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Dedicated to Wolfgang L. Wendland




Preface

This volume on recent mathematical aspects and the state of the art applica-
tions of boundary element methods is dedicated to Wolfgang L. Wendland on
the occasion of his 70th birthday in September 2006. Lectures related to the
topics included in this book were given within a minisymposium held during
the last Symposium of the International Association of Boundary Element
Methods (IABEM) held in Graz, July 10-12, 2006.

Since the mid eighties there has been a remarkable development in both
the mathematical analysis and engineering applications of boundary element
methods. It turned out that most innovations grew up within strong cooper-
ations between mathematicians and engineers. Both of us participated in the
Priority Research Program of the German Research Foundation (DFG) on
Boundary Element Methods (1989-1995), which was directed by W. L. Wend-
land. Within this program, a lot of new mathematical results were ob-
tained and a lot of simulations of engineering applications has been real-
ized. All results were finally published in the volume Boundary element topics
(W. L. Wendland ed.), Springer, Berlin, 1997.

Whereas in these times the development of the method itself and the math-
ematical basis has been promoted, in the last decade there was another strong
improvement in the analysis of boundary integral equation methods and in
the numerical analysis and implementation of boundary element methods due
to the overwhelming success of fast boundary element methods. Although the
fast multipole method was already used for some time, their marriage with
a profound numerical analysis of Galerkin boundary element methods was
not considered before. Moreover, algebraic approximation methods such as
the Adaptive Cross Approximation algorithm or the concept of Hierarchical
Matrices contribute to the ongoing success of modern fast boundary element
methods. It is worth to mention that almost all of those achievements are still
obtained within strong cooperations between mathematicians and engineers,
and with direct applications in industry.

Hence the spirit of the former DFG research program is still active and will
hopefully initiate further collaborations leading to more impressive results. In
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particular, the aim is to solve more challenging real world applications. This
strong cooperation between applied mathematics and engineering sciences was
always one of the driving forces in the scientific work of Wolfgang Wendland.
This spirit can also be observed in all presentations in this volume. We are
happy to dedicate this book to him and to thank him for his long and ongoing
support and encouragement of the boundary element community.

This volume contains eleven contributions showing the wide range of
boundary integral equation and boundary element methods. Beside more an-
alytical aspects in the formulation and analysis of boundary integral equa-
tions also the state of art of boundary element algorithms are described and
analyzed from a mathematical point of view. In addition, engineering and
industrial applications of those methods are presented showing the ability of
modern boundary element methods to solve challenging problems.

We would like to thank all authors for their contributions to this volume.
Moreover, we also thank all anonymous referees for their work, their criticism,
and their proposals. These hints were very helpful to improve the contribu-
tions. Finally, we would like to thank Dr. T. Ditzinger of Springer Heidelberg
for the continuing support and patience while preparing this volume.

Graz, Martin Schanz
August 2006 Olaf Steinbach
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Some Historical Remarks on the Positivity
of Boundary Integral Operators

Martin Costabel

IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France
costabel@univ-rennesl.fr

Summary. Variational arguments go back a long time in the history of boundary
integral equations. Energy methods have shown up very early, then virtually dis-
appeared from the common knowledge and eventually resurfaced in the context of
boundary element methods. We focus on some not so well known parts of classical
works by well known classical authors and describe the relation of their ideas to
modern variational principles in boundary element methods.

1 Introduction

The method of boundary integral equations has always had two important
applications in the theory of boundary value problems for partial differential
equations: As a theoretical tool for proving the existence of solutions and as
a practical tool for the construction of solutions. This is one of the aspects
that has remained constant since the times of Green and Gauss in the early
19th century until our times. Other ideas, in particular techniques of the
analysis of integral equations, have of course greatly changed and evolved in
the meantime, but it is curious to see how some of the very early questions
and techniques are related to recent simple basic results about the structure
of boundary integral equations.

This article has evolved from some observations made in the talk [6] about
the scientific work of Wolfgang Wendland, connecting works by Carl Friedrich
Gauss [11] and Carl Neumann [27] to the work by Wendland and his group on
variational methods for boundary integral equations. In particular the curious
case of “Gauss’ missing theorem” on the positivity of the single layer potential
operator — a proof of which could have been given by Gauss himself, but was
in fact only given 135 years later by Nedelec and Planchard [26] — seemed to
be sufficiently intriguing to merit a more detailed presentation. A secondary
path concerning second kind boundary integral equations, leading from Neu-
mann’s observation of the contraction property of the double layer potential
to the recent paper [31] by Steinbach and Wendland where energy methods
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were used to prove the contraction property in very general cases, seemed to
be less straightforward on the level of analytical tools and mathematical ideas.
Following the early twists of this path, however, one comes across the monu-
mental paper [29] by Henri Poincaré which uses, indeed, energy methods for
proving the contraction property of Neumann’s operator. The historical trail
of Poincaré’s paper which, after having been instantly famous initially, seems
to have disappeared from the common knowledge of the boundary element
community, is a second curiosity on which we will try to shed some light here.
By taking this look, we will even find some “new” mathematical results.

This paper does not present a serious research into the history of math-
ematics, which would require much more space, time and knowledge than
available to the author. It rather stays within the narrow viewing angle of the
history of the analytical foundations of boundary element methods, but it tries
to illustrate how a fresh look, however biased, can reveal new details of old
monuments. We will consider a domain spanned by the four papers by Gauss
[11], Poincaré [29], Nedelec and Planchard [26], and Steinbach and Wendland
[31]. If one prefers a hexagonal constellation, one can add Neumann’s book
[27] and the paper [7] in which the generality of energy methods was empha-
sized. For a justification of this combination of papers, suffice it to say that in
the sky, for giving the perception of a well-balanced constellation, the more
distant objects have to be much bigger stars than the objects closer to the
observer. .. Within this constellation, there exists a myriad of other points of
light, only some of which will make a short appearance in the following. Other
very bright stars in the vicinity of our constellation, from Lebesgue and Fred-
holm over Hilbert to Calderén—Zygmund and Mazya, will not be considered
here.

The papers we are trying to connect belong, in fact, to three quite different
galaxies: There is ours, extending over roughly the last 40 years, characterized
by the availability of many simple but very powerful tools like the basic theory
of Hilbert and Banach spaces, distributions, Fourier transforms and Sobolev
spaces. At the distant end there is the early 19th century with Gauss, where
the first general tools in potential theory and partial differential equations
were being forged. In between there is the end of the 19th century, roughly
from 1870 to 1910 with a condensation around 1895-1900, in the center of
which we see Poincaré, where in close relation with the emergence of modern
physics the first steps were done in directions that led to the subsequent
explosion of functional analysis beginning quite soon afterwards.

What is common to all three periods is the strong primary motivation of
the mathematical research by applications, which then led to the discovery of
beautiful structures that were investigated for their own sake, the result being
the creation not only of fine new mathematics, but also of more powerful tools
for the applications. Let us quote from Gauss’ introduction to [10] where he
talks about some of the ambivalence in the relation between mathematics and
its applications:
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Der rastlose Eifer, womit man in neuerer Zeit in allen Theilen der
Erdoberfliche die Richtung und Stirke der magnetischen Kraft der
Erde zu erforschen strebt, ist eine um so erfreulichere Erscheinung,
je sichtbarer dabei das rein wissenschaftliche Interesse hervortritt.
Denn in der That, wie wichtig auch fiir die Schifffahrt die méglichst
vollstdndige Kenntniss der Abweichungslinie ist, so erstreckt sich doch
ihr Bediirfniss eben nicht weiter, und was dariiber hinausliegt, bleibt
fiir jene beinahe gleichgiiltig. Aber die Wissenschaft, wenn gleich
auch dem materiellen Interesse forderlich, lasst sich nicht auf dieses
beschrianken, sondern fordert fiir Alle Elemente ihrer Forschung glei-
che Anstrengung.'

An earlier quote is the following quite modern-sounding grumble from 1825
[13]:

Ihr giitiger Brief hat mir um so mehr Vergniigen gemacht, je sel-
tener jetzt in Deutschland warmes Interesse an Mathematik ist. So
erfreulich die gegenwirtige hohe Bliithe der Astronomischen Wis-
senschaften ist, so scheint doch die praktische Tendenz fast zu aus-
schliesslich vorherrschend, und die meisten sehen die abstracte Ma-
thematik hochstens als Magd der Astronomie an, die nur deswegen zu
toleriren ist.?

On a more technical level, all three periods have in common that variational
methods play an important role. In Gauss’ time, variational principles were
commonly used for existence proofs, such as in Gauss’ existence proof for
the Dirichlet problem. In Poincaré’s time, on the practical side their field
of applications had been enlarged to cover the construction of eigenfunction
systems via min-max principles, and on the theoretical side the problems
caused by the perceived inadequacies of too naive applications of variational
principles (cf. Weierstrass’ well-known criticism of Dirichlet’s principle) were
beginning to find solutions. Hilbert [14] is often credited with having given
the first rigorous formulation and application of Dirichlet’s principle. Here

!The restless eagerness with which in recent times one strives to investigate in
all parts of the surface of the earth the direction and strength of the magnetic force
of the earth, is a development which is all the more pleasing the clearer the purely
scientific interest is standing out. For, in fact, how important the most complete
knowledge of the deviation line may be for navigation, the need of the latter just does
not extend further, and it remains almost indifferent to anything that lies beyond.
But Science, albeit also beneficial to the material interest, cannot be restricted to
this, but requires for All elements of its research the same effort.

2Your kind letter has given me all the more pleasure the rarer there is now
warm interest in mathematics in Germany. As pleasant as the current high bloom
of the astronomical sciences may be, the practical tendency seems to be almost too
exclusively predominant, and most people consider abstract mathematics at most
as a servant of astronomy which is only therefore to be tolerated.
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is, however, a quote from a recent paper [1] by one of the specialists in the
calculus of variations:

In 1900, D. Hilbert, in a celebrated address, followed by a (slightly)
more detailed paper in 1904 [14, 15, 16], announced that he had solved
the Dirichlet problem [...] via the Dirichlet principle which had been
discovered by G. Green in 1833, with later contributions by C. F.
Gauss (1837), W. Thomson (=Lord Kelvin) (1847) and G. Riemann
(1853). [.. -]

The announcement of Hilbert turned out to be a little premature.
Instead, it became a program which stimulated many people during
the period 1900-1940: B. Levi, H. Lebesgue, L. Tonelli, R. Courant,
S. L. Sobolev and many others. In 1940, H. Weyl [40] completed
Hilbert’s program. By 1940 the Calculus of Variations had been placed
on firm grounds |[...]

Thus a closer look at history tends to blur the boundaries of what constitutes
a formal and complete proof. In any case, nowadays we have clearcut basic
tools like Hilbert spaces, the Riesz representation theorem, the Lax-Milgram
lemma, and Sobolev spaces, which allow us to teach Dirichlet’s principle in a
first course on finite element methods.

A final bridge between the present and the past should be mentioned that
allows us to approach those distant galaxies far more easily than had been
possible for a long time: The Internet. Almost all references in this article are
readily and freely available online, thanks to enterprises like actamathematica,
Gallica, GDZ, JSTOR, NUMDAM, SpringerLink.

In the following we will first make some remarks about Gauss and the first
kind integral equation of the single layer potential. Then we describe some of
Poincaré’s ideas about the double layer potential. In the final part we list a
few known and unknown results related to these old ideas.

2 Gauss and the Single Layer Potential

In 1838-40, Carl Friedrich Gauss published three famous works which stand at
the beginning of our curious history of boundary integral equation methods:
In two of them, [10] and [12], he introduced boundary integral equations (of
the first kind!) as a tool in numerical computations and published extensive
tables and graphs of numerical results obtained in part by employing this
tool. It is truly amazing to see how much could be achieved with numerical
calculations by hand when powerful analytical tools were used. In [10, §32]
Gauss gives a simple description of the principle of boundary reduction, an
idea from which another track leads to later successful methods for proving
existence for the Dirichlet problem, namely Schwarz’ alternating method and
Poincaré’s sweeping or “balayage” method.
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[32.] Die Art der wirklichen Vertheilung der magnetischen Fliissigkei-
ten in der Erde bleibt nothwendigerweise unbestimmt. In der That
kann nach einem allgemeinen Theorem, welches bereits in der Inten-
sitas Art. 2 erwahnt ist, und bei einer andern Gelegenheit ausfiihrlich
behandelt werden soll, anstatt jeder beliebigen Vertheilung der mag-
netischen Fliissigkeiten innerhalb eines korperlichen Raumes allemal
substituirt werden eine Vertheilung auf der Oberflache dieses Raumes,
so dass die Wirkung in jedem Punkte des dusseren Raumes genau
dieselbe bleibt, woraus man leicht schliesst, dass einerles Wirkung im
ganzen dussern Raume aus unendlich vielen verschiedenen Vertheilun-
gen der magnetischen Fliissigkeiten im Innern abzuleiten ist.?

After this, he gives, for the case of a ball, an expansion in spherical harmon-
ics of the unknown density on the surface. The “other occasion” where the
mentioned Theorem was going to “be treated extensively”, is the third paper
[11, §36].

In this paper, Gauss not only lays down the foundations of potential theory,
including the mean value property of harmonic functions (§20), the maximum
principle and the principle of unique continuation (§21), but he also studies in
detail the properties of single layer potentials. He presents the jump relations
(§15) and the basic integration by parts formula (§21; now known as Green’s
first formula, because Green formulated this some years before Gauss, his
works not yet being widely known at the time of Gauss’ paper). We will quote
these two results below in Gauss’ own notation, as our pieces of evidence in
the curious case of “Gauss’ missing theorem.” Let us first see, however, how
Gauss considers the positivity of the single layer potential integral operator.
In his own words:

[30.] Es ist von selbst klar, dass, wie auch immer eine Masse M iiber
eine Flache gleichartig vertheilt sein moge, das daraus entspringende
iiberall positive Potential V' in jedem Punkte der Flache grosser sein
wird, als I‘f , wenn 1 die grosste Entfernung zweier Punkte der Flache
voneinander bedeutet: diesen Werth selbst kénnte das Potential nur
in einem Endpunkt der Linie r haben, wenn die ganze Masse in dem
andern Endpunkte concentrirt wére, ein Fall, der hier gar nicht in
Frage kommt, indem nur von stetiger Vertheilung die Rede sein soll,
wo jedem Element der Flache ds nur eine unendlich kleine Masse m ds

3The specifics of the real distribution of the magnetic fluids in the earth remain
necessarily undetermined. Indeed, according to a general theorem which has already
been mentioned in the Intensitas Art. 2 and shall be treated extensively at another
occasion, one can always substitute instead of any arbitrary distribution of the
magnetic fluids inside a bodily space, a distribution on the surface of this space, so
that the effect in every point of the exterior space remains exactly the same, from
which one easily concludes that an identical effect in the entire exterior space is to
be derived from infinitely many different distributions of the magnetic fluids in the
interior.
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entspricht. Das Integral [ Vmds iiber die ganze Fliche ausgedehnt,
ist also jedenfalls grosser als [ ]‘f mds oder MTM , und so muss es noth-
wendig eine gleichartige Vertheilungsart geben, fiir welche jenes Inte-
gral einen Minimumwerth hat.*

The notion “gleichartig” (homogeneous) means not changing sign, in the case
of a positive total mass M therefore non-negative.

In the paragraphs that follow, he considers a more general problem: Given
a continuous function U on the surface, minimise the integral

Q:/(V—QU)mds.

This is then seen to be equivalent to the integral equation problem: Find a
non-negative mass density m of total mass M and a constant C such that the
single layer potential V satisfies V 4+ C' = U on the surface. He also considers
the case where C is given and M is not fixed, thus the basic first kind integral
equation with the 1/r kernel.

For this problem he gives a detailed proof of existence and uniqueness.
From this result he then deduces an existence proof for the Dirichlet problem
in potential theory.

What jumps out at us when we read this argument is, of course, that Gauss
commits the freshman error of confusing infimum and minimum and that as a
consequence he has, in reality, no existence proof. This whole piece of analysis
was, indeed, far ahead of its time, and we all know that the crucial question
of completeness was only seriously studied after Weierstrass had criticized
this naive use of variational arguments. Weierstrass’ main victim was the
Dirichlet principle, that is, the variational method involving minimization
of the Dirichlet integral over the domain. It is worth while noting, however,
that although Dirichlet’s principle was apparently formulated by Green before
Gauss’ work, the first serious mathematical existence proof for the Dirichlet
problem was the one discussed here, which used a boundary integral equation
of the first kind.

The second weak point of the above argument is one noticed by Gauss
himself: His positivity argument is of a simple geometric nature: Since r is
bounded by the diameter of the surface, the positive kernel 1/r is bounded

41t is self-evident that, however a mass M may be distributed homogeneously over
a surface, the resulting everywhere positive potential V' will be, in every point of the
surface, greater than I\T/I if r designates the greatest distance between two points of
the surface: this value itself could be attained by the potential only in an endpoint
of the line r if the entire mass was concentrated in the other endpoint, a case which
cannot appear here, because we will only consider a continuous distribution, where
every surface element ds corresponds only to an infinitely small mass m ds. The
integral [ Vmds, extended over the whole surface, is therefore in any case greater
than [ AT/[ mds or MTM , and thus there must necessarily be a homogeneous kind of
distribution for which that integral has a minimum value.
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from below by a constant depending only on the domain. The quadratic form
defined by the integral operator is therefore seen to be positive, but only for
non-negative densities m. Having to respect this constraint makes the proof
rather complicated: Only variations inside the positive cone are allowed, which
means that in general, the solution of the minimisation problem solves only
an integral inequality, turning into an equation only in those points where the
solution is strictly positive. Gauss writes (Gauss’ original emphasis as always):

[33.] Der eigentliche Hauptnerv der im 32. Artikel entwickelten Be-
weisfithrung beruht auf der Evidenz, mit welcher die Existenz eines
Minimumwerthes fiir {2 unmittelbar erkannt wird, solange man sich
auf die gleichartigen Vertheilungen einer gegebenen Masse beschréinkt.
Féande die gleiche Evidenz auch ohne diese Beschrankung Statt, so
wiirden die dortigen Schliisse ohne weiteres zu dem Resultate fithren,
dass es allemal, wenn nicht eine gleichartige, doch eine ungleichartige
Vertheilung der gegebenen Masse gibt, fir welche W =V —U in allen
Punkten der Fliche einen constanten Werth erhdlt, indem dann die
zweite Bedingung (Art. 31. II) wegféllt. Allein da jene Evidenz ver-
loren geht, sobald wir die Beschrénkung auf gleichartige Vertheilungen
fallen lassen, so sind wir gentthigt, den strengen Beweis jenes wichtig-
sten Satzes unserer ganzen Untersuchung auf einem etwas kiinstlichern
Wege zu suchen.®

Thus Gauss finds it desirable to prove the positivity of the quadratic form for
not necessarily non-negative mass distributions. This would have given not
only a much simpler proof, but even a much nicer theorem.

The truly odd observation is now that Gauss could easily have proved this
general positivity himself by simply combining the jump relations and the
integration by parts formula cited above. For completeness of this claim, here
are Gauss’ original formulations of these lemmas:

[end of 15.] Man kann diesen wichtigen Satz auch so ausdriicken:
der Grenzwerth von X, bei unendlich abnehmendem positiven x
ist X9 — 27kY, bei unendlich abnehmendem negativen x hingegen
X9+ 27k, oder X #ndert sich zweimal sprungsweise um —27k°, in-
dem z aus einem negativen Werthe in einen positiven tibergeht, das

®[33.] The actual main nerve of the line of proof developed in §32 rests on the
self-evidence with which the existence of a minimum value for (2 is perceived imme-
diately, as long as one restricts oneself to the homogeneous distributions of a given
mass. If the same self-evidence held without this restriction, the above arguments
would lead immediately to the result that there is always, if not a homogeneous,
then at least an inhomogeneous distribution of the given mass for which W =V —U
obtains in all points of the surface a constant value, in that the second condition
(§31. II) can then be omitted. However, since this self-evidence is lost as soon as we
drop the restriction to homogeneous distributions, we are forced to search for the
strict proof of this most important theorem of our whole investigation in a somewhat
artificial way.
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erstemal, indem = den Werth 0 erreicht, und das zweitemal, indem es
ihn iiberschreitet.%

Here Gauss uses coordinates where the normal at a point on the surface co-
incides with the z axis and X = ‘?1‘; where V' stands for the single layer
potential with density k: V = [ kfs with the surface element ds and the

distance r between observation point and point of integration.

/Vdvds: —/qda
dp

wenn das erste Integral iiber die ganze Flache, das zweite durch den
ganzen Raum T ausgedehnt wird.”

[24.] LEHRSATZ. Es ist

Here Gauss denotes by ¢ the gradient of the potential V', by T the interior
domain, and ‘fiv is the interior normal derivative.

We see that he could have added the formulas from Lehrsatz 24 for the
interior domain and the corresponding one for the exterior domain in order
to get with Theorem 15 (in what would have been his formulation; he didn’t

write this, of course)
1
/des: /qda>0
a7

where the second integral is extended over the whole space. This gives posi-
tivity for any m, positive or negative. It is also physically intuitive (in electro-
or magnetostatic terms that were familiar to Gauss), stating equality between
the potential energy stored in the surface and the total energy of the field.
We can only speculate why Gauss didn’t write this. It is also strange
that this result about the positivity of the quadratic form defined by the 1/r
kernel, which was, as we have seen, formulated as a useful and non-trivial open
problem in one of the most famous and widely studied papers of its time, did
apparently not become the object of serious study for a long time. The reason
cannot be that the simple argument of adding the interior and exterior Green
formulas did not occur to anyone. As an example, here is a quote from a paper
[32, p.216] by W. Steklov, written 1900 in the wake of Poincaré’s paper [29].

1 w
V—47T/rds,

6[end of 15.] One can express this important theorem also as follows: The limit of
X for infinitely decreasing positive z is X° — 27k, whereas for infinitely decreasing
negative z it is X° + 27k°, or X jumps twice by —27k® when = passes from a
negative value to a positive one, the first time when x reaches the value 0, and the
second time when it goes beyond it.

"[24.] THEOREM. There holds [formula omitted] where the first integral is ex-
tended over the whole surface, the second one over the whole space T'.

Posons
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I'intégrale étant étendue & la surface (S) tout entiere. Dans les sup-
positions faites par rapport & (.5) nous pouvons employer le théoreme
connu de Green qui nous donne®

/Z(ZZ)QdTJr/Z(?; /v Vi 8Z s:/Vst>0.

Steklov then uses this to prove that for a harmonic function the L? norm
on the boundary is bounded by the diameter of the boundary times the H'
seminorm on the domain. But he doesn’t state this positivity as an interesting
result in itself.

In 1935, Otto Frostman [8] finally formulated the positivity of this quad-
ratic form as a theorem in order to complete Gauss’ proof. But he considers
the argument using Green’s formula as easy to see, but too restrictive (p.
24: “Si le potentiel (newtonien) a des dérivées continues, cela résulte déja des
formules de Green et de Gauss; en effet on démontre facilement. ..”?). He then
gives another proof using the composition property of Riesz potentials on the
whole space which shows that the convolution with 1/ on R? is a constant
times the square of the convolution with 1/r2. This argument (which can
easily be verified by taking Fourier transforms) is generalized by Frostman to
other kernels of the form 1/r* with a > 0. For these kernels, he then presents
Gauss’ complicated proof in the framework of positive measures using the
maximum principle as a principal tool.

The, in our view, simpler and more general (because it applies to other
equations of mathematical physics besides the Laplace equation) proof using
the energy identity was not given before another 38 years, in 1973 by Nedelec
and Planchard [26].

The difference between the two completions that have to be performed
in order to complete Gauss’ minimization argument is that on one hand,
as Frostman showed, positive measures are complete in the energy norm.
Thus in the well-understood framework of positive (Radon) measures, the
infimum is indeed a minimum. One doesn’t even have to know exactly what the
finiteness of energy means for those measures (more about this point below);
one can very well minimize a coercive lower semi-continuous functional that is
not everywhere finite. On the other hand, as Nedelec and Planchard noticed,
the space obtained by completion of a whole vector space (and not only the
positive cone) in the energy norm is the Sobolev space H —1/2 which is a space
not of functions or measures, but of distributions.

Thus, whereas the efforts of Hilbert and others to complete the proof of
Dirichlet’s principle led to the introduction of the function spaces of Beppo

8Let [formula omitted], the integral being extended over the entire surface (S).
With our assumptions on (S) we can apply the known theorem of Green which gives
us [formula omitted].

If the (Newtonian) potential has continuous derivatives, this follows already
from the formulas of Green and Gauss; indeed one shows easily. . .
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Levi and Sobolev already in the beginning of the 20th century (crudely stated:
H' is a subspace of L2, therefore a space of functions, once Lebesgue’s notion
of function is adopted), the energy space needed for Gauss’ boundary integral
form of the Dirichlet principle could only be constructed after the introduction
of Schwartz’ distributions and Sobolev spaces of fractional and negative index.
There is a glimpse of this difficulty in Henri Cartan’s works in 1941 and
1945: In [2] he presents a proof of Frostman’s theorem on the completeness
of positive measures of finite energy (in fact a greatly generalized version
thereof), but of the question of completeness of all signed measures of finite
energy, he says (p.90) “C’est peu probable.”'?. In the paper [3] he gives a
counterexample (p.87) showing that it is, indeed, not complete.

On voit qu’en “complétant” ’espace £ pour cette norme, on ob-
tiendrait un espace de Hilbert. On vérifie sans peine que £ lui-méme
n’est pas complet ().**

But he does not want to quit the framework of measures (which he also calls
“distributions”) to investigate the nature of this Hilbert space.

Could it be that Gauss already had some intuition about the different
nature of the minimizing objects that would appear when the condition of
non-negativity was dropped? We can only speculate.

To finish this paragraph, here is another historic curiosity related to mea-
sures and their energy: As is well-known in the theory of the logarithmic single
layer potential integral equation in two dimensions, the positivity is true there
only under an additional condition on the boundary: Its capacity has to be
less than one. It is also a classical result that the logarithmic capacity of a
compact set in R? is identical to its transfinite diameter and also to its exterior
conformal radius (other names are Chebyshev constant or Robin constant).
This was well known to Frostman in 1935, and the identity of transfinite di-
ameter and exterior mapping radius for regular sets was already proved by
Szego in 1924 [39]. Now the standard reference (and the only available refer-
ence in book form, as far as I can tell) for a complete proof of this equivalence
result is the book [17] by Einar Hille. Hille gives a detailed proof of all the
equivalences, in particular (Theorem 16.4.4 p.284) a proof of the equality of
transfinite diameter and logarithmic capacity by constructing a minimizing
measure. He gets this measure as a limit of point measures supported by the
Fekete points. This is also Corollary 1 (p. 285):

Corollary 1. The equilibrium distribution v(s) of E is the weak limit
of the sequence of point distributions pu,,(S) associated with the zeros
of the Fekete polynomials F,(z; F).

Unfortunately, in the proof it is used that the energy of pu,, is finite (and can
even be given by a simple formula), which is not the case (Point measures are

0This is not very likely.
" One sees that by “completing” the space £ in this norm, one would obtain a
Hilbert space. One verifies with ease that £ itself is not complete.
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not in H~'/2). Thus the standard reference for this basic (and well-known
true) result has a hole that might still be open after more than 40 years!

3 Poincaré and the Double Layer Potential

After Gauss’ work on the first kind integral equation of the single layer poten-
tial, the next major progress came with Carl Neumann’s work on the double
layer potential. Of his numerous publications on the subject of his “Methode
des arithmetischen Mittels”, we cite the book [27] from 1877 which is available
online from the Gallica project of the BNF.

For convex domains, Neumann proves the convergence of the method of
iterations which leads to the solution of the second kind integral equation
by the Neumann series. The tool here is not positivity, but the contraction
property of the integral operator in the maximum norm. Positivity comes in
through the convexity of the domain which means that the measure defined
by the double layer kernel

a0,y = - "W 1)

is a positive measure of total mass 1. The idea that integration against such a
measure should somehow level functions out and make iterations converge to a
constant function seems to have been intuitive to physicists before Neumann.
In a paper from 1856, quoted in its entirety by Neumann in his book (Chapter
6), the physicist Beer used an iterative method for the second kind integral
equation of the normal derivative of the single layer potential (the adjoint
equation to Neumann’s). He formulates

Dabei leuchtet ein, dass I’ — welches innerhalb o zwischen dem
grofiten und kleinsten Werthe liegt, den die Funktion F' auf der Fliche
o selbst annimmt — im Allgemeinen gleichformiger als F verlauft.'?

In a footnote, Neumann remarks that Beer does not offer any proof, and
that the claim is not true, in general, unless the measure mentioned above is
positive, that is, unless the domain is convex.

Neumann’s proof of his result (and as a corollary also of Beer’s result) uses
highly non-trivial geometric and measure-theoretic arguments that constitute
one of the early examples of “hard” analysis in potential theory. As a con-
sequence, subsequent generalizations of his techniques were confined to hard
harmonic analysis, too, see [24] and [25] for overviews.

Neumann’s method of the arithmetic mean became famous, because it
was at the time, besides Schwarz’ alternating method and Poincaré’s bal-
ayage method, the only rigorous way of proving existence for the Dirichlet

2Here it is clear that F’ — which, inside o, lies between the largest and smallest
value that the function F' takes on the surface o itself — behaves in general more
uniformly than F.
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problem and for all the important theorems based on it like the Riemann
mapping theorem. In addition, it looked like it was simpler to apply and more
constructive than the other two methods. But the restrictive assumption of
convexity of the domain was a mathematical challenge, and in 1895 Henri
Poincaré published a paper [29] about Neumann’s method which introduced
a quite different argument for proving the contractivity that did not need
convexity of the domain. The new method was based on positivity and energy
identities.

In this paper, Poincaré presents an astonishing collection of techniques
that were new at the time and that made the paper famous, at least for
some years. Poincaré used this method only in one further work [30], a small
paper on generalizations to elasticity theory which he himself characterizes as
incomplete. But others continued and developed his ideas in various different
directions, in particular Arthur Korn [19, 21, 22, 23], Vladimir Steklov [32,
33, 36, 37, 38] and Stanislaw Zaremba [41, 42, 43]. Korn and Steklov for some
time engaged in a kind of race [34, 20, 35]. Here is a quote from [20] (our
reference numbers):

Dans une note [34] sur la méthode de Neumann et le probléme de
Dirichlet, M. W. Stekloff est arrivé & une démonstration de la méthode
de la moyenne arithmétique de M. Neumann, qui est a peu pres la
méme que celle que j’ai publiée il y a un an dans mon Cours sur
la théorie du potentiel [19]. Ma démonstration, comme celle de M.
Stekloff, a pour base le Mémoire ingénieux [29] de M. Poincaré, et nous
avons éliminé tous les deux de la méme maniere la restriction de M.
Poincaré, que l'existence d’une solution soit préalablement établie.'3

The “fonctions fondamentales” mentioned in the titles of some of these pa-
pers, also called “universelle Funktionen” by Korn, are potentials generated
by eigenfunctions of Neumann’s integral operator or also by its adjoint, some-
times also the eigenfunctions of what is known as Steklov eigenvalue problem,
or eigenfunctions of the Poincaré—Steklov operator.

These papers concentrated on eigenfunction expansions and eigenvalue es-
timates obtained by min-max principles as studied by Poincaré for the case
of the eigenvalue problem for the Laplace operator with Dirichlet boundary
conditions in his earlier important paper [28]. To prove existence of the eigen-
functions, regularity of the boundary had to be assumed, and after works
by Holder and Lyapunov, Holder continuous functions on Lyapunov surfaces
became the standard framework. During the same time, the new powerful
Fredholm method for treating integral equations became widely accepted,

3In a note [34] on Neumann’s method and the Dirichlet problem, Mr W. Stekloff
arrived at a proof of Mr Neumann’s method of the arithmetic mean which is more or
less the same as the one that I have published a year ago in my Course on Potential
Theory [19]. My proof, as the one of Mr Stekloff, is based on the ingenious paper [29]
by Mr Poincaré, and we have both eliminated in the same manner the restriction of
Mr Poincaré that the existence of a solution should be established beforehand.
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and Hilbert published his book on integral equations which had the ambi-
tion to subsume all known results about integral equations. Hilbert and his
group made big jumps forward by introducing the idea of function spaces
and norms and developing the basics of modern functional analysis with the
spectral theory of bounded and in particular compact selfadjoint operators in
Hilbert spaces.

I mention all this well-known history as an explanation for the curious fact
that the basic idea of Poincaré’s paper on Neumann’s method, namely to con-
sider the convergence of the Neumann series in the energy norm, disappeared
pretty much completely from the discussion. His estimates were only used for
estimating the eigenvalues of the boundary integral operators considered as
compact operators acting in spaces of continuous or Holder continuous func-
tions, and this remained the standard for a long time, see for example [25,
Thm 12, p. 144]. One of the main advantages of Poincaré’s method, namely
its easy applicability to other elliptic problems having a positive energy, such
as linear elasticity, remained present, but the other advantage, namely that it
basically only uses Green’s formula and is therefore valid for general Lipschitz
domains, seems to have been forgotten.

Only very recently a similar point of view has been adopted in the paper
by Steinbach and Wendland [31] where the contraction property of Neumann’s
operator in a norm related to the energy norm was proved for the first time
for rather general positive second order elliptic systems on Lipschitz domains.

Poincaré’s own estimates are being revisited and adapted to a modern
standard in the very recent paper [18] which treats the same framework as
Poincaré did, namely two- and three-dimensional potential theory on smooth
domains. The full potential of Poincaré’s main idea which easily generalizes to
other positive elliptic operators and to domains with only Lipschitz continuous
boundary, does not seem to have been exploited in a modern context yet. We
will describe some of this in the next section.

Here is the basic estimate from [29, Chapter 2] in a notation similar to
Poincaré’s own notation: For a bounded domain {2 in R? let W be a function
harmonic in the domain and in the exterior domain 2/ = R?\ §2, vanishing at
infinity. Quantities related to the exterior domain are indicated by a prime.
Let J and J’ denote the interior and exterior Dirichlet integrals of W:

J:/ VWV |2dx ; J’:/ VIV |2dz .
2 Q2

Lemma 1. There is a constant p depending only on the domain such that
(i) If W is a double layer potential, then
J < uJ and J < ud. (2)

(i) If W is a single layer potential, then

J < upJ  andif Wds =0, then J < pd. (3)
on
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Here double and single layer potentials are defined by their jump properties:
Single layer potentials are continuous across the surface 92 and have a jump in
their normal derivatives, whereas double layer potentials have a jump across
the surface, but their normal derivatives from the interior and the exterior
coincide. The difference between single and double layer potentials in the
statement is caused by different behavior of potentials with vanishing Dirichlet
integrals (constants): For double layer potentials, if W is constant in the
interior domain, it is also constant (zero) in the exterior and vice versa, so
that J and J’ both vanish if one of them vanishes. For single layer potentials,
W vanishing in the exterior implies W vanishing in the interior, so that J' = 0
implies J = 0, too, but there exists the non-trivial equilibrium density (Robin
density) which has potential 1 in the interior and non-constant potential in the
exterior, so that J’ can be bounded by .J only on a subspace of codimension
one.

In 1900, Steklov [32, p.224], after stating the above estimate for single
layer potentials, gets quite enthusiastic and writes (his emphasis):

Nous appellerons ce théoreme théoréme fondamental.

Nous verrons dans ce qui va suivre, que la solution de tous les
problémes fondamentaux de la Physique mathématique se ramene a
la démonstration compléte du théoréme fondamental.'*

Writing this in a year when Planck introduced his quantum constant and
Poincaré was already working on the theory of relativity seems, in hind-
sight, slightly exaggerated, but it underlines the importance of these estimates
for potential theory and for related models of classical mathematical physics
like elasticity, heat conduction, acoustics, electrostatics and electrodynamics,
fluid dynamics and so on. Such applications were studied by Steklov, Korn,
Zaremba and others, who also worked on removing some of the hypotheses
Poincaré had to make in order to prove Lemma 1. They proved the lemma
essentially for arbitrary connected Lyapunov (i.e. C1:?) surfaces.

Poincaré proved the lemma under the condition that the domain is dif-
feomorphic to a ball (actually for a simply connected smooth boundary; the
question of the existence of a diffeomorphism to the ball is a first simple case
of the famous Poincaré conjecture), and he used the diffeomorphism to re-
duce the estimates to the case of a ball where he could show them explicitly
by expansion in spherical harmonics.

Nowadays, the lemma is easy to prove even for Lipschitz surfaces by notic-
ing that the H! seminorm of a harmonic function on the interior or exterior
domain is equivalent to both the H'/2 seminorm of its trace and the H /2
norm of its normal derivative on the boundary. This equivalence is seen im-
mediately in one direction from the standard trace theorem (sometimes called

1YWe shall call this theorem the fundamental theorem.. .. We shall see in the fol-
lowing that the solution of all the fundamental problems of Mathematical Physics
can be reduced to a complete proof of the fundamental theorem.



Some Historical Remarks on the Positivity of Boundary Integral Operators 15

Gagliardo’s trace theorem in the case of a merely Lipschitz continuous bound-
ary) plus Poincaré’s inequality (the one estimating the L? norm modulo con-
stants by the H! seminorm) and the weak definition of the normal derivative,
and in the other direction from the variational solution of the Dirichlet and
the Neumann problems. But one should keep in mind that without the in-
troduction of the fractional Sobolev space H'/? on the surface, which at first
seems like overkill for proving a statement mentioning only Dirichlet integrals,
one has no way of stating or proving that the trace spaces from the exterior
and from the interior are the same, which is one of the crucial points in this
argument. In fact, one can consider Poincaré’s procedure of using a diffeo-
morphism to the sphere and estimating the coefficients of the expansion in
spherical harmonics as an early definition of the space H'/2, although the idea
of function spaces and norms was not expressed in that paper.

Poincaré uses the estimates in Lemma 1 to prove the contraction property
of Neumann’s operator in the energy norm, and with this the convergence
of Neumann’s series solution for the Dirichlet problem in the same norm. He
then shows trace estimates, first for the boundary L? norm modulo constants
(Chapter 4), and then (Chapter 5) for the L> norm of the double layer oper-
ator applied to the trace on the boundary. The latter estimate uses difficult
geometric constructions, is not yet optimal, and is subsequently generalized by
the above-mentioned authors and others like Lebesgue, Plemelj and Radon,
one famous later observation being that whereas Neumann’s operator is not a
contraction in the L norm when the domain is not convex, the square of the
operator is a contraction, at least when the domain is smooth. In any case,
Poincaré completes the proof of the uniform convergence in the whole space
of Neumann’s series for general smooth domains.

Neumann’s operator, as defined by Neumann himself and in the same way
by Poincaré, is the mapping from the difference of the boundary traces of a
double layer potential to the sum of the traces. If we denote the interior and
exterior traces of the double layer potential W by V and V', respectively,
then Neumann’s operator N maps V — V' to V + V', which corresponds in
our notation of the next section below to

N = 2K .

The problem studied by Poincaré (his equation (1)) is written not as an inte-
gral equation, but as a transmission problem with a parameter A:

V-V =XV+V')+20. (4)
The choice of A = 1 corresponds to the exterior Dirichlet problem, and
A = —1 to the interior Dirichlet problem. Poincaré proves convergence (mod-
ulo constant functions) of the Neumann series solution of (4) for |A| < ﬁi,

where p is the constant from Lemma 1.
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4 Positive Boundary Integral Operators and the
Convergence of Neumann’s Series

In this section we will give a modern expression of Poincaré’s idea that the
estimate (2) of Lemma 1 implies that Neumann’s operator is a contraction.
We start by an abstract observation whose simple proof we leave to the reader.
No tools more advanced than the Cauchy-Schwarz inequality are required for
the proof.

Lemma 2. Let A and B be bounded selfadjoint operators on a Hilbert space
X satisfying A + B = I , where I is the identity operator.

(i) If B — A is a contraction, then A and B are contractions with norms
bounded by (1 + ||B — Al|)/2. The inverse A~' can be represented in two
different ways by convergent Neumann series

A7l = iBf = 2502(3—,4)@. (5)
(=0 (=0

(ii) If A is positive definite and B positive semidefinite:
Ja>0,36>0: Vue X : (Au,u) > allul|®; (Bu,u) > 6llul?,

then B is a contraction with norm ||B|| < 1 — «. If in addition 3 > 0, then
B — A is a contraction with norm ||B — A|| < max{l — 2,1 — 2(3}.

A situation where this lemma can easily be applied is the following:

Lemma 3. Let a and b be symmetric bilinear forms on a vector space Xy. We
assume that a and b are positive semidefinite and that a is non-degenerate:

Vue X+ alu,u)>04fut0; blu,u) >0.
Let X be the Hilbert space completion of Xy with respect to the inner product
(u,v) = a(u,v) + b(u,v)

and let A and B be the operators on X defined by the bilinear forms a and b.
If there exists pu > 0 such that

Yu e Xo + blu,u) < palu,u),

then A and B satisfy the hypothesis of Lemma 2 (ii) with o = H‘lFl'

In particular, B is a contraction with norm ||B| < *.. If, in addition,
ptl

Yu e Xo + alu,u) < pblu,u),

p—1

then B — A is a contraction with norm ||B — A|| < 1
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Note that the Riesz representation theorem implies that the existence of an
estimate b < pa is equivalent to the positive definiteness of a on the Hilbert
space X.

Another remark which is easy to verify is that the non-degeneracy of a
alone is sufficient to show that all eigenvalues of B— A and of B are of absolute
value strictly less than 1. One does not need the estimate b < pa for this, but
one also does not get the contractivity from it. If, however, B — A has a pure
point spectrum, for example if it is compact, then the contractivity follows.
This may provide a partial explanation why Poincaré’s mutual estimates of
the interior and exterior energies were later forgotten: If the Fredholm-Riesz
theory can be applied as is the case for Neumann’s operator on a smooth
surface, then they are not needed. They are then, in fact, a consequence of
the Fredholm alternative: If a is positive semidefinite and non-degenerate and
the corresponding operator A is Fredholm, then a is positive definite.

In the following, we present some applications of these simple estimates. In
all cases, the quadratic forms a and b will correspond to the energy integrals
in the exterior and interior domains, respectively, so that the Hilbert space X
will be endowed with the norm of the total energy. Which concrete boundary
integral operators correspond to the abstract operators A and B can vary,
however, according to how the abstract vector space X is represented by a
concrete function space.

We choose the same general situation as considered in the paper [31] by
Steinbach and Wendland. This covers some of the most important applications
such as potential theory and elasticity theory (basically “every fundamental
problem of mathematical physics” in the sense of Steklov quoted above).

The same ideas for proving the contraction property of second kind bound-
ary integral operators could be applied to higher order strongly elliptic partial
differential operators that have a positive energy form in the framework stud-
ied in [7], or to other situations where positivity of first kind integral operators
has been shown by using Green’s formulas like for parabolic problems in [5]. In
this paper we will stay within the framework of positive second order systems
as in [31]. This will allow an easy comparison in order to see similarities and
differences with the arguments of [31]. Note, however, that while we consider
the same objects as in [31], we will not always use the same letters to denote
them.

Let then L be a second order selfadjoint elliptic partial differential operator
on R™ with smooth, not necessarily constant coefficients about which we will
make a certain number of further hypotheses. First we assume that L has a
real-valued fundamental solution U*(x, y). Given a density ¢ on the boundary
I of the bounded Lipschitz domain {2, the single layer potential S is defined
in the interior domain {2 and in the exterior domain 2¢ = R" \ 2 by

Su(x) = /F U (2, y)b(y) dy . (6)
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Before defining the double layer potential, we need to assume that there exists
a first Green formula

/ (Lu(z))To(z) dz = B(u, v) — / (Tu(z)) To(z) ds(z). M)
Q r

Here T is the conormal derivative, defined by this formula. The energy bilinear
form @ is a first order symmetric integro-differential form which we assume to
be positive in the sense that it is non-negative and elliptic: There are constants
a,c, k with a > 0 such that [®(u,v)| < c||ul| g1 (o) ||v]| a1 (o) and

D(u,u) 20 and  D(u,u) > aof|ullfn o) — kl|ull7zg) - (8)

As a consequence of the Garding inequality (8) and the compact embedding
of the Sobolev space H'(2) into L?({2), the space of functions of vanishing
energy

R =A{u|®(u,u) =0} (9)

is finite-dimensional. For u € R one has also @(u,v) = 0 for all v, which ac-
cording to (7) is the weak formulation of the homogeneous Neumann problem
Lu=0in 2, Tu =0 on I, so that R can also be defined as solution space of
the homogeneous Neumann problem.

For the exterior domain, we also assume the first Green formula

/ (Lu(z)) Tv(z) dz = &°(u, v) + / (Tu(z)) Tv(z)ds(z). (10)
c r

Whereas the previous equations (6)—(9) were assumed to be valid for all
smooth functions — with the idea of extending the domain of validity by con-
tinuity to some larger Hilbert spaces of functions afterwards — in the Green
formula (10) for the exterior domain we have to assume that u and v are, in
addition, of compact support. For such functions, we assume then positivity
of the exterior energy form:

Yu e CP(R™) + P%(u,u) >0 unlessu=0. (11)

The final assumption we have to make is that potentials have finite energy.
This is an assumption on the behavior of the fundamental solution at infinity
which can be phrased as follows: If v and § are multi-indices and x € C*°(R")
is a cut-off function which is zero on a large enough ball and equal to one on
a neighborhood of infinity, then the function u defined by

u(z) = x(2)0] 05U (x,y)

satisfies @°(u, u) < oo.

The assumptions made so far cover some important standard examples:
- The Laplace equation in dimension n > 3 with its standard fundamental so-
lution. Here the conormal derivative T is the exterior normal derivative. The
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space R consists of the constant functions on §2. The condition that potentials
have finite energy excludes the logarithmic potentials in the plane.
- The equations of linear elasticity in dimension n > 3. The conormal deriva-
tive T' corresponds to the normal traction on the boundary, and the space R
consists of the rigid motions.
- The mathematically simplest case is a strictly positive operator such as
— A+ Al with A > 0 in any dimension, or similarly any strongly elliptic con-
stant coefficient operator plus AI with a sufficiently large A. In this case, the
energy form in the interior is positive definite, too, the space R is reduced to
{0}, and the energy forms in both the interior and the exterior domain are
equivalent to the square of the H' norm.

The double layer potential D with density ¢ is given for x € I" by

Do) = /F (T, U (2, 9) T o(y) ds(y) - (12)

It is well known [4] that the definitions (6) and (12) of the single and double
layer potentials can be extended by continuity to densities ¢ € H~1/ 2(I') and
@ € H'Y2(I'), respectively, and that the potentials v = St/ and w = D¢ then
satisfy

Lv=0, Lw=0in QUQN°; ve HL.(R"); we H(N) and w € H.(£2°) .

If we denote the interior and exterior traces by v and v¢ and the interior and
exterior conormal derivatives (both taken with respect to the exterior normal)
by 71 and 7{, then these can also be extended by continuity to the potentials
with this weak regularity, and there hold the jump relations

(Y =7)SY =0 ; (vF —m)SY = —¢; (13)
(Y=7)Dp=¢; (i —1)Dp=0.

The four classical boundary integral operators are then defined as the opera-

tors of

- the single layer potential: V =~S§ = ¢S

- the normal derivative of the single layer potential: K’ = é('Yl +95)S

- the double layer potential: K = %('y +~9)D

- the normal derivative of the double layer potential: W = —v,D = —~{D.
With these definitions, the traces of the single layer and double layer po-

tentials take the form

S =~ S=V ;mS= %I—FK’;'ny:—%I—f—K’; (14)
'le:'ny:—W;’y'D:—éf—i-K;'yCD: éI—i—K.

As mentioned above, this way of defining the boundary integral operator
K of the double layer potential corresponds to Neumann’s and Poincaré’s def-
initions for the case of potential theory. If one defines Ky as the double layer
potential of density ¢ evaluated on the surface I' in the sense of a Cauchy
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principal value integral (which in potential theory is the same as integrat-
ing with respect to the solid angle measure (1)), then it is well known that
Kp(z) = Kop(z) for smooth boundary points x, but for corner points the
two definitions differ. The operator whose contraction property is studied by
Neumann is N = —2K. If N has a norm less than one in some function space,
then the four operators é[ + K and %I 4+ K’ will also have norms less than
one.

We can now begin to apply Lemma 3 to various incarnations of vector
space X and bilinear forms a and b. We will always represent a by the energy
integral ¢ and b by @. According to the Green formulas (7) and (10), we have
for a function u satisfying Lu = 0 in {2 and in 2¢ and any v:

@(U,, U) = <’}/1’u,,’}/1}> ; Qc(ua U) = _<7fu7'ycv> : (15)

Here we write (-, -) for the L? inner product (integral) on I', extended to the
duality product between H~'/2(I") and H'/?(I).

4.1 Single Layer Potentials

The first possibility is to take for the space X, some space of integrable
functions on I', for example the continuous functions, or L?(I"). For ¢, € X,
we define the bilinear forms a and b as energy forms of the corresponding single
layer potentials:

a(p, ) = D°(Sp, S1) 5 b, ) = B(Sep,SY) . (16)

With the boundary reduction by Green’s formula (15) and the expressions
(14) for the traces of the single layer potential, we find the boundary integral
forms

ale ) = (LT~ K)o Vo) ) = (T +K)e V). (17)

For the total energy a + b we find the bilinear form defined by the single
layer potential integral operator which is therefore positive definite (Gauss’
missing theorem); and the Hilbert space X is the completion of our space X
in this energy norm which we know from Nedelec and Planchard [26] to be
the Sobolev space H~'/2(I):

ap,¥) + blp,v) = (p, V) ; X = H~V2(I') with norm ||o[f$, = (. Vi) .
(18)
The operators A and B are defined by (Ap,¥)yv = a(p,v) and (Bp, )y =
b(p, 1), hence

1 1
A= I-K'; B= I+K. (19)

We conclude from our construction that the hypotheses of Lemma 2 are sat-
isfied. In particular, jI & K’ are bounded operators in H~'/2(I'), selfadjoint
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and positive semidefinite with respect to the inner product (¢, )y = (p, Vi)).
As we explained after Lemma 1, the positive definiteness of A or, equivalently,
the Poincaré estimate b < pa is a simple consequence of the identity between
X and H=Y2(I): b(y, ) is the energy integral ®(Sp,Sy), and u = Sy is
the solution of the Dirichlet problem Lu = 0 in {2, uw = V¢ on I', hence

D(Sp,Sp) is bounded by ||V<pHH1/2 (r)- Now V' is continuous from H-Y2(I")

to H'Y/2(I"), so we get an estimate by ||<p||?{_1/2( That this in turn can be

-
estimated by a(y, ¢) is an a-priori estimate for t)he solution of the exterior
Neumann problem which follows from its variational formulation.

In this way we obtain that B is a contraction. If we want to show that A
is a contraction, too, or even stronger that B — A is a contraction, we need
the positive definiteness of B, and this is not satisfied, in general, if the space
R of functions of vanishing energy in {2 is non-trivial. The nullspace of the
form b consists of densities whose single layer potential has vanishing energy
on (2

b(h, ) =0<= SY e R<= Vi €vR.

To make B positive definite, we have to factor this kernel out, which is done
by the definition [31]

Hy V(1) = (o € H™V2(I) | ¥ € kerB : (,4)v =0}
={pe HYXI) |YueR: (p,yu) = 0} (20)

Equivalently, we could have passed to the quotient space H~'/2(I")/yR. In
any case, we then find that B is positive definite, which by Lemma 2 implies
that both B — A and A are contractions. We also note that since A and B
commute, kerB and its orthogonal complement are invariant subspaces of A.
We summarize these results:

Theorem 1. The operators A = éI — K' and B = éI + K' are posi-
tive semidefinite bounded selfadjoint operators on the Hilbert space H ~'/? (I
equipped with the inner product (-,-)y. The operator ;I — K’ is positive defi-
nite, and the operator éI + K’ is a contraction. The Neumann series

(o)
( 0 Z N K')
=0
converges in H—'/2(I") in the operator norm associated with the norm | -|v.

On the subspace H 1/2 (I), the operator éI + K’ is positive definite, and the
operators 1I K’ and B— A = 2K’ are contractions. On this subspace, there
are the convergent Neumann series:
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=0
(L IT+K) = i(;f — K"
£=0
(IT+K) = 2%(—21{’)@
£=0

4.2 Double Layer Potentials

As a second possibility, we now look at double layer potentials. In order to
have finite energy, we have to take a space of more regular functions for our
classical departure space Xy, Holder continuous functions for example. For
v, ¥ € Xp, we now define the bilinear forms a and b as energy forms of the
corresponding double layer potentials:

a(p,p) = (D, DY) 5 b(w,9) = P(Dy, DY) . (21)

With the boundary reduction by Green’s formula (15) and the expressions
(14) for the traces of the double layer potential, we find the boundary integral
forms

alp ) = (We, QT +KW): bled) = (W, ([T KW) . (22)

The total energy a+b is now given by the bilinear form defined by the operator
W of the conormal derivative of the double layer potential. It is easy to see
that the nullspace of W is given by the traces of the zero-energy fields R.
Densities in 7R generate double layer potentials that are identically zero in
the exterior domain (2¢ and belong to R in (2. In order to be able to apply our
program, to get a positive definite bilinear form a and hence Hilbert space X,
we have to factor these densities out from the beginning. Our Hilbert space
is therefore a quotient space

X = HY2(I') /4R with norm [|llZ, = (We, ) (23)

This is the natural dual space of HJI/Q (I') with respect to L2(I") duality. We
know from the variational solution of the Dirichlet problem Lu = 0 in {2 or
02° vu = ¢ or v“u = ¢, that on this space the square of the (quotient) norm
is equivalent to each one of the energy forms @(u,w) and #°(u,w). Thus both
quadratic forms a and b can be mutually estimated, and we get the full result
of Lemmas 3 and 2.

It remains to identify the operators A and B. We have for all ¢, ¢ € X:

(W, (1 + K)6) = (o, Av)w = (Wp, A9)
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and similarly for B. This shows that if 7 : H'/?(I") — X is the canonical
projection on the quotient space, we have

1 1
A:WR(QI—FK); BZWR(QI—K).

In the case of the operator A, we can omit the extra factor mr, because
ker(%] + K) = 4R, and therefore %I + K is well-defined on the quotient space
and commutes with the projector. This remark does not apply in the same
way to the operator B, but since éI — K commutes with éI + K, the kernel
YR of the latter is an invariant subspace of the former, so that é[ — K is also
defined in a natural way on the quotient space. The operator 5[ — K actually
acts as the identity on the subspace ¥R, so that its inverse on the whole space
H'/? (I") can be obtained from the inverse on the quotient space. Altogether,
we can simply write without ambiguity

1 1
A= I+K: B=I-K. (24)

We can now summarize the conclusion of Lemma 2 in this case:

Theorem 2. The operators A = %I—l—K and B = %I—K are positive definite
bounded selfadjoint operators on the quotient space H'/ 2(IN)/yR equipped with
the inner product (-, -)yw . Both operators, as well as the operator B— A = —2K
(Neumann’s operator) are contractions in the corresponding operator norm.
The Neumann series

( i I+ K)
=0

(;I—K)*1 = zi(ﬂ()l
£=0

(;I—i— K)y ' = Z(;I — K)*
=0

(—2K)*

WE

1
(2I+K)—1 =2
L

Il
o

all converge in the operator norm in the quotient space, which corresponds to
convergence in H1/2(I’) modulo the traces vR of the zero-energy fields in (2.
The first Neumann series for the operator (;I — K)~! converges in the whole
Sobolev space H/?(I).

4.3 Single Layer Potentials via Dirichlet Data

The bijectivity of the single layer integral operator V' offers another possible
interpretation of the results of Section 4.1: Instead of representing a single
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layer potential v = S by its density v, one can represent it by its Dirichlet
trace yv = V. Since V : H-Y2(I") — H'/?(I') is bijective, it can be used
to transport the Hilbert space structure on H~'/2(I") which we considered
before to H'/?(I"). From the relation

(@, 0)v = (p, Vi) = (V" Vi, Vi)
we see that if we define the inner product on H'/2(I") by
(u,v)y -1 = (V1 u,0),

then V : H='/2(I') — H'?(I') becomes an isometry. Instead of writing our
whole program once again with a new space X, we can simply transport
all the results of Section 4.1 via this Hilbert space isomorphism. Positivity,
operator norms and convergence of Neumann series are conserved, the only
question that has to be settled is the form of the operators A and B in this
new representation.

The answer to this question is provided by the well-known relation

KV = VK’

which is one of the relations that give the projection property of the Calderén
projector, obtained from the representation of a single layer potential as a
sum of a single layer potential and a double layer potential of its own Cauchy
data.

The operator A = 1T — K’ on H='/2(I') is therefore transported to the
operator VAV ! = V(;I—K’)V’1 = éI—K, and B = éI—i—K’ is transported
to the operator ;I + K. In this way, we can transport all of Theorem 1. In
particular, ;I—l—K is a contraction on H'/2(I") equipped with the norm |||y 1.

For the other results we have to transport the subspace H; 1 2(F ). We find
VHy A (T) = {p € HYA(T) |Yu € R: (¢, qu)y—1 = 0}

On this space, the operator %I — K and Neumann’s operator —2K are con-
tractions.

Thus we get similar results as in Section 4.2, with a different norm on
H?'/2(I"). The results in this form (except for the operator —2K) were first
proved by Steinbach and Wendland in [31].

4.4 Final Remarks

Although our results obtained here from Poincaré’s estimates are largely simi-
lar to the results of Steinbach and Wendland in [31], their method for proving
the contraction property of é[ + K and %I + K’ is different:

The simple idea here was that if two positive numbers add up to 1, then
both of them must be smaller than 1; with Lemma 2 as a transposition of this
idea to the class of selfadjoint operators on a Hilbert space.
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The corresponding simple idea in [31] is that if a number is bigger than

its square, then it must lie between 0 and 1. For operators, this idea can be
stated as follows:

Let A and B be bounded selfadjoint operators on a Hilbert space. If

B = B? + A and A is positive definite, A > al,

then B is a contraction with norm ||B|| < + \/411 - a.
This lemma can be applied to the well-known relations

(;I+K)(;I—K):VW; (;I—kK')(;I—K'):WV

which are a consequence of the symmetry of the energy form @(u, v) between a
double layer potential v and a single layer potential v, or also of the projection

pr
th
('7

CO

operty of the Calderén projector. Since WV is positive semi-definite in
e inner product (-,-)y and VW is positive definite in the inner product
)w and positive semi-definite in the inner product (-, )y -1, the respective
ntraction properties for é[ + K and %I + K’ follow.
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Summary. Averaging techniques for a posteriori error control are established for
differential and integral equations within a unifying setting. The reliability and effi-
ciency of the introduced estimator results from two grids 75 and 7y with different
polynomial degrees for a smooth exact solution. The proofs are based on first order
approximation operators and inverse estimates. For a finer and finer fine mesh 73,
the estimator becomes asymptotically exact. The abstract framework is applicable
to a finite element method for the Laplace equation, boundary element methods for
Symm’s and the hypersingular integral equation or transmission problems.

1 Introduction

The striking simplicity of averaging techniques in a posteriori error control as
well as their amazing accuracy in many numerical examples have made them
an extremely popular tool in scientific computing over the last decade. Given
a discrete stress or flux p;, and a post-processed (smoothened) approximation
App, the a posteriori error estimator reads

na = |lpn — Apn|.

There is not even a need for an equation to compute the estimator 4 and
hence averaging techniques are easily employed everywhere. The most promi-
nent example is occasionally named after Zienkiewicz and Zhu [36], and also
called gradient recovery but preferably called averaging technique in the lit-
erature. The most frequently quoted paper is [36] for the P1 finite element
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method for some Laplace equation on some domain w and some local averag-
ing operator Apj, on the piecewise constant gradients p;, = Duy, followed by
linear interpolation. The estimator n4 = ||pn — App|| is then computed with
respect to the norm || - || on L2(£2).

In the work of Zienkiewicz and Zhu [36], there was no rigorous justification
to interpret n4 as some computable approximation of the (rigorous) exact
error ||p — pp|| with p = Du, but there arose quite some numerical evidence
for that.

The first mathematical justification of the error estimator n4 as a com-
putable approximation of the (unknown) error ||p — py|| involved the con-
cept of superconvergence points. For highly structured meshes and a very
smooth exact solution p, the error ||p — App|| of the post-processed approx-
imation Apj, may be (much) smaller than ||p — py|| of the given pj;. Under
the assumption that ||[p — Apy|| is sufficiently small in relative terms, written
llp — Apn|| = h.o.t = higher-order terms, the triangle inequality immediately
verifies reliability, i.e.,

lp = pull < Cretna + ho.t.,

and efficiency, i.e.,
Na < Cesr Hp —th + h.o.t.,

of the averaging error estimator n4 (even with Cye) = Cegr = 1). However, the
required assumptions on the symmetry of the mesh and the smoothness of
the solution essentially contradict the use of adaptive grid refinement when p
is singular. Moreover, the proper treatment of boundary conditions remains
unclear.

The first mathematical verification by Rodriguez on reliability of n4 on
unstructured grids has been indicated in the literature [6, 25, 26, 27] but was
not mentioned in the (otherwise comprehensive) works [1, 2, 20, 33]. The first
author was unaware of Rodriguez’s result [27] when he started to work on the
mathematical justification [17] that ended in the surprizing and new conclu-
sion that, in fact, all averaging techniques are reliable [4, 5, 7, 8, 9, 10, 11].

A corresponding technique for the boundary element method was initi-
ated with extraction and recovery techniques in [29, 30, 31, 32, 34] and was
proposed thereafter in a small series of works of the two authors [12, 13] and
n [21]. In the latter works, an approximation Apj, is computed as some best
approximation of p, based on a higher-order spline space on some coarser
mesh. For some smooth exact solution, the resulting approximation error is
of higher order. The corresponding error estimator is therefore efficient. Re-
liability follows provided the quotient of the mesh-sizes is sufficiently small.
These two arguments, called approximation assumption (AA) and discrete
property (DP), allow a unified analysis of reliability and efficiency of 74.

This paper links the two discretization methods, namely the finite element
method and the boundary element method, in that there is one abstract set-
ting provided in which an averaging scheme is seen to be reliable and efficient
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without any reference to some saturation assumption or superconvergence.
The paper is roughly organized in two mayor parts: In Section 2-4, we pro-
vide and analyze the analytical setting for our averaging method, while the
remaining Sections 5-8 of the paper discuss concrete applications. Namely, in
Section 2 we state and prove our abstract main result in Theorem 1, which is
commented in Section 3. The essential condition for Theorem 1 is a discrete
property (DP). We stress the difference of (DP) and a saturation assump-
tion and remark on further generalizations of Theorem 1. In Section 4, the
essential condition is studied in detail and characterized as some strengthened
Cauchy inequality of related spaces. Section 5 considers the introduced aver-
aging technique for the finite element method for a model example. Section 6
is an overview of a recent work [12] on averaging for Symm’s integral equation.
In Section 7, we treat the hypersingular integral equation following [13, 21].
Finally, the last application of our abstract analysis concerns the boundary
integral formulation of a transmission problem in Section 8.

2 Abstract Setting

We consider the abstract framework of the Lax-Milgram lemma with a finite
dimensional subspace Sy, of a real Hilbert space H with corresponding norm
I |l Let {-,-) be an elliptic and bounded (but possibly non-symmetric)
bilinear form on H, i.e., there are constants 0 < C; < Cl,q such that

Cen|lull3; < {u,u) and (u,v) < Cpallullxlv]s for all u,v € H. (1)

The (linear) Galerkin projection Gy, : H — S}, is characterized by the Galerkin
orthogonality

(v—Gpv,vp) =0 forallv, €S, and v € H. (2)

An immediate consequence is the quasi-optimal convergence, also known as
Céa’s lemma:

||1} — GhUHH < (de/ceu) UInelg ||U — ’UhHH for all v € H. (3)
hESh

Given an unknown solution v € H for a prescribed right-hand side f = (u,-) €
‘H*, the discrete solution uy, := Gpu is computed. In order to approximate the
energy norm of the (unknown) error

€=U — Up, (4)

we are given a second finite-dimensional subspace Sy of H. Then, the a pos-
teriori error estimator for ||u — wup |3 reads

= min fup = v (5)



32 C. Carstensen and D. Praetorius

The justification below is based on one approximation assumption (AA) and
some discrete property (DP) of Sp, and Sy where, in applications below, Sy,
corresponds to a lower polynomial degree ansatz but a finer mesh when com-
pared to Sy, and u is smooth. Moreover, as the triangulation 73, corresponding
to Sp, will be a uniform refinement of the triangulation 7z corresponding to
Sy, we assume that S, and Sy are linked through the mesh-sizes h and H:

Opg = min ||ju—wv min ||u —v =o(1), AA

na = min | |2/ min | nll# = o(1) (AA)

q .= max min ”UH - Uh”H < Cell/de~ (DP)
oneSu\{0}vhe€Sh  ||vm|ln

Theorem 1. With the notation from (AA) and under assumption (DP) there
holds
m /(14 6nm) < lellr < Cra(ny + min u—vgllx) (6)
VHESH

with
Crel '= Cpa/(Cen — qCha). (7)

Proof. The lower estimate (efficiency of n,/) is an immediate consequence of
the triangle inequality: For any vy € Sp, there holds

v < lleflw + llu = vallx.
A passage of vy to the minimum in (AA) yields

nu < el + o min flu —vnlln < lefl#(1 + 0nn).
vp €Sh

This establishes efficiency of ny;. To prove the reliability of n, let ey € Sy
be the best approximation of e, i.e.

e—e = min |e—vg|. 8
le = enlle = min fle = vl ®)
By the definition of ¢ in the discrete property (DP), there holds

min |leg —vnllx < qllen|r.

v, €Sp

The Galerkin orthogonality of Gj and the boundedness of the bilinear form
(-,-) followed by the aforementioned estimate lead to

(e,en) = min (e,ep —vn) < qChallellnllen|lr.
v €Sh
Combining this with the ellipticity and boundedness of {-,-), we obtain

Canllel3 < {e,e) = {e,e —en) + (e, en) < Cuallelln(lle — enll + qllen|l+)-
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Now, the stability estimate ||eg||7 < |le|l# proves

C_1C%d
el < !

e—e =C, min |le—wv .
471_‘qC;fC%d|| H”H mlUHESH” H”H

If ug and up g denote the best approximations of u resp. uy, in Sgr, the special
choice of vy = ug — upy and a triangle inequality yield

lelln < Cra(llu —umlls + [[ung — unlln) = Cra( min |[u —vyllx +nm)-
vHESH

This concludes the proof of the reliability. O

3 Comments

Some remarks are in order before a list of applications enlightens the abstract
results of the preceeding chapter.

3.1 Efficiency and Reliability

The discrete property (DP) is not necessary for efficiency of ny,. The relia-
bility depends essentially on the discrete property (DP) in that, up to some
approximation error

h.o.t. ;== min |lu — vg||x,
VHESH

there holds reliability in the sense of
lell# < Crer(nar + heo.t.).

However, this is reasonable only if h.o.t. ~ dpx||e]|% is indeed of higher order.
In fact, there holds

lell# < Crei(nar + Snmrllellr)-

Then, for 5, < C,.}, there holds

el

llelln < Crel/(1 — 0neCrel) M-

3.2 Constants in the Symmetric Case

In the important case that the bilinear form (-,-) is symmetric, it is a scalar

product. The induced norm v := (v, v)'/? is an equivalent Hilbert norm on

H. Moreover, Gy, is the orthogonal projection onto Sy with respect to (-, -).

Then, (3) holds with (Cq/Cen)*/? replacing Chq/Cey, and Gy, is characterized

by the best approximation property |[v —Gpv| = UIIIEHSl lv—ovp]| for all v € H.
h h
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In the symmetric case, one usually states (6) with respect to the energy
norm ||-|7 = ||-||, i-e. Cba = 1 = Cen. Asymptotic exactness of nys then follows
for ¢ — 0 in the sense of Cie; — 1. Moreover, the reliability constant Cye) =
1/(1 — q) from (7) can be improved to Cye = 1/(1 — ¢?)*/? by the following
refined stability estimate: Using the symmetry of orthogonal projections and
the same arguments as in the proof of Theorem 1, we obtain

lexll” = {err e} = (e, en) = min {e,ex —va) < qllefllex].
vp €ESh
This implies the refined stability estimate |eg| < g|e||. Together with the
Pythagoras theorem, there holds

lell® = lle = eall® + leall® < le — eall® + ¢*llel®.

This yields |le|| < [lex|l/(1 — ¢*)'/?, and we obtain the reliability of 75, with
the improved constant Cyep = 1/(1 — ¢%)/2.

3.3 Remarks on the Saturation Assumption

Assumption (DP) is just a definition of §;,y with the possible interpretation
discussed in Section 3.1. A much stronger statement is the saturation assump-
tion of the form

onir = Jlu = Grull/lle]l < Car <1 (SA)

in the symmetric case || - || = || - || etc. of the preceding subsection. Recall
that G g denote the Galerkin projection onto Sg. With ug := Ggu, a triangle
inequality for e = u—upg +uy —uyp, plus (SA) leads to the reliable a posteriori
error estimate

lell < lun —umll/(1 = Csat)

for the different hierarchical estimator |u;, — ug]|. It has been the starting
point of our analysis to avoid a strong assumption on the actual size of d, g
like (SA) because it is hard to check in practise.

3.4 Verification of Assumption (DP)

This subsection outlines the arguments sufficient for (DP) in an abstract (and
non-local) framework. Examples follow in the remaining applications of this
paper. For an appropriate seminorm | - | and the mesh-size parameter H > 0
associated with Sy, an inverse estimate is of the form

|lvr| < cinH  *||vm|y  for all vy € Sp.

The exponent « > 0 depends only on the energy (Sobolev) space, e.g., H = H®
or H = H~“. Moreover, | -| may allow an approximation estimate of the form
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min |vg — vp|ln < capxh®|vg| for all vy € Sy.
VR ESh

The combination of the two estimates yields

- lvr = vnllx
max i
o eSu\{0} vn€Sn  ||vm||H

S Capxcinv(h/H)a-
Hence, for any mesh-size h sufficiently small relative to H, (DP) follows.

3.5 Other Averaging Techniques

Under assumptions (AA)—(DP), we obtain reliable error estimators 74 when-
ever we replace the minimum of the best approximation by an arbitrary op-
erator Ay : H — Sy,

na = llun — Agunlln > min |luy — vglls = nar. )
vHESH

Thus, each averaging technique yields a reliable error estimator [4]. Clearly, the
efficiency of 114 is some further property of the chosen operator Ay . According
to Céa’s lemma (3), the Galerkin projection Ay = Gy always leads to an
efficient and reliable error estimator since

(Cen/Cha) [[v = Gpolln < min [jv—valln < |lv—Gaolln.
vHESH

3.6 Generalizations

Theorem 1 can be generalized in several ways. In the following, we give some
simple examples, for which the analysis from Section 2 also works: (i) For the
Hilbert space H, there holds ey = uyg — upgy for the best approximations
in the proof of Theorem 1. However, the linearity of the best approximation
is not needed, and the argument remains valid in the case that H only is a
reflexive Banach space: There still holds the Lax-Milgram lemma, and the best
approximation problem (8) still allows for a (in general non-unique) solution
epy. Finally, a triangle inequality proves stability ||eg|l% < 2|le|l#. We must
therefore assume 2qu_Hl Cha < 1in (DP) and are led to reliability with Cye =
2Cha/(Cen — 2¢Cha).

(ii) Theorem 1 also holds when we consider weakly non-linear problems.
More precisely, let A : 'H — H* be a uniformly monotone and Lipschitz
continuous operator on the Hilbert space H, i.e. there holds, for all u,v € H,

Cenllu — v||$1 < (Au— Av,u — V)p=xrn and ||Au — Av|x+ < Challu — v||x,

where (-, )= 1 denote the duality brackets. Also in this context, there holds
the Lax-Milgram lemma. The (nonlinear) Galerkin projection G, : H — Sp,
is characterized by the Galerkin orthogonality
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(Av — A(Gpv) ,vp)H=xn =0 for all vy, € Sp, and v € H.

There still holds Céa’s lemma (3), and we prove Theorem 1 with the same
techniques.

(iii) A generalization of our averaging method in the context of the FEM-
BEM coupling and saddle point problems which allow an LBB condition is
slightly more involved and shall therefore appear elsewhere [14].

4 Characterizations of Discrete Property (DP)
in Hilbert Spaces

In this section, let V and W be closed subspaces of the real Hilbert space H
and let V1 denote the orthogonal complement of V,

Vi={reH YWweV (z,v)y =0}
The main focus is on the uniform estimate

min |[|v — w|ly < ¢|lw|jn  for all w € W. (10)
veV

Obviously, there holds ¢ < 1, and we discuss the case of ¢ < 1 in the following.
This plus the optimal constant is characterized in Theorem 2 in terms of

- <vl 7w>H
VvLJ/V = sup sup N
vteVL\{0} weWw\{0} o+ #[lwll2

and
_ o = wlln
qvw = sup min
’ wew\{0} v€V  [Jw|lx

Notice that g¢s, s, is called ¢ in the discrete property (DP) of Section 2.
The estimate vy 1 y < 11is known as strengthened Cauchy inequality between
V4 and W. (In fact 0 < cos(<(VE,W)) := yy1 g < 1 defines the angle
<(V+, W) between the spaces V4 and W.)

The following result, which is essentially taken from [3], states that the
optimal constant in (10) equals ¢ = gy, = Yy and the estimates (ii)-(iv)
are in fact equivalent characterizations of ¢ < 1.

Theorem 2. There holds qv,w = vy w < 1, and for any constant ¢ > 0
with ¢ < 1 the assertions (i), (ii), (iii), (iv) are pairwise equivalent.

(1) ywew =avw <c,

(ii) there holds v/1 — c2 ||Jvt ||y < mingew |[vt — wl|% for all vt € V-,

(iii) there holds /(1 — c2)/2 (|l |ln + |w#) < [[v* 4wl for all (v, w) €
VEix W,

(iv) there holds min,ecy ||v — wl|y < cljw||x for all w € W.
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Proof. The equivalence of yy1 y < ¢ < 1 with (ii) and (iii), respectively, can
be found in [3, Lemma 3.1], where V is substituted by V. The equivalence of
qv,w < c and (iv) is obvious since gy, is, by definition, the optimal constant
in (iv). Thus it only remains to prove the equality vy 1y = qv,w:

Given vt € VJ- v eV, and w € W, there holds

(v w)a = (ot w =) < ot lllw — vl
Since v € V is arbitrary, we obtain

(v whe < oo min o = wl < avlo wls for all w e W,

whence Wwiw < qv,w- To prove the converse inequality, we construct se-
quences vj-- € V\{0} and w; € W such that ||wj|ls = 1 and

Jhm (v wi)a/ |05 1 = qviw-

Without loss of generality we assume gy, 7 0 since gy, = 0 implies V = W
and thus vy 1w = 0 as well. For qy,w > 0, let w; € W be a sequence with

lwjllx =1, lim min |lv —wj|lx =gqv,w >0, and minlv—w;|x > 0.
j—oo veV veV

Let II : 'H — V denote the orthogonal projection onto V and choose
v; := ITw;. Then, there holds

v — wjll# = min v —w;lln,

and fujl = wj — v; satisfies vjl € VH\{0} and

(05 wi)w = (v ,w; —vi)n = lwy —v5l|F, = llw; —vjlllvj |2

Finally, we obtain

<Ul , W >7‘l .
wew > lim T = lim Jwy — vl = quw
imoo oyl oo
This concludes the proof. O

5 Finite Element Method for the Laplace Problem
We consider the following model example on a bounded Lipschitz domain
NCcRY d=2,3,
—Au=f in {2,
u=0 onIpCIN, (11)
Ou/dv=g onl'ny=0NIp.
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We assume that I'p is closed and that the right-hand side f and the given
normal flux g allow for a weak solution

ueH=H,H2) :={uec H (2) : ulr, =0, (12)

of (11). Provided I'p has positive surface measure, the Friedrichs’ inequality
shows that

(u,v)z/ﬂVu~Vvdm (13)

defines the energy scalar product with equivalent norm [|-[|3; := ||| ~ ||| 51 ()
on H. The weak form of (11) allows for a unique solution u € H in the usual
sense

(u,v) :/ fvdx—|—/ gvds, forallveH. (14)
2 I'n

The lowest order conforming FE discretization of (14) uses 7j-piecewise affine
and globally continuous functions: Let 7, be a regular triangulation (in the
sense of Ciarlet) which consists of triangles, for d = 2, and tetrahedra, for
d = 3, respectively. For p € N, let P?(7},) denote the vector space of functions
wyp, € PP(7;,) which are polynomials of total degree < p on each element T' €
Th. Let h € L*°(£2) denote the local mesh-size of 7}, defined by h|r = diam(7T)
for T € Ty,

To apply the averaging technique, let 7y be a regular triangulation of (2
and let 7, be obtained from ¢ € N red-refinements of 7y, i.e., we recursively
refine each element T' € Ty (-times into 4 (resp. 8 in case of d = 3) congruent
elements. In particular, H/h = 2¢. With

S (Th) = {un € PP(T1) NC(2) : up|rp, =0} CH,
set
Sn=8H(Tx) and Sy = S%(Tw). (15)

Finally, we denote by H*(7) the space of all 7-piecewise H*® functions for
s> 0.

Theorem 3. Provided w € H N H*(Ty) for some ¢ > 0 and { large
enough, Assumptions (AA)—~(DP) hold and therefore Theorem 1 applies with
v = llun — Gruall.

Proof. Recall the local inverse estimate
||HwH||L2(Q) < Cinv||vaHL2(Q) for all wy € PI(TH),

where ¢,y > 0 depends only on the shape of the elements in 7y and the
gradient V is evaluated elementwise. In particular, this holds with wg = Voug
for all vy € P?(Ty). Moreover, the Bramble-Hilbert lemma implies
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190 — V(Bav) | z2(2) < capxllh Dol 20

for all continuous v € H'(2) N H?(7,) and P, the nodal interpolation oper-
ator. Together with H/h = 2¢, the combination of both estimates proves

 for vl Z
=  max min <ol 19
T sy mes,  Joul = inv/

Therefore, (DP) is satisfied for ¢ sufficiently large. Note the best approxima-
tion result [u — Gpul| = O(h) and |Ju — Gyu| = O(H'*). Given a fixed
parameter ¢, (AA) follows. O

Remark 1. Since the energy norm is based on the local L?-norm, we can write
1 as a sum of local contributions

12
v = ( Z 77%/[,;‘) with  nar; == ||Vup, — V(GHuh)HLz(Tj). (16)
TJETH

The refinement indicators 7,7,; can be used for an adaptive mesh-refining
strategy.

Remark 2. With ITg the L? projection onto P (7z)?, we define

= min|[Vup =g r2) = [Vun = Ta(V .oqar
e qu%f(nTH)d” un = qullez2) = [Vun = Ta (Vun)l 2. (17)

Since V(Ggup) € PH(Tx)?, there holds u;r < nas. Therefore, juyr is efficient
up to terms of higher order under the assumptions of Theorem 3. The math-
ematical analysis of the reliability of pj; — although supported by numerical
evidence — remains open.

6 Symm’s Integral Equation

In this section, we consider Symm’s integral equation
Vu=f onrl (18)

with a relatively open subset I' C 92 of the boundary 92 of a bounded
Lipschitz domain 2 in R?, d = 2, 3. The operator V is the single-layer potential

Vu(r) = /F (a y)uly) dsy, (19)

where ds denotes the integration on the manifold I', and x(z, y) denotes (up to
a multiplicative constant) the fundamental solution of the Laplace operator,
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1
—ﬂ_log|x—y| for d = 2,
rlzy) =9 B (20)
—1—2 |z — vy for d = 3.
T

The variational formulation of (19) needs Sobolev spaces on the boundary.
First, the space
HY2(00) = {u|oo : uwe H (R}

of traces of H' functions associated with the trace norm
lull gr1/2002) = E{[[@] g ey = @ € H'(R?) with @l = u},
Moreover, we consider the subspace
HY2(I) = {u|p : ue HY?(80)},

where the norm of u € H/?(I") is defined as the minimal norm of any exten-
sion, i.e.

lull gz ry = nf{[|@ll gr/200) = @€ H1/2(8!2) with @|p = u}.
Furthermore, there are Sobolev spaces
H'Y(I') = {u e H'?(8R) : supp(u) C I'}

associated with the usual H'/2(I") norm. Finally, the corresponding spaces of
negative order are defined by duality with respect to the extended L? scalar
product,

H-Y2(I') = HY*(I')* and H~Y*(I') = HY>(I")*.

Remark 3. There are other equivalent definitions of the involved Sobolev
spaces, e.g., by real oder complex interpolation, a Fourier norm, or Sobolev-
Slobodeckij norms [35, 24].

For a particular right-hand side f in (18) and I" = 9f2, Symm’s inte-
gral equation is an equivalent formulation of the Laplace problem (11) with
I'p = 092, cf. [24]. For d = 3 and provided additionally diam({2) < 1 for
d = 2, the operator

V:H (I — HY*(I) (21)

is an isomorphism between the two Hilbert spaces H~/2(I") and H'Y2(I")
which build a dual pairing with respect to the extended L? scalar product
(+,+). The energy scalar product

(u,v) := (Vu,v) foru,v e H- V(I (22)

induces an equivalent norm || - || := || - || on H = ﬁ_l/Q(F),
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Let Ty, = {I1,...,I,} be a regular triangulation of I" with local mesh-size
h € L*(I"), h|r; = diam(I;). Each element I'; of 7} is supposed to be a
connected (affine) boundary piece for d = 2 and a (flat) triangle for d = 3,
respectively.

For an integer p > 0, PP(7,) denotes the space of all piecewise poly-
nomials of degree < p (defined on reference elements 2P = [0,1] and
Fef3 = conv{(0,0),(0,1),(1,0)} and I ef4 = conv{(0,0), (0,1),(1,0),(1,1)}
for d = 2,3, respectively).

For the averaging error estimation, we consider again the lowest order case:
Let 7y be a regular triangulation of I" and obtain 7}, by ¢ € N red-refinements
of Ty. Adopt the aforegoing notations for 7y and 75 accordingly and define
the discrete spaces

Sn=P%7,) and Sy =P (Tw). (23)
Theorem 4. Provided u € H N H(Ty) for some ¢ > 0 and ¢ large
enough, Assumptions (AA)—~(DP) hold and therefore Theorem 1 applies with
v = [lun — Grunl.

Proof. Local inverse estimates for fractional order Sobolev spaces [19, 22] read

[H  vp || p2ry < P H g || - a(ry forallvg € PP(Ty) and k € R,
(24)

The constant cmV > 0 depends only on the shape of the elements in 7y, the
polynomial degree p € Ny, and the parameter o > 0. Since H (I) is a closed
subspace of H%(I'), the corresponding dual spaces H=*(I') = H*(I')* and
H~(I') = Ho(I)* satisty H-°(T) € H(I)* with vl (ry < [oll 7o .
Therefore, we may apply (24) for the energy norm || - || ~ || - ||HQ(F) This leads
to

1Y 2onllzcry < e lomll - for all vy € PP(Th). (25)
ote that, for a closed boundary = , there holds = H
N hat, f losed bound r 082, th holds H*(I" H*(I

with equal norms.) Moreover, with the L2-projection I} onto PP(T3,), there
holds [12]

v —II}v|| 5. ) < car’)’}’( |h®v|p2(py  for all v e L*(I). (26)
Here, Caf)]f( > (0 depends only on the shape of the elements in 7}, the polynomial
degree p € Ny, and a > 0. Together with H/h = 2, the combination of (25)

and (26), for a =1/2and |- || ~ || - || 7-1/2(f), Proves

- Nlve = vnll h,0 H1jo—t/2
— < 2
v Er{lSH}i{O} Uflnelgh, "lUH "l wpx inv /

This proves (DP) for ¢ sufficiently large. Assumption (AA) follows from best
approximation results [|u—Gpul| = O(h%/?), |u—G gul] = O(H?/?*¢), cf. [28].
U
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In contrast to the FE method from the previous section with H™ norms,
the energy norm || - || ~ || - HFI*”?(F) is non-local, i.e., it cannot be written as
a sum over non-interacting local contributions. The following theorem asserts
the equivalence of the energy norm based error estimator 75, and the weighted
L? norm based error estimator

pnr = || HY? (up, — Grun)|| L2 (r)- (27)
This leads to the equivalent error estimators
N = lun — Myup| and  pgr := ||H1/2(uh - H}_I’U,h)”L2([’), (28)

where IT}, denotes the L? projection onto P1(7p). Under the assumptions of
Theorem 4, s, g7, and 1y are reliable and efficient in the following sense.

Theorem 5. There are constants C1,Co > 0 which only depend on the shape
of the elements in Tg and the quotient H/h = 2° such that

v <np <Crpg and  pp < py < Canpg. (29)

Proof. The estimate np; < ny follows from the best approximation property
of Gy and was already mentioned in the introduction. Since we consider
globally discontinuous polynomials, IT3 is also 7y-elementwise orthogonal.
Hence,

lun — O iunll 2y < llun — Grunllrery)-

This proves g < ppr. According to the mesh generation of 7j, from 7, there
holds uy, — Grup € PL(T3). An inverse estimate (25) yields

W2 (un = Grun)llz2(ry < cuglun — Grunl|

and, therefore, with H/h = 2°, that
piar = 292 |WM2 (up — Grun)| 2oy < 292 o

To prove ng < cgj’iun, define v = uy, — H}{uh € L3(I'). With 11 the identity
on L*(I'), the operator (1l — IT#) is a projection, whence v = (1l — IT};)v. An
application of (26) proves
H, 1/2 _
i = llol = (1 = i)l < clpelHY 0l 2y = prr. O
Remark 4. For an adaptive mesh-refining algorithm, one may localize the error
estimators pps and py7, respectively, to obtain refinement indicators, e.g.

2 1/2 . 1/2 1
o= (2 why) with g = 1Y, Tun) o). (30)
I;eTy
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The computation of the error estimators 7y, s, and 777 needs the computa-
tion of dense matrices which stem from the Galerkin projection G g (explicitly
or implicitly for the computation of the energy norm). Matrix compression
techniques, e.g., hierarchical matrices or panel clustering provide an effective
implementation. The error estimator pj; avoids the computation of Gy and
can be computed in linear complexity with respect to the number N of ele-
ments.

7 Hypersingular Integral Equation
With the notation from Section 6, we consider the hypersingular integral
equation

Wu=f onl (31)

and the hypersingular integral operator

Wae) = =0 [ o sayut)ds,, (32)

where v, and v, denote the outer normal vectors on I" at x and y, respec-
tively. For particular right-hand sides and I' = 02, the hypersingular integral
equation (31) is equivalent to the Laplace problem (11) with pure Neumann
boundary condition I'y = 042.

For an open boundary piece I’ ; 042, the operator

W HY*(I') — H™Y2(I)

is an isomorphism. For a closed boundary I" = 942, one has to consider the
factor spaces Hy'(I') = H*/R(I") = {u € H*(I') : [puds = 0} to neglect
constant functions. Then,

W Hy* (1) — Hy V2(I)
is isomorphic. In both cases, W maps the energy space H = H/2(I) resp.
H= Hé/z(F) onto its dual, and
(u,v) .= (Wu,v) foru,ve™ (33)

defines a scalar product with equivalent norm || - ||% := || - || on H. The
discretization is based on subspaces of SP(7p,) := PP(7;,) NC(I") for a regular
triangulation 7, of I" and
Sp(T): {UhESp(’];L) : vh|8F:0} 1fFC8(Z,
0% ~h {vn € SP(T3) : [pvnds =0} if I = 90.
With respect to the abstract setting in Section 2, let 7y be a shape-regular
triangulation of I" and 7}, obtained from 7x by ¢ € N red-refinements and set

Sn=385(7;) and Sy =S3(TxH). (34)
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Theorem 6. Provided w € H N H*(Ty) for some ¢ > 0 and { large
enough, Assumptions (AA)—~(DP) hold and therefore Theorem 1 applies with
v = llun — Grual.

Proof. Note that there holds the local inverse estimate [13]
HHl_aVUHHL2(p) < Cﬁ;pHUHHHa(p) for all vy € Sp(TH), (35)

where V denotes the arc-length derivative V for d = 2 and the surface gradient
for d = 3, respectively. The constant cﬁ;p > 0 depends only on the shape of
the elements in 7, the polynomial degree p € N, and the parameter a > 0.
In [21] it is proven that the Galerkin projection G} onto Sf(7}) satisfies, for
allv e HNHY(I),

Jo = GEol < g min {|AY2V 0] oy, |RY2V (0 = G oy} (36)

apx

The constant ¢/~? > 0 depends only on the shape of the elements in 7. As

apx

before, Assumption (DP) is satisfied, provided ¢ is large enough,

. |||’UH - ’Uh||| hi H2 002
< bl e 2[R e
vH Ergi\{()} v, Elg,L |||UH ||| = CapxCiny /

Assumption (AA) follows from best approximation results |[u — Gpul =
O(h*?) and |Ju — Gyul] = O(H?/>t) [28]. O

As for Symm’s integral equation, the energy norm || - || for the hyper-
singular equation is non-local and has to be localized. This can be done by
H'/2_weighted H'-seminorms. The following theorem states the efficiency and
reliability of the error estimator

Hn = ||H1/2V(uh - GHuh)HL?(F) (37)
under the assumptions of Theorem 6.

Theorem 7. There are constants C's, Cy > 0 which only depend on the shape
of the elements in Tg and the quotient H/h = 2° such that

O3 par < mar < Cy g (38)
Proof. The follows from an inverse estimate with constant C3 = cihn’f ¢Y/2 and
the approximation result (36) with Cy = ¢L2. O

The computation of pps involves the dense stiffness matrix corresponding
to the Galerkin projection G . To avoid this numerical effort, one can consider
the estimator

it = [ HY2(Vun — Th(Fun) 2y (39)

with the L? projection I}, onto P1(Ty), which is efficient under the assump-
tions of Theorem 6.
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Corollary 1. There holds g < pas-

Remark 5. The reliability of ur, which is observed numerically [13, 21], re-
mains open — as for the finite element method in Section 5.

Another computationally challenging variant might be to consider the H}
projection Py : HN HY(I') — Sp, i.e. the gradient L? projection defined by
/ V(u—Pgu)-Vog =0 forall vy € Sp. (40)

r

The numerical realization only involves the sparse stiffness matrix from the
P! finite element method.

e o= llun — Pgupll and  pp = |[HY?V (up — Prunlrzry  (41)

Clearly, nas < np, and therefore np is reliable under the assumptions of The-
orem 6. The analysis for fractional order Sobolev spaces H*(I") and « > 0 is
more involved than for o < 0, i.e. for Symm’s integral equation: For quasi-
uniform meshes, there holds up < C uas since

IV (un — Prun)ll2ry < IV (un — Grun)llz2(r)-

An estimate of the type pup < C pps remains open for adaptively generated
meshes. For d = 2, it is proven that np and pp are equivalent [13].

Theorem 8. For d = 2, there are constants Cs,Cg > 0 such that
Ot < mp < Cg pp. (42)

Proof. The lower estimate follows as in Theorem 7. We recall from [13] that
the H} projection P} onto S¥(75) satisfies, for all v € H N H(I),

o — P2of| < P min { A2V 0| p2(ry, |BY/2V (0 — PR0) |22y} (43)

apx

The constant ¢4 only depends on p and the local mesh-ratio

o(7y,) := max{h;/hy : I}, I € Tp, s.t. I; is a neighbour of I'y}. (44)

From (43), we obtain the upper estimate with Cs = ¢L2. O

Remark 6. If Ag denotes the L? projection onto S3(7z), define
na = lun — Agup|| and  pa = ||HV?V (up — Agun)llz2r)-

Then, 74 is reliable, and one can prove that n4 and pa are equivalent. Un-
fortunately, the L? projection Ay onto S3(7y) is, in general, not H' stable.
Thus, one does neither analytically obtain nor numerically observe efficiency
of na and pa, cf. [13].
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8 Integral Equation for a Transmission Problem

This section is devoted to a transmission problem which involves the integral
operators of Section 6 and 7, from where notation is adopted. Given (f,g) €
H'Y2(I') x H-Y2(I") along the boundary I" = 9f2 of a bounded Lipschitz
domain 2 ¢ R? the strong form of the transmission problem reads: Find
u™ € H'(2) and u™ € H}, (£2) with

Loc
Au” =0in 2, Aut =0in R\ (45)
with some radiation condition on u™ at infinity and

ou~  Out
- _— 1 _
uT =u" + f, o = oy +g onlI. (46)

This is equivalently formulated by the boundary integral equation [18]

uy (1 n . 1/2 ~1/2
A<¢)—(2+A)<g) in H © HY2(I') x H-Y2(I) (47)
with the Calderén projector (in symbolic form)
KV
A= ( w K’)' 48)

The operator V is defined in (19), and W is defined in (32) with kernel x(x, y)
from (20). Moreover, K denotes the double layer potential operator and K’
its adjoint defined by

KBV = YA, Kot) = [ o) 82 (w9 dsy, (19)
K': HV2(T) — B-Y2(D), 0= [ o)y wleds,. (50)

Duality is understood with respect to the extended L? scalar product,
() ()= tw0r 4 0.0) (51)

for (u, ), (v,v) € H := Hy/*(I') x Hy */*(I).

The transmission problem (45)—(46) and the boundary integral formula-
tion (47) are equivalent in the following sense [18, 16]: If (u~,u™) € H(£2) x
H} (RY\$2) solves the transmission problem, then (u,¢) € H solves (47),
where u == u”|p — [u"ds € Hé/Q(F) and ¢ := du™ /Ov|r € HJI/Q(F).
Conversely, if (u,¢) € H solves (47), then the Cauchy data of u~ are given
by (u™,0u™/Ov)|r = (u + ug, ¢) with

I (5 ( f—3Vg+Ve—Ku)ds

R.
J-1ds €

U =
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The solution (u~,u™) is then obtained from the representation formulae in 2
and R\ 2.

The mapping properties of the involved boundary operators [24] shows
that A : H — 'H is continuous and H-elliptic with respect to the canonical
norm || (v, ¥)[13, := [|v]|3, /ey T 113, - 12y I fact, elementary calculations

show that the (non-symmetric) bilinear form

(.9, (0 0)) = (A( ) () (52)

induces an equivalent norm || - || which satisfies

I, I = 1617 + ulliy = Cenll(u, )17, for all (u, ¢) € H (53)

with the energy norms || - ||y and || - ||w from Section 6 and 7, respectively.
Note that || - || is indeed a Hilbert norm, but (-,-) is not the corresponding
scalar product! Let 7y be a shape-regular triangulation of I" and let 7, be
obtained from 7y by ¢ € N red-refinements. Set

PE(T) :={vy € PP(T) : / vp ds = 0},
r
set
Sn=83(T) x PY(T) and Sy = S3(Tw) x Po(Th).

Theorem 9. Provided (u,¢) € H N (H*™(Ty) x H'*(Ty)) for some e >0
and ¢ large enough, Assumptions (AA) and (DP) hold and therefore Theorem 1

applies with ny = min_ |[(un, én) — (ve, om)ll-
(veYH)ESH

Proof. Assumption (AA) follows from the regularity of (u,¢). The inverse
estimates (25) and (35) lead to

[HY2(NVom, )l e2cry < e N wm, vr)]l - for all (vg, ér) € Sp.
Since the L2-projection II{ : L?(I") — P°(T},) preserves the vanishing integral
mean (i.e., I}y € P§(T,) provided [, ¢g ds = 0), (26) and (36) yield

Ilvm, ) — (G} v, i)l < OB (Vow, )l L2 (ry.

where G}V : Hé/z(l“) — S3(71,) denotes the Galerkin projection with respect
to W from Section 7. The combination of the previous two inequalities results
in

I(ve, ¥r) = (vn, ¥n)ll < (M10H2, 1/24/2

= ma mi
(vr 1) €SE\{O} (vn,tn) ESH (e, el = Capx Cinv
This implies (DP) for sufficiently large £. |

Remark 7. For an adaptive mesh-refinement, the non-local energy norm is
localized via the localization arguments from the previous sections; further
details are straightforward and hence omitted.
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9 Numerical Experiments

This section provides some numerical experiments for the proposed error es-
timation. We only consider the symmetric case, where (-,-) defines a scalar
product and give the numerical results with respect to the energy norm, cf.
Section 3.1-3.2. Throughout, we compare uniform mesh-refinement with an
adaptive mesh-refinement, which is based on the local contributions of our
averaging error estimators as refinement indicators.

9.1 Adaptive Mesh-Refinement

The mesh-refinement strategy is formulated in the following adaptive algo-
rithm from [12], which is stated for the finite element method from Section 5.

Algorithm 1 Choose a regular initial coarse mesh TP(IO), k=0,¢¢€N and
0<H<1.

(i) Obtain Th(k) ={Ty,...,T,,} from ’]}(Ik) ={m,...,78} by € uniform refine-
ments.

(ii) Compute the approxzimation ugk) for the current mesh ’Th(k),

(iii)Compute the error estimator nyr and the corresponding refinement indi-
cators nar,; from (16).

(iv)Mark element 7; for red-refinement provided the corresponding refinement
indicator satisfies nar; > @ max{nar1,..., MmN}

(v) Use a red-green-blue mesh-refinement strateqy to obtain a regular coarse

mesh Tlgkﬂ), update k, and go to (i).

Note that we do the adaptive mesh-refinement on the coarse grid level to
obtain a sequence of meshes Tb({k). Surprisingly, our numerical experiments
give empirical evidence that one may choose ¢ = 1 in Algorithm 1. That is,

)

the corresponding fine mesh 7;L(k , on which we compute our discrete solution

up, is obtained by one uniform refinement of Tlgk). We remark that the choice
of # = 0 leads to uniform mesh-refinement. To obtain an adaptive mesh-
refinement, we choose # = 0.5 in the subsequent experiments.

In the formulation of Algorithm 1, we consider the local contributions
nm,; of nar as refinement indicators. Alternatively, one may choose the local
contributions of the (efficient) error estimator p7 from (17),

/Ln,j = qe%lli?rj) HVuh — (I||L2(7—j) = ||Vuh — HH(VUh)||L2(7—j)~ (54)

9.2 Visualization of Numerical Results

In all experiments we plot the Galerkin error |u—up,]|| and the error estimators
Ny and pyy against the number n = #7; of fine grid elements for uniform
(# = 0) and adaptive (6 = 0.5) mesh-refinement, respectively. Throughout,
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we choose the parameter / = 1 in Algorithm 1. The error is computed by use
of the Galerkin orthogonality

lu = unll® = flul® = llun]®. (55)

The squared energy norm of the discrete solution uj reads |Jusf|?> = x - Ax
with the stiffness matrix A and the coefficient vector x corresponding to up,.
The norm |Juf|? can, in principle, be computed exactly. However, we use the
value [|uf|?> which is obtained by Aitkin’s AZ-extrapolation as follows: For

a sequence ’Th(k) of uniformly refined meshes, we compute the sequence of

)|||2, where uglk) is the discrete solution corresponding to

energies Ej, = |||u§bk
the triangulation Th(k). Extrapolation of the sequence Ej then yields a good
approximation of [Ju|?.

From our analysis in Section 2 and Section 5, respectively, we know that

ny and pgy are efficient, i.e. there holds

pir <y < Cegllu — ual|

with efficiency constant Cog < 1 4 0,y and the approximation constant
e = |lu — Gru|/|lu — up| from Assumption (AA). Provided dpm stays
bounded, we therefore expect that the curves corresponding to 1y and
have at least the same slope as the curve corresponding to ||u — uy||. For
smooth u, 6,y tends to zero with h. Therefore, the experimental efficiency
constant Cog := nar/|lu — up|| < 1 — 0pp is expected to satisfy Cog < 1 at
least for the limit case for a finer and finer mesh-size h. Therefore, the absolute
values and hence the curves of the error estimators should be below the curve
of the error. Provided 7y, is also reliable, i.e. |Ju —up|| < Crenas, the quotient
Il — wnll/nas is bounded. In this case, the slopes of the curves corresponding
to |lu — up|| and nas are the same, i.e. the curves are parallel.

To study the efficiency and reliability of 7y even in the case that
the solution u is non-smooth, we plot the experimental reliability constant
Crel := |lu — un||/mar and the approximation constant dpr in dependence on
the number n = #7}, of fine grid elements. The Galerkin error ||u — G gul| for
the higher-order method is computed as in (55).

9.3 Finite Element Method with Smooth Solution

For our first numerical experiment, we adopt the notation from Section 5. We
consider the Dirichlet problem (11) on the unit square 2 = (0,1)? C R? with
I'p =982 and

f(z) = (K*7?/2) sin(z1kn/2) sin(zokm/2).
The exact solution is then given by

u(z) = sin(z1kr/2) sin(zakm/2),
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Fig. 1. Error |u — un| and error estimators s and w7 in Example 9.3 in depen-
dence on the number of fine grid elements n = #7;,. We observe optimal order of
convergence O(n~/?) for error and error estimators and independent of uniform
(indicated by wnif.) and adaptive mesh-refinement (indicated by ad.). The values of
the error estimators 7y and pr coincide up to rounding errors. The error estimation
is reliable and efficient.

and therefore u satisfies the smoothness assumptions of Theorem 3. Accor-
ding to the Bramble-Hilbert lemma, we expect that uniform mesh-refinement
leads to the optimal order of convergence O(h) for the error |ju — ||, which
is computed by (55). Aitkin’s A2-extrapolation yields ||ul|? = 44.4132.

In Fig. 1 we plot the error |[u — up|| as well as the estimators nas and pup7.
Note that the optimal order of convergence O(h) for Pl-elements corresponds
to O(n~'/?) in terms of elements n = #7;,. Both, uniform and adaptive mesh-
refinement, lead to the optimal order of convergence for the error. Moreover,
we observe that ny; and pj; coincide and that both are efficient and reli-
able. We stress the reliability of 1y, which is analytically only predicted for
sufficiently large ¢ € N, whereas we use the minimal possible choice ¢ = 1.
Moreover, note that we have only proven p < nps. In our experiment, there
holds even 7 = np up to rounding errors.

In Fig. 2 we plot the approximation quotient §pz. From standard ap-
proximation results and h ~ H for the local mesh-sizes, we know that the
nominator converges like O(h?), whereas the denominator is O(h), i.e. we ex-
pect 0,y = O(h). This is what is observed experimentally in Fig. 2. Moreover,
we plot the experimental reliability constant Cye := ||u—up||/nar. We observe
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Fig. 2. Quotient dpuy = |u — Grul/|u — us| in approximation assumption (AA)
and experimental reliability constant Crer := |Ju — un|/na for Example 9.3. For

both, uniform (indicated by unif.) and adaptive mesh-refinement (indicated by ad.),
Onp tends to zero with the theoretically expected order O(nil/Q) with n = #7,,.
The experimental reliability constant Cie is slowly decreasing with absolute values
~ 1.13 at the end of the computations (n = 32768 resp. n = 24016)

that it is slowly decreasing with absolute values about 1.13 at the end of our
computations.

9.4 Finite Element Method with Weakly Singular Solution

For our second example, we again adopt the notation from Section 5 and
consider the Dirichlet problem (11) on the L-shaped domain 2 = [—1,0]* U
[—1,0] x [0,1] U [0,1]? with I'p = 92, cf. Fig. 3 which also shows the initial
coarse mesh 7, b({o). The right-hand side is constant f(z) = 1. The solution
u(z) is known to be a bubble u € H'*?/37¢(0), for all ¢ > 0, with sin-
gularity at the reentrant corner (0,0). Therefore, uniform mesh-refinement is
expected to lead to a suboptimal (experimental) convergence rate for the error
llu — un|| = O(R?/3) which can usually be cured by adaptive mesh-refinement.

In Fig. 4 we plot the error |lu — up| and the error estimators 7y,
and 7, where the error is computed by (55) with the extrapolated value
llul> = 0.214076. As in Example 9.3, we observe that for both, uniform and
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Fig. 3. In Example 9.4, we consider the L-shaped domain 2 = [~1,0]* U [~1,0] x
[0,1] U [0, 1]2. The initial coarse mesh 7, f(lo) consists of N = 6 rectangular triangles.

adaptive mesh-refinement, the error estimators 7y, and pj coincide up to
rounding errors. Independent of the mesh-refining strategy, the error esti-
mators are reliable and efficient. For uniform mesh-refinement, we observe
a suboptimal order of convergence O(n~2/%) which corresponds to O(h*/?).
This is slightly better than the expected order of O(hz/ 3). For adaptive mesh-
refinement, we retain the optimal order of convergence O(n~'/?) after a pre-
asymptotic phase (up to about n = 900 elements), where we observe the same
order of convergence as for the uniform refinement.

In Fig. 5 we plot the approximation quotient dpy and the experimental
reliability constant Crel := ||u — up||/na. For uniform mesh-refinement, the
corner singularity of © dominates the convergence behavior so that we observe
ong = O(1). For adaptive mesh-refinement, however, we obtain the optimal
order 5 = O(n~'/2). The experimental reliability constant Cye is slowly
decreasing in case of adaptive mesh-refinement with absolute value about
1.15 at the end of our computation (n = 43040). In contrast, for uniform
mesh-refinement, Ci is slowly increasing and is about 1.39 at the end of our
computation (n = 24565).

9.5 Symm’s Integral Equation
Finally, we consider the integral formulation of the Poisson problem
AU =0in 2 and U =gon I =91, (56)
which is formulated as Symm’s integral equation [24]
Vu = (K +1)g, (57)

where V' is the single-layer and K is the double-layer potential from (19)
and (49), respectively. Then, the exact solution of (57) is just the normal
derivative u = U /dn of the solution U from (56) on the boundary I'.
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Fig. 4. Error |u — up| and error estimators nas and pr in Example 9.4 in depen-
dence on the number of fine grid elements n = #7},. For uniform mesh-refinement
[indicated by wnif.], we observe a suboptimal order of convergence O(niQ/ 5) for
error and error estimators. This is cured by our adaptive mesh-refining strategy [in-
dicated by ad.], which leads to optimal order of convergence O(n~'/?). The values
of the error estimators nas and pyr coincide up to rounding errors. Independent of
the mesh-refinement, the error estimation is reliable and efficient.

We adopt the notation from Section 6. The presented numerical results
are taken from [12]: We consider a rotated L-shaped domain shown in Fig. 6.
The Dirichlet data are chosen such that the exact solution U € H*(£2) of (56)
reads

U(z) = r2/3 cos(2¢/3)  in polar coordinates z = 7 (cos g, sin ¢).

Then, the exact solution u € H~'/2(I") of Symm’s integral equation (57) is
given by

2

u(@) = 4 (wlp) -n(z)) ot (58)
with
[ cos(ip) cos(2¢/3) + sin(p) sin(2¢/3)
wle) := (sin(gp) cos(2¢/3) — cos(y) sin(2gp/3)> ’ (59)

Fig. 6 shows the initial coarse mesh TIE,O) as well as the exact solution u
from (58) plotted against the arclength of I'. The singularity of u at (0,0)
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Fig. 5. Quotient dpu = |Ju — Gru|/|u — us| in approximation assumption (AA)
and experimental reliability constant Crei := [Ju —us | /nas for Example 9.4. For uni-

form mesh-refinement [indicated by unif.], the corner singularity of u dominates the
convergence behavior so that we observe d,g = O(1). For adaptive mesh-refinement
[indicated by ad.], we observe optimal convergence of dnr = O(n~/?). The ex-
perimental reliability constant Ce is slowly decreasing in case of adaptive mesh-
refinement with absolute value = 1.15 at the end of the computation (n = 43040).
However, for uniform mesh-refinement, C.. is slowly increasing with absolute value
~ 1.39 at the end of the computation (n = 24576).

is visible at arc-length parameter s = 0 and s = 2 by periodicity. Aitkin’s
AZ-method gives [Juf|? = 0.404116.

We consider uniform (f = 0) and adaptive mesh-refinement (¢ = 1/2),
where we use the local contributions of the error estimator pz from (30) as
refinement indicators in Algorithm 1. Again, we restrict to the minimal choice
{ =1 to obtain 7, from 7g.

Fig. 7 shows the numerical results on the convergence of the error ||u—up||
and of the error estimators nas = ||up, —Grup| and par, nir and ppr from (27)—
(28), respectively. We plot the error and the error estimators in dependence
on the number of fine grid elements n = #7,. Note that an experimental
convergence rate O(h") now corresponds to O(n~ ") in terms of fine grid
elements, since we are dealing with a 1D discretization.

Uniform mesh-refinement leads to a suboptimal order of convergence
O(h?/?) which is due to the singularity of the exact solution at the reentrant
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Fig. 6. In Example 9.5, we consider a rotated L-shaped domain (2 (left). Further-
more, the plot shows the initial coarse mesh 7, ,;O) with NV = 8 elements and uniform
mesh size H = 1/4. The exact solution u from (58) is plotted over the arc-length
s=0,...,2 (right), where s = 0 and s = 2 correspond to the reentrant corner (0, 0),
where wu is singular.

corner and which can be predicted theoretically. The fact that the slope of the
corresponding error estimators even is 2/3 gives empirical evidence that the
estimators are reliable and efficient although the solution lacks the regularity
assumed in Section 6. The proposed adaptive algorithm cures that shortcom-
ing in the sense that it leads to the optimal order of convergence O(n_3/2)
for the error, where we used the local contributions of pj7 as refinement in-
dicators. Due to numerical instabilities in the computation of the matrices
corresponding to Gy, we can only present the results for pys, nys and n up
to about n = 300 elements in the case of adaptive mesh-refinement. This cor-
responds to an error about 10~7/2 for the higher order method. The explicit
values of nys and ny; as well as the explicit values of s and pyr coincide
up to 2% so that there is no difference visible in the corresponding curves.
Moreover, all four estimators show numerical evidence for efficiency and relia-
bility. The computation of p 7 is stable as it only involves the computation of
some L?-mass matrices, and the condition numbers of which are O(1) under
some mild restrictions on the triangulation. The p 7 steered mesh-refinement
retains the optimal order of convergence O(n=3/2).

10 Conclusions

In this paper we provided an abstract analytical setting for the study of the
reliability and efficiency of a posteriori averaging error estimators. The ab-
stract setting applies to the Galerkin method for both, differential and inte-
gral equations, under weak assumptions on the finite elements or boundary
elements used. The strongest assumption is a (piecewise) high regularity of
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Fig. 7. Error |Ju — un| and error estimators nas, nm, pam, and pr for uniform

(indicated by unif.) and p-adaptive (indicated by ad.) mesh-refinement in Exam-
ple 9.5. Uniform mesh-refinement leads to a suboptimal order of convergence. This
is improved by the proposed adaptive strategy, which retains the optimal order of
convergence. In both cases, the error estimation is reliable and efficient. The error
estimators nys and nr as well as pa and ppr coincide up to 2%.

the exact solution u. We recalled an adaptive algorithm from [12] which steers
the mesh-refinement with respect to some localized error estimators. In the
numerical experiments we considered examples with different regularity. In
our experiments and in the experiments of [12, 13, 21] the adaptive strategy
retains the optimal order of convergence and is therefore superior to uniform
mesh-refinement.

However, there are still some gaps in the analysis: First, the introduced
error estimators are only proven to be reliable if the parameter £ € N in
Algorithm 1 is large enough. In the experiments we used the minimal choice
¢ =1 throughout. Nevertheless, we always observed the reliability. Second,
the analytical verification of the introduced error estimators needs a high
regularity assumption on u. However, this regularity assumption might be
nonsatisfied in practice. Since our numerical experiments indicate that this
assumption can be weakened, it would be desirable to have a refined analysis
that covers these cases as well, i.e. which either avoids a regularity assumption
on u or explains the good performance of the indicator-based adaptive strategy
analytically.



Averaging Techniques for a Posteriori Error Control 57

10
G)——Q<ﬁ)"'
\_\\Y]S
—— Cye (unif.)
Fe— 65, (unit.)
b Cpep (ad.)
H— 6ppr (ad)
107" : :
10’ 10° 10° 10"
number of fine grid elements
Fig. 8. Quotient dpug = |lu — Grul/|u — un| in approximation assumption (AA)
and experimental reliability constant Crei := |Ju — up||/nar for uniform (indicated

by unif.) and pr-adaptive (indicated by ad.) mesh-refinement in Example 9.5. Note
that according to the scaling of the y-axis, Cyel is almost constant.
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Summary. The finite element method and the boundary element method often
have complementary properties in different situations. The domain decomposition
technique allows to use the discretization method which is most appropriate for the
subdomain under consideration. The coupling is based on the transmission condi-
tions. The Dirichlet to Neumann (D2N) and Neumann to Dirichlet (N2D) maps are
playing a crucial role in representing the transmission conditions. In this paper we
study the D2N and N2D maps and their finite and boundary element approxima-
tions. Different formulations of the transmission conditions lead to different domain
decomposition schemes with different properties. In any case we have to solve large
scale systems of coupled finite and boundary element equations. The efficiency of
iterative methods heavily depends on the availability of efficient preconditioners. We
consider various solution strategies and provide appropriate preconditioners result-
ing in asymptotically almost optimal solvers.

1 Introduction

Domain Decomposition (DD) Methods provide not only the basic technology
for parallelizing numerical algorithms for solving partial differential equations
(PDEs) but also for coupling different physical fields and different discretiza-
tion techniques. Beside the Finite Volume Method (FVM) and the Finite
Element Method (FEM), the Boundary Element Method (BEM) is certainly
one of the most popular discretization techniques for PDEs. If we compare
the FEM with the BEM, then we observe that both methods have advantages
and disadvantages in different situations. It is commonly known that the BEM
can easily treat unbounded regions whereas the FEM requires special modi-
fications for this case. On the other hand, the FEM is very flexible and can
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be applied to very general problems including PDEs with varying coefficients
and non-linear problems. However, beside unbounded computational regions,
there are a lot of other problems where we can benefit from using boundary el-
ement discretization. Large air subdomains or rotating subdomains which are
typical for electromagnetical problems, e.g., electrical machines, belong to this
class of problems. Also the approximation of singularities can be handled much
easier by a boundary mesh than by a volume mesh. Sometime only the com-
plete Cauchy date are needed on the boundary of the computational domain
or on the skeleton of a domain decomposition. In this situation, we would like
to avoid the meshing of the domain or of the subdomains. A similar situation
arises if we are only interested in the solution or in derivatives of the solution
in some points or in some small subdomains. Therefore, it is certainly very
attractive to develop coupling algorithms and software that can handle both
the finite element and the boundary element technologies. There are many
early contributions to the FEM-BEM coupling in the engineering literature,
see, e.g., [6, 58, 59]. Most of them are using the collocation technique on the
boundary element side that does not really fit to the finite element Galerkin
technique. Moreover, there was some other drawback of the classical boundary
element methods. They produce dense matrices. The breakthrough through
this complexity barrier was achieved by developing data—sparse approxima-
tion techniques like the fast multipole method [9, 42], panel clustering [21],
H-matrix approaches [20], Adaptive Cross Approximation (ACA) methods
[2, 3], and wavelet approximations [14, 43].

In the mathematical literature, there are also some early works on un-
symmetric Galerkin BEM-FEM couplings by F. Brezzi and C. Johnson [8],
C. Johnson and J. Nédélec [27] and others at the end of the 70ies and at the
beginning of the 80ies. These results are based on the use of the first bound-
ary integral equation using the single and double layer potentials only. In
fact, the analysis requires the compactness of the double layer potential and
therefore smooth boundaries have to be assumed. Since we are interested in
domain decomposition techniques with Lipschitz subdomains, we heavily rely
on the symmetric coupling that was first proposed by M. Costabel in [11]. This
approach makes also use of the second boundary integral equation with the hy-
persingular boundary integral operator. The symmetric formulation can also
be generalized to non-linear problems such as elastoplastic problems [13, 40].
G. C. Hsiao and W. L. Wendland first used the symmetric coupling tech-
nique for constructing symmetric boundary element domain decomposition
equations [26]. The first fast solvers for coupled finite and boundary element
domain decomposition equations were proposed and analyzed by U. Langer
[32]. The classical Finite Element Tearing and Interconnecting (FETT) meth-
ods, which were introduced by C. Farhat and F.-X. Roux [17] in 1991 as a
dual version of the classical iterative substructuring methods, and, in partic-
ular, the more recently developed dual-primal FETI (FETI-DP) and BDDC
(Balanced Domain Decomposition by Constraints) methods are now well-
established as efficient and robust parallel solvers for large—scale finite element
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equations. We refer the reader to the recently published monograph [55] by
A. Toselli and O. Widlund for more informations about the relevant references
and for the analysis of FETI methods. U. Langer and O. Steinbach have re-
cently introduced the Boundary Element Tearing and Interconnecting (BETT)
methods [36] and the coupled BETI/FETI methods [37]. Inexact data—sparse
BETI methods were discussed in [33]. The hybrid coupling of finite element
methods and boundary element methods as a macro element was considered
by G. C. Hsiao, E. Schnack and W. L. Wendland in [24] for general second
order elliptic systems, and in [23] for applications in elasticity. Hybrid domain
decomposition methods based on the approximation of the local Dirichlet to
Neumann mappings by finite and boundary element methods and a related
stability and error analysis were given by O. Steinbach in [48].

This paper provides a unified approach to the construction, analysis and
solution of coupled finite and boundary domain decomposition equations.
The potential equation with piecewise constant coefficients serves as a simple
model problem. On an appropriate domain decomposition, such a special po-
tential problem and similar elliptic boundary value problems in general can be
reformulated as variational problems defined on the skeleton of the domain de-
composition. These skeleton variational formulations reflect the transmission
conditions which can be incorporated in different ways. The local Steklov—
Poincaré (D2N) and Poincaré-Steklov (N2D) operators play an important
role in these formulations. These operators can locally be approximated by
finite and boundary element methods. We discuss and analyse these approxi-
mations. Finally we have to solve large scale coupled finite and boundary do-
main decomposition equations which are in general symmetric, but indefinite.
Reductions to symmetric and positive definite Schur complement problems are
always possible, but not always recommendable for efficiency reasons. Primal,
primal-dual and dual iterative substructuring solvers require asymptotically
almost optimal and robust preconditioners. Such preconditioners can be con-
structed by the use of boundary element technologies for both the boundary
element and the finite element blocks.

The rest of the paper is organized as follows: In Section 2, we consider the
Dirichlet boundary value problem for the potential equation with piecewise
constant coefficients as a typical model problem and study the local Steklov—
Poincaré and Poincaré-Steklov operators as well as their finite and boundary
element approximations. Section 3 is devoted to different domain decomposi-
tion methods. We consider two types of symmetric coupling techniques. The
Dirichlet domain decomposition methods presented in Subsection 3.1 require
the strong continuity of the primal variable (the potentials) whereas the Neu-
mann domain decomposition methods studied in Subsection 3.2 require the
strong continuity of the dual variables (the fluxes). The tearing and intercon-
necting technology allows us to develop a unique approach to both domain
decomposition techniques. In contrast to the primal-dual tearing and inter-
connecting methods, we prefer the all-floating technique that was introduced
by G. Of [38]. In Section 4, we discuss the iterative solution of the linear
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systems arising in Section 3 and provide preconditioners leading to asymptot-
ically almost optimal and robust solvers. Finally, we draw some conclusions
in Section 5.

2 Boundary Value Problems

Let 2 C R? be a bounded domain with Lipschitz boundary I" = 942. As
a model problem, we consider the Dirichlet boundary value problem for the
potential equation,

—div|a(x)Vu(z)] = f(z) forxz e 2, ulx)=gx) forxel (1)

where g € HY?(I') N C(I") is a given continuous function. We assume that
a(+) is piecewise constant with a(z) =a; > 0 for z € 2; and fori =1,...,p,
where we have given a non—overlapping domain decomposition

p
.Q:U.Qi, Qiﬁﬂjzﬂ) fori;éj, I; = 092, Fij:Fiij
=1

of the computational domain {2 into p Lipschitz subdomains §2;. Moreover,

P
FSZUFZ':FUF[ and FI:UFij

i=1 i<j

denote the skeleton and the interface of the domain decomposition, respec-
tively. Instead of the global boundary value problem (1), we now consider the
local boundary value problems

—o;Aui(x) = fi(x) forz e 2, wi(zx) = g(x) forxel;NT  (2)

together with the transmission conditions

ui(z) = uj(z), o 0 u;i(z) + 0 uj(z) = 0 forx € I}, (3)
8 7 5‘nj
where f;(z) = f(x) for x € ;. In what follows, we will describe some vari-
ational formulations for domain decomposition methods which are based on
the local solution of either Dirichlet or Neumann boundary value problems.
The idea behind is that all solutions u; of the local boundary value problems
(2) are known as soon as the Cauchy data along the coupling boundaries I
satisfying the transmission conditions (3) are determined.

2.1 Dirichlet Boundary Value Problems

We start with the local Dirichlet boundary value problem for a given contin-
uous function g; € HY?(I};) N C(I7)
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—o;Aui(x) = fi(x) forx € 2, wi(z) = gi(x) forxel; (4)

where the weak solution u; € H'(£2;) is well defined. Moreover, the normal
derivative t; = n; - Vu; defines the associated Neumann datum. The solution
of the local Dirichlet boundary value problem (4) therefore defines the local
Dirichlet to Neumann map g; —— t;. Hence, we have to find the correct
Dirichlet datum g; such that the transmission boundary conditions (3), i.e.,

ui(z) =uj(z), aiti(z) + o tj(x) =0 forz € I3,

are satisfied along the coupling interfaces I;. To describe the local Dirichlet
to Neumann map we may consider either a domain variational formulation
or boundary integral equations to obtain explicit representations of the local
Steklov—Poincaré (Dirichlet to Neumann) operators involved.

Domain Variational Formulation
The associated variational formulation of the local Dirichlet boundary value
problem (4) is to find u; € HY(£2;), u;(x) = g;(x) for x € I}, such that

/aiVui(x) -V (z)de = /fz(x)vz(x)dx (5)

2; 2;
is satisfied for all test functions v; € H(§2;). As usual, H'(£2;) is the closure
of C*°(£2;) with respect to the norm

5 9 1/2
loillron = [loillda + 190l

However, in what follows we will use an equivalent norm in H!(2;) which is
given by
9 1/2

odmonn = || [otds: | + Vol
I

Moreover, H}(§2;) = {v; € HY(§2;),v;(x) = 0 for z € I';}. The bilinear form

ag; (vi,v;) = / [Vui(2)Pdz = | Vill}, 0, = l0ilFn oy for vi € Hy (1)
£2;

defines an equivalent norm in H} (£2;), i.e., (ag, (vi,v;))'/? is the energy norm

in H}(£2;). By taking the trace of H'({2;) we may define the trace space
H'/2(I;) which is equipped with the norm

ollmry = di 1V 01
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For g; € H'/2(I}), there exists a bounded extension u,, = Eg; € H(£2;)
satisfying

lug:ll 12, r = 1€igillmran,r < cellgill airer,)-

A particular choice would be to consider the harmonic extension u,, € H'(£2;)
as the unique solution of the variational problem

/Vugi (z) - Vui(z)de = 0 for all v; € H}(£2;).
2;

It remains to find u; o € H&((Zi) such that the homogenized variational prob-
lem

/aiVuiyo(x) -V, (x)dx = /fi(x)vi(x)dx — /aiVugi () - Vi (x)dx (6)
is satisfied for all v; € HE(§2;). For u;,v; € HE(£2;), the bilinear form
00, us0,03) = [ Vuso(o)  Voslz)ds = (A, otsa,i)
02;
induces, by the Riesz representation theorem, a bounded linear operator
Ag, o0 Hy($2:) — HH($%) = [Ho (2:)]'.
In addition, for uy, € H'(§2;) and v; € H}(§2;) we define the bounded operator

Ar, - HY($2;) — H71(82;) satisfying

(Arug,,vi)o, = /Vugi (x) - Vi (x)da.
2

Hence, we can write the variational problem (6) as an operator equation to
find u; o € H}(£2;) such that

a;Aq, otio = fi — G ArEigi € H'(1%). (7)
The operator Ag, o : Hi(£2;) — H~($2;) is H}($2;)—elliptic, i.e., for all
v; € H}(£2;), we have

(A, 0vi,vi) 0, =/|Vvi($)|2d3«“= ”VWHQLQ(_@) = ||UiH§11(m),n~
£2;

Hence, there exists the unique solution of the operator equation (7),

1 _
Uq,0 = aAAQilyofi - AQ}}oAFigigi € H&(Qi)a
T
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and, therefore, u; = uo; + u, € H'(£2;) is the weak solution of the Dirichlet
boundary value problem (4). In particular, from

(fi,vi) e, S (firwi0) 0

I fill r-1(2) = sup >
oved (@) Vil r — lluioll e,
o
[ V(o) + g @] Vaso(o) do
lwiollm(2:),r
02;
(7] ) 9 _ , :|
> ol . V8 = 19030l Vit 12,
= Q4 [HVULOHLz(QL) - Hvuga Lz(Qi)} )
we find 1
IVuiolleaeny = Ifilla-1000) + Vgl za(2)-
In particular, for f; = 0, we therefore have
2
lwill 3o = /gi(ﬂ?)dsx + [IVuiollZ, 0
I
2
< /gi(x)dsx + Vg, %2(9,;)
I
= [lug, ?{1(@),11 < cg 9@'”?{1/2(5),
ie.,
lwilltr2.),r < cellgill ey (8)

It remains to find the associated Neumann datum t; = n; - Vu;, € H~/ (L),
where H=Y/2(I;) = [HY?(I3})]’ is the dual space which is equiped with the
norm

(T, wi)r,

I7ill pr-1/2 ;) = sup S
’ () 0£w; €H/2(Iy) ||wi||H1/2(r,-,)

Using Green’s first formula, t; € H~/2(I7}) solves the variational problem

/aiti(m)wi(x)dsx = /aiVui(x)-V&wi(x)dx—/fi(a:)&wi(x)dx (9)
£2;

I £2;

for all test functions w; € H'/2(I}). Using duality arguments, we then obtain
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ti, wi)r;
T
0#£w; €HY/2(I,
1 1
= sup (Vui, VE&wi) o, —  (fi, Eiwi) o,
0#£w; € H/2(I%) ”leHl/?(F) Q;

||5‘wi||H 1(£2;)

0£w; €H/2(Ty) ”leHl/?(F)

IN

{||U1|H1(n)+ ,|fi|ﬁ1m,,,>}

A

< ce. luslimcan + o 1illa-scay)

where H1(£2;) = [H'(£2,)]'. The local Neumann datum ¢; therefore depends
only on the given right hand side f; and on the prescribed Dirichlet datum
g;. Hence we have given a Dirichlet to Neumann map as

aiti(z) = a;(Sigi)(x) — (Nifi)(z) forx € I,

where we have used the local Steklov-Poincaré operator S; : HY/2(I}) —
H~Y2(I}), and the Newton potential N; : H=(£2;) — H~Y?(I}) as given
below. In particular, for f; = 0, we therefore have t; = S;g; satisfying

ill /2y - (10)

If we define the linear operator Ag, : H(£2;) — H~'(£2;) via the Riesz
representation theorem as

1S:gill 172y = Wtill g-172(r,

(Ag,ui,vi) 0, = /Vui(ac) - Vo;(z)dx  for u;,v; € Hl(Qi),
£2;

we can rewrite the variational formulation (9) as
ai(ti,wi)r, = ai/Vui(x) -VEw;(z)dx — /fz(x)&wz(x)dx
2,

i

= a;(Ao,ui, Ewi) o, — (fi, Ewi) o,
= a; (Ao, [uio + ug,], Ewi) o, — (fi, Ewi) o,
(

i (A w0, Ewi) o, + iAo, ug, , Eiwi) o, — (fi, Eiwi) o,
= (AL uio + aiAg,ug, — fi, Ewi)q,,
and, therefore, as the following operator equation,
aiti = & [ A, ug, + i A uio — fi]
=& |:OéiAQiUgi + o AL (;,Anf,ofi - Anf70Apiugi> - fz}

= ;€] [AQ — A A OAF} Eigi + & [A'FiA;L{O _ 1} il
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where A7, and & are the corresponding adjoint operators. Hence we can
represent the Steklov Poincaré operator as

Si= &l [Ao, — Ap AgloAn] &« HYP(I) — HOVA(T) (1)
and the Newton potential as
Ni= € |AnAgly— 1|+ H™ (2) — H™(L). (12)

Theorem 1. The Steklov-Poincaré operator S; : HY/?(I;) — H~'/2(I}) as
defined in (11) is bounded,

Sigi Nl sy for all g; € HY(Ty),

and HY/2(I3;)-semi-elliptic, i.e.,

(Sigi-gi)r, > | gill3nocry  for all g; € Hy'*(I),
where
Hé/Q(Fi) = w; € HY2(I}) - /wi(x)dsgC =0
I
In particular, for g; =1, we have S;g; = 0.
Proof. The boundedness of the Steklov—Poincaré operator S; is just the esti-
mate (10). Using (9) with f; =0, for g; € Hé/2(Fi), we get

(Sigirgi)r, = (b0, g3 = / Vui(z) - Vuy, (2)dz

£02;

- / Vua(2) - Vug, (x) +uio(@)dz = 2,
£2;
2

= /gi(x)dsz + |ul|H1(Q )y = HulHHl(Q ), T
r;

Now the H'/?(I})-semi-ellipticity follows from the trace theorem. O

Finite Element Approximation

To define an approximate Dirichlet to Neumann map we first introduce the
local finite element trial spaces

Sp($2;) = span{o; 1oty € H'(£2;)
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and _
S}L,O(Qi) = Sp(2) NH (1) = Span{(b%,k}ﬁﬁMﬂrl

of piecewise linear basis functions gzﬁz{k with respect to some regular finite
element mesh (2; j, characterized by the local mesh-size parameter h;. Note
that the basis functions (b}’k, k=M,+1,..., J\Ajz correspond to the interior
degrees of freedom, while the remaining basis functions gzbzl, ok =1,...,M;

are associated to degrees of freedom on the boundary.
Let

M;
1
Ug, h(x) = Zugi (xi,k)QSi,k(x)
k=1
be the piecewise linear interpolation of the continuous extension ug4,. The

finite element approximation of the local variational problem (6) is to find
Ui 0,n € S}L,O(Qi) such that

/aiVui7o7h -V, p(x)dr = /fi(x)vi,h(x)dx — /aiVugi,h(x) -V, p(x)dz
2;

(13)
is satisfied for all v; 5, € S }110((21) This is equivalent to the Galerkin equations
(wz0s+ g (w1)) [ @0Vl (0) - VL oo
k=M;+1 0;

M,
- / [i@)6t @)z — S gilin) / VL4 (z) - Vol ,(x)dz
2, k=1

2;
forall { =M;+1,..., .7\7z Introducing the nodal values

Up ik = Ui0k + Ug, (Tig) fork=DM;+1,..., M,
UC ik = gi(x@k) fork=1,...,M;

as new unknowns, this is equivalent to a linear system
aiKII,iu[J' = fI.i — aiKCI,iuC,iv
where the local stiffness matrix is given by
Kirlt k] = [ Voly(o) Vol (oo
2;

for k,0 = M;+1,..., ]\A/[/i, while the vector of the right hand side is determined
by
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frie = /fi(ﬂ?)@,z(ﬂv)d%
£2;

In addition,

Korilt, k) = / VoL, (2) - VoL (x)de
2;

fork=1,...,M;; ¢ =M;+1,... ,J\Z. The solution vector
L -1
Ur; = - KII,ifI,i - KII,iKCLiuC,i
K3

defines an approximate solution u; ;, = ;0,5 + Ug,,» for which the error esti-
mate

lwi = winllzro)y,r < chilulmz()
provided that the regularity assumption u; € H?(§2;) holds.

Now, instead of the variational problem (9), we have to consider a per-
turbed formulation to find #; € H~/?(I}) such that

/aiﬂ(x)wi(x)dsx = /aiVui,h(x) -VE&w;(z)dx — /fi(x)&wi(x)dx (14)
I; 2; 2;

is satisfied for all test functions w; € H'Y?(I%). This implies an approximated
Dirichlet to Neumann map

aiﬂ(m) = ai(gigi)(x) — (]\Zfz)(a:) for x € I3,
where §i is an approximate Steklov—Poincaré operator which is defined via

the solution of the Galerkin variational formulation (13).

Theorem 2. [48] The approzimate Steklov-Poincaré operator S; : HY/2(I}) —

H~Y2(I3) as defined above is bounded and Hé/Q(Fi)felliptic. Moreover, there
holds the a priori error estimate

10S: = S)gillg-1r2(ryy < chiluilpz(o,)
when assuming u; € H?(£2;).
When choosing in (14) (bzl,l’ £=1,..., M; as a test function, this gives

s [l s@ids, = i [ Vusn(o) Voluorts ~ [ fiaol (oo
£2;

£

= ’ aiulj,k/vd)z{k(x) : qu;g(x)dx

1 2

x>
Il

M;
=S o / VoLo(x) - Vol ,(a)dz — / fi(@)6L (@) da
4 /
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= Z a;i Kol klur g + Z a; Kool kluck — fo,ie
k=1 k=%+1

= ai (Keoiuc,; + Kroiur,), — foie

o ([KCC,i - KIC,iKl_Il,iKCI,i] UC,i)e + (KCI,iKI_I%ifLi)e — feiz

Hence we obtain the discrete Dirichlet to Neumann map
ait; = aiS{RMue + KeriKipaf = f e, (15)

with the finite element approximation of the Steklov—Poincaré operator

FEM

ST = Keei — KioiK ' Keri. (16)

Boundary Integral Equations

Instead of using finite element discretizations of domain variational formula-
tions for the numerical solution of the local Dirichlet boundary value problem
(4), we now consider boundary integral formulations and their boundary ele-
ment discretization. The starting point is the representation formula

wlz) = [ U@ )ty)ds, - / o Ueai)ds, + [ U @)

that holds for z € §2;, where

1 1

U =

is the fundamental solution of the Laplace operator. To find the yet unknown
Neumann datum t; € H~/2(I}), we first consider the boundary integral
equation which results from the representation formula for z — I7,

[0 @ntis, - / o U @n)g)ds,~ [ U @) (),

i
r; 02;

(V;tz)(il,') = (;I-i- Kl)gz(x) — oi (leofl)(x) forxz € Fi. (17)

Here, x € I is assumed to be on a smooth part of the boundary I7. Since
we are using a Galerkin approach, such an assumption is sufficient. Moreover,
Vi : H-Y2(I;) — HY?(I3) is the single layer potential, K; : HY?(I}) —
H'/2(I}) is the double layer potential, and NzO C HY(8) — HY2(I) is
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the Newton potential. Since the single layer potential operator is H~/2(I7})-
elliptic and therefore invertible, we find the Dirichlet to Neumann map

1 _
a;ti(z) = Oéinl(QI + K;)gi(x) — V; ' Noif (2)

= ai(Sigi)() — (Nif)(z), z€l;

with the boundary integral operator representation of the Steklov—Poincaré
operator

Si = Vi I+ Kn) - HYAE) — HOVA(T), (18)

and with the operator
Ni = V;_lj\vfo,i . f[—l(gi) — H_l/Q(Fi).

Although the Steklov-Poincaré operator (18) is self-adjoint in the continuous
case, an approximation of this composed operator results in a non—symmetric
stiffness matrix in general. Hence we are interested in alternative representa-
tions which result in symmetric boundary element approximations.

Since the solution of the local Dirichlet boundary value problem (4) is given
by the representation formula, the application of the normal derivative to the
representation formula gives a second, the so—called hypersingular boundary
integral equation,

1 o _, 0 o . ‘
bw) = @)+ [ o Uetis = o [ o) U,
I; I

10 [,
o on [ U@,
£2;

() = ) + (K1) + (Dig)(@) — © (Neafi)(@) forz € I (19)
Here, K! : H'/2(I;) — H~Y*(I3) is the adjoint double layer potential,
D; : HY?(I';) — H~/2(I}) is the hypersingular boundary integral operator,
and Ni,l . H7Y(£2;) — H~Y2(I}) is the normal derivative of the Newton
potential. Inserting the first boundary integral representation of the Dirichlet
to Neumann map into (19) gives the relations

iti(@) = ai(Digi) ) + (1 + KD(auti) @) — (N f) @)
= a;(Digi)(x) + (;I + K7) OéiVi_l(;I-F Ki)gi(z) — V, Ny o fi(x)

_(ﬁl,if)(x)
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1 N 1,1
=ai |Di+ (I + KV (1 + Ki)| gi(z)

(Wi o)) — (T + KOV, Noofila)
= «;(Sigi)(x) — (N; f)(x) foraz e T;

with the so—called symmetric boundary integral operator representation of
the Steklov-Poincaré operator,

1 1
S; = Di+(2I+K§)V;_1(2I+Ki) - HY2(I) — H=Y2(1y), (20)

and with an alternative representation of
~ 1 ~ ~
Ni = Ni1+ (21+K1{)Vi_1Ni,0 D HON(2) — H V().

While the Steklov-Poincaré operator S; : HY/?(I%;) — H~'/?(I}) is bounded,
it is not obvious which Sobolev norms in H'/?(I%) and H~/2(I}) have to be
used, respectively. When using appropriate norms, explicit estimates can be
derived as in Theorem 1, where we used a trace norm to characterize H'/%(T7).

In the case of boundary integral operators a natural choice is to use norms
which are induced by the single layer potential and its inverse. In particular,

- =/ (Viw;, w;)r, and ||vz||v_1 = \/ Yo, vid

define equivalent norms of the Sobolev spaces H~/2(I};) and H'/?(I3), re-
spectively. Using both boundary integral representations (18) and (20) of the
Steklov—Poincaré operator S;, we obtain the estimate [52]

1
H(2I+K¢)vi|\v_71 < e (D) |villy-2 for allv; € HY2(I;), (21)

where

1 1
cx () = 2+\/4CY0?7 <1

is the contraction constant of the double layer potential ;I + K; defined by
the ellipticity constants CY” and ch i of the single layer potential V; and of the
hypersingular boundary integral operator D;, respectively.

Using (21) we find the boundedness estimate [52]

HSigi

(13) lgilly -+ for all g; € H'/*(I3) (22)
as well as the ellipticity estimate

(Sigisgidr, = [1=ex(T)] lgill}, - for all i € Hy*(Ih). (23)
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Since all representations of the local Steklov—Poincaré operators S; coincide,
the boundedness estimate (22) and the ellipticity estimate (23) are also true
for the definition (11) based on a domain variational formulation. Note that
the contraction rate cx (I7;) only reflects the shape of the subdomain, but does
not reflect the size or the diameter of the subdomain f2;.

Boundary Element Methods

For g; € H'Y/?(I3), the application of the Steklov—Poincaré operator S; in its
symmetric representation (20) can be rewritten as

1 1 1
Sigi = Digi + (2I+K{)Vf1(21+K¢)gi = Dig; + (2I+ K)wi,

where w; = V; ' (1T + K;)g; € H~Y/2(I3) is the unique solution of the local

3
variational problem

1
(Viwi, i), = ((21+ K)gi,7i)r;, forallm € H_l/Q(Fi).
Let
Sp(Iy) = span{y?, )V, C HV2(I)

be the boundary element space of piecewise constant basis functions 1/%0,n~
Using the Galerkin solution w; p, € S,?(F ;) satisfying

1
(Viwi n, Tin)r, = ((2I+ Ki)gismin)r, forallmi, € S, (24)
we may define an approximate Steklov—Poincaré operator by the relation

1
Sigi = Dig; + (21 + K})wip. (25)

Theorem 3. [48] The approzimate Steklov—Poincaré operator S, : HY2(I) —
H~'2(I}) as defined in (25) is bounded and Hé/Q(Fi)felliptic, i.e.,

<§igiagi>n > (Digi, gi)r; > ClDngiH?{l/Z([’i) for all g; € Hé/2(Fi)-

Moreover, there holds the a priori error estimate

> 3/2
1Si = S)gill-1720r) < eh2?(1Sigill m, iy

pw

when assuming Sigi € Hby(I3), i.e., uy € H*?($2;). Note that Hpyy(I;) is
the Sobolev space which is defined piecewise.

In the same way as above we may also introduce some approximation of the
volume potential N; f = VrlNo,if. In particular, N, »,f € S)(I;) is defined as
the unique solution of the Galerkin variational problem
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(ViNinfomin)r = (Nosifsmin)r, for all 7y, € SY(I3).

Let
M;
gin =) _ucipiy € Sh(I;)
k=1
be some piecewise linear approximation of the given Dirichlet datum g;. For
the approximate Dirichlet to Neumann map we then find

/ aifi (@) (@) (@) ds,

r;

[ai(Digi’h)(x) + Oéi(;.[ + K{)w%h(x) — Ni,hf:| @%7€($)d8m

I
= T

i N;

' 1
=Y ucikei(Dig) 0t + Y winai{(, 1 + KDY, i)
1 n=1

=~
Il

N;
- Z Ni,h,n<¢2na 5011,€>Fi
n=1

for ¢ =1,..., M; where

: : )
Y " win Vit 0 )y = > U'Cﬂ',k<(21+Ki)‘?zl,kaw?,mﬁ"aﬁ
n=1 k=1

and
N;
Z Niah7"<‘/iw'?,n’ '?,m>F7 = <N07’if7 w?,mh—’a = fN,i,m
n=1
for m =1,..., N;. Hence we obtain the discrete Dirichlet to Neumann map

T _ . QBEM AT y-1
ity = oS e — M, Vi N (26)

with the boundary element approximation of the Steklov—Poincaré operator

SERM = D+ KLV Kin (27)
and
Vip[m,n] = (Vﬂﬂgn, 2m>n¢,
Dinll, k] = (Dij i, i )1
Ronlm. ) = {1+ K)okt
M; p[m, k] = (0} g, Vg m)

formn=1,... Ny, k,{=1,... M.
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Instead of using the symmetric representation (20) we may use also the
first representation (18) to define an approximate Steklov—Poincaré operator
as

Sigi = win (28)
where w; ;, € S{(I}) is the unique solution of the variational problem (24).
Although this approximated Steklov—Poincaré operator gz . HY X)) —
H1/2 (I;) is bounded and satisfies an approximation property as in Theo-
rem 3, it is in general not stable. Let S}(I}) € H'/2(I}) be some boundary
element space of piecewise linear basis functions. To ensure the S ,1L(F ;)—semi—
ellipticity of the approximate Steklov—Poincaré operator S; as defined in (28),
we need to assume the discrete stability condition

Gi,hs Ti,h ) T;
cs ||gi,h||H1/2(Fi) < sup < ) for all g; 1, € S}lL(Fi). (29)

02 nes0 ) 1Tinll =172

Note that the discrete stability condition (29) is satisfied, for example, when
using a sufficiently small mesh size to define the trial space 52 (I;) compared
to the mesh size or S} (1) [56], or when using piecewise linear basis functions
to define both trial spaces [47].

2.2 Neumann Boundary Value Problems

We now consider the local Neumann boundary value problem

—a; Aui(x) = fi(z) forz e (2;, « g

on, uwi(z) = N\i(z) forz eIy, (30)

where we have to assume the solvability condition
/fz(x)dx + //\i(at:)dsgc =0. (31)
£2; I;

Moreover, the solution of the local Neumann boundary value problem (30) is
only unique up to an additive constant, i.e., if u; is a solution of (30), then
u; + ; is also a solution of (30) for any constant ~; € R.

Domain Variational Formulation

The associated variational formulation of the Neumann boundary value prob-
lem (30) is to find u; € H}(£2;) such that

s [ Vus@)Vue)ds = [ f@ode + [ Mouleds  (32)
£2;

is satisfied for all v; € H}(£2;), where
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Hi(Ql) = V; € Hl(Ql) : /vz(x)dx =0

£2;

is a suitable choosen subspace of H'(£2;). Since

2
il = | [uts| + [ Voo

defines an equivalent norm in H(£2), the operator Ag, : H*(£2;) — H1(£2;)
defined via the Riesz representation theorem, i.e.,

(Ag,ui,vi)0, = /Vui(x)Vvi(x)dx for all u;,v; € H*(£2),

£02;

is H!($2;)-elliptic. Hence there exists a unique solution u; € H}!(£2;) of the
variational problem (32). Using the trace operator B; : H'(2;) — H'Y*(I})
and its adjoint, B} : H—Y/2(I}) — H~'(£2), we can write the general solution
of the Neumann boundary value problem (30) as

ui = A [fi+ BN+, v €R

where AB is the associated pseudoinverse. From this we obtain the Neumann
to Dirichlet map as

9i = BiAL [Bixi+ fil +7i, weR, (fi o, + N1, =0. (33

Instead of the variational formulation (32), where the side condition (v;, 1) =0
was included in the definition of the function space H!(§2), we now consider
an extended variational problem to find u; € H'(£2;) satisfying

ai/ui(:c)dx/vi(m)dx+ai/Vui(x)Vvi(x)dx (34)
£2; £2; £2;
= /fi(x)vi(x)dx—f—/)\i(m)vi(m)dsgﬂ
for all v; € H'(£2;). Since the operator Ag, : H'(£2;) — H~(£2) defined by
(Ag,uivi)o, = /ui(:ﬂ)dm/vi(x)dm—i—/Vui(m)Vvi(m)dx

for all u;,v; € HY($2;) is H'(§2;)elliptic, we find

1 -
ui =~ Ag[fi+ BiAi

(2
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as the unique solution of the variational problem (34) for any given data
fi € H1(£2;) and \; € H~/2(I). Moreover, when assuming the solvability
condition (31), we obtain u; € H!(§2), and therefore, the general Neumann
to Dirichlet map

1
gi:a‘BiAQil[BZ'.)\i—l-fi]—i—’yi, vi€R, (fi,Dg, + N\, ), =0. (35)

The involved Poincaré—Steklov operator
T; = B;Ay' B} « H'/*(I;) — HY*(I)

is bounded and H~'/2(I;)-elliptic.

Finite Element Approximation

Let ~

Sh($2:) = span{]}nl, C H' (1)
be the local finite element space of piecewise linear basis functions ¢> ', which
are again defined with respect to some regular finite element mesh Qz n with
the mesh—size parameter h;. In addition, let

)\i,h S Sg(Fz) = Span{¢2n}g;1

be some approximation of the given Neumann data by using piecewise con-
stant basis functions 1y ,,. The Galerkin formulation of the extended varia-

tional problem (34) is to find u;j € S}(£2;) such that

ai/ui,h(x)dx/vi,h(x)dx—i—ozi/Vu@h(x)Vvi,h(x)dx (36)
2;

£2; £2;
= /fi(x)vi,h(x)dx%—/)\i,h(x)vi,h(x)dsz
£2; I

is satisfied for all v;;, € S}(£2;). This is equivalent to a linear system of
algebraic equations,
OézAQ LU = f +B )\

with

Aaalt.H = /@k M/ag @do + [ Volyla)Vol (@),

02;

fM—/ﬂ 6! ) (w)da,

B nn, k] = /¢1k x)ds,
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for k, 0 = 1,...,]\7[;, n=1,...,N;. Hence we find
u; = AF)},h[fi + Bz‘T,h)\i]

yielding the approximate solution w;;, € S} (£2;). Taking the trace Ui h| Ty 5
this defines an approximation of the Neumann to Dirichlet map (35), i.e., an
approximate Poincaré-Steklov operator T;.

Theorem 4. The approximate Poincaré-Steklov operator ﬁ' :H- Y ) —
HY2(I) as introduced above is bounded and H~'/?(Iy)-elliptic. Moreover,
there holds the a priori error estimate

(T = To)Nill ey < chilluill 2o,

when assuming u; € H?((2;).

Boundary Integral Equations

Using the hypersingular boundary integral equation (19) the unknown Dirich-
let datum g; € H'/?(I3) is a solution of

ai(Digi)(x) = JAilw) — (KA (@) + (Wi fi@) forw € T

The local hypersingular boundary integral operator D; : H'/2(I;) — H~Y/?(T3)
is only H'/2(I})-semi-elliptic, i.e.

(Divi,vi)p, > ¢ HUiH?p/z(pi) for all v; € Hé/z(]}).

As for the extended variational formulation (34) we may consider an extended
variational problem [39] to find g; € H'/?(I}) such that

a; [(Dyus, viyr, + (wi, Ly (v, D] = <(;I—K£)>\i,vi>m+<ﬁz‘,1fi,vi)n (37)

is satisfied for all v; € H'/?(I}). Since the modified hypersingular boundary
integral operator D; : H'/2(I;) — H~Y/2(I%) which is defined via the bilinear
form B
(Diui,vi)r, = (Diui,vi)r, + (ui, Ly (vi, 1)1y,
is HY 2(I;)-elliptic, the extended variational problem (37) has a unique solu-
tion u; € HY?(I3) for any given data f; € ﬁ’l(Qi) and \; € H*I/Q(Fi). If
the solvability condition (31) is satisfied, then we have u; € Hé / *(I3) and the
general solution of the local Neumann boundary value problem is given by
1~ 1 . 1~ ~
U; = OéiDi (QI_Ki)/\i_‘_OéiDi N@lfi—i-%, v € R.
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Inserting this into the first boundary integral equation (17), we obtain
1 -
aju; = Vi + Oéi(zf — K;)u; + Niofi

1 1 ~ 1 1 ~ ~ ~
=Vihi+a;( I - K;) DY I —K)Ni+  D;'Niafi| + Niofi
2 (677} 2 (6%

1
1 ~ 1 1 ~ 4~ ~
= |Vi+ (QI_Ki)Di 1(21— K;)} i + (QI_Ki)Di "Ni1fi+ Niofi

and therefore the Neumann to Dirichlet map

w@) = - (TA)@ + - (Nif)(@) +y fore e Iy e R,

i Q;

where

1 ~ ;.1 _
T = Vit (= K)DH (1 = Ki) « HOVA(I) — HYA(T)

is again the Poincaré—Steklov operator.

Boundary Element Methods

For \;, € H~/? (I7), the application of the Poincaré-Steklov operator T; in
its symmetric representation reads as

1 ~ .1 1
TN = Vihi + (2I—K1)D¢ I(QI_KZ()/\i = ‘/z')\i"‘(QI_Ki)Zia

where 2; = Dy '(L1I — K!)\; € HY/?(I%) is the unique solution of the local
variational problem

- 1
(Dizi,vi)r, = ((21 — KD\, vi)p,  for allv; € HY2(I3).

Let
Sh(Ii) = span{e;  }0lty € HY*(I3)

be some boundary element space of piecewise linear basis functions gozl, - Using
the Galerkin solution z; 4, € S,ll(f’i) satisfying

~ 1
<D¢Zi’h,vi7h>pi = <(2I—K£)>\i,’l)i’h>pi for all Vi, h S S,IL(FZ),
we may define an approximate Poincaré—Steklov operator as
~ 1
Tixi = Vi + (21 — Ki)zi,h. (38)

Theorem 5. The approximate Poincaré-Steklov operator ’E : H_l/Q(Fi) —
H'Y2(T3) as defined in (38) is bounded and H~'/?(I;)-elliptic. Moreover, there
holds the a priori error estimate

T = To)ill ey < ehd [ Tkillie
when assuming Ti\; € H?(I}), i.e. u; € H/2(£2;).
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3 Domain Decomposition Methods

Using the local Dirichlet to Neuman map
aiti(z) = a;(Siui)(x) — (N; fi)(x) forxz € I;

with the Steklov—Poincaré operator S; as defined in (11), (18) or in (20), we
can reformulate the coupled domain decomposition formulation (2) and (3)
as

aiti(z) = a;(Siui)(x) — (N f)(x)  for z € I3,
u;(z) = g(x) foree NI,
ui(z) = u;(x) for z € I3, (39)
( )+Oéjt](l‘)20 fOI‘l‘EFij.

3.1 Dirichlet Domain Decomposition Methods

Eliminating the local Neumann data ¢; in (39) gives the transmission condi-
tions

ui(®) = u;(x),  i(Siwi)(x) + a;(Sjuz)(x) = (Nifi)(z) + (N f;)(2)

for z € I;;. Let H'2(I's) be the skeleton trace space of H'(£2). To ensure
the Dirichlet transmission condition u;(z) = u;(z) for « € I;; we may de-
fine u;(x) = u(x), @ € I}, as the restriction of a globally defined funtion
u € HY?(I's) with u(z) = g(z) for x € I'. Hence we have to find
u € HY?(I's), u(z) = g(x) for = € I, such that

ai(Siuir,)(x) + a;(Sjur, )(x) = (Nifi)(@) + (N; f;)(z) forx € Ii;.

The associated variational problem is to find v € H/?(I's) such that u = g
on I'" and

Z a;(Siur,)(x)vr, (v)ds, = Z (Nifi)(@)vr, (x)ds, (40)
>/ /

le

is satisfied for all v € H'/?(I's) vanishing on I".
Let
Si(Is) = span{wi}il, € H'/?(Is)

be some global finite element space of piecewise linear basis functions gz:,l€
which are defined with respect to some regular finite element mesh I's; of
the skeleton I's. By S} (I;) we denote the restriction of S} (I's) onto the local
subdomain boundary I;. In particular, for any v, € S} (F s) we find the local
restriction v;p € S hl(F ;) via a transformation of the associated coefficients,
v; = A;v, where A; : RM — RM: ig the connectivity matrix. Moreover, let
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S}(I') be the restriction of S}(I's) onto the Dirichlet boundary I" = 942,
where the associated connectivity matrix is Ag € RMoXM Tet g € RMo result
from some piecewise linear approximation g5, € Sj(I') of the given Dirichlet
datum g.

Using one of the previous introduced approximate Dirichlet to Neumann
maps, the Galerkin variational formulation of (40) is to find u, € S}(I's)
satisfying the Dirichlet boundary condition up(xr) = g(zx) for z € I' such
that

Z/Ozz Suh|[’ )’Uh‘p de = Z/ Nfz Uh|[’( )de (41)

le le

is satisfied for all v;, € S} (I's) with vy (z) = 0, € I'. This is equivalent to a
linear system of algebraic equations to find v € R such that

p p
> Al SinAu =Y Al f, A=y (42)

i=1 i=1

In (42), the approximate stiffness matrices S, . and the local vectors f of
the right hand side correspond to the dlscretlzatlon of the locally defined
approximate Steklov—Poincaré operators S In particular, when using the
finite element approximation (15) this gives

FEM

e —1 FEM -1
in = Kcei — KieiK Ko, [, = fo, — KoK, f,

When using the symmetric boundary element approximation (27) of the
Steklov—Poincaré operator this gives

OBEM __ T 171~ BEM __
ih _Diah_’_K’LthKih fz hzhf

When using a boundary element approximation in the first ¢ < p subdomains
£2;, and a finite element approximation in the remaining subdomains, the
linear system (42) can be written as

q P
Za ATSBEMA u Z OCZATSFEM ZA;rffEM + Z A;l—ff‘EM
i=q+1 =1 i=q+1
(43)
together with the side condition Agu = g.
The solution u € RM of the assembled linear system (43) is also charac-
terized as the unique solution of the constrained minimization problem

F(u) = min  F(v), (44)

vERM  Agv=g

where
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p
F(v )= D {5 B A, Agw) = (£ A}

i=1

By introducing the local vectors v; = A;v € R we have to minimize

P
Flog,.oovv,) = D { G S0, 0) = (17777 o) }

%
i=1

where we have to add the constraints Agv = g due to the Dirichlet boundary
condition and v; = A;v which ensures the global continuity v; ;, = v;;, along
I';;. Here, v; 5, is the local degree of freedom which belongs to a global node
xy € I's, i.e. A;lig, k] = 1. Now we can formulate all above constraints as

P
ZBivizAa—gzﬁeRM

i=1
where the nonzero elements of the matrices B; € RM*M: are defined as fol-
lows:

e 1z € I; NI is on the Dirichlet boundary:
Bilk,ix]) = 1;
o x, €Iy =1;N 1} is on the interface:
Billy,ie) =1,  Bjllk,jk] = -1, i <]

Note that the above constraints are defined in a redundant manner, i.e. £
corresponds to the multiplicity of constraints which are associated to the
node zj. Now, instead of the minimization problem (44), we have to solve a
modified constrained minimization problem, i.e.,

F(uy, ... u,) = inf  F(vg,...,0,). (45)
i Biv;=g

I
-

By introducing the Lagrange multiplier A € R we have to minimize the
extended functional

p
Fa(vy,...,v,) = F(vy,...,v,) = (\,>_ Biv, = g).
=1

The necessary conditions give the equations

Oéig]?EM/FEMu. _ f}?EM/FEM _ BJA =0 (46)

ih % 3

by taking the derivative with respect to v, for i =1,...,p, and,
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p
Z Bﬂ]i = g
i=1

by taking the derivative with respect to A\. Hence, we have to solve the linear
system

SBEM _Bl—erM Uppnm fBEM
Serm _Bl;rEM Uppm = ‘fFEl\I ’ (47)
BBEM BFEM A E

where

Spem = diag (az’ [D'L,h =+ I?z—,rh‘/zjhll?%h]) )

i=1,...,q

Seem = diag (ai [Kce,i — KIc,iKﬁliKCI,i]) , .
’ i=q+1,...,p

In what follows we proceed as for the solution of a local Neumann boundary
value problem. Due to
Sinli=5ip" =0,

we can write the local variables u; € RMi as
u; = w0+ 7l (u0,1;) =0 (48)
and therefore we have to solve
aiSEfLI\I/FEIMUi’O _ B:A — ff)EIVI/FEIVI for Z — 17 . ’p
as well as
P P

> Bitgg+) vBil; =G,

i=1 i=1
On the other hand, for i = 1,...,p, we find

(Bi—l,—h/\ + JC?EI\A/FEM7 1i) _ ai(sng/FEMui, 11‘) _ ai(uia SfiM/FEMli) -0
and, therefore, the additional constraints
(N, Binly) = —(f75F 1) fori=1,...,p.

Hence, we obtain u, ; € RMi as the unique solution of

BEM/FEM T T __ fBEM/FEM
ai[S;p, + 11 Ju 0 — B A = f; /

for i =1,...,p. Now, instead of (47), we may solve the extended system
SBEM _B];rEM Uggpm,o fBEM
SFEM _BJEM Urgm,o _ fFEM , (49)
BBEI\I BFEIVI G )\ g

GT ¥ e
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where

Seen = diag (Oci[Di,h + I?iThV;Thlki,h + 1@;]) ‘

1=1,...,q

Srem = diag (Oéi[KCC,i - KIC,in_IlyiKCI,i + ]-1]-;]) _—
i=q+1,...,p

and

G = (Bily,...,Byl,), e = —(f7™™M 1) fori=1,...,p.

3

The local boundary element equations in (49) can be written as
;[ Dip + 11‘1;]%0 + aif(z‘Thwi — B\ = f?EM,
a;Vipw; — a; K pu; o = 0,
while the finite element equations are equivalent to

ai[Kcoe + 11'1;]%0 +aiKciur; — B/ = fC,i’

a;Krriup; +aiKeru; o= f

I
Hence, we have to solve the linear system
Vi —Kp, w 0
Ki;r Dy, _B]—BFEM Ugpm,o fBEM
Kir Keg Uy B f; (50)
KCI IZ’CC _BJEM Uppn,o fC 7
BBEI\T BFEIVI G A g
GT vy e
where
Vj, = diag (a;Vin)l_, Dy, = diag (ai[ D + 1,17 ]) 7
Kir = diag (i K11,0)7_ 4 » Koo = diag (a;[Kcoi + 1141;])?:%r1 ,
alkl,h anrlI?CI,l
Kh = ) KCI -
agKqn apKerp

Next we use a subspace projection in order to separate the determination
of ~ from the determination of the rest of the unknowns in (50). Thus, we
introduce the orthogonal projection

P=1-QGG"RG)'aT (51)
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where @ is some suitable diagonal scaling matrix [7, 30]. Since PTG = 0, the
application of PT to the fifth equation of (50) gives PTG~y = 0 that excludes
~ from the first five equations of (50). Let us represent A in the form

A=Tohg + )., A =QG(GTQG) e (52)

Hence we have to find To), € ker G, i.e. GTTyA, = 0. In particular, the
columns of Ty span a basis of ker G = (range G)*. Hence we also conclude
ToAy = PTu)\y. Therefore we have to solve the reduced linear system

Vi —Kp, w
T n T
Kh Dh _BBEMPTO Uggn,o
Ky Ker Uj (53)
Ker  Kee =Bl PTy | | %eso
T(;FPTBBEM T(;FPTBFEM /\0

f g T Bosnide
= f[
fc + Bl:‘rEl\IAe
TS PTG
Once the vectors w, tgpy o5 Ugs Uppy,, a0d Ay are defined from (53), we get A
from (52), v from the fifth equation in (50), i.e.,

v = (GTQG)_lGTQ [g_ BBEMUBEM,O - BFEMUFEM,O} )

and, finally, u from (48).

3.2 Neumann Domain Decomposition Methods

Instead of eliminating the Neumann data in (39) we are now going to eliminate
the Dirichlet data. For this, we introduce global Neumann data as follows: For
any interface I}; = I; N I}, we introduce t;; € H~/?(I};) and set

1 1 L

ti(z) = ti(x),tij(x) = —  ti(x) fora e ly;,i<j,

(67 Q
and for the Dirichlet boundary we introduce t, € H~Y?(I') and set
t; = tor, /. Hence, we have satisfied the Neumann transmission condition in
(39) in a strong sense. Therefore, we have to impose the Dirichlet transmission
conditions and the Dirichlet boundary conditions in some weak sense, i.e.,

/[uz(a:) —uj(z)|rj(x)ds, =0 forall 7y € ﬁ_l/Q(Fij),

Fij
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and
[ui(z) — g(x)]To)r,dsz = 0 for all g € H*I/Q(F)7

,nr

where ﬁ_l/Q(Fij) = (ﬁl/Q(Fij))’. For the interfaces I5;, we find from the
weak formulations of the Dirichlet to Neumann map

(tij,viir, )1y = (Qiti,vir, )y, = (@aSius — Nof,vir,)r,. v € HY2(I;),

and
—(tij, vjir, ) ry = (Qity, vin, )y = (@ Siuy — Ny fyvin, )y, vy € HY2(I).
Hence,

<ai5iuiavi\l“ij>n:j + <aj5jujavjlfij>Fi_j - <tij’vi\nj - Uj|Fij>F7:_7‘

= (Nif, Uz‘\l“,;j>1“ij + (N, f, vjlfij>Fij'

Moreover, on the local Dirichlet boundaries I; N I", we have

(iSius, viirnr) rinr — (to, viinnr) rinr = (Nif, vijrnar) rinr-

The associated variational formulation is to find u; € H'/2(I3) fori =1,...,p,
tij € H-Y/2(I};) for all i < j and to € H~Y/?(I") such that

p p p
Z(%Sﬁuuvﬁn - Z<tijvvi|ﬂ-j — V|, ) Ty — Z<t07vi>ﬂ;ﬂf = Z<Nif7 vi)r,
i=1 i<j i=1 i=1

<Ui\r,;j - uj\Fij’Tij>Féj =0 (54)

<uia 7—0>Fiﬁf = <gv 7'0>I",;ﬁ[‘

is satisfied for all v; € HY/2(I3), 7;; € H-'/2(I};), and 7 € H-Y/2(I).

The saddle point formulation (54) describes a hybrid domain decompo-
sition method [1] which is also known as a mortar domain decomposition
method to couple locally different trial spaces [4].

For a Galerkin discretization of (54), we introduce local boundary element

spaces
Si(Li) = span{i} , 11ty € H'2(I)

of, e.g., piecewise linear basis functions @}k Moreover, for each coupling
boundary I5;, we consider a trial space to discretize the local Neumann datum
tijv

Su(I3;) = span{tyjn } oy © HY2(Iy)
where 1);; , are some basis functions to be defined in an appropriate way. In
the same manner we introduce
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Sp(IM) = span{@bom}gil - H_l/Q(F)

to discretize the unknown Neumann datum on I'. The choice of the basis
functions ¥y, and g, is very sensitive, since we have to ensure local inf-
sup conditions which are related to the saddle point formulation (54), i.e.,

cs ITijnll g-1/2(r,,)
(Tijs Vil — Vi ) I

< sup
(vi,h,,’Uj,h)ES}IL(Fi)XS}IL(Fj) \/”vi,h\f‘m

|§'Il/2(1—’1‘,j) + ”vj,h\ﬂzj |?{1/2(F7:J)

For appropriate choices of the trial spaces Sy, (I;) and Sy (I") see, for example,
[57] and the references given therein.

The Galerkin discretization of the variational problem (54) is equivalent
to a set of linear equations which can be written as

P P
QFEM/BEM T T T _
E :Si,h U; — E (M 5, — My )t — E My nto = £y
i=1 i<j i=1
Mmhui — Mji7huj = 0,
Mo; pu; =g

with the discrete Steklov—Poincaré operator as defined in (16) for a finite ele-
ment approximation, and as given in (27) for a boundary element discretiza-
tion. Moreover,

Mg n[m, k] = (@i s Yijm)
Mji’h[m, k] = <(p},ka Q/Jij,m>ﬂjv
MOi,h[ma k] = <9011,k7 wO,m>ﬂ:J'

By reordering all degrees of freedom we then obtain the coupled linear system

Iij»

Sirn _Ml;rEM Uggn fBEM
Sren _M;:M Uppn = fFEM (55)
Mzen Mrpu 3 g

which is of the same structure as the linear system (47). In fact, when consid-
ering conforming local trial spaces S} (I) and choosing Sj,(I3;) and Sy (I") to
be spanned by biorthogonal basis functions 1;;, and g ,, respectively, both
linear systems (47) and (55) will coincide. In general, we may apply all the
transformations which are used to reformulate the linear system (47) to solve
the linear system (55) in a similar way, we skip the details.

4 Preconditioned Iterative Solution Techniques

In this section we describe some preconditioned CG-like iterative methods for
solving the linear system (53),
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Vi —Ky, w
K;Lr Dh _B];FEMPTO uBEM,O
Kir Ker Uy
Ker I?CC _B;EMPTO Upmn,o
T(;FPTBBEM TJPTBFELI >\0
0
fBEM + B];FEMAC
fc + B;‘rEMAe
T, PTg
Since V, = diag(o;Vip) and Kjr = diag(a; Kr,;) are block diagonal and
therefore easily invertible we may first eliminate the vectors w and wu; to
obtain

Seem _B];FEMPTO Uggnr,o
Srem _BI;FEMPTO Uprm,o (56)
T()TPTBBEM T(;FPTBFEM )\0
fBEI\I + B];FEI\/IAC
= fC _KCIK]_Il.fI_‘_BI;rEM)‘e
TSPy

Eliminating g, , and gy, , we have to solve the Schur complement system
of (56),

F)\y = T, P'BSB'PTy\, = f. (57)

Since the system matrix in (57) is symmetric and positive definite one may
use a preconditioned conjugate gradient scheme to solve (57). For this, an
appropriate preconditioner C'r is needed, which is spectrally equivalent to the
Schur complement matrix F'. Another choice is the application of a Bramble—
Pasciak conjugate gradient scheme [5] to the one—fold saddle point problem
(56). For this, besides C'r also preconditioners Cs = diag(Cs,) for the local

discrete Steklov—Poincaré operators Si?l/FEM are needed. A third possibility
is to use a CG-like iterative method to solve the two—fold saddle point problem
(53), see [33, 60]. Then, also preconditioners Cy, and Ck, for the local matrices
Vi.n and Ky ; are needed, respectively.

Following [36] we can define the scaled hypersingular BETI preconditioner
Cnt = (BC,;'B")'BC'D)C'BT(BC'BT) ™! (58)

where C,, is some diagonal scaling. Note that there hold the spectral equiva-
lence inequalities [36, Theorem 3.2]
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of (Cpp,p) < (Fpu,p) < cf (1+log(H/h))*(Crp, 1)

for all u € ker GT where the positive constants ¢f” and ¢l are independent
of the local mesh size h, the subdomain diameter H, the number p of sub-
domains, and of the coefficient jumps. The preconditioner (58) is based on
local realizations of the discrete stabilized hypersingular boundary integral
operator with respect to all subdomains, independent of whether a finite or
boundary element discretization is used locally.

To construct preconditioning matrices Cg, for the local discrete Schur
complement matrices §f PR e will apply the concept of boundary integral
operators of the opposite order [51]. Based on the local trial space S} (I) of
piecewise linear basis functions 90; . as used for the Galerkin discretization of
the local hypersingular boundary integral operators D; we define the Galerkin
matrices

Vi,h[gv k] = <Vi9011,k79011,é>1“m Mi,h[ga k] = <§Dzl,kasozl,é>ﬂ

for k,/ =1,..., M; and the application of the resulting preconditioning matrix
is given by S
Cgl = M\ VipM;,! fori=1,...p. (59)

Moreover, there hold the spectral equivalence inequalities

) / )
7 (Cs,v,0,) < (87 wg,0;) < 65" (Csv,0;)

Q 2
for all v, € RM:.

For the definition of preconditioners Cvy; for the local discrete single layer
potentials V; 1, there exists a wide variety of different possible choices. Here,
we only mention multilevel methods [18, 53] which are based on a given mesh
hierarchy or algebraic multilevel techniques [35, 38, 50].

For finite element subdomains one may also use geometric or algebraic
multigrid methods to construct preconditioners C'k, for the local finite element
stiffness matrices Ky ;, see, for example, [15] and the references given therein.

5 Conclusions

In this paper we have provided a unique approach to both the Dirichlet and
the Neumann domain decomposition techniques. The all-floating tearing and
interconnecting technology is a very general and powerful technique. Elimi-
nating more or less variables results in symmetric and positive definite Schur
complement problems, one—fold or two—fold saddle point problems which can
be solved by preconditioned conjugate gradient methods. We have used bound-
ary element technologies for constructing the required block preconditioners
for both the boundary element and the finite element blocks. There are many
papers showing the efficiency of FETI methods including the efficiency in
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large—scale parallel computations, see, e.g., [16, 29, 44]. Numerical results for
BETI and coupled BETT-FETI methods can be found in [33, 34, 38].

The methods and techniques discussed in this paper are not restricted to

the potential problem. They can be extended to linear elasticity problems
as well [38]. The generalization to three-dimensional electromagnetic prob-
lems usually considered in H(curl) is certainly more challenging, see [22] for
the symmetric coupling and [54] for FETI-DP methods. Coupled finite and
boundary element tearing and interconnecting solvers for nonlinear potential
problems were discussed in [34].
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Summary. We analyze the h-p version of the BEM for Dirichlet and Neumann
problems of the Lamé equation on open surface pieces. With given regularity of the
solution in countably normed spaces we show that the boundary element Galerkin
solution of the h-p version converges exponentially fast on geometrically graded
meshes. We describe in detail how to use an analytic integration for the computation
of the entries of the Galerkin matrix. Numerical benchmarks correspond to our
theoretical results.

1 Introduction

It is well-known that an appropriate combination of mesh refinement and poly-
nomial degree distribution (the hp-version with geometrically refined graded
meshes) may lead to an exponential rate of convergence, even in the presence
of singularities (for the FEM see [6, 7], and for the BEM see [8, 10, 11, 17]).
The approximation strategy for such hp-methods is to use polynomial degrees
of lowest order where solutions behave singularly and to use high order poly-
nomials where solutions are smooth. This strategy has the advantage that it
completely avoids the approximation analysis of singular functions by high or-
der polynomials. This differs from the situation for a pure p-version, see [3, 2].

In this paper we consider the hp-version of the boundary element method
(BEM) for Dirichlet and Neumann problems of the Lamé equation in
Q2 :=R3\I', where I' is a smooth open surface piece with a piecewise smooth
boundary curve. That is:

For given uy,uy € (H'/?(I"))* with u; — uy € (H'/2(I'))? (Dirichlet) or
for given t,ty € (H~'/2(I"))® with t; —ty € (H~/2(I"))® (Neumann) find u
satisfying
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A*u = pAu+ (A + p) graddiva =0 in 2, (1)

u|r, = uy,ulp, = us (Dirichlet) (2)

T(u)|, = t1, T(u)|, = to (Neumann) (3)

u(z) = o(1), 0 u(z) =o(|z|™1),j =1,2,3, |z| — co. 4)

81‘]'

Here, I, i = 1,2, are the two sides of I" and > 0, A > —2/3u are the given
Lamé constants.

The corresponding Neumann data of the linear elasticity problem are the
tractions

0
T(u) = Mdivu)n + 2”82 + pn X curlu on Ij,i = 1,2, (5)

where n is the normal vector exterior to a bounded domain 2, such that

I" C 012
Let G(z,y) € R3*? denote the fundamental solution of the differential
operator A*, i.e.

A+ 3 1 At p (fﬂ—y)(:v—y)T}
Gz,y) = I . (6
(z,y) Arp(\ + 2p) {|a:—y| DI b3 o —yP )

The problem (1)—(4) can be formulated as an integral equation of the first
kind, see, e.g. [4, 5, 20, 21]:

Dirichlet:
u € (HL.(R3\I"))? is the solution of the Dirichlet problem (1), (2) and (4) if

and only if the jump of the traction t := T(u)|r, — T(uw)|r, € (H™ / (N))?
solves the weakly singular integral equation

/Gmy y)dsy =g(z), xzel (7)

where

g(2) = L (w +ua)(2) + /P T, Gz, y)(w — us)(y) ds,. (8)

2

The solution t of (7) yields the solution of the Dirichlet problem (1), (2) and
(4) via the representation or Betti’s formula

u(z) = /F (Gl y)b(y) — (T, Gz, y)) (i (4) — us(y))) dsy, z ¢ T

The Galerkin scheme for (7) is given by: Find ty € SPO(I7) c (H-Y*(I"))?
such that for all v € SPO(I'™M)

(Vt,0) = (g,v) 9)
where (-,-) denotes the duality pairing of (HY2(I"))® and (H~Y2(I"))3.
3

The symmetric bilinear form (V-,-) is positive definite on (I:I 1/2 (F)) X

(H=/2(I"))? giving the energy norm ||t||y = (Vit,t)1/2.
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Neumann:

€ (H} (R3\I"))? is the solution of the Neumann problem (1), (3) and (4)
if and only if the jump of the displacement ¢ := u|p, —ulp, € (HY?(I"))?
solves the hyper-singular integral equation

Wola) = ~T, [ (1,G(e.0) $)ds, =f@), ael  (10)
where )
(o) = (0 +2)(@0) - T, [ Gt —t)w)ds,. (1)

The solution ¢ of (10) yields the solution of the Neumann problem (1), (3)
and (4) via the representation or Betti’s formula

u(z) Z/F(G(%y)(tl(y)—tz(y))—(TyG(%y))tcb(y)) dsy, x &I

The Galerkin scheme for (10) is given by: Find ¢, € S (I'*) C (H'/?(I'))?
such that for all ¢ € SP1(I')

(Wo,v) = (f,¢) (12)
where (-,-) denotes the duality pairing of (H~Y/2(I"))* and (H'/2(I'))3. The
symmetric bilinear form (W, -) is positive definite on (H/2(I"))?x (HY/?(I"))?
giving the energy norm ||¢|w = (W, ¢)/2.

Both Galerkin schemes (9) and (12) converge quasi-optimally in the energy
norm with algebraic orders of convergence for the h- and p-versions, namely
of order O(h'/?p~1). This follows by extending corresponding results for the
Laplacian [1, 3, 19, 20, 22, 26]. These low convergence rates result from the
singular behavior of the solutions t of (7) and ¢ of (10) near the boundary
of I'; this describes the well-known behavior of the displacement and traction
near the edges of the crack [24, 26], cf. [25]. On the other hand, if we use an
hp-version with a geometrically refined mesh towards the edges of the surface
I' we obtain even exponentionally fast convergence (cf. Fig. 3 and Fig. 4).
Especially, as shown below, there hold the following error estimates for the
exact solutions t of (7) and ¢ of (10) and the Galerkin solutions t y € SP:0(I'?)
of (9) and ¢ € SPL(I?) of (12), i.e.

It —twllv < Ce™ g = gyllw < G (13)
with constants C,b > 0 independent of N (see Theorems 4 and 5 below, c.f.
10, 13, 18, 23)).

Another important issue is the implementation of the hp-version for the
Galerkin equations itself. In this paper we explicitly describe how analytic
integration can be used in the computation of the entries of the Galerkin ma-
trices. The trick is to reduce the integrals for Lamé-case to simpler ones which
already have been used for the computations of the integral operators belong-
ing to the Laplacian [16]. Numerical benchmarks underline our theoretical
results.
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2 The hp-Version with Geometric Mesh

In this section we introduce the boundary element spaces for the hp-version
together with countably normed spaces.

Now we define the geometric mesh on a triangle F'. This is no loss of
generality because every polygonal domain can be decomposed into triangles.
We divide this triangle into three parallelograms and three triangles where
each parallelogram lies in a corner of F' and each triangle lies at an edge of
F but does not touch the corners (see Fig. 1). By linear transformations ;
we can map the parallelograms onto the reference square Q = [0,1]? such
that the vertices of F' are mapped to (0,0). The triangles can be mapped by
linear transformations @; onto the reference triangle Q = {(x,y) € Q|y < =}
such that the corner point of the triangle in the interior of F' is mapped
to (1,1) of the reference triangle. By Definition 1 the geometric mesh and
appropriate spline spaces are defined on the reference element . Analogously
the geometric mesh can be defined on the reference triangle Q (see Fig. 1).

Fig. 1. Geometric mesh with ¢ = 0.5 on the triangle F

Via the transformations ¢, L P ! the geometric mesh I can also be de-
fined on the faces of a polyhedron. The approximation on the reference square
is the more interesting case because it handles the corner-edge singularities.
Therefore we deal in the following only with the approximation on the refer-
ence square.

Definition 1 (geometric mesh). Let I =[0,1]. For 0 < o < 1 we use the
partition IV of I into n subintervals [xx—1,zx], kK =1,...,n, where

x9 =0, rp=0""% k=1,...,n (14)

With I we associate a degree-vector p = (p1,...,pn) and define SP"(I") C
H"(I) as the vector space of all piecewise polynomials w on I having degree

pj on (xj_l,l‘j), Jj=1,...,n, e w|(flf]'—1,flfj) € ij((l‘j_l,ﬂ?j)).
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Let Q = [0,1] x [0,1]. For 0 < o < 1 we use the partition Q" of Q into n?
subsquares Ry

R = [zp—1, 28] X [w1—1, 2], (K, l=1,...,n), Q= U R (15)
k=1

With QI we associate a degree vector p = (p1,...,pn) and define SP"(Q2) C
H"(Q) as the vector space of all piecewise polynomials v(xz,y) on Q having
degree py, in x and p; iny on Ry, k,l =1,....n, i.e. v|r,, € Py, p,(Ri1)-
The index v € {0,1} in SP"(I7?) and SP"(QL) determines the regularity of
the piecewise polynomials, i.e. discontinuity in case of r = 0 and continuity in
case of r = 1. For the differences hy, = x) — xp_1 we have with A\ = (1—0)/o

1 1
hy = Tp—Tp_1 = xk,l(g—l) < x(a—l) =x\, Vz€|rp_1,zk] (2<k<n)
(16)
Then we have by construction:
SP(Iy) x SPT(1g) € SPT(Q7) (17)

Fig. 2 shows the geometric meshes for o = 1/2 and n = 4.

4

4 0.5
/10.5
0.5
4
0.25 los
P1 P2 P3 22
0
0 0.25 0.5 1 0 0.25 0.5 1

Fig. 2. Geometric mesh on the square plate (o = 0.5, n = 4).

Now we define countably normed spaces on the reference element () using
Cartesian coordinates.

Definition 2 (countably normed spaces Bj(Q)). Let 3 be a real number

with 0 < 8 < 1. The weight function g1 = Pg.a.1(z,y) is for a = (o1, a2)
and an integer [ > 1 defined by

min(a;—1,a1+az—1) min(az—1,a1+az—1)
aytoaz—I— aytaz—I— :
Dp0l = P § My 1tz "o yﬁ E potaz V2902
y1=max (a1 —1,0) ~yo=max(az—I,0)

(18)
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Let

DO‘ _ 8|O{‘ — 8o¢180¢2
dxrgyee T Y

The weighted Sobolev spaces for integers m,l with m > 1> 1 are defined by
Q) = {u cue HYQ) for 1 > 0, (19)
95,0, D% 12(q) < 00 forl < |af < m},

with the norm
el gy = ullEi-s gy + > Z / |Du(z, ) P30 (. y) dy dx - (20)
k=l |o|=k

and the semi norm

i =2 5 [ D P e dyan )

k=l |o|=k

The countably normed spaces for | > 1 are defined by
BY(Q) = {uiue H'Q), |95.01Du] 2 < Cd*'(k ~ 1)
forla|=k=011+1,...,; C>1,d>1 independent ofk}. (22)

If we would like to emphasize the dependence on the constants C,d we will
write BlB(Q) = Blﬁad(Q), etc.

Theorem 1. [12] Let Q be the reference element and let ¢ be the linear
transformation from a parallelogram, lying in a corner of the triangle F,
to the reference element Q). Then, for | = 1,2, u € BﬁCd(go(Q)) implies
uop~le Bﬁ,C,d(Q) where C,d (resp. C,d) are the constants in the definition

of BE(Q) (resp. B/lg(cp(Q))) For the case | =1 the reverse implication holds
as well.

The exponentially good approximation properties of splines on our geometric
meshes for general functions u € BE(Q) (I = 1,2) are given by the following
theorem (see also [12, 15, 17, 18]).

Theorem 2.

(i) Let u € Bé(Q) with 0 < B < 1. Let Q2 be a geometric mesh and assume

p=(p1,--,pn), pr = [u(k = 1)] for some p > 0. Set N = dim SP0(Q7).
Then there exist constants Cq,by > 0 independent of N, but depending on

o, 1, 3, such that the L?-projection un € SPO(Q") of u satisfies

4
lu — un| L2y < Cre VN, (23)
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(i) Let v € Bg(Q) with 0 < B < 1. Let Q¥ be a geometric mesh and assume

p=(p1,---0n), P1 = 1, pk = max(2, [u(k —1)]+ 1) (k > 1) for some
pw > 0. Set N = dll’IlSp’ (Q1). Then there is a spline function vy €
SPH(Q™) and constants Cz,by > 0 independent of N, but dependent on
o, 1, 3, such that

lo = vn ) < Cae YN, (24)

(i) Letv € B}_,(Q)QCO( ), vlag = 0 with 0 < < 1/2. Let Q7 be a geometric
mesh and assume p = (p1,...,Pn), p1 = 1, pr = max(2, [u(k — 1)] + 1)
(k > 1) for some u > 0. Set N = dim SP1(Q™). Then there is o spline
function vy € SPH(QT) and constants C3,bs > 0 independent of N, but
dependent on o, i, 3, such that

4
||’U—'UN||1:11/2(Q) S C?, 67b3 \/N (25)

Now, we want to recall the typical structure of the solutions of our prob-
lems for sufficiently smooth right-hand side functions g and f.

Theorem 3. [24, Theorem 2.3, 2.4 and 2.5] Let V and E denote the sets of
vertices and edges of I', respectively. For v € V, let E(v) denote the set of
edges with v as an end point. Then, the solution t of (7) has the form

Streg+ YT Y U DYt (26)

e€EE veV veV e€ E(v)

with a reqular part t.eq, edge singularities t°, vertex singularities t¥ and edge-
vertexr singularities t<U. These terms result from applying boundary traction
to the corresponding decomposition of the solution.

Accordingly, the solution ¢ of (10) has the form

P=gt D S+ DY DY o~ (27)

eel veV veEV e€ E(v)

Checking the specific terms (26) and (27) , which are given in [24], one re-
alizes that these terms t¢,t%, t¢” and ¢°, ¢*, ¢°* belong to countably normed
spaces. Therefore we can argue as done in [10] and obtain the following con-
vergence results.

Theorem 4. Let the right hand side g in equation (7) be piecewise analytic,
let t be the solution of (7) and let ty € SPO(I'™) be its Galerkin approzimation
defined by (9). Then, with N = dim SPO(I'"), there holds for any a > 0

4
1t =t llg1/2(rys < Ce VN +ON) (28)

for constants C,b > 0, depending on o, p and «, but independent of N.
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Theorem 5. Let the right hand side f in equation (10) be piecewise analytic
and let ¢ be the solution of (10) and let ¢ € SPH(I7) be its Galerkin ap-
prozimation defined by (12). Then there holds for all o > 0

= dnll o (ryys < Ce VN + O(N™) (29)

for constants C;b > 0 depending on o, pu and «, but not depending on
N = dim S»Y(I™).

Remark 1. Due to the splittings (26) and (27) into finitely many singularity
terms the regular remainder terms te; and ¢,., have only restricted reg-
ularity, even for given smooth right hand sides. On the other hand, even
taking infinitely many singularity terms, would not automatically guarantee
that the solutions t and ¢ themselves belong to countably normed spaces.

To our knowledge this is an open problem. Therefore we get the additional
O(N~%)-terms in the estimates (28) and (29).

3 Implementation of Galerkin Scheme

Assume that the surface piece I' € R? can be decomposed into triangles
and parallelograms, i.e. [' = Uf\il I;, with I pairwise disjoint and I is the
affine image of the reference square [ = [—1,1]? or the reference triangle
A={(t1,t2) : 0<t; <1—1ty <1}. That means

I; = {aitl + bito + x; - (tl,tg) S Q}, Q S {A,D} (30)

depending on whether I is a triangle or a parallelogram, with a;, b;, z; € R?,
i = 1,...,N. Here we investigate only basis functions whose restriction to
I; are polynomials. Effectively, we compute the integrals only for monomi-
als as test- and trial-functions, from which all other basis functions can be
constructed.

For Q € {A, O} let

L R=1
e {t:(t17t2)—>$:ait1+bit2+xi (31)

be the affine transformation from the reference element A or O to I; with
o | = lai x b;|. We will write @ for A or [J, respectively, if the expressions
hold for both cases. Then the basis functions on I7; are defined by

Phu(2) = Pu(F; (2) = G o F ' (z) (32)
with @r;(t1,t2) = thth for x € I; and ¢}, () = 0 otherwise. The vector valued
test and trial functions ¢ restricted to an element I'; can be represented as
linear combination of this monomial basis functions ¢i,(z), i.e. we have

3
s = Z e,¢r () Z C;cl @cl
r=1

with e; = (1,0,0),es = (0,1,0),e5 = (0,0,1).

I
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Single layer potential

Using (6) the single layer potential is then given by

3
) :/FG(%ZJ) )dsy = Zzerzzckz/ Grs(2,9) i (y y) ds,

i=1r=1 s=1 ki

and the corresponding bilinear form reads %
Vo) = [ [ 000Gl 9)0u(a) ds, s (34)

In the following we are interested in the computation of the term
V@)= [ Grle e s, (3)

We will use the following form of the fundamental solution (6)
1 - —Ys
ORI CCS TRL

1 1 A 0 Ys — Tg (36)

Tample =y Smp(A+2u) Ay, |y — x|
By extending the affine transformation F; to
Fi(t1,t2,t3) = a;t1 + bita + nits + x;,

where n; is the normal direction on the patch I, we obtain the following
integral

irs 1 1 :
szlm (J?) = Arp /I", |x_y|5rs<plltcl(y) dSy

B A+ p 0 ys — T
8mu(A+2u) Jr, Oyr |y — 2
1 OF;

1 -

A+ p Fi(t) — )5 _
&m A2 |/ Z 8yr at,, |F )—x| Pra(t) dt
1 A+ H aFl PR
47w| ot |5m (@) - 8mu(\ + 2/1)' ot B (@)

Sﬁzl (y) dsy

Defining the following elementary integrals, analyzed in [16]

127 (a, b, c) ::/t’ftl2|at1+bt2+c|2pdt2dt1, Qe{a0r (37
Q
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we can identify

Gra(t) / thth
dt = dto dt
(@) = /Q|F()—x| o laits + bt +a; —a|

= 1972 (a3, by, 21 — ). (38)

It remains to reduce the integral B,i’lrs (x) to alinear combination of elementary
integrals. We can compute

-1 bi X Ny
8tp = 8?/7« = (ai bi n; )_1 = 1 n; X a; . (39)
Yy ot, ai(b; x n;) a X b

Therefore we obtain
1
Z 8% (% sl x ) ((bi X 1) 0r, + (15 X @3)7Op, + (a5 X bs)rOy,) (40)

and consequently

i,rs F; ) - JJ)S -
Bkl /Zayr atp |F ) | @kl(f’)dt

_ / ((bz X ’I’Li),«atl (’I’Lz X ai)r(‘)m + (ai X bi)Tat;}) (Fz(t) - x)stktl dto dt
0 a;(bi x n;) \Fy(t) —a 2720
(ai X b; )

a;(b; X n;)

(ni X ai),,
a;(bi x n;)

(bi X ni)r 1,8

) Cid’ (@) + Dii (@) + Eif’ @)

For the last integral we obtain

Ei,S(x):/a (aity + bitz + nits + z; — x)s

kit |aity + bita + nits + x; — x|
(ni)s Kl

= 1 to dto dt

/|ait1+bit2+$i—$|12 2T

_/ (aitl + bita +x; — x)s(ni(xi — CL'))
Q |aits + bita + x; — x|3

Rl dty dty

thtl dto dty

Q,—3 Q,
= (ni)slkz * (@i, by, g — x) — (a;)s(ni(xi — ))Ik.:,-ll (@i, bi, z; — x)
Q-3
_(bi)s(ni(xz ))Ik I+1 (ai;bi;xi —CL')
(@i — ) (i — )T (as, biy s — ).
The integrals C’,i’ls (z), Di’ls (z) can be treated by partial integration, but we

have to distinguish between triangles and parallelograms. On parallelograms
we simply obtain
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azt1+bt2+xz_ )

e (x / thtl dto dt
ki Ylaity + bita + z; — 7 20720
t bit — 1=1
/ az 1+ 2+ x; ) tktz dtg
1 |a1t1+bt2+1’1 | t1=—1

(at1+bt2+xl— )

Sth e dty dt
|a1,t1 + bitg + x; — | 2T

o

and on triangles there holds

1,8 (azt1+bt2+xz_ )
Cy = O,
(@) / Y aity + bita + @ —

/1tk(1_t)(at1+b(1—t1)+xz— )s
o ! Yolaity + bi(1—ty) 4@ — x|

(btg—l—l‘z— )
|bite + x; — x|

Rt dty dty

—(51“0/ tl

Double layer potential

(aztl + bito + x; —

dty — k
2 A |G,151-|—b152-|—$z |

Using the traction operator

) B )
(Tod(y))r = An, - Ge(y) + pny - br(y) + pme oy be(y),

T

we can define the double layer potential operator by

107

z)s SR dty dty .

N 3
Ko(o)i= [ (,600) ¢, =YY e > S ey "@) (1)
r i=1r=1 s=1 kl
with
. 3 . . .
Ky(x) =) (Ani,SF,;f“ () + pni  Fy) ™ () — Mni,tF,;ftS(x)) (42)
t=1
and
B = [ g Gre(wn)ola(s) dsy (43
We can decompose F};"*(z) as follows
; A+ 3u 0 1 ,
F (@) = 5 / (y)d
kl (l‘) 47TM0\ + 2# rs Ay |{E N y| Sakl(y) Sy
A+ K / xr - ( ys) ]
? d
471_“ A + 2/-// 8yt |l‘ _ y|3 Pri (y) Sy
A+ 30 / -
= t)dt
Arp(\ + 2u Z ayt 8t |F,(t |‘p’”( )
A p t) — x)r (Fi(t) —x)s _
t)dt
Amp(\ o+ 2p0) '/ Z ayt at E@y—ap O
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A+3u | OF .
=: OrsH
drp(X + 2M)| ot | b (@) +

A+ 12 aF’L 7,78t
| W (@)
drp(N+2p) Ot
As before, we can represent the integrals H,i’lt(a:) and J,i’lmt(a:) in terms of the
elementary integrals Ig’p(ai, bi,x; — x). We have

,t _ ~

(bi X ’I’Li)t .
=: L
az(bz % ni) kl(x) +

(’I’Li X ai)t
ai(bi X ni)

(ai X b?,)t
ai(bi X nz)

M (z) + Ny ().

The last integral becomes

. 1
Ni(z)= [ O th el dto di
() /Q t3|ait1+bit2+nit3+xi_x| S

ni(z; — ) . Q.-
= — t to dta dty = —ni(x; I ; a;,bi, x; —x).
/ laity + bty +x; —x3 ! 2o (@i — @) ( )

The integrals Li,(z), Mj,(x) can be treated like C};*(x), D} (z) by partial

integration and J;l”t

(z) is analyzed analogously.
Hypersingular integral operator

We implement the Galerkin matrix of the hypersingular integral operator via
integration by parts which yields [9, 16]

(Wao,¢) = // or |x—y| Z (curlr ¢ (2))s(curly ¥y (y))s dsy dsg

+, / / Z ersi(curly ¢y (x))s iz _" |€nkm(curlrwm)k dsy ds,

r,s,k,l,m,n=1

_4/14 / / Z 67"5l CllI‘lF ¢l( ))5 rn(xvy)snkm(curll—' wm)k dsy dsm

r,8,k,l,m,n=1

// A |x—y| Z (curlr ¢p(2))r (curlp ¥s(y))s dsy dsa (44)

where curlpu(z) = n(m) x gradp u(z), and e;5; is the total antisymmetric
tensor (€123 = 1). Using (44) the entries of the Galerkin matrix are computed
analytically with the software package maiprogs [14].

4 Numerical Results

In this section we present numerical results of the above described Galerkin
scheme for various examples. We perform h-, p- and hp-versions. Young’s
modulus (E-modulus) is E = 2000 and the Poisson number is v = 0.3.
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For the computation of the error we use [|¢ — dyll3 = |@lE — llon %
and [t —tn|[§, = [t} — [t~ 7

Ezample 1. For the Dirichlet problem of the Lamé equation with boundary
data g(z1, 72, 23) = (—22,71,0) in (7) on the square I' = [—1,1]? we know
the energy norm of the exact solution by extrapolation

l[t]|v = 115.0355908.

In Fig. 3 we present the numerical results for the Dirichlet problem. The
convergence rates which are given in Table 1, clearly confirm the exponentially
fast convergence of the hp-version with geometric mesh, which is expected due
to Theorem 4.

Fig. 3 shows clearly the exponentially fast convergence of the hp-version
on the geometric mesh with mesh grading parameter ¢ = 0.17. The pa-
rameter 4 = 0.5 describes the increase of the polynomial degree, namely
(¢;p),(q,p), (¢,p+1),(q,p+1),(¢,p+2),(¢,p+2),... in the zo direction and
correspondingly in the x; direction, for a geometric mesh consisting of rect-
angles only and refined towards the edges. Very good results are also obtained
for the h-version on an algebraically graded mesh towards the edges with mesh
grading parameter 5 = 4.0; this is in agreement with the theoretical results in
[26]. Also Fig. 3 and Table 1 show that the uniform p-version converges twice
as fast as the uniform h-version [3].

100
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e conf-uni-p-4 -
T conf-grad-h-4-beta=4.0 ------
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‘ : % h T
» < . B ~+
X%
10| « Xl . el ~+ |
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> *.
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Fig. 3. Weakly singular integral equation (Lamé), Example 1.
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Table 1. Convergence rates for the weakly singular integral equation on the Square.

N [t—tnllyv o p N [t—tnly o N [t—txv ol
h-Version, p=1 p-Version, 4 elements hp-Version, o = 0.17, 4 = 0.5
12 65.977067 0 12 65.977067 12 65.977067

48 45.338115 0.271 1 48 36.205111 0.433 48 31.511011 0.533
192 31.978059 0.252 2 108 26.548835 0.382 192 12.121016 0.689
768 22.804025 0.244 3 192 20.914871 0.415 432 5.8540817 0.897
3072 16.289194 0.243 4 300 17.265718 0.430 972 2.6642368 0.971
12228 11.618080 0.245 5 432 14.701526 0.441 1728 1.3123139 1.231
6 588 12.801060 0.449 3072 0.3934324 2.094
7 768 11.335587 0.455
8 972 10.170859 0.460
9 1200 9.2227497 0.464
theoretically: 0.250 theoretically: 0.500

Example 2. For the Neumann problem of the Lamé equation we consider the
square I" = [—1,1]? and choose f = (—z2,21,0) in (10). Via extrapolation we
get ||||lw = 0.04005011548.

In Fig. 4 we present the numerical results for the Neumann problem. The
convergence rates which are given in Table 2, clearly confirm the exponentially
fast convergence of the hp-version with geometric mesh, which is expected due
to Theorem 5.

Table 2. Convergence rates for the hypersingular integral equation on the square.

N J¢-dnlw o p N lp—dylw o N lo—¢ylw a
h-Version, p=1 p-Version, 4 elements hp-Version, o = 0.17, 4 = 0.5
27 0.0258942 1 27 0.0258942 3 0.0400501
147 0.0170821 0.245 2 147 0.0139794 0.364 27 0.0153835 0.435
675 0.0114749 0.261 3 363 0.0094512 0.433 147 0.0061827 0.538
2883 0.0078521 0.261 4 675 0.0071976 0.439 363 0.0035278 0.621
51083 0.0058224 0.448 867 0.0012488 1.193
6 1587 0.0048894 0.457 1587 0.0004945 1.532
7 2187 0.0042117 0.465
8 2883 0.0037193 0.450
theoretically: 0.250 theoretically: 0.500

Fig. 4 shows clearly the exponentially fast convergence of the hp-version
on the geometric mesh with ¢ = 0.17 and g = 0.5. Again we obtain very
good results for the h-version on an algebraically graded mesh towards the
edges with mesh grading parameter § = 4.0; which agrees with [26]. Also
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Fig. 4. Hypersingular integral equation (Lamé), Example 2.

Fig. 4 shows that the uniform p-version converges twice as fast as the uniform
h-version [3].
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Summary. We consider the wave equation in a time domain boundary integral for-
mulation. To obtain a stable time discretization, we employ the convolution quadra-
ture method in time, developed by Lubich. In space, a Galerkin boundary element
method is considered. The resulting Galerkin matrices are fully populated and the
computational complexity is proportional to N log? NM?, where M is the number
of spatial unknowns and N is the number of time steps.

We present two ways of reducing these costs. The first is an a priori cutoff strat-
egy, which allows to replace a substantial part of the matrices by 0. The second is
a panel clustering approximation, which further reduces the storage and computa-
tional cost by approximating subblocks by low rank matrices.

1 Introduction

This paper is concerned with the numerical solution of the wave equation
in an unbounded domain. Problems governed by the wave equation arise in
many physical applications such as electromagnetic wave propagation or the
computation of transient acoustic waves. When such problems are formulated
in unbounded domains, the approach of retarded potentials allows a transfor-
mation of partial differential equations into space-time integral equations on
the bounded surface of the scatterer.

Although this approach goes back to the early 1960s (cf. [11]) the de-
velopment of fast numerical methods for integral equations in the field of
hyperbolic problems is still in its infancies compared to the vast of fast meth-
ods for elliptic boundary integral equations (cf. [24] and references therein).
Existing numerical discretisation methods include collocation methods with
some stabilisation techniques (cf. [2, 3, 6, 7, 8, 22, 23]) and Laplace-Fourier
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methods coupled with Galerkin boundary elements in space (cf. [1, 5, 9, 12]).
Numerical experiments can be found, e.g., in [13]. In [10], a fast version of the
marching-on-in-time (MOT) method is presented which is based on a suitable
plane wave expansion of the arising potential which reduces the storage and
computational costs.

In this paper, we consider the convolution quadrature method for the time
discretisation (cf. [18, 19, 20, 21]), and develop a panel-clustering method
to obtain a data-sparse approximation of the underlying boundary integral
equations. In [14], we have developed and analysed a simple cut-off strategy
which reduces the number of entries in the system matrix which have to be
computed while the rest is set to zero. The use of panel-clustering will further
reduce the storage and computational complexity.

In [25, 26, 27] Lubich’s convolution quadrature method is applied to prob-
lems such as viscoelastic and poroelastic continua.

2 Formulation of the Problem

We consider a scattering problem in an exterior domain. For this, let 2 C R3
be an unbounded Lipschitz domain with boundary I'. Let @ be the solution
to the wave equation

OPu=Au+f,in 2x(0,7T),
a(-,0) =wup in £2,
oyu(-,0) = uy in 2,
u=0onTI x(0,7),
for some time interval (0,7") and given data f, ug and us.
To formulate the differential equation as a boundary integral equation, we

introduce an incident solution v and a diffracted solution u in the whole R3,
with @|o = (u + v)|e, where v solves the open space problem

Ofv=Av+ f, nR®x (0,7),
v(-,0) = ugy in R?,
D (-,0) = ugp in R?,
where f,, u;, are prolongations of f and u; to the whole R?, respectively.

Given the solution to the above problem, v, u solves the homogeneous wave
equation

O2u = Au in 02 x (0,T), (1a)
u(+,0) = dyu(-,0) =0 in 2, (1b)
u=gonlI x(0,T), (1c)

where g = —v[py(0,7)-
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When considering a discretisation of the above partial differential equation
on the unbounded domain 2, one has to introduce an artificial boundary with
additional boundary conditions. This is avoided by transforming the partial
differential equation into a boundary integral equation. For this, we employ
an ansatz as a single layer potential

u@¢y:A{Akmx—w¢—7m@JmQ@m (2.0) € 2% (0,T), (2)

where k(d,t) is the fundamental solution of the wave equation,

5(t — d)

k(d7 t) = drnd (3)

d(t) being the Dirac delta distribution. Inserting (2) into (la), we see that
the differential equation is satisfied. Also, the initial conditions are satisfied.
An equation for the unknown density ¢ is obtained by taking the limit to the
boundary. Since the single layer potential is continuous across the boundary,
we obtain the following boundary integral equation for ¢,

K;Akwx—WJ—TM@JMEﬂT=m%ﬂ W) €T x (0,T). (4)

Note that only the two-dimensional surface I is involved in this equation
and not the three-dimensional domain (2. This is one major advantage for
the numerical solution process compared to finite element or finite volume
methods.

3 Convolution Quadrature Method

Discretising (4) directly in space and time, e.g., with a Galerkin method in
space and a collocation method in time, involves the treatment of the Dirac
delta distribution. The resulting integration domains for a boundary element
method are given by the intersection of the light cone (of finite width) with
the triangles or quadrilaterals of the surface mesh which can be of quite gen-
eral shape and, hence, numerical quadrature becomes rather complicated. In
addition, care needs to be taken to obtain an unconditionally stable scheme.

The convolution quadrature approach for the time discretisation leads to
an unconditionally stable scheme (see [20]). The resulting integration domains
are just the boundary elements themselves. Furthermore, the approach allows
a data-sparse approximation of the system matrix by panel-clustering.

To explain the convolution quadrature method, we consider a convolution
of the form

cwmwzéfaﬂwmm,tzo (5)
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Choosing a stepsize At, (5) can be approximated by a discrete convolution
(f *at g)(t,) which will be based on the inverse Laplace transform

1 ¢ st
*td

for some o > 0. The inverse Laplace transform is defined if f is analytic
and for Res > o, |f(s)| < ¢|s|™* for some ¢ < oo and p > 0. Inserting this
representation of f(¢) into (5), we obtain

ft) =

1
211

(e =, [ T tds with y (s,1) 1= | et gmar.

Observe that the function y,(s, -) satisfies the differential equation

Ory(s,-) = sy(s,-) + g,

which can be approximated by a p-th order linear multistep method,

k k
D tnesk(s) = AtY By (synrs—r(s) +9((n+5 —K)AL) . (6)
=0 7=0
with starting values y_x(s) = ... = y_1(s) = 0. We assume that sufficiently

many time derivatives of g vanish at ¢ = 0. Formally, a p -th order approxi-
mation of (5) is then given by

(o)) = o [ Fehnleyis. ™)

211

To see that (7) can be written as a discrete convolution, we multiply (6) by
¢" for |¢| < 1 and RM(O > o and sum over n to obtain

Zyncn - ("% - s)_lig(nmx

. Z;‘ o ozjckf .
with y(¢) := Sk gk . Doing the same for (7), we obtain
j=0

o A
e 1 (s)

§ (f *at g)(t = 27”,/ A ’Y(C) ds E g(nAt)¢

n=0 o+iR

At

-5 (19 stnanc

where we have employed Cauchy’s integral formula in the last step. If we
define w2 by
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) = e, )
n=0
we have
> (frarg)(tn)C" = Zw%” Z (mADC™ =" | D wnt gAY | ¢
n=0 n=0 \ j=0
Thus
(f *at 9)( an 19 AL,

which has the form of a discrete convolutlon.

4 Time Discretisation: Convolution Quadrature Method

In our case, the convolution coefficients are spatial boundary integral op-
erators. The continuous convolution in (4) is approximated by the discrete
convolution,

Z/ =y d ()dly = glatn),  n=1,...N, zel, (9)

where the convolution coefficients w2 (d) are functions of d = ||z — y|| deter-
mined by the power series (cf. (8)) of the Laplace transform

. e—sd
k(d’ 8) - drd”’
2 (d, 72?) = St (10)

As a multistep method, we use the second order accurate, A-stable BDF2
method with

Q) = (@ —1¢+3).

The coefficients of the power series (10) can be obtained by the Taylor expan-
sion of k(d, Wgt)) about ¢ =0,

n e n — 76
g TR 11 e
" n! ocn n! drd  OC™ o

It can be shown that

n/2
11 d 3d 2d
At _ — oAt
wn(d) = nl4nd <2At> ¢ 2t in <\/At> ’ (11)

where H,, are the Hermite polynomials.
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5 Space Discretisation. Galerkin Boundary Element
Methods

For the space discretisation, we employ a standard Galerkin boundary element
method with piecewise constant or piecewise linear basis functions. Let G be
a regular (in the sense of Ciarlet [4]) boundary element mesh on I consisting
of shape regular, possibly curved triangles 7;. Let Py and IP; denote the space
of constant and linear functions, respectively. We denote by

S,LO::{ueLC’O(F) : VneG:u €]P0}

the space of piecewise constant, discontinuous functions, and by
Sop={ueC’(I) : Vreg: (woxi)l, €Pi}

the space of continuous, piecewise linear functions, where y; denotes a regular
mapping of the curved triangle 7; to a planar reference triangle.
As a basis for S_ ¢ we choose

bz(x) = (5”‘, ifze Tj

and the basis for Sy ; consists of the standard hat functions on the planar
reference triangle, lifted to the surface I' by the mapping x;. We generally
refer to the boundary element space by S and its basis by (bi)?il. The mesh
width h is given by the maximum triangle diameter in G.

For the Galerkin boundary element method, we replace ¢’ in (9) by some
@Ay, € S and impose the integral equation in a weak form. The fully discrete
problem consists of finding ¢%, , € S, n=1,2,..., N, of the form

M
¢Zt,h(y) = Z ¢n,ibi(y) ’
i=1

such that
T [ [t = vhmn@an,ar. = [ g tb@ar,
=0 =1 r
(12)
forall1 <k <M and n=1,...,N. This can be written as a linear system
ZAnfj(ﬁj:gnv n=1,...,N, (13)

Jj=0

with the vectors ¢; = (¢;,;)M, and the matrices

= [ [ @R = sobstoeteraryar

and

(gn)k = ,/[‘g(xvtn)bk(x)drz .
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5.1 Efficient Algorithmic Realisation

Before we present a way to reduce the storage requirements, we take a look
at the solution procedure. The problem to be solved is

¢, = <gn ZAn 1¢> n=0,1,...,N. (14)

A straightforward way to solve (14) is to compute (gn > AL i(ﬁi) and

then to solve the system for each n. The required work is however proportional
to N2. When using the following algorithm (cf. [16]) the computational costs
are proportional to N log2 N. The procedure depends on a (small) control
parameter 7.

Algorithm 2 (Recursive solver for block triangular system)

Comment: Main program

begin

solve triangular(0, N);

end;

Comment: The recursive subroutine solve triangular is defined as fol-
lows.

procedure solve triangular (a,b : integer) ;
begin
if b—a <r—1then
for n:=a to b do

n—1
¢n = Aal <gn - Z An—i¢i> (15)

end
else begin
. [b+aT].
m =[50
solve triangular(a,m —1);
for n:=m to b do

m—1
end;
solve triangular(m,b);
end;

end;
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When using fast iterative methods, the computational costs for (15) are pro-
portional to 72 matrix vector multiplications. The special form of (16) allows
the use of the discrete fast Fourier transform (see, e.g., [17]) and the updates
of g can be done in O (M? (b—a)log(b— a)) operations. The procedure
solve triangular calls itself twice with half the dimension. The total com-
putational cost sums up to O (M2N10g2 N) (cf. [17]).

Remark 1. In the following, we will apply sparse approximation techniques to
the matrices A,,. Further research will be concerned with a modification of the
above algorithm making use of the sparse representation of the operator A,,.
Note that already the use of (14) in combination with the fast evaluation of
matrix vector products due to the sparse representation leads to a reduction of
the overall complexity. The total computational cost sums up to O (M sy )
with s < 1.

6 Sparse Approximation of the Matrices A,, by Cutoff

6.1 Cutoff Strategy and Perturbation Analysis

The matrices A,, are full matrices. Thus, storage requirements and compu-
tational complexity for the solution of the fully discrete problem using fast
iterative methods are proportional to M?2. However, a substantial part of the
matrix consists of small entries and can be replaced by 0. To see this, we recall
the definition of the convolution coefficients

n/2
11 d 3d 2d
At = T 24t
w(d) = n!4rd <2At> o7 x4 Hy <\/At> ' (17)

For n = 0, we have

efg Ad
A t
Wo t(d) = drd )
with a singularity at d = 0 and, for n = 1,
1 e72 Adt
wlAt(d) T At or

In Fig. 1, we plot w2(d) for At = 1 and different n. For general At, we have
the relation J
wAt(d) = At 1w} (At) .

The convolution functions have their maximum near d = t,,. Away from
this maximum, the coefficients decay fast. Using bounds for the Hermite poly-
nomials, it can be shown (cf. [14]) that outside the interval



Sparse Convolution Quadrature for TDB Integral Formulation 121

wxm“ ; x10°
| f“w
\ ‘\
5 “ 5 I
) ‘\ g ‘ \
& | £ |
TR R\
| |
| U
750 50 100 120 200 250 300 —‘0 50 100 130 200 250 300
(a) n=20 (b) n =100
x10°

©po0(d)
o -

0 50 100 150 200 250 300
d
(c) n = 200

Fig. 1. The convolution weights wﬁt(d) for At =1 and different values of n.

InA; = [tn — 3V ALt |loge|, ty + 3V At/L,| logeﬂ (18)
we have .
W@l < S v IR, (19)

Given an error tolerance e, we only consider those entries of A, , for which
the possible values of ||z — y|| lie inside I5*. The remaining entries are set to
zero. Let P. C {1,...,M} x {1,..., M} be defined by

P, = {(i,j) : 3(x,y) € suppb; Nsuppb;, s.t. ||z —y| € InAé . (20)
This induces a sparse approximation A, by

Ay (An)igif (i,7) € Pe,
(An)i = {O otherwise. (21)

- - \M
Instead of solving (13), we solve for an approximate solution ¢; = (¢j7i>

. )
i=1
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n
> A, j¢i=g., n=1,...,N, (22)
=0

and we have the approximate solution

M
Phen(y) == Zﬂzmbz(y) (23)
i=1

In [14], the following theorem is proven.

Theorem 1. Let the exact solution ¢ (-,t) of (4) be in H™T(I") for any
t € [0,T]. There exists a constant C > 0 such that, for all cutoff parameters
e in (21) with 0 < € < ChAE, the solution ¢ s in (23) exists and satisfies
the error estimate

880 = @ o t0)

where Cy depends on the boundary data g.

< “tAr? 2 pm+3/2
’H_1/2(F) = CQ(T) (€h At + AP+ h ) 7

Corollary 1. Let the assumptions in Theorem 1 be satisfied. Let
At2 ~ hm+3/2 ’ (24)

and choose
e ~ Tm/2+25/4

Then the solution é%t,h exists and converges with optimal rate

6.2 Storage Requirements

< C(T)R™3/2 ~ C,(T)AL2.
H_l/Q(F)ng( ) Cy(T)

Qth,h - ¢ ('a tn)

The approximation of the matrices A, by sparse approximations A, results
in reduced storage requirements. To determine the storage requirements for
the sparse matrices, assume that the dimension M of the boundary element
space satisfies

cth™? <M< Cih™2 (25)

We further assume that there is a moderate constant C' such that for any
1 <i < M, the subset
Pi={je{l,...,.M}:(i,j) € P},

with P, as in (20), satisfies

(26)

VAL log M
1 52 .

ﬂPiSCmax{ , "
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Table 1. Storage requirements for A.,,.

m =0 m=1
tn = O(Atlog M) CM*ilog? M CM
tn = O(1) CtY2 MY 18 log M CtY/* M 16 log M

This assumption can be derived from the assumption that
ch? < supp b; < Ch?
and that the area of
Rip:={yel : 3zecsuppb;:|lz—y| el

satisfies |R;.,| < CV At ti/2| log(e)| (R;n is part of a ring with radius ¢,, and
the same width as the interval Ifg) Due to Corollary 1, |loge| ~ log M.

With these assumptions, the number of nonzero matrix entries in A can
be estimated by

M
S kP < CMmax{l, \/Attf/Qh’QlogM}.

i=1
Relation (24) allows to substitute /At and the combination with (25) yields

Theorem 2. The number of nonzero entries in the sparse approzimation A,
is bounded from above by

CMmax{l,tiﬂMig*émlogM}.

We distinguish between four cases: The case of piecewise constant and piece-
wise linear boundary elements (m = 0, and m = 1, respectively) and small and
large n (t, = O(Atlog M) and ¢, = O(1), respectively). The storage require-
ments for the different cases are summarised in Table 1. For small n, the stor-
age requirements are significantly decreased. In Section 7, we present a method
for further reducing the storage requirements even when t,, > O(Atlog M).

7 Panel-Clustering

The panel-clustering method was developed in [15] for the data-sparse approx-
imation of boundary integral operators which are related to elliptic boundary
value problems. Since then, the field of sparse approximations of non-local
operators has grown rapidly and nowadays advanced versions of the panel-
clustering method are available and a large variety of alternative methods
such as wavelet discretisations, multipole expansions, H-matrices etc. exist.
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However, these fast methods (with the exception of H-matrices) are developed
mostly for problems of elliptic type while the data-sparse approximation of
retarded potentials is to our knowledge still in its infancies. In this section,
we develop the panel-clustering method for retarded potentials.

7.1 The Algorithm

The panel-clustering can be applied as soon as t, > O(At |loge|). (Note that
for the first time steps the simple cutoff strategy reduces the computational
complexity much more significantly than for the later time steps, see Table
1.)

For t, > O(At|logel), the matrices A,, in (13) are partitioned into sub-
blocks Ay, |sx¢ for some index set s x t C {1,..., M} x {1,...,M}. The sub-
blocks are either replaced by zero, if the block entries are sufficiently small,
or they are replaced by low rank matrices. To explain this approach in detail
we first introduce the basic notation.

Let 7 := {1,2,..., M} denote the degrees of freedom for the space dis-
cretisation.

Definition 1 (Cluster). A cluster ¢ is a subset of Z. If t is a cluster,
the corresponding subdomain of I" is Iy := (U;c, supp (b;). The cluster box
Q: C R3 is the minimal axisparallel cuboid which contains I'y and the cluster
size Ly is the mazimal side length of Q.

The clusters are collected in a hierarchical cluster tree T7.

Definition 2 (Cluster Tree). A tree Tz is a cluster tree if the following
conditions are satisfied.

1. The nodes in T7 are clusters.

2. The root of T1 is I.

3. The leaves of T7 are the degrees of freedom, i.e., L(Tr) = T and the
tree hierarchy is given by a father/son relation: For each interior node
t € Tr \ L(T7), the set sons(t) is the minimal subset in T\ {t} such that

t:Us

s€sons(t)
holds. Vice versa, the father of any s € sons(t) is t.

The standard construction of the cluster tree Tz is based on a recursive bisec-
tion of an axisparallel cuboid B which contains I". The bisection of B yields an
auxiliary binary tree T3. Then, the clusters in 77 are given by collecting, for
any box B € T}, the indices i € 7 which satisfy §; € B, where &; denotes the
nodal point for the i-th degree of freedom. Clusters in T7 which coincide with
their father are removed from 77 and empty clusters are removed as well.

The kernel function k(||z — y||,t) is approximated on I} x s, where (¢, s)
is a pair of clusters which satisfy the following condition. Recall the definition
of the interval I2' as in (18).
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Definition 3. Let ¢ > 0 and n > C'|loge|. Let 0 < n < 1 be some control
parameter. A pair of clusters (t,s) € Tr x Tz is admissible at time step t,, if

V(z,y) € Qe x Qs llz—yll & I3t (27a)

or
(27a) is violated and max {L;, L} < nAtn®. (27b)

The power b in (27b) is a fixzed number which is related to the accuracy of
resulting discretisation.

A theoretical bound on b is b > 1/4 under the condition n > C'|loge|. Numer-
ical experiments indicate that the choice b ~ 0.3 also preserves the optimal
convergence rates. This is shown in a forthcoming paper.

The following algorithm subdivides Z x 7 into a matrix part PSP*™¢ cor-
responding to pairs of indices where the matrix has to be assembled in the
conventional way, a zero part P° where the corresponding matrix entries are
set to zero and a panel-clustering part PP¢, where the system matrix is approx-
imated by panel-clustering. Note that the father/son relation of the cluster
tree induces a father/son structure for pairs of clusters b = (¢, s) by

sons (¢) x sons (s) if sons (¢) # () and sons (s) # ()
¢ X sons (s) if sons(c) =0 and sons(s) # 0,
sons (¢) X s if sons(c) # ) and sons (s) =0
0 () #0 )# 0

if sons (¢ and sons (s

sons (b) :=

Algorithm 3 Let n > C'|loge|. The minimal admissible block partition-
ing of T x T at time step t, is obtained as the result of the procedure
divide((I,I) ,PSparse,PpC,PO) defined by (cf. [15])
procedure divide (b, psparse ppe. PO);
begin
if (b is non-admissible and sons (b) = () then Psparse .= psparsej{]}
else if (b satisfies (27a) then P?:= P’ U {b}
else if (b satisfies (27b) then PP°:= PP°U {b}
else for all b € sons (b) do divide (B, psparse ppe, PO) :
end;

Remark 2. The set P®P?™¢ is empty in most cases since the cluster sizes of the
leaves satisfy
Ly = O(h)

while relation (24) implies for the bound in (27b)
nAtn® = O (nhm/2+3/4nb) :

where m = 0 for constant and m = 1 for linear elements. Hence after a few
time steps, nAtn® > Ch and any pair b with sons(b) = 0, i.e., i,j € T,
satisfies (27a) or (27b).
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Next, we explain the data sparse approximation on the blocks b = (¢, s) €
PP Since w2 (||x — y||) is defined in Q. x Qs we may define its approximation
by Cebysev interpolation:

Dz =yl 2ol -yl = Y LP@LY (w2 =y ),
Ve (Ngq)3
(28)
where £ (resp. /ng)) are the tensorised versions of the ¢g—th order Lagrange
polynomials (properly scaled and translated to Q. resp. Qs ) corresponding
to the tensorised Cebysev nodes z* for Q. resp. y” for. Qs.
The matrix A, is the representation of the bilinear form a,, : S x S — R,

an (6,10) = /F /F W[l — y)@(y)(x)dl, dr,

with respect to the nodal basis (b;)M,. We introduce the convention that,
for any function ¢ € S, the coefficient vector in the basis representation is

denoted by ¢ = (p;);;, i.e., o = Y10, @ibi
The sparse approximation of a, by our combined cutoff and panel-
clustering strategy is given by

an ()~ > iy (AP,

(l,])e Psparse

Yoy (7)1 @) I @),

=(0:8)€PPe ), ye(Ng,)? 7
with the sparse matrix part of A,

(Asparse)‘ = f[‘{i} fF{j} wﬁt(Hx - y”)bj (y) bi (x) drydrﬂﬂ if (7',.7) € Psparse»
" I 0 otherwise,
(29)

the interaction matriz Sén)
(867) = w(la — ") 0<pm<a1<i<s
pv
and the influence coefficients

T (¢ Zw/ LY (2)b; (x)dTy, 0 < pgvp <q,1<i<3.

i€o

The algorithmic realisation of the sparse matrix multiplication based on this
approximation of the bilinear form and the recursive computation of the in-
fluence coefficients J " (1) are structured as follows.
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Phase 1: Computation and storage of the Galerkin operator

(a) Generate and store the cluster tree and the partitioning of Z x Z into
psparse - ppeand PO,
Introduce recursive tree levels 0 < £ < {yax by T7 (0) = {Z} and

Tr(0+1):={o€Tr:3s €Tz (¢) with “o is son of s”}.

Let £yin denote the minimal index such that (i) there exists o € Tr ({iin)
with L, < nAtn® and (i) for all 0 < ¢ < lyi, and o € Tz (£) there holds
L, > nAtn®.

(b) Compute and store the nonzero entries of the matrix ASParse,

(¢) Compute and store the basis influence coefficients

9 (by) = / (b)cg;; (@)b; (x)dTy, 1<i<M, pe(Neg)®. (30)
supp(0;

(d) Compute and store the interaction matrices S{)") for all b € PP©.
Phase 2: Evaluation of a matrix-vector multiplication ¢ = A,

a) For all o € T7 ({1nax), for all p € (N« 3 compute
(a) H <q
T () = %‘Jf?}) (b:) -

For £ = liax — 1, bmax — 2, - -+, fmin, for all o € T7 (£) and all p € (Ngq)3
compute

JW @)= > > s dP () with . = L8 (7).

s€sons(o) e (Ng, )

(b) Let
T2 :={ceTr|Is€Tr: (c,s) € P’}

and, for ¢ € T2°, let

Pl (€)== {s € Tz | (c,s) € P*°}.

For all ¢ € T2 and all ;€ (N<,)® compute
RO W= > 3 () ).
s€PLE) (o) VE(NSQ)E‘ ks

(c) For ¢ = loin, bnin + 1, ., lmax — 1, 0 € Tz (¢), s € sons (o), and all
3
v € (N<g)” compute

RM () :=RY )+ > YuwsR¥ (¥) .

”E(Niq)g
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For all {i} € T7 ({max) do
pii= Y RE@W) I ()
VE(NSQ)3
(d) Evaluate (by taking into account the sparsity of A,,)
P =@+ AP,

7.2 Error Analysis

We proceed with the error analysis of the resulting perturbed Galerkin dis-

cretisation which leads to an a-priori choice of the interpolation order ¢ such

that the convergence rate of the unperturbed discretisation is preserved.
Standard estimates for tensorised Cebysev-interpolation yield

sup  |wp " ([12]) — @ (21| < (31)

2€Q:—Qs

L9 (1 4 log®
(+1os ) e wup JorHiu(20)]
92¢+1 (q+1)! 16{123} 2€Q:.—Qs

where C > 0 is some constant independent of all parameters, L denotes the
maximal side length of the boxes Q. and Qs and Q. — Q) is the difference

domain {z —y: (z,y) € Q. X Qs}.
Theorem 3. For b = (¢,s) € PP°, let (x,y) € I. X I's and n > C'|loge|.
Assume that the partial derivatives of w2t (||x — yl|) satisfy

1 q
w2 (D] < et (1) ¥o@o-Qu 20

1<i<3
with b as in Definition 3. Then

At G L\
- <
o) -2 =l < o o (Coprn ) G2D)
with L as in (31).

Note that in a forthcoming paper, the validity of assumption (32a) will be
derived.

Theorem 4. Let ¢ > 0 and n > C|log”¢e| for some C. Let the assump-
tions of Theorem 8 be satisfied and the interpolation order chosen according to
q > |loge| /log?2.

(a) Let b =(c,s) € PP° be admissible for some 0 < n < ng and sufficiently
small ng = O (1). Then

Wil =l =@ Ule =il < 7 V(y) €L XL (33)

for some C independent of n and At.
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(b) Let b =(c,s) € P°. Then

&
ot (le —wllf < = V(@) € Lx I (33b)

Proof. Assume that (c¢,s) € PP°. Then, due to Condition (27b), we obtain
from Theorem 3 the estimate

e =yl =2 (e =)l < o o) @™

The distance can be estimated by means of Condition (27b). For all (z,y) €
Q. X Qs, there holds

o = yl| < dist (Qc, Qs) + V3 (Le + L) < dist (Qc, Qs) + 2V3nAtn®.  (34)

Because (c,s) € PP, Condition (27a) is violated and there exists (z,y) €
Q. X Qs such that ||z —y| € Iﬁé. Thus, by taking into account n® < n, we
obtain

dist (Qc, Qs) > || — yll — V3 (Le + L) > t, — 3V At\/t,|loge| — 2v/3nAtn®

|loge| tn
=t (1— -2 >
( 3 Jn Vin | > 10

for n > 15|1log?¢| and 0 < 7 < 1o with 79 = (40\/3)71. Hence,

dist (Qe, Qs) > P (2\/377Atnb) (35)

for all 0 < n < nq.
The combination of (34) and (35) yields

1 - 3
dist (chQs) - 2||x—y||
and
1 +1
T — —w T — < Con)?
joa (Il — ) e =yl < 2||x_y”( 27)

Finally, the condition ny < (2C2) implies that the interpolation order

o, lloge]
~ log2

leads to an approximation which satisfies

016
T —y —w z—y|)| < .
(] 1) “(ll DI= Iz — ol

For (c,s) € PP, the assertion follows from (19). O
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In [14] an analysis of the perturbation error has been derived. Since it
is only based on abstract approximations which satisfy an error estimate of
type (33a) and (33b), we directly obtain a similar convergence theorem also
for the panel clustering method. In the following, we denote by &Zt,k es
the solution at time ¢, of the Galerkin discretization with cutoff strategy and
panel-clustering.

Theorem 5. Let the assumption of Theorem 4 be satisfied. We assume that
the exact solution ¢ (-,t) is in H™TY(I") for any t € [0,T]. Then there exists
C > 0, such that for all cutoff parameters € in (18) such that 0 < ¢ < ChA#3
and interpolation orders q > |loge| /log2, the solution &At’h with cutoff and
panel-clustering satisfies the error estimate

< —1 Ap—5 2, pm+3/2)
]Hfl/z(r)_cg(:r)(gh AL 4 AR 4 p2)

HQBZt,h - ¢('7tn)

Corollary 2. Let the assumptions of Theorem 5 be satisfied. Let At ~ pmt3/2
and choose & ~ hTm/2+25/4 Then, the solution ¢} exists and converges with
optimal rate

7.3 Complexity Estimates

< Cy (T) ™ +32 ~ €y (T) A2
oy < Co (D) Cy (1)

Fhen —d (o tn)

In this subsection, we investigate the complexity of our data-sparse approxi-
mation of the wave discretisation. Since we will introduce numerical quadra-
ture methods for approximating the integrals (29) and (30) (for possibly
curved panels) in a forthcoming paper, we here restrict ourselves to the storage
complexity of our data-sparse approximation scheme and discuss the compu-
tational complexity in a forthcoming paper. In this section, we always employ
the theoretical value 1/4 for the exponent b in (27b).

Sparse approximation of the system matrix A,.

To simplify the complexity analysis we assume that only the simple cutoff
strategy and not the panel-clustering method is applied for the first time
steps:

1SnSC’max{logM,]Wmfé}7 (36)

where the constant C' depends only on the control parameter 1. Note that
the second argument in max {-, -} ensures that P*P?">® = () and the matrix
AsPars¢ vanishes (cf. Remark 2). By using Theorem 2 and (24), the number
of nonzero entries of A,, in this case is of order

M i log®? M m =0,

_1 11 5/2 _
Mmax{Mm 2 log M, M+~ 2" log M}_{M“‘élogM m=1,
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where the leading constant in the O (-)-estimate depends only on 7. Note
that At = O (N~'). Hence, relation (24) implies N ~ M'5i+E and allows
to estimate the number of n’s in (36) by

max{logM,Mmfé} < N max {M*ZL*g logM,Mimfg}.

Hence, the total cost for storing these matrices A, is given by

7/2if m =0,

7+m/ Km : —
(NMS 2 log M) with k., .—{ 1 ifm=1

Basis influence coefficients.
The number of basis influence coefficients (cf. (30)) is bounded by
O (Mlog® M).

Since this step has to be computed and stored only once for all time steps
the cost for this step (and the generation of the cluster tree) is negligible
compared to the minimal cost O (NM) of the whole algorithm.

Influence matrices.

First, we compute the cardinality of PP¢. Note that the maximal diameter
of a cluster ¢ € T7 satisfying condition (27b) is bounded by

L < nAtn®.

An assumption on the cluster tree and the geometric shape of the surface
is that

{@y) e M x| |z =yl € [2}| = 0 (VAtE?|loge])

where |w| denotes the area measure of some w C I' x I'. Hence, for suffi-
ciently small At the number of pairs of clusters satisfying (27b) is bounded

by
o VAL [log e| (37)
(nAtnb)* .

The storage requirements per matrix Sén) are given by ¢% ~ |10g6 e| and
this leads to a storage complexity of

n3/2=4 |log e|”
0 ( e . (38)

Using the relations as in Corollary 2

A2 ~ hrn-l—3/27 £ ~ h77n/2+25/4, M=0 (h—2)
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Table 2. Storage requirements for the panel clustering approximation and sparse
approximation.

full matrix cutoff panel clustering+cutoft
m=0 0 (NM?) O(NM"*islogM) O(NM""1slog” M
m=10(NM?) O(NM"*ilogM) O(NM"*1slog” M

we see that (38) is equivalent to (we here use 4b = 1)
@ (nl/QMm/2+3/4 log” M) .

To compute the total storage cost we sum over all n € {0,1,...,N} to
obtain

N
S neME+ilog" M < ON2M % +ilog" M < ONM %' +id log” M
n=0

_c NMislog" M m =0,
T UNMY S log" M m = 1.

Note that the storage cost for the temporary quantities in Phase 2 of the
panel-clustering algorithm is proportionally to M log® M and, hence, negligi-
ble compared to the other components of the algorithm.

The total storage requirements are summarised in Table 2. The table shows
that the panel-clustering method combined with the cutoff strategy reduces
the storage amount very significantly. For piecewise constant boundary ele-

ments we even get a storage complexity which behaves better than linearly,
ie, O(NM).

8 Conclusions

In this paper, we have followed the convolution quadrature approach by Lu-
bich and combined it with Galerkin BEM for solving the retarded potential
boundary integral formulation of the wave equation. The main goal was to
develop fast and sparse algorithms for this purpose, i.e., a simple a-priori cut-
off strategy where the number of matrix elements which have to be computed
is substantially reduced and a significant portion of the matrix is replaced by
zero. The panel-clustering method is applied to the remaining blocks which
further reduces the computational costs.

In a forthcoming paper, we will introduce an efficient quadrature method
and analyse the effect of these additional perturbations.
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Fast Multipole Methods and Applications
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Summary. The symmetric formulation of boundary integral equations and the
Galerkin boundary element method are considered to solve mixed boundary value
problems of three-dimensional linear elastostatics. Fast boundary element tech-
niques, like the fast multipole method, have to be used to overcome the quadratic
complexity of standard boundary element methods. The fast methods provide a data
sparse approximation of the fully populated matrices and reduce the computational
costs and memory requirements from quadratic order to almost linear ones. Three
different approaches to realize the boundary integral operators of linear elastostatics
by the fast multipole method are described and numerical examples are given for
one of these approaches.

1 Introduction

The Galerkin boundary element method for the symmetric formulation of
boundary integral equations is an efficient and reliable tool to solve mixed
boundary value problems in linear elastostatics by numerical simulations. This
approach is based on a rigorous mathematical analysis. The related stability
and error analysis can be found, for example, in [15, 16]. Mathematical books
on boundary element methods are, for example, [17, 21, 35, 42].

As the involved boundary integral operators are non—local, standard
boundary element techniques result in fully populated stiffness matrices.
Therefore, standard boundary element methods are restricted to rather small
problem sizes. Hence, fast boundary element methods have to be used for prob-
lems of engineering and industrial interest. There exist several fast boundary
element methods reducing the memory requirements and the computational
costs for a matrix times vector multiplication to almost linear complexity.
Most of these methods rely on a clustering of the boundary elements. This
leads to a block clustering of the considered matrix, too. Then low rank ap-
proximations are used for an appropriate approximation of the corresponding
block matrices. The methods mainly differ in the construction and the realiza-
tion of the low rank approximations. Among them there are the fast multipole
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method [7, 8, 34] and the panel clustering method [12] which both perform
the low rank approximation by an approximation of the kernel by appropriate
series expansions providing a separation of the variables. The panel clustering
method uses the Taylor series expansion whereas the fast multipole method
uses spherical harmonics. The adaptive cross approximation (ACA) method
[1, 33] is an algebraic approach to construct low rank approximations. The
‘H-matrices [10] provide a complete arithmetic for the class of matrices with
low rank approximations. The H2-matrices [11] use hierarchical basis func-
tions for the low rank approximations. The wavelet approximation methods
[4] construct special nested trial spaces which enable a sparse approximation
of the matrix due to the rapid decay of the kernel.

An extensive overview is given in [25] for the large number of contribu-
tions to the fast multipole method. There exist several versions of the real-
ization of the boundary integral operators by the fast multipole method in
three—dimensional linear elastostatics. A fast multipole version based on the
reformulation of the kernel with respect to the fast multipole method for the
Laplacian is given in [6]. There, the kernels of the boundary integral operators
of linear elastostatics are decomposed in terms depending on |z —y|~! and its
derivatives. Then the fast multipole method for electrostatics problems is used
as a black box. This approach leads to a rather large number of applications
of the potential theoretic fast multipole method.

Starting from the kernel expansion of the fundamental solution of the
Laplacian, a new multipole expansion together with the corresponding transla-
tions and conversions are derived in [46] for the fundamental solution of linear
elastostatics. That leads to less applications of the fast multipole method, but
the expansions and the operations get more costly. The authors do not make
a clear statement in [46] whether their approach is faster than the approach
presented in [6]. The same expansion in spherical harmonics is presented for
the panel clustering method in linear elastostatics in [14].

In [32], a different approach based on Taylor series expansions, which is
easier to adopt to other kernels, is used. This version of the fast multipole
method lacks the translations of local expansions from the clusters to their
sons