
Distributed intelligence in pedestrian simulations

D. Cavens1, C. Gloor2, J. Illenberger3, E. Lange4, K. Nagel3, and W.A. Schmid1

In order to accurately simulate pedestrian behaviour in complex situations, one is required
to model both the physical environment and the strategic decision-making of individuals.
We present a method for integrating both of these model requirements, by distributing the
computational complexity across discrete modules. These modules communicate with
each other via XML messages. The approach also provides considerable fl exibility for
changing and evolving the model. The model is explained using an example of simulating
hikers in the Swiss Alps.

1. Introduction and Motivation

An important question in pedestrian simulation systems is the determination of the di-
rection in which the pedestrians are heading. For the investigation of simple geometrical
structures, it is suffi cient to give the pedestrians pre-computed and fi xed directions,
which translate to a desired velocity vector for each pedestrian which is constant in time.
Somewhat more advanced are evacuation simulations, which are solved either by using
potentials or by using simple rules that combine searching and herd behaviour.

As one moves towards more complex spatial environments and social situations, a cor-
respondingly more complex approach is required to modelling agents’ desired direc-
tion. This is required for models that simulate, for example, how pedestrians explore a
museum or a department store, or how they move around in a crowded urban park at
lunchtime. In these situations, agents, like the individuals they represent, need to be able
to adapt their desired directions in response to their surrounding environment and the
activities of other agents.

In general, a mobility simulation consists of at least two components: the simulation
of the agents’ interactions with the physical world, and the simulation of the agents’
strategic or mental decision-making [1]. The fi rst component, what we call the physical
simulation, deals with how a pedestrian adapts its movement to accommodate obstacles
and physical constraints in its immediate environment (i.e. strategies to avoid a group of
other pedestrians that are between the agent and its destination.) The second component,
the agents’ decision-making, models the agents’ goals and strategies at a broader and
temporal scale (i.e. the selection of an agent’s destination from a set of similar alternati-
ves.) while there is some overlap between the two components, for the purposes of this
paper the agents interaction While both of these components, plus their interplay, are
important to making a realistic pedestrian simulation, there has been comparatively little
research into how to make the two components work together [2].

1ETH Zürich, Switzerland
2Gloor Consulting, Switzerland
3Technical University of Berlin, Germany
4University of Sheffi eld, United Kingdom

202 D. Cavens, C. Gloor, J. Illenberger, E. Lange, K. Nagel, and W.A. Schmid

While the primary purpose of the work presented here seeks to integrate the modelling
of pedestrians’ physical movements with their strategic decision-making, it was also
triggered by a research project that simulates the reaction of hikers to changes in the
landscape. This created additional demands on the described system, requiring that the
system be able to model and simulate the following aspects:

 Large scale: The study area is typically used for extensive day hikes. This implies
an area of at least 25 km x 25 km, and requires the simulation of several thousand
pedestrians per day.

 Sophisticated mental models: The evaluation of a landscape (both aesthetically
and from a functional perspective) by recreational users is a process that is not
well understood. This implies the use of a fl exible method in which very different
mental models can be tested.

 Distributed Computation: Since variability of experiences over the course of a
day seems to have a strong infl uence on hiker satisfaction, a computational me-
thod that automatically evaluates sequences of views is needed. Since this is a
time-consuming computation, this implies the use of distributed computing whe-
re several view analyzers can run on different computers.

We present an approach that satisfi es these goals.

2. Overview of the Approach

Our method consists of dividing the simulation into distinct modules. These modules
interact with each other via network messages. Each module has a distinct role in the
overall simulation system, but can be classifi ed into the following broad categories:

 Mental modules simulate the processes that go on in peoples’ heads. These mo-
dules determine how an agent can best fulfi l its goals and expectations, based on
their experience on previous simulation runs. These modules also receive events
from the other modules, in order to refi ne their knowledge of the area being simu-
lated.

 The physical simulation (in this case a pedestrian simulation) executes the plans
of all involved agents simultaneously. The module is responsible for modelling
how the agents react to their physical environment such as slow-downs due to
congestion or path characteristics. While the mobility simulation is running, it
constantly emits messages (called events) stating the status of each agent. Most
of these events are simply status messages (containing the agent’s location), but
some messages contain additional information about the agent’s surrounding en-
vironment.

 There are secondary analyzer modules that read the event stream, compute se-
condary information, and re-insert that secondary information into the same event
stream.

203Distributed intelligence in pedestrian simulations

 There are additional control modules that coordinate communication between the
other modules and keep track of the overall state of the simulation.

The simulation is designed to run over many iterations, during which the agents „learn“
about their environment. Initially, the agents are assigned characteristics and non-spati-
ally specifi c goals, but have no knowledge of the physical characteristics of the simula-
ted area. These characteristics and goals are generated externally to the simulation and
fed to the Agent Database.

Figure 1: Overview of the Simulation System. Each Module can be implemented as a separate
executable if required.

204

At the beginning of each simulation run (in this case representing a single day), the
Agent Database, with the assistance of the mental modules, generates for each agent a
plan that the simulation system expects is the most likely to fulfi l the particular agent’s
goals and expectations. Once all plans have been elaborated, the Agent Database sub-
mits these plans to the physical simulations which simultaneously execute them.

During the model run, the physical simulations broadcast events to the rest of the si-
mulation. These events include information about the location of the agents and any
experiential information that is available (i.e. indicating that the agent has encountered
a steep hill, or is in a congested area.) The mental and analyzer modules listen to events
being broadcast by the physical simulation. This information is used by the mental mo-
dules to refi ne their knowledge of the physical environment and generate better plans
in subsequent model runs. For example, they might note that an agent sees nothing but
trees while the agent is interested in sunshine. On subsequent model runs, the agent will
search for a different hiking path that provides more open areas.

At the end of a simulation run, the control module determines if the agents have achie-
ved their goals and expectations using the current plan. If not, the mental modules are
asked for a new plan. In order to ensure that agents are able to discover new locations,
a degree of randomness is used to determine the agents’ choices (the random factor de-
creases over many simulation runs.)

3. Modules

In order to further elucidate the major concepts, the following are descriptions of key
modules in the simulation system. More complete descriptions are available in [3] and
[2].

3.1. Agent Database / Controller Module

The Agent Database fulfi ls two major functions within the simulation system: it maintains
the master list of agents in the simulation and co-ordinates the rest of the modules.

As part of the system initialization, the agent database loads in a synthetic population
of agents. This population, defi ned in an externally generated XML fi le, describes each
agent’s individual characteristics. This includes the agents’ physical constraints (such
as fi tness levels) as well as their goals and expectations. At this stage, the goals and
expectations are non-spatial: they are simply a list of activities (in the case of the Hiking
simulator, these include hiking, eating at a restaurant, etc.) and their desired durations.

Before each simulation run, the Agent Database determines if the agent has a plan that
meets its expectations. If not, the Agent Database requests that the Mental Modules
(Activity Generator, Location Generator and Router) provide suggested routes that po-

D. Cavens, C. Gloor, J. Illenberger, E. Lange, K. Nagel, and W.A. Schmid

205Distributed intelligence in pedestrian simulations

tentially fulfi l the agent’s goals. In these transactions, the Agent Database acts as an
“ignorant” broker: it contains very little knowledge about the simulated environment or
agent logic.

At the end of this elaboration process, the Agent Database contains a plan for each agent
has a plan that represents the overall system’s current best solution to the agent’s goals
and expectations. (Over the course of many simulation runs, this solution will generally
improve as the agents have the opportunity to explore the simulated landscape and dis-
cover more appropriate solutions.)

A simplifi ed representation of an agent’s plan is contained in fi gure 2.

Once the Agent Database has received elaborated plans for each agent, they are submit-
ted to the Physical Simulation for execution. At this point, the Agent Database assumes
more of a “controller” role, primarily ensuring that the various modules are able to keep
up with each other. It does this by throttling the entire simulation (by requesting that the
physical simulation wait after each time step) if some of the modules not able to process
events and/or requests quickly enough.

<plan agent =”1” plan_id=”1” >
 <activity id=”1-1” type=”enter_simulation” time=”324000”>
 <location id=”1-1-1” type=”parking_lot” x=”512432.2” y=”508343.5” />
 </activity>
 <activity id=”1-2” type=”hike” suggested_duration=”3600” >
 <waypoint id=”1-2-1” type=”node” node_id=”1246” x=”512438.5 y=”5078334.3” />
 <waypoint id=”1-2-2” type=”node” node_id=”1247” x=”512436.0 y=”507820.9” />
 (…)
 <location id=”1-2-1” type=”hike_waypoint” x=”512450.0” y=”508012.3” />
 <waypoint id=”1-2-12” type=”node” node_id=”1281” x=”512470.5 y=”507950.3” />
 <waypoint id=”1-2-13” type=”node” node_id=”1284” x=”512322.5 y=”507912.8” />
 (…)
 </activity>
 <activity id=”1-3” type=”eat” duration=”1800” >
 <location id=”1-3-1” type=”restaurant” x=”514432.0” y=”505323.0” />
 </activity>
</plan>

Figure 2: Simplifi ed XML Plan. The simulation system dynamically generates a new plan for
each agent every day. The plan is used by the Physical Simulation Module to direct
the agent’s movements over the course of a simulation run.

206

3.2. Physical Simulations - Pedestrian Simulation Module

The Pedestrian Simulation Module models how the agents interact with the physical en-
vironment. This includes interactions with other agents (such as avoiding collisions) and
interactions with the physical world (i.e. slowing down when climbing up steep hills.)

Because of the need for realistic arbitrary movement, the pedestrian simulation module
uses a hybrid approach adopted from Mauron [4]: the module uses a continuous repre-
sentation of geographic space, but also uses a network representation of available paths
as a guide for the agents’ movements. This means that agents are free to move anywhere
in the model, but are more likely to walk along existing paths and trails.

The pedestrian model uses a force-based approach, with strong forces along the path
trajectories and weak forces toward the middle of the path which encourage agents to
follow the trails. Additional forces are generated by neighbouring agents and inanimate
objects near the agent. The force model was calibrated based on video data of pedestrian
movement and provides very realistic movement patterns.

A continuous space implementation requires, in general, considerably more computati-
onal resources than a network-based approach, particular for areas as large as our study
area (over 600 km2). However, the particular nature of hiking areas means that the study
area is very sparsely populated with agents at any given time, and they tend to congre-
gate within a much smaller subset of the total area available to them. In order to reduce
the computational demand, the pedestrian simulation module takes advantage of these
features and uses lazy-initialization and caching techniques to ensure that only a small
proportion of the total area is loaded into memory at any given time[3]. As a result, the
physical simulation module can easily fi t within the resources available on standard
desktop PCs.
From the perspective of the Pedestrian Simulation Module, the agent’s plan consists of a

Figure 3: Hybrid Continuous Space Model: Traces of Simulated Pedestrians following a path
while avoiding each other.

D. Cavens, C. Gloor, J. Illenberger, E. Lange, K. Nagel, and W.A. Schmid

207

series of waypoints that it needs to traverse over the course of a simulated day. The plan
also indicates where and when the agent should enter the simulation, and if it should
wait at any given waypoint (such as at a bench for a rest). Once the simulation module
has received all of the agent plans, it simultaneously executes these plans for all agents
in the simulation.

While the simulation is being executed, the module broadcasts messages describing
the agents’ interactions with the physical world to the event stream. These messages
include:

 the location and orientation of each agent,
 if the agent has encountered congestion,
 information about the steepness of the terrain, and
 trail condition information.

The physical simulation uses additional GIS data, provided as a series of raster layers,
to provide information such as the steepness and trail conditions. These two particular
kinds of information are also used by the simulation, in conjunction with the agent’s
particular characteristics (such as agent fi tness), to determine the agents’ velocity. This
is calibrated based on hiker data collected in other recreational areas[5].

3.3. Mental Modules

As described in section 2, part of the role of the mental modules is in elaborating plans.
More importantly, however, is the mental module’s key roles in observing and interpre-
ting the agents’ environment. The Mental Modules are where all agent learning takes
place: the modules receive events from the physical simulations, which describe the
agents’ experiences, and use them to inform their suggested agent plans.

Each mental module is responsible for a different spatial and temporal scale in the plan-
generating phase:

 The activity generator generates an ordered chain of activities based on the agent’s
goals and expectations.

 The location generator assigns specifi c locations to this activity chain, including
key points in the middle of mobile activities such as hiking.

 The router generates specifi c routes between the locations specifi ed by the locati-
on generator.

Distributed intelligence in pedestrian simulations

208

The three mental modules share a lot of similarities (they are implemented as closely
related software classes). Each:

 maintains an internal representation of all possible agent choices at their respec-
tive spatial scales (for the router and location generators these representations
are akin to a geographic map of nodes and links, while the location generator’s is
simply a list of possible permutations, in keeping with its non-spatial nature.)

 listens to the event stream generated by the physical simulation and summarizes
this information into distinct “experiences”. These experiences are stored based
on the spatial and temporal scale of the module (i.e. per activity pair in the case
of the activity generator, per location pair by the location generator and per node-
pair for the router).

 Contains an evaluator function that scores these previous experiences based on
a particular agent’s expectations (i.e. while a hike may be too steep for another
hiker, it might be exactly what another hiker is seeking.)

Figure 4: Schematic representation of each Mental Module’s contribution to the plan generation
process. As the Agent Database queries the Modules from top to bottom, the agent’s
plan gains increasing resolution.

In the current implementation, only the location generator and router have been fully
implemented: as an interim measure the activity generator uses some simple heuristic
rules to create plausible activity chains.

D. Cavens, C. Gloor, J. Illenberger, E. Lange, K. Nagel, and W.A. Schmid

209

Example Mental Module: Router

The router operates at the smallest spatial scale- it suggests routes between locations
provided by the location generator. In order to do so, the router is preloaded with an
internal network of nodes and links which represent the available paths within the simu-
lated area. During a simulation run, every time an event is received indicating that an
agent has passed a node (and therefore entered a link), the router begins collecting the
events and stores them until a subsequent event indicates that the agent has left the link.
These events, which indicate landscape features (such as the quality of a view, type of
landscape or terrain diffi culty) or human factors (congestion, trail closed etc.) are then
summarized by the router and stored, along with the time the agent entered the link and
how long it took for the agent to walk the link. Over time, as other agents walk the same
route, their experiences are also associated with that particular link.

When asked to elaborate an agent’s plan, the router parses the given plan, and extracts
all of the location pairs. For each of these pairs, it computes the best available route
along the path network according to the agent’s individual characteristics. It computes
this by fi rst converting each link’s set of experiences to a numerical value using a ge-
neralized cost function calibrated to the agent’s goals and expectations (as the precise
implementation of this function is part of ongoing research, details are to follow in a
forthcoming publication.) An optimal path between the two locations is then computed
using a modifi ed Djikstra’s algorithm[6]. Although our standard implementation uses
the typical Djikstra algorithm, its heritage as a shortest path algorithm means that it is
unsuited for modelling recreational activity: as at least part of the attraction for recreati-
onal users is the “getting there”, a more complex algorithm is required and is currently
under development.

3.4. Analyzer Modules

One particular strength of the described modelling framework is the ability to create
new modules that model external factors and/or interpret the agents’ environment in
different ways. One does this by creating new analyzer modules that listen to the event
stream (broadcast either by the physical simulations or by other analyzer modules). The
analyzer modules can then insert additional information as events into the event stream,
where they can be interpreted by the various Mental Modules, if appropriate. While the
mental modules do need to be modifi ed to be able to react to any additional informati-
on provided by the Analyzer Module, the overall simulation approach means that only
minor changes need to be made (i.e. in the Evaluator and Summarizing functions of a
single Mental Module). Two analyzer modules have already been implemented: a wea-
ther simulator, and a Visibility / Visual Quality Model.

Distributed intelligence in pedestrian simulations

210 D. Cavens, C. Gloor, J. Illenberger, E. Lange, K. Nagel, and W.A. Schmid

Example Analyzer Module: Visibility / Visual Quality Module

The visibility module is an example of a secondary analyzer module: it listens to the
main event stream, and based on the current agent locations, it calculates what is visible
to that particular agent. It then broadcasts this visibility to the main event stream, where
it can be “heard” and interpreted by one of the mental modules. The visibility module
uses a 3D representation of the landscape being modelled to calculate what can be seen
from any location in the model [7]. Depending on the needs of the questions asked of the
simulation, the visibility calculations information can be pre-computed or done in real-
time as the simulation is running (useful if the visibility of other agents is important.) As
interpreting the results of the visibility calculations are rather computationally intensive,
a further Analyzer Module was developed that interprets what an agent sees and returns
an aggregated visual quality score. This means that the mental modules need not be
further complicated by this interpretation. Like any other analyzer module, the Visual
Quality Module can be inserted almost transparently into the event stream.

4. Communication and Coordination

As the individual modules are implemented in most cases as separate executables, com-
munication and co-ordination between the modules is a crucial part of the overall system
design. The modules communicate with each other via TCP network messages, which
are formatted as XML. There are two major message types in the system:

 Control messages: these messages are used for communication between the con-
trol modules and the mental modules or physical simulations. They consist of
XML “requests” from the control modules and “responses” from the other modu-
les.

 Event messages: these messages are used to broadcast information about agents’
current location and state to the entire simulation system. The events are sent
by the physical simulation and analyzer to the Event Broker module, which re-

Figure 6: The visibility analyzer module calculates what can be seen by each agent in the simu-
lation. Using positional data generated by the physical simulation, the module uses
3D rendering techniques to render false colour images and depth maps of the agent’s
fi eld of view. These images are analyzed and information about what is seen is broad-
cast back to the event stream.

211Distributed intelligence in pedestrian simulations

broadcasts them to all interested modules. The events indicate when an agent has
started a specifi c activity (such as hiking), reached a specifi c location (such as a
path intersection), encountered congestion, etc.

A key issue is timing: in order to keep all modules synchronized during a model run,
messages are sent to identify which modules are ready to receive additional input. We
use a variation of the Time Warp algorithm [8], whereby modules inform the control
module at which temporal resolution they are operating (some modules, such as the
physical simulation might need to react every 10 seconds “real-time”, whereas others,
such as the weather simulator, might only need to re-compute every 15 minutes) and if
they are ready for the simulation to proceed.

One of the advantages of using XML messages over TCP is that it is relatively trivial
to distribute the various modules across multiple computing nodes. While this requires
some confi guration changes in the control modules, and perhaps in the modules being
distributed, those modules receiving messages generally do not need to be modifi ed to
accommodate this. The current implementation has the visibility analyzer distributed
transparently across multiple hosts, as it requires a fair amount of computing resour-
ces.

Another advantage of this approach is that the modular nature allows one to test diffe-
rent implementation approaches for different modules without needing to rewrite the
entire system.

4.1. Within-Simulation Replanning

One example of using the modular structure to test different approaches was the imple-
mentation of replanning during the simulation run. In the typical implementation, during
a model run the mental modules only observe the event stream. They use this data to
make decisions for the next model run. However, with a simple modifi cation to the men-
tal modules, the system was modifi ed to accommodate changing the agents’ plans in the
middle of a simulation run. As the mental modules realized that an agent’s plan was not
appropriate for the day’s weather (modelled by the weather simulator), it sends a revised
plan to the control module, which forwards it to the pedestrian simulation.

5. Outlook

While at fi rst glance the system might seem rather over-complicated, the modular struc-
ture now in place allows for it to be easily extended and tweaked without extensive
rewriting of software code. A particular strength of the framework is that modelling the
agents’ physical interaction is completely separate from modelling the agents’ mental
processes, which is an area which requires extensive research before the simulation of
pedestrian behaviour will be entirely plausible.

212 D. Cavens, C. Gloor, J. Illenberger, E. Lange, K. Nagel, and W.A. Schmid

Although the current implementation is still some steps away from a real-world applica-
bility in the tourism industry, our prototype nevertheless demonstrates that all these fea-
tures can indeed be implemented into a computational system. Future work will include
to make the system more robust, and to include better behavioural models.

6. Acknowledgements

Parts of this work were funded by the Swiss National Research Foundation’s research
Programme “NFP 48: Habitats and Landscapes of the Alps.”

References

1. J. Ferber: Mutli-agent Systems, An Introduction to Distributed Artifi cial Intelli-
gence, Addison-Wesley (1999).

2. C. Gloor: Distributed Intelligence in Real World Mobility Simulations, In: Unpu-
blished Doctoral Thesis, Department of Computer Science, ETH Zürich (2005).

3. C. Gloor et al.: A Pedestrian Simulation for Very Large Scale Applications, In: A.
Koch and P. Mandl (Eds.), Multi-Agenten-Systeme in der Geographie, Institut für
Geographie und Regionalforschung der Universität Klagenfurt (2003).

4. L. Mauron: Pedestrian Simulation Methods, In: Unpublished Diploma Thesis,
Department of Computer Science, ETH Zürich (2002).

5. J.W. van Wagtendonk and J.M. Benedict: Travel Time Variation on Backcountry
Trails, Journal of Leisure Research 12, pp. 99-104 (1980).

6. E.W. Dijkstra: A Note on Two Problems in Connexion with Graphs, Numerische
Mathematik 1: pp. 269–271 (1959).

7. D. Cavens et al.: Integrating Visual Quality Modeling within an Agent-Based
Hiking Simulation for the Swiss Alps, In: The Second International Conference
on Monitoring and Management of Visitor Flows in Recreational and Protected
Areas, Rovaniemi, Finland (2004).

8. D.R. Jefferson: Virtual Time, ACM Transactions on Programming Languages and
Systems 7(3), pp. 404-25 (1985).

