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Summary. We analyze the h-p version of the BEM for Dirichlet and Neumann
problems of the Lamé equation on open surface pieces. With given regularity of the
solution in countably normed spaces we show that the boundary element Galerkin
solution of the h-p version converges exponentially fast on geometrically graded
meshes. We describe in detail how to use an analytic integration for the computation
of the entries of the Galerkin matrix. Numerical benchmarks correspond to our
theoretical results.

1 Introduction

It is well-known that an appropriate combination of mesh refinement and poly-
nomial degree distribution (the hp-version with geometrically refined graded
meshes) may lead to an exponential rate of convergence, even in the presence
of singularities (for the FEM see [6, 7], and for the BEM see [8, 10, 11, 17]).
The approximation strategy for such hp-methods is to use polynomial degrees
of lowest order where solutions behave singularly and to use high order poly-
nomials where solutions are smooth. This strategy has the advantage that it
completely avoids the approximation analysis of singular functions by high or-
der polynomials. This differs from the situation for a pure p-version, see [3, 2].

In this paper we consider the hp-version of the boundary element method
(BEM) for Dirichlet and Neumann problems of the Lamé equation in
Q2 :=R3\I', where I' is a smooth open surface piece with a piecewise smooth
boundary curve. That is:

For given uy,uy € (H'/?(I"))* with u; — uy € (H'/2(I'))? (Dirichlet) or
for given t,ty € (H~'/2(I"))® with t; —ty € (H~/2(I"))® (Neumann) find u
satisfying
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A*u = pAu+ (A + p) graddiva =0 in 2, (1)

u|r, = uy,ulp, = us (Dirichlet) (2)

T(u)|, = t1, T(u)|, = to (Neumann) (3)

u(z) = o(1), 0 u(z) =o(|z|™1),j =1,2,3, |z| — co. 4)

81‘]'

Here, I, i = 1,2, are the two sides of I" and > 0, A > —2/3u are the given
Lamé constants.

The corresponding Neumann data of the linear elasticity problem are the
tractions

0
T(u) = Mdivu)n + 2”82 + pn X curlu on Ij,i = 1,2, (5)

where n is the normal vector exterior to a bounded domain 2, such that

I" C 012
Let G(z,y) € R3*? denote the fundamental solution of the differential
operator A*, i.e.

A+ 3 1 At p (fﬂ—y)(:v—y)T}
Gz,y) = I . (6
(z,y) Arp(\ + 2p) {|a:—y| DI b3 o —yP )

The problem (1)—(4) can be formulated as an integral equation of the first
kind, see, e.g. [4, 5, 20, 21]:

Dirichlet:
u € (HL.(R3\I"))? is the solution of the Dirichlet problem (1), (2) and (4) if

and only if the jump of the traction t := T(u)|r, — T(uw)|r, € (H™ / (N))?
solves the weakly singular integral equation

/Gmy y)dsy =g(z), xzel (7)

where

g(2) = L (w +ua)(2) + /P T, Gz, y)(w — us)(y) ds,. (8)

2

The solution t of (7) yields the solution of the Dirichlet problem (1), (2) and
(4) via the representation or Betti’s formula

u(z) = /F (Gl y)b(y) — (T, Gz, y)) (i (4) — us(y))) dsy, z ¢ T

The Galerkin scheme for (7) is given by: Find ty € SPO(I7) c (H-Y*(I"))?
such that for all v € SPO(I'™M)

(Vt,0) = (g,v) 9)
where (-,-) denotes the duality pairing of (HY2(I"))® and (H~Y2(I"))3.
3

The symmetric bilinear form (V-,-) is positive definite on (I:I 1/2 (F)) X

(H=/2(I"))? giving the energy norm ||t||y = (Vit,t)1/2.
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Neumann:

€ (H} (R3\I"))? is the solution of the Neumann problem (1), (3) and (4)
if and only if the jump of the displacement ¢ := u|p, —ulp, € (HY?(I"))?
solves the hyper-singular integral equation

Wola) = ~T, [ (1,G(e.0) $)ds, =f@), ael  (10)
where )
(o) = (0 +2)(@0) - T, [ Gt —t)w)ds,. (1)

The solution ¢ of (10) yields the solution of the Neumann problem (1), (3)
and (4) via the representation or Betti’s formula

u(z) Z/F(G(%y)(tl(y)—tz(y))—(TyG(%y))tcb(y)) dsy, x &I

The Galerkin scheme for (10) is given by: Find ¢, € S (I'*) C (H'/?(I'))?
such that for all ¢ € SP1(I')

(Wo,v) = (f,¢) (12)
where (-,-) denotes the duality pairing of (H~Y/2(I"))* and (H'/2(I'))3. The
symmetric bilinear form (W, -) is positive definite on (H/2(I"))?x (HY/?(I"))?
giving the energy norm ||¢|w = (W, ¢)/2.

Both Galerkin schemes (9) and (12) converge quasi-optimally in the energy
norm with algebraic orders of convergence for the h- and p-versions, namely
of order O(h'/?p~1). This follows by extending corresponding results for the
Laplacian [1, 3, 19, 20, 22, 26]. These low convergence rates result from the
singular behavior of the solutions t of (7) and ¢ of (10) near the boundary
of I'; this describes the well-known behavior of the displacement and traction
near the edges of the crack [24, 26], cf. [25]. On the other hand, if we use an
hp-version with a geometrically refined mesh towards the edges of the surface
I' we obtain even exponentionally fast convergence (cf. Fig. 3 and Fig. 4).
Especially, as shown below, there hold the following error estimates for the
exact solutions t of (7) and ¢ of (10) and the Galerkin solutions t y € SP:0(I'?)
of (9) and ¢ € SPL(I?) of (12), i.e.

It —twllv < Ce™ g = gyllw < G (13)
with constants C,b > 0 independent of N (see Theorems 4 and 5 below, c.f.
10, 13, 18, 23)).

Another important issue is the implementation of the hp-version for the
Galerkin equations itself. In this paper we explicitly describe how analytic
integration can be used in the computation of the entries of the Galerkin ma-
trices. The trick is to reduce the integrals for Lamé-case to simpler ones which
already have been used for the computations of the integral operators belong-
ing to the Laplacian [16]. Numerical benchmarks underline our theoretical
results.
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2 The hp-Version with Geometric Mesh

In this section we introduce the boundary element spaces for the hp-version
together with countably normed spaces.

Now we define the geometric mesh on a triangle F'. This is no loss of
generality because every polygonal domain can be decomposed into triangles.
We divide this triangle into three parallelograms and three triangles where
each parallelogram lies in a corner of F' and each triangle lies at an edge of
F but does not touch the corners (see Fig. 1). By linear transformations ;
we can map the parallelograms onto the reference square Q = [0,1]? such
that the vertices of F' are mapped to (0,0). The triangles can be mapped by
linear transformations @; onto the reference triangle Q = {(x,y) € Q|y < =}
such that the corner point of the triangle in the interior of F' is mapped
to (1,1) of the reference triangle. By Definition 1 the geometric mesh and
appropriate spline spaces are defined on the reference element . Analogously
the geometric mesh can be defined on the reference triangle Q (see Fig. 1).

Fig. 1. Geometric mesh with ¢ = 0.5 on the triangle F

Via the transformations ¢, L P ! the geometric mesh I can also be de-
fined on the faces of a polyhedron. The approximation on the reference square
is the more interesting case because it handles the corner-edge singularities.
Therefore we deal in the following only with the approximation on the refer-
ence square.

Definition 1 (geometric mesh). Let I =[0,1]. For 0 < o < 1 we use the
partition IV of I into n subintervals [xx—1,zx], kK =1,...,n, where

x9 =0, rp=0""% k=1,...,n (14)

With I we associate a degree-vector p = (p1,...,pn) and define SP"(I") C
H"(I) as the vector space of all piecewise polynomials w on I having degree

pj on (xj_l,l‘j), Jj=1,...,n, e w|(flf]'—1,flfj) € ij((l‘j_l,ﬂ?j)).
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Let Q = [0,1] x [0,1]. For 0 < o < 1 we use the partition Q" of Q into n?
subsquares Ry

R = [zp—1, 28] X [w1—1, 2], (K, l=1,...,n), Q= U R (15)
k=1

With QI we associate a degree vector p = (p1,...,pn) and define SP"(Q2) C
H"(Q) as the vector space of all piecewise polynomials v(xz,y) on Q having
degree py, in x and p; iny on Ry, k,l =1,....n, i.e. v|r,, € Py, p,(Ri1)-
The index v € {0,1} in SP"(I7?) and SP"(QL) determines the regularity of
the piecewise polynomials, i.e. discontinuity in case of r = 0 and continuity in
case of r = 1. For the differences hy, = x) — xp_1 we have with A\ = (1—0)/o

1 1
hy = Tp—Tp_1 = xk,l(g—l) < x(a—l) =x\, Vz€|rp_1,zk] (2<k<n)
(16)
Then we have by construction:
SP(Iy) x SPT(1g) € SPT(Q7) (17)

Fig. 2 shows the geometric meshes for o = 1/2 and n = 4.

4

4 0.5
/10.5
0.5
4
0.25 los
P1 P2 P3 22
0
0 0.25 0.5 1 0 0.25 0.5 1

Fig. 2. Geometric mesh on the square plate (o = 0.5, n = 4).

Now we define countably normed spaces on the reference element () using
Cartesian coordinates.

Definition 2 (countably normed spaces Bj(Q)). Let 3 be a real number

with 0 < 8 < 1. The weight function g1 = Pg.a.1(z,y) is for a = (o1, a2)
and an integer [ > 1 defined by

min(a;—1,a1+az—1) min(az—1,a1+az—1)
aytoaz—I— aytaz—I— :
Dp0l = P § My 1tz "o yﬁ E potaz V2902
y1=max (a1 —1,0) ~yo=max(az—I,0)

(18)



102 M. Maischak and E.P. Stephan

Let

DO‘ _ 8|O{‘ — 8o¢180¢2
dxrgyee T Y

The weighted Sobolev spaces for integers m,l with m > 1> 1 are defined by
Q) = {u cue HYQ) for 1 > 0, (19)
95,0, D% 12(q) < 00 forl < |af < m},

with the norm
el gy = ullEi-s gy + > Z / |Du(z, ) P30 (. y) dy dx - (20)
k=l |o|=k

and the semi norm

i =2 5 [ D P e dyan )

k=l |o|=k

The countably normed spaces for | > 1 are defined by
BY(Q) = {uiue H'Q), |95.01Du] 2 < Cd*'(k ~ 1)
forla|=k=011+1,...,; C>1,d>1 independent ofk}. (22)

If we would like to emphasize the dependence on the constants C,d we will
write BlB(Q) = Blﬁad(Q), etc.

Theorem 1. [12] Let Q be the reference element and let ¢ be the linear
transformation from a parallelogram, lying in a corner of the triangle F,
to the reference element Q). Then, for | = 1,2, u € BﬁCd(go(Q)) implies
uop~le Bﬁ,C,d(Q) where C,d (resp. C,d) are the constants in the definition

of BE(Q) (resp. B/lg(cp(Q))) For the case | =1 the reverse implication holds
as well.

The exponentially good approximation properties of splines on our geometric
meshes for general functions u € BE(Q) (I = 1,2) are given by the following
theorem (see also [12, 15, 17, 18]).

Theorem 2.

(i) Let u € Bé(Q) with 0 < B < 1. Let Q2 be a geometric mesh and assume

p=(p1,--,pn), pr = [u(k = 1)] for some p > 0. Set N = dim SP0(Q7).
Then there exist constants Cq,by > 0 independent of N, but depending on

o, 1, 3, such that the L?-projection un € SPO(Q") of u satisfies

4
lu — un| L2y < Cre VN, (23)
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(i) Let v € Bg(Q) with 0 < B < 1. Let Q¥ be a geometric mesh and assume

p=(p1,---0n), P1 = 1, pk = max(2, [u(k —1)]+ 1) (k > 1) for some
pw > 0. Set N = dll’IlSp’ (Q1). Then there is a spline function vy €
SPH(Q™) and constants Cz,by > 0 independent of N, but dependent on
o, 1, 3, such that

lo = vn ) < Cae YN, (24)

(i) Letv € B}_,(Q)QCO( ), vlag = 0 with 0 < < 1/2. Let Q7 be a geometric
mesh and assume p = (p1,...,Pn), p1 = 1, pr = max(2, [u(k — 1)] + 1)
(k > 1) for some u > 0. Set N = dim SP1(Q™). Then there is o spline
function vy € SPH(QT) and constants C3,bs > 0 independent of N, but
dependent on o, i, 3, such that

4
||’U—'UN||1:11/2(Q) S C?, 67b3 \/N (25)

Now, we want to recall the typical structure of the solutions of our prob-
lems for sufficiently smooth right-hand side functions g and f.

Theorem 3. [24, Theorem 2.3, 2.4 and 2.5] Let V and E denote the sets of
vertices and edges of I', respectively. For v € V, let E(v) denote the set of
edges with v as an end point. Then, the solution t of (7) has the form

Streg+ YT Y U DYt (26)

e€EE veV veV e€ E(v)

with a reqular part t.eq, edge singularities t°, vertex singularities t¥ and edge-
vertexr singularities t<U. These terms result from applying boundary traction
to the corresponding decomposition of the solution.

Accordingly, the solution ¢ of (10) has the form

P=gt D S+ DY DY o~ (27)

eel veV veEV e€ E(v)

Checking the specific terms (26) and (27) , which are given in [24], one re-
alizes that these terms t¢,t%, t¢” and ¢°, ¢*, ¢°* belong to countably normed
spaces. Therefore we can argue as done in [10] and obtain the following con-
vergence results.

Theorem 4. Let the right hand side g in equation (7) be piecewise analytic,
let t be the solution of (7) and let ty € SPO(I'™) be its Galerkin approzimation
defined by (9). Then, with N = dim SPO(I'"), there holds for any a > 0

4
1t =t llg1/2(rys < Ce VN +ON) (28)

for constants C,b > 0, depending on o, p and «, but independent of N.



104 M. Maischak and E.P. Stephan

Theorem 5. Let the right hand side f in equation (10) be piecewise analytic
and let ¢ be the solution of (10) and let ¢ € SPH(I7) be its Galerkin ap-
prozimation defined by (12). Then there holds for all o > 0

= dnll o (ryys < Ce VN + O(N™) (29)

for constants C;b > 0 depending on o, pu and «, but not depending on
N = dim S»Y(I™).

Remark 1. Due to the splittings (26) and (27) into finitely many singularity
terms the regular remainder terms te; and ¢,., have only restricted reg-
ularity, even for given smooth right hand sides. On the other hand, even
taking infinitely many singularity terms, would not automatically guarantee
that the solutions t and ¢ themselves belong to countably normed spaces.

To our knowledge this is an open problem. Therefore we get the additional
O(N~%)-terms in the estimates (28) and (29).

3 Implementation of Galerkin Scheme

Assume that the surface piece I' € R? can be decomposed into triangles
and parallelograms, i.e. [' = Uf\il I;, with I pairwise disjoint and I is the
affine image of the reference square [ = [—1,1]? or the reference triangle
A={(t1,t2) : 0<t; <1—1ty <1}. That means

I; = {aitl + bito + x; - (tl,tg) S Q}, Q S {A,D} (30)

depending on whether I is a triangle or a parallelogram, with a;, b;, z; € R?,
i = 1,...,N. Here we investigate only basis functions whose restriction to
I; are polynomials. Effectively, we compute the integrals only for monomi-
als as test- and trial-functions, from which all other basis functions can be
constructed.

For Q € {A, O} let

L R=1
e {t:(t17t2)—>$:ait1+bit2+xi (31)

be the affine transformation from the reference element A or O to I; with
o | = lai x b;|. We will write @ for A or [J, respectively, if the expressions
hold for both cases. Then the basis functions on I7; are defined by

Phu(2) = Pu(F; (2) = G o F ' (z) (32)
with @r;(t1,t2) = thth for x € I; and ¢}, () = 0 otherwise. The vector valued
test and trial functions ¢ restricted to an element I'; can be represented as
linear combination of this monomial basis functions ¢i,(z), i.e. we have

3
s = Z e,¢r () Z C;cl @cl
r=1

with e; = (1,0,0),es = (0,1,0),e5 = (0,0,1).

I
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Single layer potential

Using (6) the single layer potential is then given by

3
) :/FG(%ZJ) )dsy = Zzerzzckz/ Grs(2,9) i (y y) ds,

i=1r=1 s=1 ki

and the corresponding bilinear form reads %
Vo) = [ [ 000Gl 9)0u(a) ds, s (34)

In the following we are interested in the computation of the term
V@)= [ Grle e s, (3)

We will use the following form of the fundamental solution (6)
1 - —Ys
ORI CCS TRL

1 1 A 0 Ys — Tg (36)

Tample =y Smp(A+2u) Ay, |y — x|
By extending the affine transformation F; to
Fi(t1,t2,t3) = a;t1 + bita + nits + x;,

where n; is the normal direction on the patch I, we obtain the following
integral

irs 1 1 :
szlm (J?) = Arp /I", |x_y|5rs<plltcl(y) dSy

B A+ p 0 ys — T
8mu(A+2u) Jr, Oyr |y — 2
1 OF;

1 -

A+ p Fi(t) — )5 _
&m A2 |/ Z 8yr at,, |F )—x| Pra(t) dt
1 A+ H aFl PR
47w| ot |5m (@) - 8mu(\ + 2/1)' ot B (@)

Sﬁzl (y) dsy

Defining the following elementary integrals, analyzed in [16]

127 (a, b, c) ::/t’ftl2|at1+bt2+c|2pdt2dt1, Qe{a0r (37
Q
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we can identify

Gra(t) / thth
dt = dto dt
(@) = /Q|F()—x| o laits + bt +a; —a|

= 1972 (a3, by, 21 — ). (38)

It remains to reduce the integral B,i’lrs (x) to alinear combination of elementary
integrals. We can compute

-1 bi X Ny
8tp = 8?/7« = (ai bi n; )_1 = 1 n; X a; . (39)
Yy ot, ai(b; x n;) a X b

Therefore we obtain
1
Z 8% (% sl x ) ((bi X 1) 0r, + (15 X @3)7Op, + (a5 X bs)rOy,) (40)

and consequently

i,rs F; ) - JJ)S -
Bkl /Zayr atp |F ) | @kl(f’)dt

_ / ((bz X ’I’Li),«atl (’I’Lz X ai)r(‘)m + (ai X bi)Tat;}) (Fz(t) - x)stktl dto dt
0 a;(bi x n;) \Fy(t) —a 2720
(ai X b; )

a;(b; X n;)

(ni X ai),,
a;(bi x n;)

(bi X ni)r 1,8

) Cid’ (@) + Dii (@) + Eif’ @)

For the last integral we obtain

Ei,S(x):/a (aity + bitz + nits + z; — x)s

kit |aity + bita + nits + x; — x|
(ni)s Kl

= 1 to dto dt

/|ait1+bit2+$i—$|12 2T

_/ (aitl + bita +x; — x)s(ni(xi — CL'))
Q |aits + bita + x; — x|3

Rl dty dty

thtl dto dty

Q,—3 Q,
= (ni)slkz * (@i, by, g — x) — (a;)s(ni(xi — ))Ik.:,-ll (@i, bi, z; — x)
Q-3
_(bi)s(ni(xz ))Ik I+1 (ai;bi;xi —CL')
(@i — ) (i — )T (as, biy s — ).
The integrals C’,i’ls (z), Di’ls (z) can be treated by partial integration, but we

have to distinguish between triangles and parallelograms. On parallelograms
we simply obtain
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azt1+bt2+xz_ )

e (x / thtl dto dt
ki Ylaity + bita + z; — 7 20720
t bit — 1=1
/ az 1+ 2+ x; ) tktz dtg
1 |a1t1+bt2+1’1 | t1=—1

(at1+bt2+xl— )

Sth e dty dt
|a1,t1 + bitg + x; — | 2T

o

and on triangles there holds

1,8 (azt1+bt2+xz_ )
Cy = O,
(@) / Y aity + bita + @ —

/1tk(1_t)(at1+b(1—t1)+xz— )s
o ! Yolaity + bi(1—ty) 4@ — x|

(btg—l—l‘z— )
|bite + x; — x|

Rt dty dty

—(51“0/ tl

Double layer potential

(aztl + bito + x; —

dty — k
2 A |G,151-|—b152-|—$z |

Using the traction operator

) B )
(Tod(y))r = An, - Ge(y) + pny - br(y) + pme oy be(y),

T

we can define the double layer potential operator by

107

z)s SR dty dty .

N 3
Ko(o)i= [ (,600) ¢, =YY e > S ey "@) (1)
r i=1r=1 s=1 kl
with
. 3 . . .
Ky(x) =) (Ani,SF,;f“ () + pni  Fy) ™ () — Mni,tF,;ftS(x)) (42)
t=1
and
B = [ g Gre(wn)ola(s) dsy (43
We can decompose F};"*(z) as follows
; A+ 3u 0 1 ,
F (@) = 5 / (y)d
kl (l‘) 47TM0\ + 2# rs Ay |{E N y| Sakl(y) Sy
A+ K / xr - ( ys) ]
? d
471_“ A + 2/-// 8yt |l‘ _ y|3 Pri (y) Sy
A+ 30 / -
= t)dt
Arp(\ + 2u Z ayt 8t |F,(t |‘p’”( )
A p t) — x)r (Fi(t) —x)s _
t)dt
Amp(\ o+ 2p0) '/ Z ayt at E@y—ap O



108 M. Maischak and E.P. Stephan

A+3u | OF .
=: OrsH
drp(X + 2M)| ot | b (@) +

A+ 12 aF’L 7,78t
| W (@)
drp(N+2p) Ot
As before, we can represent the integrals H,i’lt(a:) and J,i’lmt(a:) in terms of the
elementary integrals Ig’p(ai, bi,x; — x). We have

,t _ ~

(bi X ’I’Li)t .
=: L
az(bz % ni) kl(x) +

(’I’Li X ai)t
ai(bi X ni)

(ai X b?,)t
ai(bi X nz)

M (z) + Ny ().

The last integral becomes

. 1
Ni(z)= [ O th el dto di
() /Q t3|ait1+bit2+nit3+xi_x| S

ni(z; — ) . Q.-
= — t to dta dty = —ni(x; I ; a;,bi, x; —x).
/ laity + bty +x; —x3 ! 2o (@i — @) ( )

The integrals Li,(z), Mj,(x) can be treated like C};*(x), D} (z) by partial

integration and J;l”t

(z) is analyzed analogously.
Hypersingular integral operator

We implement the Galerkin matrix of the hypersingular integral operator via
integration by parts which yields [9, 16]

(Wao,¢) = // or |x—y| Z (curlr ¢ (2))s(curly ¥y (y))s dsy dsg

+, / / Z ersi(curly ¢y (x))s iz _" |€nkm(curlrwm)k dsy ds,

r,s,k,l,m,n=1

_4/14 / / Z 67"5l CllI‘lF ¢l( ))5 rn(xvy)snkm(curll—' wm)k dsy dsm

r,8,k,l,m,n=1

// A |x—y| Z (curlr ¢p(2))r (curlp ¥s(y))s dsy dsa (44)

where curlpu(z) = n(m) x gradp u(z), and e;5; is the total antisymmetric
tensor (€123 = 1). Using (44) the entries of the Galerkin matrix are computed
analytically with the software package maiprogs [14].

4 Numerical Results

In this section we present numerical results of the above described Galerkin
scheme for various examples. We perform h-, p- and hp-versions. Young’s
modulus (E-modulus) is E = 2000 and the Poisson number is v = 0.3.
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For the computation of the error we use [|¢ — dyll3 = |@lE — llon %
and [t —tn|[§, = [t} — [t~ 7

Ezample 1. For the Dirichlet problem of the Lamé equation with boundary
data g(z1, 72, 23) = (—22,71,0) in (7) on the square I' = [—1,1]? we know
the energy norm of the exact solution by extrapolation

l[t]|v = 115.0355908.

In Fig. 3 we present the numerical results for the Dirichlet problem. The
convergence rates which are given in Table 1, clearly confirm the exponentially
fast convergence of the hp-version with geometric mesh, which is expected due
to Theorem 4.

Fig. 3 shows clearly the exponentially fast convergence of the hp-version
on the geometric mesh with mesh grading parameter ¢ = 0.17. The pa-
rameter 4 = 0.5 describes the increase of the polynomial degree, namely
(¢;p),(q,p), (¢,p+1),(q,p+1),(¢,p+2),(¢,p+2),... in the zo direction and
correspondingly in the x; direction, for a geometric mesh consisting of rect-
angles only and refined towards the edges. Very good results are also obtained
for the h-version on an algebraically graded mesh towards the edges with mesh
grading parameter 5 = 4.0; this is in agreement with the theoretical results in
[26]. Also Fig. 3 and Table 1 show that the uniform p-version converges twice
as fast as the uniform h-version [3].
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Fig. 3. Weakly singular integral equation (Lamé), Example 1.
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Table 1. Convergence rates for the weakly singular integral equation on the Square.

N [t—tnllyv o p N [t—tnly o N [t—txv ol
h-Version, p=1 p-Version, 4 elements hp-Version, o = 0.17, 4 = 0.5
12 65.977067 0 12 65.977067 12 65.977067

48 45.338115 0.271 1 48 36.205111 0.433 48 31.511011 0.533
192 31.978059 0.252 2 108 26.548835 0.382 192 12.121016 0.689
768 22.804025 0.244 3 192 20.914871 0.415 432 5.8540817 0.897
3072 16.289194 0.243 4 300 17.265718 0.430 972 2.6642368 0.971
12228 11.618080 0.245 5 432 14.701526 0.441 1728 1.3123139 1.231
6 588 12.801060 0.449 3072 0.3934324 2.094
7 768 11.335587 0.455
8 972 10.170859 0.460
9 1200 9.2227497 0.464
theoretically: 0.250 theoretically: 0.500

Example 2. For the Neumann problem of the Lamé equation we consider the
square I" = [—1,1]? and choose f = (—z2,21,0) in (10). Via extrapolation we
get ||||lw = 0.04005011548.

In Fig. 4 we present the numerical results for the Neumann problem. The
convergence rates which are given in Table 2, clearly confirm the exponentially
fast convergence of the hp-version with geometric mesh, which is expected due
to Theorem 5.

Table 2. Convergence rates for the hypersingular integral equation on the square.

N J¢-dnlw o p N lp—dylw o N lo—¢ylw a
h-Version, p=1 p-Version, 4 elements hp-Version, o = 0.17, 4 = 0.5
27 0.0258942 1 27 0.0258942 3 0.0400501
147 0.0170821 0.245 2 147 0.0139794 0.364 27 0.0153835 0.435
675 0.0114749 0.261 3 363 0.0094512 0.433 147 0.0061827 0.538
2883 0.0078521 0.261 4 675 0.0071976 0.439 363 0.0035278 0.621
51083 0.0058224 0.448 867 0.0012488 1.193
6 1587 0.0048894 0.457 1587 0.0004945 1.532
7 2187 0.0042117 0.465
8 2883 0.0037193 0.450
theoretically: 0.250 theoretically: 0.500

Fig. 4 shows clearly the exponentially fast convergence of the hp-version
on the geometric mesh with ¢ = 0.17 and g = 0.5. Again we obtain very
good results for the h-version on an algebraically graded mesh towards the
edges with mesh grading parameter § = 4.0; which agrees with [26]. Also
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Fig. 4. Hypersingular integral equation (Lamé), Example 2.

Fig. 4 shows that the uniform p-version converges twice as fast as the uniform
h-version [3].
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