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Summary. This paper studies numerical methods for time-harmonic eddy current
problems in the case of homogeneous, isotropic, and linear materials. It provides
a survey of approaches that entirely rely on boundary integral equations and their
conforming Galerkin discretization. Starting point are both E- and H-based strong
formulation, for which issues of gauging and topological constraints on the existence
of potentials are discussed.

Direct boundary integral equations and the so-called symmetric coupling of the
integral equations corresponding to the conductor and the non-conducting regions
are employed. They give rise to coupled variational problems that are elliptic in
suitable trace spaces. This implies quasi-optimal convergence of conforming Galerkin
boundary element methods, which make use of divp-conforming trial spaces for
surface currents.

1 Introduction

A great deal of electromagnetic field problems faced in an industrial context
fall into the category of eddy current problems. This applies, for instance, for
problems of inductive heating, magnetomechanical valves, and the computa-
tion of inductances of bulky conductors in power electronics.

The typical setting of eddy current problems involves a bounded conduct-
ing region {2, and its complement 2, := R?\ {2, the non-conducting air region.
Usually, {2, is supposed to have the electromagnetic properties of empty space
(e = €0, = pp), whereas 2, might be filled with some “complex” conducting
material. In this paper we restrict our attention to the case of a simple, linear,
homogeneous, and isotropic conductor characterized by a constant conductiv-
ity o > 0 and permeability . > 0. This can be a reasonable approximation
for a non-ferromagnetic material like aluminum.

In eddy current simulations the shape of the conductor is usually provided
in some CAD format. Therefore, we can take for granted that the surface of
(2. is piecewise smooth and consists of a few curved faces. In mathematical
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terms, {2, is a curvilinear Lipschitz polyhedron in the sense of [30, Sect. 1].
All the developments of this paper refer to such a geometric setting.

We restrict ourselves to time harmomic current excitation with angular
frequency w > 0. Hence, thanks to the assumed linearity of all materials in-
volved, temporal Fourier transform allows reduction to pure spatial boundary
value problems for the unknown complex amplitudes (phasors) of the electro-
magnetic fields. Two common types of exciting alternating currents will be
taken into account:

1. The total current in a loop of the conductor is prescribed (non-local in-
ductive excitation, [42, Sect. 5]). Here, by “loop” we mean a connected
component of {2., whose first Betti number is equal to 1. Homeomorphic
images of a torus are typical examples, see Fig. 1 (left)

2. A driving force on charge carriers is modelled by a compactly sup-
ported generator current js, which has to be divergence free every-
where [42, Sect. 3]. The case suppjs N 2.cl = ( describes excitation
through a stranded inductor coil or antenna (inductive coupling), whereas
supp js N$2. # ) models wires feeding a current into 2. (galvanic coupling,
see Fig. 1, right).

e

Fig. 1. Current excitations: prescribed total current in a conducting loop (left),
generator current js (right). Note that js must be continued inside 2. in order to
ensure divjs = 0!

The goal of the numerical simulation may be the approximate computa-
tion of the total Ohmic losses in the conductors, and of the electromagnetic
forces acting on the conductor. This entails discretizing the field equations
and, in particular, coping with the unbounded part 2. of the generic com-
putational domain R3. The standard approach is the finite element method
[38], in which artificial homogeneous boundary conditions for the fields are
imposed “sufficiently” far away from the conductor. This is justified by the
decay properties of the fields, though it may be difficult to fix a viable cut-off
distance a priori (see [5] for an adaptive procedure). After meshing the re-
sulting bounded computational domain, the finite element discretization can
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proceed in the standard fashion. However, in case of a delicate shape of 2.,
suitable finite element meshes may comprise a prohibitively large number of
elements in (2.

Boundary element methods (BEM) applied to the field equations steer
clear of these difficulties, since they are based on integral equations posed
on the surface I' := 9f2. These are only available for homogeneous equations
with constant coefficients, but this is just the setting we take for granted
(both in 2. and f2.). Consequently, boundary element methods that rely on
a triangulation of I' alone become an option and will be the focus of this
presentation.

A central issue is how to couple the boundary integral equations associated
with 2. and 2.. The basic coupling is provided by the transmission conditions
for the electric and magnetic fields, more precisely, their tangential continuity.
This still leaves many options, most of which lead to variational problems
lacking useful structural properties.

The coupling challenge was first addressed in the context of linking do-
main based variational formulations with integral equations, a prerequisite
for coupling finite elements (FEM) with boundary elements. In this context
a breakthrough was achieved when M. Costabel in [27] introduced the so-
called symmetric coupling by using the integral equations in the form of the
Calderén projectors. This idea has been successfully extended to computa-
tional electromagnetism in [39, 40, 48].

Representations of Poincare-Steklov operators derived from Calderén pro-
jectors also guide the derivation of variational formulations involving only
boundary integral equations on an interface [31, 63, 20], see [60, 50] for an
application to domain decomposition. Here we aim to adapt these ideas to
eddy current models. It turns out that surprising new aspects come into play,
related to the issues of gauging and topological obstructions.

This paper deals with integral equations in variational form and their
Galerkin discretization by means of boundary elements. We do not discuss
“details” of implementation like computation of matrix entries [58, Ch. 5],
matrix compression [58, Ch. 7], and boundary approximation, however im-
portant these topics are for a viable code. Instead we refer to the theses [54]
and [10] for further information and numerical examples. We also gloss over
the issue of how to construct fast iterative solvers for the resulting linear
systems of equation. The reader may consult [39, Sect. 9] and [15, 23, 61].

2 Eddy Current Model

The behavior of an electromagnetic field is governed by Maxwell’s equations.
Instead of using these, in special situations simplified quasistatic models sup-
ply sufficiently accurate approximations to the true fields [33]. One of them
is the eddy current model, representing a magneto-quasistatic approximation
to Maxwell’s equations in the sense that the electric field energy is neglected.
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This model is reasonably accurate for slowly varying fields, for which the
change in magnetic field energy is dominant [3, 33]. “Slowly varying”, means
that

L\/Eouow <<1, (1)

where L is the characteristic size of the region of interest: {2, has to be small
compared to the wavelength of electromagnetic waves, which makes it possible
to ignore wave propagation. There is a second condition for the validity of
the eddy current approximation, requiring that the typical time-scale is long
compared to the relaxation time for space charges, that is, the conductivity
must be large enough so that

€
w'<l. (2)
ag

This implies that no space charges need to be taken into account. We point out
that (1) and (2) provide a “rule of thumb”, but ignore the impact of geometry:
in the presence of thin slots or gaps the eddy current approximation might
become invalid locally [8, Ch. §].

Formally, the eddy current model arises from Maxwell’s equations by drop-
ping the displacement current D. In the frequency domain the eddy current
model for complex field amplitudes (for the electric field E and the magnetic
field H) reads

cE in 2,
s in {2, .

curlE = —iwpyH inR®, curlH = { (3)

According to the aforementioned assumptions, the permeability p is constant
= p, in (2, and equal to pg in the air region {2.. The conductivity o is constant
in {2, and set to zero in {2.. The first equation is called Faraday’s law, the
second (reduced) Ampere’s law. These equations have to be supplemented by
the decay conditions

H(x) =O(|x|™"), E(x)=0(]x|™") uniformly for |x| — co . (4)

Switching from the full Maxwell’s equations to the eddy current equations
obviously involves a breach of the symmetry between electric and magnetic
quantities. As a first consequence, we cannot expect a solution for E to be
unique, because it can be altered by any gradient supported in {2, and will
still satisfy the equations (3). The solution for H will not be affected. This
reflects the fact that in a magnetoquasistatic model E is relegated to the role
of a “fictitious quantity”. Imposing the constraints

divE=0 in {2, and E-ndS=0, (5)

Iy
where Iy, k = 1,...,L, are the connected components of I', will restore
uniqueness of the solution for E. Thus, one can single out a physically mean-
ingful electric field in 2. [1]. However, this is rather a gauging procedure, i.e.
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the selection of a representative from an equivalence class of meaningful fields
[44], than part of the generic eddy current model. When devising a numerical
scheme, we should target H as principal variable.

How can there be a role of the electric field in a magneto-quasistatic con-
text? To understand this, recall that Faraday’s law in strong form involves
div(uH) = 0 everywhere. This makes it possible to introduce a magnetic vec-
tor potential A such that curl A = pH and to express E via a scalar potential
¥ as E = —grad ¥ —iA. We have ample freedom to perform gauging and use
it to set ¥ = 0. Thus, E turns out to be a scaled magnetic vector potential in
disguise. I endorse this view as the proper reading of E in (3).

A second consequence of the magneto-quasistatic model reduction is the
partial decoupling of electric and magnetic field in {2.. In fact, knowing H on
I'; we can solve a div-curl boundary value problem to obtain H and then,
in light of (5), another div-curl problem will yield E. Conversely, within the
conductor, (3) permits the elimination of either H and E, which leads to a
second-order boundary value problem. The bottom line is, that in {2, and (2,
we encounter elliptic systems of PDEs of different character. This will have
profound consequences for the statement of transmission problems, see Sect. 5.

We finish this introduction to the eddy current model by explaining how
to incorporate current excitation through offset fields E5 and Hy. We demand

curlcurl E; = —iwpgjs curlH; =js, .
) ) in 2. . (6)
divE; =0, divH, =0,
Such fields can be computed by evalutating the Newton potentials
] js(Y) 1
E =— d H = 1E, , 7
s(x) w, /]R3 x -yl v, s(x) o curl E, (7)

provided that j, has vanishing divergence everywhere in R?. In the case of thin
wires represented by line currents, (7) amounts to the well-known Biot-Savart
formula.

The requirements (6) impliy for the reaction fields E, := E — E,, H, :=
H — H, that

curlcurlE, =0 , curlH,=0 in (2 . (8)

In {2, we retain the original phasors E, H, often referrred to as total fields. By
using offset fields the spatially distributed excitation js can be converted into
an inhomogeneous jump condition across I" for the fields. Spatial source terms
are no longer present, which greatly facilitates the implementation of bound-
ary element methods. The treatment of an excitation through a total loop
current will be postponed until discretization is discussed in Sects. 7.2, 8.3.

3 Spaces and Traces

All developments in this paper will be consistently set in a variational frame-
work. The Hilbert spaces, on which the variational approach rests, have a very
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concrete physical meaning as spaces of fields with finite energy. Let 2 C R?
be a generic domain, not necessarily bounded. The natural Hilbert space for
magnetic fields with finite total energy on (2 is

H(curl; 2) :={V € L*(22), curl V € L*(2)},

equipped with the graph norm (cf. [36, Ch. 1]). In the context of the eddy
current model the energy associated with the electric field is measured only
by its curl. Of course, also the mean dissipated energy has to be finite, which
entails square integrability over §2., but in §2. the L?-norm of the field need
not be bounded. Therefore, weighted Beppo-Levi type spaces (cf. [35])

V(x)
VI I
are the proper choice for E. The property that their energy only depends
on certain derivatives is characteristic for potentials. For them weighted

spaces have to be used, for instance the standard Beppo Levi space (cf. [53,
Sect. 2.5.4])

W curl, 2) := { € L*(22), curl V € L*(2)}

d(x)
V1 [x[?

For each of the above spaces, the restrictions to {2 of smooth functions that
are compactly supported in R? form dense subsets.

Thanks to this density property we may wonder how to extend certain
restrictions of smooth functions onto boundaries to continuous and surjective
trace mappings. Now, assume that the boundary 9£2 is compact and endowed
with an exterior unit normal vectorfield n € L°°(942). The pointwise restric-
tion of functions in C'*°(2) spawns the standard trace v : W(£2) — H2(912).
However, the relevant traces for electromagnetic fields are tangential traces of
vectorfields. We can distinguish between the tangential components trace 7
for U € C*(02) defined by (v U)(x) = n(x) x (U(x) x n(x)) for almost all
x € 042, and the twisted tangential trace (74 U)(x) := U(x) x n(x).

In eddy current computations we usually face non-smooth surfaces. This
profoundly affects the smoothness of restrictions, in particular of tangential
traces. Just keep in mind that even for smooth vectorfields their tangential
traces will feature discontinuities at ridges and corners of 9f2. Therefore it
takes sophisticated techniques to devise meaningful tangential trace operators
on the function spaces. For domains with piecewise smooth boundary they
were developed in [16, 17, 12, 18]. These papers and, in particular [13], should
be consulted as main references.

Before we tackle W (curl, 2), we remind (see [16, Prop. 1.7]) that on

1
piecewise smooth boundaries spaces H (I') and H3 (I") can be introduced
so that the tangential traces become continuous and surjective operators

% s H'(9) = Hij (D), 7% s H'(®2) = H{(T'). Sloppily speaking, H i (I

W(2) :={ € L*(2), grad ® € L*()} .
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contains the tangential surface vectorfields that are in H 2 (002) for each
smooth component of 942 and feature a suitable “tangential continuity” across
the edges. A corresponding “normal continuity” is satisfied by surface vector-

fields in H%_(F) The associated dual spaces will be denoted by Hi; (I') and

1
H | *(I'), respectively.

Armed with these spaces and the density of smooth functions, the inte-
gration by parts formula

/cuer-U—V~curlde:/ Yx U - %V dS 9)
Q o9

is the key to establishing trace theorems for W (curl, §2). Recall that the sur-
face divergence operator divp is the L2(8Q)—adjoint of the surface gradient
grad . By rotating tangential surface vectorfields by 7, we get the same rela-
tionship between the scalar valued surface rotation curly and the tangent vec-
tor valued curlp. Using, first, V € H'(£2), and, secondly, V € grad H?(12),
we learn from (9) that

1
v :H(curl; 2) — H | *(curlp, I)
1
v« :H(curl; 2) — H:* (divp, ),
are continuous trace mappings. Here, we used the notations

H *(curlp,I) = {v € H *(I'), curlpv € H3(02)} |

(3D, dived € H 2 (02))

_1
H *(divp,I'):={Ae H
for spaces of tangential traces. Moreover, according to Thm. 2.7 and Thm. 2.8
in [16], they are surjective, too. Thus, we have found the right tangential trace

spaces for H (curl; £2). By (9) the spaces Hi; (divp, I') and Hié (curlp, I
can be seen to be dual to each other (see [17, Sect. 4]). The sesqui-linear
duality pairing will be denoted by (:,-)_. Moreover, the rotation mapping
Rv := v X n can be extended to an isometry between the two spaces.
Integration by parts permits us to introduce several important weakly
defined traces: The weak normal trace 7y, is defined for vectorfields U €

H(div; Q) := {V € L*(22), divV € L?(12)} by
(U, vP)1 /2.1 :/ divU® 4+ U-gradddx Vo c H'(NQ),
2

with (,); 5  as duality pairing between H~2(012) and H2(d12). The map-
ping vn : H(div;2) — H’é(aﬁ) is continuous and surjective, and an
extension of the normal components trace y,U(x) := U(x) - n(x). Thus,

the conormal trace Jn, := 7, o grad is continuous and surjective from
H(A, Q) :={® e W), A® € L*(22)} onto H2(912).
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Against the backdrop of boundary value problems for the Laplacian —A,
the trace operator v : H(2) — H2(I') can be called “Dirichlet trace”,
whereas 0p, provides the “Neumann trace”. For ¥ € H(A, 2) and ® € H(£2),
they are linked by another Green’s formula

(On¥, YD)y )5 r = / AV + grad ¥ - grad P dx . (10)
2

The eddy current equations prominently feature the operator curl curl and we
may wonder about suitable Dirichlet- and Neumann traces. Since the energy
space associated with curl curl is H (curl; 2), the previous discussion reveals
that ~¢ can be used as Dirichlet trace. In view of (10) a curl curl-counterpart
vn of Oy can be defined for

U € W(curl®, 2) := {V € W(curl, ), curlcurl V € L*(2)}

by demanding that for all V € H(curl; {2)

(WU, V) = / curlU - curlV — curlcurl U - Vdx . (11)
2

The trace vy furnishes a continuous and surjective mapping

N : W(curl?, ) — Hi; (divp,I")  (cf. [39, Lemma 3.3]),
which can be regarded as an extension of the restriction (yyU)(x) :=
curl U(x) x n(x), x € 942, for smooth U.

We mention two commuting relationships between traces that are elemen-
tary for smooth functions and, by extension, carry over to the trace operators
in Sobolev spaces:

grad,oy =, ograd on W!(0), (12)
n o curl = curlp oy = divp oy, on W(curl, 2) , (13)

where equality is in the sense of the trace spaces HIé (curlp, I') and H-: (),
respectively.

Integration by parts also shows that a vectorfield in C*(£2.¢l) N C>(£2.)
must feature tangential continuity in order to be contained in W (curl, R?).
Thus, both E and H can only belong to W (curl, R?), if the following trans-
mission conditions hold across I := 0f2.

[1%E], =0 and [wH],=0. (14)

Here, the “jump” [], designates the difference of the values of a trace from
2, (“exterior”) and from 2. (“interior”). We also stick to the convention that
exterior traces will be labeled by a superscript +, whereas traces from (2. bear
a superscript —.
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4 Topological Prerequisites

Topological considerations come into play, when one wants to represent irro-
tational vectorfields on manifolds through gradients of scalar potentials. This
is only possible, if the first cohomology group of the manifold is trivial [59,
Ch. 6]. Otherwise, cuts have to be used to take care of irrotational vectorfields
that are no gradients [8, Sect. 8.3.4], see Fig. 2.

— r =

R\ 2
Fig. 2. Cut X’ for the torus and cut X for its complement in R3.

Theorem 1. For every domain 2 C R3 with piecewise smooth boundary there
exist piecewise smooth orientable embedded surfaces X1, ..., XN C §2 (cuts),
where N agrees with the first Betti number of {2, such that

o the Xy, k=1,...,N, are mutually disjoint.

e the first cohomology group H*(£2',7Z) of §2' := 2\ (X1U...UX ) is trivial.

o (' is a generalized Lipschitz domain in the sense of [29], that is, when
“seen from one side” its boundary 082 is Lipschitz continuous.

Proof. The theorem is proved in [45]. O

In the sequel we are going to equip {2, with a set of cuts Xy,..., Yy,
according to Thm. 1. Each X has an orientation that translates into a crossing
direction and thus we can distinguish between an “upper” surface Z,j and a
“lower” surface X, . Both surfaces are equipped with unit normal vectorfields
n:, n, pointing “away from X" into the interior of £2' := 2.\ (X1U...UXN).
We fix nx, :=nj so that it agrees with the crossing direction.

The statement of Thm. 1 implies

Ve H(cur; ), curlV=0 = 3dcH'(): V=gradd.

It is even possible to characterize low dimensional spaces of vectorfields that
fill the gap between Ker(curl) N H (curl; £2,) and grad H'({2.). To that end,
consider functions n, € H'(£2. \ Xy), k = 1,..., N, with [ny]y, = 1. Here,
[]¢ denotes the jump of some function across the externally oriented surface
S, i.e. the difference of its value on the “+-side” and the “—-side”.
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Theorem 2. Using the notations introduced above, we have the representation

Ker(curl) N H(curl; 2.) = grad H'(£2,) + Span {grad m,...,grad 77N} ,

where g/r\e;(/ink € LQ(Qe) is the gradient of ni on 2.\ Xy.
Proof. Compare Sect. 3 in [4]. O
From Thm. 2 we learn that
Ker(curl) N H(curl; 2,) = grad H(12,) , (15)

with Hi(02) := {¢ € H'(£2'),[¢]g, = const., 1 <k < N}.

Thm. 1 may also be applied to {2, yielding N cutting surfaces 2’1, e E’N,
since the first Betti numbers of (2. and {2, agree. The boundaries o1,...,0n,
01,...,0n of Xy and Xy, k =1,..., N, respectively, represent a basis of the
homology group H;(I',Z), see Fig. 3. In analogy to Thm. 2 we find that

Ker(divy) N H(div; I") = curly H'(I") + Span {gl,...,gN,/g\l,...,AN} ,
(16)

where g* is the vectorial surface rotation curly ¢ of some ¢ € H'(I'\ 0, that
has a jump of constant height 1 across ;. The g are constructed analogously
with respect to 0.

Fig. 3. Fundamental cycles o1 and &1 for the surface of the torus, a domain with
first Betti number = 1.

We remark that if I is equipped with some non-degenerate triangulation
I, (rendering it a cellular complex) the boundaries of interior and exterior
cutting surfaces can be chosen such that they agree with edge cycles of I7,.
Further, it is possible to pick piecewise smooth Lipschitz surfaces as related
cuts. Such a choice of cuts will be a tacit assumption, whenever a triangulation
of I' has been fixed.

Remark 1. Please be aware that it is not the purpose of cuts to render 2’
simply connected, i.e., to ensure that it has a trivial first homotopy group.
This is easily seen in the case of knotted geometries.
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5 Variational Formulations and Transmission Problems

Two fundamentally different approaches to a variational formulation of (3)
are conceivable. They can be distinguished by which equation is preserved
in strong form and which is taken into account only in weak form [7]. This
distinction parallels the primal and dual variational principles known from
second order elliptic boundary value problems [11, Ch. 1]. A discusion for the
full Maxwell’s equations in frequency domain is given in [38, Sect. 2.3].

The first approach involves Faraday’s law in strong form. It is used to
replace H in Ampere’s law and the latter is multiplied by a test function
in H(curl; R?) and subjected to integration by parts according to (9). This
results in the following “E-based” variational problem (cf. [7, Sect. 3], [56],
and [57]): Seek E € W (curl, R?) such that for all V. € W (curl, R?)

(i curlE7cuer) Lo (k) +iw (0B, V)20 ) = —iw (s, V)p2(msy - (17)

Theorem 3. The wvariational problem (17) has a wunique solution for
H:= ' curlE € H(curl;R3). If it is posed on the constrained space

wp

W = {V € W(curl,R?), divV =0 in (2., / WmVdS=0k=1,...,L},
I

a unique solution & € W exists. Here I'y,, k = 1,..., L, stand for the connected
components of .

Proof. The reader is referred to [3, Sect. 3] and [39, Sect. 2]. O

A crucial observation is that (17) is equivalent to a transmission problem.
To state it, we first appeal to the transmission conditions (14). Secondly,
testing (17) with fields compactly supported in (2. or (2., and making use of
the offset fields from (6), we get

curlcurlE +iwu.cE =0 1in (2., (18)
divE, =0 , curlcurlE,=0 in (2.,

_ 1 1 1
WE —v% E=-—E, |, RE, — AyE=— " ALE,.
Ho He Ho

Here we have skimped on the full “gauge conditions” (5), that is E, € W, for
the reaction field E, in (2.

The second option for a variational formulation is to keep Ampere’s law
strongly, leading to “H-based” formulations. Then, we have to use the trial
space Hy + V with

V:={V € H(curl;R?), curl V = 0 in 2.}

for H. Remember that the offset field H; is to satisfy curl Hy; = js and
divH; = 0 in £2.. Now, testing the first equation of (3) with a compactly
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supported V € V., employing integration by parts on a ball with sufficiently
large radius, and using the second equation inside 2., we obtain: Seek H €
V + H, such that

(0 teurlH,curl V), o +iw (pH, V) p25e) =0 YV EV. (19)

(£2)
For a more detailed presentation of the considerations leading to (19) the
reader is referred to [9], [7, Sect. 2], and [8, Ch. 8]. Existence and uniqueness
of solutions of (19) immediately follow from the Lax-Milgram lemma.

Straight from (19) we infer div(y, H) = 0 in all of R3. This involves the
normal continuity of p,-H across I'. We are led to a transmission problem for
the total magnetic field inside (2. and the reaction field H, outside:

curlo ! curl H 4 iwp,H =0 in 2, ,
curlH=0 , divH=0 in {2, (20)
povn He — pevg H= —povi Hye , % H, =7y H=vH, onl.

However, if {2, has non-vanishing first Betti number, then there is no unique
solution of (5) [55, 34]. To see this please notice that thanks to Thm. 2 the path
integrals fi,(H) := ffik H - ds supply continuous functionals on V. They do not

vanish, because plugging in an extension to W (curl, R?) of g/r;a 7y results in
1. Next, consider the variational problem (19) posed over V, but with fj as
non-homogeneous right hand side. A unique non-zero solution Hy € V exists.
From f(grad ®) = 0 for all ® € W!(R) we conclude that still div(u, Hy) = 0.
Hence, Hy, satisfies all the transmission conditions of (5). Testing with smooth
vectorfields that are compactly supported in 2. establishes the first equation
of (5). Summing up, (5) may have non-zero solutions, even if Hy = 0.

These considerations refute the equivalence of (5) and (19). The bottom
line is that in general the H-based model does not allow a formulation as
transmission problem, unless some extra coupling conditions that, however,
fail to involve traces on I’ only, are taken into account. These additional
conditions are formulated and investigated in [1] (see also [47]). They turn
out to be an integral version of Faraday’s law with respect to cuts.

A third class of variational formulations, the hybrid methods, combines
primal and dual variational principles, one kind applied in 2. the other in
£2.. An extensive discussion with finite elements in mind is given in [2]. The
first option is to work “H-based” inside 2. and “E-based” in {2.: these for-
mulations can be nicely combined into a transmission problem

curlcurlH + iwpu.cH =0 in 2.,

curlcurlE, =0 , divE,=0 in {2, (21)
1 1
TE, — ~yvH=—1E, — TE -~ H=~H, I.
7>< 0_7N P)/x ) Z.LU/J/()IYN IYX P)/t on

Alternatively, Faraday’s law can be used in strong form in (2., and Ampere’s
law is tested with V € H(curl;R?), but integration by parts is performed
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on 2. only. Therefore, boundary terms have to be retained in the variational
equation

1 1
( curl E, curl V) + iw (oE,V)LQ(QV) - < 'yR,E,'yt_V> =0
He L2(02,) © He r

for V€ H(curl; (2.). In 2. Ampere’s law is incorporated strongly by zero-
ing in on H € Hy + V. Faraday’s law is tested with compactly supported
irrotational fields only, and subsequently we integrate by parts. We end up
with

<'y;rV,’yt+E>T +iw (poH, V)2, =0 YV EV.

Both variational problems are linked through the transmission conditions,
which enable us to replace ulu yYvE by —iwy${ H in the boundary terms. This
results in the variational problem [48]: Seek E € H(curl; {2.), H € Hy, +V
such that for all W € H(curl; (2,), V€V

(ul curlE,cuer)LQ(Qc—g— iw (0B, W) oo+ iw(y<H,%xW) =0,

iw (Y« V,1nE), — wQ(uoH,V)L2(Qe) =0.
(22)

Theorem 4. The bilinear form associated with the variational problem (22)
is H(curl; £2,) x V-elliptic.

Proof. Setting W := E, V := H, and subtracting both equations makes the
“off-diagonal” terms cancel. 0O

Similarly as in the case of the H-based model, an equivalent transmission
problem is also elusive for the variational problem (22).

In the sequel we are going to focus on the pure E/H-based formulations
(18) and (19), respectively.

6 Boundary Integral Operators

The theory of boundary integral operators for strongly elliptic partial dif-
ferential operators of second order is well developed [52, 28, 58]. Here, we
summarize some of the results as a guidance for developing a similar theory
for boundary integral operators for second-order partial differential equations
involving the curl-operator. The relevance of this for the transmission prob-
lem (18) and the variational problem (19) is evident.

The starting point is a representation formula, the famous Green’s rep-
resentation formula for solutions of the homogeneous Helmholtz equation. It
relies on the scalar single layer potential
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W) = [ Gxy)e)dy x¢T. pel Hr). (@3
and the scalar double layer potential
0 1
0 — 2
)60 = [ Guy)uly)dy xg T veHbr). (20

both based on the Helmholtz kernel [52, Ch. 9]

exp(—k[x = yl)

GK(X)y) = 47T|X_y|

, XFY.
The potentials owe their significance to the following result [52, Thm. 6.10],
58, Thm. 3.1.6]:

Theorem 5. Assume Rk > 0. Any distribution U € HL (2. U £2.) with
—AU + K2U = 0 in 2. U 2. and |U(x)] = O(|z|~1) for |z| — oo can be
represented as

Ux) = 95 ([0uU]p) + Vg (WUIp) s x ¢ 1.

It is well known [52, Thm. 6.11] that the potentials ¥{} and ¥j; provide
continuous mappings

U cH 2 (1) e Hy (RP) 0 H(A, 2.U 02.) (25)

W H>(I) — H(A, 2. U £2.) . (26)

In fact, (—A + k2)¥f = (—A+ k)W = 0 away from I" [58, Thm. 3.1.1]. We
also recall the fundamental jump relations for the potentials

Do @)r=0,  BIPlr=—¢,  weHAID), (27)

DR =0, O @) =0 veHAT).  (28)

The mapping properties (25) and (26) of the potentials ensure that the bound-
ary integral operators

VE i CHA(I) - HAD),

K= Jo~ 4 < HA(T) s HE(D) 20
Kok . — é(a; +8;1‘)@"§ ;H_2(I’) |—>H_2(F),

D" == 9,0 HE (D) H (D).

are well defined and continous [58, Sect. 3.1.2]. Moreover, the single layer
boundary integral operator V* and hypersingular boundary integral operator
D* are elliptic in the following sense, see [52, Thms. 7.6,7.8]

2 _1

(o V%) o p | Zellelymy gy Vo€ H (D), (30)
1

[(DP0,0), | 2 el Vo€ HE(D) (31)

with constants ¢ > 0 depending on I only.
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Now we attempt to develop similar representation formulas and bound-
ary integral operators related to the differential operator curl curl +x2. It is
our first objective to derive a boundary integral representation formula for
distributions satisfying the homogeneous equation curlcurl U + x?U = 0 in
2. U £2.. In order to handle transmission conditions in the calculus of distri-
butions, we introduce currents, that is, distributions supported on I". For a
function ¢ € H~: (I'), a tangential vector-field & € Hll(F), and test func-
tions @ € D(R?), & € D(R3) := (D(R?))3, we define

(P0r)(@) = (2,7P)1jop 5 (E0r)(@) i= (&, ®P), = (§,7P)_y p -

Now, in the sense of distributions, integration by parts yields, cf. [14, Sect. 2.3],

for U € Ho(div; £2. U £2.) : divU =divU g un, + U] ér,

for U € Hyoe(curl; 2. U £2,) curlU = curl U o, — [vx Ul or,
_1

fOI“fEHHz(din,F) : diV(f(Sp)Z(dinf)(Sp.

For notational simplicity, we introduce the average {y} = ;(y" +~7) for
some trace operator 7. Remember that the superscripts — and + tag traces
onto I" from 2. and (2. respectively.

Now let U satisfy curl curl U+ x2U = 0 along with divU = 0 in £, Uf2,.
Then the following identity holds in the sense of distributions,

— 08U + k%U = curlcurl U — grad div U + x%U
= curl (curl U\ 0, — [7x Ul 0r) — grad (/U] 6r) + k2U
= curlcurl U o, — [YWU] or — curl([y<x Ul or)—
[ nU]F 51“) + :‘<62U
Ir 6r) —grad([m Ul dr) .
We know from [26, Theorem 6.7] that the Cartesian components of U will
satisfy decay conditions and the scalar Helmholtz equation in 2. U {2.. Using
the results from [52, Ch. 9], we can apply component-wise convolution with

the outgoing fundamental solution G, for the operator —A+ x2. We find that
almost everywhere in R? the components of U = (uy, ug, u3)? satisfy

u;j(x) = = (WUl 6r)(Gr(x = -)ej) — ([vx Ul dr)(curly (Gr(x - -)e;))+
+ (Ul or)(div(Gu(x —-)e;)) , j=1,2,3.
Using grad, G.(x —y) = —grad, G,(x —y), we arrive at the famous

Stratton—Chu representation formula for the electric field in 2. U 2, [62], cf.
[26, Sect. 6.2], [53, Sect. 5.5], [21, Ch. 3, Sect. 1.3.2], and [19, Sect. 4]

Theorem 6. If, for k € C, Rk > 0, a distribution U € H),(curl; 2. U (2.)
satisfies curl curl U+£2U = 0 and div U = 0 in 2.US2,, along with the decay
condition |U(x)| = O(|x|™1) for |x| — oo, then it possess the representation

U = -5 (IwUlp) — ¥ (Ul ) — grad 7 ([ U] ) -

— grad(
= —[wUlp ér — curl([y, U
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Here, we used the notations ¥’ for the the vectorial single layer potential
PN = [ GulxyA)dS(y) x ¢ 1.
r

and ¥, for the “Maxwell double layer potential”
U (v) = curl @’ (Rv) .

From the representation formula it is clear that the potentials have the fol-
lowing mapping properties, see [39, Sect. 5]:

Theorem 7. The potential mappings

S
a3

:Hﬂé (divr, ) — W (RS) A W (curl?, 2, U 2,)
Yy 3H1é (curlp, I') — W (curl®, 2. U £2.) ,
are continuous.

We remark that any distribution complying with the assumptions of
the theorem actually behaves like |[U(x)| = O(|x|72) for |x| — oo, see [3,
Prop. 3.1].

In light of Thm. 7, the representation formula of Thm. 6 allows to deduce
Jump relations. For formal derivations please consult [39, Sect. 5], or [55], [53,
Thm. 5.5.1], and [26, Thm. 6.11] for smooth boundaries.

Theorem 8. The potentials satisfy the jump relations

[n¥hlp =0 . WLl =—1d,
Wyl =—-1d , [WwW¥ylp=0,
['Yn!pil]r =0 ) ['Yn!plI{\/I]F =0.

If k # 0, then, by virtue of (13),
U= FeurleurlU= - | divp (72U
U=~ o curleurlU=— , ivr(vyU) .

This permits us to rewrite the representation formula of Thm. 6 for the case

Kk # 0:
U = -5 (hwUlp) = (Ul p) + :2 grad ¥y (divr([ywU]p)) - (32)

After introducing the “Maxwell single layer potential”

K K 1 T -3/
W(p) :=wh(u) — 2 grad Wi (divpp), pe H, (divp, I) (33)
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the formula (32) becomes a perfect analogue to the representation formula of
Thm. 5:

U = —W5([wUlp) = (U] ) - (34)

Again, the analoguous roles of v and 7y as “Dirichlet traces” and 0, and vy
as “Neumann traces” become apparent, cf. Sect. 3 and [19, Sect. 3].

For k = 0, the jump of the normal trace cannot be elimintated from
the Stratton-Chu representation formula. This stark difference between the
situations £ # 0 and k = 0 can be blamed on the divergence constraint, which
is redundant for x # 0, but becomes essential, if x vanishes. This profoundly
changes the characteristics of the differential operator and in the latter case
we have to deal with yxyU and 7,U as “Neumann data”.

As above we introduce boundary integral operators by taking different
traces of potentials. Their continuity properties can be directly inferred from
those of the potentials, see Thm. 7, and those of the trace operators.

Theorem 9. For k # 0 the boundary integral operators

NH

divp, ') — Hlé(curlp,F) :
divr, )HHﬁgdivF,r),
curlp, I') — Hiz(curlp, I,
curlp, I') — H 2(divp, I,

A = ’ytﬁpg

B™:= j(vy + )T H
Cr =5y +7 )Wy H
N* .= vy, H,

[\Jb—‘ [\J»—A [\J»—‘

)
(
(
(

are well defined and continuous. The same holds for

1
AV =~ Y H (D) n—>HH(F)
1

B := L (vy + 7)Y - H, > (divp,I') — H| (dlvF, r).

We know that the double layer boundary integral operators K* and K"*
are adjoints with respect to the sesquilinear duality pairing (-,-); /2.7 [52,

Thm. 6.17]. A similar property is enjoyed by their counterparts
mathsfB" and C"*:

Theorem 10. If k # 0, the boundary integral operators B and C* satisfy
(B u,v) =—(un,C"v)_ Vue H (lep,F) veH, (curlp, r.
The same relationship holds in the case k = 0, if u is restricted to
H, *(divr0,T) == {n € H, *(divr,I) : divyn=0}.
Proof. We appeal to the relationship, see [39, Lemma 5.2] or [51, Lemma 2.3],

div @ (n) = W (divrm), e H, *(divp,T)
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to conclude
(curl curl +£21d)WE(u) =0 for k #0,
(curl curl +#%1d) W (1) = 0 for p € H} *(divr0,1) .

We use these relationships together with the integration by parts formula
_1 _1 ~1

(11): pick any v € H | *(curlp, I"), p € H) 2(divp, ) (p € H:* (divp0,1),

if K =0) and set V = &%, (v) and U = &%(u) (U =&Y (), if & = 0). Then,

(VAU V)_ = —/ curl U - curl V — curlcurl U - Vdx
Q.

— / curlU - curlV - U curlcurl Vdx = <'y1'\",V7 o >T
2.

<'y;,V, 'y{U)T , by jump conditions of Thm. 8

= / curlU:-curlV — U . curlcurl Vdx
2.

= / curlU - curlV — curlcurlU - Vdx = <'y;,U7 'y{V>
2.

T

We remark that “boundary terms at co” can be discarded due to the decay
O(|x|72) for |x| — oo of both fields. Thus, using the other set of jump relations
from Thm. 8, we have obtained

K 1 — —
(B (1), v}, = = (MU +93 UV = V),
1 - - K
== (WU =RUARV+5 V) == (W),
which finishes the proof. O

Ellipticity estimates corresponding to or extending (30) and (31) are avail-
able, too:

Theorem 11. If Rk? > 0 and Sk? > 0, the following estimates hold true for

1

all Vp € Hﬁz(divlﬂ 0,I') and v € Hlé(curlp,l”)
S{(u A} = 0, RUNTV,v),} >0, S{N“v,v),} > 0.
Moreover, with ¢ > 0 that may depend on I' and k,

R, A"} = el

2
: y [INTv ) 2 celivl -y

(divp,I) T2 (curlp,I)

Proof. As in the proof of Thm. 10, we rely on the integration by parts formula
(11) and jump relations from Thm. 8 to get (for the case k # 0)
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(b, A%, = = (v s ()l p > 15 (1)
= (W51, TE()), — (VEPS (1), 5 (1)),

= / |curl W (u)|? — curl curl & (1) - W (p) dx
R3\I"

= / |curl U (u)* + k2| curl curl W (p)|? dx .
RS\T

If k = 0 we replace ¥’ with @Y, for which we know curlcurl &% (1) = 0, if
divp pu = 0.

This identity can be combined with the continuity of the trace vyy: with a
constant ¢ = ¢(I") > 0

il = [hw®s(w]pll

_1 _1
H| 2 (divp, D) H % (divp, D)

<ec (||cur1 Vsl 20,00, + [curlcurl !'Ig(,u)ug(gcuﬂe)) )
Similar arguments show ellipticity for N*:

(N*v,v), == (\w®h (v), [®h (V)] ) -

= curl %, (v)|? — curl curl &%, - &%, (v) dx
R\ M M ¥y

= / |curl &y, (v) |2 + k2@, (V)| dx
R3\I"

2
>c ||w7\/[(v)”H(curl;QuUQe) .

Now we have to make use of the continuity of the tangential trace ¢: for ¢ > 0
independent of v,

vl = [ ®5s (V)] . < ey (VI eurro.ue,) -

_1 _ >~
HLQ(curlp,I") F”HLQ(curlp,I")
U

The same arguments confirm the following estimates for the scalar single
layer potential boundary integral operator based on the Helmholtz kernel:

R{(p, V@)1 a0t = C||<P||i,_;(m » SUA VD))o b 2 0, (35)

for all(pEH_é(F).

7 E-Based Model

Now we discuss the steps leading to a symmetrically coupled boundary element
formulation for the transmission problem (18).
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7.1 Coupled Problem

Now, let (E, E,) stand for the solution of the transmission problem (18) in
2. and 2., respectively. Suitable trace operators can be applied to the rep-
resentation formulas and this procedure yields the Calderon identities. From
(34) we get
v E= A*(WWE) + (31d+C*)(7¢ E),
WE = (yld+ (36)
maths fB")(7yE) + N*(7¢ E) ,

where k = 11/2(1 4 i),/wopic. Thanks to Thm. 6 we have

Y E, = ) ~A"(VNE,) 4 (31d—CO) (% E,) — grad;VO([E,),
'Y]J\FIET" = (QId - %O)(’YJJ\FTET) - NO((;YtJrET) )
WE = = OLEE) — WEVOWE)  + (31d—KO)(E,) .

(37)

The boundary data for any solution of the interior/exterior E-based eddy
current equations will fulfill (36) and (37), respectively.

The gist of the symmetric coupling approach according to Costabel [27] is
to use all of the equations of the Calderon identities in conjunction with the
transmission conditions. However, here we have to grapple with a mismatch
of interior and exterior boundary data due to the presence of v/ E, in (37).
A remedy is motivated by the observation

curlcurlE, =0 in 2, = divr('y]J{,E,n) =0,

which is an immediate consequence of the identity (13). We observe that v, E,
1

has to be sought in the space Hiz (divp 0, I')!
By the transmission condition for 7y and the fact that curl curl Eg = 0 in
a neighborhood of I', vy E has to be div-free, as well. Hence, we can restrict
!
our attention to boundary data 'yK,E,fy]J{,ET in HH 2(divp 0,I") throughout.
Recalling the dualities, this is a proper test space for those equations of the

1
Calderon identities that are set in H | *(curlp, I'). Since divp is the L*(I)-
adjoint of grad, we find
1

NEHH2(diVFO,F) = <u7gradp<p>_r:0 V(PEH%(F),

This makes the undesirable terms disappear, when switching to a weak
form of the top equations in the Calderon identities (36) and (37)! For all

e Hi% (divp OvF)Hié (divp 0,1") we obtain

(1 nE)_ = (A" (\WE)_ + (p, (31d+C*)% E)_,
(B, = (1, =AY E)Y + (p, (L1d = O E, )
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From the transmission conditions we know v, E, — v, E = —7; E,. Thus,
subtracting the above equations leads to

T

— (1, A (VYE) + AS(yyE)) — (1, CO (% Ey) + C* (v, Ey))
— 3 (% Eg)

for all u € H 2(lepO I'). From the transmission condition Hlo'y}(}Er —

M,.'YNE = _uo 75 Es and the second equations of the Calderon identities we
directly conclude

1 1 B _
(31d =B E, —  N(%E.) = ! (}Id+B")7yE— | N*(1; E)
Ho Ho ¢

As final unknown quantities we introduce the tangential trace of the electric
1

field u := ’yt_E €H,:”’ (curlp7 I') and the tangential trace of the magnetic

field A := 'yNE € HH (din 0,I"). The latter is also known as equivalent

surface current The transmission conditions enable us to express the exterior
traces in these unknowns. We end up with the coupled variational problem:

Seek u € HIé (curlp, IN), X € Hﬂé (divp 0,I") such that

(LNO+ T NF)u, > + ((BY+BYAV). = f(v),
(s (CO 4 CF)u Vo s (oA” + AN = g(p)

1
forallve H ?(curlp,I'), p € H (lep 0, I"). The right hand side is given

R 1 1 0 v 1 0 v
f(v) an ((31d+B°)yWEs,v)_+ " (N°(E,), v)_ (39)

g(w) == (p, (31d + CO)WE)_+ (u, A’ (\WEs))

Theorem 12 The bilinear form d associated with the variational problem
(38) is H | (curlp,F) X H|| (divp 0, I')-elliptic in the sense that there is
c=c(I, H7M07Mc) > 0 such that

v v
d , >c||v
() Oz (M oy W82)

forallve H | (curlp,F) and p € H_;(divFO,F),
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Proof. As a simple consequence of the block skew-symmetric structure of
1
the variational problem (cf. Thm 10) we find for v. € H  *(curlp,I),

j€ H, *(divr0,T) that

d((v, ), (v, 1)) = <(N° + . N”)V7V>T + (o (A 4 e A\ )

Subsequently, the estimates of Thm. 11 permit us to conclude ellipticity of
the whole bilinear form from separate estimates for the individual terms. O

Corollary 1. The variational problem (38) has a unique solution (u,\) €
1

H *(curlp, I) x H| * (divr-0,7).

By the derivation of the boundary integral equations we can be certain
that traces 7, E and v, H will always give rise to solutions of (38). Their
uniqueness then confirms that we get the traces of solutions of the E-based
eddy current model (17). These traces are fixed regardless of the gauging of
E employed in {2..

7.2 Galerkin Discretization

We select a conforming Galerkin boundary element discretization of (38) and
1

(39) that relies on finite dimensional subspaces W), C H | ?(curlp, I") and
1

Vi CH i 2(divy 0, I"). These should be boundary element spaces in the sense
that

1. the functions in both W}y and V), are piecewise polynomial tangential
vector fields with respect to a mesh I, of I' consisting of flat triangles.

2. there are bases of W), and V}, that only comprise locally supported func-
tions.

For the construction of W), we start from H (curl; {2.)-conforming finite el-
ement schemes for the approximation of vector potentials. The simplest is
provided by the so-called edge elements [38]. Keeping in mind that

HI_é (curlp, I') := v (H (curl; £2.)),

we simply take the tangential projections of edge element functions on a mesh

(2, with O = I', as space Wy, This will give a space of piecewise linear

vector fields on I, whose tangential components are continuous across edges of
_ 1

triangles. This is a well-known sufficient condition for W), € H | *(curlp, I').

The local shape functions on a triangle 7" are given by the formula

by, :=Xigrad;\; — \jgradp ), 1<i<j<3, (40)

where A;, i = 1,2,3, are the local linear barycentric coordinate functions in
T. These basis functions are sketched in Fig. 4. They are associated with the
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edges of I}, so that dim W), will agree with the total number of edges of I7},.
Note that W), can also be obtained by 90°-rotation of the lowest order div-
conforming Raviart-Thomas elements in 2D, ¢f. [11, Ch. 3]. More details can
be found in [6, Sect. 2.2].

AN |
\ \ AS—e]
NS
N Q i‘ } N \ AU

N s \\ \ \‘ N \ ; // AN N S
YYD N S ANSSE—.
< ? \ i‘ :\ ‘j ‘\{ w M ) i ’; 7 /,4; A ]
ARERER R RN S RN AN
LA B A O A T AT AN Ssse o

Fig. 4. Local shape functions of Wy,.

In order to find V;, we remember that A is the rotated tangential trace
of the magnetic field H. As H(curl; {2) is the right function space for H,
too, we get the right boundary element space for magnetic traces by rotating
functions in Wy, by 90°. This will give surface vector fields with continuous
fluxes across edges of triangles, which is a very desirable property for discrete
equivalent surface currents. However, ellipticity of (38) only holds provided
that divp A = 0. Therefore, this property has to be enforced on Vj,. Formally,

we may choose
V= {‘Ll,h €Wy, X n, diVF/J, = 0} . (41)

Using the formula (40), we readily see that 1V, only contains piecewise constant

vector fields.
By Thm. 12 and Cea’s lemma [24, Thm. 2.4.1] conformity of the Galerkin

method directly translates into the quasi-optimal error estimate in energy

norm
— A—A
[l Uh”HI%(Curlp,F) + h”Hié(divF,F) -
<C inf |Jlu—v _ + inf |[A— _ 42
- <Vh€Wh || h”HL% (curlp,I™) ¢LEVR || Ch”HH 2 (din,I")> ' ( )

where uy, and A, stand for the boundary element solutions, and C' > 0 de-
pends on the ellipticity and continuity constants of the continuous variational
problem (38). Hence, approximation error estimates for the finite element
spaces will directly provide us with rates of convergence. Let us assume quasi-
uniform and shape regular families of surface meshes I,, where h denotes the
meshwidth. Provided that the continuous solutions u and A are sufficiently

smooth, we arrive at
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— A=A <
[u UhHHlé(curIF,F) + || h”Hi%(%nf) <

<C (hmin{gwré} |\u||H,7(Cur1F’F) 4+ pmin{3.p+5} H/\”HP(F)) ., (43)
for some n, p > 0. The constant C' > 0 now depends on the shape-regularity of
the meshes, too. Details about approximation by functions in W}, can be found
in [14, Sect. 4.2.2]. The possible ranges of n and p depend on the geometry
of I': the presence of edges and corners will impose limits on 7, p. At worst,
these may only be slightly larger than zero.

The divergence constraint is essential in the definition (41) of the boundary
element trial space for the surface currents. We cannot simply use rotated
shape functions from Fig. 4 to get a locally supported basis, because the
constraint has to be enforced. Two options are available:

Lagrangian Multipliers

We may take the cue from mixed finite element schemes for second order
elliptic boundary value problems[11, Ch. 4] and use Lagrangian multipliers to
impose the linear constraints divp A\;, = 0. The natural discrete Lagrangian
multiplier space is

Mh = diVF(Wh X Il) (44)
={vel*I): i = const VK € I, / ppdS =0} .
r

Care must be taken when selecting the sesqui-linear form m(-,-) that brings
the Lagrangian multiplier to bear on A\ in the sense that

th{uh€Wh><n: m(,uh,z/h):() VVhGMh}.

For the sake of asymptotic stability of the discrete problem, the form m must
be both h-uniformly continuous and satisfy inf-condition [11, Ch. 3]

w |7|n(uh71/h)| >clvnlly  Yvn € My, (45)
UREWR X1 [|Hh Hié(diVva)

where ¢ > 0 should not depend on the meshwidth h. The norm |-||,, with
which M is endowed is still at our disposal.
Next, note that the tempting choice ||-[| ; = [|[| 2y and

m(pn, va) = (div pin, Va) p2ry

must be ruled out, though (45) is easily seen to hold, because this m will fail

to be continuous on Hiz (divp, I') x L%(£2).
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A viable option is
Flag = 0ty and - mlanvn) = (dive pn, Vo),

Here, continuity is immediate from (29) and the h-uniform inf-sup condition
(45) has been shown in [22], see also [10, Sect. 5.3].

Surface Stream Functions

Another way to deal with the divergence constraint resorts to scalar surface
stream functions. Let Sy, stand for the space of I';-piecewise linear and contin-
uous functions on I'. Then, if I" is simply connected, we know from deRham’s
theorem [38, Cor. 3.3] that V), = curly ), . Hence, we may simply use the
surface rotation of the “hat basis functions” of Sy, as a basis for Vp,, see Fig. 5
(left).

Fig. 5. Basis function of V}, associated with a vertex (left). Current sheet along a
section of a path v (right).

Because we have not ruled out more general topologies of I', surface co-
homology vector fields can also contribute to the kernel of div :

Vy=curlp S, @H, , dimHy, =06(1), (46)

where (31(I") is the first Betti number of I', which is twice the number of holes
drilled through (2.. This means that dimV;, will be equal to the number of
vertices of I}, plus B1(I).

To find a basis of Hp we need representatives vi, k = 1...,01(I"), of a
basis of the cohomology group Hi ([}, Z) in the form of oriented closed edge
paths (cycles). In other words, we need a maximal set of closed curves on
the surface that do not cut the surface into two separate parts, and cannot be
deformed into each other by sweeping them over parts of I". Typical choices for
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the torus are depicted in Fig. 3. We can always find such curves that run along
edges of I';, and this can be done with a computational effort proportional to
the number of edges in I7, [41]. To each such path v a “current sheet” 7., can
be associated, a circular current traveling along the path, see Fig. 5 (right).

Consider a non-bounding surface edge cycle v that is bounding with re-
spect to {2, that is, there is an oriented surface X' C (2. such that v = 9X.
Then we get from Stokes theorem

/('yNEr xn)-ds= /curlcurlEr -ndS=0.
o x

As curlcurl E,. = 0 in {2, this means that, in the discrete variational problem
(47), we can confine ourselves to those A, € V), that satisfy fv(/\h xn)-ds =0
for all cycles v bounding relative to {2.. This means that we only have to take
into account current sheets along cycles bounding relative to the exterior. An
algorithm for the construction of these cycles has been developed in [41]. The
resulting basis of the relevant subspace of Hj will be denoted by ¢1,...,¢r,
L =: }B1(I). Then the discrete linear variational problem arising from (38)
read search for u, € Wy, ¢n € Sp/R, (a1,...,ar)T € CE such that

— — L _
—<N0uh,vh> — <BOCUI'1[‘ <ph,vh> — > ag <BOLk,Vh>
T T k-zl T
= f(va) .
— — L N
<BO curly ?/Jh,llh> + <cur1p Yp, AV curl p <ph> + > g <cur1p ’l/)h,AOLk>
T T k:l T
= g(curlp i) ,
— — L N
B0 uy + J, A0 curly @y, + o {7, A0y,
(8% un). { ), 3 o (i, W0u)
=g9() ,
(47)

for all vi, € Wy, ¢ € S,/R, j = 1,...,L. We abbreviated A0 —
1oAY 4 A%, BO = BY 4+ BX, NO := 1 NO 4 .. N*. From (47) we can retrieve

Ho
L
A =curlp o +> 07 L.

Remark 2. If surface stream functions are used, Non-local inductive excitation
can taken into account in an amazingly simple fashion: for each loop of the
conductor there is basis cycle of Hq(I',Z) that “winds around it”, see Fig. 3
for an example. We realize that the circulation of the magnetic field along
that fundamental cycle, which is equal to the flux of A through it, agrees with
the total current in the loop. Hence, inductive excitation amounts to fixing
some of the ay, in the variational formulation (47). More details are given in
[39, Sect. 8].
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8 H-Based Model

For want of a transmission problem, the derivation of symmetrically coupled
boundary integral equations starts from the variational problem (19).

8.1 Boundary Reduction

In order to be able to perform a reduction to the boundary through integration
by parts we have to resort to scalar potentials. Therefore we use (15) to replace
V by

V[H,] = {(V,®) € H(curl; 2,) x H5(2.), 7 V — ~ grad® = v/ H, on I'} .

For the notations we refer to Sect. 4. Thus, (42) is converted into: Seek
(H,¥) € V[H;] such that

(0*1 curl H, curl V) L2(0.) +iwpe (H, V)Lz(()c) +

iwio (H, + grad?, /Vd@) —0, (48
+ twpo ( + grad?, gra Lot (48)

e

for all (V,®) € V[0]. As divH; = 0 in {2, testing with functions compactly
supported either in 2. or {2, shows that for k =1,..., N

curlo ' curl H 4 iwuH =0 in 0., (49)
—AV =0in 2" , [Ongrad¥]y =0, [1¥]; = const. . (50)

Integration by parts can be carried out on both §2. and (2. Thus, setting
7 = (iwopg) ™!, (48) becomes

(o N, V), = (008,7P), 15 900 = (aHss YD)y 19 000 (51)

Here, v/ and 0/, are the standard trace and conormal derivative onto 9§2’. The
definition of 97, relies on the interior unit normal vectorfield on 02’

Remark 3. Splitting the duality pairing (ynH,v'®), /2,60 into contributions
of I' and of the cuts cannot be done immediately, because the individual
integrals are no continuous functionals on the space H : (042"). This procedure
must be postponed until after discretization.

8.2 Coupled Problem

For both (49) and (50) we need a realization of the Dirichlet-to-Neumann
operator by boundary integral operators. For (50) we can rely on the exterior
Calderon projector for the L