S0

t

(
Sδ∗

t

)a−2

ψ dWt (12.2.26)

for t ∈ [0,∞). Trivially, we have dŜδ∗
t = 0 for t ∈ [0,∞).

For a given payoff function H(Sδ∗
T ) we can construct a hedge portfolio

consisting of δ0
H(t) units of the savings account S0

t and δ1
H(t) units of the GOP

Sδ∗
t . As one can see from (12.2.25) and (12.2.26), to construct a replicating

portfolio we need to choose the hedge ratios according to the prescription

δ0
H(t) = − (Sδ∗

t )2

Ŝ0
t

∂ûH(t, Sδ∗
t )

∂Sδ∗
(12.2.27)
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and
δ1
H(t) = ûH(t, Sδ∗

t ) − δ0
H(t) Ŝ0

t (12.2.28)

for t ∈ [0, T ]. This choice ensures that the value of the hedge portfolio, when
measured in units of the domestic currency, equals the fair price UH(t) =
uH(t, Sδ∗

t ) at time t ∈ [0, T ]. That is

uH(t, Sδ∗
t ) = δ0

H(t)S0
t + δ1

H(t)Sδ∗
t (12.2.29)

for t ∈ [0, T ]. The benchmarked value of the hedge portfolio is, therefore,
given by

ûH(t, Sδ∗
t ) = δ0

H(t) Ŝ0
t + δ1

H(t) (12.2.30)

for t ∈ [0, T ]. By (12.2.20) this hedge portfolio replicates the payoff at the
maturity date T . Since it is a fair portfolio it provides by Corollary 10.4.2 the
minimal hedge.

Benchmarked P&L

To illustrate the replication of the payoff, we define the benchmarked P&L
ĈH(t) for maintaining this hedge portfolio up to time t ∈ [0, T ]. Similarly
to (8.2.13) it equals the benchmarked value of the hedge portfolio minus the
benchmarked gains from trade and the benchmarked initial value, that is,

ĈH(t) = ûH(t, Sδ∗
t ) −

∫ t

0

δ0
H(s) dŜ0

s − ûH(0, Sδ∗
0 ) (12.2.31)

for t ∈ [0, T ]. By combining (12.2.31), (12.2.27), (12.2.25) and (12.2.22) we
see that

ĈH(t) = 0 (12.2.32)

for all t ∈ [0, T ]. This means that the benchmarked P&L for maintaining the
hedge portfolio is always zero. Consequently, the P&L

CH(t) = ĈH(t)Sδ∗
t = 0 (12.2.33)

equals zero for all times t ∈ [0, T ]. Thus, the payoff H(Sδ∗
T ) can be perfectly

hedged using the real world pricing formula (12.2.21) together with the hedg-
ing prescriptions (12.2.27) and (12.2.30).

Hedge Ratio

By using (12.2.27), (12.2.30) and (12.2.25) the hedge ratio δ1
H(t) can be rewrit-

ten in the form

δ1
H(t) = ûH(t, Sδ∗

t ) + Sδ∗
t

∂ûH(t, Sδ∗
t )

∂Sδ∗
=

∂uH(t, Sδ∗
t )

∂Sδ∗
(12.2.34)
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for t ∈ [0, T ]. Therefore, the number of units δ1
H(t) held in the GOP at time

t ∈ [0, T ] equals the delta hedge ratio obtained by calculating the partial
derivative of the fair price with respect to the value of the underlying, that
is the GOP. This is entirely analogous to what we obtained in Chap. 8 under
the BS model. It is also analogous to what one obtains in a classical risk
neutral hedging framework when using a savings account for hedging, see, for
instance, Karatzas & Shreve (1998). Note, however, that the above benchmark
methodology still works when no equivalent risk neutral probability measure
exists, as is the case for the given modified CEV model.

Fair Zero Coupon Bond

The price PT (t, Sδ∗
t ) at time t ∈ [0, T ] for the fair zero coupon bond that pays

one unit of the domestic currency at maturity T is given as

PT (t, Sδ∗
t ) = Sδ∗

t P̂T (t, Sδ∗
t ) (12.2.35)

for t ∈ [0, T ], see (9.1.34) and (10.4.1), with

P̂T (t, Sδ∗
t ) = E

(
1
Sδ∗

T

∣
∣
∣At

)

. (12.2.36)

Note by (8.7.16) that the conditional expectation in (12.2.36) can be calcu-
lated explicitly. The following explicit bond pricing formula for the modified
CEV model has been established in Miller & Platen (2008). By using the
transition density (8.7.9) of a squared Bessel process of dimension δ > 2 one
obtains

PT (t, Sδ∗
t ) = E

(
Sδ∗

t

Sδ∗
T

∣
∣
∣At

)

= exp{−r (T − t)}χ2(∗; δ − 2) (12.2.37)

for t ∈ [0, T ]. Here χ2(·; δ) is the central chi-square distribution function with
δ degrees of freedom, see (1.2.11), where

∗ =
2 r (Sδ∗

t )2(1−a)

ψ2 (1 − a) (1 − exp{−2(1 − a) r (T − t)}) . (12.2.38)

It is clear that
PT (t, Sδ∗

t ) < exp{−r (T − t)} (12.2.39)

for all t ∈ [0, T ) and Sδ∗
t > 0, because χ2(∗; δ− 2) is the value of a chi-square

distribution.
We remark that the function P̂T (·, ·) of the benchmarked fair zero coupon

bond price satisfies the PDE

L0 P̂T (t, S) = 0 (12.2.40)
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for (t, S) ∈ [0, T ) × (0,∞) with terminal condition

P̂T (T, S) =
1
S

(12.2.41)

for S ∈ (0,∞), see (12.2.23)–(12.2.24), where the operator L0 is given in
(12.2.22).

Savings Bond

The price process uH = {uH(t, Sδ∗
t ), t ∈ [0,∞)} in (12.2.28) is the only fair

portfolio process, which perfectly replicates the payoff. However, as we shall
see below, other nonnegative portfolio processes exist, which also perfectly
replicate the payoff. As shown in Theorem 10.3.1, any benchmarked nonnega-
tive portfolio process forms an (A, P )-supermartingale. From this it followed
in Corollary 10.4.2 that the fair price, as obtained according to (12.2.29),
yields the minimal price that permits perfect replication of the payoff. This
will be verified for our case below.

Since we have assumed a constant short rate rt = r it is easy to introduce
an artificial savings bond P ∗

T = {P ∗
T (t), t ∈ [0,∞)} with

P ∗
T (t) =

S0
t

S0
T

= exp{−r (T − t)} (12.2.42)

for t ∈ [0, T ]. By application of the Itô formula, it can be shown by (12.2.10),
(12.2.8) and (12.2.42), that the benchmarked savings bond price process P̂ ∗

T =
{P̂ ∗

T (t, Sδ∗
t ), t ∈ [0, T ]} with

P̂ ∗
T (t, Sδ∗

t ) =
P ∗

T (t)
Sδ∗

t

= X−q
t P ∗

T (t) (12.2.43)

satisfies the SDE

dP̂ ∗
T (t, Sδ∗

t ) = −P̂ ∗
T (t, Sδ∗

t )
ψ√
Xt

dWt (12.2.44)

for t ∈ [0, T ]. Therefore, P̂ ∗
T forms an (A, P )-local martingale. Since a non-

negative, local martingale is an (A, P )-supermartingale, see Corollary (5.2.2),
it follows that

P̂ ∗
T (t, Sδ∗

t ) ≥ E

(
1
Sδ∗

T

∣
∣
∣At

)

for t ∈ [0, T ]. Therefore, by (12.2.35) and (12.2.43) we can deduce the in-
equality

PT (t, Sδ∗
t ) = Sδ∗

t E

(
1
Sδ∗

T

∣
∣
∣At

)

≤ Sδ∗
t P̂ ∗

T (t, Sδ∗
t ) = P ∗

T (t) (12.2.45)
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Fig. 12.2.2. Difference between savings and fair bond

for t ∈ [0, T ]. This confirms our observation in (12.2.39) that the savings
bond is at least as expensive as the fair zero coupon bond. In Fig. 12.2.2
we show the difference between the savings bond and the fair zero coupon
bond for a = −0.5, ψ = 0.2 and r = 0.04. The savings bond is an unfair
price process because when benchmarked it forms a strict supermartingale,
see Exercise 12.6. However, it does not constitute an arbitrage in the sense of
Definition 10.3.2.

Free Snack from Savings Bond

The above relation (12.2.45) poses an obvious question about the potential
existence of arbitrage. As shown in (12.2.27)–(12.2.28), there exists a trading
strategy which hedges the fair zero coupon bond under consideration. One
may now form a trading strategy δ consisting of the aforementioned hedge,
which is funded by borrowing the amount PT (0, Sδ∗

0 ) from a savings account
at initiation. The portfolio value Sδ

t at time t ∈ [0, T ] is then given by the
expression

Sδ
t = PT (t, Sδ∗

t ) − PT (0, Sδ∗
0 ) exp{−r t}. (12.2.46)

We observe that Sδ
0 = 0 and

Sδ
T = 1 − PT (0, Sδ∗

0 ) exp{−r T} > 0, (12.2.47)

as well as
Sδ

t ≥ −PT (0, Sδ∗
0 ) exp{−r t} (12.2.48)

almost surely for all t ∈ [0, T ]. Thus, δ is a strategy with a wealth process
that is uniformly bounded from below. Since Sδ

t may become negative this
portfolio is not covered by our arbitrage concept given in Definition 10.3.2.
However, it is covered by the concept of free lunch with vanishing risk, see
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Delbaen & Schachermayer (2006). Since we have in the given case a free lunch
with vanishing risk it follows by the fundamental theorem of asset pricing
of Delbaen & Schachermayer (1998) that the modified CEV model does not
admit an equivalent risk neutral probability measure. This confirms what
we observed already when we studied the strict supermartingale property of
the candidate Radon-Nikodym derivative for the hypothetical risk neutral
probability measure.

In Loewenstein & Willard (2000) a portfolio of the above kind is called
a free snack. As we have seen, it rules out the existence of an equivalent
risk neutral probability measure. However, it does not constitute an economic
reason for dismissing the given model.

Benchmarked Savings Bond

Note that the pricing function of the benchmarked savings bond P̂ ∗
T (·, ·) satis-

fies the PDE (12.2.23) with

L0 P̂ ∗
T (t, S) = 0 (12.2.49)

for (t, S) ∈ [0, T ) × (0,∞) and terminal condition

P̂ ∗
T (T, S) =

1
S

(12.2.50)

for S ∈ (0,∞). The PDE (12.2.40) with terminal condition (12.2.41) is the
same as the one given in (12.2.49) and (12.2.50). Therefore, there is more than
one solution to the PDE problem (12.2.49)–(12.2.50). This is related to the fact
that the solution to this PDE is not fully determined without specification of
its behavior along the spatial boundary at zero. From the absence of arbitrage
in the sense of Definition 10.3.2 it follows from (10.3.4) that any nonnegative
portfolio that reaches zero remains at zero after that time. For this reason the
spatial boundary condition where S reaches zero must be that of absorption.

The above savings bond provides a perfect hedge via a self-financing port-
folio that replicates one monetary unit at maturity T . Note however that
this is not the minimal possible hedge portfolio. The fair zero coupon bond
portfolio, given by the price (12.2.35), provides the minimal hedge since its
benchmarked value forms a martingale while the benchmarked savings bond
is a strict supermartingale.

European Call Option

For a European call option on the GOP with strike K and maturity T the
benchmarked fair price ĉT,K(t, Sδ∗

t ) at time t is given by the formula

ĉT,K(t, Sδ∗
t ) = E

(
(Sδ∗

T −K)+

Sδ∗
T

∣
∣
∣
∣At

)

= E

⎛

⎝

(

1 − K

Sδ∗
T

)+ ∣
∣
∣
∣At

⎞

⎠ (12.2.51)
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for t ∈ [0, T ]. Note that the conditional expectation used in (12.2.51) is finite
because the payoff (1 − K

Sδ∗
T

)+ is bounded. Thus, the inequality (12.2.19) for

the European call payoff is satisfied. The corresponding fair price cT,K(t, Sδ∗
t ),

see (12.2.21), takes the form by the real world pricing formula (9.1.34) and
(10.4.1)

cT,K(t, Sδ∗
t ) = Sδ∗

t ĉT,K(t, Sδ∗
t ) (12.2.52)

for t ∈ [0, T ].
By (12.2.23) the function ĉT,K(·, ·) satisfies the PDE (12.2.23) with termi-

nal condition

ĉT,K(T, S) = Ĥ(S) =
(

1 − K

S

)+

(12.2.53)

for S ∈ (0,∞), which can be solved numerically.
Alternatively, one can calculate the benchmarked European call price by

exploiting the known transition density of the squared Bessel process X. This
yields by (8.7.9), see Miller & Platen (2008), the explicit expression

ĉT,K(t, Sδ∗
t ) = (1 − χ2(u∗; δ, ∗)) − K

Sδ∗
t

exp{−r (T − t)}χ2(∗; δ − 2, u∗),

(12.2.54)
where

u∗ =
2 rK2(1−a)

ψ2 (1 − a) (exp{2(1 − a) r (T − t)} − 1)
(12.2.55)

and ∗ is as in (12.2.38) for t ∈ (0, T ] and χ2(·; δ, ·) is the non-central chi-
square distribution (1.2.13) with degrees of freedom δ. Now, when using the
previous notation we obtain the explicit European call pricing formula

cT,K(t, Sδ∗
t ) = Sδ∗

t

(
1 − χ2(u∗; δ, ∗)

)
−K exp{−r (T − t)}χ2(∗; δ − 2, u∗)

(12.2.56)
for the modified CEV model, see Miller & Platen (2008). This explicit pricing
formula is equivalent to similar CEV call option pricing formulas that one can
find in Cox & Ross (1976), Beckers (1980), Schroder (1989), Cox (1996), Shaw
(1998) and Delbaen & Shirakawa (2002). The important difference, however,
is that an equivalent risk neutral probability measure does not exist for the
modified CEV model. We shall discuss this issue further below.

According to (12.1.5) one can visualize a European call price efficiently
by its implied volatility. For an exponent a = −0.5, that is with dimension
δ ≈ 2.67, ψ = 0.2, a constant interest rate r = 0.04 and maturity dates
of up to two years, Fig. 12.2.3 displays the corresponding implied volatility
surface that results from the fair call option price using different values of
the strike K and time t for fixed value of Sδ∗

t = 1. In Fig. 12.2.3 we see
negatively skewed implied volatilities. Note that we use here the fair zero
coupon bond as discount factor for the inversion of the Black-Scholes formula
when calculating implied volatilities. More precisely, we use the substitute
short rate for a European call option with maturity T
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Fig. 12.2.3. Implied volatilities for fair European call prices

r̂ = − 1
T − t

ln(PT (t, Sδ∗
t )) =

1
T − t

∫ T

t

f(t, s)ds (12.2.57)

when calculating implied volatilities. Here f(t, s) denotes the forward rate at
time t for the maturity s, see (10.4.12). We emphasize that it is important
to make the above adjustment. Otherwise, implied put and call volatilities do
not match.

European Put Option

Similarly, one can also compute the fair European put option price

pT,K(t, Sδ∗
t ) = Sδ∗

t E

⎛

⎝

(
K

Sδ∗
T

− 1

)+ ∣
∣
∣At

⎞

⎠ (12.2.58)

for t ∈ [0, T ], which has by application of the transition density (8.7.9) the
explicit form

pT,K(t, Sδ∗
t ) = −Sδ∗

t χ2(u∗; δ, ∗) +K exp{−r (T − t)}

×
(
χ2(∗; δ − 2) − χ2(∗; δ − 2, u∗)

)
(12.2.59)

for t ∈ [0, T ] with the notation (12.2.55)–(12.2.38). This explicit, fair Euro-
pean put pricing formula for the modified CEV model, see Miller & Platen
(2008), is clearly different from the type of put pricing formulas that one
would obtain from Cox & Ross (1976), Beckers (1980), Schroder (1989), Cox
(1996) or Shaw (1998). The reason is that these authors priced a CEV model
under the assumption that it has an equivalent risk neutral probability mea-
sure. Their benchmarked put prices are strict supermartingales. The modified
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CEV model does not have an equivalent risk neutral probability measure and
its benchmarked fair put prices are martingales.

In Lewis (2000) some rules are proposed that aim to account for the dif-
ferences that arise when constructing some hypothetical risk neutral prices
in models like the CEV model. Unfortunately, this approach appears to lead
to conceptual problems when going beyond standard put and call options.
The real world pricing concept of the benchmark approach also applies to the
pricing under any reasonable model that has a GOP.

Fair Put-Call Parity

By using the corresponding fair zero coupon bond price with maturity T the
fair put-call parity is satisfied, that is, the following relation holds

pT,K(t, Sδ∗
t ) = cT,K(t, Sδ∗

t ) − Sδ∗
t +K PT (t, Sδ∗

t ) (12.2.60)

for t ∈ [0, T ]. However, by (12.2.39) we have

pT,K(t, Sδ∗
t ) < cT,K(t, Sδ∗

t ) − Sδ∗
t +K exp{−r (T − t)} (12.2.61)

for t ∈ [0, T ) and Sδ∗
t > 0. This means, when using the savings bond instead of

the fair bond in (12.2.60), put-call parity does not hold. Note that this effect
arises here even in a model with constant interest rates.

As already indicated, since we use the fair zero coupon bond price as the
discount factor for the computation of implied volatilities from the Black-
Scholes formula, the implied volatilities of fair puts equal those of correspond-
ing fair calls. However, if one would use the savings bond in such calculations
as discount factor, then differences between the implied volatilities for puts
and calls would emerge.

Comparison to Hypothetical Risk Neutral Prices

Let us now compare the above results with those that one would obtain under
formal application of the standard risk neutral pricing methodology. This
means we are for a moment neglecting the fact that there does not exist an
equivalent risk neutral probability measure for the given modified CEV model.

We define the hypothetical risk neutral price c∗T,K(t, Sδ∗
t ) at time t of a Eu-

ropean call option on the GOP with strike K and maturity T by c∗T,K(t, Sδ∗
t )

for t ∈ [0, T ]. The benchmarked hypothetical risk neutral call price

ĉ∗T,K(t, Sδ∗
t ) =

c∗T,K(t, Sδ∗
t )

Sδ∗
t

(12.2.62)

forms an (A, P )-local martingale, as all benchmarked portfolio processes in a
CFM. One notes the important fact that its benchmarked payoff is bounded.
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Fig. 12.2.4. Difference between hypothetical risk neutral and fair put prices

Therefore, the benchmarked hypothetical risk neutral price ĉ∗T,K(·, ·) is uni-
formly bounded. By Lemma 5.2.2 (ii) it follows that bounded local martingales
are martingales. Therefore, ĉ∗T,K forms a martingale such that

ĉ∗T,K(t, Sδ∗
t ) = ĉT,K(t, Sδ∗

t )

and thus
c∗T,K(t, Sδ∗

t ) = cT,K(t, Sδ∗
t ) (12.2.63)

for all t ∈ [0, T ]. This means that hypothetical risk neutral and fair call option
prices coincide in the given case.

We now introduce the hypothetical risk neutral put price by the corre-
sponding hypothetical risk neutral put-call parity relation

p∗T,K(t, Sδ∗
t ) = c∗T,K(t, Sδ∗

t ) − Sδ∗
t +K P ∗

T (t) (12.2.64)

for t ∈ [0, T ], where P ∗
T (·) is the savings bond, see (12.2.42). By applying

(12.2.61) and (12.2.64) it can be inferred that

pT,K(t, Sδ∗
t ) < p∗T,K(t, Sδ∗

t ) (12.2.65)

for all t ∈ [0, T ). This means that the fair put price is less than or equal to
the hypothetical risk neutral put price.

Figure 12.2.4 shows the difference between the hypothetical risk neutral
and the fair European put price as a function of the strike K and time t for
the same parameter values used in Fig. 12.2.3. Note that these differences are
always nonnegative, see (12.2.65). This visualizes again the fact that fair prices
are the minimal prices that replicate a contingent claim, see Corollary 10.4.2.
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Difference in Asymptotic Put Prices

When considering the above analysis it becomes clear that differences between
fair and hypothetical risk neutral prices arise when the payoff is not vanish-
ing for vanishing GOP. In such a case the risk neutral pricing methodology
suggests some prices that contradict economic reasoning. There always exists
a corresponding fair price that allows a perfect hedge which is less or equal
to the hypothetical risk neutral price.

Now, we shall demonstrate that the differences between fair prices and hy-
pothetical risk neutral prices can become extreme if the underlying GOP value
tends towards zero. One can show by the conditional moment estimate (8.7.16)
for the benchmarked, fair zero coupon bond, see (12.2.36) and (12.2.10), when
the GOP comes close to zero, that

lim
Sδ∗

t →0
P̂T (t, Sδ∗

t ) a.s.= lim
Xt→0

E
(
(XT )−q

∣
∣At

)
< ∞ (12.2.66)

so that
lim

Sδ∗
t →0

PT (t, Sδ∗
t ) a.s.= lim

Sδ∗
t →0

Sδ∗
t P̂T (t, Sδ∗

t ) = 0 (12.2.67)

for t ∈ [0, T ] and T ∈ (0,∞). In addition, since

lim
Sδ∗

t →0
cT,K(t, Sδ∗

t ) a.s.= lim
Sδ∗

t →0
Sδ∗

t ĉT,K(t, Sδ∗
t ) = 0, (12.2.68)

by application of the fair put-call parity relation (12.2.60) we see for the fair
put price that

lim
Sδ∗

t →0
pT,K(t, Sδ∗

t ) a.s.= 0 (12.2.69)

for t ∈ [0, T ]. However, from the hypothetical risk neutral put-call parity
relation (12.2.64) together with (12.2.63), (12.2.68) and (12.2.42) it can be
seen that the corresponding hypothetical risk neutral put price satisfies for
vanishing GOP the limit condition

lim
Sδ∗

t →0
p∗T,K(t, Sδ∗

t ) a.s.= K
S0

t

S0
T

> 0 (12.2.70)

for t ∈ [0, T ]. By comparing (12.2.69) and (12.2.70), we note a difference
between the behavior of the fair and hypothetical risk neutral put prices as
the GOP comes close to zero. We emphasize again that the fair put price is,
in economic terms, the correct price for this contingent claim as it can be
perfectly hedged using the hedge ratios (12.2.27) and (12.2.30) and there is
no lower put price which could be used for replication. We emphasize that in
both cases the put payoff is replicated by a self-financing hedge portfolio.

The above study of the modified CEV model signals that one has to be
very careful in the pricing and hedging under stochastic volatility. This is of
particular relevance if an index model attempts to capture the leverage effect
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where volatility increases when the index value decreases. One can expect that
this results in effects similar to those described above. For a realistic model the
volatility has to become large when the index attains small values to be able
to reflect the economically relevant risk involved. This suggests that realistic
index models can be expected to face the above experienced problems when
applying the risk neutral methodology.

12.3 Local Volatility Models

LV Models

As we have seen in Sect. 12.1, the existence of implied volatility skews for
options on indices is well documented. A natural one-factor extension of the BS
model is obtained by introducing local volatility (LV) models. This means that
the volatility is allowed to change as a function of the underlying and time.
The resulting LV models have attracted the interest of many researchers and
practitioners. They were pioneered by Dupire (1992, 1993, 1994) and Derman
& Kani (1994a, 1994b) and have been widely used in practice. However, in
this literature one typically assumes the existence of a risk neutral probability
measure. This could be problematic since the modified CEV model, considered
in the previous section, is a special case of an LV model. Another LV model
is the MMM proposed in Platen (2001), which was mentioned in Sect. 7.5.
We shall see in the next chapter that it does not have an equivalent risk
neutral probability measure. Therefore, in this section we apply again real
world pricing to obtain derivative prices.

In the first part of this section it will be our aim to estimate the real world
transition density of the underlying index from observed call option prices
and also its local volatility function. Typically, in the literature on LV models
one extracts risk neutral transition densities from observed option prices, see
Dupire (1994). This does not make sense for models that do not have an
equivalent risk neutral probability measure. Therefore, it will be our aim to
estimate the real world transition density without relying on the existence of
an equivalent risk neutral probability measure.

Local Volatility

Let us consider a CFM with GOP process Sδ∗ = {Sδ∗
t , t ∈ [0,∞)}, which

we interpret, similarly to the previous section, as a diversified accumulation
index. For simplicity, the short rate rt = r is assumed to be constant. We say
that the GOP Sδ∗

t follows an LV model if it satisfies an SDE of the form

dSδ∗
t = Sδ∗

t

((
r + σ2(t, Sδ∗

t )
)
dt+ σ(t, Sδ∗

t ) dWt

)
(12.3.1)
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for t ∈ [0,∞), see (10.2.8). This formulation of the GOP dynamics incorpo-
rates the total market price of risk |θt|, as a function of time t and underlying
security Sδ∗

t , in the form of the local volatility (LV)

|θt| = σ(t, Sδ∗
t ) (12.3.2)

for t ∈ [0,∞). The specific structural assumption here is that the total market
price of risk depends on the underlying security and time. The choice of the
LV function characterizes the selected LV model. Here W = {Wt, t ∈ [0,∞)}
denotes a standard Wiener process on a filtered probability space (Ω,A,A, P ),
where P is the real world probability measure. Furthermore, we assume that
a unique strong solution of the SDE (12.3.1) exists, see Sect. 7.7, which is not
trivial for certain classes of LV functions. In cases, where Sδ∗

t may reach zero,
we choose zero as an absorbing boundary, similarly as in (7.7.18).

LV Function

Under an LV model it is assumed that the volatility σ(t, Sδ∗
t ) is generated by

a given LV function σ : [0,∞) × [0,∞) → [0,∞], which is a deterministic
function of time and the underlying security.

If the volatility process σ = {σ(t, Sδ∗
t ), t ∈ [0,∞)} is deterministic, then

we have a BS model for Sδ∗ . The modified CEV model, considered in the
previous section, has as LV function the power function

σ(t, Sδ∗
t ) = (Sδ∗

t )a−1 ψ (12.3.3)

for some exponent a ∈ (−∞, 1) and constant scaling parameter ψ.
Another LV model is obtained by the stylized version of the MMM, men-

tioned in Sect. 7.5. Here the LV function has the form

σ(t, Sδ∗
t ) =

√
α0 exp{(r + η) t}

Sδ∗
t

, (12.3.4)

with constant net growth rate η > 0 and initial parameter α0 > 0. In this
case the GOP can be modeled as

Sδ∗
t = Yt α0 exp {(r + η) t} (12.3.5)

for t ∈ [0,∞) with parameters α0, η, r > 0. In (12.3.5) Y = {Yt, t ∈ [0,∞)}
is a square root process of dimension four, which satisfies the SDE

dYt = (1 − η Yt) dt+
√
Yt dWt (12.3.6)

for t ∈ [0,∞), see (7.5.16), with Y0 = Sδ∗
0

α0
> 0. One notes that the LV function

(12.3.4) of the stylized MMM can be expressed simply as a function of the
value of the square root process Y . That is, by (12.3.4) and (12.3.5) we can
write
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σ(t, Sδ∗
t ) =

1√
Yt

(12.3.7)

for t ∈ [0,∞). Consequently, the squared volatility is the inverse of a square
root (SR) process. Such an SR process is known to have as stationary density
a gamma density, see Sect. 4.5. Therefore, in the case of the stylized MMM
the volatility has a stationary density and, thus, allows us to model some kind
of an equilibrium.

Benchmarked Savings Account

The benchmarked savings account process Ŝ0 = {Ŝ0
t , t ∈ [0,∞)} is again given

by the ratio

Ŝ0
t =

S0
t

Sδ∗
t

. (12.3.8)

For the LV model it satisfies, by an application of the Itô formula together
with (12.3.1), the driftless SDE

dŜ0
t = −Ŝ0

t σ

(

t,
S0

t

Ŝ0
t

)

dWt (12.3.9)

for t ∈ [0,∞). Since a nonnegative, local martingale is a supermartingale,
see Lemma 5.2.2 (i) and Theorem 10.3.1, the benchmarked savings account
Ŝ0 is a supermartingale. Recall from Sect. 9.4 that the candidate Radon-
Nikodym derivative process Λ = {Λt, t ∈ [0,∞)} of the hypothetical risk
neutral probability measure is given by the normalized benchmarked savings
account Λ = {Λt, t ∈ [0,∞)} with

Λt =
Ŝ0

t

Ŝ0
0

= exp
{
−1

2

∫ t

0

σ(s, Sδ∗
s )2 ds−

∫ t

0

σ(s, Sδ∗
s ) dWs

}
(12.3.10)

for t ∈ [0,∞). We have already seen for the modified CEV model that Λ can
become a strict (A, P )-supermartingale. Therefore, an equivalent risk neutral
probability measure may not exist for a range of LV models.

Real World Pricing under an LV Model

Let H = H(Sδ∗
T ) denote a nonnegative payoff with maturity date T ∈ (0,∞).

Then its benchmarked fair price ÛH(t) at time t ∈ [0, T ] is given by the
conditional expectation

ÛH(t) = E

(
H(Sδ∗

T )
Sδ∗

T

∣
∣
∣
∣At

)

(12.3.11)

for t ∈ [0, T ], see Definition 9.1.2. The corresponding fair price UH(t) at time
t, expressed in units of the domestic currency, is then
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UH(t) = Sδ∗
t ÛH(t) (12.3.12)

for t ∈ [0, T ], which is the real world pricing formula. Note that under an
LV model Sδ∗ is a diffusion process and, thus, Markovian. For a sufficiently
smooth function f : [0, T ]× (0,∞) → � define the operator L0 by the expres-
sion

L0 f(t, S) =
∂f(t, S)

∂t
+ (r + σ2(t, S))S

∂f(t, S)
∂S

+
1
2
σ2(t, S)S2 ∂

2f(t, S)
∂S2

(12.3.13)
for (t, S) ∈ (0, T ) × (0,∞). Using (12.3.11) and (12.3.1) it follows by the
Feynman-Kac formula (9.7.3)–(9.7.5) that the benchmarked fair pricing func-
tion ûH(·, ·) with ûH(t, Sδ∗

t ) = ÛH(t) satisfies the PDE

L0 ûH(t, S) = 0 (12.3.14)

for (t, S) ∈ (0, T ) × (0,∞) with terminal condition

ûH(T, S) =
H(S)
S

(12.3.15)

for S ∈ (0,∞).
The benchmarked fair pricing function ûH(·, ·) is uniquely determined by

(12.3.11) and satisfies the PDE (12.3.14) with terminal condition (12.3.15) as
its minimal solution. As we have noticed from the modified CEV model, one
needs to be aware of the fact that for certain types of payoffs the solution to
this PDE may not be unique. This was, for instance, the case for zero coupon
bonds and European puts. These are payoffs with nonvanishing value when
the GOP reaches zero. However, we emphasize that there is only one minimal
solution to the PDE (12.3.14)–(12.3.15), which is given by the benchmarked
fair pricing function. In this case the boundary for S → 0 is absorbing. This
ensures the absence of arbitrage in the sense of Definition 10.3.2, because
benchmarked nonnegative portfolios that reach zero stay at zero in a CFM.

For the fair price of H(Sδ∗
T ) a corresponding self-financing hedge portfolio,

which replicates the payoff, can be constructed, similarly as in the previous
section. If the benchmarked fair pricing function ûH(·, ·) is sufficiently smooth,
then we have by application of the Itô formula a martingale representation of
the form

H(Sδ∗
T )

Sδ∗
T

= ûH(t, Sδ∗
t ) +

∫ T

t

∂ûH(s, Sδ∗
s )

∂Sδ∗
Sδ∗

s σ(s, Sδ∗
s ) dWs (12.3.16)

for t ∈ [0, T ), see (11.5.3) and (12.2.25). One can form a hedge portfolio, see
Theorem 11.5.2, consisting of δ0

H(t) units of the domestic savings account and
δ1
H(t) units of the GOP at time t. By comparing (12.3.16) with the SDE for

a benchmarked portfolio Ŝδ one obtains the hedge ratios

δ0
H(t) = − (Sδ∗

t )2

S0
t

∂ûH(t, Sδ∗
t )

∂Sδ∗
(12.3.17)
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Fig. 12.3.1. Implied volatility surface for the stylized MMM

and

δ1
H(t) = ûH(t, Sδ∗

t ) − δ0
H(t)

S0
t

Sδ∗
t

(12.3.18)

for t ∈ [0, T ). These generalize the equations (12.2.27) and (12.2.28). This
hedge portfolio replicates the payoff H(Sδ∗

T ). It provides perfect replication
in the sense that the corresponding P&L remains zero, see (12.2.33). The
portfolio value forms the minimal possible value since its benchmarked value
is a martingale and coincides with the payoff at maturity T .

European Calls

If we denote by K the strike price of a European call option with maturity T ,
then at time t the corresponding fair call option price c(t, Sδ∗

t , T,K) satisfies
the relation

c(t, Sδ∗
t , T,K) = Sδ∗

t E

⎛

⎝

(

1 − K

Sδ∗
T

)+ ∣
∣
∣
∣At

⎞

⎠ (12.3.19)

for t ∈ [0, T ].
Instead of the European call option prices their corresponding implied

volatilities give a better view of the option market. We have shown in
Fig.12.2.3 the implied volatility surface for European calls, which results from
the modified CEV model as a function of the strike and time to maturity. To
provide another example we show in Fig.12.3.1 the implied volatility surface’s
dependence on T and K for a fair call option under the stylized MMM given in
Sect.7.5, with r = 0.04, η = 0.048, α0 = 0.03827, and Sδ∗

0 = 1. In Fig.12.3.1 we
observe a pronounced negative skew. The term structure of implied volatility
is characterized here by a gradual increase in at-the-money implied volatil-
ities over time. Note that we take here, as in the previous section, the fair
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zero coupon bond as discount factor when calculating implied volatilities, see
(12.2.57). This means that we adjust in the Black-Scholes formula the short
rate to

r̂ =
−1
T − t

ln(P (t, T )) (12.3.20)

for calculating implied volatilities.

Implied Transition Density of the GOP

We shall now demonstrate that it is, in principle, possible to estimate from
observed option prices the transition probability density of the underlying
GOP under an LV model. Let us denote by pŜ0(t, Ŝ0

t ;T, Ŝ0
T ) the transition

density of the benchmarked savings account process Ŝ0 under the real world
probability measure P . For convenient presentation we define the quantity

u(t, Ŝ0
t , T, κ) = κ ĉT,K(t, Sδ∗

t ) =
S0

T

K Sδ∗
t

c(t, Sδ∗
t , T,K) (12.3.21)

with the deterministic value

κ =
S0

T

K
. (12.3.22)

By (12.3.19) together with (12.3.8) this equation can be rewritten in the form

u(t, Ŝ0
t , T, κ) = E

((
κ− Ŝ0

T

)+ ∣∣
∣At

)
. (12.3.23)

Using an idea of Breeden & Litzenberger (1978), which was also applied by
Dupire (1993) and Derman & Kani (1994b) in the risk neutral setting, it fol-
lows from (12.3.23) that

∂

∂κ
u(t, Ŝ0

t , T, κ) =
∂

∂κ

∫ κ

0

(κ− y) pŜ0(t, Ŝ0
t ;T, y) dy

=
∫ κ

0

pŜ0(t, Ŝ0
t ;T, y) dy. (12.3.24)

This allows us to express the real world transition density pŜ0 in the form

pŜ0(t, Ŝ0
t ;T, κ) =

∂2

∂κ2
u(t, Ŝ0

t , T, κ) (12.3.25)

for t ∈ [0, T ]. By using (12.3.22) and (12.3.21) and calculating the partial
derivative of u in terms of partial derivatives of the call pricing function c
given in (12.3.19), the transition density pŜ0 in (12.3.25) can be equivalently
expressed in the form

pŜ0(t, Ŝ0
t ;T, κ) =

K3

S0
T Sδ∗

t

∂2

∂K2
c(t, Sδ∗

t , T,K) (12.3.26)
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Fig. 12.3.2. Implied transition density obtained from CEV call option prices

for t ∈ [0, T ].
Let pSδ∗ (t, Sδ∗

t ;T,K) denote the transition density for the GOP process
Sδ∗ under the real world probability measure P . Then the following result
can be directly obtained by using the transformation (12.3.8) and formulas
(12.3.25) and (12.3.26).

Lemma 12.3.1. The transition density pSδ∗ is of the form

pSδ∗ (t, Sδ∗
t ;T,K) =

K

Sδ∗
t

∂2

∂K2
c(t, Sδ∗

t , T,K) (12.3.27)

for t ∈ [0, T ].

Consequently, by assuming the availability of a continuum of European call
option prices with respect to strike and time to maturity we can theoretically
infer the real world transition density of the GOP. This is different to most
results in the literature where one infers risk neutral transition densities. As we
have seen earlier, a corresponding equivalent risk neutral probability measure
may, in general, not exist. Therefore, the derivation of risk neutral transition
densities may not be that useful.

To illustrate the statement of Lemma 12.3.1, Fig. 12.3.2 displays a transi-
tion density of the GOP as a function of K and T , which has been numerically
computed by application of relation (12.3.27). As input we used the values
of the European call options that were calculated earlier under the modified
CEV model for obtaining the implied volatilities shown in Fig. 12.2.3. This
means that Fig. 12.3.2 displays an inferred real world transition probability
density pSδ∗ for a GOP process Sδ∗ for the case of the modified CEV model
with a = −1

2 , ψ = 0.2 and r = 0.04.
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Representation of the LV Function

We shall see under the LV model that, in principle, at any maturity date
T ∈ [0,∞) and for any value κ ∈ (0,∞), the LV function value σ(T, κ) can be
recovered from a continuum of observed European call option prices. This is
again similar to results described in Breeden & Litzenberger (1978), Dupire
(1992, 1993, 1994) and Derman & Kani (1994a, 1994b). In our case the LV
function is obtained without requiring the existence of an equivalent risk neu-
tral probability measure, which is different to the approach taken in these
references.

To derive the result conveniently let us make the following technical as-
sumptions

lim
κ→0

1
κ

∂

∂T
u(t, Ŝ0

t , T, κ) = 0, (12.3.28)

and

lim
κ→0

σ2(T,K)κ
∂2

∂κ2
u(t, Ŝ0

t , T, κ) = 0. (12.3.29)

These are reasonable conditions that apply to a wide range of LV models.
They lead to the following result, which is derived in Heath & Platen (2006):

Theorem 12.3.2. Under (12.3.28) and (12.3.29) has for fixed t ∈ [0, T ]
and Ŝ0

t > 0 the LV function the form

σ(T,K) =
√

2
κ

(
∂

∂T u(t, Ŝ0
t , T, κ)

∂2

∂κ2u(t, Ŝ0
t , T, κ)

) 1
2

(12.3.30)

for (T,K) ∈ (0,∞) × (0,∞), t ∈ [0, T ), with κ as given in (12.3.22).

Dupire Formula

To express the LV function in terms of European call option prices one can
use the transformations (12.3.22) and (12.3.21) to compute the corresponding
partial derivatives. One then obtains the following result, which is equivalent
to (12.3.30), see Heath & Platen (2006). It is known as the Dupire formula.
Here it is obtained without relying on the existence of a risk neutral probability
measure.

Corollary 12.3.3. (Dupire) The LV function has the representation

σ(T,K) =
√

2
K

√√
√
√

∂
∂T c(t, Sδ∗

t , T,K) +K r ∂
∂K c(t, Sδ∗

t , T,K)
∂2

∂K2 c(t, Sδ∗
t , T,K)

(12.3.31)

for (T,K) ∈ (0,∞) × (0,∞), t ∈ [0, T ).
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Fig. 12.3.3. LV function implied from modified CEV call option prices

Fig. 12.3.4. LV function implied from MMM call option prices

For illustration, in Fig. 12.3.3 the LV function σ(·, ·) is displayed when ob-
tained numerically via formula (12.3.31) from the European call option values
that were used to compute the implied volatilities of the modified CEV model
shown in Fig. 12.2.3. These results match, up to some negligible numerical
errors, the corresponding LV function σ(t, S) = Sa−1ψ. Small errors in values
are detectable in Fig. 12.3.3 for small K and T , which are caused by the nu-
merical implementation of the formula (12.3.31). These minor differences are
explained by round-off and truncation errors from the discrete differentiations
involved. Similarly we plot in Fig.12.3.4 the LV function, numerically implied
from call prices under the stylized MMM. Also we recover here, up to minor
numerical errors for small K and T , the LV function of the MMM.

It must be noted that a wide range of typically observed implied volatility
surfaces can be calibrated via LV models. However, this does not mean that
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Fig. 12.3.5. Implied volatility surface for the S&P500 for 20 April 2004

the resulting LV model explains the dynamics of the underlying security. It
only provides an LV function for European call and put options which allows
us to match the observed option prices under the assumption of an LV model.

Finally, it is important to emphasize that implying a local volatility func-
tion from traded option prices is a difficult numerical task. Small deviations in
prices can have a substantial effect on the implied LV function. This also cre-
ates a major drawback for the practical calibration of LV models. It would be
valuable to have some economic reasoning behind the particular form of a se-
lected LV function. The MMM, which we derive in the next chapter, provides
such an economic explanation.

Local Volatility Function of S&P500

To illustrate the above analysis further we consider observed index option
prices for the S&P500 index. Due to the numerical sensitivity of the implied
LV functions to small errors in option prices we work with smoothed data.
Figure 12.3.5 shows a fit of the implied volatility surface for S&P500 European
call options for 20 April 2004 as in Heath & Platen (2006). These implied
volatilities were computed using prices obtained from the average of bid and
ask prices using the short rate r = 0.03 and a dividend rate of d = 0.01. The
corresponding closing price for the S&P500 index was Sδ∗

0 = 1114. A total of
83 option prices was used to obtain the displayed fit. A least squares fit, see
Sect. 2.3, for the implied volatility surface was obtained using a set of two-
dimensional cubic polynomials. The corresponding smoothed option prices are
then used to calculate the real world transition densities according to formula
(12.3.27). The resulting transition density function is displayed in Fig. 12.3.6.
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Fig. 12.3.6. Implied transition density for S&P500 for 20 April 2004

Fig. 12.3.7. LV function for S&P500 for 20 April 2004

The corresponding LV function is obtained by formula (12.3.31) and is
displayed in Fig.12.3.7. Because of the form of equation (12.3.31) and, in par-
ticular, the combination of first and second order partial derivatives, the shape
of this surface turns out to be rather sensitive to the choice of the basis func-
tions employed in the fitting procedure. Note that this LV function returns in
our case exactly the implied volatility surface displayed in Fig. 12.3.5 and the
corresponding smoothed S&P500 option prices. We observe a strong sensitiv-
ity of the LV function towards small deviations in option prices. Therefore, it
is difficult to extract from observed data what the calibrated LV function of
an index should be. The difficulties indicated above, in calibrating LV models
in practice, emphasize the need for a better understanding of the nature of
the volatility process itself. This should then provide a generic shape for the
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LV function. In the next chapter we shall discuss this question further when
deriving the MMM. It is interesting to note that the implied volatility sur-
face in Fig.12.3.5 is without any major curvature for times to maturity above
six months. This is also the type of implied volatility surface that the MMM
generates for this range of maturities, see Fig. 12.3.1.

Proof of Theorem 12.3.2 (*)

From the SDE (12.3.9) and relation (12.3.8) it follows that the transition
density pŜ0 for Ŝ0 satisfies the Fokker-Planck equation

∂

∂T
pŜ0(t, Ŝ0

t ;T, κ) − 1
2

∂2

∂κ2

{
σ2(T,K)κ2 pŜ0(t, Ŝ0

t ;T, κ)
}

= 0 (12.3.32)

for (T, κ) ∈ (0,∞) × (0,∞) with initial condition

pŜ0(t, Ŝ0
t ; t, κ) = δ(Ŝ0

t − κ), (12.3.33)

where δ(·) is the Dirac delta function, see (4.4.1). It, therefore, follows by
using (12.3.25) that (12.3.32) can be rewritten in the form

∂

∂T

(
∂2

∂κ2
u(t, Ŝ0

t , T, κ)
)
− 1

2
∂2

∂κ2

{
σ2(T,K)κ2 ∂2

∂κ2
u(t, Ŝ0

t , T, κ)
}

= 0

and hence

∂2

∂κ2

{
∂

∂T
u(t, Ŝ0

t , T, κ) − 1
2
σ2(T,K)κ2 ∂2

∂κ2
u(t, Ŝ0

t , T, κ)
}

= 0. (12.3.34)

Then there exist quantities β0(T ) and β1(T ) such that

∂

∂T
u(t, Ŝ0

t , T, κ) − 1
2
σ2(T,K)κ2 ∂2

∂κ2
u(t, Ŝ0

t , T, κ) = β0(T ) + β1(T )κ.

(12.3.35)
From (12.3.35), (12.3.28) and (12.3.29) it follows that

β0(T ) = 0. (12.3.36)

and
β1(T ) = 0. (12.3.37)

Combining (12.3.35), (12.3.36) and (12.3.37) yields (12.3.30). ��

12.4 Stochastic Volatility Models

Modeling Volatility as a Separate Process

A number of continuous asset price models have been developed, which model
the volatility process as a separate, possibly correlated, stochastic process.
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This group of models includes the models by Hull & White (1987, 1988),
Johnson & Shanno (1987), Scott (1987), Wiggins (1987), Chesney & Scott
(1989), Melino & Turnbull (1990), Stein & Stein (1991), Hofmann et al. (1992)
and Heston (1993) among others. In the following we provide a description
of this type of model by applying results from Heath, Hurst & Platen (2001).
The GOP models again an index which is interpreted as the underlying secu-
rity.

The empirical results of Sect. 2.6 on the estimation of index log-returns
indicate that for daily observations of stock index log-returns the Student t
distribution with about four degrees of freedom provides an excellent fit. We
take this stylized empirical fact as motivation for the following study, which
aims to construct stochastic volatility processes with a prescribed stationary
density.

First, let us explain how this is linked to the results from the estimation
of prescribed log-return densities. When considering small time steps, then
a discounted GOP S̄δ∗ with squared volatility |θt|2 generates at time t ap-
proximately conditionally Gaussian distributed log-returns with a stochastic
variance |θt|2 per unit of time. This means that for small time step size h > 0
one observes the conditionally Gaussian log-returns

Δ ln(S̄δ∗
t ) = ln

(
S̄δ∗

t+h

S̄δ∗
t

)

∼ N
(
|θt|2
2

h, |θt|2 h
)
. (12.4.1)

Since we consider log-returns over a short time period [t, t+h] the trend effect
of the conditional mean in (12.4.1) can be neglected.

We now consider the case where the process |θ|2 has a given stationary
density and the observation of the log-returns extends over a sufficiently long
time period. This then results in the estimation of normal variance mixture
log-returns, as described in Sect. 2.5, see also Fergusson & Platen (2006). For
instance, when 1

|θt|2 has as stationary density that of a gamma distributed
random variable, then the estimated log-returns appear to be Student t dis-
tributed, see Kessler (1997) and Prakasa Rao (1999). On the other hand, if
the stationary density of |θt|2 is a gamma density, then the log-returns, when
estimated, appear to be variance gamma distributed. We emphasize the fact
that a stochastic volatility process needs a long observation period so that
the squared volatility values have traversed reasonably often over the range
of their typical values to generate the mixing effect of the random variance
for the log-returns.

A Class of Continuous Stochastic Volatility Models

Note from (12.1.1) that the discounted GOP

S̄δ∗
t =

Sδ∗
t

S0
t

(12.4.2)

satisfies the SDE
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dS̄δ∗
t = S̄δ∗

t (|θt|2 dt+ |θt| dWt) (12.4.3)

for t ∈ [0,∞). Similarly to Heath, Hurst & Platen (2001) we now derive a
class of continuous discounted GOP models with stochastic volatility processes
that have stationary densities. To cover a wide range of stochastic volatility
models let us consider the factor process X = {Xt, t ∈ [0,∞)} with

Xt = Y (|θt|). (12.4.4)

It involves a twice continuously differentiable function Y (·) that depends on
the volatility process |θ| = {|θt|, t ∈ [0,∞)} of the GOP. The joint dynamics
of the discounted GOP process S̄δ∗ and the factor process X are assumed to
be governed by a time homogeneous system of SDEs

dS̄δ∗
t = S̄δ∗

t

(
|θt|2 dt+ |θt|

(
� dW̄t +

√
1 − �2 dW̃t

))
,

dXt = C(Xt) dt+D(Xt) dW̄t (12.4.5)

for t ∈ [0,∞). Here W̃ and W̄ are independent standard Wiener processes
under the real world probability measure P . In the SDE (12.4.5) the dynamics
of the discounted GOP S̄δ∗ involve the stochastic volatility process |θ|. The
functions C(·) and D(·) are assumed to satisfy appropriate conditions so that
the SDE (12.4.5) admits a unique strong solution, see Sect.7.7. The parameter
� ∈ [−1, 1] is the correlation parameter.

We remark that, by application of the Itô formula to the function (12.4.4)
of Xt = Y (|θt|), we obtain the SDE

dXt = dY (|θt|) = Y ′(|θt|) d|θt| +
1
2
Y ′′(|θt|) d[|θ|]t

and, thus, by rearranging this SDE for d|θt| with (12.4.5) the SDE

d|θt| =
1

Y ′(|θt|)

(
C(Xt) dt−

1
2
Y ′′(|θt|) d[|θ|]t +D(Xt) dW̄t

)
.

This leads to an SDE for the volatility process |θ| = {|θt| = Y −1(Xt), t ∈
[0,∞)}, which is of the form

d|θt| =
(
C(Y (|θt|))
Y ′(|θt|)

− 1
2
D(Y (|θt|))2 Y ′′(|θt|)

Y ′(|θt|)3

)
dt+

D(Y (|θt|))
Y ′(|θt|)

dW̄t (12.4.6)

for t ∈ [0,∞). Here Y ′(·) and Y ′′(·) denote the first and second derivatives of
the function Y (·), respectively, and Y −1(·) is the inverse function of Y (·) on
(0,∞). The resulting stochastic volatility models differ according to different
specifications of the functions Y (·), C(·) and D(·).
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Specific Stochastic Volatility Models

Let us now mention some well-known stochastic volatility models and explain
how they fit into the above framework:

Hull & White (1988) proposed a model with mean reverting dynamics for
the squared volatility process |θ|2. Here Xt = Y (|θt|) = |θt|2, C(x) = k (θ̄2−x)
and D(x) = γ

√
x, where k, θ̄ and γ are positive constants. This is also the

dynamics used in Heston (1993). It provides a popular squared stochastic
volatility model, the Heston model, which satisfies the SDE

d|θt|2 = k (θ̄2 − |θt|2) dt+ γ
√
|θt|2 dW̄t (12.4.7)

for t ∈ [0,∞) with |θ0|2 > 0. Note that one needs to have κ
γ2 ≥ 1

2 to obtain
a stationary density for the stochastic volatility since the squared volatility is
modeled by a square root process, see Sect. 8.7.

Scott (1987) and Stein & Stein (1991) used Ornstein-Uhlenbeck processes
to model the volatility process |θ|, where Xt = Y (|θt|) = |θt|, C(x) = k (θ̄−x)
and D(x) = γ. Here k, θ̄ and γ are positive constants. The Scott model is
defined by the SDE

d|θt| = k (θ̄ − |θt|) dt+ γ dW̄t (12.4.8)

for t ∈ [0,∞), |θ0| ∈ �. Note that the squared volatility |θt|2 satisfies the SDE

d|θt|2 = 2 k
(
θ̄ |θt| +

γ2

2 k
− |θt|2

)
dt+ 2 γ |θt| dW̄t, (12.4.9)

which resembles some generalized square root process.
Also Wiggins (1987), Chesney & Scott (1989) and Melino & Turnbull

(1990) used the Ornstein-Uhlenbeck process, but for modeling the logarithm
ln(|θt|) of the volatility process. Here Xt = Y (|θt|) = ln(|θt|), C(x) =
k(ln(θ̄)−x) and D(x) = γ, where, once again, k, θ̄ and γ are positive constants.
The Wiggins model satisfies then the SDE

d ln(|θt|) = k
(
ln(θ̄) − ln(|θt|)

)
dt+ γ dW̄t (12.4.10)

for t ∈ [0,∞), |θ0| > 0. The squared volatility satisfies here the SDE

d|θt|2 = |θt|2
(
2 γ2 + k (ln(θ̄2) − ln(|θt|2))

)
dt+ 2 γ |θt|2 dW̄t, (12.4.11)

which has multiplicative noise. Note that further stochastic volatility models
can be expressed under the above framework, as we shall see below.

Stationary Density

Let us now compute the stationary density for the process X given by the
SDE (12.4.5). The process X is a time homogeneous diffusion process with
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transition densities depending only on the elapsed period of time. We, there-
fore, write p(s, x; t, y) to denote the transition density of Xt = y given Xs = x.
The corresponding Fokker-Planck equation, see (4.4.1), is then given by

∂p(s, x; t, y)
∂t

+
∂(C(y) p(s, x; t, y))

∂y
− 1

2
∂2
(
D(y)2 p(s, x; t, y)

)

∂y2
= 0 (12.4.12)

for all t ∈ (s,∞) and s ∈ [0,∞), with (s, x) fixed.
Since X is assumed to have a stationary density the transition density

p(s, x; t, y) approaches the stationary density function p̄ as t → ∞, that is

p̄(y) = lim
t→∞

p(0, x; t, y), (12.4.13)

for x, y ∈ �. It follows by the Fokker-Planck equation (12.4.12) that

C(y)p̄(y) − 1
2
d(D(y)2 p̄(y))

dy
= K̃, (12.4.14)

for all y ∈ � and some constant K̃. Now, we assume that p̄(y) → 0 and
dp̄(y)

dy → 0 as |y| → ∞. Under these assumptions the constant K̃ must become
zero. By direct integration we then obtain, as shown in (4.5.5),

p̄(y) =
A

D(y)2
exp
{

2
∫ y

y0

C(u)
D(u)2

du

}
(12.4.15)

for y ∈ �, where A is a normalizing constant such that
∫ ∞

−∞
p̄(y) dy = 1.

Here y0 is an appropriately chosen point in (−∞,∞). Note that (12.4.15)
gives the form of the stationary density function and accommodates a wide
range of diffusions X with stationary density.

Inverse Gamma Density

As pointed out in Sect. 2.6, we obtain the Student t distribution as normal
variance mixture log-return distribution if the squared volatility has an in-
verse gamma distribution. Therefore, let us now introduce a class of squared
volatility models, which have for

Xt = |θt|2 (12.4.16)

an inverse gamma density as stationary density. As we shall see below, several
diffusion processes can fulfill this requirement. The stationary density p̄θ2 for
the squared volatility equals in this case



12.4 Stochastic Volatility Models 477

p̄θ2(y) =
(1
2 δ)

1
2 δ

ε2 Γ (1
2 δ)

( y
ε2

)− 1
2 δ−1

exp
{
−

1
2 δ ε

2

y

}
, (12.4.17)

for y > 0 with δ > 0 degrees of freedom and scaling parameter ε, where Γ (·)
denotes the gamma function, see (1.2.10). Note that we model here the density
of the inverse of a random variable that is gamma distributed.

After rearrangement of (12.4.14) we obtain the formula

C(x) =
1

2 p̄θ2(x)
d(D(x)2p̄θ2(x))

dx
, (12.4.18)

for x > 0. The function C(·) is therefore solely determined by the probability
density function p̄θ2(·) for the stationary density of |θ|2 and the function D(·).

To be specific and obtain still a rich class of diffusions X we let the diffusion
coefficient function D(·) of X have the form of a power function

D(x) = γ xξ, (12.4.19)

for x > 0 with some positive constants γ and ξ. This particular choice for the
functional form of D(·) ensures that the diffusion coefficient of the squared
volatility approaches zero when the squared volatility approaches zero. Fur-
thermore, the exponent ξ controls the feedback of the squared volatility on
its diffusion coefficient. With this functional form for D(·) and the probabil-
ity density function p̄θ2 in (12.4.17), the equation (12.4.18) provides for the
squared volatility process X the drift function

C(x) = k x2(ξ−1) (θ̄2 − x), (12.4.20)

for x > 0, where k = 1
4 γ

2 (δ + 2 − 4 ξ), θ̄2 = ε2 δ
δ+2−4 ξ and δ > 4 ξ − 2. In

the special case δ + 2 − 4ξ = 0 we set kθ̄2 = γ2ε2δ
4 . The resulting family of

discounted GOP models is, therefore, characterized by a squared volatility
with SDE

d|θt|2 = k |θt|4(ξ−1) (θ̄2 − |θt|2) dt+ γ |θt|2 ξ dW̄t, (12.4.21)

where k, θ̄, γ and ξ are all constants. Note that for a desired degree of freedom
δ for the inverse gamma density (12.4.17) the parameters k, ξ, γ and θ̄2 cannot
be chosen freely. In particular, we need to set

δ =
2 (2 ξ − 1)

1 − ε2

θ̄2

. (12.4.22)

It is important to note that several existing models are included in this
class of squared volatility models. For the choice of the exponent ξ = 1 we
obtain the ARCH diffusion model

d|θt|2 = k (θ̄2 − |θt|2) dt+ γ |θt|2 dW̄t, (12.4.23)
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which is the continuous time limit of the innovation process of the GARCH(1,1)
and NGARCH(1,1) models described in Nelson (1990) and Frey (1997). The
class of ARCH and GARCH time series models, which have many generaliza-
tions, was originally developed in Engle (1982). When taking the continuous
time limit in a GARCH(1,1) model, see Nelson (1990), the underlying security
and the squared volatility process appear to be driven by independent Wiener
processes. The leverage effect, see Sect.12.1, can be modeled in (12.4.23) when
W̄ and W are assumed to be negatively correlated.

When the exponent is set to ξ = 3
2 and � = −1 we obtain the 3/2 model

d|θt|2 = k |θt|2 (θ̄2 − |θt|2) dt+ γ (|θt|2)
3
2 dW̄t. (12.4.24)

It corresponds to the squared volatility model suggested in Platen (1997) and
covers the volatility structure of the stylized MMM mentioned in Sect.7.5, see
Platen (2001, 2002). We remark that in Lewis (2000) a version of a 3/2 model
was studied among other models.

ARCH Diffusion Model

Let us now investigate effects generated by the ARCH diffusion model consid-
ered in Hurst (1997), Lewis (2000) and Heath, Hurst & Platen (2001). This
means, we consider the case ξ = 1 in (12.4.21).

In the following, the speed of adjustment is chosen to be k = 2.0 so that the
half-life time of shocks, ln(2)

k , is approximately eighteen weeks. The volatility
of the squared volatility is set to γ = 1.0 so that the volatility of volatility
is approximately 0.5. These choices for k and γ ensure a strong stochastic
volatility effect. The initial squared volatility |θ0|2 and the long term mean
of the squared volatility θ̄2 are both chosen to equal 0.04 so that initial and
long term volatility are approximately 0.2. Furthermore, the correlation � is,
for simplicity, first set to zero. The initial discounted GOP value is set to
S̄δ∗

0 = 100 with a short rate of r = 0.04. The effect of changing each of these
parameters, while keeping the others constant, is examined below.

Figure 12.4.1 displays the implied volatility surface for European call op-
tions with maturity dates, ranging from five weeks to one year and the strike
K ranging from 80 to 125. These kind of implied volatility surfaces are often
observed for currency and equity options but not for index options. Note that
the magnitude of the implied volatility smile or curvature decreases as the
time to maturity increases. The smile effect for short dated options is very
prominent but becomes less pronounced for longer dated options.

The effect of changing the correlation � on the implied volatility surface is
now examined. Figure 12.4.2 shows implied volatilities for European call op-
tions with correlation � ranging from -0.5 to 0.5 and the strike K ranging from
80 to 125, where the time to maturity is six months. When the correlation
is negative it can be seen that out-of-the-money options have lower implied



12.4 Stochastic Volatility Models 479

Fig. 12.4.1. Implied volatility surface for zero correlation

Fig. 12.4.2. Effect of changing correlation on implied volatilities

volatilities than in-the-money options. This effect is commonly called a nega-
tive implied volatility skew. Usually, for index options the implied volatilities
are negatively skewed, see Fig. 12.1.5, reflecting the leverage effect created by
negatively correlated index and volatility increments. Thus, with the choice
� < 0 the typical implied volatility curves for indices can be generated. Note
that for � > 0 a strong positively skewed implied volatility curve can be
obtained.

Figure 12.4.3 displays implied volatilities for European call options with
the speed of adjustment parameter k ranging from 1 to 20, the strike K
ranging from 80 to 125 and where the time to maturity is six months. It
can be observed that as the speed of adjustment parameter k increases, the
magnitude of the implied volatility smile decreases.
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Fig. 12.4.3. Effect of changing speed of adjustment on implied volatilities

Fig. 12.4.4. Effect of changing volatility of the squared volatility on implied volatil-
ities

Figure 12.4.4 depicts implied volatilities for European call options with
the volatility γ of squared volatility ranging from 0.1 to 2, or volatility of
volatility ranging from approximately 0.5 to 1, the strike K ranging from 80 to
125 and where the time to maturity is six months. Note that, as the volatility
of squared volatility increases, the magnitude of the implied volatility smile
increases. For γ = 0 we have a version of the BS model with no deformation
or curvature in the implied volatility surface.

It is apparent that the ARCH diffusion model in (12.4.23) captures some
of the typical properties of implied volatilities observed in index option mar-
kets, see Fig. 12.1.5. However, to generate such a negatively skewed implied
volatility surface one needs to consider a rather strong negative correlation pa-
rameter � < 0. As is evident from Fig.12.4.2, the ARCH diffusion model with
strong negative correlation can generate the negative skew pattern. Therefore,
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it can model some leverage effect. However, it requires a separate stochastic
volatility process to achieve this. Other stochastic volatility models produce
similar results to what has been demonstrated above for the ARCH diffusion
model, see, for instance, Cont & Tankov (2004) and results on the MMM in
the next chapter. This makes it difficult to decide which is potentially a better
model.

An important drawback of the above stochastic volatility models is that
they are genuine two-factor models, driven by two separate stochastic pro-
cesses. This makes it a complex numerical task to value even standard in-
dex derivatives. A parsimonious, economically based one-factor model, which
can generate similar skews and smiles in implied volatility surfaces, would be
preferable. In particular, if it could explain the nature of the dynamics of the
underlying index.

12.5 Exercises for Chapter 12

12.1. Prove that the ARCH diffusion model for squared volatility

d|θt|2 = κ (θ̄2 − |θt|2) dt+ γ |θt|2 dWt

has an inverse gamma density as stationary density.

12.2. Show that the squared volatility of the model

d|θt|2 = κ |θt|2 (θ̄2 − |θt|2) dt+ γ |θt|3 dWt

has an inverse gamma density.

12.3. Compute the stationary density for the squared volatility for the Heston
model

d|θt|2 = κ (θ̄2 − |θt|2) dt+ γ ||θt|| dWt.

12.4. Calculate the stationary density for the squared volatility |θt|2 of the
Scott model, where

d|θt| = κ (θ̄ − |θt|) dt+ γ dWt.

Characterize the type of the stationary density ?

12.5. Calculate the stationary density for the squared volatility |θt|2, which
satisfies the SDE

d ln(|θt|2) = κ (ξ̄ − |θt|2) dt+ γ dWt.

Which type of density is this ?

12.6. (*) Show under the modified CEV model that the benchmarked savings
account and, thus, the benchmarked savings bond are strict local martingales.
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Minimal Market Model

This chapter derives an alternative model for the long term dynamics of the
GOP from basic economic arguments. The discounted GOP drift, which mod-
els the long term trend of the economy, is chosen as the key parameter process.
This leads to the minimal market model with the discounted GOP forming a
time transformed squared Bessel process of dimension four. Its dynamics al-
lows us to explain various empirical stylized facts and other properties relating
to the long term behavior of a world stock index.

13.1 Parametrization via Volatility or Drift

Volatility Parametrization

The market portfolio can be interpreted as an accumulation index, or to-
tal return index. Let us again assume that a diversified stock market index
approximates the GOP. The SDE (10.2.8) of the GOP reveals a close link be-
tween its drift and diffusion coefficient. More precisely, the risk premium of the
GOP equals the square of its volatility. To see this clearly, we rewrite the SDE
(10.2.8) for the discounted GOP when assuming a CFM, see Definition 10.1.2,
in the form

dS̄δ∗
t = S̄δ∗

t |θt| (|θt| dt+ dWt), (13.1.1)

where

dWt =
1
|θt|

d∑

k=1

θk
t dW

k
t (13.1.2)

is the stochastic differential of a standard Wiener process W . For the efficient
modeling of the GOP it is important to find an appropriate parametrization.
The SDE (13.1.1) uses the volatility parametrization of the GOP, which can
be best identified after application of a logarithmic transformation to S̄δ∗

t . By
taking the logarithm of the discounted GOP S̄δ∗

t we obtain from (13.1.1) the
SDE

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,
Springer Finance,
© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010
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Fig. 13.1.1. Discounted WSI

Fig. 13.1.2. Logarithm of discounted WSI

d ln
(
S̄δ∗

t

)
=

1
2
|θt|2 dt+ |θt| dWt (13.1.3)

for t ∈ [0,∞), see Exercise 13.1. On the right hand side of this equation only
one parameter process appears in the drift and diffusion coefficients.

Figure 13.1.1 shows a discounted world stock index (WSI) observed in US
dollars from 1926 until 2004. This index starts at S̄δ∗

0 = 2.3 in January 1926
and has been reconstructed from monthly data provided by Global Financial
Data.

The logarithm of the above discounted WSI is displayed in Fig.13.1.2. One
notes that the logarithm of the discounted WSI increases on average linearly
with some fluctuations and could be potentially related to some underlying
stationary process. One possibility is to model the logarithm of the discounted
WSI by a simple time transformed Wiener process, a Lévy process or another
process with independent increments. However, the increasing variance of such
a process over time would not match the dynamics that we observe. Therefore,
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there has to be some feedback effect modeled that drives the logarithm of the
index back to its long-term average linear growth, consistent with stationary
variance.

It is apparent that constant volatility is not compatible with stationary
variance for the logarithm of the discounted WSI. Also if volatility is stochas-
tic, stationary and independent of the driving noise of the WSI, then the
variance of the logarithm of the WSI is going to increase over time. Thus, it
would seem that some dependence between the WSI and its volatility needs
to be established in a reasonable model for its long term dynamics.

Unfortunately, volatility does not have a major economic interpretation
and is difficult to observe, see Corsi et al. (2001) and Barndorff-Nielsen &
Shephard (2003). It simply emerges as a traditional parameter process in an
attempt to model the random fluctuations or local risk of asset prices via
the logarithmic transformation. The use of volatility as a parameter process
grew historically from an early practice that employed geometric Brownian
motion in the modeling of asset prices, see Osborne (1959), Samuelson (1971)
and Black & Scholes (1973). However, in recent years growing concerns have
emerged about the deficiencies of geometric Brownian motion as an asset price
model. A major problem is the fact that volatility is, in reality, stochastic, see
Fig.12.1.1. Many other parameterizations of asset price dynamics are possible.
Ideally, there should be an economically based or plausible parametrization
which may then explain a potential link between the changes in the WSI and
its volatility. As explained in Sect. 12.1, the volatility of an index has, via the
leverage effect, some qualitative link to the value of the underlying index. Still,
the leverage effect should also be explained on the basis of formal economic
reasoning and, ideally, should be specified quantitatively.

Drift Parametrization

From an economic perspective it is clear that the WSI needs always to revert
back to its underlying economic value even if this may take a long time. This
property is a consequence of the conservation of value in an economy. We
have observed that the drift of the discounted GOP can be interpreted as the
change per unit of time of its underlying economic value. This drift provides an
important link between the long term average evolution of the market index
and the long term growth of the macro economy. By the law of conservation
of value, the growth rate of the discounted index should in the long term, on
average, match the growth rate of the total net wealth of the companies which
comprise the market portfolio. Therefore, let us parameterize the discounted
GOP dynamics, that is the SDE (13.1.1), by its trend. More precisely, we
consider the discounted GOP drift

αδ∗
t = S̄δ∗

t |θt|2 (13.1.4)

for t ∈ [0,∞), which is assumed to be a strictly positive, predictable parameter
process, see (11.1.4). Using this parametrization we obtain from (13.1.4) the
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volatility |θt| of the GOP in the form

|θt| =

√
αδ∗

t

S̄δ∗
t

. (13.1.5)

This structure provides a natural explanation for the leverage effect. When
the index decreases, then the volatility increases and vice versa. This creates
a feedback effect resulting from the structure of the SDE (13.1.1) for the
discounted GOP.

By substituting (13.1.4) and (13.1.5) into (13.1.1), we obtain the following
parametrization of the SDE of the discounted GOP:

dS̄δ∗
t = αδ∗

t dt+
√
S̄δ∗

t αδ∗
t dWt (13.1.6)

for t ∈ [0,∞). We emphasize that the square root of the discounted GOP
appears in the diffusion coefficient. Note that the parameter process αδ∗ =
{αδ∗

t , t ∈ [0,∞)} can be freely specified as a predictable stochastic process
such that the SDE (13.1.6) has a unique strong solution.

With the quantity

At = A0 +
∫ t

0

αδ∗
s ds (13.1.7)

we can rewrite (13.1.6) in the form

S̄δ∗
t = S̄δ∗

0 +At −A0 +
∫ t

0

√
S̄δ∗

s αδ∗
s dWs (13.1.8)

for t ∈ [0,∞). Here At can be interpreted as the underlying value at time
t of the discounted GOP, where A0 needs to be appropriately chosen as the
initial underlying value at time t = 0. One can say that the underlying valueAt

corresponds to the discounted wealth that underlies the discounted index S̄δ∗ .
The drift parametrization above has, therefore, a formal economic meaning. If
one expects the fluctuations of the increase per unit of time of the discounted
underlying value to be reasonably independent of trading uncertainty, then the
fitting of a model to market data is more likely to be effective and amenable
to this drift parametrization rather than to the alternative formulation using
volatility.

Squared Bessel Process of Dimension Four

It is important to realize that the SDE (13.1.6) describes a very particu-
lar time transformed diffusion process. More precisely, it is the SDE of a
time transformed squared Bessel process of dimension four, see Sect. 8.7 and
Revuz & Yor (1999).
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More precisely, with the specification of transformed time ϕ(t) as

ϕ(t) =
1
4

∫ t

0

αδ∗
s ds (13.1.9)

and with
Xϕ(t) = S̄δ∗

t (13.1.10)

we obtain from (13.1.6) the SDE of a squared Bessel process of dimension four
in the form

dXϕ(t) = 4 dϕ(t) + 2
√
Xϕ(t) dW (ϕ(t)), (13.1.11)

see (8.7.1), where

dW (ϕ(t)) =

√
αδ∗

t

4
dWt (13.1.12)

for t ∈ [0,∞). By (13.1.9) the increase of the transformed time equals a quar-
ter of the underlying value At. This provides a simple economically founded
parametrization of the discounted GOP dynamics. In the model the trans-
formed time can be interpreted as business time or market time.

Note that we have still not specified the dynamics of the discounted GOP
S̄δ∗

t because we have not fixed the dynamics of the discounted GOP drift pro-
cess αδ∗

t . So far almost any strictly positive, predictable process is possible
here. The discounted GOP dynamics are in (13.1.6) and (13.1.11) only pa-
rameterized in an alternative way by using the drift instead of the volatility
as parameter process.

Time Transformed Bessel Process

By application of the Itô formula to the square root of the discounted GOP
one obtains from (13.1.6) the SDE

d

√
S̄δ∗

t =
3αδ∗

t

8
√
S̄δ∗

t

dt+
1
2

√
αδ∗

t dWt, (13.1.13)

see Exercise 13.2. This is the SDE of a time transformed Bessel process of
dimension four, see (7.7.19). In a CFM the quadratic variation of

√
S̄δ∗ equals

[√
S̄δ∗

]

t
=

1
4

∫ t

0

αδ∗
s ds (13.1.14)

for t ∈ [0,∞), see Sect. 5.2. This means that by (13.1.9) in a CFM the incre-
ment of the transformed time ϕ(t) equals the quadratic variation of the time
transformed Bessel process

√
S̄δ∗ . That is

ϕ(t) − ϕ(0) =
[√

S̄δ∗

]

t
(13.1.15)
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Fig. 13.1.3. Empirical quadratic variation of the square root of the discounted WSI

for t ∈ [0,∞). This is a surprisingly simple relationship. Hence, the trans-
formed time process can be determined, in principle, from the quadratic vari-
ation of the square root of the discounted GOP, an observable quantity if
we take the WSI as proxy for the GOP. For the discounted WSI shown in
Fig.13.1.1 we plot in Fig.13.1.3 the empirical quadratic variation of its square
root. One notes a reasonably smooth increase of this quadratic variation over
the long time period.

We emphasize that so far we have not made any assumptions about the
particular dynamics of the discounted GOP. The relationships revealed under
the given drift parametrization hold generally for any CFM. In the next section
we shall choose the discounted GOP drift as having a simple exponential
function of time.

13.2 Stylized Minimal Market Model

Let us now apply the above results for the derivation of a parsimonious index
model, the minimal market model (MMM), see Platen (2001, 2002, 2006c)
and Sect. 7.5.

Net Growth Rate

By conservation of value the long-term growth rate of the underlying value
of the discounted GOP can be expected to correspond to the long-term net
growth rate of the world economy. According to historical records we assume
in the long term, as a first approximation, that the world economy has been
growing exponentially, see Fig. 13.1.2. Such exponential growth will now be
postulated for the discounted GOP drift. The following assumption leads us
to the stylized version of the MMM.
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Fig. 13.2.1. Fitted and observed transformed time

Assumption 13.2.1. The discounted GOP drift is an exponentially grow-
ing function of time.

Note that this assumption can be considerably weakened and made more
flexible, as will be shown later in Sect. 13.4, see also Heath & Platen (2005b).
To satisfy Assumption 13.2.1 let us model the discounted GOP drift αδ∗

t as
an exponential function of time of the form

αδ∗
t = α0 exp {η t} (13.2.1)

for t ∈ [0,∞). In this equation we have as parameters, a nonnegative initial
value α0 > 0 and a constant net growth rate η > 0. Note that the initial value
parameter α0 depends on the initial date and also on the initial value of the
discounted GOP. By equations (13.1.9) and (13.2.1) the underlying value at
time t satisfies under the given parametrization the equation

ϕ(t) =
α0

4

∫ t

0

exp {η z} dz (13.2.2)

for t ∈ [0,∞). This demonstrates that the transformed time and the underly-
ing value evolve asymptotically for long time periods in an exponential man-
ner. More precisely, one obtains for the transformed time the explicit expres-
sion

ϕ(t) =
α0

4 η
(exp {η t} − 1) . (13.2.3)

By applying standard curve fitting methods, see Sect. 2.3, we fit the trans-
formed time ϕ(t), satisfying (13.2.3), to the observed quadratic variation of
the square root of the discounted WSI shown in Fig. 13.1.3. In Fig. 13.2.1 we
plot then the resulting fit for the parameter choice α0 = 0.043 and η = 0.0528.
One notes that we achieve a reasonable fit of the theoretical transformed time
when only using a constant net growth rate η over the long time period.
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The net growth rate for the market capitalization weighted world stock
portfolio, when discounted by the US dollar savings account, has been esti-
mated for the entire last century in Dimson et al. (2002) to be on average
close to 0.049 under discrete annual compounding. This is reasonably close to
what we have obtained as the annual net growth rate parameter η = 0.0528
under continuous compounding, as shown in Fig. 13.2.1.

Normalized GOP

We now discuss the feedback effect in the dynamics of the market index that
drives its value back to its long term exponentially growing average. The
formulation (13.2.1) suggests that one should examine for this purpose the
normalized GOP

Yt =
S̄δ∗

t

αδ∗
t

(13.2.4)

for t ∈ [0,∞).
By application of the Itô formula and using (13.1.5) and (13.1.6), we obtain

for this case the SDE

dYt = (1 − η Yt) dt+
√
Yt dWt (13.2.5)

for t ∈ [0,∞) with

Y0 =
S̄δ∗

0

α0
, (13.2.6)

see Exercise 13.3. Note by (8.7.34) that Y is a square root (SR) process of
dimension four. The above stylized version of the MMM is an economically
based, parsimonious model for the dynamics of the discounted GOP, and by
extension for a WSI. We remark that we would still obtain the above type
of SDE for Yt if η were a stochastic process. This is rather important for
extended versions of the MMM.

By using the SR process Y = {Yt, t ∈ [0,∞)} and (13.2.5), the discounted
GOP S̄δ∗

t can be expressed in the form

S̄δ∗
t = Yt α

δ∗
t (13.2.7)

for t ∈ [0,∞). This leads us to a useful description of the GOP when expressed
in units of the domestic currency given by

Sδ∗
t = S0

t S̄
δ∗
t = S0

t Yt α
δ∗
t (13.2.8)

for t ∈ [0,∞). For the above model of the discounted GOP one needs only to
specify the initial values S̄δ∗

0 and α0 and the net growth rate process η. Note
that α0 and S̄δ∗

0 are linked through (13.2.6). Consequently, one can say that
the stylized MMM assumes that the discounted GOP is the product of an SR
process and an exponential function.
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Fig. 13.2.2. Normalized GOP

One notes that the normalized GOP is an SR process of dimension four,
see Sects. 4.4 and 7.5. The net growth rate η is here the speed of adjustment
parameter for the linear mean-reversion. Note that besides the scalar initial
values α0 and S̄δ∗

0 , the net growth rate η is the only parameter process needed
for the characterization of the dynamics of the normalized GOP under the
MMM.

According to our previous findings for the discounted WSI shown in
Fig. 13.1.1 we set η = 0.0528 and choose α0 = 0.043. With this parameter
choice we show in Fig. 13.2.2 the resulting normalized GOP Yt, constructed
according to (13.2.4) and (13.2.1).

For the above choice of η the half life time of a major displacement of
the normalized GOP would be about ln(2)

η ≈ 13 years. This rather long time
period supports the view that it takes on average significant time to correct
for major up- or downturns in the world financial market. One realizes that
a look at the market performance over the last 10 or even 15 years may not
be sufficient to judge its potential long term evolution. This is consistent with
the impression that one obtains when studying in Fig. 13.1.2 the logarithm
of the world stock index for the long period from 1926 until 2003. It seems
to take about 25 years in this graph to go through a full “cycle” of random
ups and downs for the market index. The MMM reflects well this type of long
term mean reverting dynamics of the normalized GOP.

Since the normalized GOP Yt has for constant net growth rate a station-
ary density, so has ln(Yt). This means, that ln(Yt) has a uniformly bounded
variance for all t ∈ [0,∞). In this sense the stylized MMM with constant
parameters exhibits some kind of an equilibrium dynamic. By taking the log-
arithm on both sides of equation (13.2.7) we obtain the relation

ln(S̄δ∗
t ) = ln(Yt) + ln(α0) + η t (13.2.9)
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Fig. 13.2.3. Volatility of the WSI under the MMM

for t ∈ [0,∞), assuming the net growth rate to be a constant. The above
stylized MMM suggests the logarithm of the discounted GOP will fluctuate
around a straight line with slope η. The variance of ln(S̄δ∗

t ) is therefore uni-
formly bounded under the MMM. This is also what one observes in Fig.13.1.2.

The BS model and most of its extensions, with volatility processes inde-
pendent of the trading noise, are not able to recover dynamics of the type
shown in Fig. 13.1.2. In particular, exponential Lévy models, as mentioned
in Sect. 3.6, share this problem. Stochastic volatility models, as discussed in
Sect. 12.4, are better suited. However, they need an extra volatility process to
generate some negative correlation between volatility and index as described
earlier. The MMM is a parsimonious model that does not need any extra
volatility process, but still generates a realistic long term dynamics for the
GOP.

Volatility under the MMM

The resulting model for the discounted GOP with constant net growth rate
η is called the stylized version of the MMM, which was originally proposed
in Platen (2001). We now discuss the endogenous nature of volatility as it
emerges under the MMM.

According to formula (13.2.4), under the MMM the discounted GOP has
the volatility

|θt| =
1√
Yt

(13.2.10)

for t ∈ [0,∞). We plot in Fig. 13.2.3 the path of the volatility for the dis-
counted WSI, shown in Fig. 13.1.1, as it follows under the MMM for the
default parameters η = 0.0528 and α0 = 0.043. It is interesting to note that
according to this graph the volatility was, for instance, relatively high around
1975 and rather low during the period near the year 2000. The stochastic
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volatility process of the WSI under the MMM, as shown in Fig. 13.2.3, is
negatively correlated to the normalized WSI and, therefore, also negatively
correlated to the WSI.

From (13.2.10) and (13.2.5) it can be seen that the squared volatility |θt|2
satisfies the SDE

d|θt|2 = d

(
1
Yt

)
= |θt|2 η dt−

(
|θt|2

) 3
2 dWt (13.2.11)

for t ∈ [0,∞), see Exercise 13.4. This provides us with a stochastic volatility
model in the sense as discussed in Sect.12.4. Note that the diffusion coefficient
of the squared volatility has in (13.2.11) the power 3

2 . In Platen (1997) such
a 3/2 volatility model was suggested for the modeling of a market index, see
also (12.4.24). This stochastic volatility model has been obtained under the
benchmark approach by using economic arguments.

Distribution of Log-Returns under the MMM

Let us now examine the distribution of log-returns of the GOP that can be
expected to be estimated under the MMM. We show that under the MMM the
estimated log-returns of the GOP, from sufficiently long observation periods,
are Student t distributed with four degrees of freedom. To see this, let us recall
that under the MMM the squared volatility of the GOP is by (13.2.4) given
as

|θt|2 =
1
Yt
, (13.2.12)

which is the inverse of an SR process. Note from (4.5.7) that the SR process
Y has as stationary density a gamma density with four degrees of freedom.
Consequently, the squared volatility 1

Yt
has an inverse gamma density as its

stationary density.
When estimating the density of, say, daily log-returns that are observed

over a long time period, then the stationary density of the squared volatility
acts as mixing density for the stochastic variance of the log-returns. This
is similar to normal variance mixture models, as discussed in Sect. 2.5, and
to stochastic volatility models, as described in Sect. 12.4. We refer also to
Kessler (1997), Prakasa Rao (1999) and Kelly, Platen & Sørensen (2004) for
more details on this issue. For log-returns of the GOP, the inverse gamma
density acts under the MMM as a mixing density for their normal-mixture
distribution. It follows from (1.2.16) and (1.2.28) that the resulting normal-
mixture distribution is the Student t distribution with four degrees of freedom.
Therefore, this is the theoretically predicted log-return density that will be
estimated under the stylized MMM dynamics. We emphasize that one needs
a sufficiently long time period with log-return observations for this kind of
estimation procedure to be reliable. Obviously, the path of the ergodic process
1
Y needs enough time to sufficiently act in its mixing role for the random
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variance of the conditionally Gaussian log-returns. Since we have seen that
the half life time of shocks on the square root process Y for the calibrated
MMM is about 13 years, the available 33 years of daily data can be possibly
considered to be just sufficient to confirm or reject the predicted Student t
feature of log-returns.

The above described distributional feature of the MMM is rather clear
and testable. Most importantly, the Student t log-return property has already
been documented in the literature as an empirical stylized fact, as was pointed
out in Sect. 2.6. Recall that Markowitz & Usmen (1996a) found that the Stu-
dent t distribution with about 4.5 degrees of freedom matches daily S&P500
log-return data well. Hurst & Platen (1997) found within the rich class of
symmetric generalized hyperbolic distributions that for most stock market in-
dices, daily log-returns are likely to be Student t distributed with about four
degrees of freedom. Fergusson & Platen (2006) confirmed with high accuracy
this empirical stylized fact. Furthermore, in Breymann et al. (2003) the cop-
ula, see Sect. 1.5, of the joint distribution of log-returns of exchange rates has
been identified as a Student t copula with roughly four degrees of freedom.
One can say that the MMM provides in its stylized version a rather accurate
model for the probabilistic nature of the log-returns of a world stock index.

Stylized Multi-Currency MMM (*)

We have examined under the MMM the properties of stochastic volatility for
the discounted GOP in a currency denomination. By using the same argu-
ments as above, we now show how to model exchange rates. This will result
in a stylized multi-currency version of the MMM, similar to the one described
in Platen (2001) and Heath & Platen (2005a).

Let us consider a market with d + 1 currencies, d ∈ N . We denote by
Sδ∗

i (t) the GOP at time t when denominated in units of the ith currency,
i ∈ {0, 1, . . . , d}. Furthermore, ri

t is the short rate for the ith currency and
θk

i (t) the market price of risk for the ith currency denomination with respect
to the kth Wiener process, k ∈ {1, 2, . . . , d+ 1}, t ∈ [0,∞).

We derive now a stylized multi-currency version of the MMM. Assuming,
for simplicity, constant net growth rates and constant short rates, we can
describe at time t the value of the GOP in the ith currency denomination
according to (13.2.8) by the expression

Sδ∗
i (t) = αi

t Y
i
t S

i
i(t). (13.2.13)

Here we have
αi

t = αi
0 exp{ηi t}, (13.2.14)

Si
i(t) = exp{ri t}. (13.2.15)

The ith normalized GOP Y i
t satisfies the SDE



13.2 Stylized Minimal Market Model 495

dY i
t =

(
1 − ηi Y i

t

)
dt+

√
Y i

t

d+1∑

k=1

qi,k dW k
t (13.2.16)

for t ∈ [0,∞), with Y i
0 > 0 and ηi the ith net growth rate, i ∈ {0, 1, . . . , d}.

Furthermore, we introduce constant scaling levels qi,k, for i ∈ {0, 1, . . . , d}
and k ∈ {1, 2, . . . , d+1} to model the covariations between normalized GOPs
Y i and Y j for i = j. For the stylized multi-currency version of the MMM we
set, for simplicity,

d+1∑

k=1

(qi,k)2 = 1 (13.2.17)

for all i ∈ {0, 1, . . . , d}. This constraint can be relaxed in extended versions of
the MMM.

The (i, j)th exchange rate Xi,j
t from the jth into the ith currency is given

at time t by the ratio

Xi,j
t =

Sδ∗
i (t)

Sδ∗
j (t)

=
Y i

t α
i
t S

i
i(t)

Y j
t αj

t S
j
j (t)

. (13.2.18)

This satisfies the SDE

dXi,j
t = Xi,j

t

⎛

⎝(ri − rj) dt+
d+1∑

k=1

⎛

⎝ qi,k

√
Y i

t

− qj,k

√
Y j

t

⎞

⎠

(
qi,k

√
Y i

t

dt+ dW k
t

)⎞

⎠

(13.2.19)
for t ∈ [0,∞) with Xi,j

0 > 0, i, j ∈ {0, 1, . . . , d}. Hence, this is the dynam-
ics for an exchange rate, consistent with that of the GOP having the struc-
ture (13.2.13) and (13.2.16) in each currency denomination. Under the multi-
currency MMM the exchange rate volatility depends on the volatilities of the
GOPs in both currencies and, thus, on the fluctuations of the GOP in both
denominations.

The jth savings account, when denominated in the ith currency, is given
by the product

Sj
i (t) = Xi,j

t Sj
j (t). (13.2.20)

Consequently, by the Itô formula it satisfies the SDE

dSj
i (t) = Sj

i (t)

⎛

⎝ri dt+
d+1∑

k=1

⎛

⎝ qi,k

√
Y i

t

− qj,k

√
Y j

t

⎞

⎠

(
qi,k

√
Y i

t

dt+ dW k
t

)⎞

⎠

(13.2.21)
for all t ∈ [0,∞) with Sj

i (0) > 0 for i, j ∈ {0, 1, . . . , d}.
One notes from (10.1.7) that the stochastic market price of risk with re-

spect to the kth Wiener process under the ith currency denomination is of
the form
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θk
i (t) =

qi,k

√
Y i

t

(13.2.22)

for all t ∈ [0,∞), i ∈ {0, 1, . . . , d} and k ∈ {1, 2, . . . , d + 1}. The (j, k)th
volatility in the ith denomination is given by the expression

bj,ki (t) = θk
i (t) − θk

j (t) (13.2.23)

for t ∈ [0,∞), i, j ∈ {0, 1, . . . , d} and k ∈ {1, 2, . . . , d + 1} and is, therefore,
stochastic. One notes that the volatility of an exchange rate is different and
more complex than that of an index. The interplay between the volatilities of
the denominations of the GOP in two different currencies under the MMM is
visible in the above volatility structure of the corresponding exchange rate.

In fact, the above stylized multi-currency MMM, which characterizes a
currency market, can be used to model an equity market. For equity markets
the exdividend spot price of a stock is treated in the same manner as an ex-
change rate. The share savings account of a cum dividend stock is then similar
to that of a foreign savings account. The dividend rate plays a similar role to
that of the short rate for a foreign savings account. In Platen & Stahl (2003)
it is shown that log-returns of many benchmarked US stocks are Student t dis-
tributed with about four degrees of freedom. This suggests that, potentially,
the above stylized multi-currency MMM can also be applied to a number of
stocks.

In this context it is worth mentioning that the spot price of a commodity,
like gold, copper, oil or electricity, can also be modeled like an exchange rate.
Here, the, so-called, convenience yield, see Miltersen & Schwartz (1998), be-
haves in a similar manner as the foreign short rate. In this sense the above
stylized multi-currency MMM can be used to model commodity prices. Forth-
coming work will identify the dynamics of the GOP when denominated in
units of equities or commodities.

13.3 Derivatives under the MMM

This section derives pricing formulas for standard derivatives under the styl-
ized MMM. This includes zero coupon bonds, as well as, call and put options
on an index. In this section we rely on the methodology presented in Chap.12.

Zero Coupon Bond under the MMM

First, we study the price of a zero coupon bond under the stylized MMM. For
simplicity, we assume that the short rate rt is deterministic and the net growth
rate η is constant. The price P (t, T ) of a zero coupon bond that matures at
time T ∈ (0,∞) is by the real world pricing formula (9.1.34) and (10.4.1)
obtained from the conditional expectation
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P (t, T ) = Sδ∗
t E

(
1
Sδ∗

T

∣
∣
∣
∣At

)

= exp

{

−
∫ T

t

rs ds

}

E

(
S̄δ∗

t

S̄δ∗
T

∣
∣
∣
∣At

)

(13.3.1)

for t ∈ [0, T ]. We recall that the discounted GOP S̄δ∗ is a time transformed
squared Bessel process of dimension δ = 4. As in (13.2.1) we choose the
discounted GOP drift

αδ∗
t = α0 exp{η t} (13.3.2)

with initial value α0 > 0 and constant net growth rate η > 0. The correspond-
ing time transformation is given in (13.2.3) by

ϕ(t) =
α0

4 η
(exp{η t} − 1) (13.3.3)

for t ∈ [0,∞), where we set ϕ(0) = 0. We know by the formula (8.7.17) the
first negative moment of a squared Bessel process of dimension δ = 4, which
has the form

E

((
S̄δ∗

T

)−1 ∣∣
∣At

)
=
(
S̄δ∗

t

)−1
(

1 − exp

{

− S̄δ∗
t

2 (ϕ(T ) − ϕ(t))

})

. (13.3.4)

Therefore, we obtain by (13.3.1) and (13.3.4) the price for the fair zero coupon
bond

P (t, T ) = exp

{

−
∫ T

t

rs ds

}(

1 − exp

{

− S̄δ∗
t

2 (ϕ(T ) − ϕ(t))

})

(13.3.5)

for t ∈ [0, T ). Hence, for the stylized MMM an explicit formula exists for the
price of a zero coupon bond, which was originally derived in Platen (2002).

Forward Rates under the MMM

As introduced in Sect.10.4, the forward rate f(t, T ) at time t for the maturity
date T ∈ (0,∞) is given by the formula

f(t, T ) = − ∂

∂T
ln(P (t, T )) (13.3.6)

for t ∈ [0, T ). Using (13.3.5) for the stylized MMM with deterministic short
rate, the forward rate follows in the form

f(t, T ) = rT + n(t, T ), (13.3.7)

where n(t, T ) describes the market price of risk contribution

n(t, T ) = − ∂

∂T
ln

(

1 − exp

{

− S̄δ∗
t

2(ϕ(T ) − ϕ(t))

})

. (13.3.8)
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Fig. 13.3.1. Market price of risk contribution in dependence on η and T

In our case with a deterministic short rate, the forward rate is the sum of
the short rate at the maturity date and the market price of risk contribution.
The existence of a nonzero market price of risk contribution is a consequence
of the fact that the stylized MMM does not have an equivalent risk neutral
probability measure. By performing the differentiation in (13.3.8) we obtain
the equation

n(t, T ) =
1

(
exp
{

S̄δ∗
t

2(ϕ(T )−ϕ(t))

}
− 1
)

S̄δ∗
t

(ϕ(T ) − ϕ(t))2
αδ∗

T

8

=
2 η2 Yt(

exp
{

2 η Yt

(exp{η (T−t)}−1)

}
− 1
)

(exp{η (T − t)} − 1)

× 1
(1 − exp{−η (T − t)}) (13.3.9)

for t ∈ [0, T ), T ∈ (0,∞).
To illustrate the type of market price of risk contribution that the styl-

ized MMM produces we plot in Fig. 13.3.1 this function for t = 0 and
Y0 = 53 as a function of the net growth rate η ∈ [0.001, 0.1] and the ma-
turity T ∈ [0.001, 80.0]. It can be seen that the market price of risk contribu-
tion is practically zero for short dated maturities of up to one or two years.
Afterwards, one obtains an increase in the value of the market price of risk
contribution. For larger net growth rates the market price of risk contribution
is larger. For extremely large time to maturity it equals the net growth rate,
that is,

lim
T→∞

n(t, T ) = η. (13.3.10)
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Fig. 13.3.2. Candidate Radon-Nikodym derivative for world market

In Platen (2005a) and Miller & Platen (2005) interest rate term structure
models are discussed that are based on versions of the MMM.

Absence of an Equivalent Risk Neutral Probability Measure

From the fair bond price (13.3.5) we note for t ∈ [0, T ) that

P (t, T ) < P ∗
T (t) = exp

{

−
∫ T

t

rs ds

}

=
S0

t

S0
T

, (13.3.11)

which means for the stylized MMM that the fair zero coupon bond has a lower
price than the savings bond P ∗

T (t). As discussed in the previous chapter, this
demonstrates that the stylized MMM does not have an equivalent risk neutral
probability measure. Indeed, the candidate Radon-Nikodym derivative process
Λ = {Λt, t ∈ [0,∞)} for the hypothetical risk neutral measure, where

Λt =
Ŝ0

t

Ŝ0
0

=
S̄δ∗

0

S̄δ∗
t

, (13.3.12)

is a strict (A, P )-supermartingale. This follows from our example in Sect. 8.7
for the inverse of a squared Bessel process of dimension four. Consequently,
by Lemma 5.2.3 the process Λ is a strict supermartingale. In Fig. 13.3.2 we
show the candidate Radon-Nikodym derivative for the world market from 1926
until 2004, as it results when interpreting the discounted WSI in Fig. 13.1.1
as discounted GOP. We have for the hypothetical risk neutral measure Pθ on
[0, T ] the inequality

Pθ,T (Ω) = E
(
ΛT

∣
∣A0

)
= 1 − exp

{

− S̄δ∗
0

2ϕ(T )

}

< Λ0 = 1. (13.3.13)
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Fig. 13.3.3. Total mass of a hypothetical risk neutral measure

This shows that Pθ is not a probability measure because it does not give a
total mass of one, see (1.1.4). This important fact does not create a problem,
since we shall use the real world pricing formula to obtain derivative prices
under the MMM and do not rely on risk neutral pricing. For illustration we
show in Fig.13.3.3 the total mass of the candidate risk neutral measure Pθ(Ω)
as a function of T . Here we use the default parameters η = 0.0528, α0 = 0.043
and S̄δ∗

0 = 2.3. One notes that the difference in total probability mass from
the value one is very small for short time horizons T of up to about ten years.
In this range the hypothetical risk neutral measure is almost a probability
measure. However, after ten years we observe the begin of a significant decline.
After 40 years the total mass of the hypothetical risk neutral measure is only
about 0.5. In these circumstances it is then not reasonable to expect a “risk
neutral” price to be realistic for time horizons beyond ten years.

Transition Density of the Stylized MMM

Before we price any particular European option we recall the transition density
of the discounted GOP S̄δ∗ . According to (8.7.9) this transition density is of
the form

p(s, x; t, y) =
1

2 (ϕ(t) − ϕ(s))

(y
x

) 1
2

exp
{
− x+ y

2 (ϕ(t) − ϕ(s))

}
I1

( √
x y

ϕ(t) − ϕ(s)

)

(13.3.14)
for 0 ≤ s < t < ∞ and x, y ∈ (0,∞). Here I1(·) is the modified Bessel function
of the first kind with index ν = 1, see (1.2.15). Note by (1.2.14) that (13.3.14)
is the density of a non-central chi-square distributed random variable at time
t with value

y

ϕ(t) − ϕ(s)
=

S̄δ∗
t

ϕ(t) − ϕ(s)

with δ = 4 degrees of freedom and non-centrality parameter
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x

ϕ(t) − ϕ(s)
=

S̄δ∗
s

ϕ(t) − ϕ(s)
.

Recall that Fig. 8.7.2 shows the transition density of a squared Bessel process
of dimension four.

It is also interesting to consider the transition density for the normalized
GOP

Yt =
S̄δ∗

t

αδ∗
t

,

see (13.2.4). This density is by (8.7.44) of the form

p(s, x; t, y) =
1

2 s̄t ϕ̄t

(
y

x s̄t

) 1
2

exp

{

−
x+ y

s̄t

2 ϕ̄t

}

I1

⎛

⎝

√
x y

s̄t

ϕ̄t

⎞

⎠ (13.3.15)

for 0 ≤ s < t < ∞ and x, y ∈ (0,∞), where s̄t = exp{−η(t − s)} and
ϕ̄t = 1

4η (exp{η(t− s)}− 1). Recall that Fig. 4.4.1 shows the transition density
of a square root process of dimension δ = 4.

European Call Options under the MMM

Since a diversified index is considered to be a proxy for the GOP, see Sect.10.6,
the MMM would appear to be a reasonable choice to model an index. We
compute now the price cT,K(t, Sδ∗

t ) of a fair European call option on the
index with strike K and maturity T under the MMM. From the real world
pricing formula (10.4.1) it follows that

cT,K(t, Sδ∗
t ) = Sδ∗

t E

(
(Sδ∗

T −K)+

Sδ∗
T

∣
∣
∣
∣At

)

= E

⎛

⎝

(

Sδ∗
t − K Sδ∗

t

Sδ∗
T

)+ ∣
∣
∣
∣At

⎞

⎠ (13.3.16)

for t ∈ [0, T ]. By applying the transition density of the time transformed
squared Bessel process S̄δ∗ of dimension four it has been shown in Hulley,
Miller & Platen (2005) that the fair price of a European call option has the
explicit formula

cT,K(t, Sδ∗
t ) = Sδ∗

t

(
1 − χ2(d1; 4, 2)

)
−K exp{−r (T − t)} (1 − χ2(d1; 0, 2))

(13.3.17)
with

d1 =
4 η K exp{−r (T − t)}

S0
t α

δ∗
t (exp{η (T − t)} − 1)

(13.3.18)

and
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2 =
2 η Sδ∗

t

S0
t α

δ∗
t (exp{η (T − t)} − 1)

(13.3.19)

for t ∈ [0, T ). This is an analytic pricing formula that involves the non-central
chi-square distribution function, see (1.2.13). This formula has a similar level
of complexity to that of the Black-Scholes formula, see (8.3.2). However, it
provides more realistic European call option prices, as we shall see later.

We have shown in Fig. 12.3.1 an implied volatility surface for European
call options on the GOP under the MMM. We noted a negatively skewed and
slightly upwards sloping implied volatility surface.

European Put Options under the MMM

For completeness, let us now determine the fair price of a European put option
on the GOP when the underlying model is the stylized MMM. For this purpose
it is appropriate to use the fair put-call parity relation (12.2.60) to calculate
the put price pT,K(t, S̄δ∗

t ) at time t for maturity T and strike K. This means
that we apply the formula

pT,K(t, S̄δ∗
t ) = cT,K(t, S̄δ∗

t ) − Sδ∗
t +K P (t, T ) (13.3.20)

for t ∈ [0, T ). This leads us by (13.3.17) to the explicit European put formula

pT,K(t, Sδ∗
t ) = −Sδ∗

t

(
χ2(d1; 4, 2)

)

+K exp{−r (T − t)}
(
χ2(d1; 0, 2) − exp{−2}

)
(13.3.21)

for t ∈ [0, T ) when using the previous notation, see Hulley et al. (2005). One
can calculate the implied volatilities for these put option prices as in Sect.12.3.
These are the same as those for the corresponding call prices.

As previously explained in Sect. 12.2, for the case of the modified CEV
model, put-call parity breaks down if one uses the savings bond P ∗

T (t) = S0
t

S0
T

instead of the fair bond P (t, T ) in relation (13.3.20).
It can be seen from (13.3.21) that when the GOP becomes very small,

the put value also becomes small. As we have seen in (12.2.70), a put price
derived under standard risk neutral pricing would be larger than the fair put
price and would typically not become small when the GOP becomes small.

Note that one can explicitly calculate the forward price of a fair portfolio
under the stylized MMM, as described at the end of Sect. 10.4. Furthermore,
there are explicit formulas for fair European call and put options on primary
security accounts, as will be discussed in Sect. 14.4.

13.4 MMM with Random Scaling (*)

Model Formulation (*)

The version of the MMM described here, which generalizes the stylized version
derived in Sect.13.2, is governed by a particular choice of the discounted GOP
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drift αδ∗
t . By (13.1.14) it can be seen that the αδ∗

t , when integrated over time,
yield the underlying value. One could argue that the underlying value is a
non-decreasing, slowly varying stochastic process, where the randomness is
caused by random trading activity potentially involving speculation.

If we take αδ∗
t to be a deterministic exponential function of time, as in

(13.2.1), then we obtain the discounted GOP as a time transformed squared
Bessel process of dimension δ = 4. One could interpret this as an ideal or
optimal market dynamics. Here αδ∗

t would express at time t the discounted
underlying value that is transferred per unit of time into the market. The
discounted GOP evolves due to the conservation of underlying value according
to a very specific probability law. Interestingly, the underlying value plays here
the role of a transforming time, see (13.3.3).

In order to capture some possible delays or accelerations of this transfer
of discounted underlying value into the market, we now employ a squared
Bessel process with a more general dimension δ > 2 and allow also for some
randomness in its time transformation.

This is achieved by introducing the process Z = {Zt, t ∈ [0,∞)} via the
power transformation

Zt =
(
S̄δ∗

t

) 2
δ−2

(13.4.1)

for t ∈ [0,∞) and δ ∈ (2,∞). The Itô formula applied to (13.1.8) and (13.4.1)
yields

dZt =
δ

4
γt dt+

√
γt Zt dWt. (13.4.2)

The scaling process γ = {γt, t ∈ [0,∞)} with

γt = Zt
αδ∗

t

S̄δ∗
t

4
(δ − 2)2

(13.4.3)

will be specified later in an appropriate manner to reflect realistically the
randomness of market activity or market time observed in the market. This
means that Z is a time transformed squared Bessel process of dimension δ > 2,
see Sect.8.7. Note that for the standard choice δ = 4 and γt = 1 we recover the
stylized MMM, see Sect.13.2. As we shall see, structuring the model equations
in the above general form has the advantage that the model with deterministic
γt can generate different slopes of the implied volatility surface for European
call and put options via the dimension δ, see Heath & Platen (2005b).

Using the Itô formula together with (13.4.1) and (13.4.2), the GOP Sδ∗
t

can be shown to satisfy the SDE

dSδ∗
t = Sδ∗

t

⎛

⎝

⎡

⎣r +
(
δ

2
− 1
)2

γt

(
Sδ∗

t

S0
t

) 2
2−δ

⎤

⎦ dt

+
(
δ

2
− 1
)

√
γt

(
Sδ∗

t

S0
t

) 1
2−δ

dWt

⎞

⎠ (13.4.4)
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for t ∈ [0,∞). For simplicity, we assume a constant short rate rt = r ≥ 0.
The GOP volatility or total market price of risk is by (13.1.1) and (13.4.1) of
the form

|θt| =
(
δ

2
− 1
)√

γt

Zt
(13.4.5)

for t ∈ [0,∞). This means that the volatility of the GOP is stochastic and
depends at time t on both the level of the discounted GOP with

S̄δ∗
t = Z

δ−2
2

t (13.4.6)

and the random scaling quantity γt. Furthermore, the discounted GOP drift
is by (13.1.4) and (13.4.5) given by

αδ∗
t =

(
δ

2
− 1
)2

γt Z
δ−4
2

t (13.4.7)

for t ∈ [0,∞). By introducing a random scaling process, we model the dis-
counted GOP drift in the form (13.4.7). Note that for the standard case with
δ = 4 the discounted GOP drift does not depend on Zt. For δ > 4 the dis-
counted GOP drift increases when S̄δ∗

t increases. In the case δ ∈ (2, 4) the
discounted GOP drift decreases when S̄δ∗

t increases.

Random Scaling (*)

The random scaling process can be used to model the typical short term
features of the market. For instance, it can model various random and seasonal
features of trading activity. We assume here that the scaling process γ =
{γt, t ∈ [0,∞)} is a nonnegative, adapted stochastic process that satisfies an
SDE of the form

dγt = a(t, γt) dt+ b(t, γt)
(
� dWt +

√
1 − �2 dW̃t

)
(13.4.8)

for t ∈ [0,∞) with a random initial value γ0 > 0. Here W̃ is a Wiener process
that models some uncertainty in trading activity and is assumed to be inde-
pendent of W . The scaling drift a(·, ·) and scaling diffusion coefficient b(·, ·)
are given functions of time t and scaling level γt. The scaling correlation � is,
for simplicity, assumed to be constant. Under this formulation the dynamics
of the diffusion process γ can be chosen to match empirical evidence. Note
that there seems to be no compelling reason to make the scaling correlation
� different to zero, see Breymann, Kelly & Platen (2006). The main feedback
effect for indices, is well captured under the MMM already. We keep � still
flexible in the above model since it makes it similar to the stochastic volatility
models presented in the previous section. For the preferred case � = 0 we
have independence between γt and Wt, which simplifies the computation of
derivative prices.
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The above MMM with random scaling offers different choices for the di-
mension δ > 2 and, thus, different volatility dynamics. It has some similarity
with the CEV model, see Sect. 12.2, which also involves a squared Bessel
process. In Heath & Platen (2003) the random scaling was chosen to be a ge-
ometric Brownian motion, whereas in Heath & Platen (2005a) the dynamics
are similar to those outlined above. The results for short term and medium
term options are similar to those that we are going to report in this section.

We provide now an example for the modeling of random scaling that is
motivated by an intraday empirical analysis of trading activity, obtained in
Breymann et al. (2006) for a diversified world stock index denominated in US
dollars. The scaling is modeled as a product of the type

γt = ξt mt (13.4.9)

with
ξt = ξ0 exp {η t} (13.4.10)

for t ∈ [0,∞) with ξ0 > 0. As before, the parameter η > 0 is called the net
growth rate. The market activity process m = {mt, t ∈ [0,∞)} in (13.4.9) is
designed to model normalized trading activity. Note that for constant market
activity mt = 1 and dimension δ = 4 the stylized MMM of Sect. 13.2 is
recovered. In Breymann et al. (2006) it was suggested that market activity
appears to have multiplicative noise. Therefore, the market activity process
is modeled as a nonnegative process that satisfies an SDE of the form

dmt = k(mt)β2 dt+ β mt

(
� dWt +

√
1 − �2 dW̃t

)
(13.4.11)

for t ∈ [0,∞) with random initial market activity m0 ≥ 0. In this SDE mul-
tiplicative noise is characterized by the constant activity volatility β > 0.
The function k(·) controls the drift of the market activity. Let us choose this
function to be of the form

k(m) = (p− gm)
m

2
, (13.4.12)

with speed of adjustment parameter g and reference level p. These constant,
deterministic parameters are set so that the expected value of market activ-
ity is about one. The market activity process m = {mt, t ∈ [0,∞)} has a
stationary density, see (4.5.5), of the form

pm(y) =
gp−1

Γ (p− 1)
yp−2 exp{−g y} (13.4.13)

for y ∈ [0,∞), where Γ (·) is the gamma function. This is a gamma density
with mean p−1

g and variance 1
g for parameters p > 1 and g > 0, see (1.2.9).

Figure 13.4.1 shows the stationary density (13.4.13) of mt for different
levels of market activity y and speed of adjustment parameter g, with p = g+1,
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Fig. 13.4.1. Stationary density of market activity mt = y as function of y and
speed of adjustment parameter g

to ensure that the mean of the stationary density always equals one. Note that
for a large speed of adjustment parameter the market activity remains close
to one.

Applying the Itô formula and using (13.4.9)–(13.4.12), the drift and diffu-
sion coefficients appearing in (13.4.8) take the form

a(t, γ) = γ

(
p− g

γ

ξt

)
+ γ η (13.4.14)

and
b(t, γ) = β γ, (13.4.15)

respectively, for t ∈ [0,∞).
Note that at any time t ∈ [0,∞) the actual value of the market activity mt,

and thus the random scaling γt, are not easily observable. These change very
rapidly and can only be estimated after sufficient time has elapsed. Therefore,
the initial value m0 of the market activity itself may have to be modeled as a
random variable. For instance, the stationary density (13.4.13) could be used
as its probability density. In the following we shall discuss the impact of using
different parameter choices on various derivatives.

Zero Coupon Bond (*)

First, we consider a fair zero coupon bond that pays one unit of the domestic
currency at the maturity date T ∈ [0,∞). An equivalent risk neutral prob-
ability measure does not exist for the above model. The benchmarked sav-
ings account Ŝ0 and, thus, the candidate Radon-Nikodym derivative process
Λ = {Λt, t ∈ [0,∞)} with
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Λt =

(
S̄δ∗

t

S̄δ∗
0

)−1

=
(
Zt

Z0

)1− δ
2

(13.4.16)

are by (8.7.24) strict local martingales when we assume no correlation, that
is � = 0. For this reason we shall use real world pricing to calculate derivative
prices. By using (13.4.1) the benchmarked price P̂T (t, Zt, γt) for a zero coupon
bond at time t with maturity T is then given by the conditional expectation

P̂T (t, Zt, γt) = E

(
1
Sδ∗

T

∣
∣
∣
∣At

)

= E

(
1

S0
T Z

δ
2−1

T

∣
∣
∣
∣At

)

(13.4.17)

for t ∈ [0, T ], see (10.4.8). Hence the corresponding zero coupon bond price
PT (t, Zt, γt) is given by

PT (t, Zt, γt) = Sδ∗
t P̂T (t, Zt, γt) = S0

t Z
δ
2−1
t P̂T (t, Zt, γt) (13.4.18)

for t ∈ [0,∞).
In general, we do not have an explicit joint density of (ZT , γT ), which we

would need to calculate the conditional expectation in (13.4.17). Therefore,
let us introduce the diffusion operator L0 for the Markovian factors (Zt, γt),
which when applied to a sufficiently smooth function f : (0, T )× (0,∞)2 → �
is of the form

L0 f(t, Z, γ) =
(
∂

∂t
+
δ γ

4
∂

∂Z
+ a(t, γ)

∂

∂γ
+

1
2
γ Z

∂2

∂Z2

+ � b(t, γ) γ
1
2 Z

1
2

∂2

∂Z ∂γ
+

1
2
b(t, γ)2 γ

∂2

∂γ2

)
f(t, Z, γ) (13.4.19)

for (t, Z, γ) ∈ (0, T ) × (0,∞)2. Using (13.4.2) and (13.4.8) together with the
Feynman-Kac formula, see Sect. 9.7, the benchmarked fair zero coupon bond
pricing function P̂T (·, ·, ·) satisfies the Kolmogorov backward equation

L0 P̂T (t, Z, γ) = 0 (13.4.20)

for (t, Z, γ) ∈ (0, T ) × (0,∞)2 with terminal condition

P̂T (T,Z, γ) =
1

S0
T Z

δ
2−1

(13.4.21)

for (Z, γ) ∈ (0,∞)2. By using numerical methods for solving partial differen-
tial equations (PDEs), as we shall describe in Sect. 15.7, one can numerically
determine P̂T (·, ·, ·).

Forward Rates (*)

For the above two-factor model we obtain by (10.4.12) the forward rate for
the maturity date T at time t < T by the formula
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Fig. 13.4.2. Forward rates as a function of Z0 and T

fT (t, Zt, γt) = − ∂

∂T
ln (PT (t, Zt, γt)) . (13.4.22)

Figure 13.4.2 shows for different initial values of Z0 ∈ [50, 150] the forward
rate curves at time t = 0 as functions of T ∈ [0.25, 10]. For this and subsequent
plots the default parameters used are: δ = 4, r = 0.05, � = 0, ηt = 0.048,
ξ0 = 10, p = 3 and g = 2. Note that despite a constant short rate the
forward rates are not constant and are always greater than the short rate.
Furthermore, we observe a hump in the forward rate at about the time of two
years to maturity. This is an important feature that has been observed in the
market, see, for instance Bouchaud, Sagna, Cont, El Karoui & Potters (1999)
and Matacz & Bouchaud (2000). These results together with those described
below are numerically obtained by using the Crank-Nicolson finite difference
method, which will be discussed in Sect. 15.7. The randomness of the initial
value m0 is generated by a two-point distributed random variable with mean
p−1

g and variance 1
g . The fact that the realistic hump shaped forward rates,

shown in Fig. 13.4.2, are greater than the constant short rate, demonstrates
that the benchmarked savings account process Ŝ0, see (10.3.1), is a strict
(A, P )-supermartingale, as was pointed out earlier.

European Options on a Market Index (*)

As previously explained, the GOP is employed as proxy for a market index.
Consider now a European put option on the index Sδ∗ with strike K and
maturity date T ∈ [0,∞). Using the real world pricing formula (10.4.1), the
put option price pT,K(t, Zt, γt) is given by

pT,K(t, Zt, γt) = S0
t Z

δ
2−1
t E

⎛

⎝

(
K

S0
T Z

δ
2−1

T

− 1

)+ ∣
∣
∣
∣At

⎞

⎠ (13.4.23)

for t ∈ [0, T ].
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Fig. 13.4.3. Implied volatilities for put options on index as a function of strike K
and maturity T

To see the effect of random scaling on implied volatilities, Fig. 13.4.3 dis-
plays an implied volatility surface for European puts as a function of the
maturity date T and the strike K. These results were obtained using the zero
coupon bond price (13.4.18) to infer the discount factor used in the Black-
Scholes formula via (12.2.57). The implied volatilities shown in Fig.13.4.3 are
rather close to those observed for European index options in real markets,
see Fig. 12.1.5. Note that the curvature of the implied volatility surface for
short dated options results from the randomness of the scaling. One can show
that this curvature is mainly generated by the randomness of the initial value
m0 of the market activity process. If a fixed initial value m0 were used, then
much of the curvature for the short dated implied volatility surface would
disappear. This is important to notice since it tells us that the MMM with a
random initial value already provides most of the stylized features observed in
reality. The MMM with random initial scaling is also able to capture realistic
implied volatility smiles for exchange rate and equity options, as observed in
real markets, see Heath & Platen (2005a).

It is well-known that skew and smile patterns for implied volatility sur-
faces, as shown in Fig. 13.4.3, can be obtained by various stochastic volatility
models, see Carr & Wu (2003) or Brigo, Mercurio & Rapisarda (2004) and
our comments in Sect. 12.4. However, most of these models are difficult to
calibrate to a range of standard and exotic derivatives. It has been demon-
strated in Heath & Platen (2005a, 2005b) that the MMM avoids most of these
problems.

To demonstrate the effect of making the scaling process γ stochastic,
Fig. 13.4.4 shows implied volatilities for European puts on the GOP as a
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Fig. 13.4.4. Implied volatilities for put options as a function of strike K and speed
of adjustment g

function of the strike K and the speed of adjustment parameter g for a fixed
maturity date T = 0.25 and with p = g + 1. The figure indicates that an in-
crease in speed of adjustment g decreases the curvature of the implied volatil-
ity curve, when viewed as a function of the strike K. For different values of g
the corresponding initial random market activity m0 is also adjusted to match
the mean and variance of the corresponding stationary distribution.

It should be noted that changing the dimension δ of the time transformed
squared Bessel process Z affects the slope of the implied volatility surface.
That is, lowering the dimension δ produces a stronger negative skew for the
implied volatility surface and vice versa.

For long dated European put or call options it can be seen that there
is little curvature in the corresponding implied volatility curves for a given
maturity date, see Fig. 13.4.5.

Note that a remarkably sustained increase in overall implied volatilities
occurs for longer maturities. This is not usually obtained from a stochastic
volatility model where an equivalent risk neutral probability measure exists.
It can be observed that the impact of using random scaling, which is mainly
reflected in the curvature of implied volatilities for short dated options, is not
so prominent for longer dated maturities. This suggests that for long dated
options deterministic scaling will suffice.
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Fig. 13.4.5. Implied volatilities for long dated put options as a function of strike
K and maturity T

13.5 Exercises for Chapter 13

13.1. Calculate the SDE for the logarithm of the discounted GOP.

13.2. Derive the SDE of the square root for the discounted GOP.

13.3. Derive the SDE for the normalized GOP Yt = S̄δ∗
t

αδ∗
t

if

αδ∗
t = α0 exp{

∫ t

0

ηs ds}.

13.4. Calculate the SDE for the squared volatility of the discounted GOP,
given as in Exercise 13.3.
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Markets with Event Risk

After having studied continuous financial markets, this chapter applies the
benchmark approach to markets that exhibit jumps due to event risk. It gener-
alizes several results previously obtained to the case of jump diffusion markets
(JDMs).

14.1 Jump Diffusion Markets

This section extends the results of Sect. 10.1. It provides a unified framework
for financial modeling, portfolio optimization, derivative pricing and risk mea-
surement when security price processes exhibit intensity based jumps. These
jumps allow for the modeling of event risk in finance, insurance and other
areas. Conditions are formulated under which such a market does not permit
arbitrage. The natural numeraire for pricing is again shown to be the GOP,
which relates to the concept of real world pricing as previously explained.
Nonnegative portfolios, when expressed in units of the GOP, turn out to
be supermartingales again. An equivalent risk neutral probability measure
needs not to exist in the JDMs considered. The approach presented avoids
the problem of dealing with risk neutral intensities and similar complications
and restrictions that apply under the standard risk neutral approach.

Continuous and Event Driven Uncertainty

We consider a market containing d ∈ N sources of trading uncertainty. Con-
tinuous trading uncertainty is represented by m ∈ {1, 2, . . . , d} independent
standard Wiener processes W̃ k = {W̃ k

t , t ∈ [0,∞)}, k ∈ {1, 2, . . . ,m}. These
are defined on a filtered probability space (Ω,A,A, P ). We also model events
of certain types, for instance, corporate defaults, credit rating changes, opera-
tional failures or specified insured events, when these are reflected in the prices
of traded securities. Events of the kth type are counted by the A-adapted kth

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,
Springer Finance,
© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010
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counting process pk = {pk
t , t ∈ [0,∞)}, whose intensity hk = {hk

t , t ∈ [0,∞)}
is a given, predictable, strictly positive process with

hk
t > 0 (14.1.1)

and ∫ t

0

hk
s ds < ∞ (14.1.2)

almost surely for t ∈ [0,∞) and k ∈ {1, 2, . . . , d−m}. The kth counting pro-
cess pk leads to the kth jump martingale qk = {qk

t , t ∈ [0,∞)} with stochastic
differential

dqk
t =

(
dpk

t − hk
t dt
) (
hk

t

)− 1
2 (14.1.3)

for k ∈ {1, 2, . . . , d−m} and t ∈ [0,∞). It is assumed that the above jump
martingales do not jump at the same time. They represent the compensated,
normalized sources of event driven trading uncertainty.

The evolution of trading uncertainty is modeled by the vector process of
independent (A, P )-martingales W = {W t = (W̃ 1

t , . . . , W̃
m
t , q1

t , . . . , q
d−m
t )�,

t ∈ [0,∞)}. Note that W 1 = W̃ 1, . . . , Wm = W̃m are Wiener processes,
while Wm+1 = q1, . . ., W d = qd−m are compensated, normalized counting
processes. The filtration A = (At) t∈[0,∞) satisfies the usual conditions and
A0 is the trivial σ-algebra, see Sect. 5.1. Note that the conditional variance
of the increment of the kth source of event driven trading uncertainty over a
time interval of length Δ equals

E
((
qk
t+Δ − qk

t

)2 ∣∣
∣At

)
= Δ (14.1.4)

for all t ∈ [0,∞), k ∈ {1, 2, . . . , d−m} and Δ ∈ [0,∞). Note that in addition
to trading uncertainties the market typically involves additional uncertainties
that impact jump intensities, short rates, appreciation rates, volatilities and
other financial quantities.

Primary Security Accounts

As previously explained, a primary security account is an investment account,
consisting of only one kind of security. The jth risky primary security account
value at time t is denoted by Sj

t , for j ∈ {1, 2, . . . , d} and t ∈ [0,∞). These
primary security accounts model the evolution of wealth due to the owner-
ship of primary securities, with all dividends and income reinvested. The 0th
primary security account S0 = {S0

t , t ∈ [0,∞)} is again the domestic riskless
savings account, which continuously accrues at the short term interest rate rt.
In the market considered, the denominating security is the domestic currency.

Without loss of generality, we assume that the nonnegative jth primary
security account value Sj

t satisfies the jump diffusion SDE
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dSj
t = Sj

t−

(

aj
t dt+

d∑

k=1

bj,kt dW k
t

)

(14.1.5)

for t ∈ [0,∞) with initial value Sj
0 > 0 and j ∈ {1, 2, . . . , d}, see Sect. 7.6.

Recall that Sj
t− denotes the value of the process Sj just before time t, which

is defined as the left hand limit at time t, see (5.2.17). This SDE formally looks
similar to the SDE (10.1.2). However, we have here also the jump martingales
W k

t = qk−m
t for k ∈ {m+ 1, . . . , d}, t ∈ [0,∞).

We assume that the short rate process r, the appreciation rate processes
aj , the generalized volatility processes bj,k and the intensity processes hk are
almost surely finite and predictable, j ∈ {1, 2, . . . , d}, k ∈ {1, 2, . . . , d −m}.
They are assumed to be such that a unique strong solution of the system of
SDEs (14.1.5) exists, see Sect. 7.7. To ensure nonnegativity for each primary
security account we need to make the following assumption.

Assumption 14.1.1. The condition

bj,kt ≥ −
√
hk−m

t (14.1.6)

holds for all t ∈ [0,∞), j ∈ {1, 2, . . . , d} and k ∈ {m+ 1, . . . , d}.

Taking into account (14.1.3), it can be seen from the SDE (14.1.5) that
this assumption excludes jumps that would lead to negative values for Sj

t ,
see Sect. 7.6. To securitize the sources of trading uncertainty properly, we
introduce the generalized volatility matrix bt = [bj,kt ]dj,k=1 for all t ∈ [0,∞)
and make the following assumption.

Assumption 14.1.2. The generalized volatility matrix bt is invertible for
Lebesgue-almost-every t ∈ [0,∞).

Assumption 14.1.2 generalizes Assumption 10.1.1 and allows us to intro-
duce the market price of risk vector

θt = (θ1
t , . . . , θ

d
t )� = b−1

t [at − rt 1] (14.1.7)

for t ∈ [0,∞). Here at = (a1
t , . . . , a

d
t )

� is the appreciation rate vector and 1 =
(1, . . . , 1)� the unit vector . Using (14.1.7), we can rewrite the SDE (14.1.5)
similarly to (10.1.7) in the form

dSj
t = Sj

t−

(

rt dt+
d∑

k=1

bj,kt (θk
t dt+ dW k

t )

)

(14.1.8)

for t ∈ [0,∞) and j ∈ {0, 1, . . . , d}. For k ∈ {1, 2, . . . ,m}, the quantity θk
t

denotes the market price of risk with respect to the kth Wiener process W k.
If k ∈ {m + 1, . . . , d}, then θk

t can be interpreted as the market price of the
(k−m)th event risk with respect to the counting process pk−m. As previously
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discussed, the market prices of risk play a central role, as they are invariants
of the market and determine the risk premia that risky securities attract.

The vector process S = {St = (S0
t , . . . , S

d
t )�, t ∈ [0,∞)} characterizes the

evolution of all primary security accounts. We say that a predictable stochastic
process δ = {δt = (δ0

t , . . . , δ
d
t )�, t ∈ [0,∞)} is a strategy, see Sect. 10.1, if the

Itô integral Iδ,W (t) of the corresponding gains from trade exists, see Sect. 5.3.
As explained in Chap. 10, the jth component δj of δ denotes the number
of units of the jth primary security account held at time t ∈ [0,∞) in the
portfolio Sδ, j ∈ {0, 1, . . . , d}. For a strategy δ we denote by Sδ

t the value of
the corresponding portfolio process at time t, when measured in units of the
domestic currency. Thus, we set

Sδ
t =

d∑

j=0

δj
t S

j
t (14.1.9)

for t ∈ [0,∞). As defined for a CFM, a strategy δ and the corresponding
portfolio process Sδ = {Sδ

t , t ∈ [0,∞)} are self-financing if

dSδ
t =

d∑

j=0

δj
t dS

j
t (14.1.10)

for all t ∈ [0,∞), see (10.1.10). We emphasize that δ is assumed to be a
predictable process and we consider only self-financing portfolios.

Growth Optimal Portfolio

As before, let us denote by V+ the set of strictly positive portfolio processes.
For a given strategy δ with strictly positive portfolio process Sδ ∈ V+ denote
by πj

δ,t the fraction of wealth that is invested in the jth primary security
account at time t, that is,

πj
δ,t = δj

t

Sj
t

Sδ
t

(14.1.11)

for t ∈ [0,∞) and j ∈ {0, 1, . . . , d}, see (10.1.11). These fractions sum to one,
see (10.1.13). In terms of the vector of fractions πδ,t = (π1

δ,t, . . . , π
d
δ,t)

� we
obtain from (14.1.10), (14.1.8) and (14.1.11) the SDE for Sδ

t

dSδ
t = Sδ

t−
{
rt dt+ π�

δ,t− bt (θt dt+ dW t)
}

(14.1.12)

for t ∈ [0,∞), where dW t = (dW 1
t , . . . , dW

m
t , dq1

t , . . . , dq
m−d
t )�. Note by

(14.1.3) that a portfolio process Sδ remains strictly positive if and only if

d∑

j=1

πj
δ,t b

j,k
t > −

√
hk−m

t (14.1.13)

almost surely for all k ∈ {m+ 1, . . . , d} and t ∈ [0,∞).
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For a strictly positive portfolio Sδ ∈ V+ we obtain for its logarithm, by
application of Itô’s formula, the SDE

d ln(Sδ
t ) = gδ

t dt+
m∑

k=1

d∑

j=1

πj
δ,t b

j,k
t dW k

t

+
d∑

k=m+1

ln

⎛

⎝1 +
d∑

j=1

πj
δ,t−

bj,kt√
hk−m

t

⎞

⎠
√
hk−m

t dW k
t (14.1.14)

for t ∈ [0,∞). Similarly to (10.2.2), the growth rate in this expression is

gδ
t = rt +

m∑

k=1

⎡

⎢
⎣

d∑

j=1

πj
δ,t b

j,k
t θk

t − 1
2

⎛

⎝
d∑

j=1

πj
δ,t b

j,k
t

⎞

⎠

2
⎤

⎥
⎦

+
d∑

k=m+1

⎡

⎣
d∑

j=1

πj
δ,t b

j,k
t

(
θk

t −
√
hk−m

t

)
+ ln

⎛

⎝1 +
d∑

j=1

πj
δ,t

bj,kt√
hk−m

t

⎞

⎠hk−m
t

⎤

⎦

(14.1.15)

for t ∈ [0,∞), see Exercise 14.1. Note that for the first sum on the right hand
side of (14.1.15) a unique maximum exists, because it is a quadratic form
with respect to the fractions. Careful inspection of the terms in the second
sum reveals that, in general, a unique maximum growth rate only exists if the
market prices of event risks are less than the square roots of the corresponding
jump intensities. This leads to the following assumption.

Assumption 14.1.3. The intensities and market price of event risk com-
ponents satisfy √

hk−m
t > θk

t (14.1.16)

for all t ∈ [0,∞) and k ∈ {m+ 1, . . . , d}.

We shall see that Assumption 14.1.3 guarantees that there are no portfolios
that explode for the given market, which would otherwise lead to some form of
arbitrage. Furthermore, this condition allows us to introduce the predictable
vector process ct = (c1t , . . . , c

d
t )

� with components

ckt =

⎧
⎨

⎩

θk
t for k ∈ {1, 2, . . . ,m}

θk
t

1−θk
t (hk−m

t )−
1
2

for k ∈ {m+ 1, . . . , d}
(14.1.17)

for t ∈ [0,∞). Note that a very large jump intensity with hk−m
t � 1

or θk
t√

hk−m
t

� 1 causes the corresponding component ckt to approach the
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market price of jump risk θk
t asymptotically for given t ∈ [0,∞) and k ∈

{m + 1, . . . , d}. In this case the structure of the kth component ckt ≈ θk
t is

similar to those obtained with respect to Wiener processes.
We now define the fractions

πδ∗,t = (π1
δ∗,t, . . . , π

d
δ∗,t)

� =
(
c�t b−1

t

)�
(14.1.18)

of a particular portfolio Sδ∗ ∈ V+, which will be later identified as a GOP,
t ∈ [0,∞). By (14.1.12) and (14.1.17) it follows that Sδ∗

t satisfies the SDE

dSδ∗
t = Sδ∗

t−

(
rt dt+ c�t (θt dt+ dW t)

)

= Sδ∗
t−

(

rt dt+
m∑

k=1

θk
t (θk

t dt+ dW k
t )

+
d∑

k=m+1

θk
t

1 − θk
t (hk−m

t )−
1
2

(θk
t dt+ dW k

t )

)

(14.1.19)

for t ∈ [0,∞), with Sδ∗
0 > 0. Inspection of (14.1.19) shows that Assump-

tion 14.1.3 keeps the portfolio process Sδ∗ strictly positive. Let us now define
a GOP in the given market with intensity based jumps.

Definition 14.1.4. In the given market a strictly positive portfolio process
Sδ ∈ V+ that maximizes the growth rate gδ

t , see (14.1.15), of strictly positive
portfolio processes is called a GOP, that is, gδ

t ≤ g
δ
t almost surely for all

t ∈ [0,∞) and Sδ ∈ V+.

This definition generalizes the Definition 10.2.1 of a GOP in a CFM. The
proof of the following result is given at the end of this section, see also Platen
(2004b).

Corollary 14.1.5. Under Assumptions 14.1.1, 14.1.2 and 14.1.3 the port-
folio process Sδ∗ = {Sδ∗

t , t ∈ [0,∞)}, satisfying (14.1.19), is a GOP.

By (14.1.15), (14.1.17) and (14.1.18) we obtain the optimal growth rate of
the GOP in the form

gδ∗
t = rt +

1
2

m∑

k=1

(θk
t )2 −

d∑

k=m+1

hk−m
t

⎛

⎝ln

⎛

⎝1 +
θk

t√
hk−m

t − θk
t

⎞

⎠+
θk

t√
hk−m

t

⎞

⎠

(14.1.20)
for t ∈ [0,∞). Note that the optimal growth rate is never less than the short
rate. Furthermore, as long as θk

t√
hk−m

t

� 1, that is, θk
t is significantly smaller

than
√
hk−m

t for k ∈ {m+ 1, . . . , d}, we approximately obtain
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gδ∗
t ≈ rt +

1
2

d∑

k=1

(θk
t )2 = rt +

|θt|2
2

(14.1.21)

and

d ln(Sδ∗
t ) ≈ gδ∗

t dt+
d∑

k=1

θk
t dW

k
t . (14.1.22)

This SDE is analogous to the SDE for the logarithm of the GOP of a CFM
in Sect. 10.2. Also by (14.1.19) we can derive the approximation

dSδ∗
t ≈ Sδ∗

t

(

rt +
d∑

k=1

θk
t

(
θk

t dt+ dW k
t

)
)

, (14.1.23)

which is similar to (10.2.8). Now, let us formally characterize the given jump
diffusion market.

Definition 14.1.6. We denote the above financial market by SJD
(d) =

{S,a, b, r,A, P} and call it a jump diffusion market (JDM) when it has d ∈ N
risky primary security accounts and satisfies Assumptions 14.1.1, 14.1.2 and
14.1.3.

Supermartingale Property

As is the case for a CFM, we call prices, when expressed in units of Sδ∗

benchmarked prices. By the Itô formula and relations (14.1.12) and (14.1.19),
a benchmarked portfolio process Ŝδ = {Ŝδ

t , t ∈ [0,∞)}, with

Ŝδ
t =

Sδ
t

Sδ∗
t

(14.1.24)

for t ∈ [0,∞), satisfies the SDE

dŜδ
t =

m∑

k=1

⎛

⎝
d∑

j=1

δj
t Ŝ

j
t b

j,k
t − Ŝδ

t θ
k
t

⎞

⎠ dW k
t

+
d∑

k=m+1

⎛

⎝

⎛

⎝
d∑

j=1

δj
t Ŝ

j
t− bj,kt

⎞

⎠

⎛

⎝1 − θk
t√

hk−m
t

⎞

⎠− Ŝδ
t− θk

t

⎞

⎠ dW k
t (14.1.25)

for t ∈ [0,∞).
The SDE (14.1.25) governs the dynamics of a benchmarked portfolio and

generalizes the SDE (10.3.2). For example, by (14.2.6) and (14.2.5) the bench-
marked savings account Ŝ0

t satisfies the SDE

dŜ0
t = −Ŝ0

t−

d∑

k=1

θk
t dW

k
t (14.1.26)

for t ∈ [0,∞).
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Using previous notation, let us denote by V the set of all nonnegative
portfolios in the given market. Note that the right hand side of (14.1.25) is
driftless. Thus, for Sδ ∈ V the nonnegative benchmarked portfolio Ŝδ forms an
(A, P )-local martingale when Ŝδ is continuous, see Lemma 5.4.1. Also in the
given JDM the driftless Ŝδ is an (A, P )-local martingale, see Ansel & Stricker
(1994). This provides by Lemma 5.2.3 for nonnegative Ŝδ the important su-
permartingale property.

Theorem 14.1.7. In a JDM any nonnegative benchmarked portfolio pro-
cess Ŝδ is an (A, P )-supermartingale, that is

Ŝδ
t ≥ E

(
Ŝδ

τ

∣
∣
∣At

)
(14.1.27)

for all bounded τ ∈ [0,∞) and t ∈ [0, τ ].

A proof of this theorem can be found for general semimartingale mar-
kets in Platen (2004a), or for jump diffusion markets driven by Poisson jump
measures in Christensen & Platen (2005). We emphasize the fundamental
fact that nonnegative benchmarked portfolios are supermartingales in gen-
eral semimartingale markets as long as an almost surely finite GOP exists,
see Platen (2004a). Based on the above supermartingale property of non-
negative benchmarked portfolios and the notion of arbitrage introduced in
Definition 10.3.2, we can draw the following conclusion.

Corollary 14.1.8. A JDM does not allow nonnegative portfolios that per-
mit arbitrage.

This result generalizes Corollary 10.3.3. Its proof is formally the same as
the one given in Corollary 10.3.3. It is based on the fact that a nonnegative
supermartingale that reaches zero remains afterwards at zero, see (10.5.4).
This argument also can be used for a semimartingale market with a finite
GOP to show that no nonnegative portfolio permits arbitrage, see Platen
(2004a) and Christensen & Larsen (2007).

Real World Pricing

Recall now the notion of a fair security, see Definition 9.1.2, where its bench-
marked price is an (A, P )-martingale. Generalizing Corollary 10.4.2 yields by
Lemma 10.4.1 the following result.

Corollary 14.1.9. Consider a JDM with a bounded stopping time τ ∈
(0,∞) and a given future Aτ -measurable payoff H to be paid at τ with
E( H

Sδ∗
τ
|A0) < ∞. If there exists a fair nonnegative portfolio Sδ ∈ V with

Sδ
τ = H almost surely, then this is the minimal nonnegative portfolio that

replicates the payoff.
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This means that fair portfolios provide the best choice for an investor’s
tradable wealth. Otherwise, there exists a less expensive fair portfolio that
achieves the same payoff H at time τ .

Let H denote an Aτ -measurable payoff, with E( H

Sδ∗
τ

) < ∞, to be paid at
a stopping time τ ∈ [0,∞). The real world pricing formula (9.1.30) can also
be applied in a JDM context for pricing the payoff H. Its fair price UH(t) at
time t ∈ [0, τ ] is then given by the real world pricing formula

UH(t) = Sδ∗
t E

(
H

Sδ∗
τ

∣
∣
∣
∣At

)
, (14.1.28)

see (10.4.1). This formula will be used when pricing derivatives in a JDM. In
the same way, as discussed in Sect. 10.4, real world pricing is equivalent to
risk neutral pricing as long as the candidate Radon-Nikodym derivative value
Λθ(t) = S0

t

Sδ∗
t

Sδ∗
0

S0
0

for the hypothetical risk neutral probability measure forms

an (A, P )-martingale.
We remark that the actuarial pricing formula in the form (9.2.6) follows

from the real world pricing formula (14.1.28) also for a JDM, when the payoff
H paid at time T , is independent of the GOP value Sδ∗

T . This is of particular
importance in insurance, and also for measuring operational risk, as well as,
for the pricing of weather derivatives and other payoffs that are not related to
the fluctuations of the market index. We remark that even for semimartingale
markets, the real world pricing formula is adequate for derivative pricing, as
long as a finite GOP exists, see Platen (2004a) and Christensen & Platen
(2005).

Forward Rate Equation

As in Sect. 10.4, a simple example of a derivative is the fair zero coupon
bond. It pays one unit of the domestic currency at the given maturity date
T ∈ [0,∞). By the real world pricing formula (14.1.28) the price P (t, T ) at
time t for this derivative is given by the conditional expectation

P (t, T ) = E

(
Sδ∗

t

Sδ∗
T

∣
∣
∣
∣At

)

(14.1.29)

for t ∈ [0, T ], T ∈ [0,∞). This leads to the benchmarked fair zero coupon
bond value P̂ (t, T ) = P (t,T )

Sδ∗
t

, where we can assume, similarly to (10.4.9), that
it satisfies an SDE of the form

dP̂ (t, T ) = −P̂ (t−, T )
d∑

k=1

σk(t, T ) dW k
t (14.1.30)

for t ∈ [0, T ], with predictable generalized volatility process σk(·, T ) =
{σk(t, T ), t ∈ [0, T ]} for k ∈ {1, 2, . . . , d}. By using a logarithmic transfor-
mation and an application of the Itô formula this becomes
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ln(P̂ (t, T )) = ln(P̂ (0, T )) −
m∑

k=1

(∫ t

0

σk(s, T ) dW k
s +

1
2

∫ t

0

(σk(s, T ))2 ds
)

+
d∑

k=m+1

(∫ t

0

σk(s, T )
√
hk−m

s ds+
∫ t

0

ln

(

1 − σk(s, T )
√
hk−m

s

)

dpk
s

)

.

(14.1.31)

Hence, according to (10.4.12) the forward rate f(t, T ) at time t ∈ [0, T ]
for the maturity T ∈ [0,∞) satisfies the equation

f(t, T ) = − ∂

∂T
ln(P (t, T )) = − ∂

∂T
ln(P̂ (t, T )). (14.1.32)

Consequently, by (14.1.31) we derive the forward rate equation

f(t, T ) = f(0, T ) +
m∑

k=1

∫ t

0

(
∂

∂T
σk(s, T )

)
(
σk(s, T ) ds+ dW k

s

)

+
d∑

k=m+1

∫ t

0

1

1 − σk(s,T )√
hk−m

s

∂

∂T
σk(s, T )

(
σk(s, T ) ds+ dW k

s

)
(14.1.33)

for t ∈ [0, T ], see Exercise 14.2. This equation can also be found in Bruti-
Liberati, Nikitopoulos-Sklibosios & Platen (2009). It is a generalization of
(10.4.14) and the HJM equation (10.4.19). In the case when σk(t,T )√

hk−m
t

� 1 we

obtain asymptotically the forward rate equation in the form of the CFM.

GOP as Best Performing Portfolio

In Chap.10 it was demonstrated by using various criteria that the GOP is the
best performing portfolio for a CFM. Since the proofs of these results are based
on the supermartingale property of nonnegative benchmarked portfolios, a
similar set of proofs also applies for JDMs. Below, we generalize two of these
results. First, let us formulate the property that in a JDM the GOP has the
maximum long term growth rate, and, thus, almost surely, outperforms any
other portfolio after a sufficiently long time.

Theorem 14.1.10. In a JDM the GOP Sδ∗ has almost surely the largest
long term growth rate in comparison with that of any other strictly positive
portfolio Sδ ∈ V+, that is,

g̃δ∗ a.s.= lim sup
T→∞

1
T

ln

(
Sδ∗

T

Sδ∗
0

)

≥ lim
T→∞

1
T

ln
(
Sδ

T

Sδ
0

)
a.s.= g̃δ (14.1.34)

almost surely.
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We now extend Corollary 10.5.3 by using the obvious extension of Defini-
tion 10.5.2 concerning the systematic outperformance of a portfolio.

Corollary 14.1.11. In a JDM no strictly positive portfolio systematically
outperforms the GOP in the sense of Definition 10.5.2.

Thus, there also is no systematic way to beat the GOP in a JDM over any
short or long term horizon. This is a fundamental property of the GOP and
makes it very special for investment purposes. We emphasize that the proofs
of the above theorem and corollary depend only on the supermartingale prop-
erty of nonnegative benchmarked portfolios. As previously indicated, this su-
permartingale property holds for general semimartingale markets. Therefore,
similar statements about the optimal performance of the GOP hold very gen-
erally, see Platen (2004a).

Proof of Corollary 14.1.5 (*)

Under the Assumption 14.1.3 it follows from the first order conditions for iden-
tifying the maximum growth rate (14.1.15) that the optimal generalized port-
folio volatilities are described by ct as given in (14.1.17). Note from (14.1.12)
that the generalized volatility of a portfolio Sδ ∈ V+ has at time t the form
π�

δ,t−bt, which leads to the system of linear equations for the optimal fractions
πδ∗,t for a GOP with

π�
δ∗,t− bt = ct. (14.1.35)

By Assumption 14.1.2 the generalized volatility matrix bt is invertible and the
formula

π�
δ∗,t− = ct b−1

t (14.1.36)

follows from (14.1.35) for the optimal fractions. This yields formula (14.1.18)
for t ∈ [0,∞). These fractions are uniquely determined and so what is a GOP
when its initial value is given. Consequently, the SDE (14.1.19) is, by (14.1.12),
(14.1.18) and (14.1.17), the one that characterizes a GOP. ��

14.2 Diversified Portfolios

This section considers diversified portfolios in a sequence of JDMs. It gener-
alizes the Diversification Theorem of Sect. 10.6 to the case of markets with
intensity based jumps.

Sequence of JDMs

We rely again on a filtered probability space (Ω,A,A, P ) with filtration A =
(At) t∈[0,∞), satisfying the usual conditions. Continuous trading uncertainty
is represented by independent standard Wiener processes W̃ k = {W̃ k

t , t ∈
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[0,∞)} for k ∈ N . Event driven trading uncertainty is modeled by counting
processes pk = {pk

t , t ∈ [0,∞)} characterized by corresponding predictable,
strictly positive intensity processes hk = {hk

t , t ∈ [0,∞)} for k ∈ N . We define
the kth jump martingale qk = {qk

t , t ∈ [0,∞)} as in (14.1.3), for k ∈ N .
In what follows, we consider a sequence (SJD

(d))d∈N of JDMs indexed by
the number d ∈ N of risky primary security accounts. For a given inte-
ger d, the corresponding JDM SJD

(d) comprises d + 1 primary security ac-
counts, denoted by S0

(d), S
1
(d), . . . , S

d
(d). These include a savings account S0

(d) =
{S0

(d)(t), t ∈ [0,∞)}, which is a locally riskless primary security account,

whose value at time t is given by the exponential S0
(d)(t) = exp

{∫ t

0
rs ds

}

for t ∈ [0,∞). Here r = {rt, t ∈ [0,∞)} denotes an adapted short rate
process, which we assume, for simplicity, to be the same in each JDM.
We include d nonnegative, risky primary security account processes Sj

(d) =

{Sj
(d)(t), t ∈ [0,∞)}, j ∈ {1, 2, . . . , d}, each of which can be driven by the

Wiener processes W̃ 1, W̃ 2, . . . , W̃m and the jump martingales q1, q2, . . . , qd−m.
Here μ ∈ [0, 1] is a fixed real number and m = [μd] denotes the largest integer
not exceeding μd. In the dth JDM we have the trading uncertainty driven by
the d-dimensional vector process W = {W t = (W̃ 1

t , . . . , W̃
m
t , q1

t , . . . , q
d−m)�,

t ∈ [0,∞)}. Obviously, if μ equals one, then we have no jumps. This covers
the case of a CFM, as was discussed in Sect. 10.1.

As previously noted, for fixed d ∈ N we call a predictable stochastic
process δ = {δt = (δ0

t , δ
1
t , . . . , δ

d
t )�, t ∈ [0,∞)} a strategy if for each j ∈

{0, 1, . . . , d} the Itô integral
∫ t

0
δj
s dS

j
(d)(s) exists. The corresponding portfolio

value is then Sδ
(d)(t) =

∑d
j=0 δ

j
t S

j
(d)(t) and satisfies the SDE

dSδ
(d)(t) =

d∑

j=0

δj
t dS

j
(d)(t) (14.2.1)

for t ∈ [0,∞). Note that in the dth JDM SJD
(d) a given strategy δ depends typ-

ically on d. However, for simplicity we shall initially suppress this dependence
and shall only mention it when later required.

The corresponding jth fraction of a strictly positive portfolio Sδ
(d) is given

by the expression πj
δ,t = δj

t

Sj
(d)(t)

Sδ
(d)(t)

for t ∈ [0,∞) and j ∈ {0, 1, . . . , d}, as long

as Sδ
(d)(t) > 0.

As shown in Sect. 14.1, for each JDM SJD
(d) there exists a unique GOP

Sδ∗
(d) = {Sδ∗

(d)(t), t ∈ [0,∞)} satisfying the SDE (14.1.19) when we fix the initial
value, which we set, for simplicity, to

Sδ∗
(d)(0) = 1. (14.2.2)

Any portfolio Sδ
(d) in the dth JDM, when expressed in units of Sδ∗

(d), yields a

corresponding benchmarked portfolio Ŝδ
(d) = {Ŝδ

(d)(t), t ∈ [0,∞)}, defined by
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Ŝδ
(d)(t) =

Sδ
(d)(t)

Sδ∗
(d)(t)

(14.2.3)

at time t ∈ [0,∞). It forms a driftless SDE, see (14.1.25).
To obtain a more compact formulation of the SDE (14.1.25), let us de-

fine the (j, k)th specific generalized volatility σj,k
(d)(t), see (10.6.3)–(10.6.4), by

setting
σ0,k

(d) (t) = θk
t (14.2.4)

for j = 0 and k ∈ {1, 2, . . . , d} and

σj,k
(d)(t) =

⎧
⎪⎨

⎪⎩

θk
t − bj,kt for k ∈ {1, 2, . . . ,m}

θk
t − bj,kt

(
1 − θk

t√
hk−m

t

)
for k ∈ {m+ 1, . . . , d}

(14.2.5)

for t ∈ [0,∞) and j ∈ {1, 2, . . . , d}. By using (14.2.5) and (14.2.4) one can
rewrite the SDE (14.1.25) in the form

dŜδ
(d)(t) = −

d∑

k=1

d∑

j=0

δj
t Ŝ

j
(d)(t−)σj,k

(d)(t) dW
k
t , (14.2.6)

and for strictly positive Sδ
(d)(t) as

dŜδ
(d)(t) = −Ŝδ

(d)(t−)
d∑

k=1

d∑

j=0

πj
δ,t− σj,k

(d)(t) dW
k
t (14.2.7)

for t ∈ [0,∞).
The following assumption asks for the property that the specific general-

ized volatilities are finite in a certain sense.

Assumption 14.2.1. For all d ∈ N , T ∈ [0,∞) and j ∈ {0, 1, . . . , d} sup-
pose that

∫ T

0

d∑

k=1

(
σj,k

(d)(t)
)2

dt ≤ K̄T < ∞ (14.2.8)

almost surely, where K̄T < ∞ denotes some finite AT -measurable random
variable which does not depend on d. Furthermore, it is assumed that the
inequality

σj,k
(d)(t) <

√
hk−m

t (14.2.9)

holds almost surely for all t ∈ [0,∞), k ∈ {m + 1,m + 2, . . . , d} and j ∈
{0, 1, . . . , d}.
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Sequences of Diversified Portfolios

Our aim is now to generalize the Diversification Theorem from Sect. 10.6 to
the case of JDMs. Since for each d ∈ N the above model is a JDM, we
can form a sequence of JDMs (SJD

(d))d∈N , indexed by the number d of risky
primary security accounts. As in Sect. 10.6, for such a sequence of financial
market models we identify a class of sequences of portfolios that approximate
the corresponding sequence of GOPs.

Let us extend the Definition 10.6.2 for a sequence of diversified portfolios
(DPs).

Definition 14.2.2. For a sequence of JDMs (SJD
(d) )d∈N we call a corre-

sponding sequence (Sδ
(d))d∈N of strictly positive portfolio processes Sδ

(d) a se-
quence of DPs if some constants K1,K2 ∈ (0,∞) and K3 ∈ N exist, indepen-
dently of d, such that for d ∈ {K3,K3 + 1, . . .} the inequality

∣
∣
∣πj

δ,t

∣
∣
∣ ≤

K2

d
1
2+K1

(14.2.10)

holds almost surely for all j ∈ {0, 1, . . . , d} and t ∈ [0,∞).

Note that in (14.2.10) the strategy δ depends on d. Consider for fixed
d ∈ N the dth JDM SJD

(d) as an element of a given sequence of JDMs. By

(14.2.7), when setting πj
δ,t = 1 and πi

δ,t = 0 for i = j, the jth benchmarked
primary security account process Ŝj

(d) = {Ŝj
(d)(t), t ∈ [0,∞)}, with

Ŝj
(d)(t) =

Sj
(d)(t)

Sδ∗
(d)(t)

, (14.2.11)

satisfies the driftless SDE

dŜj
(d)(t) = −Ŝj

(d)(t−)
d∑

k=1

σj,k
(d)(t) dW

k
t (14.2.12)

for t ∈ [0,∞) and j ∈ {0, 1, . . . , d}.
The (j, k)th specific generalized volatility σj,k

(d)(t) of the benchmarked jth

primary security account Ŝj
(d)(t) measures at time t ∈ [0,∞) the jth spe-

cific market risk with respect to the kth trading uncertainty W k for k ∈
{1, 2, . . . , d}, j ∈ {0, 1, . . . , d}, see Platen & Stahl (2003) and Sect. 10.6. Sim-
ilarly as for CFMs, we introduce for all t ∈ [0,∞), d ∈ N and k ∈ {1, 2, . . . , d}
the kth total specific volatility for the dth JDM SJD

(d) in the form

σ̂k
(d)(t) =

d∑

j=0

|σj,k
(d)(t)|. (14.2.13)
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Depending on k, the kth total specific volatility represents the sum of the
absolute values of the specific generalized volatilities with respect to the kth
trading uncertainty.

Similarly to Definition 10.6.3 the following regularity property of a se-
quence of markets ensures that each of the independent sources of trading
uncertainty influences only a restricted range of benchmarked primary secu-
rity accounts.

Definition 14.2.3. A sequence of JDMs is called regular if there exists a
constant K5 ∈ (0,∞), independent of d, such that

E

((
σ̂k

(d)(t)
)2
)

≤ K5 (14.2.14)

for all t ∈ [0,∞), d ∈ N and k ∈ {1, 2, . . . , d}.

Sequence of Approximate GOPs

As in the case of a CFM, we consider for given d ∈ N in the dth JDM
SJD

(d) a strictly positive portfolio process Sδ
(d) with strategy δ = {δt =

(δ0
t , δ

1
t , . . . , δ

d
t )�, t ∈ [0,∞)}. We introduce again the tracking rate Rδ

(d)(t)
at time t for the portfolio Sδ

(d) by setting

Rδ
(d)(t) =

d∑

k=1

⎛

⎝
d∑

j=0

πj
δ,t σ

j,k
(d)(t)

⎞

⎠

2

(14.2.15)

for t ∈ [0,∞), see (10.6.22). By (14.2.7) one notes that the benchmarked
portfolio Ŝδ

(d) is constant with

Ŝδ
(d)(t) = Ŝδ

(d)(0) (14.2.16)

almost surely, if and only if the tracking rate vanishes, that is,

Rδ
(d)(t) = 0 (14.2.17)

almost surely for all t ∈ [0,∞). Recall that by (14.2.2) Sδ∗
(d)(0) = 1. In the case

of a constant benchmarked portfolio Ŝδ
(d), characterized by equation (14.2.16),

the portfolio value Sδ
(d)(t) equals, by relation (14.2.3), a multiple of the GOP,

that is,
Sδ

(d)(t) = Sδ
(d)(0)Sδ∗

(d)(t) (14.2.18)

almost surely for all t ∈ [0,∞). Therefore, a given portfolio process Sδ
(d)

moves in step with the GOP if the tracking rate Rδ
(d)(t) remains small for

all t ∈ [0,∞). Let us formalize this fact by extending Definition 10.6.4.
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Definition 14.2.4. For a sequence (SJD
(d) )d∈N of JDMs we call a sequence

(Sδ
(d))d∈N of strictly positive portfolio processes a sequence of approximate

GOPs if for all t ∈ [0,∞) the corresponding sequence of tracking rates van-
ishes in probability, see (2.7.1). That is, we have

lim
d→∞

Rδ
(d)(t)

P= 0 (14.2.19)

for all t ∈ [0,∞).

To obtain a moment based sufficient condition for the identification of a
sequence of approximate GOPs, we introduce, for any given d ∈ N and strictly
positive portfolio process Sδ

(d), the expected tracking rate

eδ
(d)(t) = E

(
Rδ

(d)(t)
)

(14.2.20)

at time t ∈ [0,∞). This leads to the following definition.

Definition 14.2.5. For a sequence of JDMs (SJD
(d) )d∈N , a sequence (Sδ

(d))d∈N
of strictly positive portfolio processes is said to have a vanishing expected
tracking rate, if their expected tracking rate converges to zero, that is,

lim
d→∞

eδ
(d)(t) = 0 (14.2.21)

for all t ∈ [0,∞).

Using Definition 14.2.5 and the Markov inequality (1.3.57), we obtain for
given ε > 0 and any sequence (Sδ

(d))d∈N of strictly positive portfolios with
vanishing expected tracking rate the asymptotic inequality

lim
d→∞

P
(
Rδ

(d)(t) > ε
)
≤ lim

d→∞

1
ε
eδ
(d)(t) = 0 (14.2.22)

for all t ∈ [0,∞). Therefore, by Definition 14.2.4 and inequality (14.2.22) we
obtain the following result.

Lemma 14.2.6. For a sequence of JDMs, any sequence of strictly positive
portfolios with vanishing expected tracking rate is a sequence of approximate
GOPs.

Diversification Theorem

Now, we state a crucial result of the benchmark approach. Using Definitions
14.2.2 and 14.2.3 the Lemma 14.2.6 allows us to extend the Diversification
Theorem to the case of JDMs. Its proof is omitted since it is analogous to the
one of Theorem 10.6.5 in Sect. 10.6 and can also be found in Platen (2005b).
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Theorem 14.2.7. (Diversification Theorem for JDMs) For a regular se-
quence of JDMs (SJD

(d) )d∈N , each sequence (Sδ
(d))d∈N of DPs is a sequence of

approximate GOPs. Moreover, for any d ∈ {K3,K3 + 1, . . .} and t ∈ [0,∞),
the expected tracking rate of a given DP Sδ

(d) satisfies the inequality

eδ
(d)(t) ≤

(K2)2 K5

d2K1
. (14.2.23)

Here the constants K1,K2,K3 and K5 are the same as in Definitions 14.2.2
and 14.2.3.

The Diversification Theorem shows that for a regular sequence of JDMs
any sequence of DPs approximates the GOP. This is highly relevant for the
practical applicability of the benchmark approach, as previously discussed in
Sect.10.6. In particular, it allows one to approximate the GOP by a diversified
market index without the need of an exact calculation of the fractions of the
GOP. We emphasize that this result is model independent, which makes it
very robust. The Diversification Theorem can be generalized under appropri-
ate assumptions to the case of semimartingale markets, as will be shown in
forthcoming work.

Diversification in an MMM Setting

In Sect. 10.6 we provided some examples for diversified portfolios in a Black-
Scholes type CFM. These examples demonstrate that the asymptotic proper-
ties of approximate GOPs do not need extremely large numbers of primary
security accounts to be practically relevant. In a JDM with only a few rare
events this is not so easy to demonstrate unless one generates an extremely
large number of primary security accounts. However, in practice, the number
of primary security accounts is indeed very large and the default of a single
stock, even a large one, does not significantly change the value of the market
portfolio. Let us now illustrate the fundamental phenomenon of diversification
by simulating diversified portfolios in an MMM type setting, for simplicity,
without jumps.

We consider the following multi-asset stylized MMM, which we discussed
in Sect. 13.2. This example also demonstrates how to construct efficiently
a market model under the benchmark approach. Firstly, we introduce the
savings account in the form

S0
(d)(t) = exp{r t} (14.2.24)

with constant short rate r > 0 for t ∈ [0, T ], d ∈ N . The discounted GOP
drift is set in all denominations to

αδ∗
t = α0 exp{η t} (14.2.25)
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Fig. 14.2.1. Primary security accounts under the MMM

with net growth rate η > 0 and initial parameter α0 > 0. We model the jth
benchmarked primary security account by the expression

Ŝj
(d)(t) =

1
Y j

t αδ∗
t

(14.2.26)

for all j ∈ {0, 1, . . . , d}. In this context Y j
t is the time t value of the SR process

Y j , which satisfies the SDE

dY j
t =

(
1 − η Y j

t

)
dt+

√
Y j

t dW j
t (14.2.27)

for t ∈ [0, T ], where we set Y j
0 = 1

η for j ∈ {0, 1, . . .}. Also W 0,W 1, . . . are
independent standard Wiener processes.

Now, with (14.2.11) the GOP is obtained as the ratio

Sδ∗
(d)(t) =

S0
(d)(t)

Ŝ0
(d)(t)

. (14.2.28)

Hence, by (14.2.11) the value of the jth primary security account is given by

Sj
(d)(t) = Ŝj

(d)(t)S
δ∗
(d)(t) (14.2.29)

for t ∈ [0,∞), j ∈ {1, 2, . . . , d} and d ∈ N . By starting from the savings
account and the benchmarked primary security accounts we have modeled all
primary security accounts and the GOP in the denomination of the domestic
currency.

We now simulate d = 50 primary security accounts Sj
(d), j ∈ {0, 1, . . . , d},

for a period of T = 32 years, where we set r = η = α0 = 0.05. We show in
Fig. 14.2.1 the trajectories of the first twenty risky primary security accounts.
One notes their typical increase but also a decline of some of the securities. It is
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Fig. 14.2.2. Benchmarked primary security accounts

Fig. 14.2.3. GOP and EWI

noticeable that the primary security accounts have some common fluctuations.
These are caused by the general market risk as captured by the GOP, which
is shown in Fig. 14.2.3. In Fig. 14.2.2 we plot the corresponding benchmarked
primary security accounts. These are strict supermartingales, as discussed
previously in Chap. 13.

Figure 14.2.3 shows the equi-value weighted index (EWI) together with the
GOP. One notes the closeness of the GOP and the EWI as predicted by the
above Diversification Theorem. Figure 14.2.4 displays a market index, where
its constituents represent simply one unit of each primary security account.
Here one notes that the market index is initially a good proxy of the GOP.
After an initial time period of about 13 years some extremely large stock val-
ues emerge, as can be seen in Fig.14.2.1. The resulting large fractions of these
stocks distort the performance of the market index. These fractions of the cor-
responding primary security accounts are simply too large to be acceptable as
those of a DP and, thus, violate the conditions of the Diversification Theorem.



532 14 Markets with Event Risk

Fig. 14.2.4. GOP and market index

One can say that the market index is in our example, no longer interpretable
as a DP after about 13 years because the fractions of a few excellent perform-
ing stocks are larger than the average fraction by magnitudes. The EWI does
not suffer in this way and is in our example a good proxy for the GOP, as can
be seen from Fig. 14.2.3. We emphasize that even for a market with only 50
risky primary security accounts a rather good approximation of the GOP by
DPs like the EWI is obtained. Further experiments with other DPs reveal a
similar behavior as shown in Fig. 14.2.3.

The Diversification Theorem identifies DPs as proxies for the GOP without
any particular modeling assumptions on the market dynamics. This diversi-
fication phenomenon is, therefore, very robust. However, if the fractions of
some primary security accounts become too large in a portfolio, then such a
portfolio cannot be interpreted as a DP and it is unlikely to be a good proxy
of the GOP.

14.3 Mean-Variance Portfolio Optimization

This section generalizes some of the results on mean-variance portfolio opti-
mization that we presented in Chap.11. It turns out that the kind of two fund
separation of locally optimal portfolios into combinations of savings account
and GOP, which we observed for a CFM, does not hold any longer in the
same manner. Different classes of optimal portfolios arise in a JDM for differ-
ent types of optimization objectives. For instance, Sharpe ratio maximization
does not lead, in general, to portfolios that are a combination of the GOP and
savings account.
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Locally Optimal Portfolios

Our objective here is to try to generalize the results of Sect. 11.1 on locally
optimal portfolios. Given a strictly positive portfolio Sδ, its discounted value
S̄δ

t = Sδ
t

S0
t

satisfies the SDE

dS̄δ
t =

d∑

k=1

ψk
δ,t

(
θk

t dt+ dW k
t

)
(14.3.1)

by (14.1.12) and an application of the Itô formula. Here

ψk
δ,t =

d∑

j=1

δj
t b

j,k
t S̄δ

t− (14.3.2)

is called the kth generalized diffusion coefficient at time t for k ∈ {1, 2, . . . , d}
and t ∈ [0,∞). Obviously, by (14.3.1) and (14.3.2), the discounted portfolio
process S̄δ has discounted drift

αδ
t =

d∑

k=1

ψk
δ,t θ

k
t (14.3.3)

for t ∈ [0, T ]. This drift measures the portfolio’s trend at time t. The fluctua-
tions of a discounted portfolio S̄δ can be measured at time t by its aggregate
generalized diffusion coefficient

γδ
t =

√√
√
√

d∑

k=1

(
ψk

δ,t

)2

(14.3.4)

at time t ∈ [0,∞). Note that by relation (14.1.4) we have standardized the
variances of the increments of the driving martingales W 1,W 2, . . . ,W d such
that they equal the corresponding time increments, as is the case for standard
Wiener processes.

For a given level of the aggregate generalized diffusion coefficient γ δ̃
t > 0,

suppose that an investor aims to maximize the portfolio drift αδ
t of a dis-

counted portfolio S̄δ. This objective can be interpreted as a possible gener-
alization of mean-variance portfolio optimization in the sense of Markowitz
(1959) to the case of a JDM. More precisely, let us identify the class of SDEs
for the portfolios of investors who prefer locally optimal portfolios, defined in
the following sense:

Definition 14.3.1. A strictly positive portfolio process S δ̃ ∈ V+ that maxi-
mizes the portfolio drift (14.3.3) among all strictly positive portfolio processes
Sδ ∈ V+ with a given aggregate generalized diffusion coefficient level γ δ̃

t is
called locally optimal, that is,
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γδ
t = γ δ̃

t and αδ
t ≤ αδ̃

t (14.3.5)

almost surely for all t ∈ [0,∞).

This definition generalizes our Definition 11.1.1 to the case of JDMs.

Mean-Variance Portfolio Selection Theorem

For the following analysis we use the total market price of risk

|θt| =

√√
√
√

d∑

k=1

(
θk

t

)2 (14.3.6)

and the weighting factor

G(t) =
d∑

k=1

d∑

j=1

θk
t b

−1 j,k
t (14.3.7)

for t ∈ [0,∞). The following condition generalizes Assumption 11.1.2. It ex-
cludes the trivial situation of having the savings account as GOP.

Assumption 14.3.2. In a JDM suppose that

0 < |θt| < ∞ (14.3.8)

and
G(t) = 0 (14.3.9)

almost surely for all t ∈ [0,∞).

Now, we can formulate a mean-variance portfolio selection theorem which
generalizes the results of Theorem 11.1.3. It identifies the structure of the
drift and generalized diffusion coefficients of the SDE of a discounted locally
optimal portfolio.

Theorem 14.3.3. Under Assumption 14.3.2, any discounted locally opti-
mal portfolio S̄δ satisfies in a JDM the SDE

dS̄δ
t = S̄δ

t

(
1 − π0

δ,t

)

G(t)

d∑

k=1

θk
t

(
θk

t dt+ dW k
t

)
, (14.3.10)

with optimal fractions

πj
δ,t =

(
1 − π0

δ,t

)

G(t)

d∑

k=1

θk
t b

−1 j,k
t (14.3.11)

for all t ∈ [0,∞) and j ∈ {1, 2, . . . , d}.
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The proof of this theorem is analogous to that of Theorem 11.1.3. It is,
therefore, omitted, but it can be found in Platen (2006b). According to Theo-
rem 14.3.3, the family of discounted locally optimal portfolios is characterized
by a single parameter process, namely the fraction of wealth π0

δ,t held in the
savings account at time t. However, we shall see that, in general, it is not
the GOP which arises as the mutual risky portfolio in the resulting two fund
separation.

Mutual Fund

Let us select a particular locally optimal portfolio SδMF , which we call the
mutual fund (MF), by choosing

π0
δMF,t = 1 −G(t) (14.3.12)

for t ∈ [0,∞). By (14.3.10) the MF satisfies the SDE

dSδMF
t = SδMF

t−

(

rt dt+
d∑

k=1

θk
t

(
θk

t dt+ dW k
t

)
)

(14.3.13)

for t ∈ [0,∞). Note that this SDE is very similar to that of a GOP in a CFM,
see (10.2.8). However, in general, it is not the same SDE in the given JDM,
as we shall see below.

By Theorem 14.3.3 it follows that any locally optimal portfolio Sδ can
be obtained at any time by investing a fraction of wealth in the MF SδMF

and holding the remaining fraction in the savings account. Therefore, Theo-
rem 14.3.3 can be interpreted as a mutual fund theorem, see Merton (1973a).
In this sense we have again two fund separation, see Corollary 11.1.4. The
main difference here compared to the previous result obtained under a CFM
is that the MF in a JDM, in general, does not coincide with the GOP. This
can be seen when comparing the SDE (14.1.19) for the GOP and the SDE
(14.3.13) for the MF. The MF coincides in a JDM with the GOP only if
the market prices of event risk θm+1

t , . . . , θd
t are zero. Thus, mean-variance or

Sharpe ratio maximization does, in general, not provide two fund separation
into GOP and savings account. Further results in this direction can be found
in Platen (2006b) and Christensen & Platen (2007).

For locally optimal portfolios the up and down movements of asset prices
are weighted symmetrically by generalized diffusion coefficients. This is suffi-
cient in a CFM for the purpose of identifying a superior asset allocation. For a
practically useful portfolio selection in a JDM one needs to take into account
the entire range of possible asset price jumps. Upward jumps are favorable for
the investor, however, downward jumps can be disastrous. This asymmetric
weighting of jumps can be conveniently modeled by utility functions.

The maximization of expected utility appears to be a useful objective in
a JDM. In Sect. 11.3 we maximized expected utility from discounted terminal
wealth for a CFM. The extension of this result to the case of a JDM is beyond
the scope of this book.
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14.4 Real World Pricing for Two Market Models

This section considers two examples of JDMs, a Merton model (MM) and
a minimal market model with jumps (MMM). For both models real world
pricing for some common payoffs is applied along the lines of results in
Hulley, Miller & Platen (2005).

In the MM case, our aim is to illustrate how real world pricing retrieves
the risk neutral prices for these instruments familiar from the literature. Of
course, one could apply the standard risk neutral theory to obtain the pricing
formulas under the MM, but this would defeat our purpose of illustrating real
world pricing under the benchmark approach. In the case of the MMM, we
wish to exhibit derivative pricing formulas where risk neutral pricing is not
applicable and for what we believe is a more realistic market model.

Specifying a Continuous GOP

In a JDM SJD
(d) let us interpret the GOP as a large diversified portfolio that

is expressed in units of, say, US dollars, d ∈ N . One may think of a diver-
sified market portfolio or market index. Then aggregating all the jumps in
the underlying primary security accounts is assumed to produce noise which
is approximately continuous. In other words, we would expect the jumps to
be invisible to an observer of the GOP. According to the SDE (14.1.19), the
only way to eliminate jumps from the GOP dynamics is by setting the market
prices of event risk equal to zero. This is a key assumption that has been used
in Merton (1976) for the MM. Of course, small jumps can be asymptotically
modeled by some Wiener processes. Henceforth, the following simplifying as-
sumption will be used.

Assumption 14.4.1. The market prices of event risks are zero, that is

θk
t = 0, (14.4.1)

for each k ∈ {m+ 1, . . . , d} and all t ∈ [0,∞).

Note that there is technically no problem to extend the following examples
to the case of nonzero market prices of event risk. Substitution of (14.4.1) into
(14.1.19) produces the following SDE for the GOP

dSδ∗
t = Sδ∗

t

(

rt dt+
m∑

k=1

θk
t

(
θk

t dt+ dW k
t

)
)

, (14.4.2)

for all t ∈ [0,∞), with
Sδ∗

0 = 1. (14.4.3)

The solution to (14.4.2) is given by

Sδ∗
t = exp

{∫ t

0

(

rs +
1
2

m∑

k=1

(
θk

s

)2
)

ds+
m∑

k=1

∫ t

0

θk
s dW

k
s

}

, (14.4.4)

for all t ∈ [0, T ].
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Benchmarked Primary Security Accounts

The SDEs for the benchmarked primary security accounts are derived from
(14.2.7) by setting πj

δ,t = 1 for i = j and πi
δ,t = 0 otherwise, yielding

dŜj
t = −Ŝj

t−

d∑

k=1

σj,k
t dW k

t , (14.4.5)

for all j ∈ {0, 1, . . . , d} and t ∈ [0,∞), with Ŝj
0 = Sj

0. Here in our JDM we have
set σj,k

t = σj,k
(d)(t) for all j ∈ {0, 1, . . . , d}, k ∈ {1, 2, . . . , d} and t ∈ [0,∞). Re-

call that Wm+1, . . . ,W d are compensated, normalized jump martingales with
corresponding intensity processes h1, . . . , hd−m, respectively. From (14.4.5),
via the Itô formula we obtain, see Sect. 6.4, the explicit expression

Ŝj
t = Sj

0 exp

{

−1
2

∫ t

0

m∑

k=1

(
σj,k

s

)2
ds−

m∑

k=1

∫ t

0

σj,k
s dW k

s

}

× exp

{∫ t

0

d∑

k=m+1

σj,k
s

√
hk−m

s ds

}
d∏

k=m+1

pk−m
t∏

l=1

⎛

⎝1 −
σj,k

τk
l −

√
hk−m

τk
l −

⎞

⎠(14.4.6)

for each j ∈ {0, 1, . . . , d} and all t ∈ [0,∞). Here (τk
l )l∈N denotes the sequence

of jump times of the counting process pk for the events of kth type, k ∈
{m+ 1, . . . , d}.

Under the benchmark approach the benchmarked primary security ac-
counts are the pivotal objects of study. The savings account together with
the benchmarked primary security accounts are sufficient to specify the entire
investment universe, see (14.2.28)–(14.2.29). For example, Sδ∗

t = S0
t

Ŝ0
t

, for all

t ∈ [0,∞), see (14.1.24), derives the GOP in terms of the savings account
and the benchmarked savings account. Also, Sj

t = Ŝj
tS

δ∗
t = Ŝj

t
S0

t

Ŝ0
t

, for each

j ∈ {1, . . . , d} and all t ∈ [0,∞), factors each primary security account in
terms of the corresponding benchmarked primary security account, the sav-
ings account and the benchmarked savings account.

Before presenting the MM and the MMM we introduce some simplifying
notation. Define the processes |σj | = {|σj

t |, t ∈ [0,∞)} for j ∈ {0, 1, . . . , d},
by setting

|σj
t | =

√√
√
√

m∑

k=1

(
σj,k

t

)2

. (14.4.7)

We also require the aggregate continuous noise processes Ŵ j = {Ŵ j
t , t ∈

[0,∞)} for j ∈ {0, 1, . . . , d}, defined by

Ŵ j
t =

m∑

k=1

∫ t

0

σj,k
s

|σj
s|
dW k

s . (14.4.8)
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By Lévy’s Theorem for the characterization of the Wiener process, see
Sect. 6.5, it follows that Ŵ j is a Wiener process for each j ∈ {0, 1, . . . , d}.
Note that these Wiener processes can be correlated. Furthermore, we require
Assumption 14.1.2, such that the generalized volatility matrix bt = [bj,kt ]dj,k=1

is for all t ∈ [0,∞) invertible. Recall by (14.2.5) that

bj,kt = θk
t − σj,k

t (14.4.9)

for k ∈ {1, 2, . . . ,m} and by (14.4.1) and (14.2.5) that

bj,kt = −σj,k
t (14.4.10)

for k ∈ {m+ 1, . . . , d}, j ∈ {1, 2, . . . , d} and t ∈ [0,∞).
In both models presented in this section we assume, for simplicity, that the

parameters governing their jump behavior are constant. Thus, the counting
processes pk are, in fact, time homogenous Poisson processes with constant
intensities, such that

hk
t = hk > 0 (14.4.11)

for each k ∈ {1, 2, . . . , d−m} and all t ∈ [0,∞). Also, the jump ratios σj,k
t for

the benchmarked primary security accounts are assumed to be constant, and
so that

σj,k
t = σj,k ≤

√
hk−m (14.4.12)

for all j ∈ {0, 1, . . . , d}, k ∈ {m+1, . . . , d} and t ∈ [0,∞). Note that Assump-
tion 14.4.1 on zero market prices of event risk ensures that (14.4.11) does
not violate Assumption 14.1.3. Also, Assumption 14.4.1 and relation (14.2.5)
ensure that (14.4.12) satisfies Assumption 14.1.1.

Using (14.4.7)–(14.4.12), we can rewrite the benchmarked jth primary
security account in (14.4.6) as the product

Ŝj
t = Ŝj,c

t Sj,d
t (14.4.13)

with continuous part

Ŝj,c
t = Sj

0 exp
{
−1

2

∫ t

0

|σj
s|2 ds−

∫ t

0

|σj
s| dŴ j

s

}
(14.4.14)

and compensated jump part

Sj,d
t = exp

{
d∑

k=m+1

σj,k
√
hk−m t

}
d∏

k=m+1

(
1 − σj,k

√
hk−m

)pk−m
t

(14.4.15)

for each j ∈ {0, 1, . . . , d} and all t ∈ [0,∞). The two specific models for the
benchmarked primary security accounts, which we now present, differ in terms
of how the continuous processes (14.4.14) are modeled. The jump processes
(14.4.15) are, for simplicity, chosen to be the same in both cases. Forthcoming
work will model stochastic intensities in natural extensions of the MMM.
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The Merton Model

The Merton model (MM) is the standard market model when including event
risk with all parameters constant. We describe now a modification of the jump
diffusion model introduced in Merton (1976), see Sect.7.6. Each benchmarked
primary security account can be expressed as the product of a driftless geo-
metric Brownian motion and an independent jump martingale. Therefore, it is
itself a martingale. The MM arises if one assumes that all parameter processes,
that is, the short rate, the volatilities and the jump intensities, are constant.
In addition to (14.4.11) and (14.4.12) we have then rt = r and σj,k

t = σj,k for
each j ∈ {0, 1, . . . , d}, k ∈ {1, 2, . . . ,m} and t ∈ [0,∞). In this case (14.4.14)
can be written as

Ŝj,c
t = Sj

0 exp
{
−1

2
|σj |2 t− |σj | Ŵ j

t

}
(14.4.16)

for each j ∈ {0, 1, . . . , d} and all t ∈ [0,∞). In this special case, the bench-
marked primary security accounts are the products of driftless geometric
Brownian motions and compensated Poisson processes. The model is simi-
lar to that introduced in Samuelson (1965b), which was extended in Merton
(1976) to include jumps. We refer to this model as the Merton model (MM).
It is sometimes also called the Merton jump diffusion model.

By Assumption 14.4.1 and relations (14.4.13)–(14.4.15), the benchmarked
savings account Ŝ0 exhibits no jumps. Furthermore, Ŝ0 satisfies Novikov’s
condition, see (9.5.12), and is, thus, a continuous martingale. Consequently,
with this specification of the market, the benchmarked savings account is a
Radon-Nikodym derivative process and an (A, P )-martingale. Therefore, Gir-
sanov’s theorem, see Sect. 9.5, is applicable, and so the standard risk neutral
pricing approach can be used. While not advocating the MM as an accurate
description of observed market behavior, its familiarity makes it useful for
illustrating real world pricing under the benchmark approach.

A Minimal Market Model with Jumps

The minimal market model (MMM) is generalized here to a case with jumps.
For simplicity, we suppose the parameters associated with the jump parts of
the benchmarked primary security accounts to be constant. Their continuous
parts are modeled as inverted time transformed squared Bessel processes of
dimension four. Consequently, each benchmarked primary security account
is the product of an inverted, time transformed squared Bessel process of
dimension four and an independent jump martingale. Since inverted squared
Bessel processes of dimension four are strict local martingales, see (8.7.21), the
benchmarked savings account is not a martingale in the MMM, and hence a
viable equivalent risk neutral probability measure does not exist. We advocate
real world pricing for derivatives using the GOP as numeraire and the real
world probability measure as pricing measure.
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Without imposing significant constraints on the parameter processes, and
working within the full generality of Sect. 14.1, we have shown in Sect. 13.2
that the discounted GOP follows a time transformed squared Bessel process
of dimension four. Since the discounted GOP is given by Sδ∗

t

S0
t

= 1
Ŝ0

t

for all

t ∈ [0,∞), it follows that the benchmarked savings account is an inverted
time transformed squared Bessel process of dimension four. A version of the
MMM for the continuous part of the benchmarked primary security accounts,
see Sect. 13.2, is obtained by modeling the resulting time transformations as
exponential functions. We provide here an outline of this model in the context
of this section. For further details we refer to Chap.13 or Hulley et al. (2005).

For each j ∈ {0, 1, . . . , d}, let ηj ∈ � and define the function αj : �+ → �+

by setting
αj(t) = αj

0 exp{ηjt} (14.4.17)

for all t ∈ [0,∞) with αj
0 > 0. We refer to ηj again as the net growth rate

of the jth primary security account, for j ∈ {0, 1, . . . , d}. Next, we define the
jth square root process Y j = {Y j

t , t ∈ [0,∞)} for j ∈ {0, 1, . . . , d}, through
the system of SDEs

dY j
t =

(
1 − ηjY j

t

)
dt+

√
Y j

t dŴ j
t (14.4.18)

for each j ∈ {0, 1, . . . , d} and all t ∈ [0,∞), with Y j
0 = 1

αj
0 Sj

0
. The continuous

parts Ŝj,c
t of the benchmarked primary security accounts (14.4.14) are modeled

in terms of these square root processes by setting

Ŝj,c
t =

1
αj(t)Y j

t

(14.4.19)

for each j ∈ {0, 1, . . . , d} and all t ∈ [0,∞). Since (14.4.19) combined with
(14.4.13) and (14.4.14) represents a version of the MMM for benchmarked
primary security accounts we shall henceforth refer to it as such in this section.

As previously mentioned, between jumps the benchmarked primary se-
curity accounts are inverted time transformed squared Bessel processes of
dimension four. The time transformations are deterministic in the given ver-
sion of the MMM. More precisely, define the continuous strictly increasing
functions ϕj : �+ → �+ for j ∈ {0, 1, . . . , d} by setting

ϕj(t) = ϕj
0 +

1
4

∫ t

0

αj(s) ds (14.4.20)

for each j ∈ {0, 1, . . . , d} and all t ∈ [0,∞) with ϕj
0 ∈ �+. Continuity and

monotonicity imply that ϕj possesses an inverse (ϕj)−1 : [ϕj
0,∞) → �+ for

each j ∈ {0, 1, . . . , d}. Now define the processes Xj = {Xj
ϕ, ϕ ∈ [ϕj

0,∞)} for
each j ∈ {0, 1, . . . , d} by setting
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Xj
ϕj(t) = αj(t)Y j

t =
1
Ŝj,c

t

(14.4.21)

for each j ∈ {0, 1, . . . , d} and all t ∈ [0,∞). It then follows, see Sect. 8.7, that
Xj is a squared Bessel process of dimension four, so that 1

Ŝj,c is such time
transformed squared Bessel process under the time transformation (ϕj)−1 for
each j ∈ {0, 1, . . . , d}.

Under the MMM the benchmarked savings account is a strict local martin-
gale, and hence a strict supermartingale, see Lemma 5.2.2 (i). This is also the
candidate Radon-Nikodym derivative process employed by Girsanov’s theo-
rem to transform from the real world probability measure P to a hypotheti-
cal equivalent risk neutral probability measure, see Sects. 9.4 and 13.3. How-
ever, the fact that the candidate Radon-Nikodym derivative is not an (A, P )-
martingale rules out this measure transformation. Consequently, risk neutral
derivative pricing is impossible within the MMM, and we shall resort to the
more general real world pricing under the benchmark approach. Chapter 13
showed that the MMM is attractive for a number of reasons. In particular, it
follows from economic reasoning when using the discounted GOP drift as the
main parameter process. The modest number of parameters employed makes
it a practical tool.

Zero Coupon Bonds

We first consider a standard default-free zero coupon bond, paying one unit
of the domestic currency at its maturity T ∈ [0,∞). According to the real
world pricing formula (14.1.28), the value of the zero coupon bond at time t
is given by

P (t, T ) = Sδ∗
t E

(
1
Sδ∗

T

∣
∣
∣
∣At

)

=
1
Ŝ0

t

E

(

exp

{

−
∫ T

t

rs ds

}

Ŝ0
T

∣
∣
∣
∣At

)

(14.4.22)
for all t ∈ [0, T ]. We shall now examine (14.4.22) under the two market models
outlined above.

In the MM case, since Ŝ0 is an (A, P )-martingale we obtain

P (t, T ) = exp{−r(T − t)} 1
Ŝ0

t

E
(
Ŝ0

T

∣
∣
∣At

)
= exp{−r(T − t)} (14.4.23)

for all t ∈ [0, T ]. In other words, we obtain the usual bond pricing formula
determined by discounting at the short rate. This is fully in line with the
results under risk neutral pricing, see Sect. 9.4.

To simplify the notation let us set in the MMM case

λj
t =

1
Ŝj

t (ϕj(t) − ϕj(T ))
(14.4.24)
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for t ∈ [0, T ] and j ∈ {0, 1, . . . , d}, where λj
T = ∞. It is argued in Miller &

Platen (2005), with some empirical support, that the interest rate process and
the discounted GOP can be assumed to be independent. If we accept this, and
apply it in the MMM case to (14.4.22), while remembering that Ŝ0

T = Ŝ0,c
T ,

we obtain

P (t, T ) = E

(

exp

{

−
∫ T

t

rs ds

} ∣
∣
∣
∣At

)
1
Ŝ0

t

E
(
Ŝ0

T

∣
∣
∣At

)

= E

(

exp

{

−
∫ T

t

rs ds

} ∣
∣
∣
∣At

)(
1 − exp

{
−1

2
λ0

t

})
(14.4.25)

for all t ∈ [0, T ], from (8.7.23) and (14.4.24).

Forward Contracts

In this subsection we fix j ∈ {0, 1, . . . , d}, T ∈ [0,∞) and t ∈ [0, T ]. Consider
now a forward contract, see (10.4.26), with the delivery of one unit of the jth
primary security account at the maturity date T , which is written at time
t ∈ [0, T ]. The value of the forward contract at the writing time t is defined
to be zero. According to the real world pricing formula (14.1.28) the forward
price F j(t, T ) at time t ∈ [0, T ] for this contract is then determined by the
relation

Sδ∗
t E

(
F j(t, T ) − Sj

T

Sδ∗
T

∣
∣
∣
∣At

)

= 0. (14.4.26)

By (14.4.22), solving this equation yields the forward price

F j(t, T ) =
Sδ∗

t E
(
Ŝj

T

∣
∣
∣At

)

Sδ∗
t E

(
1

Sδ∗
T

∣
∣
∣At

) =

⎧
⎨

⎩

Sj
t

P (t,T )
1

Ŝj
t

E
(
Ŝj

T

∣
∣At

)
if Sj

t > 0

0 if Sj
t = 0

(14.4.27)

for all t ∈ [0, T ].
In the MM case, with reference to (14.4.16), the same argument, which

established that the benchmarked savings account is a continuous martingale,
also applies to the driftless geometric Brownian motion Ŝj,c, while the com-
pensated Poisson process Ŝj,d is a jump martingale. Consequently, Ŝj is the
product of independent martingales, and hence itself an (A, P )-martingale.
Together with (14.4.23) this enables us to write the forward price (14.4.27) as

F j(t, T ) = Sj
t exp{r(T − t)} (14.4.28)

for all t ∈ [0, T ]. Thus, in the MM case we recover the standard expression
for the forward price, see, for instance, Musiela & Rutkowski (2005).

In the MMM case, according to (14.4.21), Ŝj,c is an inverted time trans-
formed squared Bessel process of dimension four, while Sj,d is an independent
jump martingale, as before. Thus, we obtain
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1
Ŝj

t

E
(
Ŝj

T

∣
∣
∣At

)
=

1
Ŝj,c

t

E
(
Ŝj,c

T

∣
∣
∣At

) 1

Sj,d
t

E
(
Sj,d

T

∣
∣
∣At

)
= 1 − exp

{
−1

2
λj

t

}

(14.4.29)
for all t ∈ [0, T ], by (8.7.23) and (14.4.24). Putting (14.4.27) together with
(14.4.25) and (14.4.29) gives for the forward price the formula

F j(t, T ) = Sj
t

1 − exp
{
−1

2 λ
j
t

}

1 − exp
{
−1

2 λ
0
t

}

(

E

(

exp

{

−
∫ T

t

rs ds

} ∣
∣
∣
∣At

))−1

(14.4.30)

for all t ∈ [0, T ]. This demonstrates that the forward price of a primary
security account is a tractable quantity under the MMM.

Asset-or-Nothing Binaries

Binary options may be regarded as basic building blocks for complex deriva-
tives. This has been exploited in a recent approach to the valuation of exotic
options, where a complex payoff is decomposed into a series of binaries, see
Ingersoll (2000), Buchen (2004) and Buchen & Konstandatos (2005).

In this subsection we again fix j ∈ {0, 1, . . . , d} and consider a derivative
contract, with maturity T and strike K ∈ �+, on the jth primary security
account. We also fix k ∈ {m+1, . . . , d} and assume that σj,k = 0 and σj,l = 0,
for each l ∈ {m+1, . . . , d} with l = k. In other words, we assume that the jth
primary security account responds only to the (k −m)th jump process. This
does not affect the generality of our calculations below, but it does result in
more manageable expressions. In addition, we shall assume a constant interest
rate throughout the rest of this section, so that rt = r, for all t ∈ [0, T ].
Although this is already the case for the MM, we now require it to obtain also
a compact pricing formula under the MMM.

The derivative contract under consideration is an asset-or-nothing binary
on the jth primary security account. At its maturity T it pays its holder one
unit of the jth primary security account if this is greater than the strike K,
and nothing otherwise. According to the real world pricing formula (14.1.28),
its value is given by

Aj,k(t, T,K) = Sδ∗
t E

(

1{Sj
T ≥K}

Sj
T

Sδ∗
T

∣
∣
∣
∣At

)

=
Sj

t

Ŝj
t

E
(
1{Ŝj

T ≥K(S0
T )−1Ŝ0

T } Ŝ
j
T

∣
∣
∣At

)

=
Sj

t

Ŝj,c
t

E

(

1{Ŝj,c
T ≥g(pk−m

T −pk−m
t )Ŝ0

T }

× exp
{
σj,k

√
hk−m (T − t)

}(
1 − σj,k

√
hk−m

)pk−m
T −pk−m

t

Ŝj,c
T

∣
∣
∣
∣At

⎞

⎠
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=
∞∑

n=0

exp
{
−hk−m(T − t)

} (hk(T − t))n

n!
exp
{
σj,k

√
hk−m(T − t)

}

×
(
1 − σj,k

√
hk−m

)n
Sj

t

Ŝj,c
t

E
(
1{Ŝj,c

T ≥g(n)Ŝ0
T }Ŝ

j,c
T

∣
∣
∣At

)
(14.4.31)

for all t ∈ [0, T ], where

g(n) =
K

S0
t S

j,d
t

exp
{
−
(
r + σj,k

√
hk−m

)
(T − t)

}(
1 − σj,k

√
hk−m

)−n

(14.4.32)
for all n ∈ N .

In the MM case, (14.4.31) yields the following explicit formula:

Aj,k(t, T,K) =
∞∑

n=0

exp
{
−hk−m (T − t)

} (hk−m (T − t))n

n!

× exp
{
σj,k

√
hk−m (T − t)

}(
1 − σj,k

√
hk−m

)n

Sj
t N(d1(n)) (14.4.33)

for all t ∈ [0, T ], where

d1(n) =

ln
(

Sj
t

K

)
+

⎛

⎝r + σj,k
√
hk−m + n

ln

„

1− σj,k√
hk−m

«

T−t + 1
2

(
σ̂0,j
)2
⎞

⎠(T − t)

σ̂0,j
√
T − t

(14.4.34)
for each n ∈ N . Here N(·) is the Gaussian distribution function. Deriving
(14.4.33) is the subject of Exercise 14.3. In (14.4.34) we employ the following
notation

σ̂i,j =
√
|σi|2 − 2 �i,j |σi| |σj | + |σj |2 (14.4.35)

for i, j ∈ {0, 1, . . . , d}, where �i,j is the correlation between the Wiener pro-
cesses Ŵ i and Ŵ j .

For the MMM case, as we have just seen, calculating the price of a payoff
written on a primary security account requires the evaluation of a double
integral involving the transition density of a two-dimensional process. This
is a consequence of choosing the GOP as numeraire. Closed form derivative
pricing formulas can be obtained for the MM, but in the case of the MMM
this is more difficult, because the joint transition densities of two squared
Bessel processes are, in general, difficult to describe, see Bru (1991). A natural
response to this is to solve the partial integro differential equation (PIDE)
associated with the derivative price numerically by finite difference methods or
Monte Carlo simulation as will be described in Chap.15. However, to give the
reader a feeling for the types of formulas that emerge from applying real world
pricing in the MMM, we shall now assume, for simplicity, that the processes
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Ŝ0 and Ŝj,c are independent, which is also a reasonable assumption in many
practical situations. Combining (14.4.31) and (14.4.32), and remembering that
Ŝ0 = Ŝ0,c, results in the formula

Aj,k(t, T,K) =
∞∑

n=0

exp
{
−hk−m(T − t)

} (hk−m(T − t))n

n!

× exp
{
σj,k

√
hk−m(T − t)

}(
1 − σj,k

√
hk−m

)n

×Sj
t

(
G′′

0,4

(ϕ0(T ) − ϕ0(t)
g(n)

;λj
t , λ

0
t

)
− exp

{
−1

2
λj

t

})
(14.4.36)

for all t ∈ [0, T ], k ∈ {m + 1, . . . , d}, see Exercise 14.5. Here G′′
0,4(x;λ, λ′)

equals the probability P ( Z
Z′ ≤ x) for the ratio Z

Z′ of a non-central chi-square
distributed random variable Z ∼ χ2(0, λ) with degrees of freedom zero and
non-centrality parameter λ > 0, and a non-central chi-square distributed ran-
dom variable Z ′ ∼ χ2(4, λ′) with four degrees of freedom and noncentrality
parameter λ′. By implementing this special function one obtains the pricing
formula given in (14.4.36), see Johnson et al. (1995) and Hulley et al. (2005).

Bond-or-Nothing Binaries

In this subsection we price a bond-or-nothing binary, which pays the strike
K ∈ �+ at maturity T , when the jth primary security account at time T
is not less than K, where j ∈ {0, 1, . . . , d} is still fixed. As before, let us
assume that the jth primary security account only responds to the kth jump
martingale W k, where k ∈ {m + 1, . . . , d} is fixed. We shall again require a
constant interest rate for the MMM as well as the MM.

Since at its maturity the bond-or-nothing binary under consideration pays
its holder the strike amount K if the value of the jth primary security account
is in excess of this, and nothing otherwise, the real world pricing formula
(14.1.28), yields

Bj,k(t, T,K) = Sδ∗
t E
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1{Sj
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∣
∣
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Ŝ0
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}Ŝ0
T

∣
∣
∣
∣At

)



546 14 Markets with Event Risk

= K P (t, T ) −K exp{−r (T − t)}
∞∑

n=0

exp
{
−hk−m (T − t)

} (hk−m(T − t))n

n!

× 1
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T >g(n)−1Ŝj,c

T

}Ŝ0
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∣
∣
∣At

)
(14.4.37)

for all t ∈ [0, T ], where g(n) is given by (14.4.32), for each n ∈ N .
In the MM case, (14.4.37) yields the following explicit formula:

Bj,k(t, T,K) = K exp{−r (T − t)}

×
(

1 −
∞∑

n=0

exp
{
−hk−m (T − t)

} (hk−m (T − t))n

n!
N(−d2(n))

)

=
∞∑

n=0

exp{−hk−m (T − t)} (hk−m (T − t))n

n!
K exp{−r(T − t)}N(d2(n))

(14.4.38)

for all t ∈ [0, T ], where

d2(n) =

ln
(

Sj
t
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r + σj,k
√
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ln(1− σj,k√
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σ̂0,j
√
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= d1(n) − σ̂0,j
√
T − t (14.4.39)

for each n ∈ N , see Hulley et al. (2005). Again σ̂0,j is given by (14.4.35).
Deriving (14.4.38) is the subject to Exercise 14.4.

For the MMM case, subject to the assumption that Ŝ0
T and Ŝj,c

T are inde-
pendent, we can combine (14.4.37), (14.4.32) and (14.4.25), to obtain

Bj,k(t, T,K) = K exp{−r(T − t)}
(

1 − exp
{
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=
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(ϕj(T ) − ϕj(t))g(n);λ0
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))
(14.4.40)
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for all t ∈ [0, T ], see Hulley et al. (2005). For the second equality in (14.4.40),
we have once again used the fact that

∞∑

n=0

exp{−hk−m(T − t)} (hk−m(T − t))n

n!

is the total probability of a Poisson random variable with parameter hk−m(T−
t). Deriving (14.4.40) is the subject of Exercise 14.6.

European Call Options

In this subsection we fix j ∈ {0, 1, . . . , d} again and consider a European
call option with maturity T and strike K ∈ �+ on the jth primary security
account. As before, we make the simplifying assumption that the jth primary
security account is only sensitive to the (k−m)th jump process, for some
fixed k ∈ {m+ 1, . . . , d}. We also continue to use a constant interest rate for
both market models. According to the real world pricing formula (14.1.28)
the European call option price is given by

cj,kT,K(t) = Sδ∗
t E

⎛

⎜
⎝

(
Sj

T −K
)+

Sδ∗
T

∣
∣
∣
∣At

⎞

⎟
⎠ = Sδ∗

t E

(

1{Sj
T ≥K}

Sj
T −K

Sδ∗
T

∣
∣
∣
∣At

)

= Aj,k(t, T,K) −Bj,k(t, T,K) (14.4.41)

for all t ∈ [0, T ].
For the MM case, combining (14.4.33) and (14.4.38) gives

cj,kT,K(t) =
∞∑

n=0

exp{−hk−m(T − t)} (hk−m(T − t))n

n!

(
exp
{
σj,k

√
hk−m (T − t)

}

×
(
1 − σj,k

√
hk−m

)n

Sj
t N(d1(n)) −K exp{−r(T − t)}N(d2(n))

)
(14.4.42)

for all t ∈ [0, T ], where d1(n) and d2(n) are given by (14.4.34) and (14.4.39),
respectively, for each n ∈ N .

It is easily seen that (14.4.42) corresponds to the original pricing formula
for a European call on a stock whose price follows a jump diffusion, as given in
Merton (1976). The only difference is that there the jump ratios are taken to
be independent log-normally distributed, while in our case they are constant.
Furthermore, this formula can be used to price an option to exchange the jth
primary security account for the ith primary security account. In that case,
the option pricing formula obtained instead of (14.4.42) is a generalization of
that given in Margrabe (1978).

In the MMM case the European call option pricing formula is obtained by
subtracting (14.4.40) from (14.4.36), according to (14.4.41), yielding
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cj,kT,K(t) =
∞∑

n=0

exp{−hk−m(T − t)} (hk−m(T − t))n

n!

[

exp
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√
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(

1 −G′′
0,4

(
(ϕj(T ) − ϕj(t)) g(n);λ0

t , λ
j
t

)
)]

(14.4.43)

for all t ∈ [0, T ], where g(n) is given by (14.4.32), for each n ∈ N and λj
t in

(14.4.24).

Defaultable Zero Coupon Bonds

We have incorporated default risk in our modeling. This allows us to study
the pricing of credit derivatives. Here we consider the canonical example of
such a contract, namely a defaultable zero coupon bond with maturity T . To
keep the analysis simple, fix k ∈ {m + 1, . . . , d} and assume that the bond
under consideration defaults at the first jump time τk−m

1 of pk−m, provided
that this time is not greater than T . In other words, default occurs if and
only if τk−m

1 ≤ T , in which case τk−m
1 is the default time. As a further

simplification, we assume zero recovery upon default. According to the real
world pricing formula (14.1.28), the price of this instrument is given by

P̃ k−m(t, T ) = Sδ∗
t E
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1 >T}

Sδ∗
T
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∣
∣At

)
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∣
∣
∣At

)

= P (t, T )P (pk−m
T = 0

∣
∣At) (14.4.44)

for all t ∈ [0, T ]. Note that the second equality above follows from the inde-
pendence of the GOP and the underlying Poisson process, see (14.4.2).

Equation (14.4.44) shows that the price of the defaultable bond can be
expressed as the product of the price of the corresponding default-free bond
and the conditional probability of survival. In our setup the latter may be
further evaluated as

P
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T = 0
∣
∣At

)
= E

(
1{pk−m

t =0} 1{pk−m
T −pk−m

t =0}

∣
∣
∣At

)

= 1{pk−m
t =0} P

(
pk−m

T − pk−m
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∣At

)

= 1{pk−m
t =0}E

(
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{

−
∫ T

t

hk−m
s ds

} ∣
∣
∣
∣At

)

(14.4.45)

for all t ∈ [0, T ].
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One has to combine (14.4.44) and (14.4.45) with (14.4.23) to obtain an
explicit pricing formula for the defaultable bond under consideration in the
MM. Similarly, one can combine (14.4.44) and (14.4.45) with (14.4.25) to
obtain the pricing formula for this instrument under the MMM.

Note that the expression obtained by combining (14.4.44) and (14.4.45) is
similar to the familiar formula for the price of a defaultable zero coupon bond
in a simple reduced form model for credit risk, see Schönbucher (2003). How-
ever, the difference is that for this standard case expectations are computed in
the literature typically with respect to an equivalent risk neutral probability
measure. In particular, the survival probability is usually a risk neutral prob-
ability. In (14.4.44) and (14.4.45), however, only the real world probability
measure is in evidence. The crucial advantage of the benchmark approach in
such a situation is that one avoids the undesirable dichotomy of distinguishing
between real world default probabilities, as determined by historical data and
credit rating agencies, and hypothetical risk neutral default probabilities, as
determined by observed credit spreads. Note that substantial effort has been
expended on the problem of trying to reconcile real world and risk neutral
probabilities of default, see, for instance, Albanese & Chen (2005). This prob-
lem is, fortunately, avoided by using the benchmark approach with real world
pricing since the real world probability measure is the pricing measure.

The above two market models highlight some aspects of the benchmark
approach in derivative pricing for jump diffusion markets. This methodology
can be applied generally and yields for many derivative and insurance instru-
ments explicit formulas for the MMM and its extensions.

14.5 Exercises for Chapter 14

14.1. Calculate the growth rate of a strictly positive portfolio.

14.2. Derive the forward rate equation (14.1.33) from the benchmarked zero
coupon bond SDE (14.1.30).

14.3. (*) Calculate for the Merton model, given in Sect. 14.4, the price of an
asset-or-nothing binary from formula (14.4.31).

14.4. (*) Calculate for the Merton model, as in Sect. 14.4, the price of a
bond-or-nothing binary from formula (14.4.37).

14.5. (*) Derive for the MMM, given in Sect. 14.4, the price of an asset-or-
nothing binary from formula (14.4.31).

14.6. (*) Derive for the MMM, as in Sect.14.4, the pricing formula of a bond-
or-nothing binary from formula (14.4.37).
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Numerical Methods

This final chapter describes a range of numerical methods that have been
used for the pricing of derivative contracts and other tasks in quantitative
finance. First we describe random number generation and simulation methods
for scenario and Monte Carlo simulation. Finally, we introduce tree methods
and numerical schemes for the solution of partial differential equations.

15.1 Random Number Generation

The most flexible quantitative techniques that can be used for stochastic mod-
els in finance are simulation methods. In principle, one can simulate outcomes
of any kind of random variable on a computer. For instance, we have used
scenario simulation to produce many figures in this book.

When simulations are used to estimate a sample mean of some indepen-
dent outcomes, this is called a Monte Carlo simulation, see Boyle (1977),
Kloeden & Platen (1999) and Glasserman (2004). Monte Carlo methods pro-
vide important information about functionals of the underlying model, which
in many cases cannot be easily obtained by other means. Monte Carlo simu-
lation has been widely applied, for instance, in derivative pricing and also for
the calculation of risk measures or expected utilities.

In a simulation, sample values of the random variables that appear in a
model need to be generated. The outputs of many independent simulations
are then analyzed statistically using the Law of Large Numbers, see Chap. 2.
Monte Carlo methods typically require the generation of a large quantity of
random numbers.

Linear Congruential Random Number Generators

Before the introduction of computers, random numbers were often generated
mechanically, for example, by tossing a die or turning a wheel of fortune.

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,
Springer Finance,
© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010
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In some cases they were listed in random number tables. This is clearly im-
practical for large-scale applications. Often a particular sequence of random
numbers should be reproducible to allow for repetition of simulation studies.
The implementation of simple deterministic algorithms to generate sequences
of random numbers quickly and reproducibly is essential for efficient simu-
lation methods. These numbers are usually not truly random, but can be
made to resemble random numbers. They are called, pseudo-random numbers
and have become increasingly important for advanced quantitative work with
complex probabilistic models.

Typically, software products that produce random numbers do so by using
linear congruential pseudo-random number generators. Let x (mod c) denote
the remainder when the real number x is divided by a number c = 0, the
modulus. These generators have the recursive form

Xn+1 = aXn + b (mod c), (15.1.1)

where a and c are positive integers and b is a nonnegative integer. The for-
mula (15.1.1) has the following interpretation: For a given integer initial value
and seed X0, the algorithm (15.1.1) generates a sequence of integer values
in the range from 0 to c − 1. Numerical experiments show that when the
coefficients a, b and c are chosen appropriately, the numbers

Un =
Xn

c
(15.1.2)

appear to be uniformly distributed on the unit interval [0, 1).
Since only finitely many different numbers occur, the modulus c is usually

chosen to be rather large, and is often also selected as a power of 2, to take
advantage of the binary arithmetic used in computers. To prevent cycling with
a period less than c, the multiplier a is usually also taken to be prime relative
to c. Often b is chosen equal to zero. Today most spreadsheets, symbolic
manipulation packages and compilers use linear congruential generators. One
should be aware of this fact in cases where the deterministic or cyclical nature
of pseudo-random numbers creates apparently non-random numerical effects.

By interrupting the cycle through shuffling the random numbers in a ran-
dom way, see Kloeden, Platen & Schurz (2003), much longer cycles can be
achieved. There are also alternative ways of generating pseudo-random se-
quences of uniformly distributed random numbers. An important example is
provided by lagged Fibonacci generators, studied, for instance, in Kahaner,
Moler & Nash (1989) or Kloeden et al. (2003).

In what follows we assume that we have access to a routine that provides us
with independent uniformly distributed U(0, 1) random numbers. We are now
going to show how we can use such a routine to produce random numbers with
given distributions. Such random number generators are available in advanced
software packages.

Some modern processors provide a hardware implementation of a natural
uniform random number generator that does not generate any cycles, see
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Fig. 15.1.1. Relative frequencies for three point distributed log-returns

Pivitt (1999), and provides outcomes close to true random numbers. The
disadvantage of a natural random number generator is that one can never
repeat a simulation unless one stores all the random numbers that were used
in the experiment.

N-Point Random Variable

A two-point random variable X, taking values x1 < x2 with probabilities p1

and p2 = 1 − p1, respectively, can easily be generated from a U(0, 1) random
variable U , by setting

X =

{
x1 for 0 ≤ U < p1

x2 for p1 ≤ U < 1.
(15.1.3)

This idea readily extends to an N -state random variable X, taking values x1

< x2 < · · · < xN with respective nonzero probabilities p1, p2, . . ., pN , where

N∑

i=1

pi = 1.

With s0 = 0 and

sj =
j∑

i=1

pi

we then set X = xj if sj−1 ≤ U < sj , for j ∈ {1, 2, . . . , N}.
Figure 15.1.1 shows relative frequencies from 20 simulations of the three

point distributed log-returns X discussed in an example of the first section,
with probabilities p1 = P (X = −1) = 0.465, p2 = P (X = 0) = 0.072, and
p3 = P (X = 1) = 0.463. We can compare the histogram with the corre-
sponding probabilities that were given in Fig. 1.1.4 and note some differences
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between the true probabilities and the relative frequencies that were gener-
ated by the twenty observations. For this set of observations there were no
outcomes with zero log-return. The relative frequencies in Fig.15.1.1 somehow
resemble the probabilities for the stock log-returns shown in Fig. 1.1.4.

Another efficient way of generating two-point distributed pseudo-random
numbers is described in Bruti-Liberati & Platen (2004), where an implemen-
tation of a random bit generator is proposed. This hardware implementable
fast generator is of particular use for large-scale Monte Carlo simulations.

Inverse Transform Method

The following method can be applied for the generation of a continuous ran-
dom variable X with a probability distribution function FX that is invertible.
For a number 0 < U < 1, we define x(U) by

U = FX(x(U)),

so that
x(U) = F−1

X (U)

if F−1
X exists, or in general,

x(U) = inf{x : U ≤ FX(x)}. (15.1.4)

Here inf{x : U ≤ FX(x)} is the greatest lower bound of the set {x : U ≤
FX(x)}. If U is a U(0, 1) random variable, then X(U) will be FX -distributed.
Consequently, this is called the inverse transform method and is conveniently
used when the infimum (15.1.4) is easy to evaluate. For instance, the expo-
nential random variable with parameter λ > 0, see (1.2.5), has an invertible
distribution function with

x(U) = F−1
X (U) = − ln(1 − U)

λ

for 0 ≤ U < 1.
Figure 15.1.2 shows the relative frequencies of 6000 simulated realizations

of an exponentially distributed random variable with λ = 2. This histogram
can be compared with Fig. 1.2.2 for the exponential density with the same
intensity parameter λ = 2. In principle, the inverse transform method can
be used for most continuous random variables. It may, however, require some
computational effort to evaluate (15.1.4).

Box-Muller Method

Since the distribution function of a standard Gaussian random variable can
only be approximated, by numerical integration of its density, the inverse
transform method is not very convenient in this case. The Box-Muller method,
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Fig. 15.1.2. Relative frequencies for an exponentially distributed random variable

Fig. 15.1.3. Relative frequencies for a standard Gaussian random variable

which generates pairs of independent standard Gaussian random variables,
avoids this problem.

The method is based on the observation that if U1 and U2 are two inde-
pendent U(0, 1) random variables, then N1 and N2 defined by

N1 =
√
−2 ln(U1) cos(2πU2)

N2 =
√
−2 ln(U1) sin(2πU2) (15.1.5)

are two independent standard Gaussian random variables.
In Fig. 15.1.3 we show the frequency histogram for 6000 simulated real-

izations of a standard Gaussian random variable. This histogram should be
compared with Fig. 1.2.3 for the standard Gaussian density.
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Marsaglia Method

There is a variant of the Box-Muller method, called the Marsaglia method, that
avoids the time-consuming calculation of trigonometric functions. It starts by
generating two independent U(−1, 1) random variables V1 and V2. One may
interpret the pair (V1, V2) as the coordinates of a point in the two-dimensional
plane. We now accept only pairs (V1, V2) that are in the interior of a circle
centred at zero with radius one. The surviving pairs are such that the random
variable

W = V 2
1 + V 2

2 ∈ [0, 1) (15.1.6)

is U(0, 1) distributed and

θ = arctan
(
V1

V2

)
∈ [0, 2π) (15.1.7)

is U(0, 2π) distributed. By using the trigonometric relations

cos(θ) =
V1√
W

and sin(θ) =
V2√
W

(15.1.8)

together with (15.1.6), we can rewrite the equations (15.1.5) in the form

G1 = V1

√

−2
ln(W )
W

G2 = V2

√

−2
ln(W )
W

. (15.1.9)

Therefore, those pairs (V1, V2) which, with probability π
4 ≈ 0.77, fall in the

interior of the circle yield a pair (G1, G2) of independent standard Gaussian
random variables. Even though roughly 23% of the original random numbers
are discarded, this method is still more efficient than the Box-Muller method,
because no trigonometric functions are involved. For extensive Monte Carlo
simulations involving Gaussian random numbers the Marsaglia method can
be quite efficient.

Chi-Square Random Variables

We can generate independent realizations of a χ2(n) random variable by con-
structing the sums of squares of sample values of n independent standard
Gaussian random variables. Figure 15.1.4 shows the corresponding frequency
histogram for the range [0, 30) with n = 4 based on 6000 samples. We can
compare this plot with the probability density in Fig.1.2.5. Note that we have
a number of realizations in the range of 25 to 30, which is rather extreme.
Recall that under the MMM the discounted GOP is chi-square distributed.
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Fig. 15.1.4. Frequency histogram for χ2(4) distributed random variables

Fig. 15.1.5. Frequency histogram for t(4) distributed random variables

Student t Random Variables

Given a χ2(n) random variable Z and an independent N(0, 1) random variable
Y , (1.2.16) indicates that X = Y (Z

n )−
1
2 is a central Student t distributed

random variable with n degrees of freedom. A sequence of 6000 independent
realizations of a t(4) random variable yields the histogram shown in Fig.15.1.5.
We note that a few realizations are recorded far out in the tails. This means
that extreme events occur from time to time. This histogram can be compared
with the t(4) density given in Fig. 1.2.6.

Another efficient way of generating Student t distributed random variables
for integer degrees of freedom uses the inverse transform method (15.1.4). If
U is a U(0, 1) random variable, then

x(U) = F−1
t(1)(U) = tan

(
π

(
U − 1

2

))
(15.1.10)

is Cauchy distributed, see Shaw (2005). Furthermore,
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x(U) = F−1
t(2)(U) =

2
√

2
(
U − 1

2

)

√
1 − 4

(
U − 1

2

)2
(15.1.11)

is Student t distributed with 2 degrees of freedom. To generate t(4) distributed
random variables one can apply the transform

x(U) = F−1
t(4)(U) = 2 sgn

(
U − 1

2

)
√√
√
√ 1√

z
cos

(
1
3

tan−1

√
1
z
− 1

)

− 1

(15.1.12)
with

z = 1 − 4
(
U − 1

2

)2

. (15.1.13)

15.2 Scenario Simulation

Wagner-Platen Expansion

In quantitative finance it is essential to be able to approximate quantities that
can be represented as functions of solutions of stochastic differential equations
(SDEs). If a function is sufficiently smooth, then one can use the Wagner-
Platen expansion, see Wagner & Platen (1978), Platen (1982b) and Kloeden
& Platen (1999). This is a stochastic analogue of the classical deterministic
Taylor expansion.

For illustration, consider the Wagner-Platen expansion for a process X =
{Xt, t ∈ [t0, T ]} which satisfies the SDE

Xt = Xt0 +
∫ t

t0

a(Xs) ds+
∫ t

t0

b(Xs) dWs (15.2.1)

for t ∈ [t0, T ], 0 ≤ t0 < T < ∞. Here W is a standard Wiener process on a
filtered probability space (Ω,A,A, P ). The coefficients a and b are assumed to
be sufficiently smooth real-valued functions, so that a unique strong solution
of (15.2.1) exists. Then, for a twice continuously differentiable function f : �
→ �, the Itô formula (6.1.12) provides the representation

f(Xt) = f(Xt0) +
∫ t

t0

(
a(Xs)

∂

∂x
f(Xs) +

1
2
b2(Xs)

∂2

∂x2
f(Xs)

)
ds

+
∫ t

t0

b(Xs)
∂

∂x
f(Xs) dWs

= f(Xt0) +
∫ t

t0

L0f(Xs) ds+
∫ t

t0

L1f(Xs) dWs (15.2.2)
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for t ∈ [t0, T ]. Here we have used the operators

L0 = a
∂

∂x
+

1
2
b2

∂2

∂x2
(15.2.3)

and
L1 = b

∂

∂x
. (15.2.4)

Obviously, for the special case f(x) ≡ x, then L0f = a and L1f = b and so
the representation (15.2.2) reduces to (15.2.1). If a and b are at least twice
continuously differentiable, we can apply (15.2.2) to the functions f = a and
f = b and substitute the resulting expressions into (15.2.1), to obtain

Xt = Xt0 +
∫ t

t0

(
a(Xt0) +

∫ s

t0

L0a(Xz) dz +
∫ s

t0

L1a(Xz) dWz

)
ds

+
∫ t

t0

(
b(Xt0) +

∫ s

t0

L0b(Xz) dz +
∫ s

t0

L1b(Xz) dWz

)
dWs

= Xt0 + a(Xt0)
∫ t

t0

ds+ b(Xt0)
∫ t

t0

dWs +R2 (15.2.5)

with remainder

R2 =
∫ t

t0

∫ s

t0

L0a(Xz) dz ds+
∫ t

t0

∫ s

t0

L1a(Xz) dWz ds

+
∫ t

t0

∫ s

t0

L0b(Xz) dz dWs +
∫ t

t0

∫ s

t0

L1b(Xz) dWz dWs.

This is a simple example of a Wagner-Platen expansion. It can be extended
through recursive applications of the Itô formula (15.2.2) to the integrands
appearing in (15.2.5). For example, applying (15.2.2) to f = L′b and substi-
tuting the resulting expression into (15.2.5) yields

Xt = Xt0 + a(Xt0)
∫ t

t0

ds+ b(Xt0)
∫ t

t0

dWs +L1b(Xt0)
∫ t

t0

∫ s

t0

dWz dWs +R3,

(15.2.6)
where R3 is another remainder. Notice that (15.2.6) represents Xt as a
weighted sum of functions of Xt0 with multiple stochastic integrals as weights.
The remainder term R3 consists of the next group of multiple stochastic in-
tegrals with nonconstant integrands.

The Wagner-Platen expansion can be interpreted as a generalization of
both the Itô formula and the classical deterministic Taylor formula. It is ob-
tained via an iterated application of the Itô formula. It has many applications
in quantitative finance, ranging from numerical applications, statistical and
Value at Risk analysis to sensitivity analysis.
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Scenario Simulation for SDEs

In what follows we introduce methods for scenario simulation for SDEs. We
consider pathwise converging discrete time approximations of solutions and
list different numerical schemes.

Consider a discretization 0 = τ0 < τ1 < · · · < τn < · · · < τnT
= T of

the time interval [0, T ] with nT ∈ N . We want to approximate a process X =
{Xt, t ∈ [0, T ]} satisfying the one-dimensional SDE

dXt = a(t,Xt) dt+
m∑

k=1

bk(t,Xt) dW k
t (15.2.7)

for t ∈ [0, T ] with initial value X0 ∈ �. Here W k = {W k, t ∈ [0, T ]}, for
k ∈ {1, 2, . . . ,m}, are possibly correlated Wiener processes.

One of the simplest discrete time approximations is the Euler scheme, see
Maruyama (1955). Here a stochastic process Y = {Yt, t ∈ [0, T ]} is constructed
according to the iterative scheme

Yn+1 = Yn + a(τn, Yn) (τn+1 − τn)+
m∑

k=1

bk(τn, Yn)
(
W k

τn+1
−W k

τn

)
, (15.2.8)

for n ∈ {0, 1, . . . , nT − 1}, with initial value Y0 = X0 and nT ∈ N . In (15.2.8)
Yn = Yτn denotes the value of the approximation at the discretization time
τn. Let

Δn = τn+1 − τn (15.2.9)

for the nth increment of the time discretization and call

Δ = max
n∈{0,1,...,nT −1}

Δn (15.2.10)

the maximum step size. We consider, for simplicity, equidistant time discretiza-
tions with

τn = nΔ, (15.2.11)

where Δ = Δn = T
nT

∈ (0, 1) and some integer nT .
The sequence (Yn)n∈{0,1,...,nT } of values of the Euler approximation (15.2.8)

at the discretization times τ0, τ1, . . . , τnT
can be computed in an iterative man-

ner. First we need to generate the random increments of the Wiener processes
W k, k ∈ {1, 2, . . . ,m}:

ΔW k
n = W k

τn+1
−W k

τn
, (15.2.12)

for n ∈ {0, 1, . . . , nT − 1}. From (3.2.6) we know that these increments are
independent Gaussian random variables with mean

E
(
ΔW k

n

)
= 0 (15.2.13)

and variance
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E
((
ΔW k

n

)2)
= Δ. (15.2.14)

To generate them we can use the Box-Muller method (15.1.5), for example.
To obtain a compact notation, we will henceforth resort to the short-hand

f = f(τn, Yn) (15.2.15)

to indicate a function f defined on [0, T ] × �d, where n ∈ {0, 1, . . . , nT − 1},
when no misunderstanding is possible. Applying this abbreviation allows us
to rewrite the Euler scheme (15.2.8) as

Yn+1 = Yn + aΔn +
m∑

k=1

bk ΔW k
n , (15.2.16)

for n ∈ {0, 1, . . . , nT − 1}. Usually we do not mention the initial condition,
however, we typically set Y0 = X0.

The iterative structure of the Euler scheme, which generates approximate
values of the diffusion process X at the discretization times only, is one of the
main features of the scheme. Note again that a discrete time approximation
is considered to be a stochastic process defined on the whole interval [0, T ],
although it will often be sufficient to consider its values at the discretization
times only. If required, values at other times can be determined by interpo-
lation. The simplest method is piecewise constant interpolation. Our figures
often employ linear interpolation.

Simulating Geometric Brownian Motion

To illustrate various aspects of a typical scenario simulation using a discrete
time approximation of a diffusion process, we now examine a simple but im-
portant example in some detail. Let us consider the BS model, see (7.3.12).
Here the diffusion is a geometric Brownian motion X = {Xt, t ∈ [0, T ]} sat-
isfying the linear SDE

dXt = aXt dt+ bXt dWt (15.2.17)

for t ∈ [0, T ] with initial value X0 > 0, where W = {Wt, t ∈ [0, T ]} is a
Wiener process.

To simulate a trajectory of the Euler approximation for a given time dis-
cretization we start from the initial value Y0 = X0 and proceed by generating
the sequence of values

Yn+1 = Yn + a Yn Δ+ b Yn ΔWn (15.2.18)

for n ∈ {0, 1, . . . , nT − 1}, according to (15.2.16). As mentioned before,

ΔWn = Wτn+1 −Wτn , (15.2.19)
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Fig. 15.2.1. Euler approximations with Δ = 0.25 and Δ = 0.0625 and the exact
solution of the Black-Scholes SDE

see (15.2.12), is the N(0, Δ) distributed increment of W over the subinterval
[τn, τn+1].

For comparison, note that the explicit solution of (15.2.17) at the dis-
cretization time is given by

Xτn = X0 exp

{(
a− 1

2
b2
)
τn + b

n∑

i=1

ΔWi−1

}

(15.2.20)

for n ∈ {0, 1, . . . , nT − 1}, see (7.3.3). We compare this with a piecewise
constant Euler approximation over the time interval [0, 1], using a constant
step size Δ = 0.25 and setting X0 = 1.0, a = 1.0 and b = 1.0. Figure 15.2.1
plots the piecewise constant Euler approximation and the exact solution for
the same sample path of the Wiener process. We see a substantial difference
between the two paths due to the rather large step size. There is a considerable
improvement in the Euler approximation when we use a smaller step size
Δ = 0.0625, as Fig. 15.2.1 also attests. Note that this improvement is not
restricted to the terminal time, but takes the form of an overall better path.

Strong Convergence

We shall now introduce the concept of strong order of convergence. This allows
us to classify numerical schemes according to the rate at which their paths
converge to those of the exact solution of an SDE, for asymptotically vanishing
time step size.

One can estimate theoretically, and in some cases also calculate practically,
the error of an approximation, using the following absolute error criterion. For
a given maximum step size Δ and terminal time T , we define

ε(Δ) = E
(∣∣XT − Y Δ

T

∣
∣) . (15.2.21)



15.2 Scenario Simulation 563

Here XT is the exact solution of the SDE at time T and Y Δ
T is the discrete

time approximation at time T . In order to classify different discrete time
approximations, we introduce their order of strong convergence.

Definition 15.2.1. We shall say that a discrete time approximation Y Δ

converges strongly with order γ > 0 at time T if there exists a positive constant
C, which does not depend on Δ, and a δ0 > 0, such that

ε(Δ) = E
(∣∣XT − Y Δ

T

∣
∣) ≤ C Δγ (15.2.22)

for each Δ ∈ (0, δ0).

We emphasize that this criterion has been constructed for the classifica-
tion of, so-called, strong approximations. The literature contains many results
establishing the strong order of convergence of particular schemes. We shall
simply state results along these lines and refer the reader to Kloeden & Platen
(1999) for more details.

In general, the Euler scheme takes the form

Yn+1 = Yn + aΔ+
m∑

k=1

bk ΔW k, (15.2.23)

where the Wiener process increments

ΔW k = ΔW k
n = W k

τn+1
−W k

τn
(15.2.24)

for k ∈ {1, 2, . . . ,m} and n ∈ {0, 1, . . . , nT − 1} are independent of each
other and N(0, Δ) distributed. For convenience, we will often suppress the
dependence of random variables on the number n and the length Δ of the
time step. Assuming Lipschitz and linear growth conditions on the coefficients
a and b, the Euler scheme can be shown to exhibit strong order of convergence
γ = 0.5. When the noise in the underlying SDE is additive, that is when the
diffusion coefficient is a differentiable deterministic function of time, then it
has strong order of convergence γ = 1.0.

The Euler scheme provides reasonable numerical results when the drift and
diffusion coefficients are nearly constant and the time step size is sufficiently
small. In general, however, it is not a very satisfactory method. Consequently,
other more sophisticated schemes need to be considered. We next study a
particular higher order scheme.

Milstein Scheme

The Euler scheme uses the first two multiple stochastic integrals from the
Wagner-Platen expansion (15.2.6). We now introduce the Milstein scheme,
suggested in Milstein (1974), which exhibits strong order of convergence
γ = 1.0 and is obtained by including one more term from the Wagner-Platen
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expansion (15.2.6). In the one-dimensional case, the Milstein scheme has the
form

Yn+1 = Yn + aΔ+ bΔW +
1
2
b
∂

∂x
b
(
(ΔW )2 −Δ

)
. (15.2.25)

In the presence of several Wiener processes it can be expressed as

Yn+1 = Yn + aΔ+
m∑

j=1

bjΔW j +
m∑

j1,j2=1

bj1
∂

∂x
bj2I(j1,j2) (15.2.26)

and involves the multiple stochastic integrals

I(j1,j2) =
∫ τn+1

τn

∫ s2

τn

dW j1
s1
dW j2

s2
. (15.2.27)

These can be approximated, as demonstrated in Kloeden & Platen (1999) or
Gaines & Lyons (1994).

Commutativity

An important special case occurs when the diffusion coefficient matrix satisfies
the commutativity condition

bj2
∂

∂x
bj1 = bj1

∂

∂x
bj2 (15.2.28)

for all j1, j2 ∈ {1, 2, . . . ,m} and (t, x) ∈ [0, T ]×�d. The multi-asset Black-
Scholes model is an example of a system of SDEs that satisfies this condition.
Systems of SDEs with additive noise also satisfy it. Obviously, we have com-
mutativity if the given SDE is driven by a single Wiener process.

When the commutativity condition applies, the Milstein scheme is simpli-
fied as follows:

Yn+1 = Yn + aΔ+
m∑

j=1

bj
(
ΔW j − 1

2
∂

∂x
bjΔ

)
+

1
2

m∑

j1,j2=1

bj1
∂

∂x
bj2ΔW j1ΔW j2 .

(15.2.29)
Note that the double Wiener integrals in (15.2.26) have been dispensed with.

Strong Order 1.5 Taylor Scheme

By adding more terms from the Wagner-Platen expansion to the Milstein
scheme in one dimension, one obtains the following strong order 1.5 Taylor
scheme
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Yn+1 = Yn + aΔ+ bΔW +
1
2
b b′
{
(ΔW )2 −Δ

}
+ a′ bΔZ

+
1
2

(
a a′ +

1
2
b2 a′′

)
Δ2 +

(
a b′ +

1
2
b2 b′′

)
{ΔW Δ−ΔZ}

+
1
2
b
(
b b′′ + (b′)2

)
{

1
3

(ΔW )2 −Δ

}
ΔW, (15.2.30)

if the drift and diffusion coefficients are independent of time, see Platen &
Wagner (1982). Here the random variable ΔZ is the following double stochas-
tic integral

ΔZ =
∫ τn+1

τn

∫ s2

τn

dWs1 ds2. (15.2.31)

One can show that ΔZ is Gaussian, with mean E(ΔZ) = 0, variance
E((ΔZ)2) = 1

3Δ
3 and its covariance with the Wiener increment is E(ΔZ ΔW )

= 1
2Δ

2.
Note that the random variables ΔW and ΔZ, above, are easily sampled.

One simply generates two independent N(0, 1) random variables U1 and U2

and then performs the following transformations

ΔW = U1

√
Δ, ΔZ =

1
2
Δ

3
2

(
U1 +

1√
3
U2

)
. (15.2.32)

Explicit Strong Order 1.0 Schemes

Various first order derivative-free schemes can be obtained from the Milstein
scheme (15.2.26), by replacing the derivatives in the Milstein scheme with
difference approximations. The inclusion of these difference approximations
requires the computation of, so-called, supporting values. An example is given
by the following one-dimensional scheme, see Platen (1984),

Yn+1 = Yn + aΔ+ bΔW +
1

2
√
Δ

{
b(τn, Ῡn) − b

}{
(ΔW )2 −Δ

}
, (15.2.33)

with supporting value
Ῡn = Yn + aΔ+ b

√
Δ. (15.2.34)

The general explicit strong order 1.0 scheme is

Yn+1 = Yn + aΔ+
m∑

j=1

bj ΔW j +
1√
Δ

m∑

j1,j2=1

{
bj2
(
τn, Ῡ

j1
n

)
− bj2

}
I(j1,j2),

(15.2.35)
with vector supporting values

Ῡ j
n = Yn + aΔ+ bj

√
Δ (15.2.36)

for j ∈ N . The double Wiener integral I(j1,j2) is given by (15.2.27). If the SDE
is commutative, as described in (15.2.28), then there exist explicit strong order
1.0 schemes that avoid multiple stochastic integrals, see (15.2.27). Further ex-
plicit higher strong order schemes are described in Kloeden & Platen (1999).
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Numerical Stability

Numerical stability can be defined as the ability of a scheme to control the
propagation of initial and roundoff errors. Such errors occur naturally in any
simulation, but numerical methods differ in their ability to dampen them.
Since numerical stability determines whether or not a scheme generates rea-
sonable results at all, it is clearly more important than the order of conver-
gence of the scheme.

Implicit schemes are characterized by the fact that the value of the scheme
at any time is a function of itself. Therefore, it cannot be expressed as the
subject of an equation involving only previous values. In general, implicit
schemes offer better numerical stability than Taylor schemes or other explicit
schemes. The simplest implicit strong scheme is the drift implicit Euler scheme

Yn+1 = Yn + a (τn+1, Yn+1) Δ+ bΔW, (15.2.37)

which has order of strong convergence γ = 0.5. As before, we employ the
short-hand notation b = b(τn, Yn). There is also a family of drift implicit
Euler schemes

Yn+1 = Yn + {θ a (τn+1, Yn+1) + (1 − θ) a} Δ+
m∑

j=1

bj ΔW j , (15.2.38)

where the parameter θ ∈ � is called the degree of implicitness. These exhibit
an order of strong convergence γ = 1.0.

The drift implicit Milstein scheme is the simplest implicit counterpart of
the Milstein scheme and has the form

Yn+1 = Yn + a (τn+1, Yn+1) Δ+ bΔW +
1
2
b b′
(
(ΔW )2 −Δ

)
. (15.2.39)

In the commutative case, see (15.2.28), we obtain a family of drift implicit
Milstein schemes

Yn+1 = Yn + (θ a (τn+1, Yn+1) + (1 − θ) a) Δ+
m∑

j=1

bj ΔW j

+
1
2

m∑

j1,j2=1

bj1
∂

∂x
bj2
(
ΔW j1ΔW j2 − 1{j1=j2}Δ

)
. (15.2.40)

Here the parameter θ ∈ � once again controls the degree of implicitness.
Finally, we mention a family of drift implicit strong order 1.0 Runge-Kutta

schemes

Yn+1 = Yn +
(
θ a (τn+1, Yn+1) + (1 − θ) ak

)
Δ+

m∑

j=1

bj ΔW j

+
1√
Δ

m∑

j1,j2=1

(
bj2
(
τn, Ῡ

j1
n

)
− bj2

)
I(j1,j2) (15.2.41)
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with vector supporting values

Ῡ j
n = Yn + aΔ+ bj

√
Δ

for j ∈ {1, 2, . . . ,m} and degree of implicitness parameter θ ∈ �. Further
implicit strong schemes can be found in Kloeden & Platen (1999).

Balanced Implicit Method (*)

Note that the strong schemes discussed so far do not exhibit implicitness in
their diffusion terms. Only the drift terms exhibit any implicitness. Introduc-
ing implicitness into the diffusion terms causes difficulties.

Milstein, Platen & Schurz (1998) propose a family of balanced implicit
methods that demonstrate how to overcome this problem. In the simplest
case, a balanced implicit method can be written in the form

Yn+1 = Yn + aΔ+ bΔW + (Yn − Yn+1)Cn, (15.2.42)

where
Cn = c0(Yn)Δ+ c1(Yn) |ΔW | (15.2.43)

and c0, c1 represent positive real valued uniformly bounded functions. The
freedom to choose c0 and c1 can be exploited to tailor a numerically stable
scheme to the dynamics of any given SDE. However, the balanced implicit
method is only of strong order γ = 0.5, since it is, in principle, a variation of
the Euler scheme. It may be interpreted as a family of specific methods pro-
viding a kind of balance between approximating diffusion terms. In a number
of applications, in particular, those involving SDEs with multiplicative noise,
balanced implicit methods show better numerical stability than many other
methods, see Fischer & Platen (1999). Such SDEs with multiplicative noise
are typical in finance and filtering.

A balanced implicit method for the case with several Wiener processes can
be written in the form

Yn+1 = Yn + aΔ+
m∑

j=1

bj ΔW j
n + Cn(Yn − Yn+1), (15.2.44)

where

Cn = c0(τn, Yn)Δ+
m∑

j=1

cj(τn, Yn) |ΔW j
n|, (15.2.45)

ΔW j
n = W j

τn+1
− W j

τn
and Δ = τn+1 − τn for n ∈ {0, 1, . . . , nT − 1}. Here

c0, c1, . . . , cm represent uniformly bounded functions.
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Strong Approximation of SDEs with Jumps (*)

To complete this section, we briefly discuss numerical methods for scenario
simulation of jump-diffusion processes with state dependent jump intensities.
Such processes are important for credit, operational and insurance risk anal-
ysis. Standard models in this area are the Merton model, see (7.6.1), and the
Crámer-Lundberg model, see (3.5.10) and (3.7.2).

Consider an asset price that exhibits jumps with random sizes. To incorpo-
rate this into an SDE one can use a Poisson jump measure pϕ(·, ·) with some
intensity measure ϕ(·) on a mark set E = �\{0}, as described in Sect.3.5. Here
we assume that ϕ(E) < ∞. Suppose that jumps arrive at times τ1 < τ2 < . . .
with corresponding marks v1, v2, . . .. Let Nt count the number of jumps until
time t generated by Nt = pϕ(E , [0, t]). Also let c : E → � denote a real valued
function. Within this framework one has

Nt∑

k=1

c(vk) =
∫ t

0

∫

E
c(v) pϕ(dv, dt)

for t ∈ [0, T ]. The intensity ϕ(dv)
ϕ(E) determines the probability that the magni-

tude of a jump lies in some infinitesimal interval dv in the mark space.
A financial quantity Xt that exhibits jumps can now be modeled by an

SDE of the form

dXt = a(t,Xt) dt+
m∑

k=1

bk(t,Xt) dW k
t +

∫

E
c(v, t−, Xt−) pϕ(dv, dt) (15.2.46)

for t ∈ [0, T ] with X0 ∈ �. Here the jump coefficient c(·, ·, ·) is dependent on
the mark v, the time t and the value Xt− of the quantity just before time t. If
at time τ the Poisson jump measure pϕ generates a jump with mark v, then
the process jumps by an amount c(v, τ−, Xτ−), that is,

Xτ = Xτ− + c(v, τ−, Xτ−). (15.2.47)

The compensated jump measure

qϕ(dv, dt) = pϕ(dv, dt) − ϕ(dv) dt (15.2.48)

is an (A, P )-martingale jump measure. Note that conditions must be imposed
on a, b, c and ϕ to ensure the existence and uniqueness of solutions of the
SDE (15.2.46), see Chap. 7.

The SDE above can be used to model stock prices with default, where
the recovery rate is random, for example. Furthermore, it can model oper-
ational failures where the damage size varies randomly. Similarly, insurance
claims with uncertain claim sizes can be modeled by (15.2.46) as well. Models
driven by Lévy processes can also be expressed by SDEs of the type (15.2.46),
see Sect. 3.6. Such models have been applied in finance by Madan & Seneta
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(1990) and Barndorff-Nielsen (1998), among others. Affine jump-diffusions are
considered in Duffie, Pan & Singleton (2000) and can also be characterized by
(15.2.46). Furthermore, Björk et al. (1997) and Glasserman & Merener (2003)
consider interest rate term structure models with jumps. The importance of
SDEs with jumps in quantitative finance will increase in future years since
the modeling of event risks becomes more important in applications.

Numerical methods for discrete time approximation of jump diffusions
have been studied, for instance, in Platen (1982a, 1984), Platen & Rebolledo
(1985), Maghsoodi & Harris (1987), Mikulevicius & Platen (1988), Maghsoodi
(1996, 1998), Kubilius & Platen (2002), Glasserman & Merener (2003),
Glasserman (2004), Bruti-Liberati, Nikitopoulos-Sklibosios & Platen (2006)
and Bruti-Liberati & Platen (2007a, 2007b). We now follow Platen (1982a)
by introducing a jump adapted time discretization {τi}i∈{0,1,...} with τ0 <
τ1 < . . .. This involves superposing the random jump times of the Poisson
process pϕ(E , [0, ·]) on the discretization times of a deterministic grid. It can
be constructed before the actual simulation of the solution of (15.2.46) be-
gins. We need only to ensure that the maximum step size remains bounded
by Δ > 0. In other words, we require that consecutive time steps satisfy
τi+1−τi ≤ Δ almost surely. This is achieved if one superposes the jump times
on a regular time discretization with step size Δ, for example.

The simplest jump adapted scheme is the Euler scheme. It is decoupled
into a diffusive part

Yτi+1− = Yτi + a (τi+1 − τi) +
m∑

j=1

bj
(
W j

τi+1
−W j

τi

)
(15.2.49)

and a jump part

Yτi+1 = Yτi+1− +
∫

E
c(v, τi+1−, Yτi+1−) pϕ(dv, {τi+1}). (15.2.50)

The scheme (15.2.49) approximates the evolution of the diffusive part between
jump times and represents a standard Euler scheme. If τi+1 is a jump time
of pϕ, then in (15.2.50) one typically has the value Yτi+1 = Yτi+1−. Thus,
(15.2.50) simulates the effect of jumps. Note that if the inter-jump diffusion
of the process is captured exactly by (15.2.49), then the jump approximation
(15.2.50) generates no errors and the scheme matches the exact solution of
(15.2.49). The Euler scheme above can be shown to exhibit the same order of
strong convergence, namely γ = 0.5, as in the pure diffusion case.

In principle, one can use all the strong schemes previously discussed for
approximating the diffusive part of an SDE with jumps. Then the jumps can
be handled in the same manner as shown in (15.2.49)–(15.2.50). The resulting
strong order is, in general, that of the scheme that approximates the diffusion
part, see Platen (1982a).
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15.3 Classical Monte Carlo Method

In this section we describe the classical Monte Carlo method, which allows us
to calculate expectations of given functions of random variables. In the next
section we shall consider Monte Carlo methods for expectations of functions
of solutions of SDEs.

Monte Carlo Estimator

The classical Monte Carlo method, as described in Fishman (1996), for exam-
ple, is probably the most flexible numerical method for evaluating an expres-
sion of the form

u = E(g(X)), (15.3.1)

where g : �n → � is some function and X is an n-dimensional random vari-
able on a probability space (Ω,A, P ). Such functionals appear frequently in
finance, as derivative prices, risk measures or expected utilities, for example.
The Monte Carlo method for computing (15.3.1) is simply a matter of generat-
ing N independent sample paths of the random variable g(X), say g(X(ω1)),
g(X(ω2)), . . ., g(X(ωN )), for ω1, ω2, . . . , ωN ∈ Ω. Then (15.3.1) is the sample
average

ûN =
1
N

N∑

i=1

g(X(ωi)). (15.3.2)

One can see that the raw Monte Carlo estimator ûN is unbiased, that is

E(ûN ) = u (15.3.3)

for all N ∈ N , see (2.3.6). If Var(g(X)) < ∞, then by the strong Law of Large
Numbers (LLN), see Theorem 2.1.2, it follows that ûN converges to u almost
surely, that is

lim
N→∞

ûN
a.s.= u. (15.3.4)

Note that ûN is a random variable for each N ∈ N . Property (15.3.4) of the
Monte Carlo estimator is called strong consistency and is a stronger condition
than consistency, see (2.3.8). By a calculation used in the proof of (2.1.9), see
also (1.4.49), it follows that

Var(ûN ) =
Var(g(X))

N
, (15.3.5)

revealing that the variance of ûN decreases linearly as the number of simulated
outcomes N increases. This means that the deviation

√
Var(ûN ) =

√
Var(g(X))√

N

only decreases like N− 1
2 as N → ∞, see Sect. 2.2.
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Although Var(g(X)) is usually not known, an application of the weak LLN
in Theorem 2.1.3 establishes that the estimate

V̂N =
1
N

N∑

i=1

(g(X(ωi)))2 − (ûN )2

converges in probability to Var(g(X)), that is

lim
N→∞

V̂N
P= Var(g(X)). (15.3.6)

By the CLT from Theorem 2.1.4 we then know that

ẐN =
(ûN − u)
√

Var(g(X))

√
N (15.3.7)

converges in distribution to a standard Gaussian random variable Z. There-
fore, we have the approximate relationship

ûN ≈ u+ Z

√
Var(g(X))

N
, (15.3.8)

which provides a proxy for the estimation error of a Monte Carlo simulation.
It also tells us that the Monte Carlo estimator ûN is asymptotically normal.

Classical Monte Carlo Simulation

As an illustrative example of classical Monte Carlo simulation, we choose a
problem for which the exact answer is known. In particular, we shall compute
u = E(g(X)), where X ∼ N(0, 1) and g(X) is defined by

g(X) =
(
exp
{
rΔ+ σ

√
ΔX

})2

(15.3.9)

with r = 0.05, σ = 0.2 and Δ = 1. Of course, u is then the second moment
of a lognormally distributed random variable, which in turn could represent
an asset price under the BS model. Since we know the Laplace transform of
a Gaussian random variable we are able to determine the value of u exactly.

u = E
(
exp
{

2
(
rΔ+ σ

√
ΔX

)})
= exp

{(
r + σ2

)
2Δ
}
. (15.3.10)

For the parameter values under consideration, we have u ≈ 1.197. For sample
sizes N ∈ {1, 2, . . . , 2000} we now calculate the raw Monte Carlo estimators

ûN =
1
N

N∑

i=1

exp
{

2
(
rΔ+ σ

√
ΔX(ωi)

)}
, (15.3.11)
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Fig. 15.3.1. Raw Monte Carlo estimates in dependence on the number of simula-
tions

Fig. 15.3.2. Normalized raw Monte Carlo error

where X(ω1), X(ω2), . . . are independently sampled from the N(0, 1) distri-
bution, as described in Sect.15.1. Figure 15.3.1 plots the raw Monte Carlo es-
timates ûN for different sample sizes N . We note that after about N ≈ 1000
simulations the estimates ûN stabilize and appear to converge towards the
correct value u ≈ 1.2. This illustrates the strong LLN in relation (15.3.4). We
can also calculate the normalized quantity ẐN defined by (15.3.7), since

Var(g(X)) = exp{4Δ (r + 2σ2)} (1 − exp{−4Δσ2}) ≈ 0.25.

Figure 15.3.2 illustrates the dependence of ẐN on N . It is interesting to see
how ẐN converges towards some random level. In Fig.15.3.3 we repeat the en-
tire Monte Carlo estimation 50 times and plot the resulting normalized errors
against sample size N ∈ [9000, 10000]. It is obvious that for each outcome
a certain level is approached, which is clearly random. A statistical analy-
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Fig. 15.3.3. Independent realizations of normalized Monte Carlo errors

sis would reveal that the distribution of this level is approximately standard
Gaussian.

Antithetic Variates

As we have seen in (15.3.7), the difference between the raw Monte Carlo
estimator ûN and the exact value u is proportional to N− 1

2 . Unfortunately,
we must accept this slow rate of convergence unless we can change the problem
under consideration so that the variance of the unbiased random variable being
simulated is reduced. There are many, so-called, variance reduction techniques
that achieve this, see Fishman (1996) or Kloeden & Platen (1999). We now
describe the antithetic variates technique, as an illustration of the general
idea.

Assume that we are able to construct two random variables X and Y such
that

E(g(X)) = E(g(Y )).

Then we can use the antithetic variate Monte Carlo estimator

ũN =
1
2

(
1
N

N∑

i=1

g(X(ωi)) +
1
N

N∑

i=1

g(Y (ωi))

)

=
1
N

N∑

i=1

1
2

(g(X) + g(Y )).

(15.3.12)
The variance of ũN is obtained as

Var(ũN ) =
1

4N
Var(g(X) + g(Y ))

=
1

4N

(
Var(g(X)) + 2 Cov(g(X), g(Y )) + Var(g(Y ))

)
.

Obviously, if Cov(g(X), g(Y )) < 0, then
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Fig. 15.3.4. Antithetic Monte Carlo estimator as a function of N

Var(ũN ) <
1

2N
Var(g(X)) < Var(ûN ), (15.3.13)

which yields some variance reduction, when compared with (15.3.5). In par-
ticular, if the variates g(X) and g(Y ) are perfectly negatively correlated, that
is antithetic, then the variance is reduced to zero.

We illustrate the technique by applying it to our previous example. This is
done by including the negative outcomes −X(ωi) of each of the sample values
X(ωi) of the standard Gaussian random variable X, so that

ũN =
1
N

N∑

i=1

1
2

(
exp
{

2
(
rΔ+ σ

√
ΔX(ωi)

)}
+ exp

{
2
(
rΔ− σ

√
ΔX(ωi)

)})

is the antithetic variates estimator.
Figure 15.3.4 compares the results of using ũN with those obtained by

using the raw Monte Carlo estimator ûN for different sample sizes N . Note
that the variance of ũN is smaller than that of ûN , indicating an improvement
due to the use of antithetic variates.

Control Variate Technique

We now discuss another variance reduction technique. Assume the existence
of a control variate function p : � → �, for which the value ϕ = E(p(X)) is
known. We can then construct the control variate estimator

ūN = ûN − α (p̂N − ϕ) , (15.3.14)

where

p̂N =
1
N

N∑

i=1

p(X(ωi))
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and α ∈ � is some parameter. We aim to choose α so as to reduce the variance
of ūN . Its optimal value α∗ is obtained by minimizing

Var(ūN ) = Var(ûN ) − 2αCov(ûN , p̂N ) + α2 Var(p̂N ).

This is easily done, since the above expression is a quadratic function of α.
The resulting optimal parameter value is

α∗ =
Cov(ûN , p̂N )

Var(p̂N )
=

Cov(g(X), p(X))
Var(p(X))

. (15.3.15)

For this parameter choice we obtain

Var(ūN ) = Var(ûN ) − Cov(ûN , p̂N )
Var(pN )

= Var(ûN )
(
1 − (�ûN ,p̂N

)2
)
, (15.3.16)

indicating a substantial reduction in variance if the control variate is highly
correlated with the raw Monte Carlo estimator ûN .

We now illustrate the control variate technique by applying it to our pre-
vious problem. The following control variate function will be used

p(X) =
√
g(X) = exp

{
r Δ+ σ

√
ΔX

}
.

We know that ϕ = E(p(X)) ≈ 1.1. The control variate estimator (15.3.14) is
then

ūN =
1
N

N∑

i=1

exp
{

2
(
rΔ+ σ

√
ΔX(ωi)

)}

−α

(
1
N

N∑

i=1

(
exp
{
rΔ+ σ

√
ΔX(ωi)

}
− ϕ
)
)

,

where α is chosen appropriately. Typically, its optimal value α∗ is not known.
However, one can often find a good value by reasoning or experimentation.
Here, (15.3.15) can be evaluated, to give

α∗ =
exp{3Δ

(
r + 3

2 σ
2
)
} (1 − exp{−2Δσ2})

exp{2Δ (r + σ2)} (1 − exp{−Δσ2}) ≈ 2.28.

With the choice α = 2.3, Fig. 15.3.5 shows that we have an excellent control
variate Monte Carlo estimator. The graph shows quick convergence to the
correct value.

Note that in this example we have extracted considerable advantage from
our knowledge of the properties of the functional g(X). The general rule is,
the more one knows about the underlying random variables, the greater is
the advantage one can extract from a variance reduction technique. This will
also apply to the application of variance reduction techniques to Monte Carlo
methods for SDEs, as will be described in the next section.
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Fig. 15.3.5. Control variate Monte Carlo estimator as a function of N

Stratified Sampling (*)

Stratified sampling is a variance reduction technique of long standing, which
has been widely used in classical Monte Carlo simulation, see, for example,
Ross (1990) and Curran (1994). Let Ai ∈ A, i ∈ {1, 2, . . . , N}, be a partition
of Ω, so that

N⋃

i=1

Ai = Ω, Ai ∩Aj = ∅

if i = j. We assume that P (Ai) = 1
N for all i ∈ {1, 2, . . . , N}. Since (Ai)1≤i≤N

partitions Ω, it follows that σ{Ai

∣
∣ 1 ≤ i ≤ N} is nothing other than the

collection of all finite unions, including the empty union, of the Ai’s. This
makes the sigma-algebras Ai trivial. It also means that one only has piecewise
constant random variables. Now let Z : Ω → � be any random variable, and
define the random variables ZAi for i ∈ {1, 2, . . . , N} by setting ZAi = 1AiZ.
Next define the random variable Z̄ as follows

Z̄ =
1
N

N∑

i=1

Z̄Ai ,

where Z̄A1 , Z̄A2 , . . ., Z̄AN
are independent random variables with E(Z̄Ai) =

E(ZAi) and Var(Z̄Ai) = Var(ZAi) for i ∈ {1, 2, . . . , N}. Since

E(Z̄) =
1
N

N∑

i=1

E
(
Z̄Ai

)
=

1
N

N∑

i=1

E(ZAi) =
N∑

i=1

∫

Ai

Z dP =
∫

Ω

Z dP = E(Z),

(15.3.17)
Z̄ is an unbiased estimator for E(Z). Furthermore, using the independence
property of Z̄Ai , i ∈ {1, 2, . . . , N}, we obtain the following from (1.4.35) and
(1.4.43):
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Var(Z̄) =
N∑

i=1

Var(Z̄Ai)
N2

=
N∑

i=1

Var(ZAi)
N2

=
1
N

E(Var(Z
∣
∣A)) ≤ 1

N
Var(Z). (15.3.18)

This inequality will be strict if Var(E(Z
∣
∣A)) > 0. Consequently, if we set

Z = H(XT ),

then we obtain an unbiased estimator for E(H(XT )) from (15.3.17), with
reduced variance, according to (15.3.18).

Quasi Monte Carlo Method (*)

We now shift our attention to Monte Carlo methods that do not use pseudo-
random numbers or true random numbers. There is an extensive literature
on quasi Monte Carlo methods with overviews provided by Ripley (1983) and
Niederreiter (1992). Applications to financial modeling problems have been
considered, for instance, in Barraquand (1993), Paskov & Traub (1995) and
Joy, Boyle & Tan (1996).

To illustrate a commonly used procedure, consider a d-dimensional asset
price vector X and a payoff functional H(X). We assume that the joint
density function pX : �d → � of X is known, so that

u = E (H (X)) =
∫

	d

H(y) pX(y) dy (15.3.19)

can be computed if the integral on the right can be evaluated. Consequently,
estimation of u can be considered as a numerical integration problem over
�d. For a one-dimensional asset price X, if FX : � → [0, 1] is the distribution
function for X, when pX(y) = F ′

X(y), for all y ∈ �, and (15.3.19) can be
expressed as

u =
∫ 1

0

H(F−1
X (z)) dz. (15.3.20)

The valuation problem has now been transformed into the computation of a
Riemann integral over the unit interval [0, 1]. For a d-dimensional asset price
vector X, subject to certain conditions on the joint distribution function FX ,
the right hand side of (15.3.20) can be written as a standard Riemann integral
over the d-dimensional unit cube. Note that this technique requires the density
or the distribution function of X to be known.

A Monte Carlo estimate of (15.3.20) would usually take the form

1
N

N∑

i=1

H(F−1
X (Zi)),
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where Zi for i ∈ {1, 2, . . . , N}, are independent, uniformly distributed ran-
dom variables. In practice, pseudo-random numbers would usually be used.
However, with the use of, so-called, low discrepancy numbers, see Niederreiter
(1992), the above estimator is referred to as a quasi Monte Carlo estimator.
Low discrepancy point sets, such as Sobol or Halton sequences, see Niederreiter
(1992), exhibit more regularity than pseudo-random point sets, especially for
small sample sizes. This often leads to faster rates of convergence.

15.4 Monte Carlo Simulation for SDEs

Monographs on Monte Carlo methods for SDEs include, for instance, Kloeden
& Platen (1999), Kloeden et al. (2003), Milstein (1995), Jäckel (2002) and
Glasserman (2004). As previously explained, when other numerical methods
for functionals of SDEs fail or are difficult to implement, Monte Carlo methods
can still be applied. The main advantage of Monte Carlo simulation is that it
can also be applied to high dimensional systems of SDEs.

Weak Convergence

As was the case for scenario simulation, we may introduce a criterion that
allows us to classify different discrete time approximations that can be used in
raw Monte Carlo simulation. Recall that in Monte Carlo simulation one wishes
to estimate the expected value of a certain payoff function. To obtain a suitable
class of potential payoff functions, let us denote by C̃P (�d,�) the family of all
polynomials g : �d → �. Consider the process X = {Xt, t ∈ [0, T ]}, which is
assumed to be the unique strong solution of the SDE

dXt = a(t,Xt) dt+
m∑

j=1

bj(t,Xt) dW
j
t (15.4.1)

for t ∈ [0, T ], with X0 ∈ �d.

Definition 15.4.1. Let Y Δ be a discrete time approximation of X. Then
Y Δ

T converges with weak order β > 0 to XT if for each g ∈ C̃P (�d,�) there
exists a Δ0 ∈ [0, 1] and a constant Cg, independent of Δ, such that

μ(Δ) = |E(g(XT )) − E(g(Y Δ
T ))| ≤ Cg Δ

β (15.4.2)

for each Δ ∈ (0, Δ0).

Systematic and Statistical Error

Under the weak convergence criterion (15.4.1), functionals of the form

u = E(g(XT )) (15.4.3)
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are approximated using weak approximations Y Δ of the solution of the SDE
(15.4.1). One can construct a raw Monte Carlo estimate, using the sample
average

uN,Δ =
1
N

N∑

k=1

g(Y Δ
T (ωk)), (15.4.4)

where Y Δ
T (ω1), Y Δ

T (ω2), . . . , Y Δ
T (ωN ) are N independent simulated realiza-

tions of Y Δ
T , with ωk ∈ Ω, for k ∈ {1, 2, . . . , N}. The weak error μ̂N,Δ has the

form
μ̂N,Δ = uN,Δ −E(g(XT )) (15.4.5)

and can be decomposed into a systematic error μsys and a statistical error
μstat with mean zero, so that

μ̂N,Δ = μsys + μstat. (15.4.6)

Thus, the systematic error is given by

μsys = E(μ̂N,Δ)

= E

(
1
N

N∑

k=1

g(Y Δ
T (ωk))

)

−E(g(XT ))

= E(g(Y Δ
T )) −E(g(XT )). (15.4.7)

From (15.4.2) it then follows that

μ(Δ) = |μsys|. (15.4.8)

For a large number N of independent simulated realizations of Y Δ, we can
conclude from the Central Limit Theorem, see (2.1.27), that the statistical
error μstat becomes asymptotically Gaussian with mean zero and variance

Var(μstat) = Var(μ̂N,Δ) =
1
N

Var(g(Y Δ
T )). (15.4.9)

This reveals the main disadvantage of raw Monte Carlo methods, namely that
the variance of the statistical error only decreases like 1

N , see (15.3.5).

Simplified Weak Taylor Scheme

In Sect.15.2 we studied the Euler scheme (15.2.23) for strong approximations.
For weak convergence we only need to approximate the probability measure
induced by the process X. Therefore, we can replace the Gaussian increments
ΔW j

n in (15.2.23) with simpler random variables ΔŴ j
n, as long as their mo-

ments are similar to those of ΔW j
n. This leads to the simplified weak Euler

scheme
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Yn+1 = Yn + aΔ+
m∑

j=1

bj ΔŴ j
n, (15.4.10)

where the ΔŴ j
n are independent Aτn+1 -measurable random variables whose

moments satisfy the following condition
∣
∣
∣E
(
ΔŴ j

n

)∣∣
∣+
∣
∣
∣
∣E
((

ΔŴ j
n

)3
)∣∣
∣
∣+
∣
∣
∣
∣E
((

ΔŴ j
n

)2
)
−Δ

∣
∣
∣
∣ ≤ KΔ2 (15.4.11)

for some constant K and j ∈ {1, 2, . . . ,m}. The simplest choice ΔŴ j
n, which

satisfies (15.4.11), is a two-point distributed random variable, with

P
(
ΔŴ j

n = ±
√
Δ
)

=
1
2
. (15.4.12)

More accurate weak Taylor schemes can be derived by including addi-
tional multiple stochastic integrals from a Wagner-Platen expansion of the
type shown in (15.2.6). Naturally, the objective is to achieve a desired weak
order of convergence β, as defined in (15.4.2), with the minimal number of
terms from the expansion. The choice of terms is typically different from the
case where one tries to obtain the same strong order of convergence.

The weak order 2.0 Taylor scheme

Yn+1 = Yn + aΔ+ bΔWn +
1
2
b b′
(
(ΔWn)2 −Δ

)
+ a′ bΔZn

+
1
2

(
a a′ +

1
2
a′′b2

)
Δ2 +

(
a b′ +

1
2
b′′b2

)
(ΔWn Δ−ΔZn) (15.4.13)

is obtained by adding all double stochastic integrals from a Wagner-Platen
expansion to the Euler scheme. Here the random variable ΔZn represents the
double integral given by (15.2.31). As shown in Platen (1984), for β ∈ N to
construct a weak order β Taylor scheme, one needs to include all multiple
Itô integrals with multiplicity less or equal than β from a Wagner-Platen
expansion.

Under the weak convergence criterion one has more freedom to construct
appropriate schemes than under the strong convergence criterion. For exam-
ple, for a weak order 2.0 scheme it is possible to avoid the random variable
ΔZn appearing in (15.4.13). One can show that it is sufficient to include only
a single random variable ΔW̃n with similar moments to those of ΔWn. The
random variable ΔZn is then replaced by 1

2ΔW̃nΔ. For simplicity, we again
suppose the dependence of the random variables on the number n of the time
step. The simplified weak order 2.0 Taylor scheme can then be expressed as

Yn+1 = Yn + aΔ+ bΔW̃ +
1
2
b b′
((

ΔW̃
)2

−Δ

)

+
1
2

(
a′ b+ a b′ +

1
2
b′′b2

)
ΔW̃ Δ+

1
2

(
a a′ +

1
2
a′′b2

)
Δ2, (15.4.14)
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where ΔW̃ has to satisfy the moment condition

∣
∣
∣E
(
ΔW̃

)∣∣
∣+
∣
∣
∣
∣E
((

ΔW̃
)3
)∣∣
∣
∣+
∣
∣
∣
∣E
((

ΔW̃
)5
)∣∣
∣
∣

+
∣
∣
∣
∣E
((

ΔW̃
)2
)
−Δ

∣
∣
∣
∣+
∣
∣
∣
∣E
((

ΔW̃
)4
)
− 3Δ2

∣
∣
∣
∣ ≤ KΔ3 (15.4.15)

for some constant K.
Obviously, an N(0, Δ) random variable satisfies this condition. A three-

point distributed random variable ΔW̃ with

P
(
ΔW̃ = ±

√
3Δ
)

=
1
6

and P
(
ΔW̃ = 0

)
=

2
3

(15.4.16)

also satisfies (15.4.15).

Derivative Free Weak Approximations

Higher order weak Taylor schemes require the evaluation of derivatives of var-
ious orders of the drift and diffusion coefficients. As with strong schemes, we
can construct derivative free weak approximations, which avoid such deriva-
tives. For the simple case, with time independent coefficients, the following
explicit weak order 2.0 scheme is proposed in Platen (1984):

Yn+1 = Yn +
1
2
(
a
(
Ῡ
)

+ a
)
Δ+

1
4
(
b
(
Ῡ+
)

+ b
(
Ῡ−)+ 2b

)
ΔW̃

+
1
4
(
b
(
Ῡ+
)
− b
(
Ῡ−))

((
ΔW̃

)2

−Δ

)
Δ− 1

2 (15.4.17)

with supporting values
Ῡ = Yn + aΔ+ bΔW̃

and
Ῡ± = Yn + aΔ± b

√
Δ.

Here ΔW̃ is required to satisfy the moment condition (15.4.15). For example,
ΔW̃ can be the three-point distributed random variable in (15.4.16).

The above scheme can be generalized to yield the general explicit weak
order 2.0 scheme
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Yn+1 = Yn +
1
2
(
a
(
Ῡ
)

+ a
)
Δ+

1
4

m∑

j=1

[
(
bj
(
R̄j

+

)
+ bj

(
R̄j

−

)
+ 2bj

)
ΔW̃ j

+
m∑

r=1
r �=j

(
bj
(
Ūr

+

)
+ bj

(
Ūr
−
)
− 2bj

)
ΔW̃ j Δ− 1

2

]

+
1
4

m∑

j=1

[(
bj
(
R̄j

+

)
− bj

(
R̄j

−

))((
ΔW̃ j

)2

−Δ

)

+
m∑

r=1
r �=j

(
bj
(
Ūr

+

)
− bj

(
Ūr
−
)
)(

ΔW̃ jΔW̃ r + Vr,j

)
]

Δ− 1
2 (15.4.18)

with supporting values

Ῡ = Yn + aΔ+
m∑

j=1

bj ΔW̃ j , R̄j
± = Yn + aΔ± bj

√
Δ

and
Ū j
± = Yn ± bj

√
Δ.

Here the random variables ΔW̃ j are defined as in (15.4.16), while Vj1,j2 are
independent two-point distributed random variables satisfying

P (Vj1,j2 = ±Δ) =
1
2

(15.4.19)

for j2 ∈ {1, . . ., j1 − 1},
Vj1,j1 = −Δ (15.4.20)

and
Vj1,j2 = −Vj2,j1 (15.4.21)

for j2 ∈ {j1 + 1, . . ., m} and j1 ∈ {1, 2, . . . ,m}.

Extrapolation

Extrapolation provides an efficient yet simple way of obtaining a higher or-
der weak approximation, while using only lower order weak schemes. Only
equidistant time discretizations of the time interval [0, T ] with τnT

= T will
be used in what follows. As usual, we shall denote a discrete time approxi-
mation with time step size Δ > 0 by Y Δ. Its values at discretization times
τn will be denoted by Y Δ

n and the corresponding approximation with twice
this step size will be written as Y 2Δ, etc. Suppose that we have estimated the
functional

E
(
g
(
Y Δ

T

))
,
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using a weak order 1.0 approximation, such as the simplified Euler scheme
(15.4.10), with step size Δ. Let us repeat this simulation with double the step
size 2Δ, to obtain the following estimate

E
(
g
(
Y 2Δ

T

))
.

We can now combine the above two estimates in the weak order 2.0 extrapo-
lation

V Δ
g,2(T ) = 2E

(
g
(
Y Δ

T

))
− E

(
g
(
Y 2Δ

T

))
. (15.4.22)

This method, which was proposed in Talay & Tubaro (1990), is a stochastic
generalization of the well-known Richardson extrapolation technique.

As is shown in Kloeden & Platen (1999), if a weak method exhibits an
appropriate leading error term representation, then a corresponding extrap-
olation method can be constructed. For instance, one can take a weak order
β = 2.0 approximation Y Δ and extrapolate it to obtain a weak order 4.0
extrapolation as follows

V Δ
g,4(T ) =

1
21

(
32E

(
g
(
Y Δ

T

))
− 12E

(
g
(
Y 2Δ

T

))
+E

(
g
(
Y 4Δ

T

))
)
. (15.4.23)

Suitable weak order 2.0 approximations include the simplified weak order 2.0
Taylor scheme (15.4.14) and the explicit weak order 2.0 scheme (15.4.17).

The practical applicability of extrapolations depends strongly on the nu-
merical stability of the underlying weak schemes over a range of time step
sizes.

Implicit Methods (*)

As is the case for scenario simulation, numerical stability is the most important
criterion for Monte Carlo simulation. The following implicit and predictor
corrector methods are efficient weak schemes offering reasonable numerical
stability.

The simplest implicit weak scheme is the drift implicit simplified Euler
scheme, which has the form

Yn+1 = Yn + a (τn+1, Yn+1)Δ+
m∑

j=1

bj ΔŴ j , (15.4.24)

where the random variables ΔŴ j for j ∈ {1, 2, . . . ,m} and n ∈ N are inde-
pendent and two-point distributed, as in (15.4.12).

One can also consider the family of drift implicit simplified Euler schemes

Yn+1 = Yn +
(
(1 − θ) a (τn+1, Yn+1) + θ a

)
Δ+

m∑

j=1

bj ΔŴ j (15.4.25)
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with ΔŴ j as in (15.4.12) for j ∈ {1, 2, . . . ,m}. The parameter θ is again the
degree of drift implicitness. For θ = 0, the scheme reduces to the simplified
Euler scheme (15.4.10), while for θ = 0.5 it represents a stochastic generaliza-
tion of the trapezoidal method. For all values of θ, it can be shown to converge
with weak order β = 1.0, and with a degree of implicitness θ ≥ 1

2 it displays
good numerical stability, see Kloeden & Platen (1999).

To achieve better numerical stability for a weak scheme, one can also
make the diffusion coefficient implicit. An example is the family of implicit
weak Euler schemes

Yn+1 = Yn +
(
θ āη (τn+1, Yn+1) + (1 − θ) āη

)
Δ

+
m∑

j=1

(
η bj (τn+1, Yn+1) + (1 − η) bj (τn, Yn)

)
ΔŴ j , (15.4.26)

where the random variables ΔŴ j are as in (15.4.12) and θ, η ∈ [0, 1] are
degrees of implicitness parameters. Here āη is a corrected drift coefficient,
defined by

āη(·, ·) = a(·, ·) − η

m∑

j1,j2=1

bj1(·, ·)∂b
j2(·, ·)
∂x

. (15.4.27)

In Kloeden & Platen (1999) it is shown that such weak Euler schemes exhibit
weak order β = 1.0, under certain conditions.

Predictor-Corrector Methods (*)

To achieve a higher weak order without compromising numerical stability,
predictor-corrector methods have been developed in Platen (1995). These are
similar to implicit methods, but do not require the solution of an algebraic
equation at each time step.

One can form the following family of weak order 1.0 predictor-corrector
methods with corrector

Yn+1 = Yn +
(
θ āη

(
τn+1, Ȳn+1

)
+ (1 − θ) āη

)
Δ

+
m∑

j=1

(
η bj
(
τn+1, Ȳn+1

)
+ (1 − η) bj

)
ΔŴ j (15.4.28)

for θ, η ∈ [0, 1], where

āη(·, ·) = a(·, ·) − η

m∑

j1,j2=1

d∑

k=1

bk,j1(·, ·)∂b
j2(·, ·)
∂xk

. (15.4.29)

The corresponding predictor is given by
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Ȳn+1 = Yn + aΔ+
m∑

j=1

bj ΔŴ j . (15.4.30)

Here the random variables ΔŴ j are as in (15.4.12). Note that for η > 0
the corrector (15.4.28) allows some implicitness in the diffusion terms. This
scheme is in many cases numerically stable.

It is very helpful when a scheme supports different degrees of implicitness.
By varying the degree of implicitness in such a scheme, the corresponding
simulation results provide a feeling for the numerical stability that can be
achieved.

For SDEs with time independent coefficients, Platen (1995) examines a
derivative free weak order 2.0 predictor-corrector method with corrector

Yn+1 = Yn +
1
2
(
a
(
Ȳn+1

)
+ a
)
Δ+ φn, (15.4.31)

where

φn =
1
4

m∑

j=1

[
bj
(
R̄j

+

)
+bj
(
R̄j

−

)
+ 2 bj +

m∑

r=1
r �=j

(
bj
(
Ūr

+

)
+ bj

(
Ūr
−
)
− 2 bj

)
Δ− 1

2

]
ΔW̃ j

+
1
4

m∑

j=1

[(
bj
(
R̄j

+

)
− bj

(
R̄j

−

))((
ΔW̃ j

)2

−Δ

)

+
m∑

r=1
r �=j

(
bj
(
Ūr

+

)
− bj

(
Ūr
−
)) (

ΔW̃ j ΔW̃ r + Vr,j

)]
Δ− 1

2

and
R̄j

± = Yn + aΔ± bj
√
Δ and Ū j

± = Yn ± bj
√
Δ

are supporting values. The predictor

Ȳn+1 = Yn +
1
2
{
a
(
Ῡ
)

+ a
}
Δ+ φn (15.4.32)

employs a supporting value

Ῡ = Yn + aΔ+
m∑

j=1

bj ΔW̃ j .

The independent random variables ΔW̃ j and Vr,j can be chosen as in
(15.4.18).

In all the weak schemes above, one first computes the predicted approx-
imate value Ȳn+1 and then the corrected value Yn+1 at each time step. The
difference
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Zn+1 = Ȳn+1 − Yn+1

provides information about the, so-called, local error at each time step. This
information can be used to control the size of the time step during the simula-
tion. So, for example, if the mean of Zn+1 is too large, then one can switch to
a smaller time step size. For further references on predictor-corrector methods
we refer again to Kloeden & Platen (1999).

Weak Approximations with Jumps (*)

To complete this section, we now present some weak schemes suitable for
the Monte Carlo simulation of solutions of SDEs with jumps. Results in this
direction were obtained in Platen (1982a), Mikulevicius & Platen (1988) and
Kubilius & Platen (2002) and Bruti-Liberati & Platen (2007a).

We consider an SDE with jumps, as described in (15.2.46)–(15.2.48). Since
we specify a finite intensity ϕ(E) < ∞, the Poisson process pϕ = {pϕ(E , [0, t]),
t ∈ [0, T ]} generates a sequence of jump times. As in Sect.15.2, we assume that
the discretization of the interval [0, T ] includes all jump times of pϕ not greater
than T . As before, we use a jump adapted time discretization {τi}i∈{0,1,...} with
maximum step size Δ > 0. This is a sequence of A-stopping times, including
every jump time of pϕ not greater than T , satisfying

0 = τ0 < τ1 < . . . < τnT
= T

and nT < ∞, almost surely.
The following jump adapted simplified Euler scheme is a simple discrete

time weak approximation of the jump diffusion process (15.2.46)–(15.2.48)

Yτn+1− = Yτn + a (τn+1 − τn) +
m∑

j=1

bj ΔŴ j
n

Yτn+1 = Yτn+1− +
∫

E
c(v, Yτn+1−) pϕ(dv, {τn+1}) (15.4.33)

for n ∈ {0, 1, . . . , nT − 1} with Y0 = x. Here the random variables ΔŴ j
n

can be chosen as in (15.4.12). It has been shown that under sufficient con-
ditions, the above approximation converges with weak order β = 1, see
Mikulevicius & Platen (1988).

Similarly, a family of implicit simplified weak Euler schemes, or weak order
1.0 predictor-corrector schemes, as described previously, can be employed for
approximating the diffusion part, thereby enhancing numerical stability. In
principle, any of the previously mentioned weak schemes can be employed to
approximate the diffusion part. The weak order of the resulting jump adapted
scheme is then determined by the weak order of convergence of that scheme.
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15.5 Variance Reduction of Functionals of SDEs

As previously explained, a raw Monte Carlo estimate of the form (15.4.4) for
the expectation appearing in (15.4.3) can be very expensive in terms of com-
putational time when a certain accuracy is needed. In Sect.15.3 we introduced
several classical variance reduction techniques. In this section we describe ef-
ficient variance reduction for functionals of the type (15.4.3) when solutions
of SDEs are involved.

Control Variate Method for SDEs

The classical control variate technique has already been introduced in
Sect. 15.3. It is a very flexible and powerful technique, which we now explore
in the context of SDEs. Let X = {Xt = (X1

t , . . . , X
d
t )�, t ∈ [0, T ]} be the

solution of a d-dimensional SDE with initial value x = (x1, . . . , xd)� ∈ �d.
We wish to compute the following expected value

u = E (H(XT )) , (15.5.1)

where H : �d → � is some payoff function. Our aim will be to find a control
variate, similar to that in Sect. 15.3, by exploiting the particular structure
of the underlying SDE. This will enable us to obtain an accurate and fast
estimate of E(H(XT )).

As described in Sect.15.3, the control variate technique is based on finding
a suitable random variable Y with known mean E(Y ). We then estimate
E(H(XT )) by computing the expected value of

Z = H(XT ) − α(Y −E(Y ))

for some suitable choice of α ∈ �, rather than attempting to compute the
expected value of H(XT ) directly. The parameter α is chosen to minimize
the variance of Z. Because

E(Z) = E(H(XT )),

ūN = 1
N

∑N
i=1 Z(ωi) is an unbiased estimator for E(H(XT )). We assume

that both H(XT ) and Y can be evaluated for any realization ω ∈ Ω. With
this type of formulation the random variable Y is a control variate for the
estimation of E(H(XT )).

As an example, we consider a stochastic volatility model with a vector
process X = {Xt = (St, σt)�, t ∈ [0, T ]} that satisfies the two-dimensional
SDE

dSt = σt St dW
1
t

dσt = γ (κ− σt) dt+ ξ σt dW
2
t (15.5.2)
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for t ∈ [0, T ] with initial values S0 = s > 0, σ0 = σ > 0 and γ, κ, ξ > 0.
Here the short rate is set to zero and the pricing is performed under an
equivalent risk neutral probability measure P . We take W 1 and W 2 to be
two independent standard Wiener processes defined on the probability space
(Ω,A,A, P ). This type of stochastic volatility model has been examined in
Chap. 12. We shall consider the payoff of a European call option

H(XT ) = (ST −K)+,

where K > 0 is the strike and T is the maturity.
Suppose now that X̃ = {X̃t = (S̃t, σ̃t), t ∈ [0, T ]} is an adjusted as-

set price process with deterministic volatility, which evolves according to the
equations

dS̃t = σ̃tS̃t dW
1
t

dσ̃t = γ (κ− σ̃t) dt (15.5.3)

for t ∈ [0, T ] with the same initial values S̃0 = s and σ̃0 = σ. The adjusted
price ũ for the European call payoff Y = (S̃T −K)+ is then

ũ = E(Y ) = E
(
(S̃T −K)+

)
. (15.5.4)

Since the volatility process is deterministic, this payoff can be evaluated using
the Black-Scholes formula (8.3.2). Consequently, the random variable

Z = (ST −K)+ − α((S̃T −K)+ −E(S̃T −K)+)

= (ST −K)+ − α(Y − ũ)

is easily computed. To price the option under consideration, we now estimate
E(Z), which is the control variate estimator, with Y playing the role of the
control variate. Note that this means simulating σt, St and S̃t for t ∈ [0, T ].
To do this, we could use a weak order two predictor-corrector scheme, for
example. The above method can be very powerful since it takes advantage of
the structure of the underlying SDE.

Measure Transformation Method (*)

We now describe another important variance reduction method that is appli-
cable to the problem of estimating expected values of functionals of SDEs. It
is based on deep results from stochastic calculus.

Consider a d-dimensional diffusion process Xs,x = {Xs,x
t , t ∈ [s, T ]}, start-

ing at x ∈ �d at time s ∈ [0, T ), which satisfies the SDE

dXs,x
t = a(t,Xs,x

t ) dt+
m∑

j=1

bj(t,Xs,x
t ) dW j

t (15.5.5)
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for t ∈ [s, T ] with Xs,x
s = x. Here W is a standard m-dimensional Wiener pro-

cess on the filtered probability space (Ω,A,A, P ). Our aim is to approximate
the functional

u(s, x) = E
(
H(Xs,x

T )
∣
∣As

)
, (15.5.6)

where H(·) is a given real-valued payoff and (s, x) ∈ [0, T ] ×�+.
If we assume that H and the drift and diffusion coefficients a and b, re-

spectively, are sufficiently smooth, then u(·, ·) satisfies a Kolmogorov backward
equation, according to the Feynman-Kac formula (9.7.3)–(9.7.5). That is,

L0 u(s, x) = 0 (15.5.7)

for all (s, x) ∈ (0, T ) ×�d with boundary condition

u(T, y) = H(y) (15.5.8)

for all y ∈ �d. In this case L0 is the differential operator

L0 =
∂

∂s
+

d∑

k=1

ak ∂

∂xk
+

1
2

d∑

k,�=1

m∑

j=1

bk,j b�,j
∂2

∂xk ∂x�
.

Milstein (1995) applies the Girsanov transformation (9.5.11) to produce
an equivalent probability measure P̃ under which the process W̃ , defined by

W̃ j
t = W j

t −
∫ t

0

dj
(
z, X̃0,x

z

)
dz (15.5.9)

for t ∈ [0, T ] and j ∈ {1, 2, . . . ,m}, is a Wiener process. The transformed
probability measure P̃ is determined by the Radon-Nikodym derivative pro-
cess

Λt =
dP̃

dP

∣
∣
∣
∣
At

=
Θt

Θ0
, (15.5.10)

where Λ = {Λt, t ∈ [0, T ]} is assumed to be an (A, P )-martingale. The process
X̃0,x in (15.5.9) is given by the SDE

dX̃0,x
t = a

(
t, X̃0,x

t

)
dt+

m∑

j=1

bj
(
t, X̃0,x

t

)
dW̃ j

t

=

⎛

⎝a
(
t, X̃0,x

t

)
−

m∑

j=1

bj
(
t, X̃0,x

t

)
dj
(
t, X̃0,x

t

)
⎞

⎠dt+
m∑

j=1

bj
(
t, X̃0,x

t

)
dW j

t .

(15.5.11)

The adjustment process Θ = {Θt, t ∈ [0, T ]} satisfies the equation

Θt = Θ0 +
m∑

j=1

∫ t

0

Θz d
j
(
z, X̃0,x

z

)
dW j

z (15.5.12)
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with Θ0 > 0. In all the expressions above, the functions dj for j ∈ {1, 2, . . . ,m}
can be chosen quite freely. Note that X̃0,x

t is d-dimensional, while Θt is only
one-dimensional.

Obviously, the process X̃0,x in (15.5.11) is a diffusion process with respect
to P̃ with the same drift and diffusion coefficients as the diffusion process
X0,x in (15.5.5). It then follows from (15.5.10) that

E
(
H
(
X0,x

T

))
=
∫

Ω

H
(
X0,x

T

)
dP =

∫

Ω

H
(
X̃0,x

T

)
dP̃

=
∫

Ω

H
(
X̃0,x

T

) ΘT

Θ0
dP = E

(
H
(
X̃0,x

T

) ΘT

Θ0

)
. (15.5.13)

Hence, we can estimate (15.5.6) by estimating the expected value of the
following expression

H
(
X̃0,x

T

) ΘT

Θ0
. (15.5.14)

So far, our analysis does not depend on the particular choice of the functions
dj , j ∈ {1, 2, . . . ,m}. Therefore, the adjustment process Θ can be chosen quite
freely to reduce the variance of the random variable (15.5.14).

Now, let us study the following idealized situation from a theoretical view-
point. Assume that we know that u(·, ·) > 0 and that the solutions of (15.5.11)
and (15.5.12) exist. Furthermore, let us choose the parameter functions dj as

dj(t, x) = − 1
u(t, x)

d∑

k=1

bk,j(t, x)
∂u(t, x)
∂xk

(15.5.15)

for all (t, x) ∈ [0, T ] × �d and j ∈ {1, 2, . . . ,m}. Then it follows from an
application of the Itô formula and (15.5.11), (15.5.12), (15.5.15) and (15.5.7)
that

u
(
t, X̃0,x

t

)
Θt = u(0, x)Θ0. (15.5.16)

Combining (15.5.8) and (15.5.16), we conclude that

u(0, x) = H
(
X̃0,x

T

) ΘT

Θ0
. (15.5.17)

Consequently, with the choice of the parameter functions (15.5.15), the vari-
able

H
(
X̃0,x

T

) ΘT

Θ0
(15.5.18)

is not random and so its variance is zero, in this idealized case.
Unfortunately, the construction of the parameter functions in (15.5.15)

only works if one already knows the solution u(·, ·) of the Kolmogorov back-
ward equation, which is exactly what we are trying to determine by means
of Monte Carlo simulation. However, the above discussion does show that a
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substantial variance reduction may be achieved by an application of a measure
transformation, if one exploits information about the pricing function.

In practice, when implementing a measure transformation method, one
needs to find or guess a function ū which is sufficiently close to the solution
u of the Kolmogorov backward equation (15.5.7) and (15.5.8). One can then
use ū instead of u to define the parameter functions in (15.5.15):

dj(t, x) = − 1
ū(t, x)

d∑

k=1

bk,j(t, x)
∂ū(t, x)
∂xk

(15.5.19)

for all (t, x) ∈ [0, T ] ×�d and j ∈ {1, 2, . . . ,m}. Then the quantity

H
(
X̃0,x

T

) ΘT

Θ0

is still random and

E

(
H
(
X̃0,x

T

) ΘT

Θ0

)
= E

(
H
(
X0,x

T

))
.

In general, the variance is substantially reduced if ū is chosen close to u in
some sense.

There exist other powerful variance reduction techniques, such as, the inte-
gral representation variance reduction, developed in Heath & Platen (2002c).
In principle, these methods can usually be combined. It is an art to tailor an
efficient variance reduction method to the problem at hand.

15.6 Tree Methods

Simulation involves the generation of many random numbers and can there-
fore be very time consuming. Deterministic numerical methods, when appli-
cable, are often desirable. In what follows, we consider deterministic, discrete
time approximations of the paths of an asset price process. We study bino-
mial tree models, which are widely used for risk neutral option pricing, see
Cox, Ross & Rubinstein (1979) and van der Hoek & Elliott (2006). The main
aim of this section is to illustrate how the benchmark approach enables the
numerical approximation of option prices using trees, without the requirement
of a risk neutral probability measure.

Single-Period Binomial Model

Consider a regular discretization {t0, t1, . . . , tnT
} of [0, T ], with t0 = 0 and

tnT
= T . The step size Δ is then here T

nT
. Suppose that Sδ∗ = {Sδ∗

t , t ∈ [0, T ]}
approximates the GOP process, where Sδ∗ may be interpreted as a diversified
index. We also introduce a primary security account process S = {St, t ∈
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[0, T ]}, where St denotes the cum dividend price of a stock at time t. Sδ∗ and
S are taken to be piecewise constant between discretization points and are
assumed to be right continuous. The benchmarked primary security account
price Ŝt is then

Ŝt =
St

Sδ∗
t

(15.6.1)

for t ∈ [0, T ]. The process Ŝ = {Ŝt, t ∈ [0, T ]} and the GOP are modeled on
a filtered probability space (Ω,A,A, P ), which satisfies the usual conditions,
see Sect. 5.1.

The value of a benchmarked portfolio Ŝδ = {Ŝδ
t , t ∈ [0, T ]} with pre-

dictable strategy δ = {δt = (δ0
t , δ

1
t )�, t ∈ [0, T ]}, which at time t holds δ0

t

units of the GOP and δ1
t units of the stock, is given by

Ŝδ
t = δ0

t + δ1
t Ŝt (15.6.2)

for t ∈ {t0, t1, . . . , tnT
}.

In the following we consider a very simple single period binomial model,
see Sect. 3.3. This is one of the simplest ways of modeling the randomness
of a security. We model the uncertain value of the benchmarked security ŜΔ

at time t1 = Δ > 0, by only allowing the two possible values (1 + u)Ŝ0 and
(1 + d)Ŝ0, such that

P
(
ŜΔ = (1 + u) Ŝ0

)
= p (15.6.3)

and
P
(
ŜΔ = (1 + d) Ŝ0

)
= 1 − p

for p ∈ (0, 1) and −d, u ∈ (0,∞). Note that P denotes the real world proba-
bility measure. An upward move u = ŜΔ−Ŝ0

Ŝ0
can be interpreted as a positive

return and a downward move d = ŜΔ−Ŝ0

Ŝ0
as a negative return. Note that

since we aim to apply the real world pricing concept, we consider here bench-
marked securities. In Cox et al. (1979) one can find similar derivations, as
presented below. However, these are performed under some equivalent risk
neutral probability measure, whereas we shall work entirely under the real
world probability measure.

Pricing and Hedging

Now, consider a European call option on the benchmarked stock with bench-
marked payoff

Ĥ =
H

Sδ∗
T

=
(ST −K)+

Sδ∗
T

= (ŜT − K̂)+ (15.6.4)

at maturity T . The deterministic benchmarked strike price K̂ = K

Sδ∗
Δ

is chosen

from the interval ((1 + d) Ŝ0, (1 + u) Ŝ0) and the maturity is set to T = Δ. At
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maturity Δ this instrument yields a benchmarked payoff ((1 + u) Ŝ0 − K̂)+

in the event of an upward move and is otherwise zero. Assuming that the
GOP has initial value Sδ∗

0 = 1, the real world pricing formula then yields the
following price for the call option

SδH
0 = Sδ∗

0 E
(
Ĥ
∣
∣A0

)
=
(
(1 + u) Ŝ0 − K̂

)
p. (15.6.5)

If we additionally assume that S is a fair price process, then

S0 = Ŝ0 = E
(
ŜΔ

∣
∣A0

)
= p (1 + u) Ŝ0 + (1 − p) (1 + d) Ŝ0

= (p (1 + u) + (1 − p) (1 + d)) Ŝ0. (15.6.6)

Consequently, we obtain the relation

1 = p (1 + u) + (1 − p)(1 + d),

from which it follows that
p =

−d
u− d

. (15.6.7)

Putting (15.6.5) and (15.6.7) together, the price of the European call at time
t = 0 can be expressed as

SδH
0 = ŜδH

0 =
(
(1 + u) Ŝ0 − K̂

) −d
u− d

. (15.6.8)

Note that the option price increases with u and decreases as d increases.
We now calculate the hedge ratio for the above option. Since we assume a

self-financing strategy, we must have

ŜδH
0 = δ0

0 + δ1
0 Ŝ0 (15.6.9)

and
ŜδH

Δ = δ0
0 + δ1

0 ŜΔ. (15.6.10)

This provides a system of equations, where ŜδH
0 is given by (15.6.9) and

ŜδH

Δ = Ĥ =
(
ŜΔ − K̂

)+

. (15.6.11)

It then follows from (15.6.9)–(15.6.11) that

δ1
0 =

ŜδH

Δ − ŜδH
0

ŜΔ − Ŝ0

.

In the case of an upward move, after which ŜΔ = (1 + u)Ŝ0, this gives

δ1
0 =

(1 + u) Ŝ0 − K̂ −
(
(1 + u) Ŝ0 − K̂

)
−d

u−d

u Ŝ0

=
(1 + u) Ŝ0 − K̂

u− d
. (15.6.12)
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While in the case of a downward move, after which ŜΔ = (1 + d) Ŝ0, we have

δ1
0 =

−
(
(1 + u) Ŝ0 − K̂

)
−d

u−d

d Ŝ0

=
(1 + u) Ŝ0 − K̂

u− d
. (15.6.13)

Note that the hedge ratio is the same in (15.6.12) and (15.6.13). This
shows that the price (15.6.5) can be hedged. We conclude that the above real
world pricing allows perfect replication of the payoff.

We emphasize that p is a real world probability and may be estimated
directly from historical data, see Sect. 1.1. An interesting point to emphasize
from this simple example is that an option can be hedged with a stock and
the index. This is different to the standard approach, as described in Chap.8,
where hedge portfolios are constructed from the underlying security and the
savings account. We emphasize that the benchmarked strike price K̂ is de-
terministic, which means that it describes how many units of the index are
exchanged for one unit of the stock at maturity. Therefore, the above option
may be interpreted as an option to exchange the index and the stock.

Binomial Volatility

The variability of the benchmarked stock price ŜΔ can be measured by the
variance of the ratio

ŜΔ

Ŝ0

= 1 + η, (15.6.14)

which involves the two-point distributed random variable η ∈ {d, u}, where

P (η = u) = p (15.6.15)

and
P (η = d) = 1 − p. (15.6.16)

It then follows by (1.3.15) that the variance of η and thus of ŜΔ

Ŝ0
is

E

⎛

⎝

(
ŜΔ

Ŝ0

− 1

)2 ∣
∣
∣
∣A0

⎞

⎠ = (u− d)2 p (1 − p).

Therefore, from (15.6.7) we obtain

E

⎛

⎝

(
ŜΔ

Ŝ0

− 1

)2 ∣
∣
∣
∣A0

⎞

⎠ = −u d. (15.6.17)

Obviously, this variance increases when u or −d increase. We call
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σΔ =

√√
√
√
√

1
Δ
E

⎛

⎝

(
ŜΔ

Ŝ0

− 1

)2 ∣
∣
∣
∣A0

⎞

⎠ =

√
−u d
Δ

(15.6.18)

the binomial volatility of the benchmarked security price. We know that the
Black-Scholes option price (8.3.2) increases with increasing squared volatility.
This appears natural from a risk management perspective. However, according
to (15.6.8) and (15.6.18), it is not necessarily the case for a binomial model.
In the formula

SδH
0 =

(
(1 + u) Ŝ0 − K̂

) (σΔ)2 Δ
u (u− d)

we have the freedom to choose u and d eventually so that the option price
does not increase with σΔ. This economically unsatisfactory feature is a result
of the simplicity of the binomial model.

Multi-Period Binomial Model

To make the binomial model more realistic, we now consider a multi-period
binomial tree, see Sect. 3.3. Here the benchmarked price of the stock at time
ti = iΔ, i ∈ {1, 2, . . . , nT } is given by

ŜiΔ = Ŝ(i−1)Δ (1 + u) (15.6.19)

with probability

p =
−d
u− d

(15.6.20)

in the case of an upward move. In the case of a downward move, the bench-
marked stock price becomes

ŜiΔ = Ŝ(i−1)Δ (1 + d) (15.6.21)

with probability 1 − p.
Consider a European call option on the benchmarked stock price with

maturity T = t2 = 2Δ and a deterministic benchmarked strike price K̂. It
is easily seen that Ŝ2Δ can take three possible values: Ŝuu = (1 + u)2 Ŝ0,
Ŝud = Ŝdu = (1 + u)(1 + d)Ŝ0 and Ŝdd = (1 + d)2Ŝ0. These events can be
schematically represented as a binomial tree, as in Fig.3.1.5. The benchmarked
value Ŝδ

2Δ of a portfolio at time T = t2 = 2Δ is given by

Ŝδ
2Δ = δ0

2Δ + δ1
2Δ Ŝ2Δ. (15.6.22)

Using our previous result (15.6.5), we can compute the option price at time
t1 = Δ for the case when ŜΔ = (1 + u) Ŝ0, giving

ŜδH

Δ =
(
(1 + u)2 Ŝ0 − K̂

)+ −d
u− d

+
(
(1 + u) (1 + d) Ŝ0 − K̂

)+ u

u− d
.

(15.6.23)



596 15 Numerical Methods

Similarly, if ŜΔ = (1 + d)Ŝ0, then the option price is

ŜδH

Δ =
(
(1 + u) (1 + d) Ŝ0 − K̂

)+ −d
u− d

+
(
(1 + d)2 Ŝ0 − K̂

)+ −u
u− d

.

(15.6.24)
If we interpret (15.6.23) and (15.6.24) as benchmarked payoffs at time t1 = Δ,
then repeating the procedure we obtain, the benchmarked price at time t0 = 0
as

ŜδH
0 = p

{(
(1 + u)2 Ŝ0 − K̂

)+ −d
u− d

+
(
(1 + u) (1 + d) Ŝ0 − K̂

)+ u

u− d

}

+(1 − p)
{(

(1 + u) (1 + d) Ŝ0 − K̂
)+ −d

u− d
+
(
(1 + d)2 Ŝ0 − K̂

)+ −u
u− d

}
.

(15.6.25)

A repeat of the earlier analysis gives us a perfect hedging strategy, as before.
In general, by using backward recursion and the well-known binomial prob-

abilities, see (2.1.32) and (3.3.12), one can derive the following Cox-Ross-
Rubinstein (CRR) type binomial option pricing formula, see Cox et al. (1979),
for a benchmarked European call option

ŜδH
0 = E

((
ŜT − K̂

)+ ∣∣
∣A0

)

=
nT∑

k=0

nT !
k ! (nT − k) !

pk (1 − p)nT −k
(
(1 + u)k(1 + d)nT −k Ŝ0 − K̂

)+

= Ŝ0

nT∑

k=tk

nT !
k ! (nT − k) !

pk (1 − p)nT −k (1 + u)k(1 + d)nT −k

− K̂

nT∑

k=tk

nT !
k ! (nT − k) !

pk (1 − p)nT −k, (15.6.26)

where tk denotes the first integer k for which (1+u)k(1+d)nT −kŜ0 > K̂. The
maturity of this instrument is T = nTΔ.

Note that this is not exactly the CRR binomial option pricing formula in
the literature, see Pliska (1997), Elliott & Kopp (2005) or van der Hoek &
Elliott (2006). The formula from the literature considers discounted securities
under a risk neutral probability measure in an exchange of stock for cash.
Here we have an option pricing formula that refers to benchmarked securities
under the real world probability measure, where the stock is exchanged for a
market index. The main difference is that the strike price K̂ describes how
many units of the index are exchanged for one unit of the stock.
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Let

tN (tk, nT , p) =
nT∑

k=tk

nT !
k ! (nT − k) !

pk (1 − p)nT −k (15.6.27)

denote the, so-called, complementary binomial distribution. Then we can ex-
press the binomial option pricing formula (15.6.26) as

SδH
0 = S0 tN (tk, nT , 1−p) − K̂ tN (tk, nT , p). (15.6.28)

As already mentioned, this is similar to the Cox-Ross-Rubinstein binomial
option pricing formula.

We can also deduce the hedging strategy δH = {δkΔ = (δ0
kΔ, δ

1
kΔ)�, k ∈

{0, 1, . . . , nT −1}} that replicates Ĥ. The benchmarked hedge portfolio value
is given by

ŜδH

kΔ = δ0
(k−1)Δ + δ1

(k−1)Δ ŜkΔ = δ0
kΔ + δ1

kΔ ŜkΔ (15.6.29)

for k ∈ {1, 2, . . . , nT }. As in (15.6.13) the hedge ratio is

δ1
kΔ =

nT −k∑

�=tkk

(nT − k) !
 ! (nT − k − ) !

p(nT −k−�) (1 − p)�, (15.6.30)

where tkk denotes the smallest integer  for which (1+u)� (1+d)nT −k−�ŜkΔ >
K̂.

From (15.6.29) it finally follows that

δ0
kΔ = ŜδH

kΔ − δ1
kΔ ŜkΔ. (15.6.31)

The binomial model is convenient but also rather crude. It allows for easy cal-
culation of option prices and is useful as a first approximation. We emphasize
that due to its simplicity it has severe short comings.

Approximating the Black-Scholes Price

It is interesting to note that the binomial option pricing formula (15.6.28) ap-
proaches the Black-Scholes formula (8.3.2) in the limit as Δ → 0. This is due
to the Central Limit Theorem, see Sect. 2.1, which ensures that the binomial
distribution approaches a Gaussian one as its number of states increases, see
Fig. 2.1.5. We will now show how the binomial model approximates the BS
model asymptotically as Δ → 0. A proof for the weak convergence of tree
methods when interpreted as Markov chains is contained in Platen (1992). In-
tuitively, the random walk represented by the binomial tree converges weakly
to a limiting process as the time step size Δ decreases to zero. This limiting
process turns out to be a geometric Brownian motion.
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To describe this asymptotic behavior formally, let us assume a particular
form for u and d, by setting

ln(1 + u) = σ
√
Δ (15.6.32)

and
ln(1 + d) = −σ

√
Δ. (15.6.33)

Here the volatility parameter σ > 0 has a given fixed value. Thus, we obtain
the Cox-Ross-Rubinstein (CRR) spatial steps

u = exp
{
σ
√
Δ
}
− 1 ≈ σ

√
Δ (15.6.34)

and
d = exp

{
−σ

√
Δ
}
− 1 ≈ −σ

√
Δ. (15.6.35)

Recall the binomial volatility σΔ introduced in (15.6.18). If Δ � 1, we can
see from (15.6.34)–(15.6.35) that

σΔ =
1√
Δ

√
−u d ≈ σ. (15.6.36)

We now introduce a continuous time stochastic process Y Δ = {Y Δ
t , t ∈

[0, T ]}, defined by
Y Δ

t = ŜiΔ (15.6.37)

for t ∈ [iΔ, (i+1)Δ), i ∈ {0, 1, . . . , nT }. Then by (15.6.19)–(15.6.21) it follows
that

Y Δ
iΔ+Δ = Y Δ

iΔ + Y Δ
iΔ qi (15.6.38)

for some independent random variable qi satisfying

P (qi = u) = p =
−d
u− d

(15.6.39)

and
P (qi = d) = 1 − p =

u

u− d
, (15.6.40)

see (15.6.14)–(15.6.16). By looking at (15.6.32)–(15.6.33) we realize that
(15.6.38) can be rewritten approximately as

Y Δ
iΔ+Δ ≈ Y Δ

iΔ + Y Δ
iΔ σ

√
Δξi. (15.6.41)

Here ξi is an independent random variable X with

P (ξi = 1) = p =
exp{−σ

√
Δ} − 1

exp{σ
√
Δ} − exp{−σ

√
Δ}

(15.6.42)

and
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P (ξi = −1) = 1 − p.

Note that
E
(
Y Δ

iΔ+Δ − Y Δ
iΔ

∣
∣AiΔ

)
= 0 (15.6.43)

and

E
((
Y Δ

iΔ+Δ − Y Δ
iΔ

)2 ∣∣
∣AiΔ

)
=
(
Y Δ

iΔ

)2
σ2

Δ Δ ≈
(
Y Δ

iΔ

)2
σ2 Δ. (15.6.44)

More precisely, it can be shown that Y Δ converges weakly to the following
diffusion process X = {Xt, t ∈ [0, T ]} as Δ → 0:

dXt = Xt σ dWt (15.6.45)

for t ∈ [0, T ] with X0 = Ŝ0, see Platen (1992). Thus, for a suitable payoff
function H,

lim
Δ→0

E
(
H
(
Y Δ

T

) ∣∣
∣A0

)
= E

(
H(XT )

∣
∣A0

)
. (15.6.46)

Consequently, the binomial option pricing formula (15.6.28) approximates
the following Black-Scholes formula as Δ → 0

SδH
0 = S0 N(d̂1) − K̂ N(d̂2). (15.6.47)

Here

d̂1 =
ln(S0

K̂
) + 1

2 σ
2 T

σ
√
T

, d̂2 = d̂1 − σ
√
T (15.6.48)

and N(·) denotes the standard Gaussian distribution function (1.2.7). The
difference between the Black-Scholes formulas (8.3.2) and (15.6.46) is that in
the latter, the strike price K̂ is expressed in units of the index.

American options can be priced efficiently with binomial trees. This is a
significant advantage of tree methods. First, one builds a tree as described
above. Then one uses the same backward algorithm as before to pull back
the maturity values of the option to one time step before maturity. These
values are compared with the payoffs resulting from immediate exercise, and
the larger values are chosen as the option values at the corresponding nodes.
The whole process is then repeated, until the initial node is reached. Similarly
one also obtains the prices of barrier options and a range of other exotic
derivatives.

Finally, we emphasize that tree methods are explicit. They are very similar
to simplified explicit weak schemes. For this reason they inherit many of the
same numerical stability problems. Making the calculation of an option price
implicit using a tree seems impossible. However, the following important class
of numerical methods allows some implicitness.
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15.7 Finite Difference Methods

In practice, derivatives are often priced by solving numerically the underlying
partial differential equation (PDE) for the pricing function. The most common
methods are finite difference methods. There is an extensive literature on them
that has evolved over several decades. We refer to standard textbooks, such as
Richtmeyer & Morton (1967) or Smith (1985). Monographs that deal directly
with applications of finite differences to problems in finance include Wilmott,
Dewynne & Howison (1993), Shaw (1998) and Tavella & Randall (2000).

Derivative Pricing

Let us consider an appropriate real valued factor process X = {Xt, t ∈ [0, T ]}
that drives the market dynamics and satisfies the SDE

dXt = a(t,Xt) dt+ b(t,Xt) dW̃t (15.7.1)

for t ∈ [0, T ] with X0 ∈ �. Consider now a European option with payoff

u(T,XT ) = h(XT ) (15.7.2)

at maturity T , expressed in units of an appropriate numeraire. Assume that
the corresponding pricing formula

u(t,Xt) = Ẽ
(
h(XT )

∣
∣At

)
, (15.7.3)

yields a sufficiently smooth pricing function u(·, ·). By application of the Itô
formula, this pricing function satisfies the PDE

∂u(t, x)
∂t

+ a(t, x)
∂u(t, x)
∂x

+
1
2

(b(t, x))2
∂2u(t, x)
∂x2

= 0 (15.7.4)

for t ∈ (0, T ) and x ∈ [0,∞) with terminal condition

u(T, x) = h(x) (15.7.5)

for x ∈ [0,∞). Recall that this is the Kolmogorov backward equation, which
arises from the Feynman-Kac formula, see Chap. 9, when calculating the con-
ditional expectation (15.7.3). Here Ẽ denotes expectation under an appropri-
ate equivalent probability measure P̃ , while W̃ is a standard Wiener process
under P̃ . Under real world pricing u(t,Xt) is the benchmarked option price,
h(XT ) is the benchmarked payoff at time T and P̃ is the real world probability
measure. Under risk neutral pricing u(t,Xt) is the discounted option price,
h(XT ) is the discounted payoff at time T and P̃ is an equivalent risk neutral
probability measure.
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Spatial Discretization

We now solve numerically the PDE (15.7.4)–(15.7.5). The key idea of the finite
difference method is to replace the partial derivatives in (15.7.4) with finite
difference approximations. When applying the deterministic Taylor formula,
we see that the first spatial partial derivative ∂u(t,x)

∂x can be written as

∂u(t, x)
∂x

=
u(t, x+Δx) − u(t, x−Δx)

2Δx
+R1(t, x) (15.7.6)

and the second partial derivative as

∂2u(t, x)
∂x2

=
u(t,x+Δ x)−u(t,x)

Δ x − (u(t,x)−u(t,x−Δ x))
Δ x

2Δx
+R2(t, x)

=
u(t, x+Δx) − 2u(t, x) + u(t, x−Δx)

2 (Δx)2
+R2(t, x). (15.7.7)

Here R1(t, x) and R2(t, x) are the remainder terms of the Taylor expansions
and Δx > 0 is a small increment in the direction of the spatial coordinate x.

We next construct an equally spaced grid

X 1
Δx = {xk = kΔx : k ∈ {0, 1, . . . , N}} (15.7.8)

for N ∈ {2, 3, . . .}, called a spatial discretization. The spatial derivative
(15.7.6) and (15.7.7) at a point (t, xk) can then be expressed as

∂u(t, xk)
∂x

=
uk+1(t) − uk−1(t)

2Δx
+R1(t, xk) (15.7.9)

and

∂2u(t, xk)
∂x2

=
uk+1(t) − 2uk(t) + uk−1(t)

2 (Δx)2
+R2(t, xk) (15.7.10)

for k ∈ {1, 2, . . . , N−1}. For each k ∈ {1, 2, . . . , N−1} and for t ∈ (0, T ), we
call uk(t) an interior value of the function, while u0(t) and uN (t) are called
boundary values. Hence by using the above spatial discretization we can re-
place the spatial partial derivatives appearing in (15.7.4) by finite differences.

System of Coupled ODEs

Let u(t) = (u0(t), u1(t), . . . , uN (t))� describe the evolution of the solution to
the PDE (15.7.4) at the grid points (15.7.8), over time. Using (15.7.9) and
(15.7.10), we can show that u is determined by the following coupled system
of ODEs

du(t)
dt

+
A(t)
(Δx)2

u(t) + R(t) = 0 (15.7.11)
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for t ∈ [0, T ]. Here R(t) is a vector of remainder terms, while A(t) =
[Ai,j(t)]Ni,j=0 is the following matrix

A0,0(t) = A0,2(t) = AN,N−2(t) = AN,N (t) = (Δx)2

A0,1(t) = AN,N−1(t) = −2 (Δx)2

Ak,k(t) = −(b(t, xk))2

Ak,k−1(t) = −1
2

(Ak,k(t) + a(t, xk)Δx)

Ak,k+1(t) = −1
2

(Ak,k(t) − a(t, xk)Δx)

Ak,j(t) = 0 (15.7.12)

for k ∈ {1, 2, . . . , N−1} and |k − j| > 1. Neglecting time dependence, A(t) =
A can be expressed as

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(Δx)2 −2(Δx)2 (Δx)2 0 . . . 0 0 0

A1,0 A1,1 A1,2 0 . . . 0 0 0

0 A2,1 A2,2 A2,3 . . . 0 0 0
...

...
...

... . . .
...

...
...

0 0 0 0 . . . AN−2,N−2 AN−2,N−1 0

0 0 0 0 . . . AN−1,N−2 AN−1,N−1 AN−1,N

0 0 0 0 . . . (Δx)2 −2(Δx)2 (Δx)2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

By ignoring the remainder terms in (15.7.11), we obtain the following
approximate vector ODE

du(t) ≈ A(t)
(Δx)2

u(t) dt (15.7.13)

for t ∈ (0, T ) with terminal condition

u(T ) = (h(x0), . . . , h(xN ))�.

This provides us with approximate values at the grid points.
There are alternatives to (15.7.9) for approximating first order spatial

derivatives. We list some of these below, suppressing the dependence on t on
the right hand side
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∂u(t, xk)
∂x

=
uk+1 − uk

Δx
+O(Δx)

∂u(t, xk)
∂x

=
uk − uk−1

Δx
+O(Δx)

∂u(t, xk)
∂x

=
uk+1 − uk−1

2Δx
+O((Δx)2)

∂u(t, xk)
∂x

=
3uk − 4uk+1 + uk−2

2Δx
+O((Δx)2)

∂u(t, xk)
∂x

=
−3uk + 4uk+1 − uk−2

2Δx
+O((Δx)2). (15.7.14)

Recall that an expression of the form O((Δx)q) denotes a function of Δx
that satisfies limΔx→0

O((Δ x)q)
(Δ x)q < ∞. In the context of (15.7.14) it describes

the convergence behavior of the error term associated with a given finite differ-
ence approximation. The higher the value of q, the quicker the approximation
converges.

For second order spatial derivatives, the following finite difference approx-
imations can be used instead of (15.7.10)

∂2u(t, xk)
∂x2

=
uk − 2uk−1 + uk−2

(Δx)2
+O(Δx)

∂2u(t, xk)
∂x2

=
uk+2 − 2uk+1 + uk

(Δx)2
+O(Δx)

∂2u(t, xk)
∂x2

=
uk+1 − 2uk + uk−1

(Δx)2
+O((Δx)2)

∂2u(t, xk)
∂x2

=
2uk − 5uk−1 + 4uk−2 − uk−3

(Δx)2
+O((Δx)2)

∂2u(t, xk)
∂x2

=
−uk+3 + 4uk+2 − 5uk+1 + 2uk

(Δx)2
+O((Δx)2). (15.7.15)

Time Discretization

The finite difference solution of (15.7.4) is constructed in two steps. First
one applies any of the above spatial discretizations to approximate the spa-
tial derivatives. This produces a coupled system of ODEs, see (15.7.13). The
second step involves solving the above system of ODEs. Fortunately, efficient
discrete time numerical methods are available for this. For example, one can
use discrete time approximations of ODEs that are in fact just special cases
of the simulation schemes presented in Sect. 15.4, such as the Euler scheme
and the drift implicit Euler scheme.
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We shall solve the system of ODEs (15.7.13) numerically, using an equidis-
tant time discretization. We denote the time step size by Δ � 1, so that the
points in the discretization are given by τn = nΔ, n ∈ {0, 1, . . . , nT }. Here
nT is the largest integer n for which τn is not greater than T . If we neglect
higher order terms and apply the Euler scheme to (15.7.13), then we obtain
the algorithm

u(τn+1) = u(τn) + A(τn)u(τn)
Δ

(Δx)2
(15.7.16)

for n ∈ {0, 1, . . . , nT }. To simplify notation, we do not discriminate between
the exact solution u(·) and the approximate solution resulting from (15.7.16).
Obviously, we know the value of u(T ) = u(τnT

), since the payoff at maturity
is known. This is

uk(T ) = u(T, xk) = h(xk) (15.7.17)

for all k ∈ {0, 1, . . . , N}. Next, the system (15.7.16) of discrete time difference
equations with terminal condition (15.7.17) can be solved in backward steps,
starting from the maturity date. Under certain conditions, one obtains in
this way an approximate solution of the system (15.7.16) and, therefore, a
numerical solution of the PDE (15.7.4).

The above algorithm is called a finite difference method. Such methods are
widely used in derivative pricing. They are suitable for a wide range of option
pricing problems. Their key limitation is that one can apply these only for low
dimensional problems. In general, it is difficult to obtain a reasonable PDE
solution for three or higher dimensional models.

Note that the finite difference method described above has some features in
common with tree methods. For certain choices of finite difference approxima-
tions, some finite difference methods can actually be shown to be equivalent
to a tree method. Understanding the parallels between tree methods, simpli-
fied weak schemes and finite difference methods is useful for analyzing their
numerical properties.

There are two major sources of error in a finite difference method. These
are the truncation errors resulting from the spatial discretization, and the time
discretization errors, respectively. We have seen in Sects. 15.5 and 15.6 that
weak schemes and tree approximations require certain moment relationships
for their increments to be satisfied. These conditions involve the spatial and
the time discretization step sizes. In particular, these step sizes cannot be cho-
sen with complete freedom. Instead, their values must be chosen to ensure that
negative probabilities are avoided. Due to the above mentioned similarities,
these constraints have analogues for explicit finite-difference methods, such
as (15.7.16). For an explicit method we require Δ

(Δx)2 ∈ (0, 1
2 ], otherwise the

Markov chain approximation to the underlying diffusion represented by the
finite difference scheme may feature negative probabilities, see Platen (1992).
Only when weak convergence and reasonable levels of numerical stability can
be ensured will a finite difference method produce accurate prices.
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When using a finite difference method one should be aware that the un-
derlying diffusion process is often defined beyond the boundaries of the state
space used in the approximation. Fortunately, for most models the truncation
of the state space by a finite difference method does not seriously harm the
computational results, as we shall see later.

We emphasize that the approximate solution generated by a finite differ-
ence method differs from the exact solution of a PDE. A weak convergence
result establishes the link. In the case of weak simulation schemes, we have
already seen that numerical stability is crucially important. In the rich lit-
erature on finite difference methods, such as Richtmeyer & Morton (1967),
one can find conditions and convergence results that make numerical stability
properties precise.

The Theta Method

The following method allows one to obtain better numerical stability than is
typically achieved by the finite difference method (15.7.16), which was based
on the Euler method. We have seen in Sect. 15.4 that implicit methods are
extremely important for achieving appropriate levels of numerical stability.
So far we have only considered the simple explicit Euler scheme (15.7.16) to
solve the coupled system of ODEs (15.7.13). To improve numerical stability
we can instead use the family of implicit Euler schemes, see (15.2.38). These
yield approximate solutions of the ODE (15.7.13) for which implicitness can
be introduced and controlled. If we use the ODE version of the family of
implicit Euler schemes (15.2.38), then we obtain the, so-called, theta method

u(τn+1) = u(τn)+
(
θA(τn+1)u(τn+1)+(1−θ)A(τn)u(τn)

) Δ

(Δx)2
(15.7.18)

with degree of implicitness θ ∈ �. As in (15.2.38), the θ = 0 case recovers the
explicit finite difference method (15.7.16). If we choose θ = 1, then we obtain
the fully implicit finite difference method

u(τn+1) = u(τn) + A(τn+1)u(τn+1)
Δ

(Δx)2
. (15.7.19)

Some literature refers to this method as being unconditionally stable, mean-
ing that errors are not propagated or amplified. This is similar to what we
discussed in the case of SDEs, see Shaw (1998).

Crank-Nicolson Method

On the boundary of unconditionally stable methods lies the popular and im-
portant Crank-Nicolson method, obtained by choosing θ = 1

2 such that

u(τn+1) = u(τn) +
1
2

(
A(τn+1)u(τn+1) + A(τn)u(τn)

) Δ

(Δx)2
. (15.7.20)
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The Crank-Nicolson scheme is often recommended for pricing derivatives. Be-
cause of its time symmetry, it achieves a higher order of convergence than
either the explicit or fully implicit methods.

We have seen in previous sections that numerical stability must be given
priority before attempting to use higher order methods. Despite its popularity,
the Crank-Nicolson method sometimes exhibits surprising numerical instabil-
ity and any application should be monitored carefully, see Shaw (1998). If
more numerical stability is required, then the fully implicit finite difference
method (15.7.19) is a better choice.

Finite difference methods with a degree of implicitness θ > 0 introduce
a different numerical problem, namely that of solving a coupled system of
algebraic equations. The reason is that u(τn+1) also appears on the right
hand side of the difference equation (15.7.18). At each time step one thus has
to solve a large linear system of equations. For instance, in the case where the
matrix A(τn) = A is time independent, the Crank-Nicolson method (15.7.20)
becomes

u(τn+1) = u(τn) +
1
2

A (u(τn+1) + u(τn))
Δ

(Δx)2
. (15.7.21)

This may be reformulated as follows:
(

I − 1
2

A
Δ

(Δx)2

)
u(τn+1) =

(
I +

1
2

A
Δ

(Δx)2

)
u(τn), (15.7.22)

where I is the unit matrix. Setting

M = I − 1
2

A
Δ

(Δx)2

and

Bn =
(

I +
1
2

A
Δ

(Δx)2

)
u(τn)

we can rewrite (15.7.22) as

M u(τn+1) = Bn. (15.7.23)

To obtain u(τn+1) from (15.7.22) one must invert M . In general, this is a
difficult problem because M is usually a large matrix. Fortunately, most of
its elements are zero. Additionally, the nonzero elements form diagonal bands.
Such matrices are called sparse and there is an area of scientific computing
devoted to solving sparse linear systems.

Sparse Matrix Solvers (*)

For the solution of sparse linear systems one typically uses either direct solvers
or iterative solvers. A direct solver computes the solution up to the limit of
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precision of the computer. A popular direct solver is the tridiagonal solver,
also known as Gauss elimination method. It can only be applied in certain
situations with reasonable effort. An iterative solver on the other hand, pro-
duces a solution only as accurate as specified by the user, but provides more
flexibility and efficiency. This type of solver is usually sufficient for a finite
difference method because there is no need to obtain exact solutions for the
difference equation, since it is only an approximation of the PDE.

Iterative solvers, see Barrett, Berry, Chan, Demmel, Dongarra, Eijkhout,
Pozo, Romine & van der Vorst (1994), start with an initial guess, which is
iteratively improved. An example is the Jacobi method, which for a system

M u = B,

see (15.7.23), with M = [M i,j ]Ni,j=1, u = (u1, . . . , uN )� and B = (B1, . . . ,

BN )�, performs the following calculation in the kth iteration

ui
k =

1
M i,i

⎛

⎝Bi −
∑

j �=i

M i,j uj
k−1

⎞

⎠ . (15.7.24)

Here uk = (u1
k, . . . , u

N
k )� denotes the approximate solution after the kth

iteration.
A simple generalization of the above method is the Gauss-Seidel method,

whose kth iteration is

ui
k =

1
M i,i

⎛

⎝Bi −
∑

j<i

M i,j uj
k −
∑

j>i

M i,j uj
k−1

⎞

⎠ . (15.7.25)

Here the improvements already obtained are worked into the solution at each
step.

Finally, we mention the successive overrelaxation method, which at each
step averages its result from the previous iteration with a value determined
by the Gauss-Seidel procedure. In detail, one obtains

ui
k = α ūi

k + (1 − α)ui
k−1

with

ūi
k =

1
M i,i

⎛

⎝Bi −
∑

j<i

M i,j uj
k −
∑

j>i

M i,j uj
k−1

⎞

⎠ . (15.7.26)

The parameter α ∈ (0, 1] is called overrelaxation parameter. If α = 1 we
simply retrieve the Gauss-Seidel method.

Predictor-Corrector Methods (*)

It is quite possible that a predictor-corrector method for ODEs of the type
(15.4.28) may work well for obtaining numerical solutions of the coupled sys-
tem of ODEs (15.7.13). With such a method one does not need to solve a
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large system of algebraic equations or invert a matrix in each time step. For
the approximation of the ODE (15.7.13) the modified trapezoidal method, see
also (15.4.31), uses the corrector

u(τn+1) = u(τn) +
1
2

(
A(τn+1) ū(τn+1) + A(τn)u(τn)

) Δ

(Δx)2
(15.7.27)

and the predictor

ū(τn+1) = u(τn) + A(τn)u(τn)
Δ

(Δx)2
. (15.7.28)

This method inherits its order of convergence from the Crank-Nicolson
scheme. However, as with the Crank-Nicolson method, it lies on the border of
unconditional stability. Consequently, it can have still problems with its nu-
merical stability. Better numerical stability can be expected from the following
predictor-corrector method, with corrector

u(τn+1) = u(τn) + A(τn+1) ū(τn+1)
Δ

(Δx)2
(15.7.29)

and predictor

ū(τn+1) = u(τn) + A(τn)u(τn)
Δ

(Δx)2
.

This method is similar to the implicit Euler method (15.4.24) and constrains
error propagation, even if the ratio Δ

(Δx)2 is not very small.

Boundary Conditions (*)

Most PDE solutions are required to satisfy certain boundary conditions. For
example, at maturity T the price of a European call option cT,K(t, S) has
to match its payoff. Also, in the case of a European call option under the
Black-Scholes model, boundary conditions are required to capture the follow-
ing limiting behavior:

lim
S→0

cT,K(t, S) = 0 (15.7.30)

and
lim

S→∞
cT,K(t, S) = S −K exp{−r (T − t)}, (15.7.31)

assuming a constant interest rate r ≥ 0. These have to be translated into
the boundary conditions for the finite difference method. Similar observations
apply to other Markovian asset price models.

There is typically some flexibility in constructing the spatial grid, and the
decision of where to truncate is often quite subjective. In practice, for a finite
difference method the domain of the underlying asset S cannot be (0,∞), so
we must reduce the problem to a finite interval
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xmin = x0 < . . . < xN = xmax.

For a European call option we can set xmin = x0 = 0 and specify the following
boundary condition there as

u0(t) = 0. (15.7.32)

At the other end of the grid we take xmax = xN < ∞ large enough so that
the boundary condition, where one could then set

uN (t) ≈ xN −K exp{−r (T − t)}, (15.7.33)

is reasonable. Other choices are also possible, as we shall discuss below. In par-
ticular, for barrier options and other exotic options the design of the boundary
can become quite important.

Truncation at the Boundaries (*)

As mentioned, one disadvantage of finite difference methods is that they can
only handle bounded state variables. So the state space must be truncated if
it is naturally infinite. This introduces a truncation error, which is avoided
when one uses another method, such as Monte Carlo simulation with variance
reduction, see Sect. 15.5. To highlight the truncation problem, let us consider
an underlying security S subject to the Black-Scholes model. Under the risk
neutral measure the process X = {Xt = ln(St), t ∈ [0, T ]} satisfies the SDE

dXt =
(
r − σ2

2

)
dt+ σ dWt (15.7.34)

for t ∈ [0, T ] with X0 = ln(S0). Let u(t,Xt) denote the price of a European
option on the above security, with payoff H(XT ) ≥ 0 at maturity T . Define
the following operator

L̂ f(t, x) =
1
2
σ2 ∂

2f(t, x)
∂x2

+
(
r − σ2

2

)
∂f(t, x)
∂x

− r f(t, x) = 0.

By the Feynman-Kac formula, see Sect. 9.7, u(·, ·) satisfies the PDE

L̂ u(t, x) = 0 (15.7.35)

for all (t, x) ∈ (0, T ) ×�, subject to the terminal condition

u(T, x) = H(x) (15.7.36)

for all x ∈ �. Notice that the terminal value problem (15.7.35)–(15.7.36) is
defined over the semi-infinite domain [0, T ] ×�.

Let us now consider a truncated region (0, T ) × (−, ), where  � 1 is
large. The finite difference method can be applied over this bounded domain.
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However, the boundaries − and  have been introduced artificially and bound-
ary conditions must be specified there. One possibility is to impose Dirichlet
conditions, which means that one specifies the value of u(t, ) and u(t,−). Al-
ternatively, one may introduce von Neumann conditions, where one specifies
the first derivatives ∂u(t,�)

∂x and ∂u(t,−�)
∂x .

For simplicity, we consider the application of Dirichlet boundary conditions
at the newly introduced boundaries. These take the form of lower and upper
functions u�(t) and ū�(t) for t ∈ (0, T ). We have now transformed (15.7.35)–
(15.7.36) into the following boundary value problem

L̂ u�(t, x) = 0 (15.7.37)

for all (t, x) ∈ (0, T ) × (−, ), with Dirichlet boundary conditions

u�(t,−) = u�(t) and u�(t, ) = ū�(t) (15.7.38)

for all t ∈ [0, T ) and terminal condition

u�(T, x) = H(x) (15.7.39)

for all x ∈ [−, ].
The important question is whether the truncated pricing function u�(t, x),

which solves (15.7.37)–(15.7.39), converges to u(t, x), which solves (15.7.35)–
(15.7.36), as  → ∞, for all (t, x) ∈ (0, T )×�. If the payoff H(·) is bounded by
a constant F̄ < ∞, then Lamberton & Lapeyre (1996) answer this question
affirmatively, with the following result.

Lemma 15.7.1. For all (t, x) ∈ (0, T ) ×�

lim
�→∞

u�(t, x) = u(t, x). (15.7.40)

Convergence of Finite Difference Method (*)

Once the domain of the PDE has been truncated, one can discretize it in the
spatial direction, using a spatial step size Δx and in the time direction, using
a time step size Δ. In the time direction it is possible to use, for instance,
the theta method to solve the system of ODEs (15.7.18), which we can now
express as

uΔ(τn+1) = uΔ(τn) +
(
θA(τn+1)uΔ(τn+1) + (1 − θ)A(τn)uΔ(τn)

) Δ

(Δx)2
(15.7.41)

for n ∈ {0, 1, . . . , nT } and degree of implicitness θ ∈ [0, 1]. Here we have used
uΔ instead of u to indicate the dependence on Δ. Let

uΔ
k (τn) = uΔ(τn, xk),
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again show the dependence of the approximate solution on Δ. By applying
this method, we thus obtain an approximate value uΔ(t, x). Assuming uniform
boundedness of u and ∂u

∂x , the following result from Raviart & Thomas (1983)
is applicable.

Lemma 15.7.2. For a degree of implicitness θ ∈ [0, 1
2 ), if Δ → 0 and

Δx → 0 in such a way that Δ
(Δx)2 → 0, then

lim
Δ→0

uΔ(t, x) = u(t, x) (15.7.42)

for all (t, x) ∈ (0, T ) × (−, ).

This means that for low degrees of implicitness extremely small time step
sizes are required in order to achieve a certain level of accuracy. This prob-
lem can be quite severe if the spatial step size is already small. However,
Raviart & Thomas (1983) also provide the following result.

Lemma 15.7.3. For any degree of implicitness θ ∈ [12 , 1], if Δ → 0 and
Δx → 0, then

lim
Δ→0

uΔ(t, x) = u�(t, x) (15.7.43)

for all (t, x) ∈ (0, T ) × (−, ).

In other words, for methods with high levels of implicitness one does not
need to be too concerned about the ratio Δ

(Δx)2 in order to ensure convergence.
This provides more freedom in designing a finite difference method, since it
allows large time step sizes to be combined with small spatial step sizes. It
also signals important numerical stability and robustness properties, which
are essential for the implementation of reliable derivative pricing tools.

When applying the benchmark approach with real world pricing, we have
seen that different expectations and PDEs arise, compared with the stan-
dard risk neutral approach. However, the available solution methods are very
similar in both cases.

15.8 Exercises for Chapter 15

15.1. Consider a Monte Carlo simulation that generates a sequence of in-
dependent, identically distributed nonnegative random variables X1, X2, . . .,
each having mean μ ∈ �, variance σ2 ∈ (0,∞), skewness zero and kurtosis
κ ∈ [3,∞). How does the variance of the estimator

�̂N =
1
N

N∑

i=1

(Xi)
1
2

decrease with N? Is this estimator strongly consistent in the sense of Chap.2?
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15.2. Use a Wagner-Platen expansion, with time increment h > 0 and Wiener
process increment Wt0+h−Wt0 in the expansion part, to expand the increment
Xt0+h −Xt0 of a geometric Brownian motion at time t0, where

dXt = aXt dt+ bXt dWt

for t ∈ [t0,∞) and Xt0 > 0.

15.3. Write down the Euler scheme and the Milstein scheme for the linear
SDE

dXt = (μXt + η) dt+ γ Xt dWt

for t ∈ [0,∞) with X0 = 1.

15.4. Determine the Euler and Milstein schemes for the Vasicek short rate
model

drt = γ(r̄ − rt) dt+ β dWt

for t ∈ [0,∞) with r0 > 0. What are the differences between the two schemes?

15.5. Derive the explicit order 1.0 strong scheme for the Black-Scholes SDE

dXt = μXt dt+ σXt dWt

for t ∈ [0,∞) with X0 = 1.

15.6. Consider the two-dimensional SDE

dX1
t = dW 1

t

dX2
t = X1

t dW
2
t

for t ∈ [0,∞), with X1
0 = X2

0 = 1. Here W 1 and W 2 are independent Wiener
processes. Does the above system of SDEs have commutative noise?

15.7. Apply the Milstein scheme to the system of SDEs in Exercise 15.6.

15.8. Verify that the two point distributed random variable ΔŴ with

P (ΔŴ = ±
√
Δ) =

1
2

satisfies the condition
∣
∣
∣E
(
ΔŴ

)∣∣
∣+
∣
∣
∣
∣E
((

ΔŴ
)3
)∣∣
∣
∣+
∣
∣
∣
∣E
((

ΔŴ
)2
)
−Δ

∣
∣
∣
∣ ≤ KΔ2.

15.9. Construct an antithetic variance reduction method to estimate E(1 +
Z + 1

2 (Z)2), where Z ∼ N(0, 1). For this purpose combine the raw Monte
Carlo estimate
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V +
N =

1
N

N∑

k=1

(
1 + Z(ωk) +

1
2
(Z(ωk))

)2

,

which uses outcomes of Z, with the antithetic estimate

V −
N =

1
N

N∑

k=1

(
1 − Z(ωk) +

1
2
(−Z(ωk))

)2

,

which uses the same outcomes, but with a negative sign. Find the degree of
variance reduction that can be achieved for the estimator

V̂N =
1
2

(V +
N + V −

N ).

Is V̂N an unbiased estimator?

15.10. For estimating E((1 + Z + 1
2 (Z)2)), use the control variate

V ∗
N =

1
N

N∑

k=1

(1 + Z(ωk)) .

Analyze the variance reduction that can be achieved by the estimate

ṼN = V +
N + α(γ − V ∗

N )

for different α ∈ �. For which choice of γ ∈ � does one obtain an unbiased
estimator? Which α ∈ � achieves the minimum variance ?

15.11. For a European put option on a stock with benchmarked strike K̂ > 0
and maturity T = nTΔ, nT ∈ N , and time step size Δ ∈ (0, 1), as described
in Sect. 15.6, write down a multi-period binomial tree option pricing formula
at time t = 0. Here a positive benchmarked return of the underlying security
is u = exp{σ

√
Δ} and it is assumed that the growth optimal portfolio has

the value one at time t = 0.

15.12. Show that the Box-Muller method generates a pair of independent
standard Gaussian random variables.
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Solutions for Exercises

Solutions for Exercises of Chapter 1

1.1 For a random variable X with second moment we have

Var(X) = E((X −E(X))2) = E(X2 − 2X E(X) + (E(X))2)

= E(X2) − 2(E(X))2 + (E(X))2 = E(X2) − (E(X))2.

1.2 For a Poisson distributed random variable X ∼ P (λ) with intensity λ we
have the mean

E(X) =
∞∑

i=0

i pi = λ e−λ
∞∑

i=1

λi−1

(i− 1)!
= λ e−λ eλ = λ

and the second moment

E(X2) =
∞∑

i=0

i2 pi = λ e−λ
∞∑

i=1

i
λi−1

(i− 1)!

= λ e−λ

( ∞∑

i=1

(
λi−1

(i− 1)!
+ (i− 1)

λi−1

(i− 1)!

))

= λ e−λ

( ∞∑

i=1

λi−1

(i− 1)!
+ λ

∞∑

i=1

λi−2

(i− 2)!

)

= λ e−λ (eλ + λ eλ) = λ (1 + λ).

Thus, by the result from Exercise 1.1 we obtain the variance

Var(X) = E(X2) − (E(X))2 = λ+ λ2 − λ2 = λ.

E. Platen, D. Heath, A Benchmark Approach to Quantitative Finance,
Springer Finance,
© Springer-Verlag Berlin Heidelberg 2006, Corrected printing 2010



616 16 Solutions for Exercises

1.3 We have for a uniformly distributed random variable X ∼ U(a, b) the
mean

E(X) =
∫ b

a

x

b− a
dx =

1
2(b− a)

(b2 − a2) =
a+ b

2
.

the second moment

E(X2) =
∫ b

a

x2

b− a
dx =

1
3(b− a)

(b3 − a3) =
1
3

(b2 + ab+ a2)

and, thus, the variance

Var(X) =
1
3

(b2 + ab+ b2) − 1
4

(b+ a)2 =
(b− a)2

12
.

1.4 For an exponentially distributed X ∼ Exp(λ) with intensity λ it follows

E(X) =
∫ ∞

0

xλ e−λx dx = lim
x→∞

1
λ

(1 − (λx+ 1) e−λx) =
1
λ
,

E(X2) =
∫ ∞

0

x2 λ e−λx dx = lim
x→∞

1
λ2

(2 − (λ2 x2 2λx+ 2) e−λx) =
2
λ2
,

and therefore
Var(X) = 2λ−2 − (λ−1)2 = λ−2.

1.5 For standard Gaussian X ∼ N(0, 1) we have the mean

E(X) =
∫ 0

−∞

x√
2π

e−
1
2 x2

dx+
∫ ∞

0

x√
2π

e−
1
2 x2

dx

=
√

2π
(

lim
h→−∞

(
e−

1
2 h2

− 1
)

+ lim
h→∞

(
1 − e−

1
2 h2
))

=
√

2π (−1 + 1) = 0

and the variance

Var(X) = E(X2) =
∫ 0

−∞

x2

√
2π

e−
1
2 x2

dx+
∫ ∞

0

x2

√
2π

e−
1
2 x2

dx

=
1√
2π

lim
h→∞

(
−h e− 1

2 h2
)

+
1√
2π

∫ ∞

0

e−
1
2 x2

dx

+
1√
2π

lim
h→∞

(
−h e− 1

2 h2
)

+
1√
2π

∫ 0

−∞
e−

1
2 x2

dx

= 0 +
1
2

+ 0 +
1
2

= 1.
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1.6 For X ∼ N(0, 1) standard Gaussian distributed and k ∈ N we have

E(X2k) =
1√
2π

∫ ∞

−∞
x2k e−

1
2 x2

dx =

√
2√
π

∫ ∞

0

z2k e−
1
2 z2

dz

= 2
2k−1

2

√
2
π

∫ ∞

0

t
2k−1

2 e−t dt

= 2
2k−1

2

√
2
π

Γ

(
k +

1
2

)
,

where Γ (·) is the gamma function, see (1.2.10). Thus we obtain

E(X2k) = 1 · 3 · 5 · . . . · (2k − 1).

1.7 We show that

E(X) =
∫ ∞

−∞

y − μ

σ

1√
2π σ

e−
1
2

(y−μ)2

σ2 dy = 0

and

E
(
(X)2

)
=
∫ ∞

−∞

(
y − μ

σ

)2 1√
2π σ

e−
1
2

(y−μ)2

σ2 dy = 1

and notice that a linear transform of a Gaussian random variable is Gaussian.

1.8 The square Y 2 of a standard Gaussian random variable Y ∼ N(0, 1)
is χ2(1), that is chi-square distributed with n = 1 degree of freedom. This
means, it is G(1

2 ,
1
2 ) gamma distributed.

1.9 We obtain by using the Gaussian density and the definition of an expec-
tation that

E(Y ) = E (exp{X}) =
∫ ∞

−∞
exp{x} 1√

2π σ
exp
{
− (x− μ)2

2σ2

}
dx

= exp
{
μ+

σ2

2

}
,

see also (1.3.76).

1.10 (*) We rely on the following property of the standard Gaussian density,
which can be verified by completing the square in its exponent:

N ′(x− θ) = exp
{
−1

2
θ2 + θ x

}
N ′(x)
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for all x, θ ∈ �. It then follows by change of variable that

E(H(X + θ)) =
∫ ∞

−∞
H(x+ θ)N ′(x) dx

=
∫ ∞

−∞
H(x̄)N ′(x̄− θ) dx̄

=
∫ ∞

−∞
exp
{
−1

2
θ2 + θ x̄

}
H(x̄)N ′(x̄) dx̄

= E

(
exp
{
−1

2
θ2 + θX

}
H(X)

)
.

1.11 (*) Assume that the inverse C of the covariance matrix D = C−1 has
the form

C = [ci,j ] =
[

4 −6
−6 12

]
.

Its determinant is then det(C) = 12. Furthermore, assume that X1 ∼ N(0, 1)
and X2 ∼ N(0, 1

3 ). We have then from (1.4.16) the joint density

p(x1, x2) =

√
det(C)
2π

exp

⎧
⎨

⎩
−1

2

2∑

i,j=1

Ci,j(xi − μi) (xj − μj)

⎫
⎬

⎭

=
√

12
2π

exp
{
−1

2
(
4x2

1 − 12x1 x2 + 12x2
2

)
}

= 1√
2π

exp
{
−x2

1

2

}
1

√
2 π
3

exp
{
−1

2
x2

2

3

}

= p(x1) · p(x2),

which shows that X1 and X2 are not independent. The random variables
would be independent if C would be a diagonal matrix.

1.12 (*) Differentiating the function

F (x) =
1
π

ln(
√

1 + x2)

yields
F ′(x) = x p(x) = x [π (1 + x2)]−1.

We observe that both one sided improper integrals
∫ 0

−∞
x p(x) dx and

∫ ∞

0

x p(x) dx
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diverge. Therefore, the two sided improper integral
∫∞
−∞ x p(x) dx diverges.

1.13 (*) The conditional density for X with fX(x) = x with respect to the
event A = {ω ∈ [0, 0.5]} is

fX

(
x
∣
∣A
)

=

{
0 for x ∈ [0, 0.5]

8x for x ∈ [0, 0.5].

Therefore, the conditional expectation amounts to

E
(
X
∣
∣A
)

=
∫ ∞

−∞
x fX

(
x
∣
∣A
)
dx =

∫ 0.5

0

8x2 dx =
1
3
.

Solutions for Exercises of Chapter 2

2.1 We can apply the strong Law of Large Numbers since
∞∑

i=1

V ar(Xi)
i2

= K

∞∑

i=1

(i)−2 = K
π2

6
< ∞.

Therefore, it holds that
μ

a.s.= lim
n→∞

μ̂n.

2.2 By the Central Limit Theorem it follows that the sequence Ŷn converges
in distribution for n → ∞ to a Gaussian random variable with mean zero and
variance σ2.

2.3 The 100(1 − α)% confidence interval for 2Z uses its mean 2E(Z) and
variance 4Var(Z) and is given in the form

(
2
(
E(Z) −

√
Var(Z)

)
p1−α, 2

(
E(Z) +

√
Var(Z) p1−α

))

with p1−α ≈ 2.58 for α = 99%.

2.4 We need to satisfy the relation

P

(
Z −E(Z)
√

Var(Z)

)

< −zα

with

zα =
VaR((1 − α)%) + E(Z)

√
Var(Z)

.

The one sided confidence interval is of the form

(−∞, zα),

where zα = z0.01 ≈ 2.35 for α = 99%.
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Solutions for Exercises of Chapter 3

3.1 Let W be a standard Wiener process and let s ∈ [0, t]. Then

C(s, t) = E((Wt −E(Wt))(Ws −E(Ws))) = E(Wt Ws)

= E((Wt −Ws +Ws)Ws)

= E((Wt −Ws)Ws) + E(W 2
s )

= E(Wt −Ws)E(Ws) +E(W 2
s ) = 0 · 0 + s = s

since Ws and Wt −Ws are independent for s < t. Analogously, C(s, t) = t for
t < s. Hence

C(s, t) = min(s, t) =
1
2

(|s+ t| − |s− t|).

3.2 The covariance of the Wiener process is not a function of (t− s) only, so
the Wiener process is not stationary. A similar argument applies for a random
walk.

3.3 Relation (3.3.12) relates to a Bernoulli trial with n independent outcomes
and j−(k−n)

2 successes (here upward moves) that occur with probability 0.5.
The probability for such an event is given by the binomial distribution with

pj(n) =
n!

(
j−(k−n)

2

)
!
(
n− j−(k−n)

2

)
!

(
1
2

)n

.

3.4 The probability qj(n) for having j upwards moves in a non-symmetric
random walk in n time steps is related to the binomial distribution with
probability p for an upward move. Therefore it is

qj(n) =
n!

j! (n− j)!
(p)j (1 − p)n−j .

3.5 The stationary probability vector is (0.5, 0.5) and, therefore, we have the
mean μ = 0.5 · 0.05 + 0.5 · 0.06 = 0.055, and the variance v = 0.5(0.05 −
0.055)2 + 0.5(0.06 − 0.055)2 = 0.000025.

3.6 The long term expected squared interest rate is computed by using the
ergodicity and, thus, the stationary probability vector (0.5, 0.5). It then follows

E
(
(Xt)2

)
= 0.5(0.05)2 + 0.5(0.06)2 = 0.00305.

3.7 We obtain by the formula (3.5.1) for the Poisson probabilities that
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E(Nt) =
∞∑

k=1

k2

k!
e−λt (λ t)k

= λ t

( ∞∑

k=1

(k − 1) e−λt (λ t)k−1

(k − 1)!
+

∞∑

k=1

e−λt (λ t)k−1

(k − 1)!

)

= λ t (λ t+ 1).

3.8 By the independence of the marks from the Poisson process it follows that

E(Yt) = E

(
Nt∑

k=1

ξk

)

= E(Nt)E(ξk) =
λ t

2
.

3.9 The probability for a compound Poisson process with intensity λ > 0 of
having no jumps until time t > 0 equals the probability of the Poisson process
N of having no jumps until that time. Thus, by (3.5.1) we obtain

P (Nt = 0) = e−λt.

3.10 (*) The given Lévy process is by (3.6.2) at time t ∈ [0, T ] of the form

Xt = α t+ βWt +
1
2

(
pϕ

({
1
2

}
, [0, t]

)
− λ t

)
.

Therefore it follows by the formulas for the means of the Wiener and Poisson
process that E(Xt) = α t.

Similarly, we obtain from the formulas for the variance of the Wiener and
Poisson process the variance of Xt as

E
(
(Xt − α t)2

)
= E

((
βWt +

1
2

(
pϕ

({
1
2

}
, [0, t]

)
− λ t

))2
)

= E
(
(βWt)2

)
+

1
4
E

((
pϕ

({
1
2

}
, [0, t]

)
− λ t

)2
)

= β2 (ϕ− ϕ(0)) +
λ t

4
.

Solutions for Exercises of Chapter 4

4.1 The transition density of the standard Ornstein-Uhlenbeck process is a
Gaussian one and of the form (4.2.3). For t → ∞ it converges towards the
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standard Gaussian density. Thus, the process is stationary with mean 0 and
variance 1.

4.2 According to (4.2.1) the transition density p(s, x; t, y) of the standard
Wiener process is Gaussian with mean x and variance (t − s). Therefore, we
obtain from (4.3.4) a(s, x) = 0 and from (4.3.5) b(s, x) = 1.

4.3 The standard Ornstein-Uhlenbeck process has the Gaussian transition
density p(s, x; t, y) given in (4.2.3) with mean x exp{−(t − s)} and variance
(1 − e−2(t−s)). Thus by (4.3.4) we have

a(s, x) = lim
t↓s

1
(t− s)

(x exp{−(t− s)} − x) = −x

and by (4.3.5) it follows

b2(s, x) = lim
t↓s

1
t− s

E
(
(Xt −Xs)2

∣
∣Xs = x

)

= lim
t↓s

1
t− s

[
E
((
Xt −Xs − E

(
Xt −Xs

∣
∣Xs = x

))2

∣
∣Xs = x

)
+ E

((
Xt −Xs

∣
∣Xs = x

))2]

= lim
t↓s

1
t− s

[(
1 − e−2(t−s)

)
+ x2 (exp{−(t− s)} − 1)2

]

= 2.

Therefore we have b(s, x) =
√

2.

4.4 For the Gaussian transition density (4.2.1) of the standard Wiener process
it holds

∂

∂y
p(s, x; t, y) = p(s, x; t, y)

(
− (y − x)

(t− s)

)

∂2

∂y2
p(s, x; t, y) = p(s, x; t, y)

(y − x)2

(t− s)2
− p(s, x; t, y)

(t− s)

and

∂

∂t
p(s, x; t, y) = − 1

2(t− s)
p(s, x; t, y) +

(y − x)2

2(t− s)2
p(s, x; t, y).

Therefore
∂

∂t
p(s, x; t, y) − 1

2
∂2p(s, x; t, y)

∂y2
= 0,
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for (s, x) fixed, which provides the Kolmogorov forward equation (4.4.1) with
boundary condition (4.4.3).

Similarly we have

∂p(s, x; t, y)
∂s

=
1
2
p(s, x; t, y)

(t− s)
− p(s, x; t, y)

(
(y − x)2

2(t− s)2

)

and
∂p(s, x; t, y)

∂x
= p(s, x; t, y)

(y − x)
(t− s)

∂2p(s, x; t, y)
∂x2

= p(s, x; t, y)
(y − x)2

(t− s)2
− p(s, x; t, y)

1
(t− s)

.

Thus
∂p(s, x; t, y)

∂s
+

1
2
∂2p(s, x; t, y)

∂x2
= 0

for (t, y) fixed, which represents the Kolmogorov backward equation (4.4.2)
with boundary condition (4.4.3).

4.5 For the standard Ornstein-Uhlenbeck process we have the Kolmogorov
forward equation, see (4.4.1),

∂p(s, x; t, y)
∂t

− ∂

∂y
(y p(s, x; t, y)) − 1

2
∂2

∂y2
(2 p(s, x; t, y)) = 0

that is

∂p(s, x; t, y)
∂t

− p(s, x; t, y) − y
∂

∂y
p(s, x; t, y) − ∂2

∂y2
p(s, x; t, y) = 0

with boundary condition (4.4.3).

4.6 The Kolmogorov backward equation for the standard Ornstein-Uhlenbeck
process is, see (4.4.2),

∂p(s, x; t, y)
∂s

− x
∂p(s, x; t, y)

∂x
+
∂2p(s, x; t, y)

∂x2
= 0

with boundary condition (4.4.3). Taking the partial derivatives of the transi-
tion density (4.2.3) it follows that
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∂p(s, x; t, y)
∂s

= −1
2
p(s, x; t, y)

−2e−2(t−s)

1 − e−2(t−s)
+ p(s, x; t, y) ·

(
2
(
y − x e−(t−s)

)
x e−(t−s)

2
(
1 − e−2(t−s)

) −
(
y − x e−(t−s)

)2
2e−2(t−s)

2
(
1 − e−2(t−s)

)2

)

∂p(s, x; t, y)
∂x

= p(s, x; t, y)

(
y − x e−(t−s)

)
e−(t−s)

1 − e−2(t−s)

∂2p(s, x; t, y)
∂x2

= p(s, x; t, y)

[(
y − x e−(t−s)

)2
e−2(t−s)

(
1 − e−2(t−s)

)2 − e−2(t−s)

1 − e−2(t−s)

]

.

Then we obtain by substituting these partial derivatives into the left hand
side of the above Kolmogorov backward equation that

p(s, x; t, y)
[

e−2(t−s)

(1 − e−2(t−s))
+

y x e−(t−s)

(1 − e−2(t−s))
− x2 e−2(t−s)

(1 − e−2(t−s))

− y2 e−2(t−s)

(1 − e−2(t−s))2
+

2x y e−3(t−s)

(1 − e−2(t−s))2
− x2 e−4(t−s)

(1 − e−2(t−s))2

− x y e−(t−s)

1 − e−2(t−s)
+

x2 e−2(t−s)

1 − e−2(t−s)
+

y2 e−2(t−s)

(1 − e−2(t−s))2

− 2 y x e−3(t−s)

(1 − e−2(t−s))2
+

x2 e−4(t−s)

(1 − e−2(t−s))2
− e−2(t−s)

(1 − e−2(t−s))

]

= 0.

Obviously, for t = s the transition density (4.2.3) equals the Dirac delta
function (4.4.3).

4.7 The stationary density for the standard Ornstein-Uhlenbeck can be taken
from formula (4.5.5) or for (t− s) → ∞ from equation (4.2.3). It is with

p̄(y) =
1√
2π

exp
{
−y2

2

}

the density of a standard Gaussian random variable.

4.8 Geometric Brownian motion is not a stationary process because its transi-
tion density given in (4.2.2) does not converge for (t−s) → ∞ to a stationary
density.
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4.9 The geometric Ornstein-Uhlenbeck process is a stationary process. Its
stationary density is the log-normal probability density

p̄(y) =
1

y
√

2π
exp
{
− (ln(y))2

2

}
.

4.10 (*) Geometric Brownian motion is not an ergodic process because it does
not have a stationary density.

4.11 (*) With the transition densities (4.2.1) of a standard Wiener process
we can write∫ ∞

−∞
p(s, x; r, z) p(r, z; t, y) dz

=
∫ ∞

−∞

1
2π
√

(r − s)(t− r)
exp
{
−1

2

(
(z − x)2

r − s
+

(y − z)2

t− r

)}
dz

=
1

√
2π(t− s)

exp
{
− (y − x)2

2(t− s)

}∫ ∞

−∞

1√
2π

exp
{
−1

2
u2

}
du

= p(s, x; t, y) · 1 = p(s, x; t, y),

where we used the substitution

u = u(z) =
(
z − x(t− r) + y(r − s)

t− s

) √
t− s

(r − s)(t− r)
.

4.12 (*) The Ornstein-Uhlenbeck process is an ergodic process, because we
have according to (4.5.11) the scale measure

s(x) = exp
{∫ x

0

y dy

}
= exp

{
x2

2

}

with the properties
∫ ∞

0

s(x) dx =
∫ 0

−∞
s(x) dx =

∫ ∞

0

exp
{
x2

2

}
dx = ∞

and ∫ ∞

−∞

1
2s(x)

dx =
∫ ∞

−∞

1
2

exp
{
−x2

2

}
dx =

√
π

2
< ∞

that prove the conditions for ergodicity (4.5.12) and (4.5.13).

4.13 (*) Using (4.5.5) we have

dp̄(y)
dy

= 2p̄(y)
a(y)
b2(y)

− p̄(y)
1

b2(y)
db2(y)
dy

=
p̄(y)
b2(y)

(
2a(y) − db2(y)

dy

)
.
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Then it holds

Q(y) = a(y) p̄(y) − 1
2

d

dy
(b2(y) p̄(y))

= a(y) p̄(y) − 1
2
p̄(y)

db2(y)
dy

− 1
2
b2(y)

dp̄(y)
dy

= p̄(y)
[
a(y) − 1

2
db2(y)
dy

− a(y) +
1
2
db2(y)
dy

]
= 0

and it follows
dQ(y)
dy

= 0

which proves (4.5.1).

4.14 (*) By (4.3.4) and (4.1.2) we obtain by using the Taylor expansion for
the exponential

a(s, x) = lim
t↓s

1
t− s

E
(
Xt −Xs

∣
∣Xs = x

)

= lim
t↓s

E

(
Xs [exp{g(t− s) + b(Wt −Ws)} − 1]

t− s

∣
∣
∣
∣Xs = x

)

= x lim
t↓s

E

(
g(t− s) + b(Wt −Ws)

t− s

+
1
2

(g(t− s) + b(Wt −Ws))2

t− s

∣
∣
∣
∣Xs = x

)

= x

(
g +

1
2
b2
)
.

Solutions for Exercises of Chapter 5

5.1 Assuming a filtered probability space (Ω,A,A, P ) we have for 0 ≤ s ≤
t ≤ T by the martingale property for Wiener processes that

E
(
Yt

∣
∣As

)
= E

(
α1W

1
t + α2W

2
t

∣
∣As

)

= α1 E
(
W 1

t

∣
∣As

)
+ α2 E

(
W 2

t

∣
∣As

)

= α1 W
1
s + α2 W

2
s

= Ys

which proves the martingale property (5.1.2).
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5.2 We compute for 0 ≤ s ≤ t ≤ T < ∞ the conditional expectation

E
(
Yt

∣
∣As

)
= E

(
W 2

t

∣
∣As

)

= E
(
(Wt −Ws)2 +W 2

s

∣
∣As

)

= (t− s) + Ys

≥ Ys,

which shows that Y is a submartingale as defined in (5.1.7).

5.3 We obtain by the properties of the Wiener process for 0 ≤ t ≤ s ≤ T

E
(
Ms

∣
∣At

)
= E

(
(Ws −W0)2 − s

∣
∣At

)

= E
(
((Ws −Wt) + (Wt −W0))2 − s

∣
∣At

)

= E
(
(Ws −Wt)2

∣
∣At

)
+W 2

t − s = W 2
t − t = Mt,

which shows that M is a martingale.

5.4 We consider for 0 ≤ s ≤ t ≤ T the conditional expectation

E
(
X̄t

∣
∣As

)
= E

(
exp
{
−1

2
σ2 (ϕ− ϕ(0)) + σWt

} ∣∣
∣
∣As

)

= exp
{
−1

2
σ2 s+ σWs

}

×E
(

exp
{
−1

2
σ2 (t− s) + σ (Wt −Ws)

} ∣∣
∣
∣As

)

= X̄s,

where we used the Laplace transform of the Gaussian increment Wt −Ws of
the Wiener process W in the form

E
(
exp{σ(Wt −Ws)}

∣
∣As

)
= exp

{
1
2
σ2(t− s)

}
.

X̄ is an (A, P )-martingale.

5.5 We have from the covariation property (5.4.5) of Itô integrals that
[∫

0

a du+
∫

0

b dWu

]

t

=
∫ t

0

b2 du = b2 (ϕ− ϕ(0)).

5.6 Similarly as in Exercise 5.5 we obtain
[∫

0

a du+
∫

0

b dWu,

∫

0

1 dWu

]

t

=
∫ t

0

b du = b t.
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5.7 By using Jensen’s inequality, see (1.3.52), it follows for 0 ≤ t ≤ s ≤ T
that

E
(
g(Xs)

∣
∣At

)
≥ g
(
E
(
Xs

∣
∣At

))
= g(Xt),

which shows that g(x) is a submartingale.

5.8 (*) For f being a deterministic step function corresponding to the partition
0 = t1 < t2 < . . . < tn+1 = T with ft = fj for t ∈ [tj , tj+1) for j ∈ {1, 2, . . . , n}
we have for 0 ≤ s ≤ t ≤ T that

E
(
If,W (t)

∣
∣As

)
= E

(∫ t

0

fu dWu

∣
∣
∣As

)

= E

⎛

⎝
is−1∑

j=1

fj(Wtj+1 −Wtj ) + fis (Ws −Wtis
)

+ fis

(
Wtis+1 −Ws

)
+

it−1∑

j=is+1

fj (Wtj+1 −Wtj )

+ fit (Wt −Wtit
)
∣
∣As

)

,

where
it = max{k ∈ {1, 2, . . .} : tk ≤ t}.

Thus, we obtain by the zero mean property of Wiener process increments that
only the first two terms in the above expectation survive so that

E
(
If,W (t)

∣
∣As

)
= If,W (s),

which proves the martingale property for If,W (s).

5.9 (*) Using the notation and representation of the Itô integral of Exercise 5.8
we have for 0 ≤ s ≤ t ≤ T < ∞ and deterministic step functions f and f̄

E
(
(If,W (t) − If,W (s))(If̄ ,W (t) − If̄ ,W (s))

∣
∣As

)

= E

⎛

⎝

⎡

⎣fis(Wtis+1 −Ws) +
it+1∑

j=is+1

fj (Wtj+1 −Wtj ) + fit (Wt −Wtit
)

⎤

⎦

×

⎡

⎣f̄is (Wtis+1 −Ws) +
it+1∑

j=is+1

f̄j (Wtj+1 −Wtj ) + f̄it (Wt −Wtit
)

⎤

⎦

∣
∣
∣
∣
∣
As

⎞

⎠.
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Thus, it follows by the expectation properties for products of Wiener process
increments that

E
(
(If,W (t) − If,W (s))(If̄ ,W (t) − If̄ ,W (s))

∣
∣As

)
=
∫ t

s

E
(
fu f̄u

∣
∣
∣As

)
du.

5.10 (*) Using the notation and representation of the Itô integrals of the
Exercises 5.8 and 5.9 we have for 0 ≤ s ≤ t ≤ T < ∞, and deterministic step
functions f and f̄ and As-measurable constants α and ᾱ the equation

∫ t

s

(
α fu + ᾱ f̄u

)
dWu=

(
α ftis

+ ᾱ f̄tis

)
(Wtis+1 −Ws)

+
it−1∑

j=is+1

(
α ftj + ᾱ f̄tj

)
(Wtj+1−Wtj )

+
(
α ftit

+ ᾱ f̄tit

)
(Wt −Wtit

)

=α

[

ftis
(Wtis+1 −Ws) +

it−1∑

j=is+1

ftj (Wtj+1 −Wtj ) + ftit
(Wt −Wtit

)

]

+ ᾱ

[

f̄tis
(Wtis+1 −Ws) +

it−1∑

j=is+1

f̄tj (Wtj+1 −Wtj ) + f̄tit
(Wt −Wtit

)

]

=α
∫ t

s

fu dWu + ᾱ

∫ t

s

f̄u dWu,

which proves the linearity property (5.4.2) for deterministic step functions.

5.11 (*) Obviously, we have E(Xt −X0 | A0) for all t ∈ [0, T ]. Since the Lévy
process X has stationary independent increments it follows for 0 ≤ s ≤ t ≤ T
that

E
(
Xs

∣
∣At

)
= E

(
Xs −Xt

∣
∣At

)
+Xt = Xt.

This proves that X is a martingale.

Solutions for Exercises of Chapter 6

6.1 By the Itô formula it follows that

d(Yt)2 = (2Yt a+ b2) dt+ 2Yt b dWt.
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6.2 By application of the Itô formula we obtain

dZt = Zt

(
μ+

1
2
σ2

)
dt+ Zt σ dWt.

Applying again the Itô formula we obtain

d ln(Zt) =
(
μ+

1
2
σ2 − 1

2
σ2

)
dt+ σ dWt

= μdt+ σ dWt.

6.3 It follows by the Itô formula that

d(Zt)2 = 2Z2
t

(
μ+

1
2
σ2

)
dt+ Z2

t σ
2 dt+ 2Z2

t σ dWt

= 2Z2
t

(
μ+ σ2

)
dt+ 2Z2

t σ dWt.

6.4 We have by the Itô formula that

dZ−1
t = Z−1

t

(
−μ− 1

2
σ2 + σ2

)
dt− Z−1

t σ dWt

= Z−1
t

(
−μ+

1
2
σ2

)
dt− Z−1

t σ dWt.

6.5 We obtain by the Itô formula

d(Yt Zt) =
(
Zt a+ Yt Zt

(
μ+

1
2
σ2

)
+ b Zt σ

)
dt

+Zt b dWt + Yt Zt σ dWt

= Zt

(
a+ Yt

(
μ+

1
2
σ2

)
+ b σ

)
dt

+Zt (b+ Yt σ) dWt.

6.6 We have by the Itô formula the stochastic differential

d(Y 1
t Y 2

t ) = (Y 2
t a1 + Y 1

t a2) dt+ Y 2
t b1 dW

1
t + Y 1

t b2 dW
2
t .
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6.7 The stochastic differential is obtained by the Itô formula and we obtain

dZt = d
(
exp{Y 1

t } exp{Y 2
t }
)

= d (exp{Y 1
t + Y 2

t })

= Zt

(
a1 + a2 +

1
2

(b21 + b22)
)
dt+ Zt b1 dW

1
t + Zt b2 dW

2
t .

6.8 Applying the Itô formula we obtain

d(Wt)2 = 2Wt dWt + dt.

Now by the covariation property (5.4.5) of Itô integrals we have

[W, (W )2]t =
[∫

0

dWs, 2
∫

0

Ws dWs +
∫

0

ds

]

t

=
∫ t

0

2Ws ds.

6.9 (*) By the Itô formula we have

d(Xt)2 = 2Xt ξt dWt + (ξt)2 dt

and by the covariation property (5.4.5) of Itô integrals it follows

d[X]t = (ξt)2 dt.

Therefore, it holds

dYt = d
(
(Xt)2 − [X]t

)

= 2Xt ξt dWt

and Yt is represented by an Itô integral. Thus, by the martingale property
(5.4.3) of Itô integrals Y is a martingale.

6.10 (*) The stochastic differential of X is

dXt = σ dWt + ξ dp(t)

for t ∈ [0, T ]. By the Itô formula (6.4.11) it follows that

d exp{Xt} = exp{Xt}
(
σ dWt +

1
2
σ2 dt

)
+ exp{Xt−} (exp{ξ} − 1) dp(t)

for t ∈ [0, T ].
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6.11 (*) The stochastic differential of X is

dXt = a dp1(t) + b dp2(t)

for t ∈ [0, T ]. Using the Itô formula (6.4.11) we obtain

d exp{Xt} = exp{Xt−} (exp{a} − 1) dp1(t)

+ exp{Xt−} (exp{b} − 1) dp2(t)

for t ∈ [0, T ].

Solutions for Exercises of Chapter 7

7.1 We obtain from (7.2.6) or (7.3.5) the mean

μ(t) = E(Xt) = exp{−(t− t0)}.

Furthermore we obtain from (7.2.6) or (7.3.9) the variance

v(t) = E
(
(Xt −E(Xt))2

)

= E

((∫ t

t0

√
2 exp{−(t− s)} dWs

)2
)

= 2
∫ t

t0

exp{−2(t− s)} ds

= 1 − exp{−2(t− t0)}.

7.2 According to (7.3.5) we obtain for the mean

μ(t) = exp{0.05 t}.

It follows for the variance

v(t) = E
(
(Xt − μ(t))2

)

= E(X2
t ) − (μ(t))2

= P (t) − (μ(t))2,

where with (7.3.8) we obtain

dP (t) = (0.1 + 0.04)P (t) dt

with P (0) = 1 such that
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v(t) = exp{0.14 t} − exp{0.1 t}

for t ≥ 0.

7.3 We apply formula (7.4.5), where

Xt = X0 Ψt,0

= X0 exp

{(
−1

2
− 1

2
− 1

2

)
t+

2∑

l=1

(
W l

t −W l
0

)
}

= X0 exp
{
−3

2
t+W 1

t +W 2
t

}
.

7.4 (*) By the Itô formula one obtains

dXt = Xt−

[(
k a+

k2 b2

2

)
dt+ k b dWt + (exp{k c} − 1) dNt

]

for t ∈ [0, T ] with X0 = 1.

7.5 (*) In the linear SDE for Xt we take the expectation and obtain

dμ(t) = μ(t−)
[
k a+

k2 b2

2
+ λ (exp{k c} − 1)

]
dt

for t ∈ [0, T ] with μ(0) = 1.

7.6 (*) The explicit solution is of the form

Xt = Ψt,0

(
X0 +

∫ t

0

(a2 − b1 b2)Ψ−1
s,0 ds+

∫ t

0

b2 Ψ
−1
s,0 dWs

)

with

Ψt,0 = exp
{∫ t

0

(
a1 −

1
2
b21

)
ds+

∫ t

0

b1 dWs

}

for t ∈ [0, T ]. By application of the Itô formula we obtain

dXt = Ψt,0

[
(a2 − b1 b2)Ψ−1

t,0 dt+ b2 Ψ
−1
t,0 dWt

]

+
Xt

Ψt,0
dΨt,0 + d

[
Ψ·,0,

∫ ·

0

b2 Ψ
−1
s,0 dWs

]

t

.

Noting by the Itô formula that

dΨt,0 = Ψt,0(a1 dt+ b1 dWt)

it follows
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dXt = (a2 − b1 b2) dt+ b2 dWt

+Xt (a1 dt+ b1 dWt) + b1 b2 dt

= (Xt a1 + a2) dt+ (Xt b1 + b2) dWt

for t ∈ [0, T ].

Solutions for Exercises of Chapter 8

8.1 From (8.3.2) we obtain the discounted option price

V̄ (t, S̄t) = S̄t N(d1(t)) −K exp

{

−
∫ T

0

rs ds

}

N(d2(t))

with

d1(t) =

(

ln
(

S̄t

K (BT )−1

)
+
∫ T

t

1
2
σ2

s ds

)(∫ T

t

σ2
s ds

)− 1
2

and

d2(t) = d1(t) −
(∫ T

t

σ2
s ds

) 1
2

.

Then it is
∂V̄ (t, S̄t)

∂S̄
= N(d1(t)) +Qt,

where

Qt = S̄t N
′(d1(t))

∂d1(t)
∂S̄

− K

BT
N ′(d2(t))

∂d2(t)
∂S̄

=
∂d1(t)
∂S̄

√
2π

[
S̄t exp

{
− (d1(t))2

2

}
− K

BT
exp
{
− (d2(t))2

2

}]

=
∂d1(t)
∂S̄

√
2π

exp
{
− (d1(t))2

2

}[

S̄t −
K

BT
exp

{

ln

(
S̄t

K
BT

)

− 1
2

∫ T

t

σ2
s ds+

1
2

∫ T

t

σ2
s ds

}]

= 0.

Furthermore, we have

∂2V̄ (t, S̄t)
∂S̄2

= N ′(d1(t))
∂d1(t)
∂S̄

= N ′(d1(t)) S̄−1
t

(∫ T

t

σ2
s ds

)− 1
2

.
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We also obtain the time derivative

∂V̄ (t, S̄t)
∂t

=
1
2
σ2

t

(∫ T

t

σ2
s ds

)− 1
2
(

S̄t N
′(d1(t))

×

⎡

⎣ln
(
S̄t BT

K

)(∫ T

t

σ2
s ds

)−1

− 1
2

⎤

⎦

− K

BT
N ′(d2(t))

⎡

⎣ln
(
S̄t BT

K

)(∫ T

t

σ2
s ds

)−1

+
1
2

⎤

⎦

⎞

⎠

=
1
2
σ2

t

(∫ T

t

σ2
s ds

)− 1
2

N ′(d1(t))

⎛

⎝ln
(
S̄t BT

K

)(∫ T

t

σ2
s ds

)−1

×

⎡

⎣S̄t −
K

BT
exp

⎧
⎨

⎩
d1(t)

(∫ T

t

σ2
s ds

) 1
2

− 1
2

∫ T

t

σ2
s ds

⎫
⎬

⎭

⎤

⎦

−1
2

⎡

⎣S̄t −
K

BT
exp

⎧
⎨

⎩
d1(t)

(∫ T

t

σ2
s ds

) 1
2

− 1
2

∫ T

t

σ2
s ds

⎫
⎬

⎭

⎤

⎦

⎞

⎠

= −1
2
σ2

t

(∫ T

t

σ2
s ds

)− 1
2

N ′(d1(t)) S̄t.

We note that
∂V̄ (t, S̄t)

∂t
+

1
2
σ2

t S̄
2
t

∂2V̄ (t, S̄t)
∂S̄2

= 0

and also that

V̄ (T, S̄T ) =
(
S̄T − K

BT

)+

.

This shows that the discounted European call option price (8.3.2) satisfies the
discounted BS-PDE (8.2.21) with terminal condition (8.2.22).

8.2 The hedge ratio is given by the expression

∂V (t, St)
∂S

=
(

∂

∂S̄t
V (t, St)

)
∂S̄t

∂St

=
(

∂

∂S̄t

(
V̄ (t, S̄t)Bt

)
)

1
Bt

=
∂

∂S̄t
V̄ (t, S̄t).
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Then it follows from our calculations in Exercise 8.1 that

∂V (t, St)
∂S

= N(d1(t))

which corresponds to (8.4.3).

8.3 The gamma for the European put option is given by the expression

∂2V (t, St)
∂S2

=
∂

∂S
N(d1(t))

= N ′(d1(t))S−1
t

(∫ T

t

σ2
s ds

)− 1
2

,

see (8.4.5) and (8.5.5), which is the same gamma as for the European call
option.

8.4 We obtain from (8.2.4) for the European put option the number of units
δ0
t to be held at time t in the savings account in the form

δ0
t =

V (t, St)
Bt

− δ1
t

St

Bt
.

Therefore, it follows from (8.5.3) and (8.5.4) that

δ0
t = S̄t (N(d1(t)) − 1) − K

BT
(N(d2(t)) − 1) − (N(d1(t)) − 1) S̄t

=
K

BT
(1 −N(d2(t))).

8.5 By using the notation S̄ = S
Bt

and V (t, S) = V̄ (t, S̄)Bt we obtain with
the partial derivatives ∂S

∂S̄
= Bt

∂V̄ (t, S̄)
∂S̄

=
1
Bt

∂V (t, S)
∂S

∂S

∂S̄
=

∂V (t, S)
∂S

∂2V̄ (t, S̄)
∂S̄2

=
∂V 2(t, S)

∂S2

∂S

∂S̄
=

∂2V (t, S)
∂S2

Bt

and

∂V̄ (t, S̄)
∂t

=
∂

∂t

(
1
Bt

V (t, S̄ Bt)
)

= −r 1
Bt

V (t, S) +
1
Bt

∂V (t, S)
∂t

+
1
Bt

∂V (t, S̄ Bt)
∂S

S̄ Bt

by (8.2.21) the PDE
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0 =
∂V̄ (t, S̄)

∂t
+

1
2
σ2 S̄2 ∂

2V̄ (t, S̄)
∂S̄2

=
1
Bt

(
−r V (t, S) +

∂V (t, S)
∂t

+
∂V (t, S)

∂S
S r +

1
2
σ2 S̄2 B2

t

∂2V (t, S)
∂S2

)
,

which proves (8.2.23).

8.6 The discounted P&L process C̄ for a European put option has according
to (8.2.13) and (8.2.20) the form

C̄t = V̄ (t, S̄t) − V̄ (0, S̄0) −
∫ t

0

∂V̄ (s, S̄s)
∂S̄

dS̄s.

On the other hand, we have by the discounted BS-PDE for a European put
option

dV̄ (t, S̄t) =
∂V̄ (t, S̄t)

∂S̄
dS̄t

and it follows

dC̄t = dV̄ (t, S̄t) −
∂V̄ (t, S̄t)

∂S̄
dS̄t

= 0.

This means, the discounted P&L

C̄t = C̄0 = 0

equals the constant zero. Consequently, by (8.2.12) the P&L

Ct = C̄t Bt = 0

is zero for all t ∈ [0, T ].

8.7 We consider the square root process Y = {Yt, t ∈ [0,∞)} of dimension
δ > 2 satisfying the SDE

dYt =
(
δ

4
c2 + b Yt

)
dt+ c

√
Yt dWt

for t ∈ [0,∞), Y0 > 0, c > 0 and b < 0. The Itô integral

Mt = c

∫ t

0

√
Ys dWs

forms a martingale due to Lemma 5.2.2 (iii), since the square root process,
as a transformed time changed squared Bessel process, has moments of any
positive order. Consequently,
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dE(Yt) =
(
δ

4
c2 + bE(Yt)

)
dt

for t ∈ [0,∞) with E(Y0) > 0. Therefore, we obtain

E(Yt) = E(Y0) exp{b t} +
δ c2

4 b
(exp{b t} − 1).

8.8 (*) Using the notation of Sect.8.7 we have for δ > 2, α ≥ − δ
2 and ϕ > ϕ(0)

by (8.7.7) and (8.7.9) the αth moment in the form

E(Xα
ϕ ) =

∫ ∞

0

yα pδ(ϕ(0), x;ϕ, y) dy

=
∫ ∞

0

yα 1
2 (ϕ− ϕ(0))

(y
x

) δ
4−

1
2

exp
{
− x+ y

2 (ϕ− ϕ(0))

}

×
∞∑

k=0

( √
x y

2 (ϕ−ϕ(0))

)2k+ δ
2−1

k!Γ
(
k + δ

2

) dy

=
∞∑

k=0

exp
{
− x

2 (ϕ−ϕ(0))

}
xk
(

1
2 (ϕ−ϕ(0))

)2k+ δ
2

k!Γ
(
k + δ

2

)
∫ ∞

0

yα+k+ δ
2−1

× exp
{
− y

2 (ϕ− ϕ(0))

}
dy.

According to the gamma function (1.2.10) it holds for β = α+ k+ δ
2 > 0 that

∫ ∞

0

yβ−1 exp
{
−y

q

}
dy = Γ (β) (q)β

and thus

E(Xα
ϕ ) =

∞∑

k=0

exp
{
−x

q

}
xk
(

1
q

)2k+ δ
2

k!Γ
(
k + δ

2

) (q)α+k+ δ
2 Γ

(
α+ k +

δ

2

)

= (q)α exp
{
−x

q

} ∞∑

k=0

(
x

q

)k Γ
(
α+ k + δ

2

)

k!Γ
(
k + δ

2

)

with q = 2 (ϕ − ϕ(0)), which shows the first equation in (8.7.16). For
k ≥ 1 and α ≤ 0 we have from the properties of the gamma function that
Γ
(
α+ k + δ

2

)
≤ Γ

(
k + δ

2

)
and thus the estimate

E(Xα
ϕ ) = (2 (ϕ− ϕ(0)))α exp

{
−x

q

}(
Γ
(
α+ δ

2

)

Γ
(

δ
2

) + exp
{
x

q

})

< ∞,
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which provides also the second part of (8.7.16).

8.9 (*) Using (8.7.9) it follows
∫ ∞

0

y1−n
2 pn(ϕ(0), x;ϕ, y) dy

=
∫ ∞

0

y1−n
2

2(ϕ− ϕ(0))

(y
x

)n
4 − 1

2
exp
{
− x+ y

2(ϕ− ϕ(0))

}
In

2 −1

( √
x y

ϕ− ϕ(0)

)
dy

=
∫ ∞

0

x1−n
2

2(ϕ− ϕ(0))

(y
x

) 1
2−

n
4

exp
{
− x+ y

2(ϕ− ϕ(0))

}
In

2 −1

( √
x y

ϕ− ϕ(0)

)
dy

= x1−n
2

∫ ∞

0

p4−n(ϕ(0), y;ϕ, x) dy.

8.10 (*) Combining (8.7.9) and (8.7.19) we obtain
∫ ∞

0

p4−n(ϕ(0), y;ϕ, x) dy

=
∫ ∞

0

1
2(ϕ− ϕ(0))

(y
x

) 1
2−

n
4

exp
{
− x+ y

2(ϕ− ϕ(0))

}
In

2 −1

( √
x y

ϕ− ϕ(0)

)
dy

=
∫ ∞

0

1
2(ϕ− ϕ(0))

(y
x

) 1
2−

n
4

exp
{
− x+ y

2(ϕ− ϕ(0))

} ∞∑

k=0

( √
x y

2(ϕ−ϕ(0))

)2k+ n
2 −1

k !Γ
(

n
2 + k

) dy

=
∞∑

k=0

x
n
2 −1+k exp

{
− x

2(ϕ−ϕ(0))

}

(2(ϕ− ϕ(0)))
n
2 +2k k !Γ

(
n
2 + k

)
∫ ∞

0

yk exp
{
− y

2(ϕ− ϕ(0))

}
dy

=
∞∑

k=0

(
x

2(ϕ− ϕ(0))

)n
2 −1+k exp

{
− x

2(ϕ−ϕ(0))

}

Γ
(

n
2 + k

)

=
(

x

2(ϕ− ϕ(0))

)n
2 −1

exp
{
− x

2(ϕ− ϕ(0))

} ∞∑

k=0

(
x

2(ϕ− ϕ(0))

)k 1
Γ
(

n
2 + k

) .

Using the series expansion

Γ (a) − Γ (a, z) = e−z za
∞∑

k=0

Γ (a)
Γ (a+ 1 + k)

zk,

see Abramowitz & Stegun (1972), with a = n
2 −1 and z = x

2(ϕ−ϕ(0)) the above
equation becomes

∫ ∞

0

p4−n(ϕ(0), y;ϕ, x) dy = 1 −
Γ
(

n
2 − 1, x

2(ϕ−ϕ(0))

)

Γ
(

n
2 − 1

) .
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Solutions for Exercises of Chapter 9

9.1 By the SDE (9.4.14) it follows that the discounted stock price S̄t satisfies
the SDE

dS̄t = σ S̄t dWθt,

where Wθ is a standard Wiener process under the risk neutral measure Pθ.
Since this SDE is driftless S̄ is an (A, Pθ)-local martingale. Furthermore, be-
cause S̄ is a geometric Brownian motion with bounded second moment, see
(7.3.13)–(7.3.14), it follows that the diffusion coefficient σS̄t is square inte-
grable for all t ∈ [0, T ]. Consequently, by (5.4.1) σS̄ is from L2

T and by the
martingale property (5.4.3) of Itô integrals an (A, Pθ)-martingale.

9.2 By application of the Itô formula it follows by (8.3.2) and the discounted
BS-PDE as in Exercise 9.1 that

dV̄ (t, S̄t) =
∂V̄ (t, S̄t)

∂S̄
σ S̄t (θt dt+ dWt),

where the hedge ratio
∂V̄ (t, S̄t)

∂S̄
=

∂V (t, St)
∂S

is by (8.4.3) bounded. With

dWθt = θt dt+ dWt

it follows by the Girsanov Theorem that Wθ is a Pθ-Wiener process. Since
S̄ ∈ L2

T it follows by the martingale property (5.4.3) of Itô integrals from the
above SDE that the (A, Pθ)-local martingale V̄ is an (A, Pθ)-martingale.

9.3 We obtain by the Itô formula (6.1.12) and the discounted BS-PDE (8.2.21)
for the discounted put option price the SDE

d

(
pT,K(t, St)

Bt

)
= dV̄ (t, S̄t)

=
(
∂

∂t
V̄ (t, S̄t) +

1
2
σ2 S̄2

t

∂2V̄ (t, S̄t)
∂S̄2

)
dt+

∂V̄ (t, S̄t)
∂S̄

dS̄t

=
∂V̄ (t, S̄t)

∂S̄
dS̄t

for t ∈ [0, T ]. Therefore, by the Itô formula and (8.2.1)–(8.2.2) we obtain
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dpT,K(t, St) = d(V̄ (t, S̄t)Bt)

= pT,K(t, St) r dt+Bt dV̄ (t, S̄t)

= pT,K(t, St) r dt+
(
∂V̄ (t, S̄t)

∂S̄

)
Bt dS̄t

= pT,K(t, St) r dt+
(
∂pT,K(t, St)/Bt

∂S

)
∂St

∂S̄
Bt dS̄t

= pT,K(t, St) r dt+
∂pT,K(t, St)

∂S
Bt [(a− r) S̄t dt+ σ S̄t dWt]

=
(
pT,K(t, St) r +

∂pT,K(t, St)
∂S

(a− r)St

)
dt

+
∂pT,K(t, St)

∂S
σ St dWt.

We obtain with (9.4.1) and (9.1.16) for the real world dynamics of pT,K(t, St)
the SDE

dpT,K(t, St) = pT,K(t, St) rdt+
∂pT,K(t, St)

∂S
σ St

(
dWt +

a− r

σ
dt

)

= r pT,K(t, St) dt+
∂pT,K(t, St)

∂S
σ St (dWt + θ dt).

Here W is a standard Wiener process under P . Since under the risk neutral
measure Pθ the value

Wθ(t) = Wt + θ t

forms an (A, P )-Wiener process we obtain directly the risk neutral SDE

dpT,K(t, St) = r pT,K(t, St) dt+
∂pT,K(t, St)

∂S
σ St dWθ(t)

for t ∈ [0, T ].

9.4 Using (9.4.3) we have

dSt = r St dt+ σ St (dWt + θ dt),

where W is a Wiener process under the real world probability measure P . By
Itô’s formula combined with (9.1.15) the SDE for the benchmarked security

Ŝt =
St

Dt

is given by
dŜt = (σ − θ) Ŝt dWt.
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This SDE is that of a driftless geometric Brownian motion, which has by
(6.3.2) the explicit solution

Ŝt = Ŝ0 exp
{
−1

2
(σ − θ)2 t+ (σ − θ)Wt

}
.

By the mean (7.3.13) and variance (7.3.14) of a geometric Brownian motion
it follows that

E(((σ − θ) Ŝt)2) < ∞

for t ∈ [0, T ] so that by (5.4.1) (σ− θ) Ŝ ∈ L2
T . Consequently, Ŝ is an (A, Pθ)-

martingale by the martingale property (5.4.3) of Itô integrals.

9.5 From (9.4.13), (8.3.4) and (8.1.1) we obtain

cT,K(t, S) =
∫ ∞

−∞
exp{−r(T − t)}

(
S exp

{(
r − 1

2
σ2

)
(T − t) + σ

√
T − t x

}
−K

)+

N ′(x) dx

=
∫ ∞

−∞

(
S exp

{
−1

2
σ2 (T − t) + σ

√
T − t x

}

−K exp{−r(T − t)}
)+

N ′(x) dx

=
∫ ∞

−d2(t)

(
S exp

{
−1

2
σ2 (T − t) + σ

√
T − t x

}

−K exp{−r(T − t)}
)

N ′(x) dx

=
∫ d2(t)

−∞

(
S exp

{
−1

2
σ2 (T − t) − σ

√
T − t x

}

−K exp{−r(T − t)}
)

N ′(x) dx

= S

∫ d2(t)

−∞
exp
{
−1

2
σ2 (T − t) − σ

√
T − t x

}

× 1√
2π

exp
{
−x2

2

}
dx− K exp{−r(T − t)}N(d2(t)).
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With the change of variables

z = x+ σ
√
T − t

and (8.3.3)–(8.3.4) we finally obtain

cT,K(t, S) = S

∫ d1(t)

−∞

1√
2π

exp
{
−1

2
σ2 (T − t) − z σ

√
T − t+ σ2 (T − t)

− z2

2
+ z σ

√
T − t− σ2

2
(T − t)

}
dz

−K exp{−r(T − t)}N(d2(t))

= S N(d1(t)) −K exp{−r(T − t)}N(d2(t)),

which proves the Black-Scholes European call option pricing formula.

9.6 (*) By (9.4.8) the Radon-Nikodym derivative at time t for the standard
BS model equals the expression

Λθ(t) =
Ŝ0

t

Ŝ0
0

for t ∈ [0, T ]. By (9.1.21) and (9.1.20) we obtain

dΛθ(t) = −θ Ŝ
0
t

Ŝ0
0

dWt

= −θ Λθ(t) dWt

for t ∈ [0, T ], where Λθ(0) = 1.

9.7 (*) Under the BS model with savings account Bt = exp{r t} and risky
security

St = S0 exp
{(

a− 1
2
σ2

)
t+ σWt

}

we have the GOP in the form

Sδ∗
t = Sδ∗

0 exp
{
r t+

1
2
θ2 t+ θWt

}
.

The fair zero coupon bond price P (t, T ) at time t, when T is the maturity
date, is obtained by the real world pricing formula and the Laplace transform
for Gaussian random variables
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P (t, T ) = Sδ∗
t E

(
1
Sδ∗

T

∣
∣
∣At

)

= E

(
exp
{
r (t− T ) +

1
2
θ2 (t− T ) + θ (Wt −WT )

} ∣
∣
∣At

)

= exp{−r (T − t)}E
(

exp
{
−1

2
θ2 (T − t) − θ (WT −Wt)

} ∣
∣
∣At

)

= exp{−r (T − t)} = exp{−r T}Bt.

The benchmarked zero coupon bond price, when normalized to one at time
zero, has the form

ΛθP (·,T )(t) =
P̂ (t, T )
P̂ (0, T )

=
exp{−r T}Bt

Sδ∗
t

Sδ∗
0

exp{−r T} = Sδ∗
0

Bt

Sδ∗
t

and satisfies the SDE

dΛθP (·,T )(t) = ΛθP (·,T )(t) (−θ) dWt

with market price of risk θ = a−r
σ . The Radon-Nikodym derivative for the

zero coupon bond P (·, T ) as numeraire is by (9.6.21)–(9.6.23) of the form

dPθP (·,T )

dP
= ΛθP (·,T )(T ).

The drifted Wiener process WθP (·,T ) with

dWθP (·,T )(t) = dWt + θP (·,T )(t) dt

and
θP (·,T )(t) = θ

is a Wiener process under the probability measure PθP (·,T ) . Therefore, the
corresponding numeraire pair is (P (·, T ), PθP (·,T )) = (P (·, T ), Pθ). The risk
neutral measure Pθ equals here the, so-called, T -forward measure PθP (·,T ) is
an important observation under the BS model.

9.8 (*) We obtain under the BS model the discounted price V̄ (t, S̄t) = V (t,St)
Bt

at time t of the payoff f(ST ) = (ST )2 by the risk neutral pricing formula
(9.6.10) in the form

V̄ (t, S̄t) = Eθ

(
(S̄T BT )2

BT

∣
∣
∣At

)
,

where
dS̄t = S̄t σ dWθt
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under the risk neutral probability measure Pθ for t ∈ [0, T ]. We have here only
a terminal payoff at time T . When using the Feynman-Kac formula (9.7.3),
then we obtain by (9.7.4) the PDE

∂V̄ (t, S̄)
∂t

+
1
2
σ2 S̄2 ∂

2V̄ (t, S̄)
∂S̄2

= 0

for (t, S̄) ∈ [0, T ) × (0,∞) with terminal condition

V̄ (T, S̄) =
(S̄T )2

BT
.

This PDE has, by using the explicit solution for geometric Brownian motion,
the solution

V̄ (t, S̄t) =
1
BT

Eθ

(
(S̄t)2 exp

{
2
[
−1

2
σ2(T − t) + σ (WθT −Wθt)

]} ∣
∣
∣At

)

=
(S̄t)2

BT
exp{σ2(T − t)},

since
∂V̄ (t, S̄)

∂t
= −V̄ (t, S̄)σ2,

∂V̄ (t, S̄)
∂S̄

= 2
V̄ (t, S̄)

S̄
,

∂2V̄ (t, S̄)
∂S̄2

= −2
V̄ (t, S̄)
S̄2

+
2
S̄

∂V̄ (t, S̄)
∂S̄

=
2
S̄2

V̄ (t, S̄).

Therefore we have

∂V̄ (t, S̄)
∂t

+
1
2
σ2 S̄2 ∂

2V̄ (t, S̄)
∂S̄2

= −V̄ (t, S̄)σ2 +
1
2
σ2 S̄2 2

S̄2
V̄ (t, S̄)

= 0.

Solutions for Exercises of Chapter 10

10.1 The growth rate gδ
t of a portfolio is defined in (10.2.1) as the drift of the

SDE of the logarithm of the portfolio Sδ. By application of the Itô formula
to ln(Sδ

t ) one obtains the SDE
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d ln(Sδ
t ) =

1
Sδ

t

dSδ
t − 1

2(Sδ
t )2

d[Sδ
t ]

=

⎛

⎜
⎝rt +

d∑

k=1

d∑

j=1

πj
δ,t b

j,k
t θk

t − 1
2

d∑

k=1

⎛

⎝
d∑

j=1

πj
δ,t b

j,k
t θk

t

⎞

⎠

2
⎞

⎟
⎠ dt

+
d∑

k=1

d∑

j=1

πj
δ,t b

j,k
t dW k

t .

The drift of this SDE, which is the growth rate of Sδ, is then

gδ
t = rt +

d∑

k=1

⎛

⎜
⎝

d∑

j=1

πj
δ,t b

j,k
t θk

t − 1
2

⎛

⎝
d∑

j=1

πj
δ,t b

j,k
t θk

t

⎞

⎠

2
⎞

⎟
⎠ .

10.2 We apply for the benchmarked value Ŝδ
t = Sδ

t

Sδ∗
t

the integration by parts

formula (6.3.1) and obtain the SDE

dŜδ
t = Sδ

t d

(
1
Sδ∗

t

)
+

1
Sδ∗

t

dSδ
t + d

[
1
Sδ∗

, Sδ

]

t

=
Sδ

t

Sδ∗
t

(

−rt dt−
d∑

k=1

θk
t dW

k
t

)

+
Sδ

t

Sδ∗
t

⎛

⎝rt dt+
d∑

k=1

d∑

j=1

πj
δ,t b

j,k
t

(
θk

t dt+ dW k
t

)
⎞

⎠

+
Sδ

t

Sδ∗
t

d∑

k=1

⎛

⎝−θk
t

d∑

j=1

πj
δ,t b

j,k
t

⎞

⎠ dt

= Ŝδ
t

d∑

k=1

⎛

⎝
d∑

j=1

πj
δ,t b

j,k
t − θk

t

⎞

⎠ dW k
t .

This SDE is driftless. Therefore, by Lemma 5.4.1 a square integrable Ŝδ en-
sures that Ŝδ is an (A, P )-local martingale. However, this is not sufficient to
guarantee that Ŝδ is, in general, an (A, P )-martingale. A counter example
is the unfair portfolio (9.1.42) in Sect. 9.1. Since Ŝδ is a nonnegative local
martingale it is by Lemma 5.2.3 an (A, P )-supermartingale.

10.3 According to Definition 10.6.3 and (10.6.19) we need to show that

E

((
σ̂k

(d)(t)
)2
)

= E

⎛

⎜
⎝

⎛

⎝
d∑

j=0

∣
∣
∣σj,k

(d)(t)
∣
∣
∣

⎞

⎠

2
⎞

⎟
⎠
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is bounded by a constant for all k ∈ N . Due to (10.6.27) we have for d ∈ N
and k ∈ {1, 2, . . . , d}

d∑

j=0

∣
∣
∣σj,k

(d)(t)
∣
∣
∣ ≤ σ

(
1 +

1√
d

)
≤ 2σ

and, therefore, E
((

σ̂k
(d)(t)

)2
)

≤ 4σ2. This demonstrates that the corre-

sponding sequence of CFMs is regular.

Solutions for Exercises of Chapter 11

11.1 The expected log-utility vδ̃ follows by (11.3.3), (11.3.8), (11.3.11) and
(10.2.8), as

vδ̃ = E

(

U

(

U ′−1

(
λ

S̄δ∗
T

))∣∣
∣
∣
∣
A0

)

= E
(
ln
(
S̄δ∗

T

)
− ln(λ)

∣
∣A0

)

= E
(
ln
(
S̄δ∗

T

)
− ln

(
S̄δ∗

0

)
+ ln(S0)

∣
∣A0

)

=
1
2
E

(∫ T

0

|θ(s, S̄δ∗
s )|2 ds

∣
∣A0

)

+ ln(S0)

=
1
2

∫ T

0

E
(
|θ(s, S̄δ∗

s )|2
∣
∣A0

)
ds+ ln(S0). (S.1)

For the BS model with θ(s, S̄δ∗
s ) = θ we obtain, therefore, vδ̃ = θ2

2 T + ln(S0).
In the case of other discounted GOP dynamics one has simply to calculate
the conditional expectation in (S.1), which is possible for certain models.

11.2 Similarly as in the above exercise the expected power utility for γ < 0
under the BS model is obtained by (11.3.3), (11.3.8), (11.3.16) and (10.2.8)
as

vδ̃ = E

(
1
γ

((
λ Ŝ0

T

) 1
γ−1

Ŝ0
T

)γ ∣
∣
∣A0

)
=

1
γ

(S0)γ
(
Sδ∗

0

)−γ

exp
{
θ2

2
T

γ

1 − γ

}
.

11.3 (*) The benchmarked fair price V̂t at time t ∈ [0, T ] of the payoff H
paid at time T ∈ (0,∞) satisfies according to (11.5.9) the SDE

dV̂t =
m∑

k=1

xk
H(t) dW k

t (S.2)

with
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V̂0 = E

(
H

Sδ∗
T

∣
∣
∣
∣A0

)

. (S.3)

On the other hand, according to (10.2.8) the discounted GOP is characterized
by the SDE

dS̄δ∗
t = S̄δ∗

t

d∑

k=1

θk
t (θk

t dt+ dW k
t ) (S.4)

for t ∈ [0, T ] with S̄δ∗
0 > 0.

The discounted payoff can now be expressed as

H̄ =
H

S0
T

= Ĥ S̄δ∗
T . (S.5)

By application of the Itô formula to the product V̄t = V̂tS̄
δ∗
t we obtain by the

Itô formula with (S.2) and (S.3) the SDE

dV̄t = V̂t dS̄
δ∗
t + S̄δ∗

t dV̂t + d
[
V̂ , S̄δ∗

]

t

= V̄t

d∑

k=1

θk
t (θk

t dt+ dW k
t ) + S̄δ∗

t

m∑

k=1

xk
H(t) dW k

t + S̄δ∗
t

d∑

k=1

xk
H(t) θk

t dt

= S̄δ∗
t

d∑

k=1

(
xk

H(t) + V̂t θ
k
t

)
(θk

t dt+ dW k
t ) + S̄δ∗

t

m∑

k=d+1

xk
H(t) dW k

t .

This leads under a risk neutral probability measure to the martingale repre-
sentation

H̄ = V̄0 +
d∑

k=1

∫ T

0

S̄δ∗
t

(
xk

H(t) + V̂t θ
k
t

)
dWθ

k(t) +
m∑

k=d+1

∫ T

0

S̄δ∗
t xk

H(t) dW k
t .

Here V̄t = Eθ(H̄|At) with Eθ denoting expectation under Pθ and

Wθ
k(t) =

∫ t

0

θk
t dt+W k

t

for k ∈ {1, 2, . . . , d} forms a Wiener process under Pθ.

Solutions for Exercises of Chapter 12

12.1 Using the time homogenous Fokker-Planck equation the stationary den-
sity of the ARCH diffusion model is of the form
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p̄(θ2) =
C

γ2 θ4
exp

{

2
∫ θ2

θ2

κ (θ̄2 − u)
γ2 u2

du

}

=
C

γ2 θ4
exp

{
2κ θ̄2

γ2

∫ θ2

θ2

1
u2

du− 2κ
γ2

∫ θ2

θ2

1
u
du

}

=
C

γ2 θ4
exp
{

2κ
γ2

(
θ̄2

(
− 1
θ2

+
1
θ2

)
−
(
ln(θ2) − ln(θ2)

)
)}

= C1 exp
{
−2κ θ̄2

γ2

1
θ2

}(
1
θ2

) 2κ
γ2 +2

,

which is an inverse gamma density with an appropriate constant C1 > 0.

12.2 The stationary density for the squared volatility needs to satisfy the
expression

p̄(θ2) =
C

γ2 θ6
exp

{

2
∫ θ2

θ2

κ (θ̄2 − u)u
γ2 u3

du

}

=
C

γ2 θ6
exp

{
2κ
γ2

(

θ̄2

∫ θ2

θ2

1
u2

du−
∫ θ2

θ2

1
u
du

)}

=
C

γ2 θ6
exp
{

2κ
γ2

(
−θ̄2

(
1
θ2

− 1
θ̄2

)
−
(
ln(θ2) − ln(θ2)

)
)}

=
C

γ2 θ6
exp
{

2κ
γ2

(
−θ̄2

(
1
θ2

− 1
θ2

)
− ln(θ2) + ln(θ2)

)}

= C1 exp
{
−2κ
γ2

θ̄2 1
θ2

}(
1
θ2

) 2κ
γ2 +3

,

which is an inverse gamma density.

12.3 For the Heston model we obtain the stationary density for the squared
volatility

p̄(θ2) =
C

γ2 θ2
exp

{

2
∫ θ2

θ2

κ (θ̄2 − u)
γ2 u

du

}

=
C

γ2 θ2
exp

{
2κ θ̄2

γ2

∫ θ2

θ2

1
u
du− 2κ

γ2
(θ2 − θ2)

}

= C1 exp
{
−2κ
γ2

θ̄2

}
(θ2)

2κ θ̄2

γ2 −1
,

which is a gamma density.
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12.4 For the Scott model the volatility θt has the stationary density

p̄(θ) =
C

γ2
exp

{

2
∫ θ

θ

κ (θ̄ − u)
γ2

du

}

=
C

γ2
exp
{

2κ
γ2

(
θ̄ (θ − θ) − 1

2
(θ2 − θ2)

)}
,

which is a Gaussian density with mean θ̄ and variance γ2

2 κ . Thus θ2
t has a

chi-square distribution with two degrees of freedom.

12.5 It follows by the Itô formula that

dθ2
t = θ2

t

(
κ ξ̄ +

1
2
γ2 − θ2

t κ

)
dt+ θ2

t γ dWt.

Therefore, the stationary density satisfies the expression

p̄(θ2) =
C

γ2 θ4
exp

{

2
∫ θ2

θ2

u
(
κ ξ̄ + 1

2 γ
2 − uκ

)

γ2 u2
du

}

=
C

γ2 θ4
exp
{

2
γ2

(
κ ξ̄ +

1
2
γ2

)
(
ln(θ2) − ln(θ2)

)
− 2κ

γ2
(θ2 − θ2)

}

= C1 exp
{
−2κ
γ2

θ2

}
(
θ2
) 2

γ2 (κ ξ̄+ 1
2 γ2)−2

.

It follows that the stationary density of the squared volatility is a gamma
density.

12.6 (*) It follows by (12.2.8) and the Itô formula

dX−q
t = −q X−(q+1)

t

(
(2 (1 − a) r Xt + ψ2 (1 − a) (3 − 2a)) dt

+2ψ (1 − a)
√
Xt dWt

)

+
1
2
q (q + 1)X−(q+2) 4ψ2 (1 − a)2 Xt dt

for t ∈ [0, T ], where X is a transformed squared Bessel process of dimension
ν = 3−2a

1−a , see (12.2.9). Therefore, the benchmarked savings account satisfies
by the Itô formula and (12.2.1) the SDE
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dŜ0
t = d

(
S0

t

Sδ∗
t

)
= d
(
exp{−r (τ − t)}X−q

t

)

= S0
t

(
−q X−q

t

[
2 (1 − a) r

+X−1
t ψ2

(
(1 − a) (3 − 2a) − q + 1

2
4 (1 − a)2

)
− r

9

]
dt

− q X−q− 1
2 2ψ (1 − a) dWt

)

By noting that according to (12.2.11) one has

q =
1

2 (1 − a)

we obtain
dŜ0

t = −Ŝ0
t

ψ√
Xt

dWt.

Consequently, Ŝ0 is an (A, P )-local martingale. We have by the moments of
Bessel processes (8.7.16) the finite expression

E

((
Ŝ0

t

)2
)

= exp{−2 r (τ − t)}E(X−2q
t ) < ∞

for a < 1 and t ∈ [0, τ ]. Thus, for a < 1 the process Ŝ0 is square integrable.
Furthermore, the quadratic variation of Ŝ0 is

[Ŝ0]t = exp{−2 r (τ − t)}ψ2

∫ t

0

X
−2(q+ 1

2 )
s ds

and its expectation yields by (8.7.14) because of α = −2q−1 = −ν
2 an infinite

value

E
(
[Ŝ0]t

)
= exp{−2 r (τ − t)}ψ2

∫ t

0

E

(
X

− 2−a
1−a

s

)
ds = ∞.

By (8.7.23) Ŝ0 is a strict local martingale and so is P̂ ∗
τ .

Solutions for Exercises of Chapter 13

13.1 The SDE for the discounted GOP is of the form

dS̄δ∗
t = αδ∗

t dt+
√
S̄δ∗

t αδ∗
t dWt.

By the Itô formula we obtain for ln(S̄δ∗
t ) the SDE
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d ln
(
S̄δ∗

t

)
=

1
2
αδ∗

t

S̄δ∗
t

dt+

√
αδ∗

t

S̄δ∗
t

dWt,

which shows that the volatility of the discounted GOP equals
√

αδ∗
t

S̄δ∗
t

.

13.2 By the Itô formula we obtain for
√
S̄δ∗

t the SDE

d

√
S̄δ∗

t =

⎛

⎜
⎝

αδ∗
t

2
√
S̄δ∗

t

− 1
2

1
4

1
(
S̄δ∗

t

) 3
2
S̄δ∗

t αδ∗
t

⎞

⎟
⎠ dt+

√
S̄δ∗

t αδ∗
t

2
√
S̄δ∗

t

dWt

=
3
8

αδ∗
t√
S̄δ∗

t

dt+
1
2

√
αδ∗

t dWt,

which confirms (13.1.12).

13.3 The differential equation for αδ∗
t is of the form

dαδ∗
t = ηt α

δ∗
t dt.

Together with the SDE of the discounted GOP and the Itô formula it follows

dYt = Yt

(
αt

S̄δ∗
t

− ηt

)
dt+ Yt

√
αt

S̄δ∗
t

dWt

= (1 − ηt Yt) dt+
√
Yt dWt,

which confirms (13.2.5).

13.4 The squared volatility of the discounted GOP equals |θt|2 = 1
Yt

, and,
thus the inverse of the normalized GOP. This means, we obtain by the Itô
formula the SDE

d|θt|2 = d

(
1
Yt

)
=

(

−
(

1
Yt

)2

(1 − ηt Yt) +
Yt

(Yt)3

)

dt−
(

1
Yt

)2 √
Yt dWt

= ηt
1
Yt

dt−
(

1
Yt

) 3
2

dWt = ηt |θt|2 dt−
(
|θt|2

) 3
2 dWt,

which confirms (13.2.11).
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Solutions for Exercises of Chapter 14

14.1 The SDE for a strictly positive portfolio Sδ is by (14.1.3) of the form

dSδ
t = Sδ

t−

⎛

⎝rt dt+
d∑

k=1

d∑

j=1

πj
δ,t b

j,k
t

(
θk

t dt+ dW k
t

)
⎞

⎠ .

By application of the Itô formula this leads for the logarithm of Sδ
t to the

SDE

d ln(Sδ
t ) = rt dt+

d∑

k=1

d∑

j=1

πj
δ,t b

j,k
t θk

t dt−
1
2

m∑

k=1

⎛

⎝
d∑

j=1

πj
δ,t b

j,k
t

⎞

⎠

2

dt

+
m∑

k=1

d∑

j=1

πj
δ,t b

j,k
t dW k

t −
d∑

k=m+1

d∑

j=1

πj
δ,t b

j,k
t

√
hk

t dt

+
d∑

k=m+1

ln

⎛

⎝1 +
d∑

j=1

πj
δ,t−

bj,kt√
hk

t

⎞

⎠ dpk
t

=

⎛

⎜
⎝rt dt+

d∑

k=1

d∑

j=1

πj
δ,t b

j,k
t θk

t − 1
2

m∑

k=1

⎛

⎝
d∑

j=1

πj
δ,t b

j,k
t

⎞

⎠

2

+
d∑

k=m+1

hk
t

⎡

⎣ln

⎛

⎝1 +
d∑

j=1

πj
δ,t

bj,kt√
hk

t

⎞

⎠−
d∑

j=1

πj
δ,t b

j,k
t

1
√
hk

t

⎤

⎦

⎞

⎠ dt

+
m∑

k=1

πj
δ,t b

j,k
t dW k

t +
d∑

k=m+1

ln

⎛

⎝1 +
d∑

j=1

πj
δ,t−

bj,kt√
hk

t

⎞

⎠
√
hk

t dW
k
t .

The drift of this SDE is the growth rate given in (14.1.15).

14.2 The forward rate at time t for maturity T has by (14.1.32) and (14.1.31)
the form
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f(t, T ) = − ∂

∂T
ln(P̂ (t, T ))

= − ∂

∂T

[

ln(P̂ (0, T )) −
m∑

k=1

(∫ t

0

σk(s, T ) dW k
s +

1
2

∫ t

0

(σk(s, T ))2 ds
)

+
d∑

k=m+1

(∫ t

0

σk(s, T )
√
hk−m

s ds+
∫ t

0

ln

(

1 − σk(s, T )
√
hk−m

s

)

dpk
s

)]

= f(0, T ) +
m∑

k=1

(∫ t

0

∂

∂T
σk(s, T ) dW k

s +
1
2

∫ t

0

∂

∂T
(σk(s, T ))2 ds

)

+
d∑

k=m+1

(

−
∫ t

0

∂

∂T
σk(s, T )

√
hk−m

s ds−
∫ t

0

∂

∂T
ln

(

1 − σk(s, T )
√
hk−m

s

)

dpk
s

)

= f(0, T ) +
m∑

k=1

∫ t

0

∂

∂T
σk(s, T ) (σk(s, T ) ds+ dW k

s )

+
d∑

k=m+1

∫ t

0

1

1 − σk(s,T )√
hk−m

s

∂

∂T
σk(s, T ) (σk(s, T ) ds+ dW k

s ).

14.3 (*) (Hardy Hulley) Fix i, j ∈ {0, 1, . . . , d} such that i = j, then the
function

pi,j
s,t(xi, xj ;yi, yj) =

1
2πyiyj |σi||σj |(t− s)

√
1 − (�i,j)2

× exp

⎧
⎨

⎩
− 1

2(1 − (�i,j)2)

⎡

⎣

(
ln
(

yi

xi

)
+ 1

2 |σi|2(t− s)

|σi|
√
t− s

)2

− 2�i,j

(
ln
(

yi

xi

)
+ 1

2 |σi|2(t− s)
)(

ln
(

yj

xj

)
+ 1

2 |σj |2(t− s)
)

|σi||σj |(t− s)

+

(
ln
(

yj

xj

)
+ 1

2 |σj |2(t− s)

|σj |
√
t− s

)2
⎤

⎦

⎫
⎬

⎭
,

(S.6)

for all xi, xj , yi, yj ∈ (0,∞), where s, t ∈ [0,∞) such that s ≤ t, is the joint
transition density of Ŝi,c and Ŝj,c over the time interval [s, t]. The parameter
�i,j in (S.6) is determined by

�i,j =
m∑

k=1

σi,kσj,k

|σi||σj | . (S.7)
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It follows from (14.4.8) that �i,j is the correlation between the Brownian
motions Ŵ i and Ŵ j .

To start with, we perform an auxiliary computation which allows us to
price both instruments under consideration. Fix t ∈ [0,∞) and let gt be a non-
negative At-measurable random variable. We will now evaluate the following
expression:

1
Ŝj,c

t

E
(
1{Ŝj,c

T ≥gtŜ
i,c
T }Ŝ

j,c
T

∣
∣
∣At

)
=
∫ ∞

0

∫ ∞

αtx

y

Ŝj,c
t

pi,j
t,T

(
Ŝi,c

t , Ŝj,c
t ;x, y

)
dy dx.

(S.8)
After the change of variables we obtain

x̄ =
ln
(

x
Ŝi,c

t

)
+ 1

2 |σi|2(T − t)

|σi|
√
T − t

(S.9)

ȳ =
ln
(

y

Ŝj,c
t

)
+ 1

2 |σj |2(T − t)

|σj |
√
T − t

, (S.10)

and (S.8) becomes

1
2π
√

1 − (�i,j)2

∫ ∞

−∞

∫ ∞

d(x̄)

exp
{
− 1

2(1 − (�i,j)2)

[(
−x̄+ �i,j |σj |

√
T − t

)2

− 2�i,j
(
−x̄+ �i,j |σj |

√
T − t

)(
−ȳ + |σj |

√
T − t

)

+
(
−ȳ + |σj |

√
T − t

)2
]}

dȳ dx̄,

(S.11)

where

d(x̄) =
ln
(

αtS
i,c
t

Sj,c
t

)
−
(

1
2 |σi|2 − 1

2 |σj |2
)
(T − t)

|σj |
√
T − t

+
|σi|
|σj | x̄, (S.12)

for all x̄ ∈ �. Another transformation of variables,

x̃ = −x̄+ �i,j |σj |
√
T − t; (S.13)

ỹ = −ȳ + |σj |
√
T − t, (S.14)

allows us to express (S.11) as

1
2π
√

1 − (�i,j)2

∫ ∞

−∞

∫ d(x̃)

−∞
exp
{
− 1

2(1 − (�i,j)2)

[
x̃2 − 2�i,j x̃ỹ + ỹ2

]}
dỹ dx̃,

(S.15)
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where

d(x̃) =
ln
(

Sj,c
t

αtS
i,c
t

)
+ 1

2

(
σ̂i,j
)2(T − t)

|σj |
√
T − t

+
|σi|
|σj | x̃ = a+ bx̃, (S.16)

for all x̃ ∈ �, with

σ̂i,j =
√

|σi|2 − 2�i,j |σi||σj | + |σj |2. (S.17)

After the transformation
ŷ = ỹ − bx̃, (S.18)

for all x̃ ∈ � and ỹ ∈ (−∞, d(x̃)), (S.15) becomes

1
2π
√

1 − (�i,j)2

∫ a

−∞

∫ ∞

−∞
exp
{
− 1

2(1 − (�i,j)2)

×
[
x̃2 − 2�j x̃(ŷ + bx̃) + (ŷ + bx̃)2

]}
dx̃ dŷ.

(S.19)

Now, performing the change of variables

x̂ =

√
1 − 2b�j + b2

1 − (�i,j)2

(
x̃+

b− �i,j

1 − 2b�i,j + b2
ŷ

)
, (S.20)

for all x̃ ∈ �, transforms (S.19) into

1
√

1 − 2b�i,j + b2
1√
2π

∫ a

−∞
exp
{
−1

2
ŷ2

1 − 2b�i,j + b2

}
dŷ. (S.21)

Finally, we set

z =
ŷ

√
1 − 2b�i,j + b2

, (S.22)

for all ŷ ∈ (−∞, a), so that (S.21) becomes

1
2π

∫ a√
1−2b�i,j+b2

−∞
exp
{
−1

2
z2

}
dz = N

(
a

√
1 − 2b�i,j + b2

)

= N

⎛

⎜
⎝

ln
(

Sj,c
t

gtSi,c
t

)
+ 1

2

(
σ̂i,j
)2(T − t)

σ̂i,j
√
T − t

⎞

⎟
⎠ ,

(S.23)

where N(·) is the Gaussian distribution function.



16 Solutions for Exercises 657

Now, to obtain (14.4.33) perform the substitutions gt = g(n) and i = 0
in (S.23) and substitute the resulting expression into (14.4.31), while remem-
bering that S0,c = S0. Finally, perform the substitutions gt = g(n)−1, i = j
and j = 0 in (S.23) and substitute the resulting expression into (14.4.37), to
obtain (14.4.38). It is important to remember in this case that the symmetry
of the Gaussian distribution gives N(−d2(n)) = 1−N(d2(n)), for each n ∈ N ,
while

∞∑

n=0

exp{−hk−m(T − t)} (hk−m(T − t))n

n!
= 1, (S.24)

since this expression is the total probability of a Poisson random variable with
parameter hk−m(T − t).

14.4 (*) See above.

14.5 (*) (Hardy Hulley) Firstly, by the function

p4(�, x;ϕ, y) =
1

2(ϕ− �)

√
y

x
exp
{
− x+ y

2(ϕ− �)

}

×
∞∑

n=0

1
n!Γ (n+ 2)

( √
xy

2(ϕ− �)

)2n+1

,

(S.25)

for all x, y ∈ (0,∞) and �, ϕ ∈ [0,∞) such that � < ϕ, is the transition density
of a squared Bessel process of dimension four. Equation (S.25) is obtained from
(8.7.9) with the help of the series expansion for the modified Bessel function of
the second kind I1(·), see Abramowitz & Stegun (1972). Note the presence in
(S.25) of the gamma function Γ (·), defined in (1.2.10). It satisfies the following
identity:

Γ (n) = (n− 1)! , (S.26)

for each n ∈ N .
Now fix i, j ∈ {0, . . . , d} and t ∈ [0,∞) and let gt be a positive At-

measurable random variable. Again, we perform an auxiliary computation
that enables us to price both instruments under consideration. Noting that
Xi and Xj , given by (14.4.21), are independent squared Bessel processes of
dimension four, we have
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1
Ŝj,c

t

E

(
1{

Ŝj,c
T ≥gtŜi,c

T

}Ŝj,c
T

∣
∣
∣
∣At

)

= Xj
ϕj(t)E

(

1{
Xj

ϕj(T )
≤g−1

t Xi
ϕi(T )

} 1
Xj

ϕj(T )

∣
∣
∣
∣
∣
At

)

=
∫ ∞

0

∫ g−1
t x

0

Xj
ϕj(t)

y
p4

(
ϕi(t), Xi

ϕi(t);ϕ
i(T ), x

)

× p4

(
ϕj(t), Xj

ϕj(t);ϕ
j(T ), y

)
dy dx

=
∫ ∞

0

∫ g−1
t x

0

1
y

exp
{
−1

2
λj

t

}
1

ϕi(T ) − ϕi(t)
exp
{
−1

2
λi

t

}

×
[ ∞∑

l=0

1
l!Γ (l + 2)2l+1

(
1
2
λj

t

)l+1(
y

ϕj(T ) − ϕj(t)

)l+1

× exp
{
− y

2(ϕj(T ) − ϕj(t))

}]

×
[ ∞∑

q=0

1
q!Γ (q + 2)2q+2

(
1
2
λi

t

)q(
x

ϕi(T ) − ϕi(t)

)q+1

× exp
{
− x

2(ϕi(T ) − ϕi(t))

}]

dy dx

= exp
{
−1

2
(
λj

t + λi
t

)
} ∞∑

l=0

(
1
2λ

j
t

)l+1

l!Γ (l + 2)2l+1

∞∑

q=0

(
1
2λ

i
t

)q

q!Γ (q + 2)2q+2

×
∫ ∞

0

∫ ḡtx̄

0

exp
{
−1

2
(x̄+ ȳ)

}
ȳlx̄q+1 dȳ dx̄.

(S.27)

Here we have made the substitutions

x̄ :=
x

ϕi(T ) − ϕi(t)
; (S.28)

ȳ :=
y

ϕj(T ) − ϕj(t)
. (S.29)

The constant in the upper limit of the inner integral in (S.27) is thus given
by

ḡt :=
ϕi(T ) − ϕi(t)

gt
. (S.30)

The random variables λi
t and λj

t are given by (14.4.24).
With the aid of another change of variables, namely

ỹ :=
ȳ

x̄
, (S.31)



16 Solutions for Exercises 659

(S.27) now becomes

exp
{
−1

2
(
λj

t + λi
t

)
} ∞∑

l=0

(
1
2λ

j
t

)l+1

l!Γ (l + 2)2l+1

∞∑

q=0

(
1
2λ

i
t

)q

q!Γ (q + 2)2q+2

×
∫ ḡt

0

∫ ∞

0

exp
{
−1

2
x̄(1 + ỹ)

}
ỹlx̄q+l+2 dx̄ dỹ

= exp
{
−1

2
(
λj

t + λi
t

)
} ∞∑

l=0

(
1
2λ

j
t

)l+1

l!Γ (l + 2)2l+1

∞∑

q=0

(
1
2λ

i
t

)q

q!Γ (q + 2)2q+2

× Γ (q + l + 3)2q+l+3

∫ ḡt

0

ỹl

(1 + ỹ)q+l+3
dỹ

= exp
{
−1

2
(
λj

t + λi
t

)
} ∞∑

m=1

(
1
2λ

j
t

)m

m!

∞∑

q=0

(
1
2λ

i
t

)q

q!
Γ (q +m+ 2)
Γ (m)Γ (q + 2)

×
∫ ḡt

0

ỹm−1

(1 + ỹ)q+m+2
dỹ

= exp
{
−1

2
(
λj

t + λi
t

)
} ∞∑

m=1

(
1
2λ

j
t

)m

m!

∞∑

q=0

(
1
2λ

i
t

)q

q!
Γ (q +m+ 2)
Γ (m)Γ (q + 2)

× ḡm
t

m
2F1

(
m, q +m+ 2;m+ 1;−ḡt

)

=
∞∑

m=1

exp
{
−1

2λ
j
t

}(
1
2λ

j
t

)m

m!

∞∑

q=0

exp
{
−1

2λ
i
t

}(
1
2λ

i
t

)q

q!
Γ (q +m+ 2)

Γ (m+ 1)Γ (q + 2)
ḡm

t

× 2F1

(
m, q +m+ 2;m+ 1;−ḡt

)
.

(S.32)

The first equality in (S.32) follows from the definition of the gamma function in
(1.2.10). The second equality follows from some algebra and (S.26). The third
equality was obtained with the help of Mathematica’s symbolic integration
facility. The final equality is another application of (S.26). The hypergeometric
function 2F1(a, b; c; z) is described in Abramowitz & Stegun (1972). Now, note
that

exp
{
−1

2λ
j
t

}(
1
2λ

j
t

)0

0!

∞∑

q=0

exp
{
−1

2λ
i
t

}(
1
2λ

i
t

)q

q!
Γ (q + 0 + 2)

Γ (0 + 1)Γ (q + 2)
ḡ0

t

× 2F1

(
0, q + 0 + 2; 0 + 1;−ḡt

)

= exp
{
−1

2
λj

t

} ∞∑

q=0

exp
{
−1

2λ
i
t

}(
1
2λ

i
t

)q

q!

= exp
{
−1

2
λj

t

}
.

(S.33)
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The first equality follows from (S.26) and the properties of the hypergeometric

function. For the second equality, note that
∑∞

q=0

exp
{
− 1

2 λi
t

}(
1
2 λi

t

)q

q! is the total
probability of a Poisson random variable with parameter 1

2λ
i
t.

Thus, putting (S.32) and (S.33) together, we see that (S.27) can be ex-
pressed as
[ ∞∑

m=0

exp
{
−1

2λ
j
t

}(
1
2λ

j
t

)m

m!

∞∑

q=0

exp
{
−1

2λ
i
t

}(
1
2λ

i
t

)q

q!
Γ (q +m+ 2)

Γ (m+ 1)Γ (q + 2)
ḡm

t

× 2F1

(
m, q +m+ 2;m+ 1;−ḡt

)
]

− exp
{
−1

2
λj

t

}

=

[ ∞∑

m=0

exp
{
−1

2λ
j
t

}(
1
2λ

j
t

)m

m!

∞∑

q=0

exp
{
−1

2λ
i
t

}(
1
2λ

i
t

)q

q!
Γ (q +m+ 2)
Γ (m)Γ (q + 2)

×
∫ ḡt

0

ỹm−1

(1 + ỹ)q+m+2
dỹ

]

− exp
{
−1

2
λj

t

}

= P

(
χ′2

0 (λj
t )

χ′2
4 (λi

t)
≤ ḡt

)

− exp
{
−1

2
λj

t

}
,

(S.34)

according to Johnson et al. (1995), (30.49), p. 499, where χ′2
ν (λ) denotes a non-

central chi-square distributed random variable with ν degrees of freedom and
non-centrality λ. Following the lead of Johnson et al. (1995), we express the
distribution function of the ratio of non-central chi-square random variables
χ′2

ν1
(λ1)/χ′2

ν2
(λ2) as G′′

ν1,ν2
(· ;λ1, λ2), whence (S.34) becomes

G′′
0,4

(ϕi(T ) − ϕi(t)
gt

;λj
t , λ

i
t

)
− exp

{
−1

2
λj

t

}
, (S.35)

by (S.30).
Now to obtain (14.4.36) perform the substitutions gt = g(n) and i = 0 in

(S.35) and substitute the resulting expression into (14.4.31). Finally, perform
the substitutions gt = g(n)−1, i = j and j = 0 in (S.35) and substitute the
resulting expression into (14.4.37), to obtain (14.4.10).

14.6 (*) See above.

Solutions for Exercises of Chapter 15

15.1 By the Lyapunov inequality the variance Var((Xi)
1
2 ) is bounded. That

is,

Var
(
(Xi)

1
2

)
= E

((
(Xi)

1
2 − E

(
(Xi)

1
2

))2
)

≤ E

((
(Xi)

1
2

)2
)

= E (|Xi|) ≤
√
E ((Xi)2) =

√
σ2 + μ2 < ∞.
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Therefore, the Monte Carlo estimator �̂n = 1
n

∑n
i=1(Xi)

1
2 is strongly consis-

tent for estimating � = E((Xi)
1
2 ) since

Var (�̂n) = E
(
(�̂n − �)2

)
= E

⎛

⎝

(
1
n

n∑

i=1

(
(Xi)

1
2 − �

)
)2
⎞

⎠

=
1
n2

n∑

i=1

E

((
(Xi)

1
2 − �

)2
)

=
1
n

(
1
n

n∑

i=1

Var
(
(Xi)

1
2

)
)

=
1
n

Var
(
(Xi)

1
2

)
=

1
n

√
σ2 + μ2.

Consequently, the variance of the estimator �̂n decreases proportionally to 1
n

and Var(�̂n) converges almost surely to zero.

15.2 By application of the Wagner-Platen expansion one obtains directly

Xt0+h −Xt0 = aXt0 dt+ bXt0 (Wt0+h −Wt0) +R.

15.3 The Euler scheme is given by

Yn+1 = Yn + (μYn + η)Δ+ γ Yn ΔW,

where ΔW = Wτn+1 −Wτn . The Milstein scheme has the form

Yn+1 = Yn + (μYn + η)Δ+ γ Yn ΔW +
γ2

2
Yn((ΔW )2 −Δ).

15.4 Due to the additive noise of the Vasicek model the Euler and Milstein
schemes are identical and of the form

Yn+1 = Yn + γ(r̄ − Yn)Δ+ β ΔW,

where ΔW = Wτn+1 −Wτn .

15.5 The explicit strong order 1.0 scheme has the form

Yn+1 = Yn + Yn μΔ+ Yn σΔW

+
σ Yn

2
√
Δ

(
μΔ+ σ

√
Δ
)

((ΔW )2 −Δ),

where ΔW = Wτn+1 −Wτn .
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15.6 (*) It follows that the diffusion coefficients for the first Wiener process
W 1 are

b1,1 = 1 and b2,1 = 0

and that of the second Wiener process are

b1,2 = 0 and b2,2 = X1
t .

Therefore it follows that

L1 b2,2 = b1,1 ∂

∂x1
b2,2 + b2,1 ∂

∂x2
b2,2 = 1

and
L2 b2,1 = b1,2 ∂

∂x1
b2,1 + b2,2 ∂

∂x2
b2,1 = 0.

Since the above values are not equal, the SDE is not commutative.

15.7 (*) The Milstein scheme applied to the given SDE is of the form

Y 1
n+1 = Y 1

n +ΔW 1

Y 2
n+1 = Y 2

n + Y 1
n ΔW 2 + I(1,2)

with
I(1,2) =

∫ τn+1

τn

∫ s2

τn

dW 1
s1
dW 2

s2
.

ΔW 1 = W 1
τn+1

−W 1
τn

ΔW 2 = W 2
τn+1

−W 2
τn

15.8 Due to symmetry one obtains

E
(
ΔŴ

)
= E

((
ΔŴ

)3
)

= 0.

Furthermore, it follows

E

((
ΔŴ

)2
)

=
1
2
Δ+

1
2
Δ = Δ

and thus

E

((
ΔŴ

)2
)
−Δ = 0.

This proves that
∣
∣
∣E
(
ΔŴ

)∣∣
∣+
∣
∣
∣
∣E
((

ΔŴ
)3
)∣∣
∣
∣+
∣
∣
∣
∣E
((

ΔŴ
)2

−Δ

)∣∣
∣
∣ = 0 ≤ KΔ2.
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15.9 We have the expectation

E

(
1 + Z +

1
2

(Z)2
)

=
3
2

and it follows that

E(V +
N ) = E(V −

N ) = E(V̂N ) =
3
2
.

Therefore, V̂N is unbiased.
We calculate the variance of V +

N , which is

Var(V +
N ) = E

⎛

⎝

(
1
N

N∑

k=1

(
1 + Z(ωk) +

1
2
(Z(ωk))2

)
− 3

2

)2
⎞

⎠

= E

⎛

⎝

(
1
N

N∑

k=1

(
Z(ωk) +

1
2

(
(Z(ωk))2 − 1

))
)2
⎞

⎠

=
1
N

E

((
Z +

1
2

(
(Z)2 − 1

))2
)

=
1
N

(
E
(
(Z)2

)
+

1
4

(
E
(
(Z)4

)
− 2E

(
(Z)2

)
+ 1
))

=
1
N

(
1 +

1
4

(3 − 2 + 1)
)

=
3

2N
.

Alternatively, we obtain

Var
(
V̂N

)
= E

((
1
2

(
1
N

N∑

k=1

(
1 + Z(ωk) +

1
2

(Z(ωk))2
)

+
1
N

N∑

k=1

(
1 − Z(ωk) +

1
2

(Z(ωk))2
))

− 3
2

)2
⎞

⎠

= E

⎛

⎝

(
1
N

N∑

k=1

1
2

(
(Z(ωk))2 − 1

)
)2
⎞

⎠

=
1
N

1
4
E

((
(Z)2 − 1

)2
)

=
1

4N
(
E
(
(Z)4

)
− 2E

(
(Z)2

)
+ 1
)

=
1

4N
(3 − 2 + 1) =

1
2N

.
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This shows that the antithetic method provides a Monte Carlo estimate with
a third of the variance of a raw Monte Carlo estimate.

15.10 For E(V ∗
N ) = γ = 1 we have E(ṼN ) = 2

3 , and ṼN is an unbiased
estimator. The variance of ṼN is then obtained as

Var
(
ṼN

)
= E

((
1
N

N∑

k=1

(
1 + Z(ωk) +

1
2
(Z(ωk))2

)

+α

(

1 − 1
N

N∑

k=1

(1 + Z(ωk))

)

− 3
2

)2
⎞

⎠

= E

⎛

⎝

(
1
N

N∑

k=1

(
Z(ωk) (1 − α) +

1
2
(
(Z(ωk))2 − 1

)
))2

⎞

⎠

=
1
N

E

((
Z (1 − α) +

1
2
(
(Z)2 − 1

)
)2
)

=
1
N

(
E
(
(Z)2 (1 − α)2

)
+

1
4

(
E
(
(Z)4

)
− 2E

(
(Z)2

)
+ 1
))

=
1
N

(
(1 − α)2 +

1
4

(3 − 2 + 1)
)

=
1
N

(
1
2

+ (1 − α)2
)
.

It turns out that the minimum variance can be achieved for α = αmin = 1,
which yields Var(ṼN ) = 1

2 N .

15.11 For the multi-period binomial tree we have the benchmarked return

u = exp{σ
√
Δ} − 1

with probability p = −d
u−d and the benchmarked return

d = exp{−σ
√
Δ} − 1

with the remaining probability 1 − p. The binomial European put price at
time t = 0 is then given by the expression
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SδH
0 = ŜδH

0 = E

((
K̂ − ŜT

)+ ∣
∣A0

)

=
nT∑

k=0

nT !
k ! (nT − k) !

pk (1 − p)nT −k
(
K̂ − (1 + u)k(1 + d)nT −k Ŝ0

)+

= K̂

k̄∑

k=0

nT !
k ! (nT − k) !

pk (1 − p)nT −k

−S0

k̄∑

k=0

nT !
k ! (nT − k) !

pk (1 − p)nT −k (1 + u)k(1 + d)nT −k,

where k̄ denotes the first integer k for which S0 (1 + u)k(1 + d)nT −k < K̂.

15.12 Let us introduce for the Box-Muller random variables

Y1 = cos(2πX2)
√

−2 lnX1

Y2 = sin(2πX2)
√

−2 lnX1,

with X1, X2 ∼ U(0, 1) uniformly distributed and independent, the functions
x1(y1, y2) = exp{−1

2 (y2
1 + y2

2)} and x2(y1, y2) = 1
2 π arctan(y2

y1
). If we denote

by p(x1, x2) the joint density of (X1, X2), the joint density q(y1, y2) of (Y1, Y2)
is given by

q(y1, y2) = p(x1(y1, y2), x2(y1, y2))
∣
∣
∣
∣det

[
∂xi

∂yi

]∣∣
∣
∣

= 1
1
2π

e−
1
2 (y2

1 + y2
2) =

1
2π

e−
1
2 y2

1
1
2π

e−
1
2 y2

2 ,

which is the density of two independent Gaussian random variables.
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Föllmer, H. (1981). Calcul d’Itô sans probabilités, Seminar on Probability, XV, Vol.

850 of Lecture Notes in Math., Springer, Berlin, pp. 143–150. (Univ. Strasbourg,
Strasbourg, 1979/1980), (in French).
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Itô differential, 192, 212
Itô formula, 206, 208, 212, 224, 230

for semimartingales, 224
Itô integral, 187, 191, 199, 247

properties, 194
Itô process with jumps, 258

Jensen’s inequality, 31
joint distribution, 39, 45
jump adapted

scheme, 569
simplified Euler scheme, 586
time discretization, 569, 586

jump diffusion, 258
market, 513, 519

jump martingale, 514
jump size, 181

Kelly strategy, 408
knock-out-barrier option, 360
Kolmogorov

backward equation, 115, 146, 161
forward equation, 115, 145, 160

kurtosis, 27
excess, 29
sample, 58

Lagrange multiplier, 412
Laplace transform, 35
Law of

iterated conditional expectations, 33

Large Numbers, 56
least-squares estimate, 35
Lebesgue almost everywhere, 11
Lebesgue’s Dominated Convergence

Theorem, 94
leptokurtic, 28, 82
level of confidence, 64
leverage effect, 440
Lévy measure, 127
Lévy process, 126, 202, 568
Lévy’s Theorem, 227
likelihood

function, 79, 89
ratio, 88

test, 80
limited liability, 284, 376
linear congruential pseudo-random

number generators, 552
linear growth bound, 264
linear SDE

with multiplicative noise, 243
with additive noise, 241

Lipschitz condition, 264
LLN

strong, 56
weak, 57

local martingale, 183
strict, 309

local volatility, 462
model, 461

locally optimal, 405, 533
locally riskless, 368
log-likelihood function, 79
log-return, 1

Student t, 67
log-utility, 420, 423
lognormal, 36

asset price model, 14
model, 82, 134, 144

logstable model, 82
long in a security, 279
long term growth rate, 386, 522
Longstaff model, 145
Lyapunov inequality, 31

marginal distribution, 39, 46
mark set, 125, 568
marked point process, 124
market
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activity, 505
complete, 436
incomplete, 436
jump diffusion, 513, 519
portfolio, 334, 416
price

of event risk, 515
of risk, 370, 515
of risk contribution, 497

Markov chain
continuous time, 113
discrete time, 110, 111

Markov inequality, 32
Markov process, 110, 272

continuous, 133, 135, 141
Markov property, 110, 111, 135

continuous time, 114
Markowitz efficient frontier, 409
Marsaglia method, 556
martingale, 166

local, 183
Representation Theorem, 433
square integrable, 166
strict local, 184

matrix, 41
autocovariance, 44
covariance, 41, 44
fundamental, 248
intensity, 115
invertible, 41
positive definite, 73
random, 44
regular, 41
sparse, 606
transition probability, 114

maturity date, 278
maximal element, 389
maximum step size, 560
mean, 10, 22

reversion level, 243
vector, 41

mean-square error, 72
mean-variance optimality, 406
measurable function, 8
measure transformation method, 588
Merton model, 255, 536, 539
Merton’s jump diffusion model, 254
method of moments, 74
Milstein scheme, 563

minimal
equivalent martingale measure, 435
market model, 143, 253, 483, 488, 539

MMM, 143
multi-asset stylized, 529
multi-currency, 494
with random scaling, 502

model
3/2, 478
affine, 144, 158
ARCH diffusion, 477, 480
Bachelier, 142
Black, 144
Black-Derman-Toy, 144
Black-Karasinski, 144
Black-Scholes, 134, 142, 281
CIR, 144
constant elasticity of variance, 143,

444
Courtadon, 145
Cramér-Lundberg, 123, 129, 257
exponential Lévy, 126
extended Vasicek, 144
Heston, 475
Ho-Lee, 144
Hull-White, 145
lognormal, 82, 134, 144
logstable, 82
Longstaff, 145
Merton, 255
minimal market, 143, 253, 483, 488,

539
modified CEV, 445
Ornstein-Uhlenbeck, geometric, 143
Pearson-Sun, 144
Platen, 145
Sandmann-Sondermann, 145
Scott, 475
variance gamma, 84, 90
Vasicek, 243
Wiggins, 475

modified Bessel function
of the first kind, 16, 147
of the third kind, 18

modified CEV model, 445
modified trapezoidal method, 608
modulus, 552
moment, 22, 30

pth, 36
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central, 30
equations, 244
first empirical, 58
generating function, 35
normalized, 31
normalized central, 30
second central, 24, 30

Monotone Convergence Theorem, 94
Monte Carlo

estimator, raw, 570
method, classical, 570
simulation, 551

Morgan Stanley capital weighted world
stock accumulation index, 334

MSCI, 344, 417
multi-asset stylized MMM, 529
multi-currency MMM, 494
mutual fund, 535
mutually exclusive, 5

natural filtration, 164
negative skew, 442
net growth rate, 253, 489
net present value, 331
NFLVR, 377
no arbitrage, 319
no free lunch with vanishing risk, 377
non-central chi-square distribution, 16,

307, 500, 545
nonnegative portfolio, 375
nonreplicable payoff, 427
normal variance mixture model, 68, 81
normal-inverse Gaussian mixture

distribution, 19
normalized GOP, 490
normalized index, 254
normally distributed, 14
Novikov condition, 348
null event, 6
null hypothesis, 66
numeraire

change, 320
invariance, 286
pairs, 353
portfolio, 325

numerical stability, 566

observation vector, 70
operational risk, 124

optimization, 412
option price, 286
Optional Sampling Theorem, 172
order of strong convergence, 563
Ornstein-Uhlenbeck process, 139, 242,

244
geometric, 139
standard, 138

out-of-the-money, 278
outcome, 2
overbetting, 412

parameter vector, 70
partial integro differential equation,

360, 544
partition, 7
payoff, 378

function, 277
rate, 358

Pearson-Sun model, 144
perfect hedge, 284
Platen model, 145
Poisson

jump measure, 226, 568
measure, 125, 127, 200
probability, 10
random variable, 10

Poisson process, 120
compensated, 170
compound, 123
standard, 121
transformed, 122

Portfolio Selection Theorem, 407
positive definite, 73
power utility, 420, 423
predictor-corrector method, 608
pricing function, 280
pricing kernel, 339
primary security account, 368, 514
probability, 2, 4

binomial, 62
of ruin, 130
space, 6

filtered, 164
process

affine, 316
Bessel, 271
counting, 514
diffusion, 141, 156, 160
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Lévy, 126, 202, 568
Markov, 110, 272
Ornstein-Uhlenbeck, 139
Poisson, 120
predictable, 172
square root, 146, 250, 311, 312
squared Bessel, 271, 304, 311
Wiener, 109, 137

profit and loss, 283
pseudo-random numbers, 552
pure jump process, 222
put-call parity, 295

quadratic variation, 174
approximate, 174

quantile, 66
quasi Monte Carlo, 577

Radon-Nikodym derivative, 338, 345
random

bit generator, 554
matrix, 44
measure, 125
number generator, natural, 553
variable, 8

independent, 43
vector, 44

random walk
Gaussian, 104
symmetric, 103

real world
martingale decomposition, 434
martingale representation, 327
pricing, 320

formula, 326, 430
realization, 105
reference level, 243, 253
regular matrix, 41
relative arbitrage, 389
relative frequency, 2
replicated payoff, 281
replicating portfolio, 431
return, 2
rho, 293
Richardson extrapolation, 583
Riemann-Stieltjes integral, 192, 247
right-continuous, 10
risk aversion coefficient, 408, 422
risk neutral, 320

pricing, 337, 380
formula, 341

probability measure, 337
risk premium, 221, 332, 406

sample
kurtosis, 58
mean, 55
path, 105
skewness, 58
space, 2
variance, 58

Sandmann-Sondermann model, 145
savings account, 219, 384
savings bond, 453
scale measure, 157
scaling process, 503
scaling property, 305
scenario simulation, 551, 560
Scott model, 475
SDE, 209

with jumps, 257
self-financing, 353

portfolio, 282, 370
strategy, 282

semimartingale, 197
special, 198

sensitivity, 290
sequence of

approximate GOPs, 395, 528
CFMs, 391

regular, 394
diversified portfolios, 393, 526
DPs, 526
JDMs, 523

regular, 527
set of real numbers, 8
Sharpe ratio, 406
short in a security, 279
short rate model, 143
short-selling, 279
sigma-algebra, 5, 163, 164

predictable, 171
simplified weak

Euler scheme, 579
order 2.0 Taylor scheme, 580

simulation
Monte Carlo, 551
scenario, 551, 560
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skewed, 26
skewness, 25

sample, 58
smile, 442
sparse matrix, 606
spatial discretization, 601
specific generalized volatility, 525
specific market risk, 335, 391
specific volatility, 390
speed of adjustment, 243, 253
square integrable, 23
square root process, 146, 250, 311, 312

generalized, 148
squared Bessel process, 271, 304, 311,

446, 486
time transformed, 311

SR process, 146
standard deviation, 24
standard Gaussian random variable, 13
state price density, 339
state space, 100
stationary density, 138, 154
stationary probability, 116
statistical error, 579
stochastic

differential equation, 209, 237, 239
discount factor, 339
integral, 187

multiple, 559
integrals

multiple, 564
process, 100, 105

continuous time, 100
indistinguishable, 106
measurable, 106
moments, 107
stationary, 107
stationary independent increments,

108, 126
volatility, 254, 439

model, 472
stopping time, 170

inaccessible, 172
strategy, 370
stratified sampling, 576
strict local martingale, 309
strict supermartingale, 329
strictly positive portfolio, 371
strike price, 277

strong
approximation, 563
consistency, 570
order 1.5 Taylor scheme, 564
solution, 263
uniqueness, 264

Student t, 17
density, 19
distribution, p-dimensional, 49
log-return, 494
random variable, 557

stylized MMM, 478
sub-sigma-algebra, 33, 164
submartingale, 168
subordination, 81
successive overrelaxation method, 607
supermartingale, 168, 184, 186, 375, 520

strict, 168
sure event, 3
survival probability, 130
systematic

error, 579
outperformance, 523
risk, 335
risk parameter, 335, 415

systematically outperformance, 388

Tanaka’s SDE, 263
terminal condition, 285
theta, 292

method, 605
time of ruin, 129
time set, 100
time transformed squared Bessel

process, 311
total market price of risk, 406, 534
total probability, 8
total specific volatility, 394
tracking rate, 395, 527

expected, 528
tradable martingale representation, 432
trading uncertainty, 368
trajectory, 105
transition density, 137

lognormal, 140
transition probability, 111

matrix, 114
transpose, 41
tree method, 591
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Two Fund Separation Theorem, 408
two-point random variable, 10

unbiased, 570
underlying value, 404, 486
unfair portfolio, 328
unhedgable part, 434
uniformly distributed, 12
unique weak solution, 263
uniqueness, 261, 263

in law, 263
of strong solution, 263

utility
function, 420
indifference price, 428
indifference pricing, 428

formula, 429

Value at Risk, 65
value line index, 399
VaR analysis, 67
variance, 24, 30

reduction, 573
sample, 58

Vasicek model, 107, 144, 243
vector, 41

stochastic differential equation, 247
vega, 293

volatility, 178, 216, 238, 368
implied, 441, 442
local, 462
parametrization, 483
stochastic, 439

von Neumann condition, 610

Wagner-Platen expansion, 558, 580
weak

approximation, 579
convergence, 578
error, 579
order, 578

2.0 extrapolation, 583
2.0 predictor-corrector method, 585
2.0 Taylor scheme, 580
4.0 extrapolation, 583

Wiener process, 109, 137
multi-dimensional, 210
transformed, 109, 142

Wiggins model, 475
with probability one, 6
world stock index, 85, 401
WSI, 401

Yamada condition, 270

zero coupon bond, 330, 381
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