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Summary. We consider the wave equation in a time domain boundary integral for-
mulation. To obtain a stable time discretization, we employ the convolution quadra-
ture method in time, developed by Lubich. In space, a Galerkin boundary element
method is considered. The resulting Galerkin matrices are fully populated and the
computational complexity is proportional to N log? NM?, where M is the number
of spatial unknowns and N is the number of time steps.

We present two ways of reducing these costs. The first is an a priori cutoff strat-
egy, which allows to replace a substantial part of the matrices by 0. The second is
a panel clustering approximation, which further reduces the storage and computa-
tional cost by approximating subblocks by low rank matrices.

1 Introduction

This paper is concerned with the numerical solution of the wave equation
in an unbounded domain. Problems governed by the wave equation arise in
many physical applications such as electromagnetic wave propagation or the
computation of transient acoustic waves. When such problems are formulated
in unbounded domains, the approach of retarded potentials allows a transfor-
mation of partial differential equations into space-time integral equations on
the bounded surface of the scatterer.

Although this approach goes back to the early 1960s (cf. [11]) the de-
velopment of fast numerical methods for integral equations in the field of
hyperbolic problems is still in its infancies compared to the vast of fast meth-
ods for elliptic boundary integral equations (cf. [24] and references therein).
Existing numerical discretisation methods include collocation methods with
some stabilisation techniques (cf. [2, 3, 6, 7, 8, 22, 23]) and Laplace-Fourier
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methods coupled with Galerkin boundary elements in space (cf. [1, 5, 9, 12]).
Numerical experiments can be found, e.g., in [13]. In [10], a fast version of the
marching-on-in-time (MOT) method is presented which is based on a suitable
plane wave expansion of the arising potential which reduces the storage and
computational costs.

In this paper, we consider the convolution quadrature method for the time
discretisation (cf. [18, 19, 20, 21]), and develop a panel-clustering method
to obtain a data-sparse approximation of the underlying boundary integral
equations. In [14], we have developed and analysed a simple cut-off strategy
which reduces the number of entries in the system matrix which have to be
computed while the rest is set to zero. The use of panel-clustering will further
reduce the storage and computational complexity.

In [25, 26, 27] Lubich’s convolution quadrature method is applied to prob-
lems such as viscoelastic and poroelastic continua.

2 Formulation of the Problem

We consider a scattering problem in an exterior domain. For this, let 2 C R3
be an unbounded Lipschitz domain with boundary I'. Let @ be the solution
to the wave equation

OPu=Au+f,in 2x(0,7T),
a(-,0) =wup in £2,
oyu(-,0) = uy in 2,
u=0onTI x(0,7),
for some time interval (0,7") and given data f, ug and us.
To formulate the differential equation as a boundary integral equation, we

introduce an incident solution v and a diffracted solution u in the whole R3,
with @|o = (u + v)|e, where v solves the open space problem

Ofv=Av+ f, nR®x (0,7),
v(-,0) = ugy in R?,
D (-,0) = ugp in R?,
where f,, u;, are prolongations of f and u; to the whole R?, respectively.

Given the solution to the above problem, v, u solves the homogeneous wave
equation

O2u = Au in 02 x (0,T), (1a)
u(+,0) = dyu(-,0) =0 in 2, (1b)
u=gonlI x(0,T), (1c)

where g = —v[py(0,7)-
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When considering a discretisation of the above partial differential equation
on the unbounded domain 2, one has to introduce an artificial boundary with
additional boundary conditions. This is avoided by transforming the partial
differential equation into a boundary integral equation. For this, we employ
an ansatz as a single layer potential

u@¢y:A{Akmx—w¢—7m@JmQ@m (2.0) € 2% (0,T), (2)

where k(d,t) is the fundamental solution of the wave equation,

5(t — d)

k(d7 t) = drnd (3)

d(t) being the Dirac delta distribution. Inserting (2) into (la), we see that
the differential equation is satisfied. Also, the initial conditions are satisfied.
An equation for the unknown density ¢ is obtained by taking the limit to the
boundary. Since the single layer potential is continuous across the boundary,
we obtain the following boundary integral equation for ¢,

K;Akwx—WJ—TM@JMEﬂT=m%ﬂ W) €T x (0,T). (4)

Note that only the two-dimensional surface I is involved in this equation
and not the three-dimensional domain (2. This is one major advantage for
the numerical solution process compared to finite element or finite volume
methods.

3 Convolution Quadrature Method

Discretising (4) directly in space and time, e.g., with a Galerkin method in
space and a collocation method in time, involves the treatment of the Dirac
delta distribution. The resulting integration domains for a boundary element
method are given by the intersection of the light cone (of finite width) with
the triangles or quadrilaterals of the surface mesh which can be of quite gen-
eral shape and, hence, numerical quadrature becomes rather complicated. In
addition, care needs to be taken to obtain an unconditionally stable scheme.

The convolution quadrature approach for the time discretisation leads to
an unconditionally stable scheme (see [20]). The resulting integration domains
are just the boundary elements themselves. Furthermore, the approach allows
a data-sparse approximation of the system matrix by panel-clustering.

To explain the convolution quadrature method, we consider a convolution
of the form

cwmwzéfaﬂwmm,tzo (5)
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Choosing a stepsize At, (5) can be approximated by a discrete convolution
(f *at g)(t,) which will be based on the inverse Laplace transform

1 ¢ st
*td

for some o > 0. The inverse Laplace transform is defined if f is analytic
and for Res > o, |f(s)| < ¢|s|™* for some ¢ < oo and p > 0. Inserting this
representation of f(¢) into (5), we obtain

ft) =

1
211

(e =, [ T tds with y (s,1) 1= | et gmar.

Observe that the function y,(s, -) satisfies the differential equation

Ory(s,-) = sy(s,-) + g,

which can be approximated by a p-th order linear multistep method,

k k
D tnesk(s) = AtY By (synrs—r(s) +9((n+5 —K)AL) . (6)
=0 7=0
with starting values y_x(s) = ... = y_1(s) = 0. We assume that sufficiently

many time derivatives of g vanish at ¢ = 0. Formally, a p -th order approxi-
mation of (5) is then given by

(o)) = o [ Fehnleyis. ™)

211

To see that (7) can be written as a discrete convolution, we multiply (6) by
¢" for |¢| < 1 and RM(O > o and sum over n to obtain

Zyncn - ("% - s)_lig(nmx

. Z;‘ o ozjckf .
with y(¢) := Sk gk . Doing the same for (7), we obtain
j=0

o A
e 1 (s)

§ (f *at g)(t = 27”,/ A ’Y(C) ds E g(nAt)¢

n=0 o+iR

At

-5 (19 stnanc

where we have employed Cauchy’s integral formula in the last step. If we
define w2 by
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) = e, )
n=0
we have
> (frarg)(tn)C" = Zw%” Z (mADC™ =" | D wnt gAY | ¢
n=0 n=0 \ j=0
Thus
(f *at 9)( an 19 AL,

which has the form of a discrete convolutlon.

4 Time Discretisation: Convolution Quadrature Method

In our case, the convolution coefficients are spatial boundary integral op-
erators. The continuous convolution in (4) is approximated by the discrete
convolution,

Z/ =y d ()dly = glatn),  n=1,...N, zel, (9)

where the convolution coefficients w2 (d) are functions of d = ||z — y|| deter-
mined by the power series (cf. (8)) of the Laplace transform

. e—sd
k(d’ 8) - drd”’
2 (d, 72?) = St (10)

As a multistep method, we use the second order accurate, A-stable BDF2
method with

Q) = (@ —1¢+3).

The coefficients of the power series (10) can be obtained by the Taylor expan-
sion of k(d, Wgt)) about ¢ =0,

n e n — 76
g TR 11 e
" n! ocn n! drd  OC™ o

It can be shown that

n/2
11 d 3d 2d
At _ — oAt
wn(d) = nl4nd <2At> ¢ 2t in <\/At> ’ (11)

where H,, are the Hermite polynomials.
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5 Space Discretisation. Galerkin Boundary Element
Methods

For the space discretisation, we employ a standard Galerkin boundary element
method with piecewise constant or piecewise linear basis functions. Let G be
a regular (in the sense of Ciarlet [4]) boundary element mesh on I consisting
of shape regular, possibly curved triangles 7;. Let Py and IP; denote the space
of constant and linear functions, respectively. We denote by

S,LO::{ueLC’O(F) : VneG:u €]P0}

the space of piecewise constant, discontinuous functions, and by
Sop={ueC’(I) : Vreg: (woxi)l, €Pi}

the space of continuous, piecewise linear functions, where y; denotes a regular
mapping of the curved triangle 7; to a planar reference triangle.
As a basis for S_ ¢ we choose

bz(x) = (5”‘, ifze Tj

and the basis for Sy ; consists of the standard hat functions on the planar
reference triangle, lifted to the surface I' by the mapping x;. We generally
refer to the boundary element space by S and its basis by (bi)?il. The mesh
width h is given by the maximum triangle diameter in G.

For the Galerkin boundary element method, we replace ¢’ in (9) by some
@Ay, € S and impose the integral equation in a weak form. The fully discrete
problem consists of finding ¢%, , € S, n=1,2,..., N, of the form

M
¢Zt,h(y) = Z ¢n,ibi(y) ’
i=1

such that
T [ [t = vhmn@an,ar. = [ g tb@ar,
=0 =1 r
(12)
forall1 <k <M and n=1,...,N. This can be written as a linear system
ZAnfj(ﬁj:gnv n=1,...,N, (13)

Jj=0

with the vectors ¢; = (¢;,;)M, and the matrices

= [ [ @R = sobstoeteraryar

and

(gn)k = ,/[‘g(xvtn)bk(x)drz .
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5.1 Efficient Algorithmic Realisation

Before we present a way to reduce the storage requirements, we take a look
at the solution procedure. The problem to be solved is

¢, = <gn ZAn 1¢> n=0,1,...,N. (14)

A straightforward way to solve (14) is to compute (gn > AL i(ﬁi) and

then to solve the system for each n. The required work is however proportional
to N2. When using the following algorithm (cf. [16]) the computational costs
are proportional to N log2 N. The procedure depends on a (small) control
parameter 7.

Algorithm 2 (Recursive solver for block triangular system)

Comment: Main program

begin

solve triangular(0, N);

end;

Comment: The recursive subroutine solve triangular is defined as fol-
lows.

procedure solve triangular (a,b : integer) ;
begin
if b—a <r—1then
for n:=a to b do

n—1
¢n = Aal <gn - Z An—i¢i> (15)

end
else begin
. [b+aT].
m =[50
solve triangular(a,m —1);
for n:=m to b do

m—1
end;
solve triangular(m,b);
end;

end;
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When using fast iterative methods, the computational costs for (15) are pro-
portional to 72 matrix vector multiplications. The special form of (16) allows
the use of the discrete fast Fourier transform (see, e.g., [17]) and the updates
of g can be done in O (M? (b—a)log(b— a)) operations. The procedure
solve triangular calls itself twice with half the dimension. The total com-
putational cost sums up to O (M2N10g2 N) (cf. [17]).

Remark 1. In the following, we will apply sparse approximation techniques to
the matrices A,,. Further research will be concerned with a modification of the
above algorithm making use of the sparse representation of the operator A,,.
Note that already the use of (14) in combination with the fast evaluation of
matrix vector products due to the sparse representation leads to a reduction of
the overall complexity. The total computational cost sums up to O (M sy )
with s < 1.

6 Sparse Approximation of the Matrices A,, by Cutoff

6.1 Cutoff Strategy and Perturbation Analysis

The matrices A,, are full matrices. Thus, storage requirements and compu-
tational complexity for the solution of the fully discrete problem using fast
iterative methods are proportional to M?2. However, a substantial part of the
matrix consists of small entries and can be replaced by 0. To see this, we recall
the definition of the convolution coefficients

n/2
11 d 3d 2d
At = T 24t
w(d) = n!4rd <2At> o7 x4 Hy <\/At> ' (17)

For n = 0, we have

efg Ad
A t
Wo t(d) = drd )
with a singularity at d = 0 and, for n = 1,
1 e72 Adt
wlAt(d) T At or

In Fig. 1, we plot w2(d) for At = 1 and different n. For general At, we have
the relation J
wAt(d) = At 1w} (At) .

The convolution functions have their maximum near d = t,,. Away from
this maximum, the coefficients decay fast. Using bounds for the Hermite poly-
nomials, it can be shown (cf. [14]) that outside the interval
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Fig. 1. The convolution weights wﬁt(d) for At =1 and different values of n.

InA; = [tn — 3V ALt |loge|, ty + 3V At/L,| logeﬂ (18)
we have .
W@l < S v IR, (19)

Given an error tolerance e, we only consider those entries of A, , for which
the possible values of ||z — y|| lie inside I5*. The remaining entries are set to
zero. Let P. C {1,...,M} x {1,..., M} be defined by

P, = {(i,j) : 3(x,y) € suppb; Nsuppb;, s.t. ||z —y| € InAé . (20)
This induces a sparse approximation A, by

Ay (An)igif (i,7) € Pe,
(An)i = {O otherwise. (21)

- - \M
Instead of solving (13), we solve for an approximate solution ¢; = (¢j7i>

. )
i=1
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n
> A, j¢i=g., n=1,...,N, (22)
=0

and we have the approximate solution

M
Phen(y) == Zﬂzmbz(y) (23)
i=1

In [14], the following theorem is proven.

Theorem 1. Let the exact solution ¢ (-,t) of (4) be in H™T(I") for any
t € [0,T]. There exists a constant C > 0 such that, for all cutoff parameters
e in (21) with 0 < € < ChAE, the solution ¢ s in (23) exists and satisfies
the error estimate

880 = @ o t0)

where Cy depends on the boundary data g.

< “tAr? 2 pm+3/2
’H_1/2(F) = CQ(T) (€h At + AP+ h ) 7

Corollary 1. Let the assumptions in Theorem 1 be satisfied. Let
At2 ~ hm+3/2 ’ (24)

and choose
e ~ Tm/2+25/4

Then the solution é%t,h exists and converges with optimal rate

6.2 Storage Requirements

< C(T)R™3/2 ~ C,(T)AL2.
H_l/Q(F)ng( ) Cy(T)

Qth,h - ¢ ('a tn)

The approximation of the matrices A, by sparse approximations A, results
in reduced storage requirements. To determine the storage requirements for
the sparse matrices, assume that the dimension M of the boundary element
space satisfies

cth™? <M< Cih™2 (25)

We further assume that there is a moderate constant C' such that for any
1 <i < M, the subset
Pi={je{l,...,.M}:(i,j) € P},

with P, as in (20), satisfies

(26)

VAL log M
1 52 .

ﬂPiSCmax{ , "
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Table 1. Storage requirements for A.,,.

m =0 m=1
tn = O(Atlog M) CM*ilog? M CM
tn = O(1) CtY2 MY 18 log M CtY/* M 16 log M

This assumption can be derived from the assumption that
ch? < supp b; < Ch?
and that the area of
Rip:={yel : 3zecsuppb;:|lz—y| el

satisfies |R;.,| < CV At ti/2| log(e)| (R;n is part of a ring with radius ¢,, and
the same width as the interval Ifg) Due to Corollary 1, |loge| ~ log M.

With these assumptions, the number of nonzero matrix entries in A can
be estimated by

M
S kP < CMmax{l, \/Attf/Qh’QlogM}.

i=1
Relation (24) allows to substitute /At and the combination with (25) yields

Theorem 2. The number of nonzero entries in the sparse approzimation A,
is bounded from above by

CMmax{l,tiﬂMig*émlogM}.

We distinguish between four cases: The case of piecewise constant and piece-
wise linear boundary elements (m = 0, and m = 1, respectively) and small and
large n (t, = O(Atlog M) and ¢, = O(1), respectively). The storage require-
ments for the different cases are summarised in Table 1. For small n, the stor-
age requirements are significantly decreased. In Section 7, we present a method
for further reducing the storage requirements even when t,, > O(Atlog M).

7 Panel-Clustering

The panel-clustering method was developed in [15] for the data-sparse approx-
imation of boundary integral operators which are related to elliptic boundary
value problems. Since then, the field of sparse approximations of non-local
operators has grown rapidly and nowadays advanced versions of the panel-
clustering method are available and a large variety of alternative methods
such as wavelet discretisations, multipole expansions, H-matrices etc. exist.
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However, these fast methods (with the exception of H-matrices) are developed
mostly for problems of elliptic type while the data-sparse approximation of
retarded potentials is to our knowledge still in its infancies. In this section,
we develop the panel-clustering method for retarded potentials.

7.1 The Algorithm

The panel-clustering can be applied as soon as t, > O(At |loge|). (Note that
for the first time steps the simple cutoff strategy reduces the computational
complexity much more significantly than for the later time steps, see Table
1.)

For t, > O(At|logel), the matrices A,, in (13) are partitioned into sub-
blocks Ay, |sx¢ for some index set s x t C {1,..., M} x {1,...,M}. The sub-
blocks are either replaced by zero, if the block entries are sufficiently small,
or they are replaced by low rank matrices. To explain this approach in detail
we first introduce the basic notation.

Let 7 := {1,2,..., M} denote the degrees of freedom for the space dis-
cretisation.

Definition 1 (Cluster). A cluster ¢ is a subset of Z. If t is a cluster,
the corresponding subdomain of I" is Iy := (U;c, supp (b;). The cluster box
Q: C R3 is the minimal axisparallel cuboid which contains I'y and the cluster
size Ly is the mazimal side length of Q.

The clusters are collected in a hierarchical cluster tree T7.

Definition 2 (Cluster Tree). A tree Tz is a cluster tree if the following
conditions are satisfied.

1. The nodes in T7 are clusters.

2. The root of T1 is I.

3. The leaves of T7 are the degrees of freedom, i.e., L(Tr) = T and the
tree hierarchy is given by a father/son relation: For each interior node
t € Tr \ L(T7), the set sons(t) is the minimal subset in T\ {t} such that

t:Us

s€sons(t)
holds. Vice versa, the father of any s € sons(t) is t.

The standard construction of the cluster tree Tz is based on a recursive bisec-
tion of an axisparallel cuboid B which contains I". The bisection of B yields an
auxiliary binary tree T3. Then, the clusters in 77 are given by collecting, for
any box B € T}, the indices i € 7 which satisfy §; € B, where &; denotes the
nodal point for the i-th degree of freedom. Clusters in T7 which coincide with
their father are removed from 77 and empty clusters are removed as well.

The kernel function k(||z — y||,t) is approximated on I} x s, where (¢, s)
is a pair of clusters which satisfy the following condition. Recall the definition
of the interval I2' as in (18).
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Definition 3. Let ¢ > 0 and n > C'|loge|. Let 0 < n < 1 be some control
parameter. A pair of clusters (t,s) € Tr x Tz is admissible at time step t,, if

V(z,y) € Qe x Qs llz—yll & I3t (27a)

or
(27a) is violated and max {L;, L} < nAtn®. (27b)

The power b in (27b) is a fixzed number which is related to the accuracy of
resulting discretisation.

A theoretical bound on b is b > 1/4 under the condition n > C'|loge|. Numer-
ical experiments indicate that the choice b ~ 0.3 also preserves the optimal
convergence rates. This is shown in a forthcoming paper.

The following algorithm subdivides Z x 7 into a matrix part PSP*™¢ cor-
responding to pairs of indices where the matrix has to be assembled in the
conventional way, a zero part P° where the corresponding matrix entries are
set to zero and a panel-clustering part PP¢, where the system matrix is approx-
imated by panel-clustering. Note that the father/son relation of the cluster
tree induces a father/son structure for pairs of clusters b = (¢, s) by

sons (¢) x sons (s) if sons (¢) # () and sons (s) # ()
¢ X sons (s) if sons(c) =0 and sons(s) # 0,
sons (¢) X s if sons(c) # ) and sons (s) =0
0 () #0 )# 0

if sons (¢ and sons (s

sons (b) :=

Algorithm 3 Let n > C'|loge|. The minimal admissible block partition-
ing of T x T at time step t, is obtained as the result of the procedure
divide((I,I) ,PSparse,PpC,PO) defined by (cf. [15])
procedure divide (b, psparse ppe. PO);
begin
if (b is non-admissible and sons (b) = () then Psparse .= psparsej{]}
else if (b satisfies (27a) then P?:= P’ U {b}
else if (b satisfies (27b) then PP°:= PP°U {b}
else for all b € sons (b) do divide (B, psparse ppe, PO) :
end;

Remark 2. The set P®P?™¢ is empty in most cases since the cluster sizes of the
leaves satisfy
Ly = O(h)

while relation (24) implies for the bound in (27b)
nAtn® = O (nhm/2+3/4nb) :

where m = 0 for constant and m = 1 for linear elements. Hence after a few
time steps, nAtn® > Ch and any pair b with sons(b) = 0, i.e., i,j € T,
satisfies (27a) or (27b).



126 W. Hackbusch, W. Kress, and S.A. Sauter

Next, we explain the data sparse approximation on the blocks b = (¢, s) €
PP Since w2 (||x — y||) is defined in Q. x Qs we may define its approximation
by Cebysev interpolation:

Dz =yl 2ol -yl = Y LP@LY (w2 =y ),
Ve (Ngq)3
(28)
where £ (resp. /ng)) are the tensorised versions of the ¢g—th order Lagrange
polynomials (properly scaled and translated to Q. resp. Qs ) corresponding
to the tensorised Cebysev nodes z* for Q. resp. y” for. Qs.
The matrix A, is the representation of the bilinear form a,, : S x S — R,

an (6,10) = /F /F W[l — y)@(y)(x)dl, dr,

with respect to the nodal basis (b;)M,. We introduce the convention that,
for any function ¢ € S, the coefficient vector in the basis representation is

denoted by ¢ = (p;);;, i.e., o = Y10, @ibi
The sparse approximation of a, by our combined cutoff and panel-
clustering strategy is given by

an ()~ > iy (AP,

(l,])e Psparse

Yoy (7)1 @) I @),

=(0:8)€PPe ), ye(Ng,)? 7
with the sparse matrix part of A,

(Asparse)‘ = f[‘{i} fF{j} wﬁt(Hx - y”)bj (y) bi (x) drydrﬂﬂ if (7',.7) € Psparse»
" I 0 otherwise,
(29)

the interaction matriz Sén)
(867) = w(la — ") 0<pm<a1<i<s
pv
and the influence coefficients

T (¢ Zw/ LY (2)b; (x)dTy, 0 < pgvp <q,1<i<3.

i€o

The algorithmic realisation of the sparse matrix multiplication based on this
approximation of the bilinear form and the recursive computation of the in-
fluence coefficients J " (1) are structured as follows.



Sparse Convolution Quadrature for TDB Integral Formulation 127

Phase 1: Computation and storage of the Galerkin operator

(a) Generate and store the cluster tree and the partitioning of Z x Z into
psparse - ppeand PO,
Introduce recursive tree levels 0 < £ < {yax by T7 (0) = {Z} and

Tr(0+1):={o€Tr:3s €Tz (¢) with “o is son of s”}.

Let £yin denote the minimal index such that (i) there exists o € Tr ({iin)
with L, < nAtn® and (i) for all 0 < ¢ < lyi, and o € Tz (£) there holds
L, > nAtn®.

(b) Compute and store the nonzero entries of the matrix ASParse,

(¢) Compute and store the basis influence coefficients

9 (by) = / (b)cg;; (@)b; (x)dTy, 1<i<M, pe(Neg)®. (30)
supp(0;

(d) Compute and store the interaction matrices S{)") for all b € PP©.
Phase 2: Evaluation of a matrix-vector multiplication ¢ = A,

a) For all o € T7 ({1nax), for all p € (N« 3 compute
(a) H <q
T () = %‘Jf?}) (b:) -

For £ = liax — 1, bmax — 2, - -+, fmin, for all o € T7 (£) and all p € (Ngq)3
compute

JW @)= > > s dP () with . = L8 (7).

s€sons(o) e (Ng, )

(b) Let
T2 :={ceTr|Is€Tr: (c,s) € P’}

and, for ¢ € T2°, let

Pl (€)== {s € Tz | (c,s) € P*°}.

For all ¢ € T2 and all ;€ (N<,)® compute
RO W= > 3 () ).
s€PLE) (o) VE(NSQ)E‘ ks

(c) For ¢ = loin, bnin + 1, ., lmax — 1, 0 € Tz (¢), s € sons (o), and all
3
v € (N<g)” compute

RM () :=RY )+ > YuwsR¥ (¥) .

”E(Niq)g
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For all {i} € T7 ({max) do
pii= Y RE@W) I ()
VE(NSQ)3
(d) Evaluate (by taking into account the sparsity of A,,)
P =@+ AP,

7.2 Error Analysis

We proceed with the error analysis of the resulting perturbed Galerkin dis-

cretisation which leads to an a-priori choice of the interpolation order ¢ such

that the convergence rate of the unperturbed discretisation is preserved.
Standard estimates for tensorised Cebysev-interpolation yield

sup  |wp " ([12]) — @ (21| < (31)

2€Q:—Qs

L9 (1 4 log®
(+1os ) e wup JorHiu(20)]
92¢+1 (q+1)! 16{123} 2€Q:.—Qs

where C > 0 is some constant independent of all parameters, L denotes the
maximal side length of the boxes Q. and Qs and Q. — Q) is the difference

domain {z —y: (z,y) € Q. X Qs}.
Theorem 3. For b = (¢,s) € PP°, let (x,y) € I. X I's and n > C'|loge|.
Assume that the partial derivatives of w2t (||x — yl|) satisfy

1 q
w2 (D] < et (1) ¥o@o-Qu 20

1<i<3
with b as in Definition 3. Then

At G L\
- <
o) -2 =l < o o (Coprn ) G2D)
with L as in (31).

Note that in a forthcoming paper, the validity of assumption (32a) will be
derived.

Theorem 4. Let ¢ > 0 and n > C|log”¢e| for some C. Let the assump-
tions of Theorem 8 be satisfied and the interpolation order chosen according to
q > |loge| /log?2.

(a) Let b =(c,s) € PP° be admissible for some 0 < n < ng and sufficiently
small ng = O (1). Then

Wil =l =@ Ule =il < 7 V(y) €L XL (33)

for some C independent of n and At.
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(b) Let b =(c,s) € P°. Then

&
ot (le —wllf < = V(@) € Lx I (33b)

Proof. Assume that (c¢,s) € PP°. Then, due to Condition (27b), we obtain
from Theorem 3 the estimate

e =yl =2 (e =)l < o o) @™

The distance can be estimated by means of Condition (27b). For all (z,y) €
Q. X Qs, there holds

o = yl| < dist (Qc, Qs) + V3 (Le + L) < dist (Qc, Qs) + 2V3nAtn®.  (34)

Because (c,s) € PP, Condition (27a) is violated and there exists (z,y) €
Q. X Qs such that ||z —y| € Iﬁé. Thus, by taking into account n® < n, we
obtain

dist (Qc, Qs) > || — yll — V3 (Le + L) > t, — 3V At\/t,|loge| — 2v/3nAtn®

|loge| tn
=t (1— -2 >
( 3 Jn Vin | > 10

for n > 15|1log?¢| and 0 < 7 < 1o with 79 = (40\/3)71. Hence,

dist (Qe, Qs) > P (2\/377Atnb) (35)

for all 0 < n < nq.
The combination of (34) and (35) yields

1 - 3
dist (chQs) - 2||x—y||
and
1 +1
T — —w T — < Con)?
joa (Il — ) e =yl < 2||x_y”( 27)

Finally, the condition ny < (2C2) implies that the interpolation order

o, lloge]
~ log2

leads to an approximation which satisfies

016
T —y —w z—y|)| < .
(] 1) “(ll DI= Iz — ol

For (c,s) € PP, the assertion follows from (19). O
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In [14] an analysis of the perturbation error has been derived. Since it
is only based on abstract approximations which satisfy an error estimate of
type (33a) and (33b), we directly obtain a similar convergence theorem also
for the panel clustering method. In the following, we denote by &Zt,k es
the solution at time ¢, of the Galerkin discretization with cutoff strategy and
panel-clustering.

Theorem 5. Let the assumption of Theorem 4 be satisfied. We assume that
the exact solution ¢ (-,t) is in H™TY(I") for any t € [0,T]. Then there exists
C > 0, such that for all cutoff parameters € in (18) such that 0 < ¢ < ChA#3
and interpolation orders q > |loge| /log2, the solution &At’h with cutoff and
panel-clustering satisfies the error estimate

< —1 Ap—5 2, pm+3/2)
]Hfl/z(r)_cg(:r)(gh AL 4 AR 4 p2)

HQBZt,h - ¢('7tn)

Corollary 2. Let the assumptions of Theorem 5 be satisfied. Let At ~ pmt3/2
and choose & ~ hTm/2+25/4 Then, the solution ¢} exists and converges with
optimal rate

7.3 Complexity Estimates

< Cy (T) ™ +32 ~ €y (T) A2
oy < Co (D) Cy (1)

Fhen —d (o tn)

In this subsection, we investigate the complexity of our data-sparse approxi-
mation of the wave discretisation. Since we will introduce numerical quadra-
ture methods for approximating the integrals (29) and (30) (for possibly
curved panels) in a forthcoming paper, we here restrict ourselves to the storage
complexity of our data-sparse approximation scheme and discuss the compu-
tational complexity in a forthcoming paper. In this section, we always employ
the theoretical value 1/4 for the exponent b in (27b).

Sparse approximation of the system matrix A,.

To simplify the complexity analysis we assume that only the simple cutoff
strategy and not the panel-clustering method is applied for the first time
steps:

1SnSC’max{logM,]Wmfé}7 (36)

where the constant C' depends only on the control parameter 1. Note that
the second argument in max {-, -} ensures that P*P?">® = () and the matrix
AsPars¢ vanishes (cf. Remark 2). By using Theorem 2 and (24), the number
of nonzero entries of A,, in this case is of order

M i log®? M m =0,

_1 11 5/2 _
Mmax{Mm 2 log M, M+~ 2" log M}_{M“‘élogM m=1,
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where the leading constant in the O (-)-estimate depends only on 7. Note
that At = O (N~'). Hence, relation (24) implies N ~ M'5i+E and allows
to estimate the number of n’s in (36) by

max{logM,Mmfé} < N max {M*ZL*g logM,Mimfg}.

Hence, the total cost for storing these matrices A, is given by

7/2if m =0,

7+m/ Km : —
(NMS 2 log M) with k., .—{ 1 ifm=1

Basis influence coefficients.
The number of basis influence coefficients (cf. (30)) is bounded by
O (Mlog® M).

Since this step has to be computed and stored only once for all time steps
the cost for this step (and the generation of the cluster tree) is negligible
compared to the minimal cost O (NM) of the whole algorithm.

Influence matrices.

First, we compute the cardinality of PP¢. Note that the maximal diameter
of a cluster ¢ € T7 satisfying condition (27b) is bounded by

L < nAtn®.

An assumption on the cluster tree and the geometric shape of the surface
is that

{@y) e M x| |z =yl € [2}| = 0 (VAtE?|loge])

where |w| denotes the area measure of some w C I' x I'. Hence, for suffi-
ciently small At the number of pairs of clusters satisfying (27b) is bounded

by
o VAL [log e| (37)
(nAtnb)* .

The storage requirements per matrix Sén) are given by ¢% ~ |10g6 e| and
this leads to a storage complexity of

n3/2=4 |log e|”
0 ( e . (38)

Using the relations as in Corollary 2

A2 ~ hrn-l—3/27 £ ~ h77n/2+25/4, M=0 (h—2)
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Table 2. Storage requirements for the panel clustering approximation and sparse
approximation.

full matrix cutoff panel clustering+cutoft
m=0 0 (NM?) O(NM"*islogM) O(NM""1slog” M
m=10(NM?) O(NM"*ilogM) O(NM"*1slog” M

we see that (38) is equivalent to (we here use 4b = 1)
@ (nl/QMm/2+3/4 log” M) .

To compute the total storage cost we sum over all n € {0,1,...,N} to
obtain

N
S neME+ilog" M < ON2M % +ilog" M < ONM %' +id log” M
n=0

_c NMislog" M m =0,
T UNMY S log" M m = 1.

Note that the storage cost for the temporary quantities in Phase 2 of the
panel-clustering algorithm is proportionally to M log® M and, hence, negligi-
ble compared to the other components of the algorithm.

The total storage requirements are summarised in Table 2. The table shows
that the panel-clustering method combined with the cutoff strategy reduces
the storage amount very significantly. For piecewise constant boundary ele-

ments we even get a storage complexity which behaves better than linearly,
ie, O(NM).

8 Conclusions

In this paper, we have followed the convolution quadrature approach by Lu-
bich and combined it with Galerkin BEM for solving the retarded potential
boundary integral formulation of the wave equation. The main goal was to
develop fast and sparse algorithms for this purpose, i.e., a simple a-priori cut-
off strategy where the number of matrix elements which have to be computed
is substantially reduced and a significant portion of the matrix is replaced by
zero. The panel-clustering method is applied to the remaining blocks which
further reduces the computational costs.

In a forthcoming paper, we will introduce an efficient quadrature method
and analyse the effect of these additional perturbations.
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