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Summary. When the Boundary Element Method (BEM) is used to analyse elec-
tromagnetic problems one is able to achieve an almost linear complexity by applying
matrix compression techniques. Beyond this, on symmetrical domains the computa-
tional costs can be reduced by significant factors. By using several symmetry consid-
erations (geometry, mesh, kernel, excitation) it will be shown how the combination of
the Adaptive Cross Approximation (ACA) and the symmetry exploitation allows an
efficient solution of electromagnetic problems. This approach will be demonstrated
on the scalar BEM formulation for electrostatics and can also be applied to the vec-
torial eddy current formulations. The symmetry exploting ACA algorithm not only
reduces the problem size due to the symmetry but also possesses an almost linear
complexity w.r.t. the number of unknowns.

1 Introduction

Electromagnetic devices can be analysed by the coupled BE-FE method,
where the conducting and magnetic parts are discretised by finite elements. In
contrast, the surrounding space is described with the help of the boundary el-
ement method (BEM). This discretisation scheme is well suited especially for
problems including moving parts [11]. The BEM discretisation of the bound-
ary integral operators usually leads to dense matrices without any structure. A
naive strategy for the solution of the corresponding linear system would need
at least O(IN?) operations and memory, where N is the number of unknowns.
Methods such as fast multipole [6] and panel clustering [9] provide an approxi-
mation to the matrix in almost linear complexity. These methods are based on
explicitly given kernel approximations by degenerate kernels, i.e. a finite sum
of separable functions, which may be seen as a blockwise low-rank approxima-
tion of the system matrix. The blockwise approximant permits a fast matrix-
vector multiplication, which can be exploited in iterative solvers, and can be
stored efficiently. In contrast to the methods mentioned the ACA algorithm
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[2, 3] generates the low-rank approximant from the matrix itself using only
few entries and without using any explicit a priori known degenerate-kernel
approximation. Special emphasis is put on the handling of symmetry condi-
tions in connection with ACA [13]. The feasibility of the proposed method is
demonstrated by means of numerical examples.

2 Statement of the Problem

The electromagnetic phenomena are described by Maxwell’s equations, which
can be written in the form of partial differential equations as follows

curlH = 3+ 9,D, (1)
curlE = -9,B, (2)
divB =0, (3)
divD = p. (4)

The equations describe the correlation between the magnetic field H, mag-
netic induction B, electric field E and electric displacement D. 3 denotes the
electric current density and p the electric charge density. The equations have
to be supplemented by the material laws

B = uH, (5)
D =¢cE, (6)
1=rE+7g, (7)

where p is the magnetic permeability, € the electric permittivity, x denotes
the electric conductivity and 7 ¢ the impressed source current density.

2.1 Formulation of the problem

For the sake of simplicity we consider in the sequel the electrostatic case

curlE =0, (8)
divD = p, 9)
D =cE. (10)
Based on the potential ansatz
E = —grady, (11)

where ¢ is the electric scalar potential, we obtain the potential formulation
dive grad¢ = —p, (12)

which has to be solved in the whole R? . In order to apply the BE-FE discreti-
sation scheme we perform a domain decomposition (see Fig. 1) of the computa-
tional space into the bounded domain 2pgy containing dielectric components,
the unbounded domain 2ggym and the coupling boundary I' = Qpgyv N 2BEM -
In this paper we put the emphasis on the BE formulation.
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Fig. 1. Domain Decomposition.

Representation Formula

In the BE domain which usually describes the surrounding air we assume
€ = go. Thus, the potential formulation (12) turns out to be the Poisson

equation
1

Aqb:—gop. (13)

Multiplying (13) by the fundamental solution of the Laplacian

1

14
|z —y| 14

u*(a:,y) =

and performing integration by parts yields the representation formula for
smooth boundary points y € I'

,00) = [0 (@) 2u0(a)dS. ~ [ 0, (,0) ol dS,
r r
vat [ wew s (15)
2BEM

2.2 Discretisation

First, the spatial discretisation has to be introduced. Let

N1
L=
j=1

be a union of boundary elements I'; approximating the coupling boundary I
and

{¢j, i=1,....,Ny} and {¢;, j=1,...,Ny} (16)
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systems of compact-supported ansatz functions for Dirichlet and Neumann
data, respectively. The scalar electric potential and its normal derivative are
discretised by the corresponding scalar ansatz functions

N

P(z) ~ Z a;d;(x), (17)
j]\;w

Ond(z) ~ Y a505() (18)

For the Neumann-type problem the representation formula (15) will be eval-
uated in N, collocation points {y;, i = 1,...,Ny}. Together with the dis-
cretisation (17-18) this yields N, discrete boundary integral equations which
can be written as the matrix equation

(yT+H)a=GCq+b (19)

with the matrices of the single and double layer potential

gij:/ u*(m,yi)wj(a:)de, izl,...,N¢,j:1,...,Nw, (20)

supp ¥;

supp ¢;
The matrices G and H are fully populated and don’t possess any structure.
Thus, the computational costs when setting up the matrices and the memory
consumption are both of order O(NyNy) and O(N, ; ), respectively . Each sin-

gle matrix entry is computed by the use of a combination of analytical and
numerical integration.

3 Hierarchical Matrices

The formal definition and description of hierarchical matrices as well as oper-
ations involving those matrices can be found in [7, 8]. In this section we give
a more intuitive introduction to this topic.

3.1 Motivation

Let K : [0,1] x [0,1] — R be a given function of two scalar variables and
A € RV*M 3 given matrix having the entries

are = K(xp,ye), k=1,...,N, £=1,...,M, (22)
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with (zx,y¢) € [0,1] x [0,1]. Tt is obvious, that the asymptotic memory re-
quirement for the matrix A is Mem(A) = O(N M) and the asymptotic num-
ber of arithmetical operations required for the matrix-vector multiplication
Op(4s) = O(N M) if N,M — oco. This quadratic amount is too high already
for moderate values of N and M. However, if we agree to store an approxima-
tion A of the matrix A and to deal with the product A s instead of the exact
value A s the situation may change. However, then it is necessary to control
the error, i.e. to guarantee the inequality

A= Allr <elAllr, (23)

where ||A||r denotes the Frobenius norm of the matrix A

1/2

Alr = | ak (24)
k.0

for some prescribed accuracy €. The best approximation of the matrix A is
given by its partial singular value decomposition

A A=Ar) =) oiuv/ (25)
i=1

where the rank r = r(¢) is chosen corresponding to the condition

~ min(N,M) min(N,M)
A=Az < Y of < Y ol = <Al (26)
i=r+1 =1

Unfortunately, the complete singular value decomposition of the matrix A
requires O(N?) arithmetical operations when assuming N ~ M, and there-
fore, is too expensive for practical computations. However, the singular value
decomposition can be perfectly used for the illustration of the main ideas.

Ezample 1. Let us consider the following function on [0, 1] x [0, 1]

1

K(Jﬁ,y): Oé-f—(il'—y)Q,

(27)
where o > 0 is a parameter. For a ~ 1 the function K is smooth but for small

values of a the function K becomes an artificial “strong singularity” at the
diagonal {(z,x)} of the square [0, 1] x [0, 1].

The domain [0, 1] x [0,1] is uniformly discretised using the nodes

1 1

(wsye) = (= Dhoy (= D)y he =\ hy= 0 (28)

for k=1,...,N and £/ = 1,...,M. In Fig. 2 the logarithmic plot of the
singular values of the matrix (22) (i.e. the quantities log,y 0y, ¢ = 1,..., N)
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for N = M = 32 (left plot) and N = M = 1024 (right plot) is presented
for @« = 1. It is clear to see that only very few singular values are needed to
represent the matrix A in its singular value decomposition (25) for moderate
value of the parameter £ = 107° — 1075, Almost all singular values are close
to the computer zero for N = M = 1024. Thus the behaviour of the singular
values determines the quality of the low rank approximation (25).

The situation changes if the “singularity” of the function K is more serious.
In Fig. 3 (left plot) the rank 7(g) for e = 107% and N = M = 256 is shown as
a function of the parameter a. The horizontal axis corresponds to the values
—logy () while a changes from 2° till 278. However, if we “separate” the
variables x and y, i.e. consider only a quarter [0,0.5] x [0.5,1] of the square
[0,1] x [0,1] then the situation is better. The right plot in Fig. 3 shows the
same curve for separated z and y which is more or less constant now.
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Fig. 2. Distribution of singular values for N = 32 (left) and N = 1024 (right).
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Fig. 3. Rank of the matrix A depending on parameter o for non-separated (left)
and separated (right) domains.
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Now the main idea of hierarchical methods is very clear. If we decompose
the whole matrix A in four blocks corresponding to the domains [0,0.5] x
[0,0.5],]0,0.5] x [0.5,1],[0.5,1] x [0,0.5] and [0.5,1] x [0.5,1] we will be able
to approximate two of these four blocks efficiently. The two remaining, main
diagonal blocks have the same structure as the initial matrix but only the
half of the size and their rank will be smaller. In Fig. 4, the left diagram
corresponds to the whole matrix and its rank r(¢) = 73 is obtained for o = 279
and € = 107° for N = M = 256. The 2 x 2 block matrix together with ranks
of the blocks is shown in the second diagram of Fig. 4. The approximation of
the separated blocks is now acceptable and we continue to decompose only the
blocks on the main diagonal. The results can be seen in the third and in the
fourth diagram of Fig. 4. The memory requirements for these four matrices
is quite different. The first matrix needs 146 N words of memory, the second
94N, the third 74N and finally we will need 72N words of memory for the
last block matrix in Fig. 4. Thus a hierarchical decomposition in blocks and
their separate approximation using a singular value decomposition leads to a
drastic reduction of memory requirements even for this rather small matrix
having “diagonal singularity”. Note that the rank of the blocks on the main
diagonal increases almost linear with the dimension: 12 — 20 — 38 — 73 while
the rank of separated blocks has at most logarithmic growth: 7 — 8 — 9.

38 | 9 ik 9 I 1287 9
73 8120 8 =t
9 | 38 9 25 9 \8
8120 8 i

Fig. 4. Initial matrix and its hierarchical decomposition in blocks.

Thus a hierarchical approximation of large dense matrices arising from
some generating function having diagonal singularity consist of three steps

e Construction of clusters for variables x and y,
e Finding of possible admissible blocks (i.e. blocks with separated = and y),
e Low rank approximation of admissible blocks.

In the above example the clusters were simply the sets of points x; which
belong to smaller and smaller intervals. The problem is more complicated for
three-dimensional irregular point sets. Also the admissible blocks in the above
example are very natural. They are just blocks outside of the main diagonal.
In the general case we will need some permutations of rows and columns of
the matrix to construct such blocks. Finally, the singular value decomposition
approximation we have used is not applicable for more realistic examples.
We will need more efficient algorithms to approximate admissible blocks. The
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approximation of the blocks for separated variables z and y in the above
example is based on the smoothness of the function K for x # y. However, if
the function K is degenerated, i.e. it is a finite sum of products of functions
depending only on x and y

Iﬂ%w=§:MWM@) (29)

then the rank of the matrix A defined in (22) is equal to r independent of
its dimension. Thus for N, M > r the matrix A is a low rank matrix. This
property is independent of the smoothness of the functions p;, ¢; in (29). The
low rank representation of the matrix A is now

T
A= Z uv; (30)
i=1

with

(ui)k = pi(wr), (vi)e = qi(ye) (31)

fork=1,...,N and ¢/ = 1,..., M. Note that this representation is not the
singular value decomposition (25). If the function is smooth enough then we
can use its Taylor series with respect to the variable z in some point x*

K=Y T @y Ry (52)

to obtain a degenerated approximation
T
A%Azz:uiv;r, (33)
i=1

with

1 'K (%, ye)
il o xt

for k=1,...,N and ¢ = 1,..., M. Note again that (33) is not the singu-

lar value decomposition of the matrix A. If the remainder R, is uniformly
bounded by the original function K

(wik = (z, — )", (v3)¢e = (34)

R, )| < e[ K2, (35)

for all z and y with some r = r(g) then we can guarantee the accuracy of the
low rank matrix approximation

1A~ A <<l Al (36)
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for all dimensions N and M. The rank r = r(¢) of the matrix A is also in-
dependent of its dimension. Thus, for N ~ M the matrix A requires only

Mem(A) = O(N) words of computer memory. However, an efficient construc-
tion of the Taylor series for a given function in three-dimensional case is prac-
tically impossible. Thus it is rather an illustration for the fact that there exist
low rank decompositions which are not based on the singular value decompo-
sition. A further example of low rank approximation of the given function is
a decomposition of the fundamental solution of the Laplace operator

1 1

for z,y € R?
47|z —y|

u(z,y) =
in spherical harmonics which is used by multipole methods (see [6]).

3.2 Hierarchical Clustering

To find a suitable permutation, a cluster tree is constructed by recursively
partitioning some weighted characteristic points

{(kagk))k:17"'7N}CR3XR+ (37)
and
{(yb%%€=1,...,M}C}R3><R+ (38)

in order to separate the variables z and y. A large distance between two
characteristic points results in a large difference of the respective equation
numbers. While dealing with boundary element matrices the characteristic
points can be the collocation points and the weights the areas of the supports
of the trial functions. A given cluster

m:{@h%%k:L”W@

with n > 1 can be separated in two sons using the following algorithm.
Algorithm 1
1. Mass of the cluster
n
G= Z Ik € ]RJr )
k=1

2. Centre of the cluster

1 — .
X = eR3
sz_:lgkxk
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3. Covariance matrix of the cluster

n
C=> gr(wx — X) (v — X)T € R,
k=1

4. Eigenvalues and eigenvectors
Cvi:)\ivi, i:1,273, )\1 2)\2 Z)\3 ZO,

5. separation
5.1 initialisation

Cli:=0, Cly:=0,
5.2 for k=1,...,n

if (xk —X,Ul) >0 then Cl;:=Cly U ((Ek,gk)
else Cls:=Cls U (zk, k) -

The eigenvector vy of the matrix C' corresponds to the largest eigenvalue of
this matrix and shows in the direction of the longest extension of the cluster.

The separation plane {x ER? : (x— X,v) = O} goes through the centre

X of the cluster and is orthogonal to the eigenvector v;. Thus, Algorithm
1 divides a given arbitrary cluster of weighted points in two more or less
equal sons. In Fig. 5 the first two levels of separation of a simplified model
of an exhaust manifold are shown. The separation of a given cluster in two
sons defines a permutation of the points in the cluster. The points in the
first son will be numbered first and then in the second son. Algorithm 1 will
be applied recursively to the sons until they contain less than or equal to
some prescribed (small and independent of N) number n,i, of points. Next,
cluster pairs which are geometrically well separated are identified. They will be

&7\
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Fig. 5. Clusters of the first two levels.
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Fig. 6. An admissible cluster pair.

regarded as admissible cluster pairs, e.g. the clusters in Fig. 6. An appropriate
admissibility criterion is the following simple geometrical condition. A pair of
clusters (Cl,, Cl,) with 1y > nmin and m, > nmin elements is admissible if

min (diam(Clm), diam(Cly)) < ndist(Cl,, Cl,) | (39)

where 0 < 7 < 1 is a given parameter. Although the criterion (39) is quite
simple a rather large computational effort (quadratic with respect to the num-
ber of elements in the clusters Cl, and Cl,) is required for calculating the
exact values
diam(Cl,) = max |z, — Tk,|,
k1,k2
diam(Cly) = max |ye, — Y|,
£1,L2

dist(Cls, Cly) = nklilp |zr — yel -
In practice we use more rough and more restrictive but easily computable
bounds
diam(Cl,) < 2 mkax|X -z,

diam(Cl,) < 2 max Y — yel,
dist(Cl,, CL,) > |X — Y| — ; (diam(ClI) + diam(C’ly)) :

where X and Y are the already computed centres (cf. Algorithm 1) of the
clusters Cl, and Cl,, for the admissibility condition. If a cluster pair is not
admissible and n; > nmin and my > npin then there exist sons of the both
clusters

Cly =Clyy UCly, Cly=Cly, UCly,.

Let us assume for simplicity that the cluster Cl, is bigger: diam(Cl,) >
diam(Cl,). In this case we check two new pairs
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(sz,l, czy) , (czm, czy)

for admissibility and so on. This recursive procedure stops if n, < nmymip, or
My < Nmin. The corresponding block of the matrix is small and will be com-
puted exactly. The cluster trees for the variables x and y together with the
set of admissible cluster pairs as well as of small cluster pairs allow to split
the matrix into a collection of blocks of various sizes. The block structure of
the Galerkin matrix for the single layer potential on the surface form Figs.
5-6 is shown in Fig. 7. The colour of the blocks indicates the “quality” of
the approximation. The light grey colour corresponds to well approximated
blocks while dark grey and especially black colour indicates less good approx-
imation or even exact computation. Thus the main problem remains is how to
approximate the big blocks without using the singular value decomposition.
The corresponding procedures will be described in the forthcoming section.

L T o

I = i
1 i

]
£

] |
|
|

B L

Fig. 7. Matrix decomposition.

3.3 Adaptive Cross Approximation

On the matrix level the fully pivoted ACA algorithm can be written in the
following form:

Algorithm 2
1. Initialisation

Ro=A, So=0.

2. For 1 =0,1,2,... compute
2.1. pivot element

(ki+1,€i+1) = ArgMax |(Ri)k€| ,
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2.2. normalising constant

-1
Yi+1 = ((Ri)ki+1fi+1) ’
2.3. new vectors
=~ R i =R"
ul+1 72‘#1 Z€€i+1 9 v1+1 7 eki+17
2.4. new residuum
T
Riy1= Ry —uit1v;44 5
2.5. new approximation
T
Siv1 = Si +uip10;4 -

The whole residuum matrix R; is inspected in Step 2.1 of Algorithm 2 for
its maximal entry. Thus the appropriate stopping criterion for a given £ > 0
at step r is

1B |lr < ellAllr-

Note that the crosses built from the column-row pairs with the indices k;, ¢;
fori =1,...,r will be computed exactly, while all other elements are approx-
imated. The number of operations required to generate the approximation
A =8, is O(r> N M). The memory requirement for Algorithm 2 is O(N M)
since the whole matrix A is assumed to be given at the beginning. Thus, Al-
gorithm 2 is much faster than a singular value decomposition but still rather
expensive for large matrices. If the matrix A has not yet been generated but
there is a possibility of generating its entries ay, individually then the follow-
ing partially pivoted ACA algorithm can be used for the approximation.

Algorithm 3
1. Initialisation

So=0, T=0, c=0cRY,

2. Recursion
2.1. Choice of the next not yet generated row

ki1 :min{k : kgéI}, IZIU{]{JZ‘_H},

or stop if all rows are generated, i.e. Z={1,...,N},
2.2. Generation of the row

YT
a=A"ep,.,,
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2.3. Row of the residuum and the pivot column

i
RiChpn =a= 3 (um)heavm,

m=1

ArgMax | (R ), e ,

liva
2.4. Test
if Max|(Ri)ki+1g‘ =0 then goto 2.1.

2.5. Normalising constant

-1
Yi+1 = ((Ri)k,:+1€1:+1) ’
2.6. Generation of the column, Update of the control vector

a=Aey,,, c=c+lal,

2.7. Column of the residuum and the pivot row

)

Rie‘gi+1 =a- Z (vm)4i+1um )

m=1

kiro = ArgMax ‘(Rz)

kliy1| >

2.8. New vectors
_ _ pT
Ui+l = ’Vi+1Ri6a+1 , Vi1 = R; Chkit1>

2.9. New approximation

Sit1 = Si + uir1v;,

i+1 i T Wi41V;4q -

2.10. Recursion
1:=1+1, goto 2.2

Since the matrix A will not be generated completely we can use the norm of
its approximant S; to define a stopping criterion. This norm can be computed
recursively as follows,

K3
181l % = 1SillF +2 > ulyytm vpvis + luip|[Fllvia |7 (40)

m=1

An appropriate stopping criterion in Step 2.8 is then

lurllFllorl[m < el[SellF- (41)
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However, since the whole matrix A will not be generated while using par-
tially pivoted ACA algorithm, it is necessary to check the control vector ¢
updated after every column generation for zero components in not yet gener-
ated rows. If there is some index i* ¢ Z with ¢;« = 0 then the row i* has not
yet contributed to the matrix. It can happen that this row contains relevant
information and, therefore, we have to set i := i+ 1, k;1 = ¢* and to restart
the algorithm in Step 2.2. With this trivial modification Alg. 3 can be used
not only for dense matrices but also for reducible and even for sparse matrices.

Algorithm 3 requires only O(r?(N + M)) arithmetical operations and its
memory requirement is O(r(N + M)). Thus this algorithm is perfect for large
matrices. Using the theory of polynomial multidimensional interpolation the
following result was proven in [2].

Theorem 4. Let the function K(x,y) be asymptotically smooth with respect
toy, i.e. K(z,-) € C®(R3\{x}) for all z € R3, satisfying

0y K (2, y)] < cplz—yl”", p=la| (42)

for all multiindices o € N3 with a constant g < 0. Moreover, the matriz
A € RVXM s decomposed in blocks corresponding to the admissibility condi-
tion

diam(Cl,) < ndist(Cl,,Cl,), n < 1. (43)

Then the matrixz A with M ~ N can be approximated up to an arbitrary given
accuracy € > 0 using a system of given points (Tx, o),

|A—A|lr <e|AllF, (44)
and

Op(A) = Op(A s) = Mem(A) = O(N'F0e=%)  foralld >0.  (45)

4 Exploitation of Symmetry

The exploitation of symmetry is another possibility to reduce computational
costs and has been presented in [1, 4, 5] using linear representation theory for
finite groups. The aim is a decomposition of function spaces into orthogonal
subspaces of symmetric functions, such that each subproblem is defined on a
so called symmetry cell. The global solution can then be reconstructed from
these components. In the following we will give an overview of exploiting
symmetry in the BEM. The considered procedure can easily be extended to
a vector case, e.g. a magnetostatic or eddy current problem as shown in the
numerical results section.
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4.1 Algebraic Description

A (complete) geometrical symmetry of the domain 2ggM is given if there
exists a finite group Q of isometries of R?, such that 2ggw is invariant w.r.t.
Q. For each element of the symmetry group Q there is an orthogonal matrix
Q € R? (i.e. QQT = QTQ = I) and a symmetry point zo € R3 such that

= o + Q(fE - l’o) S QBEMa Va € 28EM - (46)

For the sake of simplicity we assume in the sequel that 2o = 0. The geometrical
symmetry of the domain 2ggy implies that geometrical symmetry also holds
for its boundary I, i.e. the symmetry mapping @ fulfills

¥ =Qrel,Vrxel. (47)

For smooth boundary I" the condition (47) implies the following connection
of unit normal vectors to I" at x and =’ = Qx

Qngy =nQy =Ny, Yx €. (48)

For a symmetric problem only a part, the so called symmetry cell needs to
be discretised and considered. The symmetry cell is the smallest subdomain
which generates the entire domain under the action of the symmetry group.
Let I}, be the discretisation of the symmetry cell of the boundary I'. An
entire boundary mesh can then be obtained by m — 1 consecutive applications
of @ on I}, as shown in Fig. 8.

QI

Fig. 8. Discretisation symmetry.

In the following we consider the most simple case when the system matrix
A can be renumbered and partitioned into m x m blocks structure having
blocks of size exactly n = N/m. This is the case for a piecewise constant
discretisation scheme, where N is the number of unknowns, m is the size of
the symmetry group and n is the number of unknowns in each symmetry cell.
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All considerations can be extended to a more general discretisation scheme
(17)—(18) with N¢ # Nib .

The system of boundary elements, collocation points and the ansatz func-
tions features discretisation symmetry if there exists a permutation o such
that the index set {1,..., N} of all degrees of freedom can be written as

{1,...,n,0(1),...,0(n),...,a™ *(1),...,0™ 1 (n)} (49)
with 0™(i) =i, Vi = 1,...,n, and, additionally, for collocation points and
ansatz functions holds

Q(supp ¢;) = supp ¢,(jy, j=1,...,N, (50)
¢j(r) = ¢o(;)(Qx), Yz €suppg;, j=1,...,N, (51)
QYi = Yoi), 1 =1,...,N. (52)

The permutation o offers the possibility for renumbering unknowns corre-
sponding to the symmetry of the problem. For the general case Ny # Ny
two different permutations o4 and o, of the index sets {1,...,N4} and
{1,..., Ny}, respectively, have to be introduced.

The problem features the symmetry of the kernel if the following condition
does hold for the kernel K

K(Q*z,Q'y) = K(z,Q"*y), Va,y e I', Vk,l € L. (53)

Especially, for k = [ we obtain K(Q*z, Q*y) = K(x,y), Vk € Z. Note that
the BEM matrices in (20)-(21) are both generated by symmetrical kernels.

Lemma 1. The symmetrical BEM discretisation (50)—(52) of the geometri-
cally symmetrical problem (48) having kernel symmetry (53) leads, after num-
bering of unknowns corresponding to (49), to the following property of the
matriz entries:

Ai5 = Qg (i)o(j) » Vlvj . (54)
Proof. Definition of the matrix entries leads after substitution (47) to

Qi3 = / K(xayz) d)J(z) dSa:

supp ¢;

- / K(Qr,Qu)dw(;)(Qx) S, (55)

supp ¢;

~ / K(@, Qyi)bois) (@) dSa
Q(supp ¢;)

= / K(ZL‘, ya(i))(vba(j) (:L'/) dSI/ = aa(i)o’(j) )

Supp ¢, (5)

where the properties (48)—(52) have been used. O



266 S. Kurz, O. Rain, and S. Rjasanow
Since 0™~ *(c*(i)) = i for all i the property (54) implies

ao.k(i)j = aio.m—k(j) 5 vl,j .

Thus the system of linear equations of the symmetrical BEM takes the fol-
lowing block-circulant form

A1 AQ . Am (251 bl
Am Al . Am,1 (V%) bQ
......... . =11 (56)
A2 Ag . A1 Um, bm

Thus only the basis matrices Ay, Ao, ..., A, should be generated and stored.
The amount of numerical work and of memory will therefore be reduced from
N? to N?/m. This factor can be very useful for practical computations. The
numerical solution of the system of linear equations having a block-circulant
matrix can also be implemented much more efficiently than a straightforward
direct elimination method which would lead to O(N?) arithmetical operations
[18]. The main property of the circulant matrices

a1 az asz ... Qm—-1 Qm
am Qap a2 ag Am—1
A= Ampy—1 v v v oo c (Cme
...... a9
a9 asz ... Qm—1 Qm aq

is that all of them are simultaneously diagonalised by the matrix of the discrete
Fourier transform Fj,, :

A=YE, AR (57)
m

Frg = wE=DU=1) = 3T (k=1)(=1)

The most simple nontrivial circulant matrix

0O 1 0 ...0

0O 0 1 ...0
J=

0 0 O .1

1 0 0 .0

has the following eigenvalues

A:diag(wlfl, lzl,...,m).

m
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Using the Kronecker product ® of matrices we rewrite the block-circulant
matrix A of the system (56) in the form (cf. (57))

m

m
1
A= Z ) - . Z (Fp AV ER) @ Ak,
k=1 k=1

where the dimension of the matrices Ay is now n = N/m. Since

F,.E}

m

=FFy =1,
and using the known property of the Kronecker product
(A® B)(C ® D) = (AC) ® (BD)

we obtain

(F;@ ®In) (Jkil ®Ak) (Fm ®In)

NE

(F;:L@In)A(Fm@In) =

k=1
m 1 m

=Y (Fn T T ) @ (nAxly) = Y AV @ Ay
k=1 k=1

The system (56) can now be rewritten in the block-diagonal form

D1 0 ... 0 i by
0 Dy... 0O s b
= : (58)
0 0 ... Dy . b
where
1 m
D = (I-1)(k—-1) nxn
! mem Ay eC (59)
k=1
and

U= (F:®IL)u, b= (F, ®I,)b.
Thus the following algorithm has been derived (similar to proposed in [1])

1. Compute all basis matrices A, k=1,...,m
2. Compute

using n Fast Fourier Transforms (FFT).
3 Forl=1,....m
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3.1 Generate the matrix
D= iéuﬂ“4ﬂk—UAk
mia "

3.2 Solve the system
Dy, = by
4. Compute
u=(FnI,)u

using n FFT’s.

The straightforward implementation of this algorithm leads to O(mn?)
operations and memory units in Step 1., O(nmlog(m)) operations in Step
2., O(mn?) operations and memory units in Step 3.1, O(mn?) operations
for solving all systems in Step 3.2 and finally O(nmlog(m)) operations in
the last Step 4.. Thus Step 3.2 is the most expensive and defines the final
amount of numerical work for the whole algorithm O(mn?) = O(N3/m?).
This amount remains of the same capital order of O(N?), but it is reduced

by a remarkable factor m?2.

4.2 Symmetry of Excitation

As described in Section 2.1 in the BE domain the equation

A¢=—1p
€0
is to be solved, where ¢ is the electric scalar potential and p is the electric
charge density. Discretisation by nodal ansatz functions and point collocation
leads in case of symmetry to the equation system of the form (56). Electro-
magnetic devices often possess the symmetry of excitation, which means for
the electrostatic case, that the symmetry mappings @ fulfill

p(QF2) = apyip(z), Yo eI, k=0,...,m—1, (60)

for some aj € R. In case of an excitation symmetry we don’t perform the
Fourier transform as described in the previous section but simplify the equa-
tion system (56) in a different way. As a consequence from (60) we obtain a
linear dependency of the components of the r.h.s in (56)

b, = apby, k=1,...,m. (61)

Additionally, we require the following condition to be fulfilled
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o (&%) Om—1 (7%

= = ... = = . 62
Qa9 a3 [0 7% aq ( )

Thus the equation system can be reduced to one subsystem
(a1 A1+ aAs + -+ amAp)ur = by (63)

of dimension N/m, where N is the total number of unknowns. The remaining
solution components can be computed by

up = agui, k=1,...,m.

Thus the exploitation of the excitation symmetry leads to reduction of com-
putational costs from N? to N?/m?.

5 Numerical Experiments

5.1 Asymptotic Behaviour

We start the numerical studies considering the most simple smooth surface
I' = 00 for 2 C R?, namely the surface of the unit sphere,

r={cer: [zl =1}. (64)

As an appropriate discretisation of I" we consider the icosahedron that is uni-
formly triangulated before being projected onto the circumscribed unit sphere.
On this way we obtain a sequence {I'x} of almost uniform meshes on the unit
sphere which are shown in Fig. 9 for different numbers of boundary elements
N. This sequence allows to study the convergence of boundary element meth-
ods for different examples. In Fig. 10 the clusters of the levels 1 and 2 obtained

Fig. 9. Discretisation of the unit sphere with N = 320 and N = 1280.
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Fig. 11. An admissible cluster pair for N = 1280.

with Alg. 1 for N = 1280 are presented. In Fig. 11 a typical admissible cluster
pair is shown. We solve the interior Dirichlet boundary value problems for the
Laplace equation using a Galerkin boundary element method. The piecewise
linear basis functions will be used for approximation of the Dirichlet datum
and piecewise constant basis functions for approximation of the Neumann da-
tum. We will use the Ly projection for the approximation of the given part of
the Cauchy data. The boundary element matrices G and H are generated in
approximative form using the partially pivoted ACA algorithm with a vari-
able relative accuracy €1 depending on the expected discretisation error. The
resulting systems of linear equations are solved using some variants of the
Conjugate Gradient Method (CGM) with or without preconditioning up to a
relative accuracy €5 = 1078, The analytical solution is a harmonic function

d(x) = (1 + x1) exp(27 x2) cos(2m x3) . (65)

The results of the computations are shown in Tables 1 and 2. The number
of boundary elements is listed in the first column of these tables. The second
column contains the number of nodes while in the third column of Table 1
the prescribed accuracy for the ACA algorithm for approximation of both
matrices H € RV*M and G € RV*YN is given. The fourth column of this
table shows the memory requirements in MByte for the approximate double
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Table 1. ACA approximation of the matrices H and G, Dirichlet problem.

N M €1 MByte(H) % MByte(G) %

80 42 1.0-1072 0.03 97.8 0.02 48.7
320 162 1.0-1073 0.26 65.6 0.21 27.2
1280 642 1.0-107% 2.45 39.1 1.94 15.5
5120 2562 1.0-107° 20.05 20.0 15.72 7.9
20480 10242 1.0-1076 149.19 9.3 115.83 3.6
81920 40962 1.0-107" 1085.0 4.2 837.50 1.6

layer potential matrix H. The quality of this approximation in percentage of
the original matrix is listed in the next column. The corresponding values for
the single layer potential matrix G can be seen in the columns six and seven.
The partitioning of the matrix for N = 5120 as well as the quality of the
approximation of single blocks is shown in Fig. 12. The left diagram in Fig.
12 shows the symmetric single layer potential matrix G while the rectangular
double layer potential matrix H is depicted in the right diagram. The legend
indicates the percentage of memory needed for the ACA approximation of the
blocks compared to the full memory. Further numerical results are shown in
Table 2. The third column shows the number of Conjugate Gradient iterations
needed to reach the prescribed accuracy 2. The relative Lg-error for the
Neumann datum

Errory = Iy = ¢||L2(F) , (66)

||¢||L2(F)

where 1; denotes the numerical solution, is given in the fourth column. The
next column represents the rate of convergence for the Neumann datum, i.e.

oM. |
i

‘LF-
]
e

T
&

AP || o
m= &= |
4’:&# jH!”h- : E_ A 1? .
‘LFE %L" F }H | |

Fig. 12. Partitioning of the BEM matrices for N = 5120 and M = 2562.
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Table 2. Accuracy of the Galerkin method, Dirichlet problem.

N M ITter Errory CF, Errors CFy

80 42 22 9.34-107! — 7.29-107° -
320 162 32 5.06-107! 1.85 3.20-107! 22.16
1280 642 45 2.23-107! 2.27 3.53-1072 9.32
5120 2562 56 1.04-1071 2.14 3.54-1073 9.97
20480 10242 72 5.11-1072 2.03 4.11-107% 8.61
81920 40962 94 2.53.1072 2.02 4.30-107° 9.56

the quotient between the errors in two consecutive lines of column four. Fi-
nally, the last two columns show the absolute error in a prescribed inner point
x* € (2,

Errory = |p(z*) — (z*)|, =* = (0.250685,0.417808,0.584932) T (67)

for the value qg(x*) obtained using an approximate representation formula. Ta-
ble 2 obviously shows a linear convergence O(N ~'/2) = O(h) of the Galerkin
boundary element method for the Neumann datum in the Ly norm. It should
be noted that this theoretically guaranteed convergence order can already be
observed when approximating the matrices H and G with much less accuracy
as it was used to obtain the results in Table 1. However, this high accuracy is
necessary in order to be able to observe the third order (or even better) point-
wise convergence rate within the domain {2 presented in the last two columns
of Table 2. Especially for N = 81920 a very high accuracy of e; = 1.0- 107
of the ACA approximation is necessary.

5.2 Examples with Symmetries

For numerical tests we consider TEAM workshop problem 10 [14] (TEAM=
Testing Electromagnetic Analysis Methods). An exciting coil is set between
two steel channels, and a steel plate is inserted between the channels. The
geometry is symmetrical with respect to all three coordinate planes. In order to
examine the behaviour of the ACA algorithm and the full BEM method when
exploiting symmetries, we consider along with the full model three further
meshes exploiting one, two and all three symmetries respectively (Fig. 13).
Additionally, for each mesh of this mesh sequence we gradually perform two
refinements to show the linear behaviour of the ACA algorithm with respect
to the problem size. Thus we obtain three mesh sequences with altogether
12 meshes. Hexahedral second order FEM elements (20 nodes) are used in
connection with rectangular second order BEM elements (8 nodes) for both
Dirichlet and Neumann data.

In the case when there are some fixed collocation points (e.g. points on
a symmetry face in case of a mirror symmetry), the size of each subblock in
(56) is close to, but not exactly equal to, n = N/m and the matrix blocks
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no symmetry: m =1 1 symmetry: m = 2

Fig. 13. TEAM problem 10. An exciting coil is set between two steel channels, and
a steel plate is inserted between the channels. This geometry is symmetrical with
respect to all coordinate planes.

of the single layer potential become singular. However, the global system has
a unique solution [1]. There are several methods to handle the subsystems
via regularisation or via projections proposed in [1]. Since in our solver no
inversion of approximated matrices takes place, also singular matrices can
be handled and the unique global solution can still be reconstructed without
further difficulties.

TEAM problem 10 is treated as a magnetostatic problem (for details see
[11, 16]). For the numerical solution the potential approach is used, so that in
the BE domain the equation
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AA = —pogg

has to be solved, where A is the Coulomb gauged magnetic vector potential
and 7 g is the impressed source current density. This equation decouples into
three scalar Laplace equations, so that a componentwise discretisation with
nodal elements leads to the equation system (56) for each Cartesian compo-
nent of the vector potential. Additionally, the problem features the excitation
symmetry described in Section 4.2, i.e. each Cartesian component of the exci-
tation given by the impressed source current density j ¢ satisfies the symmetry
conditions (60)-(62). Thus, depending on whether the coefficient sets {«y} are
different for some Cartesian components, we obtain up to three different sys-

tem matrices for reduced systems of equations (63). Let us denote them by
D;, Dyand D, .

1000} 1 2000}

A
A Full BEM..~
g ] 1500(
S 500 e
z 0007 o
5 Full BEM 2 1000}
3 400f ’ =
2001 o | 5001 =
ACA
r n | . . . o X . . . . .
1500 2000 2500 3000 3500 4000 1500 2000 2500 3000 3500 4000
n n

Fig. 14. Memory requirements (left) and CPU times (right) versus problem size for
fixed m = 4 and variable mesh.

In all computations we set the ACA accuracy € = 10~%. The problem is
solved using both the ACA algorithm and the full BEM method. Figure 14
shows for both algorithms the memory requirement of BEM matrices as well
as the CPU time needed for the solution. All values refer to a 450-MHz Sun
Ultra workstation. We compared the average magnetic induction in the centre

of the inner steel plate (B, = 1.663 T') with measurements (B, = 1.654 T')
[16] and found good agreement. The difference of the computed flux densities
with and without ACA is neglectable (AB, ~ 3-107% T).

One can observe for any kind of symmetry that the increasing problem
size due to the mesh refinements results in a linear behaviour of the memory
consumption and the CPU time for the ACA algorithm. Fig. 14 shows the
comparison between the ACA and the full BEM for one kind of symmetry.
Although the ACA algorithm is slower for coarse meshes, its linear complexity
makes it superior for large n.

Now we examine the effect of the symmetry exploitation. It is clear that
the profit using full BEM should be of order O(n?) whereas the memory
requirement and CPU time reduction using ACA is expected to be linear.
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Fig. 15 shows the behaviour of the memory usage and CPU time for the
medium mesh sequence.

—— ‘ ‘ ‘ ‘ ‘ 4000
1000[xM="1 ] I
m=1
_ 800} | 3000
a “.._Full BEM .
< 600 Tym=2 { s
E E 2000} " Full BEM
400} =
2 ACA~n=2
M4 1000}
200} ACA S m=
m=8 E S— m=8
ol ‘ ‘ ‘ ‘ ‘ ‘ o ‘ ‘ ‘ ‘ ‘ i
8000 7000 6000 5000 4000 3000 2000 8000 7000 6000 5000 4000 3000 2000
n n

Fig. 15. Memory requirements (left) and CPU times (right) with respect to the
symmetry for variable m and fixed mesh (medium discretisation).

As mentioned above in the case of ACA the individual approximation and
storage of all m basis matrices will be performed. The relative size of the
basis matrices resulting from the single layer potential is shown in Table 3.
The assembly of the system matrices in (63) by means of linear combination
is carried out in the matrix-vector multiplication.

Table 3. Relative size of BEM matrices coming from the single layer potential for
the medium mesh sequence. The percentage gives the relative size after compression
obtained by the ACA algorithm for each individual submatrix compared to a fully
populated block. Submatrices which involve transformed nodes show a very good
compression.

Block
matrix
Ay
Az
As
Ay
As
As
A7
As
Total memory

m=1

n = 8142

12.5%

63.2 MB

m =2
n = 4399
15.4%
10.1%

37.6 MB

m =4

n = 2234

20.5%
12.9%
8.7%
6.3%

18.4 MB

m =8
n = 1131
32.8 %
18.4 %
12.3 %

8.2 %
6.1 %
51 %
51 %
31 %
8.9 MB

The full BEM method performs the assembly of system matrices D, D,,
D, during the matrix computation. The number of different matrices de-
pends on the kind of geometrical and excitational symmetry. For the TEAM
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10 example it holds that D, = D, = D, in the case without symmetry,
D, # D, = D, in the case of one symmetry, and three different matrices
arise in case of two or three symmetries. For this reason the curve corre-
sponding to the total memory requirements of the full BEM method in Fig.
15 does not actually decrease like O(n?) but the memory requirements for
each single matrix do.

The numerical example considered here exhibits the property of excitation
symmetry. Note that in the general case of non-symmetric excitation the mem-
ory requirements would decrease linearly w.r.t. the size m of the symmetry
group, as can be seen from the equation (58), and therefore like O(n).

5.3 Industrial Application

In this Section a claw-pole alternator, nowadays a mass-produced article used
for the generation of electrical power in vehicles, is considered as an example.
The complex magnetic flux guidance requires a three-dimensional modelling
of this electrical machine. For an alternator with p = 6 pole pairs Fig. 16, left
shows a 60°-sector of the solid rotor that coincides with one pole pair. For
the same sector Fig. 16, right depicts the supplementary stator part with the
inlying stator coils. The entire geometry of the alternator and the magnetic
fields are obtained by consecutive rotation of the discretised part by an angle
& = 27 /p around the machine axis. This periodic symmetry concerning the
transformation (47) is obvious.

It is well known that modelling of one pole-pitch (¢ = 7/p), that is a
30°-sector in our case, is sufficient for the computation of the magnetic field

ZoA5L
o
e e 48 s,
ey
255507 %
e e e
CAIZRL
%%,
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0208
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Fig. 16. Discretised rotor part (left) and stator with inlying coils (right) of a claw-
pole alternator.
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Fig. 17. No-load characteristics at 1000 1/min. The agreement of computed values
(solid line) and measurements (dots) is very good.

[10]. For the solution of the eddy current problem hexahedral second order
nodal FEM elements have been used, coupled to rectangular second order
BEM elements. Fig. 17 shows the induced voltage in the stator coils versus
the exciting current at a rotational speed of 1000 rounds per minute.

Table 4. Relative size of matrix blocks of the single layer potential. Submatrices
that describe remote interactions show excellent compression.

Block m =3 (120°) m==6 (60°) m =12 (30°)
matrix n = 27751 n = 13999 n = 7123
Ay 13.8% 16.6% 18.0%
Ao 2.8% 5.8% 8.9%
As 2.9% 1.8% 4.3%
Ay - 1.1% 2.7%
As - 1.9% 1.7%
Ag - 5.9% 1.3%
Az - - 1.2%
Asg - - 1.3%
Ag - - 1.8%
Ao - - 2.7%
Aqq - - 4.3%
A1z - - 8.9%
Total memory 1145.7 MB 494.8 MB 221.1 MB

In order to examine the effect of symmetry exploitation a sequence of
three meshes with different symmetry angles has been analysed. The number
of boundary nodes n approximately bisects from a 120°- to a 60°- and to a 30°-
mesh, respectively, while m reduplicates. For an implementation according to
Section 4, Table 4 shows that it is reasonable to approximate and store the
submatrices Ay individually. Although interactions between more sectors have
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to be represented while increasing symmetry exploitation emerging farpoint-
interaction gives rise to good approximation of the respective submatrices
leading to high-grade compression rates. This is especially important when
solving time-dependent problems with motion.

6 Conclusions

The memory consumption of the standard BEM turns out to be the limiting
factor in many practical applications. The above results show that the ACA
technique is a feasible means to overcome these limitations. ACA can be ap-
plied to several BEM formulations [12, 15, 17] discretised by nodal or edge
elements where matrices are generated by asymptotically smooth kernels. The
combination of the ACA algorithm and the exploitation of symmetry yields an
asymptotically optimal and practically feasible procedure for efficient solution
of electromagnetic problems.
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