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Solid Matter at Low Temperatures

The purpose of this chapter is to summarize the basic properties of solid
materials at low temperatures [3.1–3.8] that are relevant for the design and
construction of low-temperature apparatus and for performing experiments
with such apparatus. These properties are, in particular, specific heat, ther-
mal expansion, thermal conductivity and magnetic susceptibility. The latter
property will also be discussed in later chapters in connection with magnetic
cooling and thermometry.

Quite generally one can say that the properties of materials can be bet-
ter understood when the temperature is reduced further (except for some
exotic cases like solid 3He), because as the temperature is lowered the proper-
ties of materials become more and more “ideal” or “simpler”; they approach
their theoretical models more closely. At low temperatures the number of
excitations decreases and the vibrations of the atoms can be described in the
harmonic approximation, which means that the potential V ∗ as a function of
distance r− r0 from the equilibrium position r0 of the atom can be written as

V ∗(r − r0) ∝ (r − r0)2 . (3.1)

In this approximation there is no thermal expansion because thermal
expansion results from the anharmonic parts of the potential, for which we
would have to introduce higher-order terms in the above equation. As a result,
the thermal expansion coefficient becomes smaller and smaller, as we approach
lower and lower temperatures (Sect. 3.2). A further advantage of low tem-
peratures for the description of the properties of materials is the fact that
various “parts” of a material can be treated independently. For example, in
many cases one can consider the nuclear spin system (which is of great impor-
tance at ultralow temperatures) independently of the electrons and the lattice
vibrations (Chap. 10). Of course, this is not true for all the “parts” of a ma-
terial. For example, the temperature dependence of the electrical resistivity
of a metal just results from the interaction of conduction electrons with the
lattice. The fact that the specific heat and the thermal conductivity due to
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34 3 Solid Matter at Low Temperatures

lattice vibrations and due to conduction electrons in the metal can be treated
independently and can then just be added is a consequence of the large mass
difference of the nuclei and electrons. To a very good approximation, their
motions are independent, and the Schrödinger equation for the whole crystal
can be separated into an electronic part and a lattice part. This is known as
the Born–Oppenheimer approximation [3.1–3.5].

3.1 Specific Heat

The specific heat C is one of the most informative properties of a material.
It is a measure of how much energy is necessary to increase the temperature
of a material. In other words, it is a measure of the excited states of this
material in the relevant temperature or energy range.

To calculate the specific heat of a material we therefore have to consider
the various excitations that can be excited if we transfer thermal energy to
it [3.1–3.8]. Hence, the specific heat carries a lot of information about the
material.

3.1.1 Insulators

For nonmagnetic, crystalline insulators the most important, and in most cases
only possible, excitations are vibrations of the atoms, the so-called phonons.
At high temperatures all possible vibrational states of the atoms are excited.
Considering each atom to behave as an independent, classical harmonic oscil-
lator results in the Dulong–Petit law for the high-temperature specific heat
of a material of N0 atoms per mole, each of which has three degrees of free-
dom for its potential energy and for its kinetic energy. Because each degree
of freedom contributes kB/2 to the specific heat (at constant volume of the
material),

Cv =
6
2
N0kB = 3R = 24.94[J mol−1 K−1] . (3.2)

However, when the thermal energy kBT becomes of the order of the energy
necessary for excitation of lattice vibrations one sees deviations from the
Dulong–Petit law, because not all of the lattice vibrations will then be excited.
The limit for the applicability of the Dulong–Petit law is given by

T ≈ �ωph/kB , (3.3)

where ωph is the phonon frequency. The limiting temperature is of the order
of a few 100 K.

In 1907 A. Einstein showed that a reasonable description of the specific
heat of lattice vibrations below this temperature is obtained if the lattice
vibrations are considered to be quantized. He performed a calculation of the
phonon specific heat by describing the lattice vibrations as quantized phonon
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“particles”, but gave them all the same frequency ωE. In this Einstein model
the material is considered as being composed of independent oscillators with
the energies

En = �ωE(n + 1/2) , (3.4)
where n = 0, 1, 2, . . . is the excitation number of the modes or of the phonons.
Planck then showed that the mean excitation number 〈n〉 of each oscillator
or the mean number of phonons at temperature T is given by the Boson
distribution function

〈n〉 = fph(ω) =
1

exp(�ω/kBT ) − 1
. (3.5)

This model, of course, deviates from reality because the vibrational fre-
quencies of the atoms in a crystal are not independent from each other. Due
to the interatomic interactions they are not equal but are distributed over
a spectrum, which can have a rather complicated structure as a function of
energy (Fig. 3.1a). Again, at low temperatures the situation becomes simpler
because the frequency dependence of the phonon density of states goes as
ω2 for low energies. As Debye showed, at low temperatures the phonon den-
sity of states gph can then be described by the following parabolic energy or
frequency dependence (Fig. 3.1a):

gph(ω) =
{

(3Vm/2π2v3
s )ω2 = 9N0ω

2/ω3
D, ω < ωD ,

0, ω < ωD ,
(3.6)

Vm being the molar volume, and vs the average value of the longitudinal and
transversal velocities of sound of a crystal: v−3

s = (v−3
long + 2v−3

trans)/3.
Of course, this spectrum does not extend to infinity but is cut off at a

maximum frequency that is given by the condition that gph contains all the
3N0 phonon frequencies, ∫ ωD

0

gph(ω)dω = 3N0. (3.7)

This limiting frequency is called the Debye frequency ωD. The corresponding
temperature, the Debye temperature θD = (�/kB)ωD of the material, is a
measure of the temperature below which phonons begin to “freeze out”. Values
for θD of several metals are given in Table 10.1. These parameters are material
constants with large values for a lattice composed of light atoms which are
strongly bound, as in diamond (θD = 2,000K), and with small values for a
lattice composed of heavy atoms bound by weak forces, as in lead (θD = 95K).

If we apply the Debye model to calculate the internal energy of the lattice
vibrations and take its temperature derivative to arrive at the specific heat,1

we find [3.1–3.8]
1 In the following I do not distinguish between Cp and Cv, the specific heats at

constant pressure and constant volume, respectively; their difference Cp − Cv =
9ακV T (α being the thermal expansion coefficient and κ the compressibility) is
negligible for solids at low temperatures, approaching about 1% at T ≈ θD/2.
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Fig. 3.1. (a) The phonon density of states gph measured at 300 K for aluminum.
The dashed curve represents the Debye approximation (3.9) with a value θD = 382 K
deduced from the specific-heat data [3.9]. (b) Variation of the Debye temperature
θD of indium due to the influence of deviations from gph ∝ ω2 [3.10]

Cph(T ) = 9N0kB

[
T

θD

]3 ∫ xD

0

x4 ex(ex − 1)−2dx , (3.8)

with x = �ω/kBT.
The integral yields

Cph(T ) =
12
5

π4N0kB

[
T

θD

]3

= 1944
[

T

θD

]3

[J mol−1 K−1] (3.9)
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for temperatures T < θD/10. A deviation of the phonon density of states
from the ω2 dependence can be taken into account by letting θD = f(T ),
see Fig. 3.1b. The cubic dependence of the phonon specific heat on temper-
ature demonstrates its rather strong decrease with decreasing temperature.
Therefore, insulators such as rare-gas crystals very often have a very small
specific heat at low temperatures. Examples are illustrated in Fig. 3.2, which
shows the good agreement between the Debye model and experimental data
at low temperatures.
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Fig. 3.2. (a) Specific heat of solid Ar, Kr and Xe. The horizontal line is the classical
Dulong–Petit value [3.11]. (b) Specific heat solid of Ar as a function of T 3 at T < 2 K
[3.1, 3.12]
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3.1.2 Metals

Besides the lattice vibrations, in a metal we also have (nearly free moving)
conduction electrons, which can be thermally excited. Electrons have the spin
1/2, are fermions and obey the Pauli principle. Therefore, each energy state
can be occupied by at most two electrons with antiparallel spin orientation.
Putting all our electrons into energy states, we will fill these states up to a
limiting energy, the Fermi energy, given by

EF = kB TF =
�

2

2m

[
3π2N0

Vm

]2/3

= 3.0 × 105kB V −2/3
m [erg] . (3.10)

A typical value for this energy is 1 eV, corresponding to the rather high
temperature of about 104 K. The Fermi–Dirac distribution function for the
occupation of energy states of electrons at temperature T is (Fig. 3.3)

fe (E) =
1

exp[(E − μ)/kBT ] + 1
(3.11)

with the chemical potential μ = EF at T = 0. Because of the high value
of the Fermi temperature TF = EF/kB, room temperature is already a “low
temperature” for the electron gas, in the sense that here the electron gas is
already pretty well in its ground state. And indeed, the properties of metals
at low temperatures are determined exclusively by electrons in energy states
very close to the Fermi energy.

To fill energy states we first have to determine them. That means, we
have to calculate the density ge(E) of states for conduction electrons. This is

Binding energy E−EF [eV]

EF

f e
. g

e

−0.4 −0.2 0 0.2 0.4

Fig. 3.3. Occupied electronic states of Ag at 300 K near the Fermi energy EF

obtained from photoelectron spectroscopy. The full line is the Fermi distribution
function (3.11) [3.13]
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rather simple within the “free-electron model”, which describes many of the
electronic properties of metals rather well [3.1–3.7]. The result is

ge(E) =
3N0

2E
3/2
F

E1/2 =
Vm

2π2

[
2m

�2

]3/2

E1/2 . (3.12)

To find properties of the conduction electrons in a metal we have to multiply
the two quantities ge(E) and fe(E).

At the temperature T one can thermally excite only electrons near the
Fermi energy, within an energy range from about EF − kB T to about
EF + kB T ; the thermal energy is not enough to excite electrons out of en-
ergy states further below the Fermi energy. At T the number of “thermally
involved” electrons is then approximately given by ge(EF) kB T ∝ T/TF. If
we raise the temperature from 0 to T , these electrons experience the energy
change ΔE 	 ge(EF)k2

BT 2 ∝ T 2/TF corresponding to an electronic specific
heat of Ce 	 2ge(EF)k2

BT . If we perform the calculation more rigorously,
we have to take into account the Fermi–Dirac distribution (3.11) at finite
temperatures, which modifies our result for the electronic specific heat only
slightly to

Ce(T ) =
π2

2
N0kB

T

TF
= γT , (3.13)

where TF is given by (3.10). The γ-values (Sommerfeld constants) for some
metals are listed in Table 10.1. The result (3.13) is in good agreement with
experimental data (Fig. 3.4) and was a great triumph for quantum mechanics,
for the free-electron model, and for the Fermi theory of spin-1/2 particles.

Of course, for a real metal we have to give up the free-electron model.
We have to consider the mutual interactions of the electrons, their inter-
actions with the ions and the symmetry of the crystal. This can be taken
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Fig. 3.4. Specific heat C of copper divided by the temperature T as a function of
T 2 [3.4]
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into account by going from the free-electron model to a so-called quasi-
particle model [3.1–3.7]. In this model each electron has an effective mass
m∗ that deviates from the mass m of bare electrons because the electrons
in a metal behave “heavier” or “lighter” than bare electrons owing to their
interactions. We still obtain the same equations for the specific heat, in par-
ticular Ce ∝ T ; we just have to replace the mass of bare electrons by the
effective mass of interacting electrons. For the specific heat, e.g., it means
that we have to multiply (3.13) by m∗/m. The ratio of the effective mass
m∗ to the bare electronic mass m is between 1 and 2 for simple metals, it
can be of order ten for transition metals with partly filled electron shells,
and it can reach values of several 100 for “complicated” compounds, like the
so-called “heavy-fermion” metals [3.5, 3.14, 3.15]. Values for the Sommerfeld
constant γ for metallic elements can be found in condensed matter physics
books [3.1–3.7].

With these results we arrive at the following equation for the total specific
heat of a metal at “low” temperatures:

C = γT + βT 3 . (3.14)

“Low” means “small compared to the Debye temperature” if we con-
sider the phonons and “small compared to the Fermi temperature” if we
consider the electrons. If we introduce the appropriate material constants,
we find that at room temperature the specific heat of a metal is dominated by
the phonon specific heat and usually only at temperatures below 10 K is the
electronic specific heat important; it dominates at temperatures below 1 K.
The results for the electronic and lattice specific heats of copper are shown
in Fig. 3.4, where C/T versus T 2 is plotted for low temperatures. The figure
demonstrates how well the data are described by the theory discussed earlier.
It also demonstrates that it is very often rather important to choose the right
coordinates to get a sensitive indication of whether data follow an expected
behavior.

3.1.3 Superconducting Metals

Many metals–elements, alloys and compounds–enter into a new state below
a critical temperature Tc. In this so-called superconducting state [3.1, 3.2,
3.5, 3.6, 3.16–3.19] they can carry an electric current without dissipation,
and they show several other new properties. As an example, I discuss here
the specific heat of a metal in its superconducting state (T < Tc). Data for
the specific heat of superconductors are presented in Fig. 3.5. Examining these
data we arrive at the following conclusions. The specific heat Cph of the lattice
vibrations is not influenced by the transition to the superconducting state. It
still follows a T 3 law with the same coefficient as one finds in the normal-
conducting state (3.9)

Cph, s = Cph, n = βT 3 . (3.15)
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Fig. 3.5. (a) Specific heat of Al in the superconducting (Cs) and normal-conducting
(Cn) states [3.20]. (b) Specific heat C of Hg divided by temperature T as a function of
T 2 in the normal (�) and superconducting (•) states. The straight lines correspond
to (3.9,3.13) with θD = 72 K and γ = 1.82 mJ mol−1 K−2 [3.21]. For the measure-
ments in the normal conducting states, a magnetic field B > Bc had to be applied to
suppress the superconducting state. (c) Electronic specific heat Ces of superconduct-
ing V (•) and Sn (◦) divided by γTc as a function of Tc/T . The full line represents
(3.17) [3.22]

The new behavior evident from Fig. 3.5 is entirely due to the altered spe-
cific heat of the electrons. First of all, there is a jump of the electronic spe-
cific heat at the critical temperature, but no latent heat (the transition is
a second-order phase change when the external magnetic field is zero). The
jump in C occurs because the metal now has – one might say – a new “degree
of freedom” corresponding to the possibility of entering the superconducting
state. In the discussion of the Dulong–Petit law for the specific heat at high
temperatures we have already seen that each degree of freedom enhances the
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specific heat. For simple superconductors such as aluminum and tin, which
follow the Bardeen, Cooper, Schrieffer (BCS) theory of superconductivity
[3.1, 3.2, 3.5, 3.6, 3.16–3.19,3.23], the jump of the specific heat is given by

ΔC = 1.43γTc , (3.16)

where γTc is the normal-state electronic specific heat (3.13) at Tc.
Below the transition temperature the electronic specific heat in the super-

conducting state vanishes much more rapidly than the electronic specific heat
in the normal–conducting state of the metal. Its temperature dependence for
“simple”, so-called weak-coupling BCS superconductors [3.23] is given by

Ce, s = 1.34γTc(ΔE/kBTc) exp[−ΔE/kBTc] (3.17)

An exponential temperature dependence of the specific heat is indicative
of an energy gap ΔE in the density of states, as it occurs for the electrons
in a superconductor (and in a semiconductor). This reflects the number of
electrons thermally excited across the energy gap.

3.1.4 Non-crystalline Solids

In noncrystalline or disordered solids [3.5, 3.24–3.28] like vitreous silica or
metallic glasses the atoms are not arranged in a periodic order; these solids
can be visualized as supercooled liquids. As an example, Fig. 3.6 depicts a
possible arrangement of silicon and oxygen atoms in vitreous silica compared
to crystalline quartz. In such a disordered structure where long-range order
is lost many atoms have more than one possible position and these positions
can be distinguished by rather small energy differences. Even at low tem-
peratures the atoms can “tunnel” from one position to another. Again, we
have a new “degree of freedom” for the material: the possibility of performing

Cristobalite Vitreous silica

A
B

C

Fig. 3.6. Schematic two-dimensional representation of the structure of cristobalite,
a crystalline modification of SiO2, and of vitreous silica, the amorphous modification
of SiO2. Filled circles represent silicon atoms and open circles oxygen atoms. Three
possible types of defects are indicated by arrows [3.5, 3.26]
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structural rearrangements. As a result, we observe an additional contribution
to the specific heat caused by the tunneling transitions or structural relax-
ations in a disordered or glassy material. At low temperatures this additional
contribution dominates and is given by

Ca = aTn (3.18)

with an exponent n which is close to 1 [3.5, 3.24–3.30]. (In addition, one of-
ten observes an enhancement of the T 3 specific heat contribution.) This is
illustrated for vitreous silica in Fig. 3.7. Disordered insulators, therefore, show
an almost linear contribution (from the tunneling transitions between vari-
ous positions of the atoms) and a cubic contribution (from the vibrations of
the atoms) to the specific heat. The same is observed for a metallic glass,
but here we have two contributions to the linear part of the specific heat,
one from the tunneling transitions and the other one from the conduction
electrons. It is very remarkable that the contributions to the specific heat
from the non-crystallinity are of very similar size even for quite dissimilar
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Fig. 3.7. Specific heats of three types of vitreous SiO2 containing different concen-
trations of OH− (as well as metal ions, chlorine and fluorine). The dashed line is the
phonon specific heat of crystalline SiO2 [3.29]
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materials [3.5, 3.24–3.30], indicating that the additional excitations in a
disordered material are associated with the disorder and do not depend on the
type of material very much. Because the specific heat contributed by disorder
decreases linearly with decreasing temperature instead of as T 3 as for lattice
vibrations, the specific heat of a dielectric in its glassy state is much higher
than in its crystalline state at low temperatures (Fig. 3.7). Often, below about
1 K, glasses have a specific heat which is even larger than that of a metal. In
fact, at 10 mK the heat capacity of a dielectric glass can be a factor of 103

larger than the heat capacity of the corresponding crystal, which can be of
great importance for the design of a low-temperature apparatus containing
noncrystalline components. The heat capacities of some disordered dielectrics
often used in a cryogenic apparatus are given in Sect. 3.1.7.

3.1.5 Magnetic Specific Heat

When a magnetic field is applied to a material whose atoms have magnetic
moments, there are (2I + 1) ways the magnetic moments can orient them-
selves with respect to the magnetic field, I being the spin associated with the
magnetic moment. Again, a new “degree of freedom” results in an additional
contribution to the specific heat. Let us consider the simplest case, a spin-1/2
system so that there are two possible spin orientations, and they should have
equal degeneracy. At very low temperatures most of the magnetic moments
will be in the lower energy state. If the temperature increases, transitions from
the lower to the upper level will occur, giving the following contribution to
the specific heat [3.1–3.6]:

Cm = N0kB

[
ΔE

kBT

]2 eΔE/kBT

(1 + eΔE/kBT )2
. (3.19)

This contribution, shown in Fig. 3.8, is called a Schottky anomaly. Very
often the energy splitting ΔE is small compared to the thermal energy kBT .
In this “high-temperature” approximation the magnetic contribution to the
specific heat is given by

Cm ⇒ N0kB

[
ΔE

2kBT

]2

for ΔE � kBT . (3.20)

For a metal with such a T−2 contribution we have for the specific heat at
T < 1K where the lattice specific heat is negligible

C = γT + δT−2 . (3.21)

The magnetic specific heats of some commercial alloys containing para-
magnetic atoms and being often used as thin wires for low-temperature equip-
ment are exhibited in Fig. 3.9. Again, at T < 1K, the specific heat can be
strongly enhanced compared to the simple electronic and lattice specific heats.
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1/xe = kBT/geμBB or 1/xn = kBT/gnμnB for different values of spin I (see also
Table 3.1)

The data in Fig. 3.9 demonstrate that one has to be very cautious in employ-
ing wires of manganin (87% Cu, 13% Mn) or Constantan (57% Cu, 43% Ni)
at T < 1K and, in fact, it would be better to resort to other commercial
materials, like 92% Pt, 8% W.

Of course, in general the spin may be larger than 1/2 and we then have
more than two levels. The calculation of the Schottky specific heat using
(9.15b) for I = 0.5, 1.5, 2.5, 3.5 and 4.5 in Fig. 3.10 reveals that this results
only in quantitative changes. But for low-temperature physics it is rather
important to remember that the temperature at which the maximum of the
magnetic contribution to the specific heat occurs is determined by the energy
splitting ΔE of the levels. In other words, for nuclear magnetic moments,
which are about a factor of 1,000 smaller than electronic magnetic moments,
this maximum occurs at much lower temperatures than for the electronic
magnetic moments. For example, an electronic magnetic moment of 1μB in
a field of 1 T leads to a maximum in Cm at about 1 K, whereas a nuclear
magnetic moment in this field will have a maximum in Cm at only about 1 mK
(Chaps. 9 and 10). But the maximum value of the specific heat is independent
of the energy splitting, it is only a function of the number of degrees of freedom
(2I + 1); these values are listed in Table 3.1. This means that an electronic
paramagnet with a spin 1/2 in an arbitrary external magnetic field will have
Cm,max = 0.439R (occurring in the Kelvin range or possibly at even higher
temperatures, depending on the magnitude of its moment and the magnetic
field this moment is exposed to). On the other hand, a nuclear magnetic
moment, again with a spin 1/2, will have the same maximum value of the
specific heat, but occurring at much lower temperature, in the microkelvin
or millikelvin temperature range due to its smaller moment. This fact is of
considerable importance for nuclear magnetic refrigeration (Chap. 10).
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Table 3.1. Position xmax of xe = geμBB/kBT or xn = gnμnB/kBT and value
(Cmax/R) of the maximum of the magnetic specific heat divided by the gas constant,
as a function of spin (or angular momentum) I (see also Fig. 3.10)

I: 1/2 3/2 5/2 7/2 9/2

xmax 2.399 1.566 1.193 0.976 0.831
Cmax/R 0.439 0.743 0.849 0.899 0.927

A good example for a specific heat composed of a lattice T 3 term and
a nuclear–magnetic T−2 term is the specific heat of solid 3He depicted in
Fig. 8.3.

The above considerations on specific-heat contributions resulting from
interactions between a magnetic moment and a magnetic field can be applied
analogously to the specific heat resulting from interactions of an electric
quadrupole moment with an electric field gradient (see also Sects. 3.1.6
and 10.6).

3.1.6 The Low-Temperature Specific Heat of Copper and Platinum

Copper is a material that is particularly important and often used in
a low temperature apparatus. There are several reports in the literature
of an enhanced specific heat of Cu at low temperatures [3.33–3.42]. For
0.03K ≤ T ≤ 2K these increases have been traced to hydrogen and/or
oxygen impurities, to magnetic impurities, mainly Fe and Mn, and to lat-
tice defects [3.35–3.42]. On the other hand, the increased specific heat of Cu
observed in the low millikelvin temperature range may also arise from a nu-
clear quadrupole Schottky-type contribution, see (10.35), due to Cu nuclei
(which have a nuclear quadrupole moment) being located in noncubic neigh-
bourhoods, which occur near lattice defects or in copper oxide [3.41, 3.42]
(Fig. 3.11). These anomalies should be considered in the wide-spread low-
temperature applications of Cu in calorimetry, thermometry (Chap. 12) and
nuclear–magnetic cooling (Chap. 10), and in other applications of this very
useful metal. A proper heat treatment of Cu may remove some of these anom-
alous increases of the specific heat.

Platinum is the “workhorse” of thermometry at low mK and at μK temper-
atures (Sect. 12.10.3). Hence, it is important to know that its low-temperature
properties are strongly influenced by small concentrations of magnetic
impurities. As, for example, reported in [3.43], Fe impurities in the ppm range
increase the specific heat of Pt at 1 mK and in a field of 11 mT by about an
order of magnitude. This effect is caused by the giant moments of 8 μB of the
Fe impurities in Pt.

3.1.7 Specific Heat of Some Selected Materials

Comprehensive compilations of data and references to specific heat values,
including values for technically important materials, can be found in
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Fig. 3.11. Heat capacity of 275mol of Cu, of which 104 mol are in the given mag-
netic fields, as a function of temperature. The full lines are the expected values
for the nuclear magnetic heat capacities of 104mol Cu in the given fields plus – at
higher temperatures – the electronic contributions of 275mol Cu. The deviation of
the measured data from the lines is attributed to a heat capacity resulting from a
splitting of the I = 3/2 nuclear levels of Cu due to a nuclear electric quadrupole
interaction, see (10.35), of 11 mmol of Cu which are located in an electric field gra-
dient of about 1018V cm−2. For these Cu nuclei the cubic symmetry must have been
destroyed in order to create an electric field gradient [3.42]

[3.7, 3.44–3.48]. Some of these data are depicted in Fig. 3.12. References
[3.7, 3.44] contain a compilation of data at 25, 50, 75, 100, 150, 200, 250,
and 293 K for several metallic elements as well as for some alloys, non-metals,
and polymers often used in the construction of cryogenic apparatus. In the
following, I will supplement these compilations with some additional data for
often used materials, in particular at lower temperatures. All data are given
in units of μJ g−1 K−1.

Metals

Be–Cu: C = 3.58 10−3 T−1.64 at 0.5–5 mK (!) [3.49]
Constantan: C = 205 T+2.8 T−2 at 0.15−0.3 K as well as data to 4 K in [3.31]
Cu: see [3.33,3.34,3.50]
Manganin: C = 59.5 T + 2.94 T3 + 11.5 T−2 at 0.2–2.5 K as well as data to

4 K in [3.31]
Pt91− W9 heater wire: C = 17.6 T + 1.4 T3 + 0.12 T−2 at 0.07–1.2 K [3.31]
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Fig. 3.12. Specific heats of several materials below 1K [3.45]. (This publication
provides references to the original literature)

Stainless steel 304: C = 465 T + 0.56 T−2 at 0.07–0.6 K [3.32]
C = 460 T + 0.38 T3 at 1–10 K [3.51]

Dielectrics

Apiezon N grease: C = 1.32 T + 25.8 T3 + 0.0044 T−2 at 0.1–2.5 K [3.52];
data at 16–319 K can be found in [3.53]

G 10 Composite: C = 4.74×103 T 0.912 at 100–350 K and values to 1.8 K
from [3.54]

GE 7031 varnish: C = 6.5 T + 19 T3 below 1 K [3.28]
Stycast 1266 epoxy: C = 2.91 T + 15.7 T3 + 8.98 T5 at 0.1–1 K [3.72]
Stycast 2850FT epoxy: data at 1 to 95 K with C = 12 at 1 K [3.55]
Polypropylene: C = 6.15 T1.33 + 20 T3 at 0.06–1 K [3.56]
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PMMA: C = 3.0 T + 77 T3 at 0.07–0.2 K [3.57]
C = 4.6 T + 29 T3 below 1 K [3.28]

Polystyrene (PS): C = 4.6 T + 93 T3 at 0.07–0.2 K [3.57].

3.1.8 Calorimetry or How to Measure Heat Capacities

To measure a heat capacity C, we have to refrigerate the material of mass m
to the starting temperature Ti, isolate it thermally from its environment (for
example, by opening a heat switch; see Sect. 4.2), and supply some amount
of heat P to reach the final temperature Tf. The result is C/m = P/(Tf − Ti)
at the intermediate temperature T = (Tf + Ti)/2. An essential problem for
the accuracy of heat-capacity measurements is the fact that it is not the
temperature but the much smaller and therefore often much less accurately
known temperature difference which matters. There are several other problems
that have to be carefully considered for accurate heat-capacity measurements
which I will mention in the following.

A calorimeter consists of a platform to which sample, thermometer, and
heater are connected, usually by glue or epoxy (Fig. 3.15). For the adiabatic
heat-pulse method, a heat switch is necessary to connect and disconnect the
calorimeter to a bath. The heat capacities of the addenda should be small
compared to that of the sample or they have to be known with sufficient
accuracy from a measurement without sample so that they can be subtracted
from the total value to obtain the heat capacity of the sample. The leads
to the thermometer and heater have to be of low thermal conductivity (the
best are, of course, thin superconducting wires at the low-temperature end)
and have to be carefully heat-sunk at a temperature close to the tempera-
ture of the calorimeter to avoid heat flow into it. Thermometer, heater and
sample should, of course, be well thermally coupled to the platform to avoid
unknown temperature differences (see the thermal boundary problems dis-
cussed in Sect. 4.3). The power needed to read the thermometer should be
small to avoid overheating it. Calibration of the thermometer and measure-
ment of the heat capacity should be performed with the same power applied to
the thermometer to have in both cases the same unavoidable, hopefully small
temperature difference between thermometer and platform. Parasitic heat
losses or heat inflow by radiation can be reduced by a thermal shield around
the calorimeter with a temperature regulated closely to the temperature of
the calorimeter [3.33, 3.58, 3.59]. Heat produced by opening and/or closing a
mechanical (Sect. 4.2.1) or a superconducting (Sect. 4.2.2) heat switch has to
be small. When exchange gas is used for the cooldown of the calorimeter, it
has to be pumped away before performing the measurement, which is usually
quite time-consuming. Still, one has to take into account the possibility of
adsorption and desorption of residual gas when the temperature is changed.
This produces heat of adsorption/desorption, which is on an order of magni-
tude of the large heat of vaporization. Eventually, time constants for thermal
equilibrium within the sample, within the addenda and between sample and
addenda have to be considered.
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As a result of these problems, heat-capacity data rarely have an accuracy
better than 1%, more usual are accuracies of 3–5% (but see below). If a high
accuracy is needed or if the parameters of the setup are not well known, the
quality of a calorimeter can be checked by measuring the heat capacity of a
well-known reference sample like high purity Cu [3.33,3.34,3.50].

Substantial advances in calorimetry have been achieved due to the devel-
opment of high-performance electronics, new thermometers, micro-fabrication
techniques, and computer automation. However, one has to keep in mind that
the properties of the thermometer (as well as the accuracy of the used temper-
ature scale) is the essential parameter for the accuracy of heat-capacity data.
High-resolution heat-capacity data can only be obtained when the relevant
precautions are taken and when a calibrated, sensitive, and stable thermo-
meter is used.

There are a myriad of reports on the design, construction, and operation
of calorimeters; most of them can be found in the journal Review of Scientific
Instruments. Therefore, the selection of calorimeters to be discussed in this
section surely is a subjective choice. In the following, I will discuss a few of
the more recent elegant or versatile designs for the usual adiabatic heat-pulse
method. This will be followed by a discussion of calorimeters for situations
where this straightforward adiabatic approach of applying heat and measuring
the temperature increase of the thermally isolated calorimeter is inadequate
and more sophisticated methods have to be used; for example, for very small
samples or in hostile environments, like high magnetic fields or pressures, or
for the investigation of sharp features at a phase transition.

Surely, the champion of adiabatic heat-pulse calorimetry with respect to
temperature resolution and temperature stability is the measurement of the
heat capacity C of liquid 4He near its superfluid transition [3.59]. In these ex-
periments, C has been measured with sub-nanokelvin resolution at tempera-
tures to within about a nanokelvin of the transition temperature Tλ = 2.177 K
(see Fig. 2.10b). Such an extreme temperature resolution is only meaning-
ful for the investigation of a phase transition of liquid helium because only
in this substance purity and perfection are high enough so that the phase
transition shows the required sharpness. In all other materials, phase tran-
sitions are smeared by impurities and by imperfections of the structure. In
addition, this measurement had to be performed in flight on earth orbit
to reduce the rounding of the transition caused by gravitationally induced
pressure gradients and therefore spreading the transition temperature over
the liquid sample of finite height. The high-resolution magnetic susceptibility
thermometers developed for these experiments are described in Sect. 12.9. In
the used experimental setup, four thermal control stages in series with the
calorimeter were actively temperature regulated; the last one to a stability
of less than 0.1 nK h−1. Besides this thermal regulation, the experiment re-
quired very careful magnetic shielding, in particular of the electric leads as
well as extremely low electric noise levels. Even though this surely is not a
typical laboratory heat-capacity experiment, a lot can be learned from the
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chosen design, the precautions, and detailed considerations of possible error
sources [3.59], which could be quite useful for simpler experiments on earth.

Another quite remarkable achievement was the adiabatic measurement of
the nuclear magnetic heat capacity of AuIn2 to temperatures of 25 μK in an
investigation of its nuclear ferromagnetic transition at 35 μK [3.60]. In this
temperature range, nuclear magnetic resonance on 195Pt (Sect. 12.10.3) is the
only available method of thermometry, making the calorimeter quite demand-
ing; it is shown in Fig. 3.13. This example demonstrates that the addenda can

Nb shields

Field profile

Calorimeter

10mm Pt NMR Thermometer

Ag link

sample coil
sample
inductance coil

Ag sample holder

Cu nuclear stage

heat switch coil 

Al heat switch

Ag link

Al2 O3 rods

NMR dc field coil

Fig. 3.13. Schematic of a calorimeter used to measure the nuclear heat capacity
(Fig. 3.14) as well as the nuclear AC susceptibility of a AuIn2 sample at microkelvin
temperatures. The calorimeter is connected via a superconducting Al heat switch
(Sect. 4.2.2) to a Cu nuclear refrigeration stage (Sect. 10.8). It contains a Pt NMR
thermometer (Sect. 12.10.3). The calorimeter is surrounded by coils for magnetic
DC fields for the NMR thermometer, the sample, and the heat switch, as well as by
superconducting Nb shields (Sect. 13.5.2), [3.60]
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Fig. 3.14. Nuclear magnetic specific heat of In nuclei in AuIn2 per mole of the
compound (per 2 moles In) in the three indicated magnetic fields. The full lines are
the Schottky curves (see 3.19 and 3.20, as well as Fig. 3.10) for non-interacting In
nuclei (I=5/2) in the given external fields. The lower two figures demonstrate the
enhancement of the heat capacity by the interaction of the In nuclei which gives rise
to a nuclear ferromagnetic ordering of them at 35 μK, shown more clearly in the
inset. The heat capacity at the ordering transition is enhanced by the interactions
of the small In nuclei by three orders of magnitude at 2 mT; it has about the value
as Co has at its Curie temperature of 1390 K (!) [3.60]

be large as long as its heat capacity is small compared to that of the sample, in
this case the huge nuclear heat capacity of AuIn2 at microkelvin temperatures.
The obtained data shown in Fig. 3.14 also demonstrate how large a magnetic
heat capacity can become even at very low temperatures independently of
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whether it is caused by the electronic or by the much smaller nuclear mag-
netic moments; it is determined by the spin degeneracy. And eventually, talk-
ing about heat-capacity measurements under extreme conditions, heat-pulse
calorimetry performed in pulsed magnetic fields up to 60T should be men-
tioned [3.61]. Here, it is essential to avoid any material with magnetic moments
or containing magnetic impurities in the addenda (to keep its heat capacity
small) and to use pure, but electrically badly or non-conducting materials (to
reduce eddy current heating) as far as possible, like single crystalline Si or
high-purity plastics as platform. Of course, the choice of the appropriate ther-
mometer – mostly a resistor – with very low field dependence (see Sect. 12.5)
is of particular importance.

All these mentioned calorimeters used the conventional adiabatic heat-
pulse technique. A semi-adiabatic heat-pulse technique without heat switch
but with the sample and platform weakly connected to the bath at 30 mK
via the appropriately chosen conductance of mounting threads and electrical
leads is described in [3.62]. In this calorimeter, parasitic heat leaks or thermal
losses have been compensated through an adjustable background heating to
assure a constant temperature of the platform. The heat capacity of milligram
samples was measured at 0.03–6 K in magnetic fields up to 12 T .

In particular for measurements of the heat capacity of small samples,
other methods like the thermal relaxation time technique or the AC calori-
metric technique with a calorimeter weakly coupled to a thermal bath at
constant temperature should be used (Fig. 3.15). In the thermal relaxation
method [3.64–3.67] heat is applied for a fixed time to sample and addenda,
and then the exponential thermal relaxation back to the bath temperature
is recorded. The heat capacity C is determined from the relaxation time
τ1 = C/k1 with C = Csample + Caddenda and k1 the thermal conductance of
the weak link to the bath. Both the thermal conductance k1 and the addenda
heat capacity have to be determined independently. The relaxation time τ1

has to be larger than all internal relaxation times of the system, otherwise
the relaxation is not a single exponential curve. This means in particular that
the conductance between the sample and the platform has to be much larger
than k1. The sensitivity is determined by the quality of the thermometer and
by the (as small as possible) heat capacity of the addenda. This method can
have rather high absolute accuracy, however, its relative accuracy is limited.

This is just the opposite for the AC method, which can detect very
small changes in the heat capacity [3.63, 3.65, 3.68]. Here, heat P is applied
sinusoidally and the resulting temperature oscillation at frequency ω is
determined. It is δT = (P/ωC)(1 + ω−2τ−2

1 + ω2τ2
2 )−1/2 with τ2 the relax-

ation time within the calorimeter assembly and τ1 the relaxation time of the
calorimeter to the bath. In the usual limit ωτ1 � 1 � ωτ2, the heat capacity
C = P/ωδT . To check whether this limit has been achieved, the tempera-
ture response has to be measured at various frequencies – typically between a
few and 200 Hz – to determine below which frequency heat escapes through
the thermal link to the bath within the measuring period and above which
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Fig. 3.15. (a) Schematic of a setup for heat-capacity measurements by the thermal
relaxation or the AC techniques. A platform (for example, a thin sapphire or silicon
disc or a membrane) carries sample, heater and thermometer. It is weakly coupled
to a thermal reservoir at constant temperature and surrounded by a thermal shield.
For high accuracy measurements, the temperature of the shield is regulated close to
the temperature of the platform. Leads to heater and thermometer are thermally
grounded at the thermal reservoir and then at the platform; they can also serve as
weak thermal link between platform and reservoir as well as mechanical support. The
set–up can be used for the more conventional heat-pulse technique by adding a heat
switch between reservoir and platform. (b) Heat flow diagram for the shown setup.
The sample of heat capacity Cx and at temperature Tx is connected via a thermal
link of conductance k2 to the platform with heat capacity Ca and at temperature
Tp. The thermal link between platform and thermal reservoir has the conductance
k1. Ca contains the contributions from platform, thermometer, heater, and their
mounting (glue, grease, varnish,. . . ); it should be substantially smaller than Cx and
has to be measured independently. Similarly, the conductance k2 should be much
larger than k1

frequency the calorimeter can not follow anymore the heat modulation; i.e.,
to see in which frequency range a steady state can be reached where δTω
is independent of frequency. A simplified version of the relaxation method is
the so-called “dual slope method” [3.69]. Here, the sample plus addenda are
continuously heated and cooled, and the specific heat at temperature T is
derived from the slopes of these two cycles at T .

In the calorimeters for these techniques, usually the sample holder is a
small chip (for example, thin silicon or sapphire) or membrane, to which
the heater, thermometer, and sample – with the latter having hopefully a
substantially higher heat capacity than all the other parts – are mounted. This
device is hanging in vacuum by means of thin supporting wires that provide a
weak and controllable thermal link to the bath and can serve also as electrical
leads for thermometer and heater (Fig. 3.15). Various micro-thermometers and
nonmagnetic, temperature-independent resistive heaters (for example, NiCr or
TiCr alloys) have been developed for this purpose (see various references in
this section).
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In [3.66], the relaxation method has been used with an amorphous silicon-
nitride membrane, supported by a silicon frame, onto which thin-film heaters
and thermometers (Pt for T > 50 K, amorphous NbSi or boron doped Si
for lower temperatures) are patterned. The heat capacity of this addendum
is <1 nJ K−1 at 2 K and 6 μJ K−1 at 300 K only. This calorimeter has been
used to investigate microgram samples or thin films in steady fields up to
8 T; according to the authors, it should be usable also in pulsed fields up
to 60 T. This is the result of the rather weak dependence of the properties
of the calorimeter parts on magnetic field (for example, their conductances
and the weak magnetoresistance of the used thermometers), and of the fact
that in a very good approximation the relaxation time does not rely on the
calibration of the thermometer. Reference [3.66] gives a detailed description
of the fabrication and properties of this calorimeter and all its components.
A relaxation calorimeter for use in a top-loading 3He-4He dilution refrigerator
in high magnetic fields has been described in [3.67]. It has been used for milli-
gram samples from 34 mK to 3 K and in magnetic fields up to 18 T. In order
to keep thermal time constants in the magnetic field reasonably short, most
of the addenda like the thermal reservoir are made from Ag, which has one
of the smallest nuclear heat capacities of suitable materials (see Fig. 10.4 and
Table 10.1).

In an elegant version of a calorimeter for microgram samples of [3.65],
a modified commercial thin-film ceramic silicon oxynitride chip of 1 × 0.75 ×
0.1 mm3 (“Cernox”, see Sect. 12.5.3) was used simultaneously as sample holder
and temperature sensor, with a Ni80Cr20 heater sputtered onto it. This
calorimeter of only 0.25 mg weight was used for the relaxation as well as for the
AC methods at 1.5–50 K and in magnetic fields up to 11T (Cernox is rather
insensitive to magnetic fields, see Sect. 12.5.3). According to the authors, the
sensitivity of this calorimeter over the whole temperature range is a factor
of 100 higher than that of a comparable commercial calorimeter (see be-
low), using a silicon-on-sapphire design. The most sensitive microcalorimeters
have been built by the group of Chaussy [3.68]. In their latest version, these
AC calorimeters for the Kelvin temperature range consist of a 2 to 10-μm-
thick monocrystalline silicon membrane substrate produced by etching, tak-
ing advantage of the high thermal conductivity and low heat capacity at
low temperatures of this material. A 150 nm CuNi heater (with tempera-
ture independent resistivity at 1 to 20 K) and a 150 nm NbN thermometer
(with slope dR/R dT ≈ 0.2 K at 4 K) are deposited onto the substrate. The
heat capacity of this addenda in the different versions of these calorimeters
varied between less than 0.1 nJ K−1 at T < 1 K and some nJ K−1 at 4 K. The
device was used to measure heat capacities of systems of reduced dimension-
ality like deposited thin films or multilayers or of microgram single crystals
and eventually of mesoscopic superconducting loops. The achieved resolution
of ΔC/C < 5 × 10−5 allowed measurements of variations of C as small as
10 fJ K−1 [3.68].
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Another remarkable achievement reported in [3.70] seems to be the sub-
stantial improvement of the conventional differential thermal-analysis (DTA)
method by means of using high-precision electronics and careful temperature
control. This device was used to measure the heat capacity of milligram sam-
ples at Kelvin temperatures and in magnetic fields up to 7 T with a relative
accuracy of about 10−4. This makes this method particularly valuable for
the investigation of sharp or shallow features at phase transitions. The main
ingredient of the method is the continuous comparison of the heat capacity
of the sample to the heat capacity of a reference material, which are both
weakly connected to a thermal bath and which are simultaneously heated or
cooled. The best results with this comparative method are, of course, achieved
if thermal links and thermometers are as identical as possible. Temperature
differences between bath, reference material, and sample are recorded and
inserted in the relevant equations to evaluate the heat capacity of the sample.

An automated heat-capacity measurement system (“Physical Property
Measurement System”, see “Supplier of Cryogenic Equipment”) for sam-
ples of about 10–500 mg is available commercially [3.64]. The system also
allows performing very sensitive AC-susceptibility, as well as AC- and DC-
magnetization and -electric-transport measurements. It employs the thermal
relaxation method in the temperature range 1.8–400 K (optional 0.35–350 K
with a continuously operating closed-cycle 3He system; see Sect. 6.2). As an
option, it can be equipped for measurements in magnetic fields up to 16 T
longitudinal or 7 T transverse. Its calorimeter platform consists of a thin alu-
mina square of 3 × 3 mm2, backed by a thin-film heater and a bare Cernox
thermometer (see Sect. 12.5.3). A heat pulse of duration τ is applied and the
platform temperature is recorded for 2τ . With known values for the conduc-
tance of the thermal link to the bath, of the heat capacity of the addendum,
and of the applied heat, the heat capacity of the sample and the internal time
constant of the calorimeter are determined analytically from the T(t) data by
numerically integrating the relevant differential equations. The curve fitting
is improved by carrying out a number of decay sweeps at each temperature
and averaging the results. Two Cernox thermometers are used over the full
temperature range and their calibration is based on the ITS-90 temperature
scale (Sect. 11.2). The resolution of the system is 10 nJ K−1 at 2 K. Accord-
ing to an examination of the system [3.64], the accuracy is 1% at 100–300 K,
which diminishes to about 3–5% at T < 5 K. The system is quite adequate to
investigate reasonably broad second-order phase transitions. However, sharp
first-order transitions cannot be investigated properly, mainly because the
applied software cannot describe the then non-exponential decay curves. This
drawback can be removed by using an alternate analytic approach [3.64].
The system has recently been equipped with a simple, fully automated dilu-
tion refrigerator for heat-capacity measurements from 55 mK to 4 K and in
fields to 9 T [3.71].

Important new information can be obtained from measurements of the
angular dependence of the heat capacity in high magnetic fields. For example,
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field-angle-dependent specific heat can probe the gap structure in unconven-
tional superconductors such as high-Tc or heavy-fermion superconductors,
possibly indicating the nodal structure of anisotropic energy gaps, which is
intimately related to the pairing interaction [3.73]. In Sect. 13.7, I will describe
various methods how to achieve the necessary rotation of samples at low
temperatures in these fields.

Cryogenic calorimeters or more generally devices which measure the tem-
perature increase after a deposition of energy are nowadays not only used to
measure heat capacities of liquids and solids but also in a variety of other
applications like the detection of weakly interacting massive particles, of x-
rays and γ-rays, and in astrophysics; or as bolometers for detection of phonons,
of particles or of electromagnetic waves, and in particular for detection of in-
frared radiation. These applications have emerged from the very high sensi-
tivity of recent microcalorimeters in the range of nJ/K (corresponding to the
heat capacity of a monolayer of 4He, for example) or even less. For a recent
review on these devices and their applications see [3.74].

3.2 Thermal Expansion

3.2.1 Thermal Expansion of Solids

If the potential which an atom sees in a crystal were parabolic (the har-
monic approximation) and therefore given by (3.1), there would be no ther-
mal expansion. However, in reality the potential which an atom experiences
is anharmonic due to the electrostatic forces of its neighbours and looks more
like that displayed in Fig. 3.16. At low temperatures the amplitudes of the
atomic vibrations around their equilibrium position r0 are rather small and
the potential can be approximated by (3.1). As a result the thermal expan-
sion coefficient
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Fig. 3.16. Typical potential which an atom or ion experiences in a lattice as a
function of distance r between them (normalized to the lattice parameter a)
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does indeed vanish for T → 0 (for Cu: α = 2.9 × 10−10T + 2.68 × 10−11T 3

at 0.2K < T < 1.9K [3.75]).2 When the temperature is raised the thermal
vibrations of the atoms grow and they increasingly experience that the poten-
tial is asymmetric: steeper for small distances and flatter for larger distances.
The atoms experience the “anharmonic” part of the potential. Due to the
shape of the potential the atoms spend more of their time at larger separations,
leading to an increased average separation. Therefore the material expands
when the temperature is increased. For a potential V (r − r0) = V (x), the
mean deviation from the zero-temperature position r = r0 is given by [3.1–3.7]

〈x〉 =

∫ +∞
−∞ xe−V (x)/kBT dx∫ +∞
−∞ e−V (x)/kBT dx

. (3.23)

The thermal contraction of various materials when cooled from room tem-
perature to lower temperatures is displayed in Fig. 3.17. Looking at this figure
we can divide the materials quite generally into three groups. First, there is
a group of commercial alloys and glasses, which have been specially produced
to exhibit an extremely small expansion coefficient. Then we have the groups
of metals which contract by about 0.2–0.4% when cooled from room temper-
ature to low temperatures. It is very important to remember that different
metals have different expansion coefficients and therefore have to be joined
in the proper order (see below). Finally, we have the organic materials with
their large expansion coefficients; typically 1–2% length change when cooled
from room temperature to the low Kelvin temperature range. These latter
materials are rather important for low-temperature purposes as well, because
they are used as construction materials on account of their low thermal con-
ductivity, or for bonding, electrical insulation or making leak-tight joints.
Here problems can often occur due to their rather large thermal expansion
coefficients which can lead to substantial thermal stresses. For some applica-
tions the very small expansion coefficients of many glasses of α 	 4×10−7 K−1

at 0◦C may be useful. However, unlike the specific heat and other properties,
α is not a universal property of glasses at low temperature; it may even have
different sign for different glasses at T ≤ 1K [3.81].

Joining materials of different thermal expansion in an apparatus whose tem-
perature will repeatedly be changed requires a rather careful selection of the
materials and a suitable design, if destruction of the joint by the severe stresses
in thermal cycling is to be avoided. This is a very serious consideration because a
low-temperature apparatus composed of a variety of materials usually has to be
leak-tight. Figure 3.18 illustrates the correct ways of joining tubes of different
2 Of course, when a material is anisotropic, it may have different expansion

coefficients αi in different directions. The volume expansion coefficient is then

β =
3∑

i=1

αi/3.
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Fig. 3.17. Relative linear thermal expansion coefficient of (1) Invar (upper), Pyrex
(lower), (2) W, (3) nonalloyed steel, (4) Ni, (5) Cu0.7Ni0.3, (6) stainless steel,
(7) Cu, (8) German silver, (9) brass, (10) Al, (11) soft solder, (12) In, (13) Vespel
SP22, (14) Hg, (15) ice, (16) Araldite, (17) Stycast 1266, (18) PMMA, (19) Nylon,
(20) Teflon [3.76]. Some further data are: Pt similar to (3); Ag between (9) and
(10); Stycast 2850 GT slightly larger than (10). The relative change of length
between 300 and 4K is 103Δl/l = 12, 11.5, 4.4, 6.3 and 5.7 for Polypropylene,
Stycast 1266, Stycast 2850 GT as well as 2850 FT, Vespel SP-22 and solders, re-
spectively [3.44, 3.55, 3.56, 3.76–3.82, 3.114]. Torlon behaves very similar to Stycast
2850FT [3.114]

metals and the design of seals, which appear in almost every piece of low-
temperature equipment. (For the proper design of an insulating feedthrough
of leads, see Sect. 13.3.) In addition, stresses due to parallel connection by
parts of different materials have to be avoided. Very often good thermal con-
tact between different metallic parts of low-temperature apparatus is essential
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Fig. 3.18. When joining different materials in a cryogenic apparatus one has to take
into account the difference in their thermal expansion coefficients. For example: (a)
The tube with the largest expansion coefficient should be on the outside so that
the solder joint is not pulled open during cooldown. (b) In an O-ring seal the screw
should have a larger expansion coefficient than the flange. The seal will tighten even
further during cooldown if a washer with a very small expansion coefficient is used.
(c) In an epoxy feedthrough for leads the epoxy, with its large expansion coefficient,
should contract on a thin-walled metal tube during cooldown rather than pull away.
It helps if the tube walls are tapered to a sharp edge. An epoxy with filler should
be used to lower its thermal expansion coefficient

(Sect. 4.3.1). Here again the correct selection of the materials for bolts and nuts
is important. Frequently, the thermal contact after cooldown can be improved
by adding a washer of a material with a low thermal expansion coefficient,
such as Mo or W (but they are superconductors at very low temperatures!).

A fairly comprehensive list of references and data on thermal expansion
coefficients of solids can be found in [3.7, 3.44,3.78–3.80].

3.2.2 Dilatometers or How to Measure Thermal Expansions

For measurements of thermal expansion coefficients, capacitive displacement
sensors are commonly used because of their sensitivity (up to 0.1 nm) and
simplicity (see also Sect. 13.1) [3.7, 3.78, 3.79, 3.82]. In these dilatometers, the
change of length of a sample is transferred to the movable part of a capac-
itor resulting in a capacitance change. The capacitances are measured in a
five-terminal capacitance bridge like the one discussed in Sect. 13.1.1 or in a
commercial high-resolution capacitance bridge. The resolution of these bridges
of up to 10−7 or even 10−8 translates to resolution changes of up to 0.1 nm.
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A miniature capacitance dilatometer of this type with only 22 mm di-
ameter, made from Ag and suitable for measuring thermal expansion and
magnetostriction of small and irregularly shaped samples even in very high
magnetic fields has been described in [3.83]. The design is based on the tilted-
plane technique, so that the problem of holding the capacitor plates parallel to
each other is overcome. Its resolution is 0.1 nm or Δl/l=10−6 and it has been
used in a cryostat inside of the narrow (32 mm) and “noisy” bore of a magnet
with fields up to 33T . For earlier designs using capacitive dilatometers, the
mentioned publications should be consulted.

Capacitance dilatometers are only surpassed by dilatometers using a
SQUID as the sensing element of elongation or contraction of a sample. The
enormous resolution of 2 × 10−5 nm has been achieved and the data for Cu
at 0.2 < T < 1.9 K, mentioned above, have been obtained applying such a
device [3.75].

3.3 Thermal Conductivity

Thermal conductivity is a transport property of matter similar to electrical
conductivity, viscosity, diffusion, damping of sound, etc [3.1–3.6, 3.84–3.87].
The rate of heat flow per unit area resulting from a temperature gradient in
a material of cross-section A is given by

q̇ = Q̇/A = −κ∇T , (3.24)

where κ is the thermal conductivity coefficient. Heat can be carried by con-
duction electrons or by lattice vibrations; their contributions are additive.
These carriers of heat usually do not fly ballistically from the heated end of
the material to the other colder end. They are scattered by other electrons
or phonons or by defects in the material; therefore they perform a diffusion
process. To calculate thermal transport we have to apply transport theory,
which in its simplest form is a kinetic gas theory. In this simplified version we
consider the electrons or the phonons as a gas diffusing through the material.
For the thermal conductivity coefficient this theory gives

κ =
1
3

C

Vm
vλ , (3.25)

where λ is the mean free path, and v is the velocity of the particles. Intuitively,
this is a rather convincing equation identical to those for other transport
properties if we choose the corresponding parameters. It tells us that the
transport property “thermal conductivity coefficient” is given by the product
of “what is transported” [here it is the specific heat C (per unit volume)], “the
velocity v of the carriers performing the transport”, and “how far the carriers
fly before they are scattered again”. The factor 1/3 comes from the fact that
we are interested in the heat flow in one direction, whereas the motion of the
carriers is three-dimensional.
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How will the thermal conductivity coefficient look like if the heat is carried
by the electron or/and by the phonon gases? In the first part of this chapter
we have already calculated the specific heat C of electrons and phonons as a
function of temperature. The characteristic velocity of phonons is the velocity
of the sound vs; this is the velocity with which “vibrations” or “phonons”
move through the lattice. Typical values for solids, in particular metals, are
vs = (3–5)× 105 cm s−1. The electrons involved in thermal transport can only
be electrons with energy near the Fermi energy (Fig. 3.3). Only these can
transport heat because they are the only ones which can perform transitions to
higher nonoccupied energy states, which is necessary for thermal conductivity.
Their velocity is the so-called Fermi velocity vF determined by the kinetic
Fermi energy EF, see (3.10). Typical values for

vF = (�/me)(3π2N0/Vm)1/3 (3.26)

are 107–108 cm s−1 � vs. Both the sound velocity and the Fermi velocity are
independent of temperature at low temperatures. So we know C and v, and all
the problems in calculating transport properties lie in the calculation of the
mean free path λ, determined by the scattering processes of the heat carriers.

The main scattering processes limiting the thermal conductivity are
phonon–phonon (which is absent in the harmonic approximation), phonon–
defect, electron–phonon, electron–impurity, and sometimes electron–electron
interactions. The latter process is rather ineffective because it involves four
different electron states due to the Pauli exclusion principle. The resistances of
the various scattering processes are additive. Because the number of phonons
increases with increasing temperature, the electron–phonon and phonon–
phonon scattering rates are temperature dependent. The number of defects
is temperature independent and correspondingly the mean free path for the
phonon–defect and electron–defect scattering do not depend on temperature.
As a result, we arrive at the equations for the thermal conductivity given in
the following subsections.

3.3.1 Lattice Conductivity: Phonons

The lattice or phonon conductivity which is the dominant and mostly the only
conduction mechanism in insulators is given by

κph =
1
3

Cph

Vm
vsλph ∝ T 3λph(T ), at T ≤ θD/10 . (3.27)

Intermediate Temperatures: T ≤ θD/10

In this temperature range the phonon–phonon scattering is dominant and
the phonon mean free path increases with decreasing temperature because
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the number of phonons decreases with decreasing temperature. A quantitative
derivation [3.1–3.6, 3.84–3.87] of the thermal conductivity for the phonon–
phonon scattering regime is somewhat involved due to the anharmonicity of
the potential and of the frequency dependence of the dominant phonons with
temperature; it will not be given here. We just state that in this T range
the thermal conductivity decreases with increasing temperature (Figs. 3.19
and 3.20).

Low Temperatures: T � θD

In this temperature range the number of thermally excited phonons is rather
small. They are no longer important for scattering, and the phonons which
carry the heat are scattered by crystal defects or by crystal boundaries only.
Because at low temperatures the dominant phonon wavelength is larger than
the size of the lattice imperfections, phonon scattering at crystallite bound-
aries is the important process. Now the mean free path for phonon transport
is, in general, temperature-independent – but see (3.29). The temperature
dependence of the thermal conductivity is then given just by the tempera-
ture dependence of the specific heat, and decreases strongly with decreasing
temperature as

κph ∝ Cph ∝ T 3 . (3.28)

As a result of this consideration we find that the thermal conductivity due
to phonon transport goes through a maximum, as illustrated in Figs. 3.19a
and 3.20. Owing to differences in the number of defects, the low temperature
thermal conductivity of nominally identical samples can vary considerably
(see also Fig. 3.19).

I want to mention two particularly important cases of phonon thermal
conductivity. First, if we have a rather perfect, large crystal with a very low
density of defects and impurities, the mean free path of phonons and there-
fore the thermal conductivity can become very large, of the order 100 W (cm
K)−1 (Figs. 3.19a and 3.20). This is comparable to the thermal conductiv-
ity of highly conductive metals like copper or aluminum. Second, if we have a
strongly disordered insulator, the mean free path determined by the scattering
of phonons on defects can become very small, even approaching atomic dis-
tances. In particular, if we consider a glass, the tunneling transitions between
different structural arrangements of the atoms, which were discussed in the
description of the specific heat of noncrystalline materials (Sect. 3.1.4), limit
the phonon thermal conductivity by additional scattering of phonons on tun-
neling states [3.5,3.24–3.28,3.94,3.95]. They reduce the thermal conductivity
of glasses considerably, for example by about two (four) orders of magni-
tude for vitreous silica compared to crystalline quartz at 1 (10 K) [3.27]. This
scattering results in an almost universal close to T 2 dependence of the ther-
mal conductivity of dielectric glassy materials below 1 K (Figs. 3.21–3.23) and
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Fig. 3.19. Temperature dependence of the thermal conductivities of (a) some
dielectric solids and of (b) Al and Cu of varying purity [expressed as their residual
resistivity ratio (3.43)] [3.88]
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Fig. 3.20. Typical thermal conductivities κ of various materials at T > 2 K
[3.89–3.93]. Remember that κ depends on the purity and crystalline perfection of a
material

a plateau region for 2 K � T � 20 K (Fig. 3.22). Because the heat is still carried
by phonons with Cph ∝ T 3, the phonon mean-free path limited by scattering
on tunneling states must vary as λ ∝ T−1. As for the specific heat of disor-
dered solids, both the absolute magnitude and the temperature dependence
of the thermal conductivities of most glasses are rather similar; for example,
for commercial glasses or polymers they fall within about a factor of two of
those given for Pyrex (Figs. 3.21 and 3.22).

A detailed discussion of the lattice conductivity is rather involved due to
the variation of the frequency of the dominant phonons with temperature and
the various scattering processes. This is particularly true if the conductivity is
limited by different lattice imperfections. The main results of such discussions
are [3.1–3.6, 3.84,3.86].
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λph = const. for phonon–grain boundary scattering,
λph ∝ T−1 for phonon–dislocation scattering, and
λph ∝ T−4 for phonon–point defect (Rayleigh) scattering.

(3.29)

3.3.2 Electronic Thermal Conductivity

For the thermal conductivity due to conduction electrons we have

κe =
1
3

Ce

Vm
vFλe ∝ Tλe(T ) . (3.30)

Usually, in a metal, this electronic thermal conductivity is considerably
larger than the lattice thermal conductivity because the Fermi velocity vF of
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the conduction electrons is much larger than the sound velocity vs of phonons.
A detailed theoretical treatment [3.1–3.6,3.84–3.87] of the electronic thermal
conductivity is easier than that of the lattice conductivity because the con-
duction electrons involved sit within a narrow energy band of width kBT at
the Fermi energy EF and therefore they all have the same energy.

High Temperatures

At high temperatures the thermally excited phonons are the limiting scat-
terers for the heat conducting electrons. Because the number of thermally
excited phonons increases with temperature we find for the electronic thermal
conductivity in the electron–phonon scattering region a thermal conductivity
which decreases with increasing temperature (Figs. 3.19b and 3.20).

Low Temperatures

At low temperatures the number of phonons is again small and the scatter-
ing of electrons from lattice defects and impurities dominates. We have a
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Fig. 3.23. Thermal conductivities of various dielectric materials often used in a cryo-
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Epibond 100 A; j, Nylon; k, Graphite AGOT; l, Vespel SP21 with 15% by weight
graphite) [3.94]

temperature-independent electronic mean free path resulting in the following
equation for the electronic thermal conductivity:

κe ∝ Ce ∝ T . (3.31)

We again have two scattering processes dominating in different temper-
ature regions and with opposite temperature dependences. As a result the
electronic contribution to the thermal conductivity also goes through a maxi-
mum (Figs. 3.19b and 3.20). The value and position of this maximum strongly
depend on the perfection of the metal; for pure elements it is located at about
10 K. With increasing impurity concentration, the maximum is diminished
and shifted to higher temperature. In a disordered alloy the scattering of elec-
trons by the varying potential can become so strong that electronic and lattice
conductivities become comparable.
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3.3.3 Thermal Conductivity at Low Temperatures

For our purposes the values and temperature dependences of the thermal
conductivity at low temperatures are of particular importance and will be
summarized in the following. The heat carried by a material of cross-section A
and length L with a thermal conductivity coefficient κ and with temperatures.
T2 and T1 at its ends is given by

Q̇ =
A

L

∫ L

0

q̇ dx =
A

L

∫ T2

T1

κ(T )dT . (3.32)

Insulators/Phonons

Here we have

κph = bT 3 for T < θD/10 (3.33)

and hence

Q̇ =
Ab

4L
(T 4

2 − T 4
1 ) . (3.34)

For small temperature gradients, ΔT = T2 − T1 � T , we have

Q̇ 	 Ab

L
T 3ΔT =

A

L
κph(T )ΔT . (3.35)

Metals/Conduction Electrons

Here we have

κe = κ0T for T < 10K (3.36)

and therefore

Q̇ =
Aκ0

2L
(T 2

2 − T 2
1 ) . (3.37)

Again, for small temperature gradients,

Q̇ 	 Aκ0

L
TΔT =

A

L
κe(T )ΔT . (3.38)

Hence, an accurate determination of thermal conductivity involves also an
accurate determination of the relevant sample dimensions.

Low-temperature thermal conductivities of various materials are listed in
Table 3.2 and plotted in Figs. 3.19–3.23.
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Table 3.2. Thermal conductivity of solids frequently used in low temperature
apparatus

material κ [mW (cm K)−1] T range [K] ref.

Manganin 0.94 T 1.2 1–4 [3.98]
Nb–Ti 0.075 T 1.85 4–9 [3.99]
Nb–Ti 0.15–0.27 T 2.0 0.1–1 [3.100]
Cu0.70Ni0.30 0.93 T 1.23 0.3–4 [3.101]
Cu0.70Ni0.30 0.64 T 0.05–3.0 [3.100,3.102]
Pyrex 0.15 T 1.75 0.18–0.8 [3.103]
Al2O3 2.7 T 2.5 2–8 [3.104]
Al2O3 0.29 T 2.7 0.1–2 [3.94]
Stycast 1266 0.49 T 1.98 0.05–0.5 [3.105]
Stycast 1266 0.39 T 1.9 0.06–1 [3.100]
Stycast 2850 GT 78 × 10−3 T 1.8 1–4 [3.98]
Stycast 2850 FT 53 × 10−3 T 1.8 2–10 [3.106]
Stycast 2850 FT 92 × 10−3 T 2.65 0.06–1 [3.100]
Vespel SP 1 18 × 10−3 T 1.2 0.1–1 [3.94]
Vespel SP 22 17 × 10−3 T 2 0.1–2 [3.94,3.100]
Teflon 30 × 10−3 T 2 0.2–1 [3.107]
Teflon 38 × 10−3 T 2.4 0.3–0.7 [3.103]
Nylon 26 × 10−3 T 1.75 0.2–1 [3.94,3.103]
Macor 58 × 10−3 T 2.24 0.4–1.1 [3.108]
Nuclear graphite 15 × 10−3 T 1.13 0.1–2 [3.94]
AGOT graphite 5.1 × 10−3 T 1.76 0.1–2 [3.94]

4.9 × 10−3 T 1.86 0.3–3 [3.109]
a-SiO2 0.248 T 1.91 0.06–1 [3.110]
Wood 9.3 × 10−3 T 2.7 0.04–1 [3.111]
Kevlar 3.9 × 10−5 T 1.17 0.1–2.5 [3.112]
Polypropylene 27.4 × 10−3 T1.28 0.1–1 [3.56]
PVC 1.8 × 10−4 T2.05 0.05–0.12 [3.113]
Torlon 6.13 × 10−2 T2.18 0.1–0.8 [3.114]

The given temperature ranges are the ranges where the given equations describe
the data; in the cited literature, often data for a much wider temperature range
are given.

3.3.4 Superconducting Metals

In superconducting metals some of the electrons are paired to so-called Cooper
pairs. They all sit in the same low energy state of zero entropy, which is
separated by an energy gap ΔE from the states of the single, unpaired elec-
trons [3.16–3.19, 3.23]. The Cooper pairs cannot leave this ground state to
carry heat (they carry no entropy) unless they are broken up into single elec-
trons. Therefore in a superconducting metal only the remaining unpaired
electrons can carry heat. Because they are in energy states which are
separated from the Cooper ground state by the energy gap ΔE(T ), their
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number decreases exponentially with T , i.e., as exp(−ΔE/kBT ). As a result
of this qualitative discussion we find that the electronic thermal conductiv-
ity of a metal in the superconducting state is given by the product of the
number of remaining unpaired single electrons and their thermal conductivity
(which is identical to the electronic thermal conductivity κe,n = κ0 T in the
normal–conducting state),

κe,s ∝ T e−ΔE/kBT , (3.39)

with ΔE = 1.76kBTc for most elemental superconductors [3.16–3.19,3.23].
Hence, the electronic thermal conductivity of a superconductor decreases

very rapidly with decreasing temperature [3.115]. Indeed, at low tempera-
tures the electronic thermal conductivity of a superconducting metal can even
become smaller than its lattice conductivity, and at sufficiently low tempera-
tures, say at T < Tc/10, the total thermal conductivity of a superconductor
approaches the thermal conductivity of an insulator, κ ∝ T 3. This is shown
in Fig. 4.1 for aluminium.

Because it is rather simple to “switch” a metal from the superconduct-
ing to the normal state by applying a large enough magnetic field, one can
“switch” its thermal conductivity from one state to the other. We take advan-
tage of this possibility by using a superconducting metal as a thermal switch to
disconnect or to connect two parts in a low-temperature apparatus, for exam-
ple in a magnetic refrigerator (Chap. 10). This application will be discussed
in Sect. 4.2.2.

3.3.5 Relation Between Thermal and Electrical Conductivity:
The Wiedemann–Franz Law

A correct measurement of the low-temperature thermal conductivity of a
metal can be rather cumbersome (see Sect. 3.3.7) and, in general, a mea-
surement of the electrical conductivity is much easier. Fortunately, due to the
fact that in a metal usually both conductivities are determined by the flow of
electrons and are mostly limited by the same scattering processes, a measure-
ment of the electrical conductivity often gives reasonable information about
the thermal conductivity. Let us consider a metal at low temperatures in the
defect scattering limit where λe = const. For the electrical conductivity the
electrons conduct charge, which is temperature independent. At low temper-
atures in the defect scattering limit or in the residual resistivity range (see
below) the electrical conductivity σ is therefore temperature independent. For
the thermal conductivity κ the electrons carry heat, but the specific heat, and
therefore the thermal conductivity, are proportional to temperature in this
range. As a result, the ratio of thermal conductivity κ to electrical conduc-
tivity σ is proportional to temperature. One arrives at the same result for
the temperature range where the conductivity due to electron transport is
limited by large-angle elastic electron–phonon scattering (T ≥ θD). At, say,
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4 and 300 K, we then have the Wiedemann–Franz law for the ratio of these
two conductivities [3.1–3.6, 3.84–3.87,3.116],

κ/σ = L0T , (3.40)

where the Lorenz number L0 is a universal constant, i.e., L0 = (πκB/e)2/3 =
2.4453 × 10−8 W ΩK−2.

Of course, we also arrive at (3.40) if we combine the equation for the
electrical conductivity of a metal

σ =
nN0e

2λeVm

vFm∗ , (3.41)

where m∗ is the effective mass of the conduction electrons and n is the number
of conduction electrons per atom, with (3.30) for the thermal conductivity, as-
suming that the electronic mean free path is the same for both conductivities.

We can therefore use the measured electrical conductivity together with
the Wiedemann–Franz law to calculate the thermal conductivity. In many
situations this gives correct results, in particular when the electron scattering
is predominantly elastic. It most often holds at low temperatures (impurity
scattering; T < θ/10) and at high temperatures (phonon scattering; T ≥ θ)
but not in between, where energy losses of the order kBT are associated with
electron–phonon collisions. However, cases are known in which the calculated
and measured thermal conductivities differ by up to an order of magnitude
at low temperatures. Usually the measured thermal conductivity is smaller
than the thermal conductivity calculated with the Wiedemann–Franz law
from the electrical conductivity. Particularly disturbing is the observation
that this can happen at Kelvin and lower temperatures for metals of typ-
ical quality commonly used in a low-temperature apparatus (e.g., Al and
Ag) while this deviation can be absent for other quite similar metals (e.g.,
Cu) [3.104], see Fig. 3.24, or has even not been observed for the same metal
by other investigators [3.117, 3.118]. The reason for this discrepancy is the
fact that our earlier discussion is an oversimplification. In reality scattering
processes may contribute with different “effectiveness” to the two conductiv-
ities, in particular when inelastic scattering contributes to the thermal con-
ductivity [3.1–3.6, 3.84–3.87].

A formula that is rather useful can be derived from the above equations,
namely,

vFλe =
σ

γ

[
πkB

e

]2

(3.42)

which allows the electronic mean free path λe to be calculated from the mea-
sured electrical conductivity σ and specific heat coefficient γ.

In the literature the so-called residual resistivity ratio (RRR) is very often
given as a measure of the “purity” of a metal (Fig. 3.19). This is the ratio of
the electrical conductivity at low temperatures, e.g., at the boiling point of
liquid helium, to the electrical conductivity at room temperature
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Fig. 3.24. (a) Thermal conductivity of a Cu foil 60 μm thick and 20mm wide
after various treatments, resulting in RRRs of 979 (•), 540 (�) and 410 (�). Lines
correspond to thermal conductivities calculated from RRR values (3.43) by applying
the Wiedemann–Franz law (3.40). (b) Thermal conductivity of a Ag rod 0.86 ×
0.86 mm2 after different treatments, resulting in RRRs of 3,330 (•), 1,988 (�) and
553 (�). Lines correspond to thermal conductivities calculated from RRR values
(3.41) by applying the Wiedemann–Franz law (3.40). The shown results mean that
different types of defects may influence the thermal and the electric conductivities
differently. Hence, the results may differ from sample to sample [3.104]

RRR = σ4.2 K/σ300 K = ρ300 K/ρ4.2 K . (3.43)

Because the room-temperature conductivity is determined not by defect
scattering but by phonon scattering, whereas the low-temperature conductiv-
ity is exclusively determined by the scattering on defects because then there
are no phonons left – this ratio is a direct measure of the limiting defect
scattering. It indicates how good a material is by stating by what factor its
conductivity increases with the vanishing of the phonon scattering at low
temperatures.

3.3.6 Influence of Impurities on Conductivity

In Sect. 3.3.5 we have discussed how the thermal conductivity – which is so
important for low-temperature experiments – can be calculated from the elec-
trical conductivity and that both conductivities are limited at low temper-
atures by electron–defect scattering in a metal. In this section I will make
some comments on the scattering of conduction electrons on impurity atoms.
For this scattering we have to distinguish between nonmagnetic and magnetic
impurities.
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Electron Scattering by Nonmagnetic Impurity Atoms

The conduction electrons are scattered at the Coulomb potential of the impu-
rity, which may have the valence difference ΔZ compared to the host lattice.
The increase of the electrical resistance in this case is often not very large,
and for small impurity concentrations is given by the Linde rule

Δρnm = a + b(ΔZ)2 . (3.44)

The constants a and b are determined by the host lattice and, in particu-
lar, depend on the row of the Periodic Table to which the host atom belongs.
Examples for Cu as the host are listed in Table 3.3. These values are typi-
cally 1 μΩcm (at %)−1 (impurity concentration); they are comparable to the
increase of ρ due to heavy cold working (several 10 nΩ cm) or introduction
of vacancies (1 μΩcm (at %)−1) [3.45,3.87].

Scattering of Electrons by Magnetic Impurity Atoms
(in Particular in Copper)

A magnetic or spin-flip scattering of the conduction electrons can occur at
localized moments of magnetic impurities [3.5,3.119–3.121]. For this situation
the increase of resistance can be much larger – and much more difficult to
understand theoretically – than for the case of nonmagnetic impurities; a the-
oretical discussion and a calculation of Δρm is much more involved. Examples
for 3d elements as impurities in Cu are listed in Table 3.4. The strength of the
scattering and the resulting resistance increase depend strongly on the prop-
erties of the magnetic impurity and it can be very different in different host
lattices. For example, iron produces a very large moment of about 12 μB in pal-
ladium [3.122], it keeps essentially its bare moment of about 2 μB in noble met-
als, whereas its moment at low temperatures is very small in rhodium [3.123]

Table 3.3. Relative change Δρnm per concentration c of the solute of the electri-
cal resistance of Cu if the given nonmagnetic elements with valence difference ΔZ
compared to Cu are introduced as impurities, see (3.44), [3.87]

impurity As Si Ge Ga Mg Zn Cd Ag

ΔZ 4 3 3 2 1 1 1 0
Δρnm/c [nΩ cm (at. ppm)−1] 0.65 0.33 0.37 0.14 0.065 0.025 0.02 0.014

Table 3.4. Relative change Δρm per concentration c of the solute of the electrical
resistance of Cu at 1K if the given magnetic elements are introduced as impurities
[3.87]

impurity Ti V Cr Mn Fe Co Ni

Δρm/c [nΩ cm (at. ppm)−1] 1.0 0.58 2.0 0.43 1.5 0.58 0.11
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Fig. 3.25. Resistance minima of various dilute alloys of Fe in Cu. R0 is the resistivity
at 0◦C. The position of the minimum depends on the concentration of iron [3.125].
For similar, more recent data for Fe in Au see [3.126]

or aluminum [3.124]. Hence, Fe has a strong impact on transport properties
in noble and platinum metals, however almost no impact on them in Rh and
Al. Furthermore, the strength of the scattering can depend very strongly on
temperature due to the so-called Kondo effect, which describes an enhanced
inelastic scattering of a cloud of conduction electrons “condensed” around
magnetic moments that are localized on impurity atoms [3.5, 3.119–3.121].
The latter experience a temperature-dependent screening by the conduction
electrons of the host lattice. As a result the resistivity may not approach
a constant value ρ0 at low temperatures but may rise logarithmically with
decreasing temperature T after passing through a minimum whose position
depends weakly on the concentration of the impurity (Fig. 3.25). It is then
given by

ρ = ρ0 − ρK ln(T ) (3.45)

where ρK denotes the Kondo resistivity.
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3.3.7 Thermal Conductivities of Copper, Silver
and Aluminum at Low Temperatures

Aluminum and copper (and for some special applications, the more expensive
silver; however, it usually contains a substantial amount of O2) are the most
widely used thermal conductors in a low-temperature apparatus. Aluminum
has the advantages over Cu that it has a lower density, it is available in
higher purity (up to 6 N, whereas Cu seems presently to be commercially
available only up to 5 N), and in particular its conductivity is less dependent
on deformation (it anneals already at room temperature) and on the amount
of impurities (paramagnetic ions have a very small moment in Al opposite to
their properties in Cu; see above). However, Cu (and Ag) has the advantage
that it is easy to make good thermal contact to it which is much harder
for Al due to its tenacious oxidized surface layer (see Sect. 4.2.2). For these
metals, the thermal conductivities at low temperatures vary over many orders
of magnitude depending on treatment and purity (Fig. 3.19). As a rule of
thumb: their RRR is about equal to the thermal conductivity in W/K m at
1 K [3.127]. More exactly

κ = (RRR/0.76)T [W/Km] and κ = (RRR/0.55)T [W/Km] (3.46)

for Cu and Ag, respectively (but see the above discussion and Fig. 3.24).
Typical values for the thermal conductivity of Cu and Al at different purities
are 102 to 103 (102 to 104; 103 to 4×104) W/K m for 4 N (5 N; 6 N) purity,
annealed (400◦C) Al, and 50 to 200 (200–5,000) for 4 N (5 N) annealed Cu
[3.127, 3.128]. Information on the thermal conductivity of a large number of
Al alloys for temperatures between 2 K and room temperature can be found
in [3.129]. At 1 K, they are typically between 1 and 3 W K−1 m−1.

Because of the importance of copper and of other noble and platinum met-
als for making high-conductivity thermal joints (or for thermometry purposes;
see Sects. 12.9, 12.10), I shall discuss a process by which magnetic impurities
can be “passivated” in Cu, Ag, Au, Pt, Pd, Rh and possibly some other
metals as well, by oxidizing the less noble metal impurities, resulting in a
dramatic increase of the low-temperature conductivities. The following dis-
cussion applies to the “passivation” of the magnetic scattering of iron in
copper [3.130–3.133] (for Ag, see [3.134]).

The typical residual resistivity ratio of a piece of copper which one can buy
from a shop is in the range of 50–100. Heating the copper to a temperature of
400–500◦C anneals structural lattice defects, and the residual resistivity ratio
usually increases to a value of 300–400. A further increase is only possible
by passivation of magnetic impurities, in particular by oxidation of iron. The
less noble impurities are oxidized by heat treatment of the Cu specimen at a
temperature of 900–1,000◦C in an atmosphere of oxygen or air at 10−5–10−4

mbar (the time required for this treatment depends mainly on the thickness of
the Cu sample). This oxidation and passivation is a two-step process. In the
first step Fe is oxidized to FeO by oxygen diffusing through the Cu matrix.
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Fig. 3.26. Resistivity of Cu–Fe at 4 K, as a function of Fe impurity concentration,
annealed in vacuum and in an O2 atmosphere (92 h; about 10−6 bar air) [3.130]

FeO is stable, whereas copper oxide is unstable at these temperatures. The
iron oxides attract more FeO and O and create small (0.1 μm) Fe3O4 clusters,
reducing the number of magnetic scattering centres. These clusters are mag-
netically ordered; the conduction electrons do not suffer spin-flip scattering at
the fixed iron moments any more. In this sense, the iron moments are mag-
netically inactive for the scattering of conduction electrons of the host lattice.
Thus, although the Cu is not purer after oxygen annealing, the impurities are
much less effective as scattering centres (Fig. 3.26).

Another very effective purification of Cu from Fe reported in the litera-
ture is an electrolytic process starting from a Cu sulphate solution, followed
by a wet-hydrogen treatment to remove nonmagnetic impurities [3.135]. The
residual hydrogen has then to be “pumped out” by heating the Cu in vac-
uum at around 1,000◦C. The resulting increased conductivity corresponds to
a residual resistivity ratio of at least 1,000 and in extreme cases up to sev-
eral 10,000, at which point dislocation scattering of the conduction electrons
dominates.

Of course, it is an advantage if the starting copper already contains oxygen;
oxygen-free high-conductivity (OFHC) Cu is often not well-suited for the pro-
duction of high-conductivity copper needed for low-temperature experiments.
However, it has been shown that oxygen annealing can be detrimental for the
conductivity of commercially available ultrapure (7N) Cu [3.136].

Oxygen annealing does not change the conductivity of Al because of the
very small magnetic moments of 3d-elements in Al.
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Fig. 3.27. Typical values of the residual resistivity ratio (RRR) of various metals as
a function of typical impurity concentrations with which they are available [3.138]

A survey on the transport properties of pure metals in the defect scatter-
ing limited range and a compilation of the smallest residual resistivities which
have been reported in the literature for all metals except the rare earths can
be found in [3.137]. Figure 3.27 gives typical values of the residual resistivity
ratio which one can attain in pure metals as a function of the impurity con-
centration. Comprehensive compilations of data on the thermal conductivity
of solids can be found in [3.44,3.45,3.90–3.93]. Values for metallic elements at
273 K are compiled in [3.87], p. 28.

3.3.8 How to Measure Thermal Conductivities

Usually, the thermal conductivity of a material is determined by measuring
with two thermometers the temperature difference produced by heating one
end of it and keeping the other one at the constant temperature of a heat
sink (see [3.86,3.87] and references therein). This simple steady-state method
has several pitfalls and problems that are rather similar to the ones in mea-
surements of heat capacities (see Sect. 3.1.8). For example, heat losses by
radiation and into eventually still remaining gas molecules in the surround-
ing, Joule heating in the thermometers, parasitic heat leaks along leads to
heater and thermometers, the thermal resistances of them to the sample; etc
(see also Sect. 5.1.2). The heat flow along the leads can be strongly reduced
by using thin superconducting wires at their low-temperature end and by
properly heat sinking them. Radiation losses are particularly problematic at
higher temperatures. They can be substantially reduced by using radiation
shields around the setup at a temperature close to the samples tempera-
ture [3.33,3.58], or by applying the so-called 3ω-method introduced by [3.139].
This method uses a radial AC heat flow into the sample from a heated narrow
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metal film deposited onto it. This metal strip serves as heater as well as ther-
mometer. A current of frequency ω through it heats the sample with a power
at a frequency 2ω. The resulting resistance or temperature oscillations of the
metal strip at 2ω times the driving current at ω results in 3ω-oscillations in
voltage across the metal strip that are measured as the third harmonic of
the voltage by a lock-in amplifier. A challenge in applying this technique is
the measurement of the small 3ω-signal in presence of the much larger back-
ground signal at ω. To determine the thermal conductivity of the sample,
measurements at several frequencies have to be performed. Besides essentially
avoiding radiation losses, the measurement needs only a few periods of tem-
perature oscillations. Hence, data are obtained rather fast and can be taken
while warming or cooling the sample. The 3ω-method is also quite suited for
measuring the thermal conductivity of thin films, however, it then requires
special design and data analysis considerations [3.87, Chap. 2.2].

For choice of appropriate thermometers and heaters the considerations are
again rather similar as discussed in the above section for heat-capacity mea-
surements. For the heater, of course, a material with temperature-independent
resistance, like phosphor bronce, TiCr, or NiCr alloys, should be chosen.

The problems of parasitic heat dissipation and thermal shunts or losses
through the electrical leads to heater and thermometers have been substan-
tially reduced in two recent experiments in which the thermal conductivity
of badly conducting glasses have been measured down to 5 mK. In the first
one [3.96], the dielectric constant of the glass sample itself was used for ther-
mometry (see Sect. 12.8) and the parasitic power dissipation was reduced to
about 0.1 pW. This method avoids any thermal boundary resistance between
thermometers and sample. The careful anchoring of the leads (resulting in less
than 0.1% of heat loss) and calibration of the dielectric constant thermometers
are discussed. In the second experiment [3.97], thermometry was performed
by measuring in a second-order axial gradiometer (to avoid magnetic con-
tributions from the sample) inductively the change of DC magnetization of
two paramagnetic AuEr500ppm strips glued to the sample. The gradiometer
leads are directly connected to the input of a SQUID, resulting in extremely
low power dissipation (see Sect. 12.9). Because heat is applied optically from
a light emitting diode to one end of the sample, the method is contact-free,
reducing the parasitic heat leak to below 10−15 W (Fig. 3.28). Data obtained
by these methods are mentioned in the caption of Fig. 3.22. One may have
to resort to these or other more elaborate techniques [3.86,3.87], particularly
if thermal conductivities of small samples or of thin films have to be mea-
sured. For these cases, microfabricated heaters and thermometers or optical
excitation and possibly also detection methods may have to be used. As for
a heat-capacity apparatus, the quality of a thermal conductivity setup can
be checked by investigating a well-characterized standard sample. Another
appropriate check of the validity of the obtained data is a measurement of the
thermal conductivity at various heat flows.
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Fig. 3.28. Schematic of a setup to measure contact-free thermal conductivities at
millikelvin temperatures. The temperature gradient in the sample is generated by
cooling one end with a dilution refrigerator and heating the other one optically with
a light emitting diode kept at 1K. The temperatures are determined by measur-
ing inductively in second order gradiometers the susceptibility of two paramagnetic
AuEr+ pieces (see Sect. 12.9) glued to the sample. The superconducting Al shield
can be heated above its critical temperature for a short time to freeze in the mea-
suring field of 0.5 mT. Reprinted with permission from [3.97]; copyright (2004),
Am. Inst. Phys.

3.4 Magnetic Susceptibilities

3.4.1 Magnetic Susceptibilities of Some Selected Materials

This section gives representative data for the magnetic susceptibility of
various materials, in particular of weakly magnetic materials often used in
the construction of cryogenic apparatus where sensitive magnetic measure-
ments are to be performed. In Table 3.5 the parameters x∞ and C of the
equation

χ/ρ = x∞ + C/T (3.47)

for the susceptibility χ per mass density ρ are given. The given data have
been obtained in different temperature ranges. One should keep in mind that
a variation of χ can be found in the literature for some of the listed mate-
rials, particularly weakly magnetic, multicomponent materials. This can be
partly explained by slight differences in the composition and/or in the prepa-
ration of nominal identical materials. For details, see the original publications
[3.140–3.146].
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Table 3.5. Susceptibility of some selected materials

material C [10−6 emuK/g] x∞ [10−6 emu/g] Refs.

Fused quartz, Suprasil 0.05 ± 0.02 −0.383 ± 0.004 [3.140]
Macor 24.5 ± 0.06 2.87 ± 0.18 [3.140]
Stycast 2850 GT 17 ± 1 2.97 ± 0.15 [3.140]

26 ± 7 15 ± 4 [3.141]
Stycast 1266 0.63 ± 0.03 −0.18 ± 0.01 [3.140]
Epibond 1210 A/9615-101 80 ± 4 7.0 ± 0.4 [3.140]
GE varnish 7031, cured 2.2 ± 01 −0.54 ± 0.03 [3.140]
Mixed 1:1 with toluene −7 ± 3 2 ± 1.5 [3.141]
Apiezon N grease −2 ± 3 0.1 ± 1.2 [3.141]
Mylar tape 0.34 ± 0.02 −0.43 ± 0.02 [3.140]
Teflon tape 0.063 ± 0.003 −0.33 ± 0.02 [3.140]

0.05 ± 0.01 −0.33 ± 0.01 [3.142]
Nylon −0.06 ± 0.02 −0.63 ± 0.01 [3.142]

0.3 ± 3.0 −0.6 ± 1.5 [3.141]
Manganin wire (low Ni) (318) 92 ± 5 [3.140]
Manganin wire, enamel insulated −13 ± 3 120 ± 1 [3.141]
Cu0.7Ni0.3 (Inconel) (−2.3 ± 0.2) × 105 (2.6 ± 0.2) × 105 [3.141]
Stainless steels −120 to ± 10 100 to 300 [3.141]
Pt92W8, alloy 479 0.43 ± 0.02 0.24 ± 0.01 [3.140]
AR glass 36 ± 1 −0.35 ± 0.01 [3.143]
Duran glass 15.8 ± 0.5 −0.40 ± 0.01 [3.143]
Suprasil glass 0.01 ± 0.01 −0.40 ± 0.01 [3.143]
Gelatine 1.0 ± 0.1 −0.41 ± 0.01 [3.143]
AR glass 29 ± 3 [3.143]
Duran glass 5.7 ± 0.6 [3.143]
Suprasil glass < 0.01 [3.143]

Data are taken at: 2–10K [3.140]; 4.2 K [3.141, 3.142]; > 5K for first set, < 0.1 K
for second set of data of [3.143]

In addition to the data given in Table 3.5, remanent magnetic moments
and susceptibilities for a large number of metals, dielectrics, wires and rib-
bons as well as for some further materials used in the construction of cryogenic
equipment can be found in [3.144] for T = 2 K, and in [3.145] for T = 4.2 K.
The most recent publication on this topic is [3.146], where the results obtained
for the magnetization of 13 materials at 2–12 K and at 0.25–4 T have been pre-
sented. Some of these data are shown in Fig. 3.29. Data for various austenitic
stainless steels (AISI 300 series 304, 310, 316, and AWS 330) at 4.2–414 K
are given in [3.147]. Typical parameters for (3.47) are χ∞ = 16(11;0) and
C = 3(4;11) for AISI 304/316(310S;AWS 330).

It is remarkable that a large number of materials which are usually con-
sidered as “nonmagnetic” show quite appreciable values for their susceptibil-
ities and remanent magnetizations at low temperatures, often making them
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Fig. 3.29. Magnetization per mass (J/TgK) of the indicated materials in a field of
1 Tesla. The upper graph is logarithmic and shows data for paramagnetic samples.
The lower graph is linear and shows data for diamagnetic materials [3.146]

unsuitable for use in magnetically sensitive equipment or experiments. From
the shown data, one can conclude that the fused glass Suprasil is essentially
free of magnetic impurities (substantially less than 1 ppm; quite different
from other glasses!) and has a very low susceptibility [3.43, 3.104] (Fig. 3.30),
making it a very good candidate for many applications, for example as sam-
ple holder in susceptometers or for experiments in high magnetic fields. Other
candidates with somewhat higher but still low concentration of magnetic im-
purities seem to be cotton thread and dental floss, as well as Teflon and Nylon
(see Table 3.5).
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Fig. 3.30. Susceptibility of three different glasses as a function of temperature in
a field of 1 T, demonstrating the purity of Suprasil glass. Reprinted from [3.143],
copyright (1995), with permission from Elsevier

3.4.2 How to Measure Susceptibilities and Magnetizations

The Conventional Method

Surely, the simplest and most common method to measure the magnetic sus-
ceptibility of a material is to wind a sensitive pick-up coil (for example, some
1,000 turns of 25μm Cu wire) around it, apply a magnetic field at a fre-
quency between 0.1 and 1 kHz (by a superconducting coil of 0.1 mm NbTi
wire, for example) to it and measure the signal induced in the pick-up coil by
a home-made (for example, using a lock-in amplifier or for more sensitive mea-
surements a SQUID, see below) or by a commercial inductance bridge. This is
also the method applied to detect superconducting transitions, for example in
superconducting fixed-point-devices (see Sects. 11.4.2 and 11.4.3), or for mea-
surements of susceptibilities of samples down to milli- or even microkelvin
temperatures. A setup in which several samples can be investigated in one
run is shown in Fig. 3.31. It has been used for measurements to 25 μK [3.122].
Examples of electronic setups for measuring susceptibilities using either a
lock-in amplifier in a self-inductance bridge or a SQUID as detector for more
sensitive measurements are shown in Figs. 3.32 and 3.33. To avoid heating
effects due to relaxation in the sample or from eddy currents, a bridge should
be operated at low enough frequency, for example in the range of 20–300 Hz.
This will also reduce capacitance leakage effects. Another suitable setup for
determination of susceptibilities measures the resonant frequency in the range
of 1 MHz of a tank circuit driven by a tunnel diode whose inductance contains
the paramagnetic sample [3.148, 3.149]. More sophisticated methods, in par-
ticular the application of a SQUID as detector as well as commercial versions
of magnetometers will be discussed in more detail below.
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Fig. 3.31. Schematics of a susceptometer cooled by a Cu nuclear refrigeration stage
(Sect. 10.8). It is designed for simultaneous investigation of six samples down to
microkelvin temperatures. The two empty coils are used as a reference. In addition,
the profile of the applied static field is shown; the field coil is surrounded by a
superconducting Nb shield (Sect. 13.5.2), [3.122]

If an inductance measurement is performed, then the following relations
are relevant. In the primary coil we generate a current I = I0 sin(ωt) which
produces a change of magnetic flux

dφ1

dt
=

A1(dI/dt)N2
1

L1
, (3.48)

where A1 is the area, N1 the number of windings and L1 the length of the
primary coil. This flux change induces a voltage in the secondary coil given by
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Fig. 3.32. Self-inductance bridge to measure magnetic susceptibilities

Nb tube
Primary coil

Secondary coil

SQUID
Sample

Fig. 3.33. Circuit to measure magnetic susceptibilities with a SQUID. The design
uses an astatic pair of pick-up coils with the sample in one of them. Because of
the high sensitivity of the SQUID a few milligrams of a paramagnetic material
is sufficient. The astatic pair, which can be made with an accuracy of about 1%,
reduces the sensitivity of the device to external disturbances and also compensates
the influence of the magnetization of the construction materials. The principle of
the design is to keep the total flux constant, which makes it necessary to make the
low-temperature wiring from a superconducting material [3.45,3.151]

U2 = μ0(1 + χ)
N1N2A2ωI0

L1
cos(ωt) , (3.49)

where A2 is the area, N2 the number of windings of the secondary coil, and χ is
the temperature dependent susceptibility of the sample in the secondary coil.
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The mutual inductance of two secondary coils sitting inside of a primary
coil and with one of them containing a cylindrical sample of susceptility χ
is [3.150]

Ms = πμ0npnsr
2
s f1(1 − D + f2)qχ (3.50)

with np(s) being the number of turns per cm of the primary (of one of the
secondary) coil, rs the radius of the sample, D the mean demagnetization
factor (typically 1/3), and q the filling factor of the sample in one of the
secondary coils (typically 1/2). The geometric factors fi depend on the lengths
of the sample, primary and secondary coils, and were given in [3.150]. A similar
equation for a spherical sample in one of the secondary coils can be found
in [3.151]. In all these measurements care must be taken to determine the
isothermal (ωτ � 1) and not the adiabatic susceptibility.

All the described methods, of course, “see” not only the sample but all
other magnetization in the neighbourhood as well hence one should avoid
other magnetic materials rather carefully or choose a design so that their
contributions are cancelled, for example, as is the case in a carefully wound
astatic pair of secondary coils. For very high-sensitivity measurements one
may even consider to regulate the temperature of these coils.

For all the discussed methods one should carefully choose a “non-
magnetic” sample holder, like Suprasil glass (see Sect. 3.4.1), in a symmetric
setup to reduce background contributions to the signal. In addition, in the
analysis of the data, one may have to consider demagnetization effects and
the contribution from the Weiss field (see Sect. 12.9).

Vibrating – Sample Magnetometers

An alternative method is the use of a vibrating-sample magnetometer. Here, a
sample oscillates inside of a coil and the induced voltage is proportional to the
magnetic moment of the moving sample. According to my knowledge, the most
recent design of an automated vector vibrating-sample magnetometer can be
found in [3.152]. It allows rotating the sample against the applied magnetic
field so that the angular dependence of longitudinal, the transversal and the
total magnetization can be measured. Using lock-in techniques, the sensitivity
is 5×10−6 emu at 4.2–340 K in fields up to 2 T and at vibration frequencies
of 42 Hz. The authors stress the vibration isolation and the detection system
consisting of six coils.

Vibrating sample magnetometers are available commercially.

SQUID Magnetometers

With the advancement and the commercial availability of the SQUID, very
sensitive SQUID magnetometers have become a quite common instrument to
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measure susceptibilities and magnetizations. In this device, a superconduct-
ing coil (made from 0.1 mm NbTi wire, for example) is wound around the
sample to measure its magnetic moment. This coil and the input coil of the
SQUID are parts of a closed superconducting loop acting as a flux trans-
former. The setup is surrounded by a superconducting magnet to provide a
small magnetic field for the measurement. Any change in the permeability
of the circuit from a change of the magnetic properties of the sample will
result in a screening current to keep the total flux constant and will therefore
produce a flux change in the input coil to the SQUID. This change can be pro-
duced by moving the sample in the pick-up coil – the conventional operation of
commercial SQUID magnetometers – or by changing its magnetization due to
a temperature change. In general, the pick-up coil is wound as a second-order
gradiometer with the two outer loops wound oppositely to the two central
loops to reduce spurious influences. Changes as small as 10−4 flux quanta can
be measured. The part of the superconducting loop connecting the pick-up
coil and the input coil of the SQUID should be tightly twisted and shielded by
a superconducting capillary of Nb, for example, to reduce flux changes from
external disturbances. A further useful precaution is a low-pass filter on the
pick-up coil. Usually, the SQUID is used as a nullmeter to increase sensitivity
and the dynamic range to several orders of magnitude as well as to avoid
currents circulating in the coils. This is achieved by adding a feedback coil,
which produces a compensating flux or voltage. This compensating voltage
is measured as a function of position or temperature of the sample. A heater
at one point of the superconducting loop can raise its temperature above Tc

to eliminate unwanted trapped flux when preparing the setup for the next
measurement.

A very good recent design of a home-built, fully automated SQUID magne-
tometer for operation in combination with a 3He-4He dilution refrigerator has
been described in [3.153]. The refrigerator contains a specially designed plastic
mixing chamber that allows the sample to be thermalized directly by the 3He
flow to 10 mK. The measuring equipment is based on a DC-SQUID coupled
to a second-order gradiometer coil system. To measure a magnetic moment,
the sample is moved through the gradiometer coils by smoothly lifting the
whole dilution refrigerator. The noise of the setup in operation translates to
a magnetic noise of 10−6 emu. The paper includes details on grounding and
shielding as well as on minimizing eddy current effects. The relevant equa-
tions for converting the flux indicated by the SQUID and its electronics to
the magnetic moment of the sample can be found there as well as in [3.45],
for example.

Of course, if no special features, like ultra-low temperatures or very high
magnetic fields, of the magnetometer are required and if the necessary funds
are available, one should buy one of the commercially offered fully automatic,
very flexible and powerful SQUID magnetometers or magnetic-property-
measurement systems. They are offered for the temperature range of 1.8–400 K
(optionally to 0.5 [3.154] and to 800 K) and for fields up to 7 T. These systems
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allow setting of temperature and field sequences as well as of particular opera-
tion modes, for example, for the motion of the sample and/or for the SQUID,
and allow fully automated around-the-clock operation. In these systems, the
SQUID output, i.e., the pick-up coil signal as a function of the samples
position, is fitted to the expected theoretical response of a magnetic dipole.
Eventually, this ideal response curve is compared to the systems calibration,
and the sign and value of the samples magnetic moment are calculated. The
volume or mass susceptibility can then be calculated from this moment. The
resolution for magnetic moments reaches 1×(5×)10−8 emu at zero (7 T) field
for moments up to 5 emu; optionally, moments up to 300 emu can be measured.

A quite common problem of these instruments has been discussed and
investigated in [3.155,3.156]. It arises from the assumption in the analysis that
the magnetic moment of the sample does not change during the measurement.
However, in its movement through a non-homogeneous field, a superconduct-
ing sample, for example, will follow a hysteresis loop, resulting in a position-
dependent magnetic moment of it. The moment calculated by the software of
the magnetometer will then not represent the actual moment of the sample.
An example of such a situation is shown in Fig. 3.34. The shown features arise
from field inhomogeneities of the order of 0.1 mT only. This is well within the
change of remanent fields of superconducting magnets over the scan length of
the magnetometer, and is usually within the range of the field homogeneity
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Fig. 3.34. Zero-field cooled DC magnetization measured in a commercial SQUID
magnetometer by moving the sample RuSr2GdCu2O3 in a field of 0.25 mT through
the pick-up coil system of the magnetometer. The magnetization shows an apparent
peak at temperatures below Tc = 30 K (�). When measuring the output voltage of
the SQUID circuit as a function of temperature without moving the sample in the
magnetometer no peak like feature is observed (©) [3.155]
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claimed by the supplier of the instrument. Of course, the remanent field can
change from one cycle to the next one of the magnet. The obtained apparent
moment of the sample will then depend on the field profile and its sign as well
as on the scan length in the magnetometer and the properties of the sample.
A first check whether the mentioned problem occurs is an inspection of the
symmetry of the output signal of the SQUID. However, sometimes the defor-
mations of the signal can be rather small but still creating significant errors
in the data. The most reliable test is to measure the magnetic moment of the
sample without moving it, for example just as a function of temperature, if
the magnetometer offers such an option.

Of course, SQUID magnetometers are in general not practical in experi-
ments at very high magnetic fields. This is an area where the magnetometers
to be discussed below have become of particular importance.

Micro-Torsional and Cantilever Magnetometers

In Sect. 13.10 I will discuss very sensitive torsional and translational devices
that have been developed to mechanically measure a variety of properties of
liquid and solid samples. Most of these devices can be used to measure the
magnetic properties of a sample as well by just mounting (or evaporating) the
sample onto the moving part and measuring the induced voltage inductively
by a pick-up coil or capacitively by an electrode (see Fig. 13.19). The mea-
surement relies on the fact that a sample with a magnetic moment m in an
external magnetic field B experiences a torque

τm = mB. (3.51)

Hence, the torque τ in the equations of Sect. 13.10 has to be replaced
by τ + τm. For the measurement, an AC magnetic field at the resonance
frequency of the oscillator in the low-kHz range is applied at an angle to the
magnetization of the sample to drive the oscillator. In most cases micro- or
even nano-mechanical devices are used. The advantage of their small size –
besides their sensitivity and simplicity – makes them particularly useful in
difficult environments, such as very low temperatures or very high magnetic
fields.

For example, in [3.157] a two-stage, high-Q silicon torque magnetometer
was described that is just a torsional oscillator as discussed in Sect. 13.10.4
(see Fig. 13.19) but with a magnetic sample mounted or evaporated onto the
oscillating head. The small torsional spring constant of the oscillator (typi-
cally 10−2 Nm) combined with its high Q-value of typically 106 allow detection
of magnetic moments as small as 10−10 emu (10−13 J T−1). These magneto-
meters can either be used by measuring the deflection, where a sensitivity
for displacement of less than 0.1 nm has been achieved [3.157], or by mea-
suring, with an accuracy of 10−8, the shift in resonant frequency due to the
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Fig. 3.35. Schematics of a torque magnetometer consisting of a commercial piezore-
sistive cantilever – to which a sample is connected – with a reference cantilever,
a detecting bridge circuit, and a compensation coil. Reprinted with permission
from [3.159], see this reference for details; copyright (2002), Am. Inst. Phys.

anisotropy of magnetization of a sample [3.158]. The latter magnetometer was
designed for use in magnetic fields up to 25 T with an accuracy of 2×10−8 emu
(2×10−11 J T−1).

In [3.159], a miniature high-frequency torque magnetometer has been
described, which has been successfully used to investigate the magnetic prop-
erties of sub-μg samples in pulsed (!) magnetic fields up to 38 T with pulse
durations of 30 or 60 ms. This magnetometer (Fig. 3.35) consists of a small
cantilever with the sample mounted on its free end. Sensitivities – limited
by the mechanical noise from the pulsed magnet – of about 10−11 N m for
the torque and 5×10−10 emu for the magnetic moment have been reached;
10−11 emu should be possible in a field of 10 T produced by a much more quiet
superconducting magnet, which is higher than for a SQUID magnetometer.
The authors used commercially available piezoresistive silicon microcantilevers
(produced for atomic force microscopy) with eigenfrequencies of 250–300 kHz
and spring constants of 30–40 Nm−1. These rather high frequencies strongly
reduce the disturbances from externally induced vibrations, for example from
pulsing the strong magnetic field; a longer cantilever with about seven times
lower eigenfrequency did behave considerably worse, for example. The mass
of the sample should be small enough to keep the eigenfrequency of the setup
higher than the frequency of the signal. A reference cantilever is used to can-
cel background signals from the temperature and field dependencies of the
cantilever (Fig. 3.35). A compensation coil is used to eliminate dB/dt signals
caused by the rapid field sweep. A result of a measurement using this mag-
netometer is shown in Fig. 3.36. Of course, the cantilever can also be used as
a microbalance to determine the mass of the usually quite small samples by
just measuring the shift of the eigenfrequency when the sample is mounted
on it (see Sect. 13.10.4).
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Magnetic field B (T)

Fig. 3.36. Signal voltage proportional to the magnetic torque of 10 μg of the
indicated quasi-two-dimensional organic conductor at two temperatures as a func-
tion of magnetic field. The measurements have been performed with the piezoelectric
torque magnetometer shown in Fig. 3.35. The oscillations in magnetization – peri-
odic in inverse magnetic field – are due to the de Haas–van Alphen effect resulting
from the discrete Landau levels of the electronic energy in an external magnetic
field. At low temperatures the compound undergoes a transition (“kink transition”)
from a charge density-wave to a metallic state at 23 T. Reprinted with permission
from [3.159]; copyright (2002), Am. Inst. Phys.

In [3.157–3.159] one can find references to former work using microcan-
tilever magnetometers – usually for much lower frequencies than just discussed
– and in particular for applications in steady magnetic fields.

Problems

3.1. Verify that (3.9) is the valid result in the approximation T < ΘD/10.

3.2. Calculate the Debye temperature of solid Argon (see Fig. 3.2b).

3.3. The atomic weight of Cu is 63.55 and its density is 8.93 g cm−3. Calculate
its Fermi temperature.

3.4. Calculate the Fermi temperature of liquid 3He.

3.5. Under which condition does the Fermi–Dirac distribution function (3.11)
change to the Maxwell–Boltzmann distribution function?

3.6. At which temperature do the lattice and conduction–electron contribu-
tions to the specific heat of copper become equal?
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3.7. At which temperature is the magnetic contribution (3.20) in a field of
100 mT equal to the conduction–electron contribution to the specific heat of
Ag [for material parameters of Ag, see Table 10.1; use (10.3, 10.4)]?

3.8. Calculate the temperature at which the specific heat of aluminum in
its superconducting and its normal state become equal, see Fig. 3.5 a,c, and
Table 10.1.

3.9. Calculate the wall thickness of a Cu0.7Ni0.3 tube of 6 mm diameter, which
has the same thermal conductivity as a 10 mm diameter Teflon rod at 1 K
(Table 3.2).

3.10. What should be the inner diameter of a Cu0.7Ni0.3 capillary of 1 mm
wall thickness filled with solid 4He at 0.3 K so that its thermal conductivity
is equal to that of the solid 4He in it (Fig. 3.21)?

3.11. Calculate the temperature at the “hot” end of a cylindrical rod of 20 mm
length and 2 mm diameter, if it is heated with 0.1 nW and the cold end is
kept at 0 K. Carry out the calculation for a plastic, for brass and for Cu
(see Fig. 3.21 for thermal conductivities).

3.12. At which temperature are the thermal conductivities of Cu(∝ T ) and
of liquid 3He at SVP (∝ T−1) become equal, see Figs. 2.18 and 3.21?




