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Complexity Theory of 3-Manifolds

Denote by M the set of all compact 3-manifolds. We wish to study it system-
atically and comprehensively. The crucial question is the choice of filtration
in M. It would be desirable to have a finite number of 3-manifolds in each
term of the filtration, all of them being in some sense simpler than those in
the subsequent terms. A useful tool here would be a measure of “complexity”
of a 3-manifold. Given such a measure, we might hope to enumerate all “sim-
ple” manifolds before moving on to more complicated ones. There are several
well-known candidates for such a complexity function. For example, take the
Heegaard genus g(M), defined to be the minimal genus over all Heegaard
decompositions of M . Other examples include the minimal number of sim-
plices in a triangulation of M and the minimal crossing number in a surgery
presentation for M .

Each of these measures has its shortcomings. The Heegaard genus is ad-
ditive with respect to connected sums of 3-manifolds, but for g ≥ 1 there
are infinitely many distinct manifolds of Heegaard genus g, and already for
g = 2 one can hardly expect a simple classification. The surgery complexity
has the same defect (because of framing). The minimal number of simplices in
a triangulation is not a “natural” measure of complexity because the simplest
possible closed manifold, S3, already would have nonzero complexity, and we
would have no chances to get the additivity.

In this chapter, an integral non-negative function c:M → Z is constructed,
which has the following properties:

1. c is additive, that is, c(M1#M2) = c(M1) + c(M2).
2. For any k ∈ Z, there are only finitely many closed irreducible manifolds

M ∈ M with complexity c(M) = k.
3. c(M) is relatively easy to estimate.
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2.1 What is the Complexity of a 3-Manifold?

2.1.1 Almost Simple Polyhedra

As we know from Sect. 1.1.4, any homeomorphism between special spines can
be extended to a homeomorphism between the corresponding manifolds (The-
orem 1.1.17). This means that a special spine P of a 3-manifold M may serve as
a presentation of M . Moreover, M can be reconstructed from a regular neigh-
borhood N(SP ) in P of the singular graph SP of P : Starting from N(SP ),
one can easily reconstruct P by attaching 2-cells to all the circles in ∂N(SP ),
and then reconstruct M . If M is orientable, then N(SP ) can be embedded
into R3. This gives us a very convenient way for presenting 3-manifolds: we
simply draw a picture, see Fig. 2.1.

Theorem 2.1.1. For any integer k there exists only a finite number of special
spines with k true vertices. All of them can be constructed algorithmically.

Proof. We will construct a finite set of special polyhedra that a fortiori con-
tains all special spines with k true vertices. First, one should enumerate all
regular graphs of degree 4 with k true vertices. Clearly, there is only a finite
number of them. Given a regular graph, we replace each true vertex v by a
copy of the butterfly E that presents a typical neighborhood of a true vertex
in a simple polyhedron, see Definition 1.1.8. Neighborhoods in ∂E of triple
points of ∂E (we will call them triodes) correspond to edges having an end-
point at v. In Fig. 2.2 the triodes are shown by fat lines. For each edge e, we
glue together the triodes that correspond to endpoints of e via a homeomor-
phism between them. It can be done in six different ways (up to isotopy). We
get a simple polyhedron P with boundary. Attaching 2-discs to the circles in

Fig. 2.1. Bing’s House with two Rooms and its mutant (another special spine of
the cube) presented as regular neighborhoods of their singular graphs

Fig. 2.2. A decomposition of N(SP ) into copies of E
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∂P , we get a special polyhedron. Since at each step we have had only a finite
number of choices, this method produces a finite set of special polyhedra. Not
all of them are thickenable. Nevertheless, the set contains all special spines
with k true vertices. ��

It would be a natural idea to measure the complexity of a 3-manifold by the
number of true vertices of its special spine. This characteristic is convenient
in that there exists only a finite number of 3-manifolds having special spines
with a given number of vertices. But it has two shortcomings. First, it is
not additive with respect to connected sums. Second, restricting ourselves to
special spines, we lose the possibility to consider very natural spines such as
a point for the ball (and S3), a circle for the solid torus, and a projective
plane for the projective space RP 3. Also, working only with special spines,
we are sometimes compelled to make artificial tricks to preserve the special
polyhedra structure. For example, in the proof of Theorem 1.1.13 we used a
delicate arch construction instead of simply making a hole in a 2-cell.

All these shortcomings have the same root: the property of being special is
not hereditary. In other words, a subpolyhedron of a special polyhedron may
not be special, even if it cannot be collapsed onto a smaller subpolyhedron.
This is why we shall widen the class of special polyhedra by considering a
class of what we call almost simple polyhedra. Roughly speaking, the class of
almost simple polyhedra is the minimal class which contains special polyhedra
and is closed with respect to the passage to subpolyhedra.

Definition 2.1.2. A compact polyhedron P is said to be almost simple if the
link of any of its points can be embedded into Γ4, a complete graph with four
vertices. A spine P of a 3-manifold M is almost simple, if it is an almost
simple polyhedron.

It is convenient to present Γ4 as a circle with three radii or as the boundary
of the standard butterfly. One usually considers only almost simple polyhedra
that cannot be collapsed onto smaller subpolyhedra. It is easy to see that any
proper subpolyhedron of the circle with three radii can be collapsed onto a
polyhedron L having one of the following types:

(a) L is either empty or a finite set of n ≥ 2 points.
(b) L is the union of a finite (possibly empty) set and a circle.
(c) L is the union of a finite (possibly empty) set and a circle with a diameter.
(d) L is a Γ4.

The “cannot start” property assures us that an almost simple polyhedron
P cannot be collapsed onto a smaller subpolyhedron if and only if the link L
of any point of P is contained in the above list.

For example, a wedge of any simple polyhedron and any graph without
free vertices satisfies this condition and hence cannot be collapsed onto a
smaller subpolyhedron. This example is very typical, since any almost simple
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polyhedron P can be presented as the union of its 2-dimensional and its 1-
dimensional parts. The 1-dimensional part (the closure of the set of points with
0-dimensional links) is a graph, the 2-dimensional part consists of points whose
links contain an arc. If P cannot be collapsed onto a smaller subpolyhedron,
then its 2-dimensional part is a simple polyhedron (maybe disconnected).

The notions of a true vertex, singular graph, 2-component of an almost
simple polyhedron are introduced in the same way as for simple polyhedra,
see Sect. 1.1.3. A true vertex of an almost simple polyhedron P is a point with
the link L = Γ4, the singular graph SP consists of points whose links contain
a circle with a diameter, and 2-components are the connected components of
the set of all the points whose links contain a circle but do not contain a
circle with a diameter. Note that the 1-dimensional part does not affect these
notions. For instance, a 2-component may contain a point of the 1-dimensional
part, and this point is not a true vertex of P .

Almost simple spines are easier to work with than special spines, since we
may puncture cells and stay within the realm of almost simple spines. So, for
example, the process we used to construct a special spine for a given manifold
may be simplified to give an almost simple spine; there is no longer need for
the arch construction, see Fig. 1.8.

2.1.2 Definition and Estimation of the Complexity

The complexity function adverted to in the introduction to this chapter can
now be defined.

Definition 2.1.3. The complexity c(P ) of a simple polyhedron P is equal to
the number of its true vertices.

Definition 2.1.4. The complexity c(M) of a compact 3-manifold M is equal
to k if M possesses an almost simple spine with k true vertices and has no
almost simple spines with a smaller number of true vertices. In other words,
c(M) = minP c(P ), where the minimum is taken over all almost simple spines
of M .

Let us give some examples. The complexity of S3, of the projective space
RP 3, of the lens space L3,1, and the manifold S2 × S1 is equal to zero, since
they possess almost simple spines without true vertices: the point, the projec-
tive plane, the triple hat, and the wedge of S2 with S1, respectively. Recall
that by the triple hat we mean the quotient space of D2 by a free action of the
group Z3 on ∂D2. Among compact manifolds with boundary, zero complexity
is possessed by all handlebodies, I-bundles over surfaces, as well as some other
manifolds such as the complement of the trefoil knot. Indeed, any handlebody

collapses to a graph that (being considered as an almost simple polyhe-
dron) has no true vertices. The I-bundles collapse to surfaces, and the com-
plement of the trefoil collapses to the quotient space of the Möbius band by
a free action of the group Z3 on the boundary.
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In general, the problem of calculating the complexity c(M) is very difficult.
Let us start with a simpler problem of estimating c(M). To do that it suffices to
construct an almost simple spine P of M . The number of true vertices of P will
serve as an upper bound for the complexity. Since an almost simple spine can
be easily constructed from practically any presentation of the manifold, the
estimation problem does not give rise to any difficulties. Let us describe several
estimates of the complexity based on different presentations of 3-manifolds.
It is convenient to start with an observation that removing an open ball does
not affect the complexity.

Proposition 2.1.5. Suppose that B is a 3-ball in a 3-manifold M . Then
c(M) = c(M \ Int B).

Proof. If M is closed, then c(M) = c(M \ Int B) since M and M \ Int B have
the same spines by definition of the spine of a closed manifold. Let ∂M = ∅,
and let P be an almost simple spine of M \ Int B possessing c(M \ Int B) true
vertices. Denote by C the connected component of the space M \P containing
B. Since M is not closed, there exists a 2-component α of P that separates
C from another component of M \ P . Removing an open 2-disc from α and
collapsing yields an almost simple spine P1 ⊂ P of M . The number of true
vertices of P1 is no greater than that of P , since puncturing α and collapsing
results in no new true vertices. Therefore, c(M) ≤ c(M \ Int B).

To prove the converse inequality, consider an almost simple spine P1 of M
with c(M) true vertices. Let us take a 2-sphere S in M such that S ∩P1 = ∅.
Join S to P1 by an arc � that has no common points with P1 ∪ S except the
endpoints. Clearly, P = P1 ∪ S ∪ � is an almost simple spine of M \ Int B.
New true vertices do not arise. It follows that c(M) ≥ c(M \ Int B). ��

In Sect. 1.1.5 we described a relation between singular triangulations of
closed 3-manifolds and special polyhedra. The same method works for esti-
mating the complexity.

Proposition 2.1.6. Suppose a 3-manifold M is obtained by pasting together
n tetrahedra by affine identifications of their faces. Then c(M) ≤ n.

Proof. Recall that any tetrahedron ∆ contains a canonical copy P∆ =
∪| lki(vi,∆

′)| of the standard butterfly E, where vi, 0 ≤ i ≤ 3, are the vertices
of ∆. When pasting together the tetrahedra, these copies are glued together
into a simple polyhedron P ⊂ M that may have a boundary if M is not
closed. P has n true vertices and is a spine of M with several balls removed
from it. These balls are the neighborhoods of the points which are obtained
by gluing the vertices of the tetrahedra and lie in the interior of M . It follows
from Proposition 2.1.5 that c(M) ≤ n. ��

Remark 2.1.7. It follows from Corollary 1.1.27 that a closed 3-manifold M
possesses a special spine with n true vertices if and only if it can be obtained
by pasting together n tetrahedra. Further, we shall see that any minimal
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(in the sense of the number of true vertices) almost simple spine of a closed
orientable irreducible 3-manifold M which differs from the “exceptional” man-
ifolds S3, RP 3, L3,1, is special. Therefore, the complexity of such a manifold
may be defined as the minimal number of tetrahedra that is sufficient to
obtain M .

Proposition 2.1.8. Suppose M = H1∪H2 is a Heegaard splitting of a closed
3-manifold M such that the meridians of the handlebody H1 intersect the
ones of H2 transversally at n points. Suppose also that the closure of one of
the components into which the meridians of H1,H2 decompose the Heegaard
surface ∂H1 = ∂H2 contains m such points. Then c(M) ≤ n − m.

Proof. Denote by P the union of the Heegaard surface F = ∂H1 = ∂H2 with
the meridional discs of the two handlebodies. Then P is a simple polyhedron
whose true vertices are the crossing points of the meridians. Since the com-
plement of P in M consists of two open 3-balls, P is a spine of M punctured
twice. Removing from P the 2-component α ⊂ F whose closure contains m
true vertices, we fuse together the balls and get an almost simple spine of M
which has n−m true vertices, since the vertices in the closure of α will cease
to be true vertices, see Fig. 2.3. ��

Proposition 2.1.9. Suppose M̃ is a k-fold covering space of a 3-manifold M .
Then c(M̃) ≤ kc(M).

Proof. Let P be an almost simple spine of M having c(M) true vertices.
Consider the almost simple polyhedron P̃ = p−1(P ), where p: M̃ → M is the
covering map. Since the degree of the covering is k, the polyhedron P̃ has
kc(M) true vertices. If ∂M = ∅, then P̃ is an almost simple spine of M̃ , since
the collapse of M onto P can be lifted to a collapse of M̃ onto P̃ . Therefore,
c(M̃) ≤ kc(M).

If M is closed, P̃ is a spine of the manifold M̃ \ π−1(V ), where V is an
open 3-ball in M . The inverse image p−1(V ) consists of k open 3-balls, hence,
by Proposition 2.1.5, we have c(M̃) = c(M̃ \ p−1(V )) ≤ kc(M). ��

Fig. 2.3. Special spine of L4,1 obtained from the standard Heegaard diagram of L4,1



2.1 What is the Complexity of a 3-Manifold? 65

Remark 2.1.10. If M in the above proof is closed, then one can get an al-
most simple spine of M̃ by puncturing those 2-components of P̃ that separate
different balls in p−1(V ). To fuse k balls together, we must make k − 1 punc-
tures, and each of them decreases the total number of true vertices by the
number of true vertices in the boundary of the 2-component we are piercing
through. Thus, as a rule, c(M̃) is significantly less than kc(M).

Now we turn our attention to link complements and surgery presentations
of 3-manifolds. Assume that a link L in the space R3 = S3 \ {∗} with coordi-
nates x, y, z is in a general position with respect to the projection of R3 onto
the plane R2 with the coordinates x, y. We will use the generally accepted
way of presenting L by its projection L̄, disconnecting it at the lower double
points. The words lower and higher are understood in the sense of the value
of the coordinate z. Connected components of the projection cut up in this
way will be called overpasses. Each overpass is bounded by two lower points,
and contains several upper crossing points. Their number will be called the
overpass degree. We may look at the link from below and disconnect it at
upper double points. Then we get underpasses. The number of lower points
on an underpass is called the underpass degree. Let us call an overpass and an
underpass independent, if the corresponding sets of double points (including
the endpoints) are disjoint.

Often it is convenient to think of L as being contained in S3 = R3 ∪ {∗}
rather than in R3. Then the projection L̄ of L is in the sphere S2 = R2 ∪{∗}.
In this case the complement space C(L) = S3 \ Int N(L), where N(L) is an
open tubular neighborhood of L in S3, is a compact 3-manifold.

Proposition 2.1.11. Suppose a link L ⊂ S3 is given by a projection L̄ with
n crossing points so that there are an overpass of degree k and an independent
underpass of degree m. Then the complexity of the complement space C(L) of
L is no greater than 4(n − m − k − 2).

Proof. Let us attach the annulus S1 × I along the projection L̄ to S2 and
to the other parts of the annulus previously pasted on. We get a “tunnel,”
see Fig. 2.4, where the attaching procedure is shown in the neighborhood of a
crossing point.

Fig. 2.4. Attaching a tunnel to S2 produces a simple spine of the twice punctured
link complement
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The result will be a simple polyhedron P with 4n true vertices: each cross-
ing point produces four of them. The complement to a regular neighborhood
N(P ) of P in S3 is the union of a tubular neighborhood N(L) of L and
two balls B1, V2 that lie inside and outside S2, respectively. In order to get
a spine of C(L), one should fuse the balls with N(L) by puncturing two 2-
components of P that separate N(L) from the balls. Choose for the puncture
the 2-components α ⊂ S1 × I and β ⊂ S2 that correspond to the overpass
of degree k and the underpass of degree m, respectively. When we remove α,
then 4k + 4 true vertices disappear (two pairs correspond to the endpoints
of the overpass, and 4k are related with k crossing points). Removing β, we
destroy 4m + 4 true vertices. It follows that after collapsing we get an almost
simple spine of C(L) with no more than 4(n − m − k − 2) vertices. ��

Remark 2.1.12. It can be shown that if the projection L̄ has n ≥ 6 crossings,
then one can always find an overpass and independent underpass satisfying
k+m ≥ 2. The complexity of C(L) can then be estimated by 4n−16. If there
are no independent overpasses and underpasses, then one can use dependent
ones or, alternatively, puncture a 2-component that lies on S2 and separates
the balls B1, B2. The number of disappearing true vertices in this case may
be smaller, since the same true vertex may be taken into account twice.

Consider now the surgery presentation of 3-manifolds [72]. For simplicity,
we restrict ourselves to the case when M is presented by a framed knot K.
Recall that the writhe w(K̄) of a projection K̄ may be defined as the framing
number of the “vertical” framing of K by the vector field orthogonal to R2.
To get an arbitrary framing s, one should twist the vertical framing |s−w(K̄)|
times in the appropriate direction.

Denote by � the preferred longitude of K, i.e., the simple closed curve in
∂N(K) that intersects a meridian m of ∂N(K) at one point and is homologous
to 0 in the complement to N(K). Let K have the framing s. To convert S3

to M , one should make two steps:

(1) Cut N(K) out of S3

(2) Glue in the solid torus D2 × S1 so that the meridian ∂D2 × {∗} winds
once around the longitude � and s times around the meridian m

Proposition 2.1.13. Suppose M is obtained by Dehn surgery along a knot
K with framing s such that the projection K̄ of K has n ≥ 1 crossing points.
Then c(M) ≤ 5n + |s − w(K̄)|.

Proof. First we assume that s = w(K̄) or, equivalently, that the framing of K
is vertical. Let P be a simple spine of the twice punctured complement C(K)
of K constructed in the proof of Proposition 2.1.11, i.e., the sphere S2 with a
tunnel attached along K̄. Then one can get a simple spine P1 of M punctured
three times by attaching the disc D2 along the top line of the tunnel. The disc
plays the role of the meridional disc of the solid torus that is glued in instead
of N(K). Each time when the tunnel climbs onto itself, there appear two new
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Fig. 2.5. An alternative construction of an almost simple spine of the link com-
plement. The top line of the tunnel contains a smaller number of triple points, and
each its winding around the meridian produces only one new true vertex

true vertices (where the base lines of the upper tunnel intersect the top line
of the lower one). Thus P1 possesses 6n true vertices (n is the number of
crossing points of K̄). To decrease the number of true vertices, we modify the
construction of P as shown in Fig. 2.5. The new spine P of C(K) punctured
twice has the same number of true vertices, but the corresponding new spine
P1 of trice punctured M will have only 5n true vertices. The explanation is
simple: if the tunnel climbs onto itself, then in the top line of the lower part
of the tunnel there appears only one new true vertex.

If s = w(K̄), one should force the top line of the tunnel to make |s−w(K̄)|
additional rotations. Each of them produces a new true vertex, so the total
number of true vertices would be 5n + |s − w(K̄)|. It remains to puncture
two 2-components of P1 that separate different balls and get an almost simple
spine of M with a smaller number of true vertices. ��

2.2 Properties of Complexity

2.2.1 Converting Almost Simple Spines into Special Ones

We have already stated the advantages of using almost simple spines, yet
there are important downsides too. In general, almost simple spines deter-
mine 3-manifolds in a nonunique way, and cannot be represented by regular
neighborhoods of their singular graphs alone. Since special spines, as has been
mentioned before, are free from such liability, we would like to go from almost
simple polyhedra to special ones whenever possible. So the question is: when
is it possible? We shall study it in this section.

Let P be an almost simple spine of a 3-manifold M that is not a special
one. Then P either possesses a 1-dimensional part or has 2-components not
homeomorphic to a disc. Our aim is to transform P into a special spine of M
without increasing the number of true vertices. In general this is impossible.
For example, if M is reducible or has compressible boundary, any minimal
almost simple spine of M must contain a 1-dimensional part. Nevertheless, in



68 2 Complexity Theory of 3-Manifolds

some cases it is possible. To give an exact formulation, we need to recall a few
notions of 3-manifold topology.

Definition 2.2.1. A 3-manifold M is called irreducible , if every 2-sphere in
M bounds a 3-ball.

If M is reducible, then either it can be decomposed into nontrivial con-
nected sum, or is one of the manifolds S2 × S1, S2×̃S1.

Recall that a compact surface F in a 3-manifold M is called proper, if
F ∩ ∂M = ∂F .

Definition 2.2.2. A 3-manifold M is boundary irreducible, if for every
proper disc D ⊂ M the curve ∂D bounds a disc in ∂M .

Definition 2.2.3. Let M be an irreducible boundary irreducible 3-manifold.
A proper annulus A ⊂ M is called inessential, if either it is parallel rel ∂ to
an annulus in ∂M , or the core circle of A is contractible in M (in the second
case A can be viewed as a tube possessing a meridional disc). Otherwise A is
called essential.

Of course, these notions will be considered in more detail later.

Theorem 2.2.4. Suppose M is a compact irreducible boundary irreducible 3-
manifold such that M = D3, S3, RP 3, L3,1 and all proper annuli in M are
inessential. Then for any almost simple spine P of M there exists a special
spine P1 of M having the same or a fewer number of true vertices.

Proof. Identify M (or M with a 3-ball removed, if M is closed) with a reg-
ular neighborhood of P . We will assume that P cannot be collapsed to a
smaller subpolyhedron. We convert P into P1 by a sequence of transforma-
tions (moves) of three types. To control the number of steps, we assign to any
almost simple polyhedron P the following three numbers:

1. c2(P ), the number of 2-components of P .
2. −χ2(P ) = −

∑
α χ(α), where the sum is taken over all 2-components α of

P and χ(α) is the Euler characteristic.
3. c1(P ) = min e(XP ), where the 1-dimensional part XP of P (i.e., the union

of points having 0-dimensional links) is presented as a graph with e(XP )
edges and the minimum is taken over all such presentations.

The triples (c2(P ),−χ2(P ), c1(P )) will be considered in the lexicographic or-
der.

Move 1. Suppose that the 1-dimensional part XP of P is nonempty.
Consider an arc � ⊂ XP and a proper disc D ⊂ M which intersects �
transversally at one point. Since M is irreducible and boundary irreducible,
D cuts a 3-ball B out of M . Removing B ∩ P from P and collapsing the
rest of P as long as possible, we get a new almost simple spine P ′ ⊂ M .
If B ∩ P contains at least one 2-component of P , then c2(P ′) < c2(P ). If
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B ∩ P is 1-dimensional, then the 2-dimensional parts of P, P ′ coincide and
thus c2(P ′) = c2(P ),−χ2(P ′) = −χ2(P ). Of course, c1(P ′) < c1(P ).

Assume that a 2-component α of P contains a nontrivial simple closed
curve l so that the restriction to l of the normal bundle ν of α is trivial. If
α is not D2, S2 or RP 2, then l always exists. It follows that one can find
a proper annulus A ⊂ M that intersects P transversally along l. Since all
annuli are inessential, either A is parallel to the boundary or its core circle is
contractible.

Move 2. Suppose that A is parallel to the boundary. Then it cuts off a
solid torus V from M so that the remaining part of M is homeomorphic to
M . Removing V ∩P from P , we obtain (after collapsing) a new almost simple
spine P ′ ⊂ M . This move annihilates α, so c2(P ′) < c2(P ).

Move 3. Suppose that the core circle of A is contractible. Then both circles
of ∂A are also contractible. Choose one of them. By Dehn’s Lemma [106], it
bounds a disc in M and, since M is boundary irreducible, a disc D in ∂M . It
follows that there is a disc D ⊂ Int M such that D∩P = ∂D = l. Since M \P
is homeomorphic to ∂M × (0, 1], D cuts a proper open 3-ball B out of M \P ,
see Definition 1.2.12. If we puncture D, collapse B and then collapse the rest
of D, we return to P . However, if we get inside the ball B through another
2-component of the free boundary of B (see Fig. 2.6), we get after collapsing
a new almost simple spine P ′ ⊂ M .

Let us analyze what happens to α under this move. If l does not separate
α, then the collapse eliminates α completely together with D. In this case we
have c2(P ′) < c2(P ).

Suppose that l separates α into two parts, α′ and α′′ (the notation is
chosen so that the hole is in α′′). Then the collapse destroys α′′, and we are
left with α′ ∪ D. In this case either c2(P ′) < c2(P ) (if the collapse destroys
some other 2-components of P ), or c2(P ′) = c2(P ) and −χ2(P ′) < χ2(P )
since −χ(α′ ∪ D) < −χ(α).

Now let us perform Steps 1, 2, 3 as long as possible. The procedure is
finite, since each step strictly decreases the triple (c2(P ),−χ2(P ), c1(P )) and
hence any monotonically decreasing sequence of triples is finite. Let P1 be the
resulting almost simple spine of M . By construction, P1 has no 1-dimensional

Fig. 2.6. Attaching D2 along l and puncturing another 2-component produces a
simpler spine
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part and no 2-components different from D2, S2, and RP 2. The following cases
are possible:

1. P1 has no 2-components at all. Since it also has no 1-dimensional part, P1

is a point and thus M = S3 or M = D3.
2. P1 contains a 2-component which is not homeomorphic to the disc. In this

case P1 is either RP 2 or S2. Suppose that P1=RP 2. Then M = RP 2 × I
or RP 3. We cannot have M = RP 2×̃I, since this manifold is a punctured
projective space and hence is reducible. For the same reason we cannot
have P1 = S2: the manifold S2 × I is reducible.

3. All the 2-components of P1 are discs and P1 has no true vertices but con-
tains triple points. Denote by k the number of 2-components of P1. We
cannot have k = 3, since the union of three discs with common bound-
ary is a spine of S3 with three punctures, which is a reducible manifold.
The simple polyhedron obtained by attaching two discs to a circle is un-
thickenable, see Example 1.1.18. We may conclude that P1 has only one
2-component, which is homeomorphic to the disc. In this case M is home-
omorphic to L3,1.

4. There remains only one possibility: P1 has true vertices and all its 2-
components are discs. In this case P1 is special.

��

2.2.2 The Finiteness Property

Theorem 2.2.5. For any integer k, there exists only a finite number of dis-
tinct compact irreducible boundary irreducible 3-manifolds that contain no es-
sential annuli and have complexity k.

Proof. Follows immediately from Theorems 2.2.4 and 2.1.1. ��
Restricting ourselves to the most interesting case of closed orientable irre-

ducible 3-manifolds, we immediately get Corollary 2.2.6.

Corollary 2.2.6. For any integer k, there exists only a finite number of dis-
tinct closed orientable irreducible 3-manifolds of complexity k.

Recall that a compact 3-manifold M is hyperbolic if Int M admits a com-
plete hyperbolic metrics of a finite volume. It is known (see [136]) that any
hyperbolic 3-manifold is irreducible, has incompressible boundary, and con-
tains no essential annuli.

Corollary 2.2.7. For any integer k, there exists only a finite number of dis-
tinct orientable hyperbolic 3-manifolds of complexity k.

Both corollaries follow immediately from Theorem 2.2.5. Let nc(k) and
nh(k) be the numbers of all closed orientable irreducible 3-manifolds of com-
plexity k and all orientable hyperbolic 3-manifolds of complexity k, respec-
tively. Then for small k the exact values of these numbers are listed in the
table below.
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k 0 1 2 3
nc(k) 3 2 4 7
nh(k) 0 0 2 9

Remark 2.2.8. To show that the assumptions of Theorem 2.2.5 are essential,
let us describe three infinite sets of distinct 3-manifolds of complexity 0. The
sets consist of manifolds that are either reducible (1), or boundary reducible
(2), or contain essential annuli (3).

(1) For any integer n the connected sum Mn of n copies of the projective
space RP 3 is a closed manifold of complexity 0. To construct an almost
simple spine of Mn without true vertices, one may take n exemplars of
the projective plane RP 2 and join them by arcs. Alternatively, one can
start with L3,1 and the triple hat instead of RP 3 and RP 2.

(2) The genus n handlebody Hn is irreducible, but boundary reducible. Since
it can be collapsed onto a 1-dimensional spine, c(Hn) = 0.

(3) Manifolds ∂Hn × I are irreducible and boundary irreducible, but contain
essential annuli. They have complexity 0 since can be collapsed onto the
corresponding surfaces.

2.2.3 The Additivity Property

Recall that the connected sum M1#M2 of two compact 3-manifolds M1,M2

is defined as the manifold (M1\Int B1) ∪h (M2\Int B2), where B1 ⊂ Int M1,
B2 ⊂ Int M2 are 3-balls, and h is a homeomorphism between their boundaries.
If the manifolds are orientable, their connected sum may depend on the choice
of h. In this case M1#M2 will denote any of the two possible connected sums.
Alternatively, one can use signs and write M1#(±M2)

To define the boundary connected sum, consider two discs D1 ⊂ ∂M1,
D2 ⊂ ∂M2 in the boundaries of two 3-manifolds. Glue M1 and M2 together
by identifying the discs along a homeomorphism h:D1 → D2. Equivalently,
one can attach an index 1 handle to M1 ∪ M2 such that the base of the
handle coincides with D1 ∪ D2. The manifold M thus obtained is called the
boundary connected sum of M1,M2 and is denoted by M1⊥⊥M2. Of course,
M depends on the choice of the discs (if at least one of the manifolds has
disconnected boundary), and on the choice of h (homeomorphisms that differ
by a reflection may produce different results). Thus the notation M1⊥⊥M2 is
slightly ambiguous, like the notation for the connected sum. When shall use
it to mean that M1⊥⊥M2 is one of the manifolds that can be obtained by the
above gluing.

Theorem 2.2.9. For any 3-manifolds M1,M2 we have:

1. c(M1#M2) = c(M1) + c(M2)
2. c(M1⊥⊥M2) = c(M1) + c(M2)
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Proof. We begin by noticing that the first conclusion of the theorem follows
from the second one. To see that, we choose 3-balls V1 ⊂ Int M1, V2 ⊂ Int M2,
and V3 ⊂ Int (M1#M2). It is easy to see that (M1 \ Int V1)⊥⊥ (M2 \ Int V2)
and (M1#M2)\V3 are homeomorphic, where the index 1 handle realizing the
boundary connected sum is chosen so that it joins ∂V1 and ∂V2. Assuming
(2) and using Proposition 2.1.5, we have: c(M1#M2) = c((M1#M2) \ V3) =
c(M1 \ Int V1) + c(M2 \ Int V2) = c(M1) + c(M2).

Let us prove the second conclusion. The inequality c(M1⊥⊥M2) ≤ c(M1)+
c(M2) is obvious, since if we join minimal almost simple spines of M1,M2 by
an arc, we get an almost simple spine of M1⊥⊥M2 having c(M1)+ c(M2) true
vertices.

The proof of the inverse inequality is based on Haken’s theory of normal
surfaces (see Chap. 3). So we restrict ourselves to a reference to Corollary 4.2.10,
which states that attaching an index 1 handle preserves complexity. ��

2.3 Closed Manifolds of Small Complexity

2.3.1 Enumeration Procedure

It follows from the finiteness property that for any k there exist finitely many
closed orientable irreducible 3-manifolds of complexity k. The question is:
how many? The constructive proof of Theorem 2.1.1 allows us to organize a
computer enumeration of special spines with k true vertices. Of course, the list
of corresponding 3-manifolds can contain duplicates as well as nonorientable,
nonclosed, or reducible manifolds. All such manifolds must be removed.

Let us briefly describe the enumeration results in historical order. First,
Matveev and Savvateev tabulated closed irreducible orientable manifolds up
to complexity 5, see [91]. The manifolds were listed with the help of a computer
and recognized manually. This was the first paper on computer tabulation of
3-manifolds. It contained all basic elements of the corresponding theory, which
much later have been rediscovered by various mathematicians. This table was
extended to the level of complexity 6 in [80,83]. The same approach was used
by Ovchinnikov [102, 103] in composing the table of complexity 7. The man-
ifolds were still recognized manually, although by an improved method (by
distinguishing and using elementary blocks). Later Martelli wrote a computer
program which is based on the same principle, but tabulates 3-manifolds in
two steps. First, it enumerates some special building blocks (bricks), and only
then assembles bricks into 3-manifolds. An interesting relative version of the
complexity theory (see [74]) serves as a theoretical background for the pro-
gram. We describe it in Sect. 7.7.

Let us present the results of these enumeration processes for k ≤ 7 (see
Sect. 7.5 for the similar results for k ≤ 12).

Theorem 2.3.1. The number nc(k) of closed orientable irreducible 3-mani-
folds of complexity k for k ≤ 7 is given by the following table:
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k 0 1 2 3 4 5 6 7
nc(k) 3 2 4 7 14 31 74 175

Closed orientable irreducible 3-manifolds of complexity 0 are the following
ones: the sphere S3, the projective space RP 3, and the lens space L3,1. Their
almost simple spines without true vertices were described in Sect. 2.1.2. The
complexity of S2×S1 is also equal to 0, but this manifold is reducible. Closed
orientable irreducible 3-manifolds of complexity 1 are lens spaces L4,1 and
L5,2. There are four 3-manifolds of complexity 2. They are the lens spaces
L5,1, L7,2, L8,3, and the manifold S3/Q8, where Q8 = {±1,±i,±j,±k} is
the quaternion unit group (the action of Q8 on S3 is linear). See Sect. 2.3.3
and the Appendix for the description and the complete table of manifolds of
complexity k ≤ 6.

Let us give a nonformal description of the computer program that was
used for creating the table up to complexity 7. The computer enumerates all
the regular graphs of degree 4 with a given number of vertices. The graphs
may be considered as work-pieces for singular graphs of special spines. For
each graph, the computer lists all possible gluings together of butterflies that
are taken instead of true vertices (see the proof of Theorem 2.1.1). Note that
if the graph has k vertices, then there are 2k edges, and thus potentially 62k

different gluings of the triodes. Not all of them produce spines of orientable
manifolds: it may happen that we get a special polyhedron which is not a spine
or is a spine of a nonorientable manifold. To avoid this, we supply each copy of
E with an orientation (in an appropriate sense), and use orientation reversing
identifications of the triodes. This leaves us with no more than 2k−13k spines
of orientable manifolds. One may decrease this number by selecting spines
of closed manifolds, but it still remains too large. The problem is that we
get a list of spines, while it is a list of manifolds we are interested in (as we
know, any 3-manifold has many different special spines). Also, some manifolds
from the list thus created would be reducible. A natural idea to obtain a list of
manifolds that does not contain duplicates and reducible manifolds consists in
considering minimal spines, i.e., spines of minimal complexity. Unfortunately,
there are no general criteria of minimality. The good news here is that there
are a lot of partial criteria of nonminimality. In Sect. 2.3.2 we present two of
them that appeared to be sufficient for casting out all reducible manifolds and
almost all duplicates up to k = 6.

The completion of the table of closed orientable irreducible 3-manifolds
up to complexity 6 was made by hand. It was a big job indeed: for each pair
of spines that had passed the minimality tests one must decide whether or
not they determine homeomorphic manifolds. In practice we calculated their
invariants: homology groups and, in worst cases, fundamental groups [83,91].
Later, after Turaev–Viro invariants had been discovered, we used them to
verify the table. If the invariants did not help to distinguish the manifolds, we
tried to transform one spine into the other by different moves that preserve
the manifold. In all cases a definitive answer was obtained.



74 2 Complexity Theory of 3-Manifolds

We point out that the Turaev–Viro invariants are extremely powerful for
distinguishing 3-manifolds. In particular, invariants of order ≤ 7 distinguish
all orientable closed irreducible 3-manifolds up to complexity 6 having the
same homology groups. The only exception are lens spaces, for which there is
no need to apply these invariants.

2.3.2 Simplification Moves

We describe here only two types of moves. The moves have the following
advantage: It is extremely easy to determine whether or not one can apply
them to a given special spine.

Definition 2.3.2. Let P be a special polyhedron and c a 2-component of P .
Then we say that the boundary curve of c has a counterpass, if it passes along
one of the edges of P twice in opposite directions. We say that the boundary
curve is short , if it passes through no more than 3 true vertices of P and
through each of them no more than once.

For instance, Bing’s House contains two 2-components with boundary
curves of length 1 while the boundary curve of the third 2-component has
a few counterpasses (see Fig. 1.6).

Proposition 2.3.3. Suppose that P is a special spine of a 3-manifold M such
that either:

1. P has a 2-component with a short boundary curve.
2. M is closed, orientable, and the boundary curve of one of the 2-components

of P has a counterpass.

Then M possesses an almost simple spine with a smaller number of true
vertices.

Proof. Assume that P has a 2-component c with a short boundary curve. A
regular neighborhood of Cl(c) in P can be presented as a lateral surface of a
cylinder with k ≤ 3 wings and the 2-component c as a middle disc. Attach
to P a disc parallel to c and drill a hole in a lateral face of the cylinder
thus obtained, see Fig. 2.7. Collapsing the resulting polyhedron, we get a new

Fig. 2.7. Attaching a new 2-cell and making a hole decreases the number of true
vertices
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Fig. 2.8. Collapsing the unique wing

Fig. 2.9. Simplification by a counterpass

almost simple spine of M . It has a smaller number of vertices, since attaching
the disc creates k new true vertices, and piercing the lateral face and collapsing
destroys at least four of them if k > 1, and at least two if k = 1. It may be
illuminating to note that the above transformation of P coincides with the
move L−1 if k = 2, and with the move T−1 if k = 3. For k = 1 the result is
drastic: We collapse not only the pierced 2-component, but also the unique
wing of the cylinder. See Fig. 2.8.

Assume now that M is closed and orientable, and the boundary curve of a
2-component c of P has a counterpass on an edge e. Then there exists a simple
closed curve l ⊂ Cl(c) that intersects e transversally at exactly one point. It
decomposes c into two 2-cells c′, c′′. Since M is closed and orientable, one can
easily find a disc D ⊂ M such that D ∩ P = ∂D = l. To construct D, one
may push l by an isotopy to the boundary of a regular neighborhood of P and
span it by a disc in the complementary ball. The polyhedron P ∪D is a special
spine of the twice punctured M , that is, of M with two balls B1, B2 cut out
of it. To get a spine of M , we make a hole in c′ or c′′ depending on which
of them is a common face of these balls. After collapsing we get an almost
simple spine of M having a smaller number of true vertices, see Fig. 2.9. ��

Remark 2.3.4. Suppose P has a 2-component such that its boundary curve
visits four true vertices, and each of them exactly once. If we apply the same
trick (glue in a parallel 2-cell and puncture a lateral one), we get another spine
of M having the same number of true vertices. Sometimes this transformation
is useful for recognition of duplicates.
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Fig. 2.10. The minimal spine of the complement of the figure eight knot has coun-
terpasses

Remark 2.3.5. The assumption that M is closed in item 2 of Proposi-
tion 2.3.3 can be replaced by the requirement that ∂M consists of spheres. If
∂M contains tori or surfaces of higher genus, in general the counterpass sim-
plification does not work. The reason is that the curve l in the proof may not
bound a disc in the complement to the spine. For example, the special spine of
the complement to the figure eight knot shown in Fig. 2.10 has counterpasses
but cannot be simplified since it is minimal.

2.3.3 Manifolds of Complexity ≤ 6

The list of all closed orientable irreducible 3-manifolds up to complexity 6
contains 135-manifolds, see Sect. A.2 and its description in the Appendix.
Each manifold is presented by a regular neighborhood of the singular graph
of its minimal special spine. If the manifold has several minimal spines, all of
them are included in the table. Let us comment on which kinds of 3-manifolds
can be found in the table.

A. All closed orientable irreducible 3-manifolds up to complexity 6 are
Seifert manifolds. All the manifolds of complexity ≤ 5 and many manifolds
of complexity 6 have finite fundamental groups. They are elliptic, that is, can
be presented as quotient spaces of S3 by free linear actions of finite groups.
Groups which can linearly act on S3 without fixed points are well known
(see [94]). They are:

1. The finite cyclic groups
2. The groups Q4n, n ≥ 2
3. The groups D2k(2n+1), k ≥ 3, n ≥ 1
4. The groups P24, P48, P120, and P ′

8(3k), k ≥ 2
5. The direct product of any of these groups with a cyclic group of coprime

order

Lower indices show the orders of the groups. Presentations by generators and
relations are given in the preliminary to Sect. A.2, see the Appendix.

B. The list contains representatives of all the five series of elliptic mani-
folds. In particular, the manifolds S3/P24, S

3/P48, and the Poincaré homology



2.3 Closed Manifolds of Small Complexity 77

sphere S3/P120 have complexities 4,5, and 5, respectively. The first manifold
with a nonabelian fundamental group is S3/Q8, where Q8 is the quaternion
unit group. It has complexity 2. More generally, for 2 ≤ n ≤ 6 the manifolds
S3/Q4n have complexity n. The simplest manifold of the type S3/D2k(2n+1),
that is, S3/D24, has complexity 4 while the simplest manifold of the type
S3/P ′

8(3k), the manifold S3/P ′
72, has complexity 5. There also occur quotient

spaces of S3 by actions of direct products of the above-mentioned groups with
cyclic groups of relatively prime orders. The simplest of these (the manifold
S3/Q8 × Z3) has complexity 4.

C. All six flat closed orientable 3-manifolds have complexity 6, among them
the torus S1×S1×S1 and the Whitehead manifold obtained from S3 by Dehn
surgery on the Whitehead link with trivially framed components. The last two
are the only closed orientable irreducible manifolds of complexity ≤ 6 having
the first homology group of rank ≥ 2. Recall that the Whitehead manifold
coincides with the mapping torus of a homeomorphism S1 × S1 → S1 × S1

which is the Dehn twist along nontrivial simple closed curve.
D. Among the manifolds of complexity ≤ 6 there is just one nontrivial

homology sphere S3/P120. It has a unique minimal special spine with five
true vertices. The singular graph of the spine is the complete graph on five
vertices.

E. If the complexity of the lens space Lp,q with p > 2 does not exceed 6,
then it can be computed by the formula c(Lp,q) = S(p, q)−3, where S(p, q) is
the sum of all partial quotients in the expansion of p/q as a regular continued
fraction. Most probably, the formula c(Lp,q) = S(p, q) − 3 holds for all lens
spaces, but we know only how to prove the inequality c(Lp,q) ≤ S(p, q)− 3: it
follows from Remark 2.3.8.

In practice, it is more convenient to calculate c(Lp,q) by the following
empirical rule: if p > 2q, then c(Lp,q) = c(Lp−q,q)+1. For example, c(L33,10) =
c(L23,10) + 1 = c(L13,10) + 2 = c(L13,3) + 2 = c(L10,3) + 3 = c(L7,3) + 4 =
c(L4,3) + 5 = c(L4,1) + 5 = c(L3,1) + 6 = 6 since c(L3,1) = 0 (we have used
twice that lens spaces Lp,q and Lp,p−q are homeomorphic). This shows once
again how natural the notion of complexity is.

It should be noted that the number of true vertices of a special spine as
a measure of complexity of 3-manifolds was implicitly used by numerous au-
thors. Ikeda proved that any simply-connected manifold having a simple spine
with ≤ 4 vertices is homeomorphic to S3 [49]. Together with Yoshinobu [50]
he listed all closed 3-manifolds which in our terminology possess complex-
ity ≤ 2. A complete list of all closed orientable irreducible 3-manifolds of
complexity ≤ 5 was obtained by means of a computer as early as 1973 by
Matveev and Savvateev [91]. Gillman and Laszlo, who were interested only in
homology spheres [35], with the help of a computer proved that among mani-
folds of complexity ≤ 5 only S3/P120 and S3 have trivial homology. Actually,
this fact can be extracted easily from the Matveev and Savvateev list. A list
of closed orientable irreducible 3-manifolds of complexity 7 was obtained by
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Ovchinnikov [102, 103]. It consists of 175-manifolds and is too large to be
presented in full. Fortunately, a major part of the manifolds can be divided
into four series admitting clear descriptions. In Appendix we present these
descriptions and list the remaining exceptional manifolds.

It is interesting to note that not all regular graphs can be realized as
singular graphs of minimal special spines of 3-manifolds. Let us try to single
out several types of graphs that produce the majority of 3-manifolds up to
complexity 6.

Definition 2.3.6. A regular graph G of degree 4 is called a nonclosed chain if
it contains two loops, and all the other edges are double. G is a closed chain,
if it has only double edges. Finally, G is called a triangle with a tail, if it is
homeomorphic to a wedge of a closed chain with three vertices and a nonclosed
chain such that the base point of the tail (i.e., the common point of these two
chains) lies on a loop of the nonclosed chain. See Fig. 2.11.

We will say that a special spine of a closed orientable 3-manifold is pseudo-
minimal if it has no counterpasses and short boundary curves. In particular,
any minimal special spine is pseudominimal. For brevity we will say that a
special spine P is modeled on a graph G if G is homeomorphic to the singular
graph of P .

Proposition 2.3.7. A closed orientable 3-manifold M has a pseudominimal
special spine modeled on a nonclosed chain if and only if M is a lens space
Lp,q with p > 3.

Proof. Let P be a pseudominimal special spine of M modeled on a closed chain
G with n vertices. Denote by i an involution on G having n+2 fixed points: n
vertices and one additional point on each loop. The involution permutes edges
having common endpoints. Since the boundary curves have no counterpasses,
they are symmetric with respect to i. Moreover, there is a boundary curve that
passes a loop of G twice. Remove from P the corresponding 2-component, and
denote by P1 the resulting polyhedron. Note that P1 is a spine of M \ IntH1,
where H1 is a solid torus in M .

Fig. 2.11. Three useful types of singular graphs: a nonclosed chain, closed chain,
and a triangle with a tail
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Let us collapse P1 for as long as possible by removing other 2-components
together with their free edges, and free edges together with their free vertices.
Using the above-mentioned symmetry of the boundary curves, one can easily
show that we get a circle (actually, the second loop of G). To visualize this,
one may take the spine of any lens space from Sect. A.2 and carry out the
collapsing by hand. It follows that M \ IntH1 is a regular neighborhood of a
circle, that is, a solid torus. Thus M is a lens space. ��

Remark 2.3.8. Let us describe a simple method for calculating parameters
of the lens space presented by a picture that shows a regular neighborhood
of the singular graph of its pseudominimal special spine. The correctness of
this method can be easily proved by induction on the number of true vertices
of the spine. Assign to each double edge and to each loop of the singular
graph a letter � or r as shown in Fig. 2.12. We get a string w of letters that
we will consider as a composition of operators r, �:Z ⊕ Z → Z ⊕ Z given by
r(a, b) = (a, a+ b) and �(a, b) = (a+ b, b). Then the lens space has parameters
p = m + n, q = m, where (m,n) = w(1, 1). For example, for the lens space
shown in Fig. 2.12 we have w = rrrr���, (m,n) = (4, 17), and (p, q) = (21, 4),
since by our interpretation of r, � we have

(1, 1) �→ (2, 1) �→ (3, 1) �→ (4, 1) r→ (4, 5) r→ (4, 9) r→ (4, 13) r→ (4, 17).

The same method can be used for constructing a pseudominimal special spine
of a given lens space Lp,q: One should apply to the pair (p − q, q) operators
r−1, �−1 until we get (1, 1), and then use the string of letters r, � thus obtained
for constructing the spine.

Proposition 2.3.9. A closed orientable 3-manifold M has a pseudominimal
special spine modeled on a triangle with a tail if and only if M is an orientable
Seifert fibered manifold of the type (S2, (2, 1), (2,−1), (n, β)), where β, n > 0,
and (n, β) = (1, 1).

Proof. Let P be a pseudominimal special spine of M modeled on a triangle
with a tail. Since the boundary curves have no counterpasses, they pass over

Fig. 2.12. How to write down the developing string for a nonclosed chain
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the tail in a symmetric way with respect to the involution of the tail that
permutes the double edges and reverses the orientation of the loop. For the
same reason one of the boundary curves passes the loop twice. Remove from
P the corresponding 2-component and denote by P1 the resulting polyhedron.
Of course, P1 is a spine of M1 = M \ IntH, where H is a solid torus in M . Let
us collapse P1 as long as possible. Using the above-mentioned symmetry of
the boundary curves, one can easily show that the tail disappears completely,
together with all 2-cells that have common points with it, including all the
2-components whose boundary curves pass through the base point of the tail.
It follows that we get a simple spine without singular points, that is, a closed
surface K. Since the boundary of M1 is a torus, K is the Klein bottle, and
M1 = K×̃I. It is well known that K×̃I can be presented as the Seifert fibered
manifold over the disc with two exceptional fibers of types (2, 1) and (2,−1),
see Example 6.4.14. Thus attaching the solid torus H converts M1 to a Seifert
fibered manifold (S2, (2, 1), (2,−1), (n, β)). The parameters (n, β) show how
H is glued to K×̃I. We can always get n, β > 0 by reversing the orientation
of the manifold.

Just as in the proof of Proposition 2.3.7, let us describe a simple method for
calculating the parameters (n, β) starting from a pseudominimal special spine
modeled on a triangle with a tail. The correctness of the method can be easily
proved by induction on the number of vertices of the tail. Assign to the loop
and the double edges of the tail and to the pair of edges adjacent to it letters
� and r as shown in Fig. 2.13. We get a string w of letters which, as above,
can be considered as a composition of operators r, �:Z ⊕Z → Z ⊕Z given by
r(a, b) = (a, a+ b) and �(a, b) = (a+ b, b). Then (n, β) = w(1, 1). For example,
for the spine shown in Fig. 2.13 we have w = �r�� and w(1, 1) = (n, β) = (7, 4).

The same method can be used for constructing a pseudominimal special
spine of a given Seifert fibered manifold (S2, (2, 1), (2,−1), (n, β)): one should
recover the string of r, � by transforming (n, β) into (1, 1), and then use it for
choosing the correct tail. Since n = 0 and (n, β) = (1, 1), the string and the
tail exist. ��

Fig. 2.13. How to write down the developing string for a tail
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Note that for any pair of coprime positive integers (n, β) with n ≥ 1 the
fundamental group of the manifold Mn,β = (S3, (2, 1), (2,−1), (n, β)) is finite
and has the presentation

〈c1, c2, c3, t|c2
1 = t, c2

2 = t−1, cn
3 = tβ , c1c2c3 = 1〉

The order of the homology group H1(Mn,β ;Z) is 4β. Using this, it is not
hard to present Mn,β as the quotient space of S3 by a linear action of a group
from the Milnor list [94] presented above. It turns out that the following is
true:

(1) If n > 1 and β is odd, then Mn,β = S3/Q4n × Zβ

(2) If n > 1 and β is even, then Mn,β = S3/D2k+2n ×Z2m+1, where k and m
can be found from the equality β = 2k(2m + 1)

(3) If n = 1 and β = 0, 1, then Mn,β = L4β,2β+1

If n = 1 or β = 1, the pseudominimal special spine of Mn,β modeled on
the triangle with a tail is not minimal. An easy way to see that is to apply
the transformation described in Remark 2.3.4. This is possible since the spine
possesses a boundary curve that passes through four true vertices, and visits
each of them exactly once. After the transformation we get a spine that has
the same number of true vertices but possesses a boundary curve of length 3.
Therefore, one can simplify the spine. In the case n = 1 we get a spine of a
lens space modeled on a nonclosed chain with smaller number of true vertices.
If β = 1, we get a simple spine of the manifold S3/Q4n.

Proposition 2.3.10. A closed orientable 3-manifold M has a pseudominimal
special spine modeled on a closed chain with n ≥ 2 vertices if and only if M
is S3/Q4n.

Proof. One can easily show that any pseudominimal spine of a closed manifold
modeled on a closed chain contains a boundary curve that goes twice around
the chain and passes through all the edges. For any n ≥ 2 there is only one
such spine (see Fig. 2.14), and its fundamental group is Q4n. Removing the

Fig. 2.14. The unique pseudominimal special spine modeled on a closed chain with
n vertices is a spine of S3/Q4n
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corresponding 2-component and collapsing, we get the Klein bottle. There-
fore, M is a Seifert fibered manifold over S2 with three exceptional fibers of
degree 2, 2, and n. Among such manifolds only S3/Q4n has the fundamental
group Q4n. ��

The following conjectures are motivated by Propositions 2.3.7–2.3.10 and
the results of the computer enumeration.

Conjecture 2.3.11. Any lens space Lp,q with p ≥ 3 has a unique minimal
special spine. This spine is modeled on a nonclosed chain.

Conjecture 2.3.12. For any n ≥ 2 the manifold S3/Q4n has a unique minimal
special spine. This spine is modeled on a closed chain with n links.

Conjecture 2.3.13. Manifolds of the type S3/Q4n × Zβ , n > 1, β = ±1 and
S3/D2k+2n × Z2m+1 have minimal special spine modeled on triangles with a
tail.

Section A.2 shows that the conjectures are true for manifolds of
complexity ≤ 7.

Remark 2.3.14. One can prove that any pseudominimal special spine mod-
eled on a triangle with three tails is a spine of a Seifert fibered manifold M
over S2 with three exceptional fibers. Let wi, 1 ≤ i ≤ 3 be the developing rl-
strings of the tails. Then M = (S2, (n1, β1), (n2, β2), (n3, β3), (1,−1)), where
(ni, βi) = wi(1, 1) for 1 ≤ i ≤ 3. We have inserted the regular fiber of the type
(1,-1) to preserve the symmetry of the expression. Certainly, one may write
M = (S2, (n1, β1), (n2, β2), (n3, β3−n3)). The formula works also for triangles
with < 3 tails, if we adopt the convention that the developing string for the
empty tail is � and produces the exceptional fiber of type (2,1). See Fig. 2.15.

Fig. 2.15. The developing strings are � (for the empty tail), r�, and �rr. Thus
M = (S2, (2, 1), (2, 3), (4, 3), (1,−1))
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2.4 Graph Manifolds of Waldhausen

Our discussion in Sect. 2.3.3 shows that all closed orientable irreducible 3-
manifolds of complexity ≤ 6 belong to the class G of graph manifolds of Wald-
hausen. G contains all Seifert manifolds and all Stallings and quasi-Stallings
3-manifolds with fiber S1 × S1. Its advantage is that it is closed with respect
to connected sums. It follows that all closed orientable (not necessarily irre-
ducible) 3-manifolds of complexity ≤ 6 are also graph manifolds. In Sect. 2.4.2
we will show that the same is true for 3-manifolds of complexity ≤ 8, but first
we should study G in more detail.

2.4.1 Properties of Graph Manifolds

Graph manifolds have been introduced and classified by Waldhausen in
two consecutive papers [129]. They turned out to be very important for
understanding the structure of 3-manifolds. Indeed, it follows from JSJ-
decomposition theorem (see [55, 57] and Sect. 6.4) that for any orientable
closed irreducible 3-manifold M there exists a finite system T of disjoint
incompressible tori T1, T2, . . . , Tn in M (unique up to isotopy) such that the
following holds:

(1) T decomposes M into Seifert manifolds and manifolds which are not
Seifert and contain no essential tori. We will call these submanifolds JSJ-
chambers.

(2) T has the minimal number of tori among all systems possessing (1).

If T = ∅, then all the JSJ-chambers are sufficiently large (see Sect. 4.1.6).
Therefore, one can apply Thurston’s results [62, 111, 122, 123] and prove that
every non-Seifert JSJ-chamber is a hyperbolic manifold. The union of all
Seifert JSJ-chambers is not necessarily a Seifert manifold, but it is composed
of Seifert manifolds. In particular, it can have Stallings and quasi-Stallings
components (see Definitions 6.4.16 and 6.5.12) with fiber S1 × S1. Manifolds
which can be obtained from Seifert manifolds by gluing their boundary tori
are known as graph manifolds of Waldhausen.

Roughly speaking, the role of graph manifolds in 3-manifold topology may
be expressed by the informal relation

M = (G + H) ∪ (?).

Here M,G, and H are the classes of all closed irreducible 3-manifolds,
graph manifolds, and hyperbolic manifolds, respectively. The class G + H
consists of manifolds that can be decomposed by incompressible tori into graph
and hyperbolic manifolds. The additional term (?) stands for the class of closed
irreducible manifolds which contain no essential tori and are neither hyperbolic
nor graph manifolds. If Thurston’s Geometrization Conjecture [111] is true,
then (?) is empty.
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The class of graph manifolds was rediscovered by Fomenko [30]. It turned
out that there is a close relationship between the integrability of Hamiltonian
mechanical systems on symplectic 4-manifolds and the topological structure
of level surfaces of the Hamiltonian: If the system is integrable, then each
nonsingular level surface is a graph manifold. See [12] for further development
of the theory.

To give a rigorous formal definition of graph manifolds, we prefer to com-
pose them from Seifert manifolds of two very simple types. Denote by N2 the
disc D2 with two holes. Then the manifold N2 × S1 can be presented as the
solid torus D2 × S1 with two drilled out solid tori H1,H2 that are parallel to
the core circle {∗}×S1 of D2 ×S1. A more general way to view N2 ×S1 is to
cut out a regular neighborhood of c∪ � from D2 × S1, where c is a core circle
of D2×S1 and � is any simple closed curve in Int (D2×S1) that is parallel to
a nontrivial curve in ∂D2 × S1. The result does not depend on the choice of
� since all nontrivial simple closed curves in the boundary of S1 × S1 × I are
equivalent up to homeomorphisms of S1 × S1 × I. We will call the manifolds
D2 × S1 and N2 × S1 elementary blocks.

Definition 2.4.1. A compact 3-manifold M is called a graph manifold if it
can be obtained by pasting together several elementary blocks D2 × S1 and
N2 × S1 along some homeomorphisms of their boundary tori.

It is often convenient to present the gluing schema by a graph having
vertices of valence 1 and 3. The vertices of valence 3 correspond to blocks
N2 × S1. Vertices of valence 1 correspond either to blocks D2 × S1 or to free
boundary component of M . In Fig. 2.16 we represent them by black and white
fat dots, respectively.

We next recall some well-known properties of graph manifolds, accompa-
nying them with short explanations or informal proofs.

Proposition 2.4.2. The class G contains all orientable Seifert manifolds.

Proof. Suppose M is a Seifert manifold fibered over a surface F . Note that any
surface can be decomposed by disjoint circles into the following elementary

Fig. 2.16. A graph structure of a graph manifold
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pieces: discs, copies of N2, and Möbius bands. One may assume that all excep-
tional fibers correspond to the centers of the discs. Then the decomposition of
F induces a decomposition of M into inverse images of elementary pieces. It
remains to note that the inverse image of each piece P is either an elementary
block (if P = D2, N2), or can be decomposed into three elementary blocks (if
P is a Möbius band). The latter is true since the twisted product of a Möbius
band and S1 admits an alternative Seifert structure: it fibers over D2 with
two exceptional fibers of types (2,1), (2,-1), see Example 6.4.14. ��

Proposition 2.4.3. The class G is closed with respect to connected sums, that
is, M1#M2 ∈ G ⇐⇒ M1,M2 ∈ G.

Proof. To prove the implication ⇐, it suffices to find a graph presentation
of D2 × S1#D2 × S1. Let c be the core circle of D2 × S1 and m a circle
obtained from a meridian of D2×S1 by pushing it inward D2×S1. Denote by
N(c), N(m) regular neighborhoods of the circles. Then the manifold D2×S1\
IntN(m) is homeomorphic to the connected sum of two solid tori. On the other
hand, it can be obtained from the manifold D2 × S1 \ (Int N(c) ∪ IntN(m))
homeomorphic to N2 × S1 by pasting back the torus N(c).

To prove the inverse implication, assume that a graph manifold M con-
tains a nontrivial 2-sphere S. Consider a decomposition of M into extended
elementary blocks, where each extended block is the union of an elementary
block N2×S1 and all the solid tori adjacent to it. Applying the innermost cir-
cle argument to the intersection of S with the boundaries of extended blocks,
we locate an extended block B with compressible boundary. Recall that the
boundary of any Seifert manifold is incompressible unless it is the solid torus.
It follows that for B we have the following possibilities:

1. B is a solid torus (presented as a union of smaller elementary blocks). We
consolidate the initial structure of a graph manifold by considering B as
a new block.

2. B is not a Seifert manifold. This can happen only in the case when B is
composed of N2×S1 and solid tori so that the meridian of one of the solid
tori is isotopic to a fiber {∗} × S1 of N2 × S1. Then B can be presented
as B1#B2, where each Bi is either a solid torus or a lens space. Thus we
can decompose M into a connected sum of either simpler graph manifolds
or a simpler graph manifold and S2 × S1.

Continuing this process for as long as possible, we get a decomposition
of M into a connected sum of prime graph manifolds. Since the topological
types of the summands are determined by M , the prime decomposition sum-
mands for M1,M2 have the same types. It follows that M1 and M2 are graph
manifolds. ��

Now we investigate the behavior of G with respect to boundary connected
sums and, more generally, to cutting along discs. Of course, the statement
M1⊥⊥M2 ∈ G ⇐⇒ M1,M2 ∈ G is not true anymore. For example, let
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V be a solid torus and B a 3-ball. Then V ⊥⊥V ∈ G although V ∈ G and
V ⊥⊥B ∈ G although B ∈ G. To formulate the correct corresponding state-
ment, it is convenient to introduce the following notation: If M is a 3-manifold,
then M̂ denotes the 3-manifolds obtained from M by attaching 3-balls to all
the spherical components of ∂M . In particular, if ∂M contains no spherical
components, then M̂ = M . Recall also that if D is a proper disc in M , then
MD denotes the 3-manifold obtained from M by cutting along D.

Corollary 2.4.4. Let D be a proper disc in a connected 3-manifold M such
that ∂M consists of tori. Then M is a graph manifold if and only if so is M̂D.

Proof. Denote by T the torus component of ∂M containing ∂D and by N =
N(D∪T ) a regular neighborhood of D∪T in M . Then MD is homeomorphic
to the manifold M1 = Cl(M \ N). It is easy to see that M1 ∩ N is either a
sphere S (if ∂D does not decompose T ) or the union of a sphere S and a torus
T1 (if ∂D decomposes T ). There are three different cases, see Fig. 2.17. Let us
list all of them together with the corresponding relation between M̂ and M̂D

we wish to prove.
Case 1. D decomposes M into two components M ′,M ′′. Then M =

M̂ ′#M̂ ′′.
Case 2. ∂D decomposes T , but D does not decompose M . Then M =

M̂D#(S2 × S1).
Case 3. ∂D does not decompose T . Then M = M̂D#(D2 × S1).
Let us prove that. Suppose M1 ∩ N = S ∪ T1 is as in Cases 1, 2. Denote

by MS the 3-manifold obtained from M = M1 ∪ N by cutting along S. If we
attach N to M1 along T1, we get MS . It follows that M̂S can be obtained by
attaching N̂ to M̂1 along T1. On the other hand, N̂ is homeomorphic to T1×I,
so M̂S and M̂1 (hence M̂S and M̂D) are homeomorphic. We can conclude that
M can be obtained from M̂D by cutting out two 3-balls and identifying the two
boundary spheres of the manifold thus obtained. This operation is equivalent
to taking the connected sum with S2 × S1 (if M̂D is connected) or to taking
the connected sum of its components (if not).

Fig. 2.17. M is either M̂ ′#M̂ ′′ (on the left), or M̂D#(S2 × S1) (in the middle), or
M̂D#(D2 × S1) (on the right)
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If M1 ∩ N = S as in Case 3, then MS is the disjoint union of M1 (which
is homeomorphic to MD) and N (which is a punctured solid torus). It follows
that M = M̂D#(D2 × S1).

To conclude the proof of the corollary, it remains to recall that S2 × S1

and D2 × S1 are graph manifolds and apply Proposition 2.4.3. ��

Remark 2.4.5. One can easily generalize Corollary 2.4.4 as follows. Let D
be a proper disc in a connected 3-manifold M so that ∂M consists of spheres
and tori. Then M̂ is a graph manifold if and only if so is M̂D. Indeed, if ∂D
lies on a torus of ∂M , then the same proof works. Let ∂D lies on a sphere
S ⊂ ∂M . Then either M̂ = M̂D#(S1 × S2) (if D does not separate M), or
M̂ = M̂ ′#M̂ ′′ (if it decomposes M into two components M ′,M ′′).

By Definition 2.4.1, any graph manifold can be decomposed onto elemen-
tary blocks by a finite system of disjoint tori. Our next goal is to decrease the
number of tori by amalgamating the elementary blocks into Seifert manifolds
called Seifert blocks. We will restrict ourselves to considering graph manifolds
which are irreducible and boundary irreducible. This restriction is not very
important. Indeed, the behavior of graph manifolds with respect to connected
sums is already known (Proposition 2.4.3), and the only connected graph
manifold which is irreducible but boundary reducible is the solid torus.

Definition 2.4.6. A system T = {T1, T2, . . . , Tn} of disjoint incompressible
tori embedded into an irreducible boundary irreducible graph manifold M is
called canonical if:

(1) T decomposes M into a collection of Seifert blocks (that is, Seifert mani-
folds).

(2) For any torus Ti ⊂ T and for any choice of Seifert fibrations on the
adjacent blocks, the two S1-fibrations on T induced from the both sides
are not isotopic.

Proposition 2.4.7. Let a system T = {T1, T2, . . . , Tn} of disjoint incom-
pressible tori in an irreducible boundary irreducible graph manifold M decom-
pose it into Seifert blocks. Then T contains a canonical subsystem.

Proof. We introduce two moves that decrease the number of blocks for T .

(1) If the two S1-fibration on T ⊂ T induced by some Seifert fibrations of
the adjacent blocks are isotopic, we remove the torus T from T . The new
block arising in this way is a Seifert manifold, the Seifert structure being
composed from the Seifert structures of the old blocks.

(2) Suppose a torus T ⊂ T is compressible but is not the boundary of a block
D2 × S1. By irreducibility of M , it bounds a solid torus B in M . We
amalgamate all the blocks lying in B into the new block B by erasing all
the tori of T contained in B.
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Let us now apply the moves to T as long as possible. Evidently, the result-
ing system (still denoted by T ) is canonical. Indeed, since the first move is
impossible, any torus T ∈ T can inherit only distinct S1-fibrations from the
neighboring blocks. Also, all the tori in T are incompressible, because all
moves of the second type are performed. ��

At first glance a graph manifold M can contain many canonical systems.
Indeed, the initial decomposition into, say, elementary blocks is not unique,
and the blocks can be amalgamated into larger blocks in many different ways.
Nevertheless, if M is irreducible and boundary irreducible, then the canonical
system is unique up to isotopy. This result follows from the JSJ-decomposition
theorem (see Corollary 6.4.30 and Theorem 6.4.31) and, having been obtained
10 years earlier, can be considered as its infant stage. As a matter of fact,
the Waldhausen classification of graph manifolds is nothing more than the
JSJ-decomposition theorem for them. To supply a graph manifold M with
a unique “name” which distinguishes it from all other graph manifolds, we
simply describe its canonical Seifert blocks and the way how they are glued
together. The gluing schema can be most naturally presented by a graph. This
explains once more why graph manifolds are called so.

Proposition 2.4.8 shows that the class G is closed with respect to cutting
along essential annuli. For simplicity, we formulate and prove it for irreducible
manifolds. Recall that MF denotes a manifold obtained from a manifold M
by cutting along a surface F ⊂ M .

Proposition 2.4.8. Let A be an essential annulus in an irreducible 3-manifold
M . Then M ∈ G ⇐⇒ MA ∈ G.

Proof. Let us prove that if MA is a graph manifold, then so is M . Denote by Y 3

the connected component of a regular neighborhood of ∂M ∪A that contains
A. Since the boundary curves of A are nontrivial, ∂M ∪A fibers onto circles.
It follows that Y 3 also fibers onto circles over a surface F (one can prove that
either Y 3 = N2×S1 or Y 3 = K2×̃S1). By construction, M = M1∪Y 3, where
the manifold M1 = M \ Y 3 is homeomorphic with MA, and M1 ∩ Y 3 consists
of one or two boundary tori. It follows that MA ∈ G ⇒ M ∈ G.

To prove the inverse implication, we construct a canonical system T of
essential tori in M . As we have mentioned earlier, it coincides with the JSJ-
system for M . One of the properties of T is that A is isotopic to another
annulus (still denoted by A) which lies in the complement to T , see Sect. 6.4.4.
This means that A is contained in a JSJ-chamber Q of T . In our case all the
JSJ-chambers are Seifert manifolds. Since any essential annulus in a Seifert
manifold Q is saturated (with respect to a Seifert structure on Q), the manifold
QA is Seifert. It follows that MA, being composed of QA and all the other
JSJ-chambers of T , is a graph manifold. ��
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2.4.2 Manifolds of Complexity ≤8

As we know from Sect. 2.3.3, all closed orientable irreducible 3-manifolds of
complexity ≤6 are graph manifolds. By Proposition 2.4.3, the class G is closed
with respect to connected sums. It follows that all (not necessarily irreducible)
closed orientable 3-manifolds of complexity ≤6 are graph manifolds. The fol-
lowing question arises: what is the complexity of the simplest closed orientable
3-manifold not contained in the class G? In this section we show that the first
nongraph closed orientable 3-manifold has complexity 9.

Theorem 2.4.9. All closed orientable 3-manifolds of complexity no greater
than 8 are graph manifolds.

This was initially proved by computer. Later, a purely theoretical proof was
found (see [32]). The computer program is based on the following observation.

Proposition 2.4.10. Let M be an orientable 3-manifold with ∂M = S1×S1.
Suppose that M has an almost simple spine P whose singular graph SP is
either empty or consists of one or a few disjoint nonclosed chains with ≤2
vertices each. Then M ∈ G.

Proof. We apply to P the same simplification moves as in the proof of Theo-
rem 2.2.4, with the following modifications:

(1) Since M may be reducible or boundary reducible, removing an arc � from
the 1-dimensional part of P may produce not only another spine of M ,
but also a spine of a new 3-manifold M1. Let D be a proper disc in M
intersecting � transversally at one point. Then M1 can be viewed as the
manifold MD, obtained by cutting M along D. It follows from Corol-
lary 2.4.4 (see also Remark 2.4.5) that M ∈ G ⇐⇒ M̂DG is a graph
manifold.

(2) It may happen that the proper annulus A ⊂ M that intersects P along a
nontrivial simple closed curve l in a 2-component α of P is essential. In
this case we cannot apply moves 2 or 3 from the proof of Theorem 2.2.4,
but simply cut P along l and obtain a spine of the manifold MA. By
Proposition 2.4.8, M ∈ G ⇐⇒ MA ∈ G.

At any step of the simplification procedure the above assumption concern-
ing the singular graph is preserved: We obtain an almost simple spine whose
singular graph consists of nonclosed chains with ≤2 vertices. After terminating
the procedure, we get a collection of special spines modeled on closed chains
with ≤2 vertices such that the boundaries of the corresponding manifolds are
either empty or consist of tori. There are only a few such spines. It is easy to
enumerate them and verify that in all cases they determine graph manifolds.
Since our simplification moves preserve the property of a manifold to belong
to G, M is also a graph manifold. ��
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The computer works in the following way. It first looks through all the
regular graphs of degree 4 with ≤8 vertices and, for each graph, lists all the
possible spines modeled on it (see the proof of Theorem 2.1.1). Each spine P
is tested for the following questions:

1. Is there a short boundary curve?
2. Is there a counterpass?
3. Is the corresponding manifold closed and orientable ?

If it obtains a positive answer to one of the first two questions, or a negative
answer to the third question, the computer leaves aside P and goes on to the
next spine. Otherwise it tests P for the following property:

4. Does there exist a 2-component α of P such that P \ α collapses to an
almost simple polyhedron whose singular graph is either empty or consists
of nonclosed chains with ≤2 vertices?

The main result of the computer experiment is that in all cases the answer
to the last question turned out to be positive. By Proposition 2.4.10, this
implies the conclusion of Theorem 2.4.9.

The complete text of the above-mentioned theoretical proof ofTheorem2.4.9
takes upnearly a 100 pages and thereforewewill limit ourselves to a brief outline.
The proof naturally splits up into three stages. First, we prove that any closed
irreducible orientable 3-manifold of complexity ≤8 is obtained by attaching a
solid torus to a 3-manifold of complexity≤3 whose boundary is a torus. We then
find out that all such 3-manifolds are graph manifolds except 14 remarkable
manifolds Qi, 1 ≤ i ≤ 14, which are hyperbolic and hence do not belong to
the class G of graph manifolds. (In fact, Q12, Q13, Q14 are homeomorphic to
Q6, Q1, Q2, respectively. We distinguish them, since they have different special
spineswith three truevertices).This implies that all closed irreducible orientable
3-manifolds of complexity ≤8 are in the class G except possibly manifolds of
the form (Qi)p,q, 1 ≤ i ≤ 14 (p, q are coprime integers) obtained by pasting
solid tori to Qi. Finally, a more specific analysis shows that any (Qi)p,q is still
in G, provided that its complexity is ≤8.

Now let us comment on each step of the proof separately.
Step 1. Let P be a minimal special spine of a closed irreducible orientable

3-manifold M of complexity ≤8. We wish to prove that P has a 2-component
α such that after puncturing α and collapsing we get a spine with ≤3 true
vertices. To simplify the notation, we restrict ourselves to the case when P
has exactly eight true vertices. Recall that puncturing a 2-component of P
corresponds to removing a solid torus from M .

Let us study in more detail what happens to P when we puncture and
collapse its 2-component α. In the collapsing process α disappears completely.
Suppose α is adjacent to an edge e of P twice. Then the 2-component β that
is adjacent to e the third time also disappears completely. One can easily
show that the boundary curves of α, β, and of all the other 2-components
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Fig. 2.18. Fragments containing boundary curves that pass through six edges and
only four true vertices

that disappear under collapsing contain ≥5 true vertices of P together. This
means that we get a spine with ≤3 true vertices.

Suppose now that no boundary curve passes through an edge twice. Let
us call the length of a 2-component α of P (or of its boundary curve c(α))
the total number of passages of c(α) through edges (with multiplicity taken
into consideration). Since P has 16 edges, and since each of them is incident
to exactly three 2-components, the total length of the 2-components is equal
to 48. On the other hand, P has nine 2-components. It follows that there is
a 2-component α adjacent to ≥ 6 different edges. If α contains ≥5 different
true vertices, we may puncture it and get a spine with ≤3 true vertices. If
not, then the singular graph SP of P contains one of the fragments shown in
Fig. 2.18.

Analyzing the ways in which the boundary curves can pass through each
of the fragments, one can always find another boundary curve that contains
≥5 different true vertices of P .

Step 2. Let us introduce 14 remarkable special spines Pi, 1 ≤ i ≤ 14, with
≤3 true vertices that determine manifolds Qi with tori as boundaries. It is
convenient to do this by using Figs. 2.19 and 2.20. The manifolds Qi are the
complement spaces of knots in 3-manifolds of genus ≤1. For example, Q2 and
Q14 are homeomorphic to the complement space of **figure eight knot in S3.
One can show that Q1 is homeomorphic to Q13 and Q6 is homeomorphic to
Q12. All other manifolds Qi are distinct.

Proposition 2.4.11. Suppose that the boundary of a compact orientable 3-
manifold Q is a torus and that Q has a special spine P with ≤3 true vertices.
Then either Q is a graph manifold, or P is homeomorphic to one of the spines
Pi, 1 ≤ i ≤ 14.

The proof consists, roughly speaking, of going through all the possible
special spines with three or less true vertices and analyzing the corresponding
3-manifolds. There are seven different regular graphs with ≤3 vertices. Only 3
of them (the closed chains with 2 and 3 vertices, and the chain with 2 vertices
and with an additional loop) may produce manifolds that are not in G. By
using the symmetry of the three suspicious graphs and certain artificial tricks,
the process can be kept within reasonable limits, which, however, are too large
to be presented here. See [79] for details.
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Fig. 2.19. Seven remarkable special spines with ≤ 3 true vertices

Step 3. Now we prove that if a 3-manifold M of complexity c(M) ≤ 8
is obtained by a Dehn filling of one of Qi, 1 ≤ i ≤ 14, then M ∈ G. Let
P be a minimal special spine of M having ≤ 8 vertices. According to Step
1, one can puncture a 2-component α of P such that after collapsing we
get a special polyhedron P ′ with ≤ 3 true vertices. By construction, P ′ is
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Fig. 2.20. Another seven remarkable special spines with ≤3 true vertices

a special spine of a 3-manifold Q such that M is a Dehn filling of Q. It
follows from Proposition 2.4.11 that if P ′ is not homeomorphic to a polyhedron
Pi, 1 ≤ i ≤ 14, then Q and M are graph manifolds. It remains to investigate
the case when P ′ is one of Pi.

Proposition 2.4.12. Suppose a special spine P of a closed orientable 3-
manifold M has no more than eight true vertices and suppose that af-
ter puncturing one of its 2-components and collapsing we obtain the spine
Pi, 1 ≤ i ≤ 14. Then M is a graph manifold.
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Fig. 2.21. Cell decomposition of T̃

The proof of Proposition 2.4.12 should be carried out in all 14 cases but
it follows the same outline and uses the same tricks. Let us carry it out once
for the case i = 1.

Let us identify the manifold Q1 with a regular neighborhood of P1 in
M . Denote by T the boundary torus of Q1. Then the natural collapse of Q1

onto P1 induces a locally homeomorphic map T → P1 such that the inverse
image of each 2-component of P1 consists of two 2-cells. Since P1 contains
two 2-components, this map determines a decomposition of T onto four 2-
cells. Construct the universal covering T̃ of T . It can be presented as a plane
decomposed into hexagons, see Fig. 2.21. The group of covering translations is
isomorphic to the group π1(T ) = H1(T,Z). We choose a basis µ̄, λ̄ as shown in
Fig. 2.21. The corresponding elements µ, λ of π1(T ) (which can be also viewed
as oriented loops) form a coordinate system on T .

Since Q1 is a regular neighborhood of P1 in M , the difference V = M \
Int Q1 is a solid torus. This means that M has the form M = (Q1)p,q, where
coprime integers p, q are determined by the requirement that the curve µpλq

is homotopic to the meridian of V .
Denote by X the part of P1 that disappears after puncturing and collaps-

ing. Assume that X is an open 2-cell. In other words, the spine P of M is
obtained from P1 by attaching the 2-cell X̄ that disappears under puncturing
and collapsing. Denote by � the boundary curve of X̄. All the intersection
points of � with the graph SP1, as well as all the self-intersection points of �,
are true vertices of P . The number of such points must not be greater than
6, since the total number of true vertices is ≤ 8, and two of them are the true
vertices of P1.

Recall that if we factor this covering by the translations µ̄, λ̄ corresponding
to µ and λ, we recover T . If we additionally identify the hexagons marked by
the letter A with respect to the composition of the symmetry in the dotted
diagonal of the hexagon and the translation by −µ̄ + λ̄/2, and do the same
for hexagons marked by the letter B, we obtain P1. T is shown in Fig. 2.22 as
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Fig. 2.22. Cell decomposition of T

Fig. 2.23. Cell decomposition of P1 and decorated SP1

a polygonal disc D composed of four hexagons. Each side of D is identified
with another one via the translation along one of the three vectors µ̄,−2µ̄+ λ̄,
and −µ̄ + λ̄. P1 can be presented as the union of two hexagons, see Fig. 2.23.
The edges of the hexagons are oriented and decorated with four different
patterns. To recover P1, one should identify the edges having the same pattern.
Figure 2.23 shows also the singular graph SP1 of P1 equipped with the same
decoration.

To the curve � on P1 (the boundary curve of the attached 2-cell) there
corresponds a curve �̄ of type (p, q) on the torus T and an arc �̃ on T̃ . One
end of �̃ is obtained from the other by translation on the vector pµ̄+qλ̄. Since
� crosses the edges of P1 in ≤6 points, �̃ does the same with respect to the
edges of T̃ . Choosing one hexagon in T̃ as the initial one, and successively
marking off those cells which may be reached at the expense of 1, 2, 3, 4, 5,
or 6 intersections, one can select all the possible pairs of coprime parameters
(p, q) that potentially may produce a spine with ≤ 8 true vertices. In our case
they are the following: (1,0), (0,1), (1,1), (-1,1), (-2,1), (-3,1), (-4,1), (-1,2),
(-3,2), (-5,2), (-4,3), (-5,3) (up to simultaneous change of signs). See Fig. 2.24.

Let us investigate these pairs. The pairs (-4,1), (-5,2), (-5,3), (-4,3), (-1,2),
(1,1) are actually impossible, since in all these cases � intersects at least six
edges of P1 and has at least one self-intersection. For example, if �̃ joins the
hexagons (0,0) and (5,-2) as shown in Fig. 2.25a, it crosses the edges six times
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Fig. 2.24. Suspicious hexagons are shown in black

Fig. 2.25. A spine P ′ of (Q1)−5,2 having ten true vertices

and its projection � ⊂ P1 has two self-intersections, see Fig. 2.25b, where the
self-intersections are indicated with gray fat dots.

It can be checked directly that for all the remaining pairs (p, q) (i.e., for
(-3,1), (-2,1), (-3,2), (-1,1), (1,0), (0,1)) we get graph manifolds. Indeed, let
us attach a 2-cell to P1 so as to obtain a special spine P ′ of (Q1)p,q with ≤ 8
true vertices. It turns out that in all these cases one can find a 2-component
of P ′ so that after puncturing and collapsing we get a spine satisfying the
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assumption of Proposition 2.4.10. It follows that the corresponding manifold
(Q1)p,q belongs to the class G.

However, the part X of P which disappears after puncturing and collapsing
is a priori not necessarily a cell. One can represent it as a simple polyhedron
X̄ attached to P1 along ∂X̄. In this case ∂X̄ is a regular graph of degree 3
and hence has a nonzero even number of vertices.

Suppose it has two vertices, which are joined by three edges, i.e., it is
what is usually called a θ-curve. The case of spectacles (two circles joined by
a segment) is excluded since P would have a counterpass and hence could be
simplified. The case of four or more vertices is even simpler. So we restrict
ourselves to considering only X̄ such that ∂X̄ is a θ-curve.

Denote by ā, b̄, c̄ the edges of X̄. We can think of X̄ as being contained in
the solid torus V = M \ Int Q1, ∂V = T, such that ∂X̄ ⊂ T = ∂Q1 and the
complement of ∂V ∪ X in V is an open 3-ball. When we attach X̄ to P1, the
vertices of ∂X̄ become true vertices of P . Since P has not more than eight true
vertices, the images a, b, c of ā, b̄, c̄ under gluing may intersect the edges of the
singular graph SP1 in ≤ 4 points, and if in 4, then they cannot intersect each
other or possess self-intersections. If we lift ā, b̄, c̄ to the arcs ã, b̃, c̃ on T̃ having
a common endpoint, we get a triode (a wedge of three arcs) intersecting the
edges in ≤ 4 points. The free ends of the wedge lie on three different hexagons
which are obtained from each other by translations on nontrivial integer linear
combinations of µ̄, λ̄. A simple analysis of the covering shows that there exist
a few such triodes, but the projections onto P1 of their edges have at least
one additional intersection point. This finishes the proof of Proposition 2.4.12
and Theorem 2.4.9.

2.5 Hyperbolic Manifolds

2.5.1 Hyperbolic Manifolds of Complexity 9

As we have shown in the earlier section, all closed irreducible orientable 3-
manifolds up to complexity 8 are graph manifolds. Is this result sharp? The an-
swer is affirmative. We describe here a remarkable closed orientable 3-manifold
M1 of complexity 9 which is hyperbolic and thus does not belong to the class
G of all graph manifolds. This manifold was discovered by Weeks [46, 133]
and independently by Fomenko and Matveev [32]. We have called it “remark-
able,” since it is twice minimal. First, it has the minimal complexity among
all closed orientable hyperbolic 3-manifolds. Second, its hyperbolic volume
V (M1) ≈ 0.94272 is also minimal among all the known 3-manifolds of the
same class. Conjecture 2.5.1 is motivated by these facts, together with an as
experimental observation made in [32] that the growth of the volume corre-
lates (in some sense) with the growth of the complexity.

Conjecture 2.5.1 ( [32]). M1 has the least volume of any closed orientable
hyperbolic 3-manifold.
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No counterexamples to this conjecture have appeared and the difference
between the known lower estimates of the volumes and V (M1) remains sub-
stantial. Personally, I believe that the conjecture is true.

Let Q1 be the 3-manifold represented by its special spine P1 with two true
vertices, see Fig. 2.19. Its boundary T = ∂Q1 is a torus with coordinate system
(µ, λ). One can think of µ and λ as oriented simple closed curves on T which
are images of the oriented segments µ̄, λ̄ in T̃ under the universal covering
projection map T̃ → T , see Fig. 2.21. We define the above-mentioned remark-
able manifold M1 as the manifold (Q1)5,−2 obtained from Q1 by attaching a
solid torus such that the image of its meridian has the type µ5λ−2.

To show that M1 is hyperbolic, we recall briefly the Thurston method,
one of the most important and successful methods for understanding finite-
volume hyperbolic 3-manifolds by considering their decomposition into ideal
tetrahedra. This technique was introduced in [120] and was used for computa-
tion of volumes in [46,133] and [32]. It forms also the basis for the SNAPPEA
computer program, written by Weeks, which allows one to determine the hy-
perbolic structure and volume of a large number of hyperbolic manifolds.

First, we use Corollary 1.1.28 to decompose Int Q1 into two topological
ideal tetrahedra. Next to each ideal tetrahedron we associate a complex vari-
able that determines its geodesic shape. A system of complex polynomial
equations is generated, the equations coming from the need for the tetrahedra
to glue together correctly at the edges. This system of consistency conditions
for Q1 has many solutions parameterized by elements of U , where U is the set
of all complex numbers z such that Imz > 0 and z = 1/2(1+ti),

√
15 < t < ∞.

If both ideal tetrahedra are regular, then the hyperbolic structure on Q1 thus
obtained is complete. This means that Q1 is hyperbolic. By the way, all other
manifolds Q2–Q14 are also hyperbolic and, as shown in [32], are the only
orientable hyperbolic 3-manifolds of complexity ≤ 3 having one cusp.

It turns out that the parameter z and hence the geometric shape of the
ideal tetrahedra can be chosen so that z satisfies the consistency conditions
and that the completion of the corresponding hyperbolic structure on Q1 is a
closed hyperbolic manifold homeomorphic to M1, see [46, 133] and [32]. This
means that M1 is hyperbolic.

Remark 2.5.2. The value of z that produces the hyperbolic structure of
M1 has irrational real and imaginary parts. So there may arise the question
whether approximate values of z that can be found by computer (and that
satisfy the consistency and the completion conditions only approximately) are
sufficient for proving that M1 is hyperbolic. This difficulty can be overcome,
since z lies strictly inside U . On the other hand, M1 is arithmetic [22, 23], so
one can prove the existence of a hyperbolic structure without using computers.

Theorem 2.5.3. The complexity of M1 is equal to 9.

Proof. Let us construct a special spine of M1 having nine true vertices. Since
c(M1) > 8 by Theorem 2.4.9, this would be sufficient for proving that c(M1) =
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Fig. 2.26. Möbius triplet

9. The hexagon (5,-2) is one of “suspicious” hexagons, since it can be joined
with the initial hexagon (0,0) by an arc l̃ in T̃ intersecting six edges, see
Fig. 2.25. So it would be natural to look for l̃ such that its projection l onto
P1 has not more than one self-intersection point. If we find one, then a special
spine of M1 with 9=2+6+1 vertices can be obtained by attaching to P1 a new
disc 2-component along l. Unfortunately, the projections of all arcs on T̃ that
join (0,0) with (5,-2) and intersect not more than six edges have at least two
self-intersection points. Therefore, the maximum we can get by attaching a
disc is a spine of (Q1)−5,2 having ten true vertices.

It turns out that one can save one true vertex by attaching to P1 not a
disc, but a so-called Möbius triplet Y , see Fig. 2.26. One can think of Y as
being contained in the solid torus V = M1 \ Int Q1 such that ∂Y ⊂ T = ∂Q1

and the complement of ∂V ∪ Y in V is an open 3-ball.
If we cut out a disc D from the Möbius 2-component of Y , then the rest

collapses onto ∂Y . We need to track the behavior of ∂D under the collapse.
Observe that ∂D is deformed into the curve c−1ac−1b, where a, b, c are the
three coherently oriented edges of the θ-curve ∂Y . Let us attach Y to P1

to obtain a special polyhedron P ′ = P1 ∪ Y as shown in Fig. 2.27. The arcs
ã, b̃, c̃ ⊂ T̃ that corresponds to a, b, c form a triode such that its branch point
is in the hexagons (−1/2, 0) while the free ends of ã, b̃, c̃ are in the hexagons
(1/2, 0), (−1/2, 0), (−5/2, 1), respectively.

Therefore, the curve c−1ac−1b has type (3,-1)+(2,-1)=(5,-2). It follows
that P ′ is a special spine of (Q1)5,−2. The images in P1 of the arcs a, b, c have
only one intersection point (shown in Fig. 2.27 as a fat gray dot). Therefore, P ′

has nine vertices. A regular neighborhood of its singular graph is represented
in Fig. 2.28. ��

Remark 2.5.4. The manifold Q2 (the complement of the figure eight knot)
is a twin of Q1: Just as Q1, it admits a decomposition into two regular ideal
tetrahedra. It was used by W. Thurston to illustrate his method [120]. Just as
Q1, it admits a decomposition into two regular ideal tetrahedra. The manifold
M2 = (Q2)5,1 has complexity 9 and its volume is the second one among all
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Fig. 2.27. A special spine P of (Q1)−5,2 obtained by attaching a Möbius triplet
to P1

Fig. 2.28. A special spine of M1

known volumes of closed hyperbolic 3-manifolds. A special spine of M2 is
shown on Fig. 2.29.

2.6 Lower Bounds of the Complexity

As we have shown in Sect. 2.1.2, it is relatively easy to obtain upper bounds
for complexity. However, the problem of finding lower bounds is quite difficult.
Of course, we know the exact value of the complexity for all the manifolds
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Fig. 2.29. A special spine of M2

from the table (see Appendix), but there are only finitely many of them. In
this section we present several lower bounds for the complexity of arbitrary
3-manifolds and describe two infinite series of hyperbolic 3-manifolds whose
complexity is known exactly.

2.6.1 Logarithmic Estimates

The first bound is based on the evident observation that if the first homology
group of a 3-manifold M is large, then c(M) cannot be too small.

Lemma 2.6.1. Suppose that a special spine P of a closed orientable 3-
manifold M contains a 2-component α whose boundary curve passes along
some edge e three times. Then M has an almost simple spine having a smaller
number of true vertices.

Proof. If the boundary curve ∂α of α has a counterpass on the edge e, then
by Proposition 2.3.3 P can be simplified. Suppose ∂α passes along e all three
times in the same direction. Then P contains a simple closed curve � such
that � intersects SP at two points A,B ∈ e and visits all three wings adjacent
to e, see Fig. 2.30. � can be easily constructed by thinking of α as an attached
disc and considering two disjoint proper arcs in the disc that join points in
distinct preimages of e. One can easily see that � can be shifted away from P
into the boundary of a regular neighborhood N of P . Since M is closed, ∂N
is a 2-sphere. It follows that l bounds a disc D ⊂ M such that D∩P = �, and
we can simplify the spine by adding D to P and piercing another 2-cell. ��
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Fig. 2.30. � can be shifted from P

Denote by |Tor(H1(M))| the order of the torsion subgroup of the first
homology group H1(M ;Z) and by β1 the first Betti number of M , i.e., the
rank of the free part of H1(M ;Z).

Theorem 2.6.2. [90] Let M be a closed irreducible orientable 3-manifold
different from L3,1. Then c(M) ≥ 2 log5 |Tor(H1(M))| + β1 − 1.

Proof. Since for H1(M) = 0, Z2 the right-hand side of the above inequality
is negative, the conclusion of the theorem holds for M = S3 and M = RP 3.
So we can assume that M is not one of these manifolds. Choose an almost
simple spine P of M having c(M) true vertices. By Theorem 2.2.4, we may
assume that P is special. Let A(P ) be the relation matrix of the presentation
corresponding to P and n be the number of generators in that presentation.
Then n = c(M) + 1, and, as M is closed, A(P ) is a square matrix of order n.
Since P has the smallest number of true vertices, Lemma 2.6.1 implies that it
has no edges along which some component passes three times. There are no
counterpasses either, therefore each column of the matrix contains either two
nonzero elements (one of them is equal to ±2, and the other is equal to ±1),
or three elements (each is equal to ±1).

The matrix A(P ) has a minor A′ of order n − β1 whose determinant is
nonzero and is divisible by |Tor(H1(M))|. On the other hand, the absolute
value of the determinant is equal to the volume of the parallelepiped whose
base vectors are the columns of A′. The volume does not exceed the product
of the lengths of those vectors. It is clear that the length of each vector is
not greater than

√
5. Hence |det A′| ≤ (

√
5)n−β1 , which implies that n ≥

2 log5 |det A′| + β1. Since |det A′| is greater than any its divisor, and n =
c(M) + 1, we have c(M) ≥ 2 log5 |Tor(H1(M))| + β1 − 1. ��

In some cases (for instance, for L5,2) this bound is sharp. Let us show
that for an infinite series of lens spaces this bound is almost sharp (in certain
sense). Let ui, 1 ≤ i < ∞, be the Fibonacci numbers given by the initial values
u1 = u2 = 1 and the recurrence relation ui+1 = ui + ui−1. Denote by Ln the
lens space L(p, q) with parameters p = un, q = un−2.

Corollary 2.6.3. If n > 4, then nCn − 2 ≤ c(Ln) ≤ n − 4, where Cn =
(2/n) log5(

√
5un).
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Proof. It follows from Theorem 2.6.2 that c(Ln) ≥ 2 log5 un − 1 = nCn − 2,
so we get the first inequality. To get the second one, we recall that all partial
quotients in the expansion of un/un−2 as a regular continued fraction are 1,
so their sum S(un, un−2) is n− 1. Therefore, by item E of Sect. 2.3.3, we have
c(Ln) ≤ S(un, un−2) − 3 = n − 4 for all n > 4. ��

Remark 2.6.4. One can easily show that Cn > 0.5 for all n > 4 and that Cn

tends to 2 log5(
1+

√
5

2 ) ≈ 0.59798 as n → ∞.

Corollary 2.6.3 shows that for an infinite series of 3-manifolds complex-
ity depends logarithmically on the order of the torsion subgroup of the first
homology group. This remarkable fact was first observed by Pervova.

The bound in Theorem 2.6.2 has the following shortcoming: It is trivial for
closed manifolds having zero first homology group, i.e., for homology spheres.
It would be natural to attempt to find a bound depending on the fundamental
group.

Definition 2.6.5. Let a group G be given by a presentation

G = 〈g1, . . . , gn | r1, . . . , rm〉.

Then the length of that presentation is the number |r1| + . . . + |rm|, where
|ri| denotes the length of the word ri with respect to g1, . . . , gn. The presen-
tation complexity ĉ(G) of G is the minimum of the lengths of all its finite
presentations.

Let us consider some examples of estimates of complexity of groups. Evi-
dently, the complexity of the cyclic group Zn does not exceed n. It is interest-
ing to note that it may be much less than n. For example, the presentation
〈a, b, c | a4b, b5c, c2〉 of Z40 has length 13. It may appear that this small value
(compared with the order of the group) is due to the fact that 40 has non-
trivial divisors. However, the group Z47, which has prime order, can be given
by the presentation 〈a, b, c | a4b, b4c, c3a−1〉 of length 14.

Proposition 2.6.6. Let M be a closed irreducible orientable 3-manifold, dif-
ferent from S3, RP 3, and L3,1. Then c(M) ≥ −1 + ĉ(π1(M))/3.

Proof. Let P be a special spine of M having k = c(M) true vertices. Then
the length of the presentation of π1(M) that corresponds to P is 3(k + 1). It
follows that ĉ(π1(M)) ≤ 3(k + 1) and thus k ≥ −1 + ĉ(π1(M))/3. ��

Sometimes this proposition allows to obtain better bounds than those given
by Theorem 2.6.2. For example, it can be shown that the complexity of any
nontrivial finitely presented group G that coincides with its commutator sub-
group is at least 10. It follows from Proposition 2.6.6 that the complexity of
any homology sphere cannot be less than 3. This agrees with the fact that the
complexity of the first nontrivial homology sphere (the dodecahedron space)
equals 5, see [35,91].
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2.6.2 Complexity of Hyperbolic 3-Manifolds

Now we turn our attention to hyperbolic 3-manifolds. As we have mentioned
earlier, there is a correlation between their complexities and volumes. A very
nice partial case of this observation was found by Anisov [6]. Recall that all
regular ideal tetrahedra in the hyperbolic space H3 are congruent and have
the same volume V0 ≈ 1.0149. The volumes of all other ideal tetrahedra in
H3 are less than V0.

Lemma 2.6.7. Let M be a hyperbolic 3-manifold with nonempty boundary.
Then c(M) ≥ V (M)/V0, where V (M) is the hyperbolic volume of M .

Proof. Since M is hyperbolic, it is irreducible and boundary irreducible, and
contains no essential annuli. By Theorem 2.2.4, its minimal almost simple
spine is special. It follows from Corollary 1.1.28 that M can be decomposed
into k = c(M) topological ideal tetrahedra ∆i, 1 ≤ i ≤ k. Further we follow
Thurston’s arguments [120]. These tetrahedra can be lifted to H3, straightened
inside H3 to hyperbolic ideal tetrahedra and projected back into M . The new
tetrahedra ∆′

i can overlap, but they still cover M . It follows that V (M) ≤
∑k

i=1 V (∆i) ≤ kV0, where V (∆i) is the volume of ∆i. We can conclude that
k ≥ V (M)/V0. ��

In some cases Lemma 2.6.7 is sufficient for exact computation of complex-
ity [6].

Corollary 2.6.8. Suppose that a hyperbolic 3-manifold M can be decomposed
into k straight regular ideal tetrahedra. Then c(M) = k.

Proof. Since V (M) = kV0, we have c(M) ≥ k by Lemma 2.6.7. The inequality
c(M) ≤ k follows from Corollary 1.1.28. ��

There are not many 3-manifolds satisfying the assumption of Corol-
lary 2.6.8. Q1 and Q2 (see Remark 2.5.4) as well as all their finite coverings
are among them. Since H1(Q1;Z) = Z ⊕ Z5 and H1(Q2;Z) = Z, there are
infinitely many such coverings. These manifolds form the first nontrivial in-
finite series of 3-manifolds with known complexities: if a 3-manifold M is a
k-sheeted covering of Q1 or Q2, then c(M) = 2k.

Remark 2.6.9. Q2 can be represented as a Stallings manifold fibered into

punctured tori over S1 with the monodromy matrix
(

2 1
1 1

)

.

Let W1 be a closed Stallings manifold with fiber S1 × S1 and the same
monodromy matrix. Consider the k-sheeted covering Wk of W1 correspond-
ing to the kernel of the superposition of the abelinization map π1(W1) →
H1(W1;Z) = Z and the mod k reduction Z → Zk. One can easily construct
a special spine P of Wk with 2k + 5 true vertices. Indeed, it suffices to take
a k-sheeted covering of the spine P2 of Q2 and attach an additional 2-cell D
which fills up the puncture of the fiber. It follows that c(Wk) ≤ 2k+5 (see [5]).
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On the other hand, a short calculation shows that |Tor(H1(Wn))| =
u2n+1 + u2n−1 − 2. Taking into account that the first Betti number of Wn

is 1 and applying Theorem 2.6.2, we get c(Wn) ≥ 2C ′
nn, where C ′

n =
(1/n) log5(u2n+1 + u2n−1 − 2). It follows that 2C ′

nn ≤ c(Wn) ≤ 2n + 5, so
we have another example of a logarithmic growth of the complexity (compare
with Corollary 2.6.3). It is interesting to note that C ′

n has exactly the same
limit as Cn from Corollary 2.6.3.

2.6.3 Manifolds Having Special Spines with One 2-Cell

We describe for every n ≥ 2 an interesting class Mn of orientable 3-manifolds
having complexity n. The manifolds from Mn, 2 ≤ n < ∞ form the second in-
finite set of manifolds with known complexity (the first such set was described
in the earlier section). This class was introduced in [33], see also [40].

Definition 2.6.10. An orientable 3-manifold M belongs to the class Mn, if
it has a special spine with n true vertices and exactly one 2-cell.

Examples of spines with one 2-cell are shown in Fig. 2.31. Each Mn con-
tains a manifold presented either by the upper spine (if n = 3k + 1) or by the
lower one (if n = 3k + 1). The only exception is the case n = 1 when Mn is
empty. As proved in [33], the number of manifolds in Mn grows exponentially
as n → ∞.

Theorem 2.6.11. [33] Let M ∈ Mn. Then c(M) = n.

Proof. By definition of the class Mn, the manifold M has a special spine P
with n vertices. Therefore, c(M) ≤ n. To prove that c(M) = n, consider a
handle decomposition ξP of M that corresponds to P . Since P has only one
2-cell, the set of all normal surfaces in M can be easily described. All closed
normal surfaces are normally parallel to ∂M . Since χ(∂M) = 2(1 − n) and
n > 0, there are no normal spheres among them. Therefore, M is irreducible.
All nonclosed normal surfaces are contained in the union of all balls and

Fig. 2.31. Spines with one 2-cell
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beams of ξP . The set of such surfaces contains no discs, thus M is boundary
irreducible. This set can contain annuli, but all of them are compressible. It
follows from Theorem 2.2.4 that M has a special spine P ′ with m = c(M)
true vertices.

Let us prove that m ≥ n. Denote by k the number of 2-cells of P ′. Counting
the Euler characteristic of M , we get 2(k − m) = χ(M) = 2(1 − n) and
n + k − 1 = m. It follows that m ≥ n. ��

Manifolds from Mn possess many other good properties. They are hy-
perbolic manifolds with totally geodesic boundary and have Heegaard genus
n + 1. Moreover, each manifold M ∈ Mn has a unique special spine with n
vertices, which is homeomorphic to the cut locus of M (the set of points of
M having more than one shortest geodesic to ∂M). See [33] for the proof.




