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Summary. The symmetric formulation of boundary integral equations and the
Galerkin boundary element method are considered to solve mixed boundary value
problems of three-dimensional linear elastostatics. Fast boundary element tech-
niques, like the fast multipole method, have to be used to overcome the quadratic
complexity of standard boundary element methods. The fast methods provide a data
sparse approximation of the fully populated matrices and reduce the computational
costs and memory requirements from quadratic order to almost linear ones. Three
different approaches to realize the boundary integral operators of linear elastostatics
by the fast multipole method are described and numerical examples are given for
one of these approaches.

1 Introduction

The Galerkin boundary element method for the symmetric formulation of
boundary integral equations is an efficient and reliable tool to solve mixed
boundary value problems in linear elastostatics by numerical simulations. This
approach is based on a rigorous mathematical analysis. The related stability
and error analysis can be found, for example, in [15, 16]. Mathematical books
on boundary element methods are, for example, [17, 21, 35, 42].

As the involved boundary integral operators are non—local, standard
boundary element techniques result in fully populated stiffness matrices.
Therefore, standard boundary element methods are restricted to rather small
problem sizes. Hence, fast boundary element methods have to be used for prob-
lems of engineering and industrial interest. There exist several fast boundary
element methods reducing the memory requirements and the computational
costs for a matrix times vector multiplication to almost linear complexity.
Most of these methods rely on a clustering of the boundary elements. This
leads to a block clustering of the considered matrix, too. Then low rank ap-
proximations are used for an appropriate approximation of the corresponding
block matrices. The methods mainly differ in the construction and the realiza-
tion of the low rank approximations. Among them there are the fast multipole
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method [7, 8, 34] and the panel clustering method [12] which both perform
the low rank approximation by an approximation of the kernel by appropriate
series expansions providing a separation of the variables. The panel clustering
method uses the Taylor series expansion whereas the fast multipole method
uses spherical harmonics. The adaptive cross approximation (ACA) method
[1, 33] is an algebraic approach to construct low rank approximations. The
‘H-matrices [10] provide a complete arithmetic for the class of matrices with
low rank approximations. The H2-matrices [11] use hierarchical basis func-
tions for the low rank approximations. The wavelet approximation methods
[4] construct special nested trial spaces which enable a sparse approximation
of the matrix due to the rapid decay of the kernel.

An extensive overview is given in [25] for the large number of contribu-
tions to the fast multipole method. There exist several versions of the real-
ization of the boundary integral operators by the fast multipole method in
three—dimensional linear elastostatics. A fast multipole version based on the
reformulation of the kernel with respect to the fast multipole method for the
Laplacian is given in [6]. There, the kernels of the boundary integral operators
of linear elastostatics are decomposed in terms depending on |z —y|~! and its
derivatives. Then the fast multipole method for electrostatics problems is used
as a black box. This approach leads to a rather large number of applications
of the potential theoretic fast multipole method.

Starting from the kernel expansion of the fundamental solution of the
Laplacian, a new multipole expansion together with the corresponding transla-
tions and conversions are derived in [46] for the fundamental solution of linear
elastostatics. That leads to less applications of the fast multipole method, but
the expansions and the operations get more costly. The authors do not make
a clear statement in [46] whether their approach is faster than the approach
presented in [6]. The same expansion in spherical harmonics is presented for
the panel clustering method in linear elastostatics in [14].

In [32], a different approach based on Taylor series expansions, which is
easier to adopt to other kernels, is used. This version of the fast multipole
method lacks the translations of local expansions from the clusters to their
sons and converts the multipole expansions to the clusters of the finest level.
Therefore, the number of conversions is rather high.

We have presented a fast multipole method for linear elastostatics in [29].
The realization of the single layer potential is similar to the approach presented
in [6] but guarantees the symmetry of the approximation of the Galerkin
matrix of the single layer potential. Integration by parts is used to reduce the
hypersingular operator, the double layer potential and its adjoint to double
layer potentials of the Laplacian and to single layer potentials.

Here, we try to give an review of some approaches to realize a fast bound-
ary element methods for three-dimensional linear elastostatics based on the
fast multipole method. First, we describe the symmetric formulation and the
considered Galerkin discretization in Sect. 2. In Sect. 3, the fast multipole
method is introduced independent of the specific kernel expansions which are
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used in the approaches. These approaches are described and in parts compared
in Sect. 4. Finally, several numerical examples are given in Sect. 5.

2 Symmetric Boundary Integral Formulation and
Boundary Element Method

Let £2 C R? be a bounded, simply connected domain with a piecewise con-
tinuous Lipschitz boundary I" = 942, where the outer normal vector n(z) is
given for almost all x € I'. We consider a mixed boundary value problem of
linear elastostatics, to determine the displacement field u(z) for x € £2,

—divo(u,z) =0 for x € £2,
You(x) = gp(x) for z € I'p, (1)
mu(x) = gn(x) for z € I'y.

The boundary I' = I'p UIy is decomposed in disjoint parts I'p and I'n. This
decomposition may be given componentwise. To guarantee the unique solv-
ability of the boundary value problem, we assume that the part with Dirichlet
boundary conditions must not vanish in each component, i.e., meas (I'p ;) > 0.
The stress tensor o(u) is related to the strain tensor e(u) by Hooke’s law

Ev FE

W=t gy

e(u)

with the Young modulus F > 0 and the Poisson ratio v € (—1,1/2). For the
case v — 1/2, special techniques [40] have to be applied for the boundary
element method. These techniques will not be addressed here. The strain
tensor is defined by

e(u) = ;(VUT + Vu).

The trace operators are given by

you(z):= lim u(T) for almost all z € I,
23z—xel’
yu(zx) := Qaéger[a(u,x)n(m)] for almost all z € I

The solution of the mixed boundary value problem (1) is given by the
representation formula

u(z) = /F Yo U™ @, y)nuy)dsy — /P (U (@) "ouly)ds,  (2)

for z € (2. The fundamental solution of linear elastostatics is given by the
Kelvin tensor
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1 114v[(3—4v) (i —yi) (x5 — v5)
U = O 3
i(®:9) 87rE1—V{|x—y| i+ |z —y|3 3)
fori,7 =1,...,3. The application of the trace operators to the representation

formula gives the boundary integral equation
* 1 *
woule) = [ U@ pmuln)ds, + prou) - [T hedds,,
r I\{z}

for almost all z € I' with T*(z,y) = (71,,U*(2,9))", and the hypersingular
boundary integral equation

1 . .
Mu(r) = 271U(a?)+/r\{7}1,xU (ar,y)MU(y)dSy—%,x/FT (z,y)vou(y)ds,

for almost all = € I', respectively. Both boundary integral equations together
form a system of boundary integral equations

You\ éI—K %4 You (4)
yu) D %I—l—K’ v )

In this representation, we use the standard notations for the boundary integral
operators, in particular the single layer potential

(Vt)(z) = / U*(z,y)t(y)dsy forz € I
r
the double layer potential
(Ku)(z) = / T*(z,y)u(y)ds, forx €T,
\{=z}
its adjoint operator
(K@) = [ U mads,  foroc
\{z}
and the hypersingular operator

(Du)(z) = —Y1.0 /T*(J:,y)u(y)dsy forz eI
T

Here and in what follows, ¢ denotes the traction.

As the solution of the boundary value problem (1) is given by the represen-
tation formula (2), the complete Cauchy data you and vy, u are sufficient for the
evaluation of the solution u(z) for x € £2. It remains to determine you on I'y
and v,u on I'p. First, suitable expansions gp € H'Y/?(I') and gy € H~Y/?(I)
of the given boundary data gp € H'/?(I'p) and gy € H~'/?(I'y) to the whole
boundary I" are chosen such that
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gp(x) =gp(x) forxelp and gn(x)=gn(x) forxzely

hold. With the splitting of the Cauchy data into the known and the unknown
parts, R
vou(z) =u(z) +gp(z) and ~yu(x) =t(x)+ gn(z),

only the functions & € H'/2(I'y) and # € H~'/2(I'p) have to be determined.
The Sobolev space HY/2(I'y) is the subset of functions in H/2(I") with sup-
port on I'y. H~Y/2(I'p) is defined by duality of H'/2(I'p). The complete
system (4) of the two boundary integral equations is used to determine the
unknown functions 4 and t. The use of the first boundary integral equation
for x € I'p and of the hypersingular boundary integral equation for x € I'y
ends up in the symmetric formulation [3, 39]:

(VD)) — (Ka)(@) = (] + K)n() — (Ven)(x)  foree I,
(KT)(w) + (DA)() = ()1~ K)g(@) ~ (Dgo)(a)  forw e Iy,

The equivalent variational formulation is given by:
Find (4,t) € H'/?(I'y) x H='/?(I'p), such that

a(@, t;v,7) = f(v,7) for all (v,7) € HY*(I'y) x H-Y*(I'p)  (5)
holds. The bilinear form is given by

a(@,t;v,7) = (Vt,7)r, — (KT, 7)1y + (K’ﬁv}FN + (Du,v) py,

and the linear form is defined by

F0.7) = (LT + K)io.7) e, — (Vw7
H(y T~ K (), o)y — (Diin, )y

The boundedness and the ellipticity of the bilinear form a(-;-) on HY/2(I'y) x
H-1/? (I'p) can be proofed by the boundedness of the operators and the el-
lipticity of the single layer potential V' and of the hypersingular operator D
on H='/2(I'p) and HY?(I'y). The unique solvability of the variational for-
mulation (5) then follows by the Lemma of Lax—Milgram for the continuous
linear form f(-).

Let the boundary I' = 02 be described by a union Ué\]:l T¢ of plane
triangles 7, with a local meshsize

1/2
he = (/ dsx) .
Te
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The global meshsize is defined by

h:= max hy.
¢=1,..,.N
Here, we consider a shape regular and quasi uniform boundary discretization
for simplicity. We further assume that each boundary element 7, belongs ei-
ther to I'p; or I'y,; for each component ¢ = 1,...,3. For each component
k=1,...,3, we use the finite—dimensional trial spaces

SHI'nk) = span{pip} iy € HY*(Iv )
Sh(I'px) = span {%,k}j‘v:ka C H Y*(I'py)

for the Galerkin discretization of the variational formulation (5) of the sym-
metric formulation. S} (I'v) is the space of the piecewise linear and continuous
functions with support in I'y and is used for the approximation of the dis-
placements u. The basis functions ¢; are the linear functions that are one in
the node x; of the boundary element mesh and zero in all other nodes. S,?(F D)
denotes the space of piecewise constant functions with support in I'p and is
used for the approximation of the tractions ¢. The basis functions v; are one
on the boundary element 7; and zero on all others. IV is the number of bound-
ary elements and M is the number of nodes. An index restricts these numbers
to the corresponding part of the boundary in the denoted component. For the
componentwise trial functions

MN,Ic ND,Ic
Uni(@) = D Gigpir() and  thr(z) = D Gadx(@),
i=1 j=1

we have to find the solution (up,?,) € Si(I'v) x SY(I'p) of the discrete
Galerkin variational formulation

a(ﬂh,fh;vh,rh) = f(vn,7h) for all (vp, ) € S}L(FN) X SQ(FD). (6)

It can be shown by means of Cea’s lemma and the approximation properties
of the trial spaces that the discrete variational formulation is uniquely solv-
able and that the following error estimate holds for the approximations
and 1, of the solutions & € H**!(I'y) and t € Hy (I'p) of the variational
formulation (5):

|z — ah”?{lﬂ(]“) + HtA— tAhHipl/z(p) < ch? ! |:||a||§{8+1(1“) + H?Hirgw(r)] (7)

for —1/2 < s < 1, in the case of suitable extensions gp € H**!(I') and
gn € Hpy(I') of the boundary data. Here, Hj, (1) denotes an appropriately
defined piecewise Sobolev space, see [42]. In the case of a sufficiently smooth
solution, i.e., s = 1, an optimal convergence rate of 3/2 is obtained in the
energy norm.
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The equivalent system of linear equations of the discrete variational for-

mulation (6) is given by
B ~ 1
(% 52) (5) = () ®

t € R¥? and u € RM~ with Np = NDl + ND2 + NDS and My =
My + MN 2 + My 3 are the vectors of the coefficients tg and u; of the trial
functlons th and 4. The block matrices are given from the discretization of
the corresponding boundary integral operators on the corresponding parts of
the boundary for i, =1,...,3 by

VI K] = (Vb Yei) o for{=1,...,Npi,k=1,...,Np,
K”[ﬁ,k] (K®k,j, %) o for{=1,...,Npi,k=1,...,Mn ;.
K’”[ﬁ,k] (K'Y, pei)ry for{=1,...,My; k=1,...,Npj,
D”[ﬁ, k] = (Dgk.j, ¢ei) rn for t=1,..., My, k=1,...,My,,.

The vectors of the right hand side are given by
1 1 ~ ~
fé,i: <(21+K)9D_V9N7'¢€,'L>FD fOI‘ﬁZl,...,ZVDJ'7
1 —~ ~
fl?,i = ((21 — K'Ygn — Dgp, ¢j.i)ry fork=1,..., Mn,.
The matrix of the system of linear equations (8) is block skew symmetric and
positive definite. Furthermore, all blocks are fully populated, i.e., the memory
requirements and the effort for one matrix times vector multiplication is of
order O(N? + M3).

3 Fast Multipole Boundary Element Methods

In this section, we describe the realization of the matrix times vector multi-
plication w = Apt or componentwise,

N N
wr =S Al = / (Ag) (@) (@)tpds, forall £=1,.... M, (9)
k=1 k=171
of some boundary integral operator

(At)(z) = /F Q. Qyk(z, y)t(y)ds,

by the fast multipole method. Q, and Q, are some operators like linear com-
binations of partial derivatives operating on a kernel k(z,y) with respect to =
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and y, respectively. But these operators can also be just identities. {wk}ff:l
is the set of trial functions and {¢,}}2, is the set of test functions. These two
sets might coincide. The basis functions ¢y and 1, do not have to coincide
with the definitions of Sect. 2. The main ingredients of the fast multipole
method are the approximation of the kernel function by an appropriate series
expansion and the use of a hierarchical structure to compute these expansions
efficiently. We require that the kernel k(z,y) is separable, i.e., an expansion

n=0

exists with a separation of the variables x and y. Such an expansion can be
given by a Taylor series expansion, for example. An approximation of the
kernel is defined by truncating the infinite sum at a suitable chosen expansion
degree p,

D
kp(z,y) = Zgn(y)fn(x) (10)
n=0
If such a splitting of the kernel and the approximation (10) were valid for all x

and y, the approximation of the matrix times vector multiplication (9) could
be rewritten as

N
m:;tk /F /F Qu Qyks(@, y) ok (y)dsyvi(z)ds,

P N
:nzz:o/Fmen(x)d)g(x)dsm;tk/Fngn(y)gpk(y)dsy

and the total effort would be reduced to O(5(N + M)), as the coefficients

N
L, = Ztk/ Qy9n(Y) ok (y)dsy forn=0,...,p.
k=1 7T

would be computed in (’)(]5]\7 ) operations and the evaluation would take
O(Aﬁj\/fj) operations.

But in general, the kernel approximation (10) is only valid for |y| > d|x|
with d > 1 and often an error estimate of the kind

1 pte
19:0k(z.9) = @@y ky(o. ) < (id ) () (1)

holds with some integer p € Z. The constant ¢(p, d, |z|) might be independent
of p or a polynomial in p of low order. It also depends on d and |x|, but the error
estimate is dominated by the exponential term d~?~¢. Due to the restrictions
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on the validation of the expansion, the matrix times vector multiplication is
separated into two parts, the nearfield part and the farfield part. The farfield
FF(¢) is the set of indices k, for which the supports of the test function v, and
the trial functions ¢y are well separated and therefore it is suitable to apply
the kernel approximation (10) due to the error estimate (11). The nearfield
part NF(¢) of the matrix times vector multiplication is realized as in standard
boundary element methods [38]. An exact definition of nearfield and farfield
will be given later. Now, the matrix times vector multiplication reads as

Te= Y ApltKt+ > My(0,40) L, (0,FF(0)). (12)
kEENF(£) n=0

The coefficients
M (0.0) = [ Qutulohinla)iss.

Lo(0, 00) = /F Qygn (1)1 (v)ds,,

with reference to a local center O, can either be computed exactly, for example,
in the case of spherical harmonics [23, 24], or can be approximated by the use
of some numerical quadrature rule. If the coefficients

Lo(O,FF(0)) = > tLn(O.k) forn=0,....p (13)
kEFF(£)

are known an efficient realization of the matrix times vector multiplication
will be given by (12). These coefficients depend on the vector ¢. Therefore,
they have to be recalculated in each matrix times vector multiplication. As
the coefficients L,,(O, FF(¢)) depend on the farfield of the support of the basis
function 1)y, they differ from each other in general and an efficient calculation
is necessary. B

The efficient computation of the coefficients L, (O,FF(¢)) in (13) will be
described only very briefly. More detailed descriptions can be found, e.g.,
in [7, 8]. In order to do this computation efficiently, as much information as
possible is shared when these coefficients are determined.

The second basic idea of the fast multipole method, the hierarchical struc-
ture is applied to compute these expansions. First, this hierarchical structure,
called cluster tree, has to be build based on geometrical information. This
structure can either be based on the boundary elements or on the supports of
the basis functions ¢y and 1. The realization of a boundary integral operator
might differ for these two approaches, since the nearfields and farfields differ
from each other. In the latter approach, two cluster trees have to be built if
the trial and test functions do not coincide.

Here, we describe the construction of the cluster tree based on the supports
of the basis functions ¢y and v,. In the case of using boundary elements 7;
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for the construction of the cluster structures, this construction is almost the
same. Then only one cluster tree has to be built, but the setup of the nearfield
part of the matrix and the evaluation of the farfield part of the matrix times
vector multiplication might need some more effort for the assembling. Here,
the cluster tree is built from the top down based on the supports of the ba-
sis functions ¢y, and . All trial functions {¢x}Y_, are included in a box
containing the original domain 2. The cluster w? of level 0 consists of all

trial functions {gok}ivzl or the corresponding set of indices. The hierarchical
structure is build recursively by the refinement of the box corresponding to a
cluster w of the level A into eight similar boxes. The trial functions {¢5 Y,
are assigned to the boxes due to the centers of their supports. All trial func-
tions, which are assigned to one of the refined boxes, form the cluster w;\"’l
of the finer level A 4+ 1 identified with the corresponding refined box. These
clusters w;H are called the sons of the father cluster w. Empty boxes and
the corresponding clusters containing no trial functions are neglected. This
refinement is done until a minimal number of trial functions in the clusters
is reached or until a maximal cluster level L is reached. Each of the trial
functions ¢y, is assigned to the cluster w’ on the finest level L which contains
the center of the support of . In this paper, we restrict our considerations
to the case of a regular distribution of the boundary elements {4}, of a
globally quasi uniform boundary element mesh. Nevertheless, the method can
be extended to the adaptive case, see for example [2, 23].

Next, the second cluster tree with clusters 0’3\ is build based on the supports
of the test functions 1, in the similar way. Depending on the choice of the
two sets of basis functions, the two cluster trees might coincide.

We have used a more abstract definition of nearfield and farfield so far.

Now, we can define these based on the cluster hierarchy. A cluster w is in
the nearfield of a cluster 0'3\ of the same level A, if the condition
dist {C(w;"), C(07)} < (d + max {r(w;), r(0})} (14)

holds for a parameter d > 1. C(w;') denotes the center of the box identified
with the cluster w?, and r(w?) is the corresponding radius of the cluster, i.e.,
r(w) = sup,epn |z — C(w))]. It is important for the multipole algorithm that
the nearfield of a father cluster U;\_l contains the nearfields of all its sons
0? C 0{\_1. This definition of the nearfield and the farfield is transferred to

the basis functions by their assignment to the leaves of the cluster tree:

NF(¢) := {k;, 1 <k < N and (14) holds for the cluster wk of vy

and UjL is the cluster of W.} ,
FF(¢) :=={1,..., N} \NF().

A symmetric definition of the nearfield helps to preserve the symmetry in the
approximation of symmetric matrices, see for example [26, 30].
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The efficient computation of the coefficients L, (O, FF(£)) in (13) now uses
this hierarchy. First, the coefficients

Mn(C(w]L),P(w]L)) = Z tkﬂn(c(wf)asok) (15)
kewk

are calculated for all clusters ij of the finest level L. P(w;‘) = {k, i € w])‘}

is the set of all basis functions ¢y, of the cluster wj\. The coefficients M,, are
given by

—~

M, (0, 1) == /F Qy () ok (), (16)

The coefficients Mn are now used to determine the multipole coefficients of
the clusters on the coarser levels by a translation of the type

—~ —_—
Mp(Cw)),P@}) = D> Y hy(C@))Ow)
w?+1€sons(w3\) s

My—s(Cw; ™), Pwi™h)  (17)

with some coefficients h), .. From these multipole coefficients of a cluster w;\,
the needed local coefficients of a second cluster af‘ in the farfield of w} can be

calculated by a conversion of the type

Lo(C(02),P(@})) = D by [(C@})C(0}) M(C(w}), P(w))) (18)

with some coefficients hfw. These conversions are executed on the coarsest
possible level, on which the admissibility condition (14) is fulfilled, i.e., for
two clusters, which are in their mutual farfield, but their fathers are in their
own mutual nearfields. These local coefficients are summed up for each cluster.
A)(\iditionally, these coefficients are translated from each cluster o2 to its sons
o; 1y

J

La(C(0)1),FF(0}) = Y _ iy ((C(0})C(03 1) Le(C(0}), FF(07))  (19)

L

with some coefficients h3 .. The sum of all coefficients En(C(O'j ), ) results

in the local coefficients Ln(C(O'JL), FF(¢)) needed for the matrix times vector
multiplication (12). Here, UjL is the cluster to which the test function ), is

assigned. Now, the coefficients L, (C (UjL), FF(¢)) are known for a fast evalu-
ation of the farfield part in the matrix times vector product (12). Note that
all the translations and conversions have to be executed in each matrix times
vector multiplication, as the coefficients in (15) change for each vector ¢. As
we have described the fast multipole method for an abstract kernel expansion,
we have to require that the corresponding translations and conversions exist.
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A fixed expansion degree p is not sufficient to guarantee the asymptotic
convergence rate of the fast boundary element method, in general. Instead,
the expansion degree p has to be chosen proportional to log2 N, as shown for
example in [30] in the case of spherical harmonics. Therefore the total effort of
one matrix times vector multiplication is of order O(N log? N ). The memory
requirements are also of order O(N log® N'). We have described the fast multi-
pole method in its original version as given by [7, 8]. Several approaches have
been made since then to increase the performance of the method. Especially,
the translations and the conversions of the multipole and local expansions
have been optimized. For example, the effort for these operations can be re-
duced by fast Fourier transforms [5] or an exponential representation [9]. But
this speedup really pays off for larger expansion degrees, which might usu-
ally not be necessary in the case of a fast boundary element method for the
Laplace equation and for linear elastostatics. As long as the expansion degree
$ has to be chosen proportional to log® N, the total effort of the fast multipole
method is not of order O(N) but higher, since always O(N) local expansions
of p+ 1 coefficients have be evaluated.

A first approach to overcome this dependency of the expansion degree p on
the number of boundary elements has been made by [44] where the variable
order approach of the panel clustering by [36] is transferred to the fast mul-
tipole method. In the case of boundary integral equations of the second kind
with piecewise constant basis functions, one ends up with an O(N) algorithm.
An approach that overcomes the dependency of the fast multipole method on
the particular kernel expansion, which has to be derived for each differential
operator separately, is given by [37].

4 Fast Boundary Element Methods for Linear Elastostatics

In this section, we try to show the differences of the approaches presented
in [6], [29], and [46]. First, we consider the single layer potential of linear
elastostatics

(Vt)(z) = /FU*(:c,y)t(y)dsy forz € I

4.1 Realization of the Single Layer Potential as Linear
Combination of the Kernel of the Laplacian and Its Derivatives

The fundamental solution (U}, )e,k=1..3 of linear elastostatics

. 1+v Oke (@k = yi)(xe — o)
Ukle —y) = 8TE(1—v) l(?’_@)lx—yl i o =y’

can be expressed by linear combinations of the kernel of the Laplacian and of
its derivatives. In [6], the representation
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1+v 1 Oke 0 1 0 Y

Uz —y) = 3-4 -
k(@ =) 2E(1—V)47T( V)|x—y| xe&‘xk|x—y|+8xk|x—y|

is chosen. A detailed analysis shows that the corresponding realization by
the fast multipole methods requires four calls of the algorithm to compute
the local expansions and seven evaluations of these local expansions in the
case of a Galerkin matrix. But unfortunately, this realization of the Galerkin
matrix V}, by the fast multipole method is not symmetric anymore, as a finite
expansion degree has to be used.

4.2 Symmetric Realization of the Single Layer Potential as Linear
Combination of the Kernel of the Laplacian and Its Derivatives

In the case of the Laplacian, the transposedness of the Galerkin matrices of
the double layer potential and its adjoint operator can be preserved [26]. This
gives the idea how to keep the symmetry of the Galerkin matrix of the single
layer potential in linear elastostatics. The gradient terms are rewritten as

. 1+v 1 5 o 1 o 1
Ut (a—y) = ﬂ ) M

— Ty —Ye .
2E(1 —v) 4nm |z —y| Oxy |z —y| Oyk |z —y|

This representation preserves the symmetry within one block of the matrix.
To guarantee the symmetry of the blocks, the expression of a block is added
for interchanged indices k and ¢ and the sum is divided by two:

. 1+v 1 )
Utz — ) [(—4@ vt

T 2E(1—v)4r 1z -y
0 1 1 0 1
— oYt
Oxy |z —yl 27 Oy |z — v
0 1 1 0 1
k(‘)xg |z — y] Zykﬁyg |z —y| ]

¢ (20)

1
_23;

1
— 7

The realization of the single layer potential by this representation requires
six calls of the fast multipole algorithm to compute local coefficients and
nine evaluations [27]. The number of evaluations can be reduced to six by a
more involved implementation of the fast multipole algorithm, which needs
to store more local coefficients. This representation leads to a more expensive
application of the single layer potential, but the preserved symmetry of the
Galerkin matrix is often advantageous for iterative solvers.

The Kernel Expansion for the Laplacian by Reformulated
Spherical Harmonics

The separation of the variables in the kernel of the Laplacian is done by a
expansion in spherical harmonics, in general. For a simpler implementation
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and a fast realization, reformulated spherical harmonics [31, 45, 46] are used
for the kernel expansion

NZ Z Sm(y (21)

n=0m=—n

Ix—yl

The reformulated spherical harmonics are given by

1 dm - S \m n
(n+m)! dumP"(u)|u=is(x1 +i22)" 2],

SEw) = (n—m)t

Ry () =

PO 1
P"(u)|u:§3 (41 £ a2)™ ly|n

in Cartesian coordinates for m > 0 and y; = y;/|y|. They can be computed
efficiently by recursive schemes. P, (u) denote the Legendre polynomials. In
the case of this expansion, the multipole coefficients (16) are computed by

0, ¢x) / QR (y)dsy
and form the multipole coefficients (15) of a cluster ij by

M (C(wh),P(wh) = > 6 M (C(wh), on)-
kewf

The translation (17) of multipole coefficients reads as

MIMCW)),Pw) = > ZZRt Cw}t))

w?+1€sons(w’\) s=0t=—s

M HOWI), P,

The conversion (18) of multipole coefficients to local coefficients takes the
form

(o Z Z D)"SEHC(W))C(0)MLU(C(w)), P(w))),

s=0t=—s

while the translation (19) of local coefficients is executed by

Ly (C(oth),F Z Z RZ3(C(0)C (0} ) LL(C(0}), FE(0})).

s=nt=—s

With these conversion and translation formulae, all ingredients of the fast
multipole method for the kernel of the Laplacian are now given. So the fast
multipole method can be applied to the kernel of the Laplacian and to linear
combinations of derivatives of this kernel. Also the single layer potential of
linear elastostatics can be realized by these means, as described before in the
approaches of [6] and [29)].
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4.3 Realization of the Boundary Integral Operators by an
Expansion of the Kernel of Linear Elastostatics

In the approach of [46], the expansion of
WzPRy () |yPSp(y) Ry ()
e =yl = ;;)mgn( 2n + 3 2n — 1 ’

for |z| < |y|, is used to derive an expansion of the fundamental solution in
linear elastostatics,

Uty(e —y) = Z S (FL @Sp) + G @S W) . (22)

n=0m=—n

The coefficients F{7} , (z) and G}, (z) are defined by

Fké,n( ) A+2 5k‘€R ( ) )\+2sz8ka” (x)?
mooy_ Atw 0
k,n(x) - /\+2M 8Z‘k n (:L’)

This expansion is used in [46] to realize the boundary integral operators of
linear elastostatics. For the single layer potential, the matrix times vector
product takes the form

3
’%‘:Z Z VI, K]ty + Z Z <ZFZ‘,L leFF(e))

J=1 keNF(¢) =0m=-n
+Gﬁl(x)fi’m(FF(€))> . (23)

Wy ; denotes the £-th entry of the vector w in the i-th coordinate. The com-

putation of the local coefficients E;YT(FF(E)) and E%m(FF(ﬁ)) is described
next. The multipole coefficients

1 m / Rn 901 k dsy (24)
M\S,’ZL(O,%) = / Ry (W) yrpik(y)dsy (25)
r
have to be computed for each basis functions and for kK = 1,...,3, similar to

(16). @ik denotes the k—th component of the trial function ¢,. These coefhi-
cients can be computed once in advance and be reused in each matrix times
vector multiplication. Due to the more involved expansion series, four sets of
coeflicients have to be computed in this approach. In each matrix times vector
multiplication the coefficients



M,ﬁ”?((](w Z ti, le T(C(Ww)), @)

zEw
Mp™(C(W),PWi)) = D Dt My (C(wf), ).
icwl =1

are calculated for all clusters ij of the finest level first as in (15). ¢; 5 denotes
the i—th entry of the vector ¢ for the k—th component. The translation (17) of
these multipole coefficients now looks like

P = Y Y Y RO )P ).
w’\ Esons(w ) 5= O0t=-s

TP = Y3 R (e ) )
,f‘JrIEsons(w*) s=0t=—s

+ZZKM§ZZL§ “1),P(w?”))>

-
where z = C’(w;‘)C(w{\H). The conversion (18) of multipole coefficients to

local coefficients takes the form

Lym(C(a) ZZ )" S (2) My (C(w)), P(w)),
s=0t=—s

F2m(C(o? TS s (M2t<c< M. P)
s=0t=—s

3
—zzm;,acwm,mw;»),
/=1

-
where z = C(w})C(0}'), while the translation (19) of local coefficients is eval-
uated by

Ly (C(o) ), FF (o Z Z RIZT(2)LE(C (o)), FF(0))),

E2m (o), FE) = 30 3" R (mc( N, FF(o)
s=nt=—s , i
—Zzsz,i(c(o?),FF(a?)))
/=1

—_——
where z = C(a)C(a)).

? J
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In the case of the double layer potential K, its adjoint operator K’ and
the hypersingular operator D, operators Q, and Q,, which are linear com-
binations of derivatives with respect to x and y, have to be applied to this
expansion. In detail, the operator Q, is applied in the computation of the
multipole coefficients in (24) and (25), and the operator Q, is applied in the
evaluation of the expansion (23). Therefore, all boundary integral operators
require the computation of four sets of coefficients L1 ™ and L2 ™ This cor-
responds to four calls of the fast multipole method, but the translatlons the
conversions and the evaluations get a little more involved.

4.4 Realization of the Double Layer Potential as Linear
Combination of Derivatives of the Kernel of the Laplacian

In the approach of [6], the kernel T*(z,y) = (v1,,U*(z,y))" of the double
layer potential K is rewritten, in a similar way as the kernel of the single
layer potential, as

’ o1 90 1
Thelmy) = jzz:l B {nj |z — y|] Z 87(1 — v) Oy, Oz; [nj(y)yz |a — y|]

Jj=1
with an operator

. 9 P ) 0 0
Rty = 8r(1—v) {(1 —) <5zj dry, Okt 8xj> 20 =)0 Oxy T Dk 8%} .

The realization of this representation by the fast multipole method ends up
with twelve calls of the fast multipole algorithm of the Laplacian. Therefore,
the effort of a application of the double layer potential K is more expensive
than the corresponding realization of the single layer potential.

4.5 Realization of Boundary Integral Operators using
Integration by Parts

In our approach [29], we use a representation of the double layer potential K
of linear elastostatics by weakly singular boundary integral operators which
can be derived by integration by parts [18]. The double layer potential K can
be rewritten by

K@= fuwy L= [T s,
25 (Vi (M) (2). (26)

with u = E/(2(1 + v)) and an operator M, consisting of components of the
surface curl,
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2 81‘1 ! 81‘2 3 8 1 ! 83?3
0 0 0 0
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The representation (26) allows to realize the double layer potential of linear
elastostatics by six calls of the fast multipole method and nine evaluations
[27]. In a more involved implementation, this can be reduced to six evaluations
again. Therefore the effort for an application of the double layer potential is
comparable to the application of our realization of the single layer potential
and not increased as in the approach of [6].

The representation (26) of the double layer potential is also used in the
nearfield. Therefore, only weakly singular boundary integral operators have
be be evaluated. The effort for the computation of the Galerkin weights is
significantly reduced by the change from Cauchy singular to weakly singular
integrals.

In the case of piecewise linear trial functions and plane triangles as bound-
ary elements, M maps the linear basis functions to piecewise constant basis
functions. Therefore, the already computed nearfield matrices of the single
layer potentials can be reused.

The representation (26) of the double layer potential can be used to rewrite
the bilinear form of its adjoint operator K’ as

<K/t, U>p = <K£t, U>p — <VLt, ./\/(1}>[* + 2M<Vt, M’U>F. (27)

Here, Vi, and K} denote the corresponding operators of the Laplacian which
are applied componentwise. This is sufficient for the used Galerkin method.
In this way, the bilinear form of the adjoint double layer potential K’ can be
realized by six calls of the fast multipole algorithm of the Laplacian.

Using piecewise constant trial functions and piecewise linear, continuous
test functions, the already computed nearfield matrices can be reused for the
realization of the bilinear form of the adjoint double layer potential.

As in the case of the Laplace equation, the bilinear form of the hypersin-
gular operator can be transformed to bilinear forms of single layer potentials.
Based on the representation (26) of the double layer potential K, integration
by parts reduces the bilinear form of the hypersingular operator to [13]

3
(Du,v) / / sm |z =y <kzl (Mt k1+10) (@) - (Mppo 1) (y)) dsyds,

// (Mo) " (27r| ! |_4”2U*(f”vy)>(MU)(y)dsydsm
// Z (Migv:) ( ) dr |2 1y| (M iuj) (y)ds,ds,.

i,7,k=1
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In the first line the indices 4 and 5 of the operator M have to be identified
with 1 and 2, respectively.

Overall, it is sufficient to have a fast realization of the single layer potentials
and the double layer potential of the Laplacian in our approach. Therefore, the
effort for the computation of the Galerkin weights is reduced significantly. The
approach based on integration by parts is not restricted to the fast multipole
method but can also be used for other fast boundary element techniques.

By a detailed analysis [27], we have shown that the use of the fast multipole
method as a fast boundary element method does not effect the main prop-
erties and the asymptotic error estimate of the boundary element method,
summarized in the following theorem.

Theorem 1 ([27]). Let T € ﬁgw(FD) and @ € H"(I'y) for o € [0,1] and
n € [1,2] be the unique solution of the variational problem (5). Let the dis-
cretization of the boundary be shape—regular and quasi—uniform. Let the expan-
sion degree p of the multipole expansion (21) be proportional to log N. Then
the variational problem of the approzimations of the boundary integral oper-
ators by the fast multipole method is uniquely solvable. For the approzimate
solutions Uy, and ty, the following error estimate holds:

It — t~h||§{—1/2(r) + 1@ = nl ey <€ (hQJHHﬂ\%{gw(r) + h%_lﬂmﬁm(r)) :

Similar results should hold for the other approaches to realize the boundary
integral operators by a fast multipole method, as all approaches are based on
the expansion in spherical harmonics. It seems to be an open question, how the
expansion degrees have to be chosen optimally in each of the approaches. This
optimal choice of the expansion degree has a big influence on the performance
of the methods and has to be considered in comparisons between the methods.

As a fixed expansion degree is not sufficient to keep up with the asymptotic
error estimate of a boundary element method, the expansion degree has to
be adopted to the number of boundary elements like log N. With a fixed
expansion degree p over all levels in the cluster tree of the fast multipole
method, the effort of the fast multipole method is always of order O(N log? N ),
as for each boundary element an expansion with (’)(log2 N) coeflicients has to
be evaluated.

To overcome this logarithmic terms in the effort, an attempt has been
made by [44] where the variable order approach of the panel clustering [36]
is transferred to the fast multipole method. In the case of boundary integral
equations of the second kind with piecewise constant basis functions, one ends
up with an O(N) algorithm.

5 Numerical Examples

Finally, we show first some academic examples and then some examples of
industrial interest. First, we compare our version [29] of the fast multipole
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method for linear elastostatics with a standard boundary element approach.
The considered domain is the cuboid shown in Fig. 1.

Fig. 1. Cuboid with 2560 boundary elements.

The left front side is the part with Dirichlet boundary conditions. The
rest of the boundary has Neumann boundary conditions. The given boundary
data are the traces of a chosen solution of the boundary value problem (1),
which is given by a fundamental solution with the singularity outside of the
domain. The system of linear equations (8) is solved as Schur complement
system, with an iterative inversion of the matrix of the single layer potential
in each iteration step. The results of this computations are given in Table 1.

Table 1. Comparison of standard and fast BEM.

I N M dof t1 to it D-error N-error

O O T e oo
roweowooam D e
> oo s SR
s om0 amzooam YR et e

162 min) (>23 min)
7.6 min 13.5 min 32 2.47e-6 5.06e-3

(43.3h) (>6.6 h)
0.5 h 1.3 h 34 5.96e-7 2.50e-3

4 10240 5122 16803 (

5 40960 20482 67395
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The first line of each refinement level L shows the data for the standard
boundary element method, while the data in the second line refer to the fast
boundary element method. IV is the number of triangles and M denotes the
number of nodes. Further, the number dof of degrees of freedom is given. ¢,
and to are the times in seconds for setting up and for solving the system of
linear equations. It is the number of iteration steps needed in the Schur com-
plement conjugate gradient method with a relative accuracy of 10~8. Further,
the errors of the computed Dirichlet and Neumann data are compared using
the Lo(I") norm. These experiments have been carried out on personal com-
puter with an Intel Pentium 4 processor with 3.06 GHz and 1 GB of RAM. An
artificial multilevel boundary element preconditioner [41] and the technique
of operators of opposite order [28, 43] have been used as preconditioners for
the single layer potential and the hypersingular operator, respectively.

The numbers of iterations are the same for the standard and the fast
boundary element method. This is an evidence that the approximation of
the system matrix is rather good and that important properties such as the
symmetry are preserved. The standard method only works until the fourth
refinement level due to the memory restrictions. Therefore, some values have
been extrapolated and have been put in brackets. The numbers of iterations
grow logarithmically as expected from theory [22]. There is some overhead in
the fast boundary element method on the first refinement levels. But the fast
multipole method speeds up the calculations on the higher levels significantly.
The speedup is larger for setting up the system than for solving. This is
typically for the fast multipole method. But here it is also caused by the
special choice of the parameters of the fast multipole method for an optimal
total time and by some implementation details. The factors of the increasing
computational times for solving the Schur complement system are a little bit
higher than expected for an algorithm of O(N log®N). This is due to the
increasing number of iterations in the inner iteration for the inversion of the
single layer potential in the Schur complement conjugate gradient method.
The errors of the Dirichlet and Neumann data match each other very well for
the standard and the fast boundary element method. The convergence rates
expected from theory are obtained.

In Table 2, a diagonal scaling, the artificial multilevel boundary element
preconditioner [41] and an algebraic multigrid method [19, 20, 27] for the fast
multipole method are compared as preconditioners of the single layer potential
in a Dirichlet boundary value problem for the cuboid in Fig. 1. In the latter
case, the algebraic multigrid preconditioner of the single layer potential of
the Laplacian is applied componentwise, since its application is cheaper than
the application of the operator of linear elastostatics and gives good iteration
numbers.

Overall, six uniform refinement steps have been applied such that the finest
grid consists of 163840 triangles and 491520 degrees of freedom. The compu-
tations have been executed on a personal computer with an AMD Opteron
processor 146 with 2.0 GHz and 4 GB RAM. The iteration numbers of the
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Table 2. Comparison of the preconditioners.

scaling ABPX AMG
L N dOf t1 tQ It t1 t2 It t1 tQ It
0 40 120 0 0 26 0 026 0 013
1 160 480 1 2 36 2 133 2 115
2 640 1920 5 13 51 5 10 40 5 416
3 2560 7680 18 93 70 19 5844 21 2516
4 10240 30720 75 680 92 76 37050 88 160 17
5 40960 122880 365 6945 124 368 3080 55 457 1392 19
6 163840 491520 1749 55984 165 1750 20386 60 2325 9481 21

diagonal scaling grow quite fast. The iteration numbers of the artificial mul-
tilevel preconditioner increase logarithmically as predicted. As the costs for
this preconditioner are very low, the reduced number of iterations results in
a faster solving of the system. The algebraic multigrid method reduces the
number of iterations once more. The application of the algebraic multigrid
preconditioner is a lot more expensive than the artificial multilevel precondi-
tioner, but nevertheless the computational times are reduced again. Therefore,
the extra effort to set up the algebraic multilevel preconditioner is justifiable.

The first example of industrial interest is the stress analysis for a part
of a press equipment and has been provided by W. Volk, M. Wagner and
S. Wittig (BMW Research Center Munich). The two pictures in Fig. 2 show
the deformed body under imposed deformations and stresses.

Fig. 2. Part of a press equipment.

The numbers N of boundary elements, the numbers of degrees of freedoms,
the computational times for setting up and solving the system of linear equa-
tions and the numbers of iterations of the conjugate gradient method with a
relative accuracy of 10~% are given in Table 3. The press equipment is only
fixed at a few points. Therefore, the block of the single layer potential is set
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up completely and inverted by a direct method. Than the complete system is
solved as a Schur complement system on the Opteron computer.

Table 3. Computational times for the press equipment.

N DOF(N) DOF(D) Setup Solving it
13144 182 19586 896 3398 343
52572 728 78426 3940 23623 372

The numbers of iterations might seem to be rather high on the first sight.
But they are caused by the thin walls of the body. The slight increase of
the numbers of iterations shows that the preconditioning of the hypersingular
operator by the operator of opposite order [43] performs as expected.

The second example is a metal foam, see Fig. 3, provided by H. Andra
(Fraunhofer—Institut fiir Techno— und Wirtschaftsmathematik, Kaiserslautern).
The left picture shows the body in the reference configuration, while the right
picture shows the deformed body. The bottom side of the foam has been fixed
and the top side has been pressed down by a given deformation in z—direction.
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Fig. 3. Undeformed and deformed foam of metal.

The number of boundary elements, the number of nodes, the number of
degrees of freedom, the number of iterations and the computational times are

given in Table 4.

Table 4. Computational times for the foam.

N M DOF(N) DOF (D) Setup Solving It
28952 14152 396 41511 1730 9832 264
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Several attempts of computations with commercial finite element software
had been failed for this complex structure. But these computations were pos-
sible with the fast boundary element method. The preconditioners work well
for this complex structure, too. The computations are rather costly for fast
boundary element methods, as the boundary element mesh fills out the whole
volume and the nearfields in the cluster tree are very large, consequently.

Overall, the realization of the boundary element method for linear elas-
tostatics by the fast multipole method works very well and is applicable to
complex structures of industrial interest.
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