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We present a method for simulating individual pedestrian motion based on empirical data. 
Our model keeps track of the pedestrian’s position and body confi guration (pose) and 
uses motion capture data to produce plausible motion. While our ultimate goal is creating 
3D animations of crowds, our initial efforts focus on 2D simulations. In this paper, we 
present a 2D model for an able-bodied male.  Using our approach, we could also capture 
data and build models for a heterogeneous population, including children, the elderly, 
pedestrians in wheelchairs, and people on crutches. We demonstrate the realism of our 
model with a small-scale test case and a larger crowd evacuation simulation.
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1. Introduction

The goal of our research is to demonstrate the feasibility of using pedestrian simulation 
for emergency planning, emergency response decisions, and training with respect to 
transportation facilities, sports arenas, and high-rise offi ce buildings. In addition, we hy-
pothesize that faithful computer models of pedestrian motion will be useful to architects 
designing new facilities. In particular, such a system will help them gain confi dence that 
they have provided for the rapid egress of diverse populations in emergency situations.
In order to be effective, training devices must be realistic enough that the users are able 
to “suspend disbelief.” Realistic motion of individual pedestrians is a necessary condi-
tion for the suspension of disbelief. Several existing models produce pedestrian motion 
that is not realistic at the level of the individual pedestrian. For example, pedestrians 
may exhibit abnormally high velocities or unnatural direction changes. We argue that in 
order to build accurate models of how people move, we should observe real 3D human 
motion and build models from these observations. We hypothesize that the more realis-
tic the motion is, the more accurate the results of the simulation will be.
In this paper, we describe a new model of 2D pedestrian motion. We begin by collecting 
3D motion capture data from a human subject. We maintain a 3D kinematic model of 
each pedestrian throughout the simulation. Every “pose” (confi guration of joints) adop-
ted by a pedestrian is consistent with the motion capture data we have collected. Like-
wise, every pedestrian movement generated by the model is consistent with the motion 
capture data. At any moment in the simulation, a pedestrian has the capability to reach a 
variety of different spatial points at some future time. The behavior of the pedestrian is 
refl ected by its particular choice of these spatial points. Hence we call our approach the 
capability-behavior model of pedestrian motion.
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2. Related Work

Many other microsimulation models of pedestrian motion exist. For an excellent survey 
of these models, see Helbing et al. [3]. One way to categorize microsimulation models 
is to divide them into cellular automata models, agent-based (or AI-based) models, and 
behavioral force models.
The principal advantage of cellular automata models is that they execute very fast on 
computers. However, because cellular automata models divide space into cells, motion 
is discrete, undermining our goal of creating training simulators that will encourage 
participants to suspend disbelief.
Behavioral force models accurately predict a variety of phenomena that occur when 
crowd densities are high. However, they have a couple of issues which make them 
problematic for us. First, pedestrians inside dense clusters exhibit an unnatural “jitter.” 
Also, our experience with this model has been that there is no single set of parameters 
that works in every instance. Instead, the parameters must be carefully tuned in order 
to fi t the scenario being modeled. Finally, it is unclear how this force-based approach 
would be able to model pedestrians with restricted motion abilities. For example, a per-
son in a wheel chair cannot instantaneously shift sideways.
Agent-based models allow each pedestrian to have a unique behavior. Hence modeling 
a heterogeneous population is much easier with an agent-based model. Agent-based 
models have shown good success when pedestrian densities are low to moderate. They 
have the liability that the computational demands for simulating an agent can be high. 
We categorize our capability-behavior model as an agent-based model.
Human motion generation has been a key problem in computer graphics for a number 
of years. Most recently, research in motion graph techniques has led to algorithms for 
generating natural human motion that satisfi es some user constraints, such as trajectory 
tracking [1, 6, 7, 8]. Another important area of computer animation and simulation is 
level of detail generation. Creating multiple levels of detail allows for effi ciency opti-
mizations when accuracy can be traded off for speed. Most closely related to our work 
is that of Brogan et al., in which they have built capability models that describe what 
motions a physical simulation is capable of achieving [2]. In our case, we want to build 
capability models based solely on motion capture data, because we believe such models 
will result in more realistic motion patterns than current approaches.

3. Motion Capture

Our goal in this paper is to create a 2D motion model that encodes the capabilities of a 
walking human. This model should take into account not only the physical characteris-
tics of the person (size, weight, disabilities, etc), but also the current state of the person 
when making movement decisions. For example, is the person standing still or in the 
middle of a walking stride? To do so, we will build our model from real human motion 
data recorded with motion capture technology.
Motion capture technology has been used in biomechanics and entertainment for many 
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years as a means of recording human motion. There are several different motion capture 
technologies. Magnetic and optical systems are the two most commonly used approa-
ches in computer graphics and entertainment.
For this work, we used a Vicon 612 optical motion capture system [10]. An optical mo-
tion capture system consists of three main components: markers, sensors, and a work-
station.

Figure 1: Highly refl ective optical markers placed on a motion capture subject.

The markers consist of highly refl ective spheres, 5 mm in diameter, that are placed at 
strategic locations on the subject to be recorded (Figure 1). The sensors consist of se-
veral high speed infrared cameras. Each camera is placed on the perimeter of an area 
around the subject of interest and aimed toward the center of the activity. The intersec-
tion of the camera view frustums forms the capture region. As the subject moves within 
the capture region, the camera images are recorded on the workstation.
The Vicon system processes the recorded data to produce 3D locations for each marker. 
As long as a marker is visible in the images of any two cameras, the 3D location of that 
marker can be computed. This 3D location information for each marker is called the raw 
marker data. 
To generate animated motion, or in our case, models of human motion, we convert the 
data to a more usable form. Using the Vicon software suite, the raw marker positions are 
converted to joint angles according to a kinematic model of the subject.
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For all of our experiments, we used the Vicon 612 3D optical motion capture system 
with 6 cameras and captured the data at a rate of 60Hz. The raw marker information 
was converted to joint angles for a kinematic subject model consisting of 30 joints (Fi-
gure 2).

4. Motion Graphs and Mobility Maps

Once the joint angles are computed for each frame of motion, we further process the data 
to build a data structure known as a motion graph. Motion graphs have recently been used 
in the computer animation fi eld to generate synthetic human motion by drawing upon a 
library of previously recorded human motion. In the following sections we will give a 
brief overview of motion graphs. For a more detailed description, see [1, 6, 7, 8].
Using our Vicon optical motion capture system, we capture the 3D motion of subjects 
performing various tasks relevant to pedestrians: walking straight at various rates, tur-
ning at various radii, coming to a stop, starting from a stop, and turning in place. We then 
build a graph that encodes natural transitions between these sequences of motion.
The recorded motion segments are fi rst combined into a single large collection of poses, 
where a pose is defi ned as the set of angles for each degree of freedom, as well as the 
root body position and orientation for a single frame of motion. Each frame, therefore, 
consists of 96 fl oating point values, representing the three Euler angle values for each of 
the 30 joints and the 6 degrees of freedom of the root body. In our experiments, the root 
body is centered at the pelvis (Figure 2).

Figure 2: Our kinematic human model consists of 30 joints, each with three degrees of freedom.
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We defi ne a distance metric that measures the similarity of two poses, and we use this 
metric to develop a pose transition cost. The pose transition cost function determines 
the cost to move from one pose to another. If a pose is likely to follow another pose in 
natural motion sequences, the cost is low. We build a fully connected graph, where each 
node in the graph is a pose from the original motion data, and each arc in the graph is the 
cost to transition between the poses connected by the arc. The graph is then pruned to 
remove all transitions that are above a threshold value (i.e., the unrealistic transitions). 
We call the resulting graph a motion graph.
The motion graph encodes natural transitions, such as transitions from poses that come 
from walking in a straight line to poses that come from turning. Current motion graph 
techniques typically search this graph for an optimal path that adheres to some cons-
traint, such as following a 2D trajectory or reaching a desired point on the 2D fl oor 
plane. The result is a sequence of poses that meets the constraints while maintaining 
smooth transitions. These search-based approaches result in compelling motion for the 
given trajectory but are fairly expensive. Since we would like to generate motion at 
interactive rates, search based approaches are not suffi cient.

Figure 3: Illustration of movement options from a single pose in the mobility map. Each pose 
reachable from the current pose in 45 frames is called a movement option and is 
stored along with the sequence to reach it, the fi nal position, and the fi nal orientation 
with respect to the current pose. 

For this reason, we further process the motion graph to produce a data structure that 
sacrifi ces memory space for speed. For each pose in the graph, we compute the shortest 
path between it and every other pose in the path. We call this the “all pairs shortest path’’ 
(APSP) graph. For each pose in the APSP graph, we collect all nodes that can be reached 
in some small time horizon (1.5 Seconds = 45 frames). For each reachable node, we 
store the fi nal pose as well as the sequence of intermediate poses that lead to that pose 
and the relative change in position and orientations (Figure 3).
This last step results in what we call a mobility map. The mobility map can be viewed 
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as an oracle that the simulated pedestrian can consult to understand its capabilities gi-
ven its current state. The mobility map can tell the pedestrian all locations it can reach, 
how it will be oriented, and the sequences of poses to get it there. For a more detailed 
description of mobility maps, see [9].
Using mobility maps, one can produce compelling 3D motion at interactive rates for up 
to 500 characters. However, the pedestrians sometimes suffer from a wandering beha-
vior. Wandering occurs when a pedestrian cannot achieve a spatial request because the 
database of motions simply does not contain enough of the right kind of data. In other 
words, there is no smooth sequence of poses that quickly brings the pedestrian from its 
current location and pose to the desired location. This smoothness constraint is very 
important when generating 3D motion, because viewers are very good at noticing small 
discontinuities in synthetic human motion.
In this paper, we modify the mobility map approach by taking advantage of the fact that 
we are not creating 3D animations. Rather, we are concerned with developing 2D hu-
man motion models. This goal allows us to relax the 3D motion smoothness constraint. 
In doing so, we can increase the controllability of the pedestrian by clustering similar 
poses and building a more coarse-grained mobility map from the clustered poses. The 
result is a clustered mobility map, where each pose is replaced by a cluster of poses 
with a larger number of movement options. Since a single mobility map can be shared 
by all ‘similar’ pedestrians (e.g., all able-bodied male pedestrians, ages 30-35) in the 
scene, space usage scales linearly with the number of pedestrian types, and not with the 
number of pedestrians. 

5. Clustered Mobility Maps

A simulated pedestrian is capable of reaching a number of spatial locations, which we 
call mobility points, within a time step of 1.5 seconds. We set the time step to 1.5 se-
conds because this is long enough to provide the pedestrian with a reasonable number 
of mobility points, but short enough to keep the memory requirements reasonable. The 
nature of the motion is determined by the current body posture or pose. For instance, if a 
pedestrian is standing in a pose with two feet on the fl oor it is likely that it will continue 
to stand or begin to walk at a low velocity. If the pedestrian is in a pose with one foot on 
the fl oor, the pedestrian may be in a position to move more quickly because it is in the 
middle of a walking stride. 
Similar poses should also exhibit similar dynamics. Motion sequences starting from 
a pose with a left heel down and right toe pushing on the fl oor, for example, should 
share the same characteristics as motion sequences generated from a different pose that 
also has its left heel down and right toe on the fl oor. Therefore, we group similar poses 
together into a single cluster. In order to identify groupings of similar poses, we use a 
subtractive clustering algorithm described by Kim et al.[5]. For determining clusters for 
basic able-bodied locomotion, the upper body degrees of freedom contribute very little 
information and therefore are ignored. We consider only the degrees of freedom from 
the waist down.
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Once the poses have been clustered, we can combine the individual original mobility 
maps for each pose in a cluster into a single mobility map for the cluster. The cluster 
shares the movement options from all the poses within it, thus giving a simulated pe-
destrian more mobility and greater ability to react to movement requests. In the follo-
wing section, we will describe how we use this new clustered mobility map to drive the 
2D simulation.

6. Capability-Behavior Model

At run-time, we use the clustered mobility map to animate the motion of each 2D pe-
destrian. We assume that the pedestrian simulator makes target requests for each pe-
destrian. We defi ne a target to be a position a pedestrian wants to reach, such as the 
location of the nearest exit. Pedestrians exit the building by moving toward the targets. 
At any point in time, a pedestrian is in a particular pose of a cluster and will have move-
ment options dictated by the mobility map of that cluster.

A Data-Driven Model of Pedestrian Movement

Figure 4: The new clustered mobility map is combined with a cost function to rank each option. 
The cost of a movement option depends on the distance from the target and the devia-
tion between the facing direction and the target direction.

Given a target request, the movement options are fi rst ranked based on a cost function:

 (1)
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The cost function is similar to that presented by Srinivasan et al. [9], where D measures 
the Euclidian distance from a mobility point to the target and θ is the deviation angle 
(Figure 4). The deviation angle is the angle between the facing direction a pedestrian has 
upon taking a movement option and the vector from the mobility point to the target. We 
modify the function to include a term, S, which encourages faster movement, and ano-
ther term, P, which incorporates interference from neighboring pedestrians. S represents 
the displacement from the current position when taking a movement option. Options 
that move the pedestrian farther in 1.5 seconds will have a lower cost. 

Figure 5: Illustration of pedestrian interference factors. To determine the cost due to nearby 
pedestrians, we consider the distance from the mobility point to the predicted position 
of the nearby pedestrian.

The last term in the cost function measures the infl uence of neighboring pedestrians 
(Figure 5). We represent this infl uence with a function similar to that used by Helbing 
and Molnar in the social forces model [4]. The closer the mobility point is to another 
pedestrian the higher the cost. If, however, the pedestrian is moving at a slower velocity, 
it will be more comfortable selecting a move that is close to another pedestrian. We 
represent the cost with a decreasing exponential function:

 (2)

where d is the distance between the pedestrian at the mobility point and the predicted 
position of the other pedestrian. To compute the predicted position of other pedestrians, 
we assume constant velocity over the time step. The velocity of the pedestrian at the 
mobility point is represented by v, while a and b are constants with values 10.5 and 0.09, 
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respectively. These values were determined through trial-and-error and used throughout 
all of our experiments. The total pedestrian infl uence for that movement option is the 
summation of the infl uence from each of the neighboring pedestrians.
Variables ωd, ωθ, ωS, and ωP are weighting terms for the distance, deviation angle, speed, 
and pedestrian interference terms, respectively. Pedestrians that are behind the mobility 
point are not considered to be interfering, therefore ωP = 0.0, otherwise ωP = 1. We use a 
grid spatial subdivision scheme to determine nearby pedestrians effi ciently. 
We rank the movement options according to their cost and store them in a priority queue. 
The fi rst option in the priority queue has the least cost. Our algorithm iteratively extracts 
the options from the queue until one is found that does not intersect with walls or near-
by obstacles. We implemented a quadtree subdivision scheme to effi ciently determine 
nearby walls and obstacles for intersection tests. This movement option is chosen as the 
desired option; it is used to animate the pedestrian motion for the next 1.5 seconds (45 
frames). If the algorithm cannot fi nd a suitable option, we allow our pedestrian to line-
arly interpolate its position and orientation, for four frames, toward its goal. This allows 
the pedestrian to move into a position or face away from the obstacle so that at least one 
movement option can become feasible. In our experiments, the simulated pedestrians 
resort to the interpolation option only 2% of the time. 
 In summary, the cost function leads the simulation to prefer movement options that 
quickly move the pedestrian closer to the target, orient the pedestrian toward the target, 
and have the least amount of interference with other pedestrians. 

7. Results

These experiments demonstrate that the capability-behavior model can create realistic-
looking crowd motion. Even when moving in a straight line, simulated pedestrians have 
a bit of side-to-side motion characteristic of actual pedestrian movement. Pedestrians 
spread out and avoid collisions when moving through an area where there is plenty of 
room. At bottlenecks, they bunch up without intersecting. Simulated pedestrians within 
crowds stand quietly, without any of the “jitter” characteristic of the social forces mo-
del (Figure 6). The capability-behavior model parameters are identical for all the ex-
amples we have presented; no “tuning” of parameters to fi t the particular situation was 
required.
Figure 7 illustrates the use of the capability-behavior model to simulate the orderly eva-
cuation of a nearly-full auditorium, along with several adjacent offi ces. This example 
demonstrates the ability of our current simulator to move pedestrians in a more compli-
cated setting. Two simplifying assumptions reduce the realism of this simulation. First, 
every pedestrian begins moving at the same time. Second, every pedestrian has the goal 
of leaving the building through the nearest exit. In this simulation the total egress time 
was 316 seconds.
To date, we have only collected motion capture data for a single person. About 20 mi-
nutes of samples resulted in a total of 33,404 different poses. The clustering algorithm 
collected these poses into 670 clusters. In the experiments reported in this paper, the mo-
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vements of every simulated pedestrian are drawn from the same set of mobility maps. 
Even with this limitation, we believe the resulting crowd movements are plausible. Coll-
ecting additional motion capture data will enable us to create a greater diversity of simu-
lated pedestrians, adding to the overall realism of the results produced by the system.
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Figure 6: Snapshots of the doorway experiment at simulated times (sec) of 2.2, 9.89, 36.26, and 
57.14. The pedestrians must approach the door, move through the door, and proceed to 
the second door.

8. Future Work

There are several avenues of research remaining for future work. First, we plan to captu-
re motion of pedestrians with varying capabilities to begin building a diverse database of 
2D motion models. We hope to capture individuals with crutches, canes, in wheelchairs, 
and of varying ages (children and elderly), for both males and females. 
Ultimately, we intend to create models that can be used in real-time simulators. We 
are currently investigating statistical techniques for improving the effi ciency of our ap-
proach in terms of memory requirements and CPU time. We hope to eliminate the need 
to store and search all movement options and replace them with movement option dis-
tributions that encode the capabilities of a pedestrian from a given pose with statistical 
measures. 
Finally, we are investigating the addition of higher level behaviors, such as route choices, 
grouping, and collision negotiation and avoidance, into our overall pedestrian simulati-
on system. These behaviors will be designed to sit on top of the presented motion model. 
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The behaviors will be included in the cost function and will therefore lead to the choice 
of movement options appropriate for the desired behavior.

Figure 7: Four snapshots of a simulation of 750 persons evacuating an auditorium and adjacent 
offi ces.
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