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Summary. The finite element method and the boundary element method often
have complementary properties in different situations. The domain decomposition
technique allows to use the discretization method which is most appropriate for the
subdomain under consideration. The coupling is based on the transmission condi-
tions. The Dirichlet to Neumann (D2N) and Neumann to Dirichlet (N2D) maps are
playing a crucial role in representing the transmission conditions. In this paper we
study the D2N and N2D maps and their finite and boundary element approxima-
tions. Different formulations of the transmission conditions lead to different domain
decomposition schemes with different properties. In any case we have to solve large
scale systems of coupled finite and boundary element equations. The efficiency of
iterative methods heavily depends on the availability of efficient preconditioners. We
consider various solution strategies and provide appropriate preconditioners result-
ing in asymptotically almost optimal solvers.

1 Introduction

Domain Decomposition (DD) Methods provide not only the basic technology
for parallelizing numerical algorithms for solving partial differential equations
(PDEs) but also for coupling different physical fields and different discretiza-
tion techniques. Beside the Finite Volume Method (FVM) and the Finite
Element Method (FEM), the Boundary Element Method (BEM) is certainly
one of the most popular discretization techniques for PDEs. If we compare
the FEM with the BEM, then we observe that both methods have advantages
and disadvantages in different situations. It is commonly known that the BEM
can easily treat unbounded regions whereas the FEM requires special modi-
fications for this case. On the other hand, the FEM is very flexible and can
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be applied to very general problems including PDEs with varying coefficients
and non-linear problems. However, beside unbounded computational regions,
there are a lot of other problems where we can benefit from using boundary el-
ement discretization. Large air subdomains or rotating subdomains which are
typical for electromagnetical problems, e.g., electrical machines, belong to this
class of problems. Also the approximation of singularities can be handled much
easier by a boundary mesh than by a volume mesh. Sometime only the com-
plete Cauchy date are needed on the boundary of the computational domain
or on the skeleton of a domain decomposition. In this situation, we would like
to avoid the meshing of the domain or of the subdomains. A similar situation
arises if we are only interested in the solution or in derivatives of the solution
in some points or in some small subdomains. Therefore, it is certainly very
attractive to develop coupling algorithms and software that can handle both
the finite element and the boundary element technologies. There are many
early contributions to the FEM-BEM coupling in the engineering literature,
see, e.g., [6, 58, 59]. Most of them are using the collocation technique on the
boundary element side that does not really fit to the finite element Galerkin
technique. Moreover, there was some other drawback of the classical boundary
element methods. They produce dense matrices. The breakthrough through
this complexity barrier was achieved by developing data—sparse approxima-
tion techniques like the fast multipole method [9, 42], panel clustering [21],
H-matrix approaches [20], Adaptive Cross Approximation (ACA) methods
[2, 3], and wavelet approximations [14, 43].

In the mathematical literature, there are also some early works on un-
symmetric Galerkin BEM-FEM couplings by F. Brezzi and C. Johnson [8],
C. Johnson and J. Nédélec [27] and others at the end of the 70ies and at the
beginning of the 80ies. These results are based on the use of the first bound-
ary integral equation using the single and double layer potentials only. In
fact, the analysis requires the compactness of the double layer potential and
therefore smooth boundaries have to be assumed. Since we are interested in
domain decomposition techniques with Lipschitz subdomains, we heavily rely
on the symmetric coupling that was first proposed by M. Costabel in [11]. This
approach makes also use of the second boundary integral equation with the hy-
persingular boundary integral operator. The symmetric formulation can also
be generalized to non-linear problems such as elastoplastic problems [13, 40].
G. C. Hsiao and W. L. Wendland first used the symmetric coupling tech-
nique for constructing symmetric boundary element domain decomposition
equations [26]. The first fast solvers for coupled finite and boundary element
domain decomposition equations were proposed and analyzed by U. Langer
[32]. The classical Finite Element Tearing and Interconnecting (FETT) meth-
ods, which were introduced by C. Farhat and F.-X. Roux [17] in 1991 as a
dual version of the classical iterative substructuring methods, and, in partic-
ular, the more recently developed dual-primal FETI (FETI-DP) and BDDC
(Balanced Domain Decomposition by Constraints) methods are now well-
established as efficient and robust parallel solvers for large—scale finite element
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equations. We refer the reader to the recently published monograph [55] by
A. Toselli and O. Widlund for more informations about the relevant references
and for the analysis of FETI methods. U. Langer and O. Steinbach have re-
cently introduced the Boundary Element Tearing and Interconnecting (BETT)
methods [36] and the coupled BETI/FETI methods [37]. Inexact data—sparse
BETI methods were discussed in [33]. The hybrid coupling of finite element
methods and boundary element methods as a macro element was considered
by G. C. Hsiao, E. Schnack and W. L. Wendland in [24] for general second
order elliptic systems, and in [23] for applications in elasticity. Hybrid domain
decomposition methods based on the approximation of the local Dirichlet to
Neumann mappings by finite and boundary element methods and a related
stability and error analysis were given by O. Steinbach in [48].

This paper provides a unified approach to the construction, analysis and
solution of coupled finite and boundary domain decomposition equations.
The potential equation with piecewise constant coefficients serves as a simple
model problem. On an appropriate domain decomposition, such a special po-
tential problem and similar elliptic boundary value problems in general can be
reformulated as variational problems defined on the skeleton of the domain de-
composition. These skeleton variational formulations reflect the transmission
conditions which can be incorporated in different ways. The local Steklov—
Poincaré (D2N) and Poincaré-Steklov (N2D) operators play an important
role in these formulations. These operators can locally be approximated by
finite and boundary element methods. We discuss and analyse these approxi-
mations. Finally we have to solve large scale coupled finite and boundary do-
main decomposition equations which are in general symmetric, but indefinite.
Reductions to symmetric and positive definite Schur complement problems are
always possible, but not always recommendable for efficiency reasons. Primal,
primal-dual and dual iterative substructuring solvers require asymptotically
almost optimal and robust preconditioners. Such preconditioners can be con-
structed by the use of boundary element technologies for both the boundary
element and the finite element blocks.

The rest of the paper is organized as follows: In Section 2, we consider the
Dirichlet boundary value problem for the potential equation with piecewise
constant coefficients as a typical model problem and study the local Steklov—
Poincaré and Poincaré-Steklov operators as well as their finite and boundary
element approximations. Section 3 is devoted to different domain decomposi-
tion methods. We consider two types of symmetric coupling techniques. The
Dirichlet domain decomposition methods presented in Subsection 3.1 require
the strong continuity of the primal variable (the potentials) whereas the Neu-
mann domain decomposition methods studied in Subsection 3.2 require the
strong continuity of the dual variables (the fluxes). The tearing and intercon-
necting technology allows us to develop a unique approach to both domain
decomposition techniques. In contrast to the primal-dual tearing and inter-
connecting methods, we prefer the all-floating technique that was introduced
by G. Of [38]. In Section 4, we discuss the iterative solution of the linear
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systems arising in Section 3 and provide preconditioners leading to asymptot-
ically almost optimal and robust solvers. Finally, we draw some conclusions
in Section 5.

2 Boundary Value Problems

Let 2 C R? be a bounded domain with Lipschitz boundary I" = 942. As
a model problem, we consider the Dirichlet boundary value problem for the
potential equation,

—div|a(x)Vu(z)] = f(z) forxz e 2, ulx)=gx) forxel (1)

where g € HY?(I') N C(I") is a given continuous function. We assume that
a(+) is piecewise constant with a(z) =a; > 0 for z € 2; and fori =1,...,p,
where we have given a non—overlapping domain decomposition

p
.Q:U.Qi, Qiﬁﬂjzﬂ) fori;éj, I; = 092, Fij:Fiij
=1

of the computational domain {2 into p Lipschitz subdomains §2;. Moreover,

P
FSZUFZ':FUF[ and FI:UFij

i=1 i<j

denote the skeleton and the interface of the domain decomposition, respec-
tively. Instead of the global boundary value problem (1), we now consider the
local boundary value problems

—o;Aui(x) = fi(x) forz e 2, wi(zx) = g(x) forxel;NT  (2)

together with the transmission conditions

ui(z) = uj(z), o 0 u;i(z) + 0 uj(z) = 0 forx € I}, (3)
8 7 5‘nj
where f;(z) = f(x) for x € ;. In what follows, we will describe some vari-
ational formulations for domain decomposition methods which are based on
the local solution of either Dirichlet or Neumann boundary value problems.
The idea behind is that all solutions u; of the local boundary value problems
(2) are known as soon as the Cauchy data along the coupling boundaries I
satisfying the transmission conditions (3) are determined.

2.1 Dirichlet Boundary Value Problems

We start with the local Dirichlet boundary value problem for a given contin-
uous function g; € HY?(I};) N C(I7)



Coupled Finite and Boundary Element Domain Decomposition Methods 65
—o;Aui(x) = fi(x) forx € 2, wi(z) = gi(x) forxel; (4)

where the weak solution u; € H'(£2;) is well defined. Moreover, the normal
derivative t; = n; - Vu; defines the associated Neumann datum. The solution
of the local Dirichlet boundary value problem (4) therefore defines the local
Dirichlet to Neumann map g; —— t;. Hence, we have to find the correct
Dirichlet datum g; such that the transmission boundary conditions (3), i.e.,

ui(z) =uj(z), aiti(z) + o tj(x) =0 forz € I3,

are satisfied along the coupling interfaces I;. To describe the local Dirichlet
to Neumann map we may consider either a domain variational formulation
or boundary integral equations to obtain explicit representations of the local
Steklov—Poincaré (Dirichlet to Neumann) operators involved.

Domain Variational Formulation
The associated variational formulation of the local Dirichlet boundary value
problem (4) is to find u; € HY(£2;), u;(x) = g;(x) for x € I}, such that

/aiVui(x) -V (z)de = /fz(x)vz(x)dx (5)

2; 2;
is satisfied for all test functions v; € H(§2;). As usual, H'(£2;) is the closure
of C*°(£2;) with respect to the norm

5 9 1/2
loillron = [loillda + 190l

However, in what follows we will use an equivalent norm in H!(2;) which is
given by
9 1/2

odmonn = || [otds: | + Vol
I

Moreover, H}(§2;) = {v; € HY(§2;),v;(x) = 0 for z € I';}. The bilinear form

ag; (vi,v;) = / [Vui(2)Pdz = | Vill}, 0, = l0ilFn oy for vi € Hy (1)
£2;

defines an equivalent norm in H} (£2;), i.e., (ag, (vi,v;))'/? is the energy norm

in H}(£2;). By taking the trace of H'({2;) we may define the trace space
H'/2(I;) which is equipped with the norm

ollmry = di 1V 01
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For g; € H'/2(I}), there exists a bounded extension u,, = Eg; € H(£2;)
satisfying

lug:ll 12, r = 1€igillmran,r < cellgill airer,)-

A particular choice would be to consider the harmonic extension u,, € H'(£2;)
as the unique solution of the variational problem

/Vugi (z) - Vui(z)de = 0 for all v; € H}(£2;).
2;

It remains to find u; o € H&((Zi) such that the homogenized variational prob-
lem

/aiVuiyo(x) -V, (x)dx = /fi(x)vi(x)dx — /aiVugi () - Vi (x)dx (6)
is satisfied for all v; € HE(§2;). For u;,v; € HE(£2;), the bilinear form
00, us0,03) = [ Vuso(o)  Voslz)ds = (A, otsa,i)
02;
induces, by the Riesz representation theorem, a bounded linear operator
Ag, o0 Hy($2:) — HH($%) = [Ho (2:)]'.
In addition, for uy, € H'(§2;) and v; € H}(§2;) we define the bounded operator

Ar, - HY($2;) — H71(82;) satisfying

(Arug,,vi)o, = /Vugi (x) - Vi (x)da.
2

Hence, we can write the variational problem (6) as an operator equation to
find u; o € H}(£2;) such that

a;Aq, otio = fi — G ArEigi € H'(1%). (7)
The operator Ag, o : Hi(£2;) — H~($2;) is H}($2;)—elliptic, i.e., for all
v; € H}(£2;), we have

(A, 0vi,vi) 0, =/|Vvi($)|2d3«“= ”VWHQLQ(_@) = ||UiH§11(m),n~
£2;

Hence, there exists the unique solution of the operator equation (7),

1 _
Uq,0 = aAAQilyofi - AQ}}oAFigigi € H&(Qi)a
T
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and, therefore, u; = uo; + u, € H'(£2;) is the weak solution of the Dirichlet
boundary value problem (4). In particular, from

(fi,vi) e, S (firwi0) 0

I fill r-1(2) = sup >
oved (@) Vil r — lluioll e,
o
[ V(o) + g @] Vaso(o) do
lwiollm(2:),r
02;
(7] ) 9 _ , :|
> ol . V8 = 19030l Vit 12,
= Q4 [HVULOHLz(QL) - Hvuga Lz(Qi)} )
we find 1
IVuiolleaeny = Ifilla-1000) + Vgl za(2)-
In particular, for f; = 0, we therefore have
2
lwill 3o = /gi(ﬂ?)dsx + [IVuiollZ, 0
I
2
< /gi(x)dsx + Vg, %2(9,;)
I
= [lug, ?{1(@),11 < cg 9@'”?{1/2(5),
ie.,
lwilltr2.),r < cellgill ey (8)

It remains to find the associated Neumann datum t; = n; - Vu;, € H~/ (L),
where H=Y/2(I;) = [HY?(I3})]’ is the dual space which is equiped with the
norm

(T, wi)r,

I7ill pr-1/2 ;) = sup S
’ () 0£w; €H/2(Iy) ||wi||H1/2(r,-,)

Using Green’s first formula, t; € H~/2(I7}) solves the variational problem

/aiti(m)wi(x)dsx = /aiVui(x)-V&wi(x)dx—/fi(a:)&wi(x)dx (9)
£2;

I £2;

for all test functions w; € H'/2(I}). Using duality arguments, we then obtain
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ti, wi)r;
T
0#£w; €HY/2(I,
1 1
= sup (Vui, VE&wi) o, —  (fi, Eiwi) o,
0#£w; € H/2(I%) ”leHl/?(F) Q;

||5‘wi||H 1(£2;)

0£w; €H/2(Ty) ”leHl/?(F)

IN

{||U1|H1(n)+ ,|fi|ﬁ1m,,,>}

A

< ce. luslimcan + o 1illa-scay)

where H1(£2;) = [H'(£2,)]'. The local Neumann datum ¢; therefore depends
only on the given right hand side f; and on the prescribed Dirichlet datum
g;. Hence we have given a Dirichlet to Neumann map as

aiti(z) = a;(Sigi)(x) — (Nifi)(z) forx € I,

where we have used the local Steklov-Poincaré operator S; : HY/2(I}) —
H~Y2(I}), and the Newton potential N; : H=(£2;) — H~Y?(I}) as given
below. In particular, for f; = 0, we therefore have t; = S;g; satisfying

ill /2y - (10)

If we define the linear operator Ag, : H(£2;) — H~'(£2;) via the Riesz
representation theorem as

1S:gill 172y = Wtill g-172(r,

(Ag,ui,vi) 0, = /Vui(ac) - Vo;(z)dx  for u;,v; € Hl(Qi),
£2;

we can rewrite the variational formulation (9) as
ai(ti,wi)r, = ai/Vui(x) -VEw;(z)dx — /fz(x)&wz(x)dx
2,

i

= a;(Ao,ui, Ewi) o, — (fi, Ewi) o,
= a; (Ao, [uio + ug,], Ewi) o, — (fi, Ewi) o,
(

i (A w0, Ewi) o, + iAo, ug, , Eiwi) o, — (fi, Eiwi) o,
= (AL uio + aiAg,ug, — fi, Ewi)q,,
and, therefore, as the following operator equation,
aiti = & [ A, ug, + i A uio — fi]
=& |:OéiAQiUgi + o AL (;,Anf,ofi - Anf70Apiugi> - fz}

= ;€] [AQ — A A OAF} Eigi + & [A'FiA;L{O _ 1} il



Coupled Finite and Boundary Element Domain Decomposition Methods 69

where A7, and & are the corresponding adjoint operators. Hence we can
represent the Steklov Poincaré operator as

Si= &l [Ao, — Ap AgloAn] &« HYP(I) — HOVA(T) (1)
and the Newton potential as
Ni= € |AnAgly— 1|+ H™ (2) — H™(L). (12)

Theorem 1. The Steklov-Poincaré operator S; : HY/?(I;) — H~'/2(I}) as
defined in (11) is bounded,

Sigi Nl sy for all g; € HY(Ty),

and HY/2(I3;)-semi-elliptic, i.e.,

(Sigi-gi)r, > | gill3nocry  for all g; € Hy'*(I),
where
Hé/Q(Fi) = w; € HY2(I}) - /wi(x)dsgC =0
I
In particular, for g; =1, we have S;g; = 0.
Proof. The boundedness of the Steklov—Poincaré operator S; is just the esti-
mate (10). Using (9) with f; =0, for g; € Hé/2(Fi), we get

(Sigirgi)r, = (b0, g3 = / Vui(z) - Vuy, (2)dz

£02;

- / Vua(2) - Vug, (x) +uio(@)dz = 2,
£2;
2

= /gi(x)dsz + |ul|H1(Q )y = HulHHl(Q ), T
r;

Now the H'/?(I})-semi-ellipticity follows from the trace theorem. O

Finite Element Approximation

To define an approximate Dirichlet to Neumann map we first introduce the
local finite element trial spaces

Sp($2;) = span{o; 1oty € H'(£2;)
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and _
S}L,O(Qi) = Sp(2) NH (1) = Span{(b%,k}ﬁﬁMﬂrl

of piecewise linear basis functions gzﬁz{k with respect to some regular finite
element mesh (2; j, characterized by the local mesh-size parameter h;. Note
that the basis functions (b}’k, k=M,+1,..., J\Ajz correspond to the interior
degrees of freedom, while the remaining basis functions gzbzl, ok =1,...,M;

are associated to degrees of freedom on the boundary.
Let

M;
1
Ug, h(x) = Zugi (xi,k)QSi,k(x)
k=1
be the piecewise linear interpolation of the continuous extension ug4,. The

finite element approximation of the local variational problem (6) is to find
Ui 0,n € S}L,O(Qi) such that

/aiVui7o7h -V, p(x)dr = /fi(x)vi,h(x)dx — /aiVugi,h(x) -V, p(x)dz
2;

(13)
is satisfied for all v; 5, € S }110((21) This is equivalent to the Galerkin equations
(wz0s+ g (w1)) [ @0Vl (0) - VL oo
k=M;+1 0;

M,
- / [i@)6t @)z — S gilin) / VL4 (z) - Vol ,(x)dz
2, k=1

2;
forall { =M;+1,..., .7\7z Introducing the nodal values

Up ik = Ui0k + Ug, (Tig) fork=DM;+1,..., M,
UC ik = gi(x@k) fork=1,...,M;

as new unknowns, this is equivalent to a linear system
aiKII,iu[J' = fI.i — aiKCI,iuC,iv
where the local stiffness matrix is given by
Kirlt k] = [ Voly(o) Vol (oo
2;

for k,0 = M;+1,..., ]\A/[/i, while the vector of the right hand side is determined
by



Coupled Finite and Boundary Element Domain Decomposition Methods 71
frie = /fi(ﬂ?)@,z(ﬂv)d%
£2;

In addition,

Korilt, k) = / VoL, (2) - VoL (x)de
2;

fork=1,...,M;; ¢ =M;+1,... ,J\Z. The solution vector
L -1
Ur; = - KII,ifI,i - KII,iKCLiuC,i
K3

defines an approximate solution u; ;, = ;0,5 + Ug,,» for which the error esti-
mate

lwi = winllzro)y,r < chilulmz()
provided that the regularity assumption u; € H?(§2;) holds.

Now, instead of the variational problem (9), we have to consider a per-
turbed formulation to find #; € H~/?(I}) such that

/aiﬂ(x)wi(x)dsx = /aiVui,h(x) -VE&w;(z)dx — /fi(x)&wi(x)dx (14)
I; 2; 2;

is satisfied for all test functions w; € H'Y?(I%). This implies an approximated
Dirichlet to Neumann map

aiﬂ(m) = ai(gigi)(x) — (]\Zfz)(a:) for x € I3,
where §i is an approximate Steklov—Poincaré operator which is defined via

the solution of the Galerkin variational formulation (13).

Theorem 2. [48] The approzimate Steklov-Poincaré operator S; : HY/2(I}) —

H~Y2(I3) as defined above is bounded and Hé/Q(Fi)felliptic. Moreover, there
holds the a priori error estimate

10S: = S)gillg-1r2(ryy < chiluilpz(o,)
when assuming u; € H?(£2;).
When choosing in (14) (bzl,l’ £=1,..., M; as a test function, this gives

s [l s@ids, = i [ Vusn(o) Voluorts ~ [ fiaol (oo
£2;

£

= ’ aiulj,k/vd)z{k(x) : qu;g(x)dx

1 2

x>
Il

M;
=S o / VoLo(x) - Vol ,(a)dz — / fi(@)6L (@) da
4 /
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= Z a;i Kol klur g + Z a; Kool kluck — fo,ie
k=1 k=%+1

= ai (Keoiuc,; + Kroiur,), — foie

o ([KCC,i - KIC,iKl_Il,iKCI,i] UC,i)e + (KCI,iKI_I%ifLi)e — feiz

Hence we obtain the discrete Dirichlet to Neumann map
ait; = aiS{RMue + KeriKipaf = f e, (15)

with the finite element approximation of the Steklov—Poincaré operator

FEM

ST = Keei — KioiK ' Keri. (16)

Boundary Integral Equations

Instead of using finite element discretizations of domain variational formula-
tions for the numerical solution of the local Dirichlet boundary value problem
(4), we now consider boundary integral formulations and their boundary ele-
ment discretization. The starting point is the representation formula

wlz) = [ U@ )ty)ds, - / o Ueai)ds, + [ U @)

that holds for z € §2;, where

1 1

U =

is the fundamental solution of the Laplace operator. To find the yet unknown
Neumann datum t; € H~/2(I}), we first consider the boundary integral
equation which results from the representation formula for z — I7,

[0 @ntis, - / o U @n)g)ds,~ [ U @) (),

i
r; 02;

(V;tz)(il,') = (;I-i- Kl)gz(x) — oi (leofl)(x) forxz € Fi. (17)

Here, x € I is assumed to be on a smooth part of the boundary I7. Since
we are using a Galerkin approach, such an assumption is sufficient. Moreover,
Vi : H-Y2(I;) — HY?(I3) is the single layer potential, K; : HY?(I}) —
H'/2(I}) is the double layer potential, and NzO C HY(8) — HY2(I) is
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the Newton potential. Since the single layer potential operator is H~/2(I7})-
elliptic and therefore invertible, we find the Dirichlet to Neumann map

1 _
a;ti(z) = Oéinl(QI + K;)gi(x) — V; ' Noif (2)

= ai(Sigi)() — (Nif)(z), z€l;

with the boundary integral operator representation of the Steklov—Poincaré
operator

Si = Vi I+ Kn) - HYAE) — HOVA(T), (18)

and with the operator
Ni = V;_lj\vfo,i . f[—l(gi) — H_l/Q(Fi).

Although the Steklov-Poincaré operator (18) is self-adjoint in the continuous
case, an approximation of this composed operator results in a non—symmetric
stiffness matrix in general. Hence we are interested in alternative representa-
tions which result in symmetric boundary element approximations.

Since the solution of the local Dirichlet boundary value problem (4) is given
by the representation formula, the application of the normal derivative to the
representation formula gives a second, the so—called hypersingular boundary
integral equation,

1 o _, 0 o . ‘
bw) = @)+ [ o Uetis = o [ o) U,
I; I

10 [,
o on [ U@,
£2;

() = ) + (K1) + (Dig)(@) — © (Neafi)(@) forz € I (19)
Here, K! : H'/2(I;) — H~Y*(I3) is the adjoint double layer potential,
D; : HY?(I';) — H~/2(I}) is the hypersingular boundary integral operator,
and Ni,l . H7Y(£2;) — H~Y2(I}) is the normal derivative of the Newton
potential. Inserting the first boundary integral representation of the Dirichlet
to Neumann map into (19) gives the relations

iti(@) = ai(Digi) ) + (1 + KD(auti) @) — (N f) @)
= a;(Digi)(x) + (;I + K7) OéiVi_l(;I-F Ki)gi(z) — V, Ny o fi(x)

_(ﬁl,if)(x)
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1 N 1,1
=ai |Di+ (I + KV (1 + Ki)| gi(z)

(Wi o)) — (T + KOV, Noofila)
= «;(Sigi)(x) — (N; f)(x) foraz e T;

with the so—called symmetric boundary integral operator representation of
the Steklov-Poincaré operator,

1 1
S; = Di+(2I+K§)V;_1(2I+Ki) - HY2(I) — H=Y2(1y), (20)

and with an alternative representation of
~ 1 ~ ~
Ni = Ni1+ (21+K1{)Vi_1Ni,0 D HON(2) — H V().

While the Steklov-Poincaré operator S; : HY/?(I%;) — H~'/?(I}) is bounded,
it is not obvious which Sobolev norms in H'/?(I%) and H~/2(I}) have to be
used, respectively. When using appropriate norms, explicit estimates can be
derived as in Theorem 1, where we used a trace norm to characterize H'/%(T7).

In the case of boundary integral operators a natural choice is to use norms
which are induced by the single layer potential and its inverse. In particular,

- =/ (Viw;, w;)r, and ||vz||v_1 = \/ Yo, vid

define equivalent norms of the Sobolev spaces H~/2(I};) and H'/?(I3), re-
spectively. Using both boundary integral representations (18) and (20) of the
Steklov—Poincaré operator S;, we obtain the estimate [52]

1
H(2I+K¢)vi|\v_71 < e (D) |villy-2 for allv; € HY2(I;), (21)

where

1 1
cx () = 2+\/4CY0?7 <1

is the contraction constant of the double layer potential ;I + K; defined by
the ellipticity constants CY” and ch i of the single layer potential V; and of the
hypersingular boundary integral operator D;, respectively.

Using (21) we find the boundedness estimate [52]

HSigi

(13) lgilly -+ for all g; € H'/*(I3) (22)
as well as the ellipticity estimate

(Sigisgidr, = [1=ex(T)] lgill}, - for all i € Hy*(Ih). (23)
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Since all representations of the local Steklov—Poincaré operators S; coincide,
the boundedness estimate (22) and the ellipticity estimate (23) are also true
for the definition (11) based on a domain variational formulation. Note that
the contraction rate cx (I7;) only reflects the shape of the subdomain, but does
not reflect the size or the diameter of the subdomain f2;.

Boundary Element Methods

For g; € H'Y/?(I3), the application of the Steklov—Poincaré operator S; in its
symmetric representation (20) can be rewritten as

1 1 1
Sigi = Digi + (2I+K{)Vf1(21+K¢)gi = Dig; + (2I+ K)wi,

where w; = V; ' (1T + K;)g; € H~Y/2(I3) is the unique solution of the local

3
variational problem

1
(Viwi, i), = ((21+ K)gi,7i)r;, forallm € H_l/Q(Fi).
Let
Sp(Iy) = span{y?, )V, C HV2(I)

be the boundary element space of piecewise constant basis functions 1/%0,n~
Using the Galerkin solution w; p, € S,?(F ;) satisfying

1
(Viwi n, Tin)r, = ((2I+ Ki)gismin)r, forallmi, € S, (24)
we may define an approximate Steklov—Poincaré operator by the relation

1
Sigi = Dig; + (21 + K})wip. (25)

Theorem 3. [48] The approzimate Steklov—Poincaré operator S, : HY2(I) —
H~'2(I}) as defined in (25) is bounded and Hé/Q(Fi)felliptic, i.e.,

<§igiagi>n > (Digi, gi)r; > ClDngiH?{l/Z([’i) for all g; € Hé/2(Fi)-

Moreover, there holds the a priori error estimate

> 3/2
1Si = S)gill-1720r) < eh2?(1Sigill m, iy

pw

when assuming Sigi € Hby(I3), i.e., uy € H*?($2;). Note that Hpyy(I;) is
the Sobolev space which is defined piecewise.

In the same way as above we may also introduce some approximation of the
volume potential N; f = VrlNo,if. In particular, N, »,f € S)(I;) is defined as
the unique solution of the Galerkin variational problem
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(ViNinfomin)r = (Nosifsmin)r, for all 7y, € SY(I3).

Let
M;
gin =) _ucipiy € Sh(I;)
k=1
be some piecewise linear approximation of the given Dirichlet datum g;. For
the approximate Dirichlet to Neumann map we then find

/ aifi (@) (@) (@) ds,

r;

[ai(Digi’h)(x) + Oéi(;.[ + K{)w%h(x) — Ni,hf:| @%7€($)d8m

I
= T

i N;

' 1
=Y ucikei(Dig) 0t + Y winai{(, 1 + KDY, i)
1 n=1

=~
Il

N;
- Z Ni,h,n<¢2na 5011,€>Fi
n=1

for ¢ =1,..., M; where

: : )
Y " win Vit 0 )y = > U'Cﬂ',k<(21+Ki)‘?zl,kaw?,mﬁ"aﬁ
n=1 k=1

and
N;
Z Niah7"<‘/iw'?,n’ '?,m>F7 = <N07’if7 w?,mh—’a = fN,i,m
n=1
for m =1,..., N;. Hence we obtain the discrete Dirichlet to Neumann map

T _ . QBEM AT y-1
ity = oS e — M, Vi N (26)

with the boundary element approximation of the Steklov—Poincaré operator

SERM = D+ KLV Kin (27)
and
Vip[m,n] = (Vﬂﬂgn, 2m>n¢,
Dinll, k] = (Dij i, i )1
Ronlm. ) = {1+ K)okt
M; p[m, k] = (0} g, Vg m)

formn=1,... Ny, k,{=1,... M.
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Instead of using the symmetric representation (20) we may use also the
first representation (18) to define an approximate Steklov—Poincaré operator
as

Sigi = win (28)
where w; ;, € S{(I}) is the unique solution of the variational problem (24).
Although this approximated Steklov—Poincaré operator gz . HY X)) —
H1/2 (I;) is bounded and satisfies an approximation property as in Theo-
rem 3, it is in general not stable. Let S}(I}) € H'/2(I}) be some boundary
element space of piecewise linear basis functions. To ensure the S ,1L(F ;)—semi—
ellipticity of the approximate Steklov—Poincaré operator S; as defined in (28),
we need to assume the discrete stability condition

Gi,hs Ti,h ) T;
cs ||gi,h||H1/2(Fi) < sup < ) for all g; 1, € S}lL(Fi). (29)

02 nes0 ) 1Tinll =172

Note that the discrete stability condition (29) is satisfied, for example, when
using a sufficiently small mesh size to define the trial space 52 (I;) compared
to the mesh size or S} (1) [56], or when using piecewise linear basis functions
to define both trial spaces [47].

2.2 Neumann Boundary Value Problems

We now consider the local Neumann boundary value problem

—a; Aui(x) = fi(z) forz e (2;, « g

on, uwi(z) = N\i(z) forz eIy, (30)

where we have to assume the solvability condition
/fz(x)dx + //\i(at:)dsgc =0. (31)
£2; I;

Moreover, the solution of the local Neumann boundary value problem (30) is
only unique up to an additive constant, i.e., if u; is a solution of (30), then
u; + ; is also a solution of (30) for any constant ~; € R.

Domain Variational Formulation

The associated variational formulation of the Neumann boundary value prob-
lem (30) is to find u; € H}(£2;) such that

s [ Vus@)Vue)ds = [ f@ode + [ Mouleds  (32)
£2;

is satisfied for all v; € H}(£2;), where



78 U. Langer and O. Steinbach

Hi(Ql) = V; € Hl(Ql) : /vz(x)dx =0

£2;

is a suitable choosen subspace of H'(£2;). Since

2
il = | [uts| + [ Voo

defines an equivalent norm in H(£2), the operator Ag, : H*(£2;) — H1(£2;)
defined via the Riesz representation theorem, i.e.,

(Ag,ui,vi)0, = /Vui(x)Vvi(x)dx for all u;,v; € H*(£2),

£02;

is H!($2;)-elliptic. Hence there exists a unique solution u; € H}!(£2;) of the
variational problem (32). Using the trace operator B; : H'(2;) — H'Y*(I})
and its adjoint, B} : H—Y/2(I}) — H~'(£2), we can write the general solution
of the Neumann boundary value problem (30) as

ui = A [fi+ BN+, v €R

where AB is the associated pseudoinverse. From this we obtain the Neumann
to Dirichlet map as

9i = BiAL [Bixi+ fil +7i, weR, (fi o, + N1, =0. (33

Instead of the variational formulation (32), where the side condition (v;, 1) =0
was included in the definition of the function space H!(§2), we now consider
an extended variational problem to find u; € H'(£2;) satisfying

ai/ui(:c)dx/vi(m)dx+ai/Vui(x)Vvi(x)dx (34)
£2; £2; £2;
= /fi(x)vi(x)dx—f—/)\i(m)vi(m)dsgﬂ
for all v; € H'(£2;). Since the operator Ag, : H'(£2;) — H~(£2) defined by
(Ag,uivi)o, = /ui(:ﬂ)dm/vi(x)dm—i—/Vui(m)Vvi(m)dx

for all u;,v; € HY($2;) is H'(§2;)elliptic, we find

1 -
ui =~ Ag[fi+ BiAi

(2
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as the unique solution of the variational problem (34) for any given data
fi € H1(£2;) and \; € H~/2(I). Moreover, when assuming the solvability
condition (31), we obtain u; € H!(§2), and therefore, the general Neumann
to Dirichlet map

1
gi:a‘BiAQil[BZ'.)\i—l-fi]—i—’yi, vi€R, (fi,Dg, + N\, ), =0. (35)

The involved Poincaré—Steklov operator
T; = B;Ay' B} « H'/*(I;) — HY*(I)

is bounded and H~'/2(I;)-elliptic.

Finite Element Approximation

Let ~

Sh($2:) = span{]}nl, C H' (1)
be the local finite element space of piecewise linear basis functions ¢> ', which
are again defined with respect to some regular finite element mesh Qz n with
the mesh—size parameter h;. In addition, let

)\i,h S Sg(Fz) = Span{¢2n}g;1

be some approximation of the given Neumann data by using piecewise con-
stant basis functions 1y ,,. The Galerkin formulation of the extended varia-

tional problem (34) is to find u;j € S}(£2;) such that

ai/ui,h(x)dx/vi,h(x)dx—i—ozi/Vu@h(x)Vvi,h(x)dx (36)
2;

£2; £2;
= /fi(x)vi,h(x)dx%—/)\i,h(x)vi,h(x)dsz
£2; I

is satisfied for all v;;, € S}(£2;). This is equivalent to a linear system of
algebraic equations,
OézAQ LU = f +B )\

with

Aaalt.H = /@k M/ag @do + [ Volyla)Vol (@),

02;

fM—/ﬂ 6! ) (w)da,

B nn, k] = /¢1k x)ds,
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for k, 0 = 1,...,]\7[;, n=1,...,N;. Hence we find
u; = AF)},h[fi + Bz‘T,h)\i]

yielding the approximate solution w;;, € S} (£2;). Taking the trace Ui h| Ty 5
this defines an approximation of the Neumann to Dirichlet map (35), i.e., an
approximate Poincaré-Steklov operator T;.

Theorem 4. The approximate Poincaré-Steklov operator ﬁ' :H- Y ) —
HY2(I) as introduced above is bounded and H~'/?(Iy)-elliptic. Moreover,
there holds the a priori error estimate

(T = To)Nill ey < chilluill 2o,

when assuming u; € H?((2;).

Boundary Integral Equations

Using the hypersingular boundary integral equation (19) the unknown Dirich-
let datum g; € H'/?(I3) is a solution of

ai(Digi)(x) = JAilw) — (KA (@) + (Wi fi@) forw € T

The local hypersingular boundary integral operator D; : H'/2(I;) — H~Y/?(T3)
is only H'/2(I})-semi-elliptic, i.e.

(Divi,vi)p, > ¢ HUiH?p/z(pi) for all v; € Hé/z(]}).

As for the extended variational formulation (34) we may consider an extended
variational problem [39] to find g; € H'/?(I}) such that

a; [(Dyus, viyr, + (wi, Ly (v, D] = <(;I—K£)>\i,vi>m+<ﬁz‘,1fi,vi)n (37)

is satisfied for all v; € H'/?(I}). Since the modified hypersingular boundary
integral operator D; : H'/2(I;) — H~Y/2(I%) which is defined via the bilinear
form B
(Diui,vi)r, = (Diui,vi)r, + (ui, Ly (vi, 1)1y,
is HY 2(I;)-elliptic, the extended variational problem (37) has a unique solu-
tion u; € HY?(I3) for any given data f; € ﬁ’l(Qi) and \; € H*I/Q(Fi). If
the solvability condition (31) is satisfied, then we have u; € Hé / *(I3) and the
general solution of the local Neumann boundary value problem is given by
1~ 1 . 1~ ~
U; = OéiDi (QI_Ki)/\i_‘_OéiDi N@lfi—i-%, v € R.
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Inserting this into the first boundary integral equation (17), we obtain
1 -
aju; = Vi + Oéi(zf — K;)u; + Niofi

1 1 ~ 1 1 ~ ~ ~
=Vihi+a;( I - K;) DY I —K)Ni+  D;'Niafi| + Niofi
2 (677} 2 (6%

1
1 ~ 1 1 ~ 4~ ~
= |Vi+ (QI_Ki)Di 1(21— K;)} i + (QI_Ki)Di "Ni1fi+ Niofi

and therefore the Neumann to Dirichlet map

w@) = - (TA)@ + - (Nif)(@) +y fore e Iy e R,

i Q;

where

1 ~ ;.1 _
T = Vit (= K)DH (1 = Ki) « HOVA(I) — HYA(T)

is again the Poincaré—Steklov operator.

Boundary Element Methods

For \;, € H~/? (I7), the application of the Poincaré-Steklov operator T; in
its symmetric representation reads as

1 ~ .1 1
TN = Vihi + (2I—K1)D¢ I(QI_KZ()/\i = ‘/z')\i"‘(QI_Ki)Zia

where 2; = Dy '(L1I — K!)\; € HY/?(I%) is the unique solution of the local
variational problem

- 1
(Dizi,vi)r, = ((21 — KD\, vi)p,  for allv; € HY2(I3).

Let
Sh(Ii) = span{e;  }0lty € HY*(I3)

be some boundary element space of piecewise linear basis functions gozl, - Using
the Galerkin solution z; 4, € S,ll(f’i) satisfying

~ 1
<D¢Zi’h,vi7h>pi = <(2I—K£)>\i,’l)i’h>pi for all Vi, h S S,IL(FZ),
we may define an approximate Poincaré—Steklov operator as
~ 1
Tixi = Vi + (21 — Ki)zi,h. (38)

Theorem 5. The approximate Poincaré-Steklov operator ’E : H_l/Q(Fi) —
H'Y2(T3) as defined in (38) is bounded and H~'/?(I;)-elliptic. Moreover, there
holds the a priori error estimate

T = To)ill ey < ehd [ Tkillie
when assuming Ti\; € H?(I}), i.e. u; € H/2(£2;).
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3 Domain Decomposition Methods

Using the local Dirichlet to Neuman map
aiti(z) = a;(Siui)(x) — (N; fi)(x) forxz € I;

with the Steklov—Poincaré operator S; as defined in (11), (18) or in (20), we
can reformulate the coupled domain decomposition formulation (2) and (3)
as

aiti(z) = a;(Siui)(x) — (N f)(x)  for z € I3,
u;(z) = g(x) foree NI,
ui(z) = u;(x) for z € I3, (39)
( )+Oéjt](l‘)20 fOI‘l‘EFij.

3.1 Dirichlet Domain Decomposition Methods

Eliminating the local Neumann data ¢; in (39) gives the transmission condi-
tions

ui(®) = u;(x),  i(Siwi)(x) + a;(Sjuz)(x) = (Nifi)(z) + (N f;)(2)

for z € I;;. Let H'2(I's) be the skeleton trace space of H'(£2). To ensure
the Dirichlet transmission condition u;(z) = u;(z) for « € I;; we may de-
fine u;(x) = u(x), @ € I}, as the restriction of a globally defined funtion
u € HY?(I's) with u(z) = g(z) for x € I'. Hence we have to find
u € HY?(I's), u(z) = g(x) for = € I, such that

ai(Siuir,)(x) + a;(Sjur, )(x) = (Nifi)(@) + (N; f;)(z) forx € Ii;.

The associated variational problem is to find v € H/?(I's) such that u = g
on I'" and

Z a;(Siur,)(x)vr, (v)ds, = Z (Nifi)(@)vr, (x)ds, (40)
>/ /

le

is satisfied for all v € H'/?(I's) vanishing on I".
Let
Si(Is) = span{wi}il, € H'/?(Is)

be some global finite element space of piecewise linear basis functions gz:,l€
which are defined with respect to some regular finite element mesh I's; of
the skeleton I's. By S} (I;) we denote the restriction of S} (I's) onto the local
subdomain boundary I;. In particular, for any v, € S} (F s) we find the local
restriction v;p € S hl(F ;) via a transformation of the associated coefficients,
v; = A;v, where A; : RM — RM: ig the connectivity matrix. Moreover, let
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S}(I') be the restriction of S}(I's) onto the Dirichlet boundary I" = 942,
where the associated connectivity matrix is Ag € RMoXM Tet g € RMo result
from some piecewise linear approximation g5, € Sj(I') of the given Dirichlet
datum g.

Using one of the previous introduced approximate Dirichlet to Neumann
maps, the Galerkin variational formulation of (40) is to find u, € S}(I's)
satisfying the Dirichlet boundary condition up(xr) = g(zx) for z € I' such
that

Z/Ozz Suh|[’ )’Uh‘p de = Z/ Nfz Uh|[’( )de (41)

le le

is satisfied for all v;, € S} (I's) with vy (z) = 0, € I'. This is equivalent to a
linear system of algebraic equations to find v € R such that

p p
> Al SinAu =Y Al f, A=y (42)

i=1 i=1

In (42), the approximate stiffness matrices S, . and the local vectors f of
the right hand side correspond to the dlscretlzatlon of the locally defined
approximate Steklov—Poincaré operators S In particular, when using the
finite element approximation (15) this gives

FEM

e —1 FEM -1
in = Kcei — KieiK Ko, [, = fo, — KoK, f,

When using the symmetric boundary element approximation (27) of the
Steklov—Poincaré operator this gives

OBEM __ T 171~ BEM __
ih _Diah_’_K’LthKih fz hzhf

When using a boundary element approximation in the first ¢ < p subdomains
£2;, and a finite element approximation in the remaining subdomains, the
linear system (42) can be written as

q P
Za ATSBEMA u Z OCZATSFEM ZA;rffEM + Z A;l—ff‘EM
i=q+1 =1 i=q+1
(43)
together with the side condition Agu = g.
The solution u € RM of the assembled linear system (43) is also charac-
terized as the unique solution of the constrained minimization problem

F(u) = min  F(v), (44)

vERM  Agv=g

where
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p
F(v )= D {5 B A, Agw) = (£ A}

i=1

By introducing the local vectors v; = A;v € R we have to minimize

P
Flog,.oovv,) = D { G S0, 0) = (17777 o) }

%
i=1

where we have to add the constraints Agv = g due to the Dirichlet boundary
condition and v; = A;v which ensures the global continuity v; ;, = v;;, along
I';;. Here, v; 5, is the local degree of freedom which belongs to a global node
xy € I's, i.e. A;lig, k] = 1. Now we can formulate all above constraints as

P
ZBivizAa—gzﬁeRM

i=1
where the nonzero elements of the matrices B; € RM*M: are defined as fol-
lows:

e 1z € I; NI is on the Dirichlet boundary:
Bilk,ix]) = 1;
o x, €Iy =1;N 1} is on the interface:
Billy,ie) =1,  Bjllk,jk] = -1, i <]

Note that the above constraints are defined in a redundant manner, i.e. £
corresponds to the multiplicity of constraints which are associated to the
node zj. Now, instead of the minimization problem (44), we have to solve a
modified constrained minimization problem, i.e.,

F(uy, ... u,) = inf  F(vg,...,0,). (45)
i Biv;=g

I
-

By introducing the Lagrange multiplier A € R we have to minimize the
extended functional

p
Fa(vy,...,v,) = F(vy,...,v,) = (\,>_ Biv, = g).
=1

The necessary conditions give the equations

Oéig]?EM/FEMu. _ f}?EM/FEM _ BJA =0 (46)

ih % 3

by taking the derivative with respect to v, for i =1,...,p, and,
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p
Z Bﬂ]i = g
i=1

by taking the derivative with respect to A\. Hence, we have to solve the linear
system

SBEM _Bl—erM Uppnm fBEM
Serm _Bl;rEM Uppm = ‘fFEl\I ’ (47)
BBEM BFEM A E

where

Spem = diag (az’ [D'L,h =+ I?z—,rh‘/zjhll?%h]) )

i=1,...,q

Seem = diag (ai [Kce,i — KIc,iKﬁliKCI,i]) , .
’ i=q+1,...,p

In what follows we proceed as for the solution of a local Neumann boundary
value problem. Due to
Sinli=5ip" =0,

we can write the local variables u; € RMi as
u; = w0+ 7l (u0,1;) =0 (48)
and therefore we have to solve
aiSEfLI\I/FEIMUi’O _ B:A — ff)EIVI/FEIVI for Z — 17 . ’p
as well as
P P

> Bitgg+) vBil; =G,

i=1 i=1
On the other hand, for i = 1,...,p, we find

(Bi—l,—h/\ + JC?EI\A/FEM7 1i) _ ai(sng/FEMui, 11‘) _ ai(uia SfiM/FEMli) -0
and, therefore, the additional constraints
(N, Binly) = —(f75F 1) fori=1,...,p.

Hence, we obtain u, ; € RMi as the unique solution of

BEM/FEM T T __ fBEM/FEM
ai[S;p, + 11 Ju 0 — B A = f; /

for i =1,...,p. Now, instead of (47), we may solve the extended system
SBEM _B];rEM Uggpm,o fBEM
SFEM _BJEM Urgm,o _ fFEM , (49)
BBEI\I BFEIVI G )\ g

GT ¥ e
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where

Seen = diag (Oci[Di,h + I?iThV;Thlki,h + 1@;]) ‘

1=1,...,q

Srem = diag (Oéi[KCC,i - KIC,in_IlyiKCI,i + ]-1]-;]) _—
i=q+1,...,p

and

G = (Bily,...,Byl,), e = —(f7™™M 1) fori=1,...,p.

3

The local boundary element equations in (49) can be written as
;[ Dip + 11‘1;]%0 + aif(z‘Thwi — B\ = f?EM,
a;Vipw; — a; K pu; o = 0,
while the finite element equations are equivalent to

ai[Kcoe + 11'1;]%0 +aiKciur; — B/ = fC,i’

a;Krriup; +aiKeru; o= f

I
Hence, we have to solve the linear system
Vi —Kp, w 0
Ki;r Dy, _B]—BFEM Ugpm,o fBEM
Kir Keg Uy B f; (50)
KCI IZ’CC _BJEM Uppn,o fC 7
BBEI\T BFEIVI G A g
GT vy e
where
Vj, = diag (a;Vin)l_, Dy, = diag (ai[ D + 1,17 ]) 7
Kir = diag (i K11,0)7_ 4 » Koo = diag (a;[Kcoi + 1141;])?:%r1 ,
alkl,h anrlI?CI,l
Kh = ) KCI -
agKqn apKerp

Next we use a subspace projection in order to separate the determination
of ~ from the determination of the rest of the unknowns in (50). Thus, we
introduce the orthogonal projection

P=1-QGG"RG)'aT (51)
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where @ is some suitable diagonal scaling matrix [7, 30]. Since PTG = 0, the
application of PT to the fifth equation of (50) gives PTG~y = 0 that excludes
~ from the first five equations of (50). Let us represent A in the form

A=Tohg + )., A =QG(GTQG) e (52)

Hence we have to find To), € ker G, i.e. GTTyA, = 0. In particular, the
columns of Ty span a basis of ker G = (range G)*. Hence we also conclude
ToAy = PTu)\y. Therefore we have to solve the reduced linear system

Vi —Kp, w
T n T
Kh Dh _BBEMPTO Uggn,o
Ky Ker Uj (53)
Ker  Kee =Bl PTy | | %eso
T(;FPTBBEM T(;FPTBFEM /\0

f g T Bosnide
= f[
fc + Bl:‘rEl\IAe
TS PTG
Once the vectors w, tgpy o5 Ugs Uppy,, a0d Ay are defined from (53), we get A
from (52), v from the fifth equation in (50), i.e.,

v = (GTQG)_lGTQ [g_ BBEMUBEM,O - BFEMUFEM,O} )

and, finally, u from (48).

3.2 Neumann Domain Decomposition Methods

Instead of eliminating the Neumann data in (39) we are now going to eliminate
the Dirichlet data. For this, we introduce global Neumann data as follows: For
any interface I}; = I; N I}, we introduce t;; € H~/?(I};) and set

1 1 L

ti(z) = ti(x),tij(x) = —  ti(x) fora e ly;,i<j,

(67 Q
and for the Dirichlet boundary we introduce t, € H~Y?(I') and set
t; = tor, /. Hence, we have satisfied the Neumann transmission condition in
(39) in a strong sense. Therefore, we have to impose the Dirichlet transmission
conditions and the Dirichlet boundary conditions in some weak sense, i.e.,

/[uz(a:) —uj(z)|rj(x)ds, =0 forall 7y € ﬁ_l/Q(Fij),

Fij
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and
[ui(z) — g(x)]To)r,dsz = 0 for all g € H*I/Q(F)7

,nr

where ﬁ_l/Q(Fij) = (ﬁl/Q(Fij))’. For the interfaces I5;, we find from the
weak formulations of the Dirichlet to Neumann map

(tij,viir, )1y = (Qiti,vir, )y, = (@aSius — Nof,vir,)r,. v € HY2(I;),

and
—(tij, vjir, ) ry = (Qity, vin, )y = (@ Siuy — Ny fyvin, )y, vy € HY2(I).
Hence,

<ai5iuiavi\l“ij>n:j + <aj5jujavjlfij>Fi_j - <tij’vi\nj - Uj|Fij>F7:_7‘

= (Nif, Uz‘\l“,;j>1“ij + (N, f, vjlfij>Fij'

Moreover, on the local Dirichlet boundaries I; N I", we have

(iSius, viirnr) rinr — (to, viinnr) rinr = (Nif, vijrnar) rinr-

The associated variational formulation is to find u; € H'/2(I3) fori =1,...,p,
tij € H-Y/2(I};) for all i < j and to € H~Y/?(I") such that

p p p
Z(%Sﬁuuvﬁn - Z<tijvvi|ﬂ-j — V|, ) Ty — Z<t07vi>ﬂ;ﬂf = Z<Nif7 vi)r,
i=1 i<j i=1 i=1

<Ui\r,;j - uj\Fij’Tij>Féj =0 (54)

<uia 7—0>Fiﬁf = <gv 7'0>I",;ﬁ[‘

is satisfied for all v; € HY/2(I3), 7;; € H-'/2(I};), and 7 € H-Y/2(I).

The saddle point formulation (54) describes a hybrid domain decompo-
sition method [1] which is also known as a mortar domain decomposition
method to couple locally different trial spaces [4].

For a Galerkin discretization of (54), we introduce local boundary element

spaces
Si(Li) = span{i} , 11ty € H'2(I)

of, e.g., piecewise linear basis functions @}k Moreover, for each coupling
boundary I5;, we consider a trial space to discretize the local Neumann datum
tijv

Su(I3;) = span{tyjn } oy © HY2(Iy)
where 1);; , are some basis functions to be defined in an appropriate way. In
the same manner we introduce



Coupled Finite and Boundary Element Domain Decomposition Methods 89

Sp(IM) = span{@bom}gil - H_l/Q(F)

to discretize the unknown Neumann datum on I'. The choice of the basis
functions ¥y, and g, is very sensitive, since we have to ensure local inf-
sup conditions which are related to the saddle point formulation (54), i.e.,

cs ITijnll g-1/2(r,,)
(Tijs Vil — Vi ) I

< sup
(vi,h,,’Uj,h)ES}IL(Fi)XS}IL(Fj) \/”vi,h\f‘m

|§'Il/2(1—’1‘,j) + ”vj,h\ﬂzj |?{1/2(F7:J)

For appropriate choices of the trial spaces Sy, (I;) and Sy (I") see, for example,
[57] and the references given therein.

The Galerkin discretization of the variational problem (54) is equivalent
to a set of linear equations which can be written as

P P
QFEM/BEM T T T _
E :Si,h U; — E (M 5, — My )t — E My nto = £y
i=1 i<j i=1
Mmhui — Mji7huj = 0,
Mo; pu; =g

with the discrete Steklov—Poincaré operator as defined in (16) for a finite ele-
ment approximation, and as given in (27) for a boundary element discretiza-
tion. Moreover,

Mg n[m, k] = (@i s Yijm)
Mji’h[m, k] = <(p},ka Q/Jij,m>ﬂjv
MOi,h[ma k] = <9011,k7 wO,m>ﬂ:J'

By reordering all degrees of freedom we then obtain the coupled linear system

Iij»

Sirn _Ml;rEM Uggn fBEM
Sren _M;:M Uppn = fFEM (55)
Mzen Mrpu 3 g

which is of the same structure as the linear system (47). In fact, when consid-
ering conforming local trial spaces S} (I) and choosing Sj,(I3;) and Sy (I") to
be spanned by biorthogonal basis functions 1;;, and g ,, respectively, both
linear systems (47) and (55) will coincide. In general, we may apply all the
transformations which are used to reformulate the linear system (47) to solve
the linear system (55) in a similar way, we skip the details.

4 Preconditioned Iterative Solution Techniques

In this section we describe some preconditioned CG-like iterative methods for
solving the linear system (53),
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Vi —Ky, w
K;Lr Dh _B];FEMPTO uBEM,O
Kir Ker Uy
Ker I?CC _B;EMPTO Upmn,o
T(;FPTBBEM TJPTBFELI >\0
0
fBEM + B];FEMAC
fc + B;‘rEMAe
T, PTg
Since V, = diag(o;Vip) and Kjr = diag(a; Kr,;) are block diagonal and
therefore easily invertible we may first eliminate the vectors w and wu; to
obtain

Seem _B];FEMPTO Uggnr,o
Srem _BI;FEMPTO Uprm,o (56)
T()TPTBBEM T(;FPTBFEM )\0
fBEI\I + B];FEI\/IAC
= fC _KCIK]_Il.fI_‘_BI;rEM)‘e
TSPy

Eliminating g, , and gy, , we have to solve the Schur complement system
of (56),

F)\y = T, P'BSB'PTy\, = f. (57)

Since the system matrix in (57) is symmetric and positive definite one may
use a preconditioned conjugate gradient scheme to solve (57). For this, an
appropriate preconditioner C'r is needed, which is spectrally equivalent to the
Schur complement matrix F'. Another choice is the application of a Bramble—
Pasciak conjugate gradient scheme [5] to the one—fold saddle point problem
(56). For this, besides C'r also preconditioners Cs = diag(Cs,) for the local

discrete Steklov—Poincaré operators Si?l/FEM are needed. A third possibility
is to use a CG-like iterative method to solve the two—fold saddle point problem
(53), see [33, 60]. Then, also preconditioners Cy, and Ck, for the local matrices
Vi.n and Ky ; are needed, respectively.

Following [36] we can define the scaled hypersingular BETI preconditioner
Cnt = (BC,;'B")'BC'D)C'BT(BC'BT) ™! (58)

where C,, is some diagonal scaling. Note that there hold the spectral equiva-
lence inequalities [36, Theorem 3.2]
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of (Cpp,p) < (Fpu,p) < cf (1+log(H/h))*(Crp, 1)

for all u € ker GT where the positive constants ¢f” and ¢l are independent
of the local mesh size h, the subdomain diameter H, the number p of sub-
domains, and of the coefficient jumps. The preconditioner (58) is based on
local realizations of the discrete stabilized hypersingular boundary integral
operator with respect to all subdomains, independent of whether a finite or
boundary element discretization is used locally.

To construct preconditioning matrices Cg, for the local discrete Schur
complement matrices §f PR e will apply the concept of boundary integral
operators of the opposite order [51]. Based on the local trial space S} (I) of
piecewise linear basis functions 90; . as used for the Galerkin discretization of
the local hypersingular boundary integral operators D; we define the Galerkin
matrices

Vi,h[gv k] = <Vi9011,k79011,é>1“m Mi,h[ga k] = <§Dzl,kasozl,é>ﬂ

for k,/ =1,..., M; and the application of the resulting preconditioning matrix
is given by S
Cgl = M\ VipM;,! fori=1,...p. (59)

Moreover, there hold the spectral equivalence inequalities

) / )
7 (Cs,v,0,) < (87 wg,0;) < 65" (Csv,0;)

Q 2
for all v, € RM:.

For the definition of preconditioners Cvy; for the local discrete single layer
potentials V; 1, there exists a wide variety of different possible choices. Here,
we only mention multilevel methods [18, 53] which are based on a given mesh
hierarchy or algebraic multilevel techniques [35, 38, 50].

For finite element subdomains one may also use geometric or algebraic
multigrid methods to construct preconditioners C'k, for the local finite element
stiffness matrices Ky ;, see, for example, [15] and the references given therein.

5 Conclusions

In this paper we have provided a unique approach to both the Dirichlet and
the Neumann domain decomposition techniques. The all-floating tearing and
interconnecting technology is a very general and powerful technique. Elimi-
nating more or less variables results in symmetric and positive definite Schur
complement problems, one—fold or two—fold saddle point problems which can
be solved by preconditioned conjugate gradient methods. We have used bound-
ary element technologies for constructing the required block preconditioners
for both the boundary element and the finite element blocks. There are many
papers showing the efficiency of FETI methods including the efficiency in
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large—scale parallel computations, see, e.g., [16, 29, 44]. Numerical results for
BETI and coupled BETT-FETI methods can be found in [33, 34, 38].

The methods and techniques discussed in this paper are not restricted to

the potential problem. They can be extended to linear elasticity problems
as well [38]. The generalization to three-dimensional electromagnetic prob-
lems usually considered in H(curl) is certainly more challenging, see [22] for
the symmetric coupling and [54] for FETI-DP methods. Coupled finite and
boundary element tearing and interconnecting solvers for nonlinear potential
problems were discussed in [34].
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