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Preface to the First Edition

The book is devoted to algorithmic low-dimensional topology. This branch of
mathematics has recently been undergoing an intense development. On the
one hand, the exponential advancement of computer technologies has made
it possible to conduct sophisticated computer experiments and to implement
algorithmic solutions, which have in turn provided a motivation to search for
new and better algorithms. On the other hand, low-dimensional topology has
received an additional boost because of the discovery of numerous connections
with theoretical physics.

There is also another deep reason why algorithmic topology has received
a lot of attention. It is that a search for algorithmic solutions generally proves
to be a rich source of well-stated mathematical problems. Speaking out of my
experience, it seems that an orientation towards “how to” rather than just
“how is” serves as a probing stone for choosing among possible directions of
research – much like problems in mechanics led once to the development of
calculus.

It seemed to me, when planning this book, that I had an opportunity to
offer a coherent and reasonably complete account of the subject that neverthe-
less would be mainly accessible to graduate students. Almost all parts of the
book are based upon courses that I gave at different universities. I hope that
the book inherits the style of a live lecture. Elementary knowledge of topology
and algebra is required, but understanding the concepts of “topological space”
and “group” is quite sufficient for most of the book. On the other hand, the
book contains a lot of new results and covers material not found elsewhere, in
particular, the first proof of the algorithmic classification theorem of Haken
manifolds. It should be therefore useful to all mathematicians interested in
low-dimensional topology as well as to specialists.

Most of the time, I consider 3-manifolds without geometric structures.
There are two reasons for that. On the one hand, I prefer to keep the
exposition within the limits of elementary combinatorial approach, which is a
natural environment for considering algorithmic questions. On the other hand,
geometric approach, which become incorporated into 3-manifold topology
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after works of Thurston, is presented in mathematical literature comprehen-
sively [62, 100, 120, 121]. Also, I touch upon computer investigation of hyper-
bolic manifolds only briefly, since this subject is completely covered by the
outstanding program SNAPPEA of Weeks [44].

When I embarked on this project I had not intended the writing of this
book to take so long. But once the ground rules were set up, I had no choice.
The rules are:

1. The book should be maximally self-contained. Proofs must be complete
and divided into “easy-to-swallow” pieces. Results borrowed from other
sources must be formulated exactly in the same form as they appear there,
and no vague references to technique or proofs are allowed. The sources
must be published in books or journals with world-wide circulation.

2. The text should be written so that at each moment the reader could know
what is going on. In particular, statements must always precede proofs,
not vice versa. Also, proofs must be straightforward, whenever possible.

3. Different parts of the book (sections, subsections, and even individual
statements) must be as independent as possible, so that one could start
reading the book from any point (after taking a few steps backwards or
looking at the index, if necessary, but without having to read everything
else before).

4. Each mathematical text is a cipher to encode information. The main dif-
ficulty for the reader often lies not in understanding the essence of a
statement, but in decoding what the authors really want to say. There-
fore, each paragraph should contain a redundant amount of information
to avoid misunderstanding. In particular, rephrasing is welcome.

Consistently with the algorithmic viewpoint, the book begins with a
comprehensive overview of the theory of special spines. The latter encode
3-manifolds in a rather comfortable, user-friendly, way, which also is easily
turned into a computer presentation. This chapter also contains an existence
result giving a criterion for two special polyhedra to be spines of the same
manifold.

While special spines allow us to work with a single manifold, the theory of
complexity (Chap. 2) attempts to overview the whole set of 3-manifolds intro-
ducing an order into their chaos. Specifically, the set of 3-manifolds is supplied
with a filtration by finite subsets (of 3-manifolds of a bounded complexity),
and this allows us to break up the classification problem for all 3-manifolds
into an infinite number of classification problems for some finite subsets. This
approach is implemented in Chap. 7, where we describe a way to enumer-
ate manifolds of a given complexity. To be precise, we describe a computer
program that enumerates manifolds and conducts a partial recognition. The
final recognition is done by computing first homology groups and Turaev–Viro
invariants. The latter are described in Chap. 8; the exposition was intention-
ally made as elementary and prerequisite-free as possible. The resulting tables
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of manifolds up to complexity 6, of their minimal special spines, and of values
of their Turaev–Viro invariants are given in Appendix.

Chapter 3 contains the first ever complete exposition of Haken’s normal
surface theory, which is the cornerstone of algorithmic 3-dimensional topology.
Almost all known nontrivial algorithms in low-dimensional topology use it or
at least are derived from it. Several key algorithms are included into Chap. 4.
In Chap. 5 the Rubinstein–Thompson algorithm for recognition of S3 is pre-
sented. My approach is in a sense dual to the original proof of Thompson and
seems to me more transparent.

Chapter 6 is the central part of the book. There, I prove the algorithmic
classification theorem for Haken manifolds. Surprisingly, although already in
1976 it was broadly announced that the theorem is true [58,59,131], no proof
appeared until 1995. Moreover, it turned out that the ideas described in the
above-mentioned survey papers, in Hemion’s book [42], and in other sources
are insufficient. I prove the theorem using some facts from the algorithmic
version of the Thurston theory of surface homeomorphisms [9].

For closed Haken manifolds other proofs of the algorithmic classification
theorem can be composed now. They are based on Thurston’s hyperboliza-
tion theorem for Haken manifolds containing no essential tori and annuli and
on Sela results on algorithmic recognition of hyperbolic manifolds [114, 115].
A brief survey is contained in [73], where the author explains how a hyper-
bolic structure on a 3-manifold can be constructed algorithmically once one
is known to exist.

This book began with several lectures that I gave first at Tel-Aviv Uni-
versity in October–December 1990 and then at the Hebrew University of
Jerusalem in October 1991–January 1992. The lectures were extended to a
lecture course that I read in 1993 at the University of British Columbia as
a part of the Noted Scholar Summer School Program. Chapters 1, 2, and 8
are based on the notes taken by Djun Kim and Mark MacLean; my thanks
to them. Later on I returned regularly to these notes and extended them
by including new parts, once I had found what I hoped was the right way
to expose them. Lectures on the subject which I gave at Pisa University in
1998, 2002 and in the J.-W. Goethe Univesität Frankfurt in April–May 2000
were especially valuable for me; you always profit when an attentive audience
wishes to understand all details and forces the lecturer to find the most precise
arguments. I hope I have managed to capture the spirit of those lectures in
this text.

Many mathematicians have helped me during my work on the book.
Among them are M. Boileau, A. Cavicchioli, N. A’Campo, I. Dynnikov,
M. Farber, C. Hog-Angeloni, A. Kozlowski, W. Metzler, M. Ovchinnikov,
E. Fominykh, E. Pervova, C. Petronio, M. Polyak, D. Rolfsen,
A. Shumakovich, M. Sokolov, A. Sossinsky, H. Zieschang.

There are two more persons I wish to mention separately, my teacher
A. Chernavskii, who introduced me to the low-dimensional topology, and
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my colleague A. Fomenko, whose outstanding personality and mathematical
books influenced significantly the style of my thinking and writing.

A great part of this book was written during my stay at Max-Planck-
Institut für Mathematik in Bonn. I am grateful to the administration of the
institute for hospitality and for a friendly and creative atmosphere. I also
thank the Russian Fund of Basic Research and INTAS for the financial support
of my research.

Of course, the book could not even have been started without the encour-
aging support of Chelyabinsk State University, which is my home university.
I am profoundly grateful to all my colleagues for their help. Special thanks to
my beloved wife L. Matveeva, who is also a mathematician, for her patience
and help.

Chelyabinsk, Sergei Matveev
March 2003
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The book has been revised, and some improvements and additions have been
made. In particular, in Chap. 7 several new sections concerning applications
of the computer program “3-Manifold Recognizer” have been included.

March 2007 Sergei Matveev
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1

Simple and Special Polyhedra

1.1 Spines of 3-Manifolds

We wish to study the geometry and topology of 3-manifolds. To this end we
will need the central notion of spine of a 3-manifold. Indeed, we will be able
to refine the notion of spine to get a class of spines that give us a natural
presentation of 3-manifolds.

1.1.1 Collapsing

In order to discuss spines, we need to define precisely collapsing. We start
with the definition of an elementary simplicial collapse.

Let K be a simplicial complex, and let σn, δn−1 ∈ K be two open simplices
such that σ is principal, i.e., σ is not a proper face of any simplex in K, and δ
is a free face of it, i.e., δ is not a proper face of any simplex in K other than σ.

Definition 1.1.1. The transition from K to K\(σ∪δ) is called an elementary
simplicial collapse, see Fig. 1.1.

Definition 1.1.2. A polyhedron P collapses to a subpolyhedron Q (notation:
P ↘ Q) if for some triangulation (K,L) of the pair (P,Q) the complex K
collapses onto L by a sequence of elementary simplicial collapses.

In general, there is no need to triangulate P to construct a collapse P ↘ Q;
for this purpose one can use larger blocks instead of simplexes. It is clear that
any n-dimensional cell Bn collapses to any (n − 1)-dimensional face Bn−1 ⊂
∂Bn. It follows that the collapse of P to Q can be performed at once by
removing pairs of cells. Let P = Q ∪ Bn, P ∩ Bn = Bn−1, where Bn is an
n-cell and Bn−1 is an (n − 1)-dimensional face of Bn.

Definition 1.1.3. The transition from P to Q is called an elementary poly-
hedral collapse, see Fig. 1.2.
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Fig. 1.1. Elementary simplicial collapse

Fig. 1.2. Elementary polyhedral collapse

It is easy to see that an elementary simplicial collapse is a special case of
an elementary polyhedral collapse. Likewise, it is possible to choose a trian-
gulation of the ball Bn such that the collapse of Bn onto its face Bn−1 can
be expressed as a sequence of elementary simplicial collapses. It follows that
the same is true for any elementary polyhedral collapse.

By a simplicial collapse of a simplicial complex K onto its subcomplex
L we mean any sequence of elementary simplicial collapses transforming K
into L. Similarly, a polyhedral collapse is a sequence of elementary polyhedral
collapses.

1.1.2 Spines

Definition 1.1.4. Let M be a compact connected 3-dimensional manifold with
boundary. A subpolyhedron P ⊂ M is called a spine of M if M ↘ P , that is,
M collapses to P . By a spine of a closed connected 3-manifold M we mean a
spine of M \ Int B3 where B3 is a 3-ball in M . By a spine of a disconnected
3-manifold we mean the union of spines of its connected components.

Remark 1.1.5. A simple argument shows that any compact triangulated 3-
manifold M always possesses a spine of dimension ≤ 2. Indeed, let M collapse
to a subcomplex K. If K contains a 3-simplex, then K contains a 3-simplex
with a free face, so the collapsing can be continued.
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Fig. 1.3. The mapping cylinder and the cone

It is often convenient to view 3-manifolds as mapping cylinders over their
spines and as regular neighborhoods of the spines. Theorem 1.1.7 justifies
these points of view. We first recall the definition of a mapping cylinder.

Definition 1.1.6. Let f : X → Y be a map between topological spaces. The
mapping cylinder Cf is defined as Y ∪ (X × [0, 1])/ ∼, where the equivalence
relation is generated by identifications (x, 1) = f(x). If Y is a point, then Cf

is called the cone over X. See Fig. 1.3.

Theorem 1.1.7. The following conditions on a compact subpolyhedron P ⊂
Int M of a compact 3-manifold M with boundary are equivalent:

(a) P is a spine of M
(b) M is homeomorphic to a regular neighborhood of P in M
(c) M is homeomorphic to the mapping cylinder of a map f : ∂M → P
(d) The manifold M \ P is homeomorphic to ∂M × [0, 1)

Proof. (a)⇒(b). This implication is valid in view of the following property
of a regular neighborhood of P in M : it is a submanifold of M that can be
collapsed onto P , see Corollary 3.30 of [110].

(b)⇒(c) Let a pair (K,L) of simplicial complexes triangulate the pair
(M,P ). Denote by St(L,K ′′) the star of L in the second barycentric subdi-
vision K ′′ of K. According to the theorem on regular neighborhoods [110],
M can be identified with the underlying space N =| St(L,K ′′) | of the star.
The possibility of representing the manifold N in the form of the cylinder of
a map f : ∂N → P is one of the properties of the star.

(c)⇒(d). This implication is obvious.
(d)⇒(a). Suppose the manifold M \P is homeomorphic to ∂M× [0, 1). De-

note by N a small regular neighborhood of P in M . Since we have proved the
implications (b)⇒(c)⇒(d), we can apply them to N . Therefore the manifold
N \P is homeomorphic to ∂N × [0, 1). Note that the embedding of N \P into
∂M×[0, 1) is proper in the following sense: the intersection of any compact set
C ⊂ ∂M × [0, 1) with N \ P is compact. In this case the manifold Cl(M \N)
is homeomorphic to ∂N × I. Since ∂N × I ↘ ∂N ×{0} and N ↘ P , it follows
that M ↘ P . ��
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1.1.3 Simple and Special Polyhedra

A spine of a 3-manifold M carries much information about M . In particu-
lar, if ∂M = ∅ then any spine P of M is homotopy equivalent to M and
hence determines the homotopy type of M . Nevertheless, it is possible for
two nonhomeomorphic manifolds to have homeomorphic spines. The simplest
way to see this is to think about the 2-dimensional annulus and the Möbius
strip. Both of these 2-manifolds collapse to a circle, yet they are clearly not
homeomorphic. To get a 3-dimensional example, it is sufficient to multiply the
annulus and the Möbius strip by the segment I. We obtain a solid torus and
a solid Klein bottle, which have circles as spines.

In order to eliminate this difficulty, we will restrict our class of spines to
those called special spines. We will give a precise definition shortly afterward.
First we must define the notion of simple polyhedron.

Definition 1.1.8. A compact polyhedron P is called simple if the link of each
point x ∈ P is homeomorphic to one of the following 1-dimensional polyhedra:

(a) A circle (such a point x is called nonsingular)
(b)A circle with a diameter (such an x is a triple point)
(c) A circle with three radii (such an x is a true vertex)

Typical neighborhoods of points of a simple polyhedron are shown in
Fig. 1.4. The polyhedron used here to illustrate the true vertex singularity
will be denoted by E. Since E will be used very often, it deserves a name: We
will call it a butterfly. It is a very strange butterfly indeed. Its body consists
of four segments having a common endpoint, and it has six wings. Each wing
spans two segments, and each pair of the segments is spanned by exactly one
wing. Perhaps it may be illuminating to look at some different forms of E, see
Fig. 1.5. The third model is placed inside the regular tetrahedron ∆ to empha-
size that the singularity is totally symmetric. It can be viewed as the union
∪i | lk(vi,∆

′) | of the links of all four vertices of ∆ in the first barycentric
subdivision ∆′.

Definition 1.1.9. The set of singular points of a simple polyhedron (that is,
the union of its true vertices and triple lines) is called its singular graph and
is denoted by SP .

Fig. 1.4. Allowable neighborhoods in a simple polyhedron
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Fig. 1.5. Equivalent ways of looking at the butterfly

In general, SP is not a graph whose vertices are the true vertices of P ,
since it can contain closed triple lines without true vertices. If there are no
closed triple lines, then SP is a regular graph of degree 4, i.e., every true
vertex of SP is incident to exactly four edges.

Let us describe the structure of simple polyhedra in detail. Each simple
polyhedron is naturally stratified. In this stratification each stratum of dimen-
sion 2 (a 2-component) is a connected component of the set of nonsingular
points. Strata of dimension 1 consist of open or closed triple lines, and
dimension 0 strata are true vertices. Sometimes it is convenient to imagine
true vertices as transverse intersection points of triple lines.

It is natural to demand that each such stratum be a cell that is, we would
like P to be cellular. We will make this demand in our future considerations,
as can be seen in the following definition.

Definition 1.1.10. A simple polyhedron P is called special if:

1. Each 1-stratum of P is an open 1-cell.
2. Each 2-component of P is an open 2-cell.

Remark 1.1.11. If P is connected and contains at least one true vertex, then
condition 1 in the above definition follows from condition 2.

1.1.4 Special Spines

Definition 1.1.12. A spine of a 3-manifold is called simple or special if it is
a simple or special polyhedron, respectively.

Two examples of special spines of the 3-ball are shown in Fig. 1.6: Bing’s
House with two rooms and the Abalone (a marine mollusk with an oval,
somewhat spiral shell). Bing’s House is a cube B decomposed by the middle
section into two rooms. Each room has a vertical tube entrance joined to the
walls by a quadrilateral membrane. The Abalone consists of a tube spanned
by an artful membrane with a triple line. The tube is divided by a meridional
disc.

Let us describe a collapse of the 3-ball onto Bing’s House. First we collapse
the 3-ball onto a cube B which is contained in it. Next we penetrate through
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Fig. 1.6. Bing’s House and Abalone

Fig. 1.7. Going from a triangulation to a handle decomposition

the upper tube into the lower room and exhaust the interior of the room
keeping the quadrilateral membrane fixed. Finally, we do the same with the
upper room.

To collapse the 3-ball onto the Abalone, one may collapse it onto the
Abalone with a filled tube and then, starting from the ends of the tube, push
in the 3-dimensional material of the tube until we get the meridional disc.

Theorem 1.1.13 ([20]). Any compact 3-manifold possesses a special spine.

Proof. Let M be a 3-manifold with boundary and let T be a triangulation
of M . Consider the handle decomposition generated by T . This means the
following: We replace each vertex with a ball Bi (a handle of index 0), each
edge with a beam Cj (a handle of index 1), and each triangle with a plate Pk

(a handle of index 2), see Fig. 1.7. The rest of M consists of index 3 handles.
Let P be the union of the boundaries of all handles: P =

⋃
i,j,k ∂Bi∪∂Cj∪

∂Pk (the boundaries of index 3 handles do not contribute to the union). Then
P is a special polyhedron and is indeed a special spine of M with an open ball
removed from each handle. Alternatively, one can construct a special spine of
multipunctured M by taking the union of ∂M and the 2-dimensional skeleton
of the cell decomposition dual to T .

It remains to show that if M with m > 1 balls removed has a special
spine, then M with m − 1 balls removed also has a special spine. We do that
in two steps. First, we show that as long as the number of removed balls is
greater than one, there exist two distinct balls separated by a 2-component of
P . This can be achieved by considering a general position arc connecting two
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Fig. 1.8. The arch construction

distinct balls and observing that it must pass transversally through at least
one separating 2-component.

The second step consists in puncturing the spine to fuse these two balls
into one so that the remaining spine is also special. If we just made a hole to
cut our way through the 2-component, the boundary of the hole would contain
points of forbidden types. One can try to collapse the punctured spine as long
as possible with hoping to get a special polyhedron, but sometimes we would
end up with a polyhedron which is not even simple. So we must find a way to
avoid this. The arch construction illustrated in Fig. 1.8 gives us a solution.

The arch connects two different balls separated by a 2-cell C in such a
way as to form a special polyhedron. To see this, consider how we get such an
arch: first add a “blister” to the spine as illustrated in Fig. 1.8. This is done by
considering a neighborhood of the spine and then collapsing most of it (except
the blister) back down to the spine. Squeeze in the blister until what remains
is a filled tube attached by a membrane F to the spine. From each end of the
tube, push in its contents until all that remains is a disk in the middle of the
tube. Now remove this disk.

The claim is that we get a special spine for M with the number of removed
balls decreased by one. The crux of the matter is that each of the 2-components
of the new spine is a 2-cell. Actually the only suspicious 2-component is D,
that appeared after joining 2-components A and B by the arch. Clearly, D
is a 2-cell provided A = B (if A = B, we get either an annulus or a Möbius
band). To see that the proviso always holds, one should use the fact that we
have started with two distinct balls separated by the 2-component C: A differs
from B, since they separate different pairs of balls.

After a few such steps we get a special spine P ′ of once punctured M . If
M is closed, then we are done. If not, we slightly push P ′ into the interior of
M and use the arch construction again to unite the ball and a component of
M \ P ′ homeomorphic to ∂M × [0, 1). ��

Remark 1.1.14. Bing’s House with two Rooms is a good illustration for the
above proof. This polyhedron is obtained from a 2-sphere with a disk in the
middle by applying the arch construction twice.
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Lemma 1.1.15. Let Pi ⊂ Mi be special subpolyhedra of 3-manifolds Mi,
i = 1, 2. Then any homeomorphism h : P1 → P2 can be extended to a homeo-
morphism h1 between their regular neighborhoods.

Proof. We construct h1 in three steps:

1. Extend h to neighborhoods of the true vertices.
2. Extend h to neighborhoods of the edges.
3. Extend h to neighborhoods of the 2-components.

For i = 1, 2 choose triangulations (Ki, Li) of the pairs (Mi, Pi) such that h is
simplicial with respect to triangulations L1, L2.

To extend the homeomorphism to neighborhoods of the true vertices, ob-
serve that for any true vertex v of L1 the link lk(v,K ′′

1 ) of v in the second
barycentric subdivision K ′′

1 of K1 is a 2-sphere, and the link lk(v, L′′
1) is a

complete graph Γ4 with four vertices. Certainly, the same holds for the true
vertices of L2. One of the properties of the graph Γ4 is that it can be imbed-
ded into a 2-sphere in a unique way (up to homeomorphisms of the sphere).
It follows that the homeomorphism between | lk(v, L′′

1) | and | lk(h(v), L′′
2) |

induced by h can be extended to a homeomorphism between the 2-spheres
| lk(v,K ′′

1 ) | and | lk(h(v),K ′′
2 ) |. By using the cone construction, we get an

extension to the ball neighborhood of v. To extend the homeomorphism to
neighborhoods of the edges, we use a similar argument: A polyhedron that
consists of two disks and three arcs connecting them can be embedded in S2

in a unique way.
Finally, we extend the homeomorphism to neighborhoods of 2-components.

This extension is possible because every 2-component is a 2-cell, and a neigh-
borhood of a 2-cell is a direct product of that 2-cell by an interval. This
completes the proof. ��
Remark 1.1.16. If P1, P2 are simple but not special, then the above proof
shows that any homeomorphism h:P1 → P2 can be extended to homeomor-
phism between neighborhoods of their singular graphs SP1, SP2. However,
further extension of h onto neighborhoods of 2-components of P1 may be
impossible.

Theorem 1.1.17. If two compact connected 3-manifolds have homeomorphic
special spines and either both are closed or both have nonempty boundaries,
then these 3-manifolds are homeomorphic.

Proof. If both 3-manifolds have nonempty boundaries, we identify them with
regular neighborhoods of special spines and apply Lemma 1.1.15. If both man-
ifolds are closed, we apply Lemma 1.1.15 to the corresponding punctured man-
ifolds and use the cone construction to get a desired homeomorphism between
the manifolds. ��

The meaning of Theorem 1.1.17 is that any special spine of a manifold
determines it uniquely. It follows that special spines may be viewed as pre-
sentations of 3-manifolds.
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One should point out that, in contrast to group theory where every presen-
tation determines a group, not every special polyhedron presents a 3-manifold.
It is because there exist unthickenable special polyhedra which cannot be em-
bedded into 3-manifolds.

Example 1.1.18. We attach the disc D2 by its boundary to the projective
plane RP 2 along the projective line RP 1. All the 2-components of the 2-
polyhedron P obtained in this way are 2-cells. However, P cannot be embed-
ded into a 3-manifold M . Indeed, if this were possible, the restriction to RP 1

of the trivial normal bundle of D2 in M would be isomorphic to the nontrivial
normal bundle of RP 1 in RP 2.

Since P has no true vertices, it is not special. Nevertheless, it is easy
to attach to P additional 2-cells (bubbles) to get an unthickenable special
polyhedron.

It turns out that the “normal bundle obstruction” described above is the
only thing that can make a special polyhedron unthickenable. To make this
claim precise, let us describe the behavior of a special polyhedron in a neigh-
borhood of the boundary of a 2-component.

Let α be a 2-component of a special polyhedron P . Then there is a char-
acteristic map f : D2 → P , which takes Int D2 onto α homeomorphically and
whose restriction onto S1 = ∂D2 is a local embedding. We will call the curve
f|∂D2 : ∂D2 → P (and its image f|∂D2(∂D2)) the boundary curve of α.

Denote by A ∪ D the annulus S1 × I with a disc D2 attached along its
middle circle, and by M ∪ D a Möbius band with a disc D2 attached along
its middle line.

Definition 1.1.19. We say that the boundary curve of a 2-component α of a
special polyhedron P has a trivial or nontrivial normal bundle if its character-
istic map f : D2 → P can be extended to a local embedding f (A∪D) : A∪D → P
or to a local embedding f (M∪D) : M ∪ D → P , respectively.

A simple way to determine the type of a normal bundle is to go around the
boundary curve and follow the behavior of a normal vector (in the PL sense).
Nothing happens when we are moving along a triple line. The events near
true vertices are shown in Fig. 1.9. The normal bundle is trivial or nontrivial

Fig. 1.9. Normal vectors passing through true vertices. Since the typical neighbor-
hood of a true vertex is totally symmetric, both pictures are equivalent
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depending on whether we get the same vector we have started with or the
opposite one.

Theorem 1.1.20. A special polyhedron P is thickenable if and only if the
boundary curves of all its 2-components have trivial normal bundles.

Proof. Denote by N(SP ) a small regular neighborhood of the singular graph
SP in P . Blowing up each vertex of SP to a 3-ball and each edge of SP to
an handle of index 1, one can easily construct a not necessarily orientable
handlebody H and an embedding N(SP ) → H such that N(SP ) ∩ ∂H is a
union of circles and SP is a spine of H.

Suppose that all the normal bundles are trivial. Then all the circles in
N(SP ) ∩ ∂H have annular neighborhoods in ∂H. Therefore, all the discs in
Cl(P \ N(SP )) can be expanded to index 2 handles attached to H. we get a
3-manifold M together with an embedding P → M .

If at least one boundary curve of a 2-component of P has a nontrivial
normal bundle, we use the same argument as in Example 1.1.18 to prove that
P is unthickenable. ��

1.1.5 Special Polyhedra and Singular Triangulations

The aim of this section is to bring together two dual ways of presenting 3-
manifolds: special spines and triangulations.

Definition 1.1.21. A compact polyhedron Q is called a singular 3-manifold
if the link Fx = lk(x,Q) of every point x ∈ Q is a closed connected surface.

It follows from the definition that every point x ∈ Q has a conic regular
neighborhood N(x) ≈ Con(Fx), where Con(Fx) is the cone with the vertex x.
If Fx is not a 2-sphere, x is called singular. Since all other points of Con(Fx)
are nonsingular, Q contains only finitely many singular points. All other points
of Q have ball neighborhoods.

Remark 1.1.22. A simple way to construct an example of a singular 3-
manifold is to take a genuine 3-manifold M with boundary and add cones
over all the boundary components, see Fig. 1.10.

Fig. 1.10. Singular manifold
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It is readily seen that any singular 3-manifold Q can be obtained in this
way. An easy calculation of the Euler characteristic of Q shows that χ(Q) =
χ(M) +

∑
i(1 − χ(Fi)), where Fi are the components of ∂M . Since χ(M) =

(1/2)χ(∂M) = (1/2)
∑

i χ(Fi), we have χ(Q) = (1/2)
∑

i(2−χ(Fi)). It follows
that Q is a genuine manifold if and only if 2 − χ(Fi) = 0 for all i, i.e., if
χ(Q) = 0. Indeed, since χ(Fi) ≤ 2 for all i, (1/2)

∑
i χ(Fi) = 0 if and only if

all the summands are zeros, i.e., all Fi are 2-spheres.

Suppose we are given a finite set D = {∆1,∆2, . . . ,∆n} of disjoint tetra-
hedra and a finite set Φ = {ϕ1, ϕ2, . . . , ϕ2n} of affine homeomorphisms be-
tween triangular faces of the tetrahedra such that every face has a unique
counterpart. In other words, the set of all faces of the tetrahedra should
be divided into pairs, and the faces of every pair should be related by an
affine isomorphism. We will refer to the pair (D, Φ) as to a face identification
scheme.

Let us identify now all the faces of the tetrahedra via the homeomorphisms
{ϕj , 1 ≤ j ≤ 2n}. The resulting polyhedron will be called the quotient space
and denoted by M̂(D, Φ). The following result is classical (see [112]).

Proposition 1.1.23. The quotient space M̂ = M̂(D, Φ) of any identification
scheme (D, Φ) is a singular manifold. M̂ is a genuine 3-manifold if and only
if χ(M̂) = 0.

Proof. If a point x ∈ M̂ corresponds to a point in the interior of a tetrahedron
or to a pair of points on the faces, then the existence of a ball neighborhood
of the point x in M̂ is obvious. Suppose that x comes from identifying points
x1, x2, . . . , xn which either are vertices of tetrahedra or lie inside edges. The
link of each point xi in the corresponding tetrahedron is a polygon: A bian-
gle, if xi lies inside an edge, and a triangle, if it is a vertex. The link of the
corresponding point of M̂ is obtained from these polygons by pairwise iden-
tifications of their edges. It follows that it is a closed connected surface. The
second statement of Proposition 1.1.23 follows from Remark 1.1.22. ��

Remark 1.1.24. All singular points of the singular manifold M̂ = M̂(D, Φ)
correspond either to vertices or to barycenters of edges of the tetrahedra of D.

The latter happens when the projection map p : ∪i∆i → M̂ folds the
edges so that symmetric points (with respect to the barycenters) have the
same image.

Definition 1.1.25. A face identification scheme (D, Φ) is called admissible
if all singular points of the quotient manifold M̂ = M̂(D, Φ) correspond to
vertices of the tetrahedra of D, i.e., if the projection map folds no edges.

Let (D, Φ) be an admissible face identification scheme and p:∪i∆i → M̂
the projection map. Then the images under p of the tetrahedra and their
closed faces of all dimensions of the projection p : ∪n

i=1∆i → M̂ can be con-
sidered as singular simplices. We will call the decomposition of M̂ into singular
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simplices a singular triangulation of M̂ . Simplices of a singular triangulation
are not necessarily embedded (but their interiors are), and the intersection of
different simplices may consist of several faces. Nevertheless, singular triangu-
lations possess almost all the properties of usual triangulations: one can take
barycentric subdivisions, consider dual decompositions, and so on. It is worth
mentioning that any genuine triangulation is a singular one, and taking the
second barycentric subdivision of any singular triangulation makes it genuine.
The advantage of singular triangulations is that they are more economical in
the sense of having a smaller number of simplices. For example, any closed
3-manifold admits a one-vertex triangulation, i.e., a singular triangulation
with a single vertex.

Let (D, Φ) be a face identification scheme. Recall that any tetrahedron
∆ ∈ D contains a copy E = ∪i | lk(vi,∆

′) | of the butterfly, see Defini-
tion 1.1.8 and Fig. 1.5 (right). Since the face identifications Φ are affine, gluing
the tetrahedra induces gluing the corresponding butterflies together. We get a
special polyhedron P = P (D, Φ). Another way of viewing P is to recall that it
coincides with PT = ∪j | lk(vj , T

′) |, where T ′ is the barycentric subdivision
of the singular triangulation T and vj , 1 ≤ j ≤ m, are all the vertices of T .

Theorem 1.1.26. The correspondence (D, Φ) → P (D, Φ) induces a bijec-
tion between (the equivalence classes of) face identification schemes and (the
homeomorphism classes of) special polyhedra. Moreover, a face identification
scheme is admissible if and only if the corresponding special polyhedron is
thickenable.

Proof. To prove the bijectivity, it is sufficient to describe the inverse map. Let
P be a special polyhedron. Choose a point aC inside every 2-component C
of P and a point be inside every edge e of P . Connect each point aC by arcs
in C with all those points be that lie on the boundary curve of C. We get a
decomposition of P into a collection {Ej} of butterflies. In other words, P
can be obtained by gluing together several butterflies Ej . Replace each Ej by
a copy ∆j of the standard tetrahedron such that Ej ⊂ ∆j . Now gluing the
Ej determines the face identification of ∆j .

To prove the second statement, consider an admissible face identification
scheme (D, Φ). Let us glue together truncated tetrahedra instead of genuine
ones. We get a genuine manifold M ⊃ P (D, Φ). Since any truncated tetrahe-
dron ∆j can be collapsed onto a butterfly Ej , the polyhedron P (D, Φ) is a
special spine of M .

Conversely, let P be a special spine of a 3-manifold M with nonempty
boundary and (D, Φ) the face identification scheme corresponding to P . Then
M embeds into M̂ = M̂(D, Φ) so that the complement consists of regular
neighborhoods of the vertices of M̂ . This means that (D, Φ) is admissible. ��

The correspondence above looks especially simple if we restrict it to the
class of one-vertex singular triangulations of genuine closed manifolds. Let T
be a singular triangulation of a closed 3-manifold M . Then it determines a
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face identification scheme and thus a special polyhedron, which we denote by
P (T ).

Corollary 1.1.27. The correspondence T → P (T ) induces a bijection be-
tween (the equivalence classes of) one-vertex triangulations of a closed mani-
fold M and (the homeomorphism classes of) special spines of M such that the
number of tetrahedra in T is equal to the number of true vertices of P (T ).

Proof. Let T be a one-vertex triangulation of M and v the unique vertex of
T . Then PT and M \ PT can be identified with the link | lk(v, T ′) | and the
open star M \PT of v in T , respectively. Since M is a manifold, M \PT is an
open ball. It follows that PT is a special spine of M .

Conversely, let P be a special spine of M and (D, Φ) the corresponding
admissible face identification scheme. By construction of (D, Φ), P embeds
into the corresponding singular manifold M̂(D,⊕) and determines a singular
triangulation T of M̂(D,⊕). If we replace coherently every tetrahedron of T
by the corresponding truncated one, we get a manifold M0 ⊃ M̂(D,⊕) such
that M0 collapses to P and M̂(D,⊕) is obtained from M0 by taking cones
over all the components of ∂M0. The vertices of the cones coincide with the
vertices of T . Since P is a special spine of the closed manifold M , ∂M0 is a
sphere. It follows that T has only one vertex and M̂(D,⊕) is homeomorphic
to M . ��

Let M be a compact 3-manifold whose boundary consists of tori. By a
topological ideal triangulation of M we mean a decomposition of Int M into
tetrahedra with their vertices removed. Let P be a special spine of M . Then
one can easily construct an ideal triangulation T = T (P ) of M by taking the
corresponding singular triangulation and removing all its vertices.

Corollary 1.1.28. If the boundary of a 3-manifold M consists of tori, then
the correspondence P → T (P ) induces a bijection between (the homeomor-
phism classes of) special spines of M and (the equivalence classes of) ideal
triangulations of M and such that the number of the tetrahedra in T (P ) is
equal to the number of true vertices of P .

Proof. Follows from Theorem 1.1.26. ��
Corollary 1.1.28 facilitates the construction of ideal triangulations: All

that we Have to do is to construct a special spine, which is much easier. This
observation is particularly important for constructing hyperbolic 3-manifolds
by Thurston’s method [120].

1.2 Elementary Moves on Special Spines

Any 3-manifold possesses infinitely many different special spines. How to
describe all of them? In this section we solve this problem by showing that
any two special spines of the same 3-manifold are related by a sequence of
elementary moves.
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1.2.1 Moves on Simple Polyhedra

Definition 1.2.1. A compact polyhedron P is called a simple polyhedron with
boundary if the link of each of its points is homeomorphic to one of the
following 1-dimensional polyhedra:

(a) A circle
(b)A circle with a diameter
(c) A circle with three radii
(d)A closed interval
(e) A wedge of three segments with a common endpoint

The set of points of P that have no neighborhoods of types (a), (b), (c) is
called the boundary of P and denoted by ∂P .

Comparing this definition with the definition of a simple polyhedron (see
Definition 1.1.8), we see two new allowed singularities (d) and (e) that corre-
spond to the boundary points. The boundary of a simple polyhedron can be
presented as a graph such that any vertex is incident to two or three edges.
For example, the boundary of the standard butterfly is the complete graph
Γ4 with four vertices.

Definition 1.2.2. Let P be a simple polyhedron and Q a simple polyhedron
with boundary contained in P . Then Q is called proper if Q \ ∂Q is open in
P . In other words, Q ⊂ P is proper if after cutting P along ∂Q we get a copy
of Q disjoint from the rest of P .

Let us describe now two special polyhedra ET , E′
T with boundary. ET is a

typical neighborhood of an edge in a simple polyhedron. It consists of a “cap”
and a “cup” joined by a segment, with three attached “wings” (see Fig. 1.11,
on the left). E′

T is the union of the lateral surface of a cylinder, a middle
disc, and three wings (see Fig. 1.11, to the right). Note that there is a natural
identification of ∂ET with ∂E′

T .

Fig. 1.11. The T-move
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Fig. 1.12. An alternative form of T

Definition 1.2.3. The elementary move T on a simple polyhedron P consists
in removing a proper subpolyhedron ET ⊂ P and replacing it by E′

T .

Notice that T increases the number of true vertices in a polyhedron by one,
while the inverse move T−1 decreases it. Also note that we start and finish
with simple polyhedra that have more than one true vertex each. Another
way of viewing T is shown in Fig. 1.12. We present ET as a butterfly E with
one additional wing and then deform the attaching curve of that wing by an
isotopy through the vertex of the butterfly.

Remark 1.2.4. We have defined the moves T±1 as moves on abstract sim-
ple polyhedra, without referring to embeddings in 3-manifolds. On the other
hand, we can think of the pairs (ET , ∂ET ), (E′

T , ∂E′
T ) as being embedded into

(D3, S2) such that ∂ET = ∂E′
T and D3 collapses onto ET and E′

T . It follows
that if we apply the moves T±1 to a special subpolyhedron P of a 3-manifold
M , then they can be realized inside M . In particular, if P is a special spine
of M , then we get another special spine of the same manifold. Note that T is
dual to one of Pachner’s moves, see [104,105].

Theorem 1.2.5 tells us that any two spines of the same 3-manifold M
are related by a sequence of moves T±1. It means that we get a complete
description of the set of all special spines of M . This set consists of those
special polyhedra that can be obtained from a particular special spine of
M by successive applications of the moves. This theorem is very important,
since it helps us to introduce and investigate new properties of manifolds by
introducing and investigating those properties of spines which are invariant
under the moves. The only restriction is that we should consider spines with
two or more true vertices, since neither T nor T−1 can be applied to a spine
with one vertex. This restriction is not burdensome, since there are only four
special spines with one vertex. See Fig. 1.13, where the spines are presented by
regular neighborhoods of their singular graphs. The corresponding 3-manifolds
are: lens spaces L4,1, L5,2, the Abalone (see Fig. 1.6), and S2 × I.

Theorem 1.2.5. Let P and Q be special polyhedra with at least two true
vertices each. Then the following holds:

1. If P and Q are special spines of the same 3-manifold, then one can trans-
form P into Q by a finite sequence of moves T±1.
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Fig. 1.13. Special spines of (a) L4,1, (b) L5,2, (c) the Abalone, and (d) S2 × I

Fig. 1.14. The vertex move

2. If one can transform P into Q by a finite sequence of moves T±1 and one
of them is a special spine of a 3-manifold, then the other is a special spine
of the same manifold.

Conclusion 2 of the theorem follows from Remark 1.2.4 and Theorem 1.1.17.
For the proof of the difficult first conclusion see the Sect. 1.3.

We now introduce two auxiliary moves related to the T -move above: the
vertex move V and the lune move L. Let A,B be two opposite wings of the
butterfly E, see Fig. 1.4. Present E as a disc D2 with the wings A,B attached
along two diameters d1, d2 of D2. Let us cut out A from E and reattach it to
the remaining part of E along a simple curve l ⊂ D2 that has the same ends
as d1 and crosses d2 transversally at three points. The resulting polyhedron
will be denoted by EV .

Definition 1.2.6. The vertex move replaces a butterfly E in a simple poly-
hedron P by the fragment EV , see Fig. 1.14.

Remark 1.2.7. Note that E and EV can be embedded into D3 such that
∂E = ∂EV and D3 collapses on each of them. It follows that if we apply V
or V −1 to a polyhedron embedded into a 3-manifold, than that move can be
realized inside the manifold.

The V -move is needed to work with special polyhedra having exactly one
true vertex. In the case of ≥ 2 true vertices this move is superfluous.
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Proposition 1.2.8. If a special polyhedron P has more than one true vertex
then the V -move is a composition of the moves T±1.

Proof. Figure 1.15 shows how one can express the V -move as a product of
three T -moves and one move T−1. ��

Let us describe now a new move called an ambient lune move. In contrast
to the moves T and V , we define it for simple subpolyhedra of a 3-manifold
M , not for abstract simple polyhedra. Let ET , E′

T be the simple polyhedra
with boundary which participate in the definition of the move T . We may
think of them as being embedded into a 3-ball B3. Let the pair (B3, EL)
be obtained from (B3, ET ) by removing a wing passing through both ver-
tices of ET . Similarly, (B3, EL) is obtained from (B3, E′

T ) by removing the
corresponding wing.

Definition 1.2.9. Let P be a simple subpolyhedron of a 3-manifold M and B3

a ball in M . Suppose that the pair (B3, B3 ∩ P ) is homeomorphic to the pair
(B3, EL) described above. Then the lune move replaces the fragment EL =
B3 ∩ P of P by E′

L ⊂ B3, see Fig. 1.16.

Fig. 1.15. V -move is a composition of T±1-moves

Fig. 1.16. The lune move
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Remark 1.2.10. The lune move L differs from T±1 and V ±1 in two respects.
First, it is applicable only to simple polyhedra that lie in 3-manifolds. We
emphasize this by speaking of an ambient lune move. The abstract definition
(similar to the ones given for T±1 and V ±1) is inadequate due to the fact
that the graph ∂EL homeomorphic to a circle with two disjoint chords can
be embedded into S2 in two inequivalent ways. Indeed, it suffices to permute
a chord spanning an arc of the circle with that arc. In general, abstract lune
moves cannot be realized within 3-manifolds.

Second, whereas application of any one of the moves T±1, V ±1, L to a
special polyhedron automatically yields another special polyhedron, L−1 may
give rise to an annular or a Möbius 2-component. This happens when the
wings c′, c′′ (see Fig. 1.16) lie in the same 2-component of Q.

Lemma 1.2.11. If an ambient lune move L transforms a special spine P
of a 3-manifold M into another spine P ′, then it can be represented as a
composition of moves T±1, V ±1. Equivalently, any move L−1 transforming a
spine of M into a special spine of M is a composition of moves T±1, V ±1.

Proof. It is sufficient to prove the first statement. The result of applying L
is completely determined by the curve γ, see Fig. 1.16. Since P is special, the
2-component c of P containing γ is a 2-cell. Therefore γ decomposes c into
two cells c′ and c′′. The boundary curve of at least one of these cells (say, of
c′) must contain a true vertex of P . If it contains only one true vertex, then
L coincides with V (see Fig. 1.17).

If there are more, their number can be reduced to one by shifting γ within c.
To be precise, let us introduce two types of elementary moves on simple curves
in c with endpoints in the boundary of c. The first move shifts an endpoint
of c through a true vertex of P . The second one permutes the endpoints by
shifting one through the other. The latter is possible only when the boundary
curve of c passes at least twice along the edge e containing the endpoints and γ
approaches e along different wings. It is evident that these moves are sufficient
for transforming γ into the desired position when c′ contains only one true
vertex and L is V . It remains to show how the moves on curves in c can be

Fig. 1.17. Vertex move as a special case of the lune move
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Fig. 1.18. Two steps that realize the endpoint-through-vertex move

realized by moves T±1 on P . The realization for the first case is explicitly
presented in Fig. 1.18: We bypass the true vertex by taking two steps T and
T−1. For a realization of the second case see Fig. 1.19. ��

1.2.2 2-Cell Replacement Lemma

In this section we prove that, under certain conditions, replacement of one
2-cell of a simple subpolyhedron of a 3-manifold by another can be realized
by a sequence of moves T±1, L±1.

Definition 1.2.12. Let P be a simple polyhedron in a 3-manifold M . An open
ball V ⊂ M \ P is called proper (with respect to P ), if Cl(V ) \ V ⊂ P .

It is worth mentioning that in general Cl(V ) may be not a 3-ball. this can
happen when V approaches a 2-cell of P from two sides. In particular, if V is
the complement to a spine of a closed 3-manifold M , then Cl(V ) = M .

Lemma 1.2.13. Let an open 3-ball V in a 3-manifold M be proper with re-
spect to a simple subpolyhedron P ⊂ M . Then closure Cl(V ) is a compact
submanifold of M whose boundary is contained in P .

Proof. Let x be a point of Cl(V ) \ V . By Definition 1.2.12, we have x ∈ P .
If x is an interior point of a 2-component of P , then a neighborhood of x in
Cl(V ) is either a half-ball or a ball depending on whether V is adjacent to
the 2-component from one side or from both sides. If x is a triple point or a
true vertex of P , then we have the same result: x is either an interior point
of Cl(V ) (if V surrounds x from all sides) or lies in the boundary of Cl(V )
(otherwise). It follows that Cl(V ) is a 3-manifold. ��

Definition 1.2.14. If V is a proper ball in a 3-manifold M with a simple
subpolyhedron P , then Free(V ) = ∂Cl(V ) is called the free boundary of V .
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Fig. 1.19. How to realize the endpoint-through-endpoint move of the endpoints

It follows from Lemma 1.2.13 that the definition makes sense and that
Free(V ) is a closed surface.

Definition 1.2.15. Let P be a simple polyhedron and l a curve in P . Then l
is in general position if it possesses the following properties:

(1) l is locally simple (by a locally simple curve we mean the image of a map
f : S1 → P such that f is a local embedding).

(2) l intersects itself transversally.
(3) l contains only double crossing points.
(4) l intersects triple lines of P transversally.
(5) Crossing points of l with itself do not lie on the triple lines.
(6) l contains no true vertices of P .
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Fig. 1.20. The homotopy of the 2-cell through the proper ball

Lemma 1.2.16. (2-cell replacement) Let P ⊂ M be a simple polyhedron,
V ⊂ M a proper ball, and c0, c1 ⊂ Free(V ) two 2-components of P such that
they are open 2-cells and the polyhedron P \ (c0 ∪ c1) is simple. Then the
simple polyhedra P0 = P \ c1 and P1 = P \ c0 can be connected by a sequence
consisting of T±1 and L±1 moves.

Proof. Since V is a ball, there exists a homotopy ht : D2 → Cl(V ), 0 ≤ t ≤ 1,
such that the following holds:

1. h0(D2) = Cl(c0) and h1(D2) = Cl(c1).
2. If 0 < t < 1, then ht(D2) ⊂ Cl(V ) \ (c0 ∪ c1) and ht(Int D2) ⊂ V .
3. The restriction of ht onto Int D2 is an isotopy.
4. The restriction of ht onto ∂D2 is a local isotopy, i.e., an isotopy near each

point (x, t) ∈ ∂D2 × I, see Fig. 1.20.

Let us call a moment of time t singular if the curve lt = ht(∂D2) is not in
general position. It means that at least one of the following holds:

(a) lt intersects itself nontransversally.
(b) lt intersects itself in a triple point of P .
(c) lt intersects an edge of P nontransversally.
(d) lt passes through a true vertex of P .

Note that if lt is self-transversal, then it cannot pass through a point of P three
times, since lt is the boundary curve of the disc ht(D2) with the embedded
interior.

By the general position argument, we may assume that there are only
finitely many singular moments and that the behavior of lt near each singular
moment (x, t) ∈ ∂D2 × I is canonical, as is illustrated in Fig. 1.21. The labels
a–d in the figure indicate the types of the corresponding singular moments.
We can see that the changes consist in applying one of the moves T,L or one
of their inverses. This is naturally enough, since T and L had been invented
for describing modifications of a simple polyhedron when the boundary curve
of a 2-component is moving with respect to the other triple lines. ��
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Fig. 1.21. Events in neighborhoods of singular moments

1.2.3 Bubble Move

We introduce now another move B illustrated in Fig. 1.22. It is called the
bubble move and consists in attaching a 2-disc to a neighborhood of a point
x ∈ P . There are three types of the bubble move depending on the type of x.
Let us describe this move rigorously.

Let P be a simple subpolyhedron of a 3-manifold M . Choose a point
x ∈ P and its ball neighborhood N(x) ⊂ M such that for the polyhedron
S(x) = P ∩ N(x) the following holds:

1. If x is a nonsingular point of P , then S(x) is a disc.
2. If x lies on a triple line of P , then S(x) is homeomorphic to Y × I, where

Y is a wedge of three segments with a common endpoint.
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Fig. 1.22. The bubble move

3. If x is a true vertex, then S(x) is a butterfly.

Evidently, S(x) is a simple polyhedron whose boundary ∂S(x) decomposes
the sphere ∂N(x) into 2, 3, or 4 discs, depending on the type of x. Choose
from them one disc D and add it to P . We get a new simple subpolyhedron
P ′ ⊂ M .

Definition 1.2.17. The transition from P to P ′ is called a bubble move at
x and denoted by B.

Let us describe a few properties of the bubble move. First, it is an ambient
move; one can apply it only to subpolyhedra of 3-manifolds. Of course, one
can define a bubble move for abstract simple polyhedra, but we do not need
that.

Second, the resulting polyhedron P ′ = P ∪ D does not depend on the
choice of D. If we add to P another disc D ⊂ S(x) such that D′ ∩ P = ∂D′,
then we get an isotopic polyhedron.

Third, in contrast to moves T, V , and L, the bubble move changes the
homotopy type of P , in particular, increases the Euler characteristic of P by
one. For example, if P is a simple spine of M , then P ′ is a simple spine of
M \ Int D3, where D3 is a ball in Int M .

Finally, there are three types of bubble moves, which depend on the type
of the initial point x. To compare them, let us force x to slide along a 2-
component α of P to a point y in a triple line l and then along l to a true
vertex v. Denote by P ′(x), P ′(y), and P ′(v) polyhedra, obtained from P by
attaching bubbles at x, y, and v, respectively. It is easy to see that they are
related as follows: P ′(y) is obtained from P ′(x) by move L, P ′(v) is obtained
from P ′(y) by move T . We may conclude that all three types of the bubble
move are equivalent up to the moves T±1, L±1.

In what follows we will use different combinations of the moves T,L,B.

Definition 1.2.18. Two simple subpolyhedra P1, P2 of a 3-manifold M are
T -equivalent (notation: P1

T∼P2) if one can pass from P1 to P2 by a finite
sequence of moves T±1. If, in addition, moves L±1 are allowed, then we say



24 1 Simple and Special Polyhedra

that the polyhedra are (T,L)-equivalent and write P1
T,L∼ P2. The moves B±1

together with T±1, L±1 produce the bubble equivalence that will be denoted by
P1

T,L,B∼ P2.

Lemma 1.2.19. Let c be a 2-component of a simple subpolyhedron P ⊂ M
such that c is an open 2-cell, the polyhedron P1 = P \ c is simple, and c lies

in the free boundary of a proper ball V ⊂ M \ P . Then P
T,L,B∼ P1.

Proof. We add to P1 a bubble D such that it cuts off a 3-ball B from V and
does not intersect c. Then V1 = V \ B is a proper 3-ball for P ∪ D such that
the cells c and D are contained in its free boundary. Applying Lemma 1.2.16,
we obtain that the polyhedron P1∪D is (T,L)-equivalent to P . It follows that

P
T,L,B∼ P1. See Fig. 1.23. ��

Theorem 1.2.20. Any two simple spines of the same manifold M are bubble
equivalent.

Proof. Let K ⊂ M be a simplicial complex. Assign to K a simple polyhedron
W (K) as follows: Replace each vertex by a handle of index zero (ball), each
edge by a handle of index one (beam) and each triangle by a handle of index
two (plate). Then W (K) is defined as the union of the boundaries of all these
handles. We used this construction in the proof of Theorem 1.1.13. We claim
that:

(1) If |K| is a simple polyhedron, then |K|T,L,B∼ W (K).

(2) If K ↘ L, then W (K)
T,L,B∼ W (L).

(3) If Ks is a stellar subdivision of K, then W (Ks)
T,L,B∼ W (K).

Let us prove (1). To replace a vertex by the boundary of a ball it is sufficient
to perform a bubble move that creates a bubble at this vertex. To create the
boundary of a beam, we add a bubble at the corresponding edge and expand
it over the edge by two T -moves. Similarly, we create bubbles and expand
them to the boundaries of plates.

To prove (2), it is sufficient to analyze the behavior of W (K) under
elementary collapses K ↘ K1 = K \ (σn ∪ δn−1), where σn is a principal

Fig. 1.23. Removing a 2-cell from the free boundary of a proper ball is a bubble
equivalence
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simplex and δn−1 is a free face of it. In all three cases (n = 1, 2, 3), W (K1)
can be obtained from W (K) by removing two 2-cells. The first cell lies in the
boundary of the handle containing δn−1, the second cell is responsible for the
handle corresponding to σ. The transformation W (K) → W (K1) is a bubble
equivalence by Lemma 1.2.19 (proper balls required for the application of the
Lemma are just the interiors of handles).

In order to prove (3), we also analyze the behavior of W (K) under
elementary stellar subdivisions and show that its (T,L,B)-class remains the
same.

Now let P1 and P2 be simple spines of M. There exist triangulations T1, T2

of M such that P1 and P2 can be presented as subcomplexes K1 ⊂ T1,K2 ⊂ T2

and T1 ↘ K1, T2 ↘ K2. We have

P1
T,L,B∼ W (K1)

T,L,B∼ W (T1)
T,L,B∼ W (T2)

T,L,B∼ W (K2)
T,L,B∼ P2,

where the first and last equivalences come from (1), the second and forth ones
come from (2). Then we apply the Alexander Theorem [1] to show that T1 can
be transformed to T2 by a sequence of stellar subdivisions and their inverses,
and use (3).

1.2.4 Marked Polyhedra

In the last section we have proved that any two simple spines P1, P2 of the
same 3-manifold are bubble equivalent. A stronger statement is true – we may
dispense with the B-move entirely. This is a more satisfying situation in that
the intermediate polyhedra are also simple spines for the given manifold. Note
that in situation of the earlier theorem one can get a polyhedron which is not
a spine, already after the first bubble move.

In order to show that the bubble move is unnecessary, we will introduce a
new concept of marked polyhedra.

Definition 1.2.21. A mark m on a simple subpolyhedron P of a 3-manifold
M is a simple arc in a 2-component c of P such that one endpoint of m is in
the interior of c, the other in a triple line and m ⊂ Free(V ) for some proper
ball V ⊂ M . A simple polyhedron P ⊂ M with a mark m is called a marked
polyhedron and denoted (P,m).

Definition 1.2.22. Two marked polyhedra P1, P2 are (T,L,m)-equivalent

(notation: P1
T,L,m∼ P2) if one can pass from one to the other by the follow-

ing moves:

(1) T±1- and L±1-moves carried out far from the mark. This means that the
mark must lie outside the fragments of P that are replaced during the
moves.

(2) m-move consisting of transferring the mark from one 2-cell of a bubble to
another 2-cell of the same bubble.
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Fig. 1.24. Marks on a bubble

Fig. 1.25. Transplantation of marks

For example, if the bubble is created at a triple line, then six distinct
marks on it are possible, see Fig. 1.24. The m-move allows marks to be moved
from any one of these positions to any other.

Theorem 1.2.23 shows that the location of a mark on a polyhedron is not
so important. The only requirement is that the mark should be placed in the
free boundary of a proper ball.

Theorem 1.2.23. Suppose two marked polyhedra (P1,m1), (P2,m2) are such

that P1
T,L∼ P2. Then (P1,m1)

T,L,m∼ (P2,m2).

Proof. We divide the proof into two steps. Step 1. First we consider the case
when P1 = P2. Suppose that the marks m1 and m2 lie on the free boundary
of the same proper ball V . Choose a 2-component c ⊂ Free(V ) whose closure
contains no endpoint of m1 or m2; if there is no such 2-component, it can
always be introduced by a lune move in a neighborhood of an arbitrary triple
point in Free(V ). Using the 2-cell replacement (see Lemma 1.2.16), we shift
c in two different ways so that the marks lie on two bubbles created at triple
points, see Fig. 1.25.

We then carry one bubble to the other. It remains to show how one can do
that by means of moves L±1 and m. This is illustrated in Fig. 1.26: Each time
when the mark prevents us from making a move, we transfer it to another cell
of the bubble.
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Fig. 1.26. Bubbles may transport marks

Fig. 1.27. Creating an arch

Suppose now that m1,m2 are on the free boundaries of two different proper
balls V1, V2. As before, we use the 2-cell replacement lemma to get the marks
on two bubbles. The bubbles then can be permuted by moves L±1 and m.

Step 2. Suppose that P1
T,L∼ P2. We transform (P1,m1) to (P2,m2) as

follows: If a T -move or an L-move on P1 is far from the mark, we make it.
Otherwise we use the arguments of (1) to relocate the mark and then make
the move. ��

We were motivated to define marked polyhedra by our wish to show that
the bubble move is redundant. A mark is used to indicate where an arch con-
struction (see Sect. 1.1.4 and Fig. 1.8) should be used to kill the corresponding
proper ball. Let us describe this in detail.

Consider a simple polyhedron P ⊂ M with a mark m ⊂ P . Denote by
c1, c2 those 2-components of P whose closures do not contain the mark, but
contain its endpoint. Remove open discs D1 ⊂ c1,D2 ⊂ c2 and attach an
unknotted tube to the two boundary circles arising in this way. Attach also
to the polyhedron P ′ thus obtained a disc D3 (a membrane) whose boundary
circle passes once along the tube and intersects the singular graph of P at the
endpoint of the mark.

Definition 1.2.24. The transition from a marked polyhedron (P,m) to the
simple polyhedron A(P,m) = P ′ ∪ D3 will be called creating an arch, see
Fig. 1.27.

As we have indicated above, arches annihilate bubbles.
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Fig. 1.28. Creating a bubble with an arch

Lemma 1.2.25. Suppose that a marked polyhedron (Q,m) is obtained from
a simple polyhedron P ⊂ M with a nonempty set of triple points by adding a
bubble B and selecting a mark on the bubble. Then P

T,L∼ A(Q,m).

Proof. We create a bubble with an arch by the moves L, T, L−1, see Fig. 1.28.
First steps create an arch with a disc inside it, the last one converts the disc
to a bubble. ��

Lemma 1.2.26. Suppose two marked polyhedra (Q1,m1), (Q2,m2) in a 3-ma-

nifold M are (T,L,m)-equivalent. Then A(Q1,m1)
T,L∼ A(Q2,m2).

Proof. Arguing by induction, we can suppose that (Q2,m2) is obtained from
(Q1,m1) by a single move. The case of moves T±1, L±1 performed far from
the mark is obvious: one needs only perform the moves far from the arch. To
demonstrate the equivalence of A(Q1,m1) and A(Q2,m2) in the case of an
m-move (transfer of the mark from one 2-cell of a bubble to another 2-cell of
the same bubble), we apply Lemma 1.2.25 twice: First remove the arch and
the bubble, then re-create the bubble with the arch in the other position. ��

Theorem 1.2.27. Any two simple spines of the same manifold are (T,L)-
equivalent.

Proof. Suppose we have two simple spines P1 and P2 of a 3-manifold M . By
Theorem 1.2.20 they are bubble equivalent. Note that P1, P2, being spines of
the same manifold, have the same Euler characteristic, and that each bubble
move increases the characteristic by 1. Therefore, the numbers of moves B
and B−1 in the equivalence are equal. Using an induction on the number of
B±1-moves, we may suppose that P2 is obtained from P1 as follows: Add a
bubble to get a polyhedron Q1, apply moves T±1, L±1 to get a polyhedron
Q2 with another bubble, and destroy this bubble to get P2. Choose marks
m1,m2 on the bubbles.
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Thus we have

P1
T,L∼ A(Q1,m1)

T,L∼ A(Q2,m2)
T,L∼ P2,

where the first and last equivalences are by Lemma 1.2.25 and the middle
equivalence is by Theorem 1.2.23 and Lemma 1.2.26. ��

Our next goal is to eliminate all those moves L−1 that create annular
or Möbius 2-components. By Lemma 1.2.11, such elimination would be suf-
ficient for converting any (T,L)-equivalence between special spines into a
T -equivalence. The idea is that whenever we run into the risk of getting a
nonspecial polyhedron by making L−1, we create an arc with a membrane
described in Sect. 1.1.4.

Let us recall the construction of the arch. Let D1,D2 be open discs in
two neighboring 2-components of a special spine P . Remove them and attach
an unknotted tube C = ∂D2 × I with the middle disc D = D2 × {∗} to
the two boundary circles arising in this way. Attach also a disc membrane
D3 whose boundary circle passes once over the tube and intersects the triple
line separating the 2-components. We get a new special spine P1 of the same
manifold.

Definition 1.2.28. The transition from P to P1 will be called creation of an
arch with a membrane.

Lemma 1.2.29. An arch with a membrane can be created by means of one
move L.

Proof. See Fig. 1.29. ��

Theorem 1.2.30. Let P1 and P2 be special spines of the same manifold M
with at least two true vertices each. Then they are T -equivalent.

Proof. By Theorem 1.2.27, one can pass from P1 to P2 by moves T±1, L,
which preserve the property of a spine of having only disc 2-components, and
by moves L−1, which may create annular and Möbius 2-components. Instead
of doing L−1, we erect an arch with a membrane and only then carry out the
move. This can be realized by the moves L and T−1, see Fig. 1.30.

Fig. 1.29. Creating an arch with a membrane
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Fig. 1.30. Replacing L−1 by L and T

Fig. 1.31. Removing an arch

The arches created by previous steps are very flexible and thus do not
prevent us from carrying out further steps. Whenever an arch intersects a
fragment we wish to replace to make the next move, we shift the arch away
by moves T±1 or L. At the end we get P2 with some extra arches. These extra
arches can be removed by moves T±1 and L±1, see Fig. 1.31 and Lemma 1.2.29.
Since P2 and all intermediate polyhedra that appear during this removal are
special, moves T±1 and V ±1 are sufficient for transforming P1 into P2, see
Lemma 1.2.11. It remains to note that by Proposition 1.2.8 and by the as-
sumption on the number of true vertices of P1, P2, every V -move is a compo-
sition of T -moves. ��

We conclude this section with the remark that Theorem 1.2.30 is exactly
the “difficult part” of Theorem 1.2.5.

1.3 Special Polyhedra Which are not Spines

We have seen in Sect. 1.1.4 (Example 1.1.18) that there exist special polyhedra
which are not spines of any 3-manifold. Let us describe a systematic way
to construct such examples. We start with any special polyhedron P and
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Fig. 1.32. Creating a loop

transform it to produce a new special polyhedron P1 that does not embed
into a 3-manifold. Choose a point on a triple line and modify a neighborhood
of this point by reattaching a sheet incident to this line such that there appears
a new loop as shown in Fig. 1.32.

To prove that the result of this transformation is still a special polyhedron
it suffices to verify that the endpoint of the loop has a neighborhood of the type
allowed by Definition 1.1.8. Indeed, we have a butterfly: The sheets B,C,D
form a disc while the sheet A passes the point twice and thus produces two
wings.

Note that a regular neighborhood of the loop in the modified polyhedron
P1 contains a Möbius band in the union of wings A and C. Assuming that
P1 embeds into a 3-manifold M , we get an embedding of the Möbius band
with the disc D attached along its core circle. But this is impossible, since the
normal bundle of the disc, hence its restriction to the boundary, is trivial.

1.3.1 Various Notions of Equivalence for Polyhedra

In this section we would like to extend the theory of elementary moves on
special spines to a more general category of special polyhedra. We need to
replace the property of being spines of the same 3-manifold by another suitable
notion of equivalence. Let us discuss briefly different types of equivalence
relations for 2-dimensional polyhedra, see Chaps. 1–3, 11, 12 of [47] for a
complete account of the subject. Let X, Y be 2-dimensional polyhedra.

(I) Isomorphism of fundamental groups. X ∼ Y if π1(X) = π1(Y ). This
relation is fairy rough. For example, taking the one-point union with S2 pre-
serves the fundamental group but increases the Euler characteristic by 1. It
might be used as a substitute for the bubble equivalence, since the bubble
move (see Definition 1.22) is essentially an addition of S2.

(II) The same fundamental group and Euler characteristic.

X ∼ Y if π1(X) = π1(Y ) and χ(X) = χ(Y ).

(III) Homotopy equivalence. Recall that two topological spaces X and Y
are homotopy equivalent if there exist maps f :X → Y and g:Y → X such
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that the maps fg : X → X and gf : Y → Y are homotopic to the identity.
The problem of classification of 2-dimensional polyhedra up to homotopy
equivalence is hard. Given a finitely presented group G, one can construct
a 2-dimensional polyhedron KG that realizes G geometrically. To do this,
take a wedge of circles that correspond bijectively to generators. Relations
show how one should attach 2-cells to the wedge to get KG. By construction,
π1(KG) = G. Hence classification of 2-dimensional polyhedra up to homo-
topy equivalence is intimately related to the isomorphism problem for finitely
presented groups. The latter problem is known to be unsolvable.

Surprisingly, the problem of constructing homotopically distinct 2-dimen-
sional polyhedra with the same π1 and χ turned out to be very difficult. It
was solved only in 1976 by Dunwoody [26] and Metzler [92].

(IV) Simple homotopy equivalence. This relation was introduced by White-
head. A basic reference for this material is Milnor’s paper [95]. Originally,
Whitehead worked with simplicial complexes, but later found the theory eas-
ier to express in terms of CW complexes. If we prefer to stay inside the
polyhedral category, we can work with elementary polyhedral collapses (see
Definition 1.1.1) and inverse transformations called elementary polyhedral
expansions. Each elementary move (i.e., an elementary collapse or expan-
sion) has a dimension that by definition equals the dimension of the cell that
disappears, respectively, appears during the move.

Two polyhedra X,Y are said to be simple homotopy equivalent (X s∼Y )
if there is a sequence of elementary expansions and collapses taking X to Y .
The dimension of a simple homotopy equivalence is the maximum of dim(X),
dim(Y ), and dimensions of expansions and collapses in the corresponding se-
quence. It is clear that any simple homotopy equivalence (i.e., the sequence
of expansions and collapses) determines a homotopy equivalence. The con-
verse is not true. Whitehead’s key result states that there is an obstruction
τ(f) for deforming a homotopy equivalence f : X → Y to a simple one.
It takes values in an abelian group Wh(π) that depends only on the group
π = π1(X) = π1(Y ), and vanishes if and only if f originates from a simple
homotopy equivalence. The group Wh(π) and the obstruction τ(f) are now
called Whitehead group and Whitehead torsion.

One should point out that the existence of a nontrivial obstruction does not
automatically imply that the simple homotopy type and homotopy type do not
coincide. In other words, the existence of a homotopy equivalence f : X → Y
with τ(f) = 0 does not exclude the existence of a simple homotopy equivalence
g : X → Y . Indeed, g does exist if and only if there is a self-equivalence X → X
(or Y → Y ) with torsion −τ . A solution of this hard problem was suggested
in 1990 by Metzler [93]. Let K2,4 be the standard geometric realization of the
presentation

〈x, y | x2 = [x, y] = y4 = 1〉.
It can be visualized as a union of a 2-dimensional torus T 2, projective plane
RP 2, and a “four-fold hat” (the quotient space of the disc D2 by the free



1.3 Special Polyhedra Which are not Spines 33

action of Z4 on the boundary) such that a projective line of RP 2 and the
four-fold line of the hat are attached to the meridian x and longitude y of
the torus, respectively. Since π1(K2,4) = Z2 ×Z4, the group Wh(π1(K2,4)) is
trivial. It follows that for any n and any 2-dimensional polyhedron X we have

Wh(π1(X)) = Wh(π1(X ∨n
i=1 K2,4)),

where ∨n
i=1K2,4 is the wedge of n copies of K2,4.

Metzler proved that K2,4 possesses two properties. The first one is that
for any 2-dimensional polyhedron X and any τ ∈ Wh(π1(X)) there is a 2-
dimensional polyhedron Y = Y (X, τ), an integer number n, and a homotopy
equivalence f : X ∨n

i=1 K2,4 → Y such that τ(f) = τ . In other words, all
elements of Wh(π1(X)) are realizable (at the expense of taking one-point
unions with several exemplars of K2,4). This is not very surprising since many
2-dimensional polyhedra (for instance, S2) have this property. The second
property is more interesting. It turns out that one can choose X so that not
all elements of Wh(π1(X)) can be realized as Whitehead torsions of homotopy
equivalences X ∨i K2,4 → X ∨i K2,4. Therefore, there exist Y and n such that
X∨n

i=1K2,4 and Y have the same homotopy type but distinct simple homotopy
types.

The simplest examples of this kind belong to Lustig [71]. They are the
standard geometric realizations for the group presentations

〈x, y, z | y3, yx10y−1x−5, [x7, z]〉,

〈x, y, z | y3, yx10y−1x−5, x14zx14z−1x−7zx−21z−1〉.
Note that for polyhedra the property of being simply homotopy equiva-

lent is fairly close to the property of being spines of the same manifold or,
more generally, of the same polyhedron. Indeed, if we can apply an elemen-
tary collapse followed by an elementary expansion, nothing prevents us from
performing the moves in the reverse order. Hence any simple homotopy equiv-
alence can be replaced by another one such that all elementary expansions are
made first and the elementary collapses later. It follows that for any simple
homotopy equivalence between X,Y there exists a polyhedron Z such that
Z ↘ X and Z ↘ Y . The dimension of Z equals the dimension of the equiva-
lence. It would be desirable to be able to reduce it to 3. Theorem 1.3.1 sheds
light on this problem.

Theorem 1.3.1. [135] If m > 2 then for any two simple homotopy equivalent
polyhedra X,Y of dimension ≤ m there is a sequence of elementary moves of
dimension at most m + 1 that takes X to Y .

Remark 1.3.2. It follows from Theorem 1.3.1 that any simple homotopy
equivalence between 2-dimensional polyhedra can be replaced by an equiv-
alence of dimension 4.
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(V) 3-Deformation equivalence. This relation is obtained by restricting the
dimension of simple homotopy equivalence.

Definition 1.3.3. Two polyhedra X,Y of dimension ≤ 2 are 3-deformation
equivalent (we write 3d-equivalent or X2 3d∼ Y 2), if there is a sequence of ele-
mentary moves of dimension no greater than 3 taking X–Y .

Clearly, two 2-dimensional polyhedra X,Y which are 3-deformation equivalent
are simple homotopy equivalent, and there is a 3-dimensional polyhedron Z
such that Z ↘ X and Z ↘ Y . In a sense, X and Y may be considered as
spines of the same 3-dimensional body, and the only difference between this
and the equivalence relation used in Sect. 1.2 is that we do not require that
the body is a 3-manifold. A natural question at this point is:

Does simple homotopy equivalence imply 3-deformation equivalence?
It may be recast as a conjecture, which is now known as the generalized
Andrews–Curtis conjecture:

Conjecture (Generalized AC). Any simple homotopy equivalence between
2-dimensional polyhedra can be deformed to a 3-deformation equivalence.

Remark 1.3.4. The original conjecture in [4] states the following. If F is a
free group on generators x1, . . . , xn, and a set {r1, . . . , rn} of elements of F
is such that its normal closure is F , then r1, . . . , rn may be transformed into
x1, . . . , xn by a finite sequence of operations of the following types:

(i) Replace r1 by its inverse r−1
1 .

(ii) Interchange r1 and ri, leaving the other elements of the set unchanged.
(iii) Replace r1 by r1r2, leaving the other elements fixed.
(iv) Replace r1 by the conjugate gr1g

−1, where g is any element of F .

The motivation for the conjecture (now known as the balanced Andrews–
Curtis conjecture) was that if it is true, then any regular neighborhood of
any contractible 2-dimensional polyhedron in R5 is a ball. An anonymous
referee remarked that this result would follow from a somewhat weaker con-
jecture: Suppose 〈x1, . . . , xn | r1, . . . , rn〉 is a balanced presentation of the
trivial group. Then it can be reduced to the empty presentation by operations
(i)–(iv) on the relators, and two new operations:

(v) Introduce a new generator xn+1 and a new relator rn+1 that coincides
with xn+1.

(vi) The inverse of (v).

The referee pointed out that the weaker conjecture (now known as the
Andrews–Curtis conjecture) can be formulated in an equivalent geometric
form.
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Conjecture (AC). Any contractible 2-dimensional polyhedron 3-deforms to
a point.

Remark 1.3.5. One should point out that the difference between equivalence
relations (I) (isomorphism of π1) and (V) (3-deformation) is fairly delicate.
For instance, it disappears if one is allowed to add spherical bubbles. Indeed, it
follows from the Tietze theorem that any two 2-dimensional polyhedra X and
Y with isomorphic fundamental groups satisfy X∨S2

1∨. . .∨S2
k
3d∼Y ∨S2

1∨. . .∨S2
m

for suitably chosen finite numbers k,m of 2-spheres.

Henceforth we will be primarily interested in special polyhedra up to
3-deformation equivalence.

1.3.2 Moves on Abstract Simple Polyhedra

Suppose that P1, P2 are 3-deformation equivalent special polyhedra. Are they
T -equivalent? The following example shows that in general the answer is “no.”

Example 1.3.6. Suppose P1 and P2 are special spines of a solid torus S1×D2

and a solid Klein bottle S1×̃D2, respectively. Then they are 3d-equivalent.
Indeed, we can expand P1 to S1 × D2 and then collapse S1 × D2 to its core
circle. The same can be done with P2: We expand it to S1×̃D2 and collapse
onto a circle. It follows that P1, P2 are 3d-equivalent. On the other hand, they
are not T -equivalent, since S1 × D2 and S1×̃D2 are not homeomorphic.

In this section we show that only one additional move is needed to relate
any two 3d-equivalent special polyhedra. Present a butterfly E (see Fig. 1.4)
as a disc D2 with wings A,B attached along two diameters of D2. Cut off A
and reattach it to the remaining part of E along a simple curve with the same
ends such that it climbs on B, makes an U -turn, and returns to the other half
of D2. The resulting polyhedron will be denoted by EU .

Definition 1.3.7. The elementary move U on a simple polyhedron P consists
in removing a proper butterfly E ⊂ P and replacing it by EU , see Fig. 1.33.

Fig. 1.33. The U -move
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Notice that U increases the number of true vertices in a polyhedron by
one, and that the EU does not embed into R3.

Theorem 1.3.8. Let P,Q be special polyhedra. Then P
3d∼Q if and only if one

can transform P into Q by a finite sequence of moves T±1, U±1.

The “if” part of the proof follows from Lemma 1.3.10.

Definition 1.3.9. Let 2-dimensional polyhedra X1,X2 be obtained from a
polyhedron Y by attaching discs D2

1,D
2
2 with homotopic attaching maps f1, f2 :

S1 → Y . Then the transition from X1 to X2 will be called a transient move.

Lemma 1.3.10. Any transient move is a 3-deformation.

Proof. This is a special case (for 2-dimensional polyhedra) of Lemma 13 of
[134] and of Lemma 1 of [135]. Attach a ball B3 to Z = Y ∪D2

1 ∪D2
2 by a map

S2 → Z that takes the “polar caps” of S2 onto D2
1,D

2
2, and the annular region

between them to the trace of a homotopy between f1 and f2. By construction,
Z ↘ X1 and Z ↘ X2. ��

Now both the T -move and the U -move may be regarded as moves that
change the attaching map for a disc by a homotopy. The same is true for the
lune move. By Lemma 1.3.10, these moves can be realized by 3-deformations.

Definition 1.3.11. Two simple polyhedra P1, P2 are (T,U)-equivalent (nota-

tion: P1
T,U∼ P2) if one can pass from P1 to P2 by a finite sequence of moves

T±1, U±1. If in addition moves L±1 are allowed, then we say that the polyhedra
are (T,U, L)-equivalent.

Remark 1.3.12. We do not make use of the bubble move. The reason is that
we are considering abstract simple polyhedra and have no 3-manifold they
are contained in. It means that after performing a few moves T±1, U±1 we
would lose the control over attached bubbles, and the bubble move would
be essentially equivalent to taking the one-point union with a 2-dimensional
sphere. This would annihilate any difference between 3d-equivalent polyhedra
and polyhedra with isomorphic fundamental groups, see Remark 1.3.5.

Lemma 1.3.13 tells us that any transient move of a simple polyhedron can
be realized by a sequence of moves T,U, L and their inverses.

Lemma 1.3.13. (2-cell shifting) Let P be a simple polyhedron and f, g : S1 →
P two homotopic curves in general position. Then the simple polyhedra Q1 =
P ∪f D2 and Q2 = P ∪g D2 are (T,U, L)-equivalent.

Proof. We follow the main lines of the proof of Lemma 1.2.16. The only
difference is that there is no 3-manifold, where D1,D2, and the trace of the
homotopy between the curves could bound a proper 3-ball.
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Let ft : S1 → P be a homotopy between f and g. Define a map F :
S1 × I → P × I by the rule F (x, t) = (ft(x), t). We say that ft is regular at
a point (x, τ) ∈ S1 × I, if the restriction of F to a neighborhood of this point
is an embedding. We call a moment of time τ singular, if F is not regular at
some point (x, τ) or the curve fτ (S1) is not in general position. By a general
position argument we may assume that ft has only finitely many singular
moments. We may also arrange that in a small neighborhood of each singular
moment (that is, when t runs from τ − ε to τ + ε) the curve lt = ft(S1)
undergoes local modifications (and their inverses) of the following type:

(A1) Creation of a new crossing point of lt, i.e., creation of a loop.
(A2) Creation of a pair of new crossing points of different arcs of lt.
(A3) Taking an arc of lt through a crossing point of two other arcs. The

number of crossing points of lt with itself should remain unchanged.
(A4) Creation of a pair of new points where lt intersects a triple line of P .
(A5) Replacement of a crossing point with a triple line by a pair of new

crossing points of lt with the same line.
(A6) Shifting of an arc of lt through a point where another arc of lt intersects

a triple line. One new crossing point of lt with itself should appear.
(A7) Taking an arc of lt through a true vertex of P .

Remark 1.3.14. Modifications A1–A3 should take place in a nonsingular
part of P . They may remind you of the Reidemeister moves on knot pro-
jections. Modifications A4, A5 are responsible for singular moments when lt
intersects a triple line nontransversally. A6 corresponds to the case when a
double point of lt lies on a triple edge, and A7 realizes a passage of lt through
a true vertex of P .

To conclude the proof, it suffices to show that modifications Ai, 1 ≤ i ≤ 7,
induce (T,U, L)-equivalences of polyhedra P ∪ft

D2 for t = τ ± ε. Cases
i = 2, 4, 6, and 7 were considered in the proof of Lemma 1.2.16, see Fig. 1.21.
Figure 1.32 may serve as an illustration of modification A1 that creates a loop.
The corresponding move on special polyhedra is a composition of the moves
U,U and T−1 as shown in Fig. 1.34.

A5 coincides with the U -move. For a realization of A3 we assume that two
of the three arcs of lt that take part in the modification are fixed, and that
the corresponding parts of D2 are already attached. We use them to express
A3 as a composition of T,U−1, U, T−1, see Fig. 1.35. ��

Fig. 1.34. Creating a loop by the moves U, U, T−1
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Fig. 1.35. Realization of the “triangle” Reidemeister move

Remark 1.3.15. Lemma 1.3.13 remains true if in its statement one replaces
the disc D2 by an arbitrary simple polyhedron whose boundary consists of a
circle. The proof is the same.

Let us assign to a given 2-dimensional complex simplicial complex K a sim-
ple polyhedron W (K). The assignment is done by means of a construction.
Given a simplicial complex K, let |K(1)| denote its 1-skeleton. The construc-
tion is carried out in four steps:

1. Choose an orientable or nonorientable handlebody H3 such that χ(H3) =
χ(|K(1)|). Note that |K(1)| and H are homotopy equivalent.

2. Choose a homotopy equivalence ϕ: |K(1)| → H. One may think of the
pair (H,ϕ) as of a thickening of K(1); in a sense, we blow-up |K(1)| to a
3-dimensional handlebody.

3. Replace H3 by some choice of a simple spine P of H3. A collapse r of H3

to P induces a well-defined homotopy equivalence, so from the point of
view of homotopy theory we may identify them.

4. For every 2-simplex ∆i of K, define the map ϕi: ∂∆i → P as the compo-
sition of the maps ∂∆i ⊂ |K(1)| ϕ→ H3 r→ P , and adjust ϕi by homotopy
to get curves ϕi(∂∆i) in general position. Finally, use ϕi to attach the
2-simplices of K to P .

Definition 1.3.16. Any 2-dimensional polyhedron W (K) that can be obtained
by the above construction is called a blow-up of K.

Since the curves ϕi(∂∆i) are in general position, W (K) is a simple polyhedron.
We must check that W (K) is independent of the choices made, up to (T,U, L)-
equivalence. To do this, we need two preparatory lemmas.

Lemma 1.3.17. Any homotopy equivalence of an orientable handlebody H
into itself is homotopic to a homeomorphism.
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Proof. Present H as a ball with index 1 handles. Since there are no handles
of index > 1, the homotopy class of any homotopy equivalence H → H is
completely determined by the induced automorphism of π1(H). This group is
freely generated by the cores of the handles. Recall that any automorphism of
a free group can be presented as a composition of the following Nielsen moves
on generators:

(i) Replacing a generator by its inverse
(ii) Permuting generators
(iii) Multiplying a generator by another one, all others being kept fixed

All these moves can be easily realized by homeomorphisms. For instance, the
third move corresponds to the handle sliding, see Fig. 1.36. It follows that any
homotopy equivalence H → H is homotopic to a homeomorphism. ��

Lemma 1.3.18. An orientable handlebody H and a nonorientable handlebody
H̃ of the same genus g ≥ 1 admit homeomorphic simple (but not special)
spines.

Proof. Let F be a nonorientable surface with connected boundary such that
χ(F ) = χ(H). Present H and H̃, respectively, as an orientable twisted I-
bundle F ×̃I and a trivial I-bundle F × I over F . Then both of them collapse
to F with a thin solid tube running along ∂F . See Fig. 1.37 for the genus 1

Fig. 1.36. Handle sliding

Fig. 1.37. A common spine of the solid torus and solid Klein bottle
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case when H is a solid torus and H̃ is a solid Klein bottle. To get a common
simple spine of H, H̃, we collapse the tube onto a simple subpolyhedron. ��

Proposition 1.3.19. If K is a simplicial complex, then W (K) is well defined
up to (T,U, L)-equivalence.

Proof. We will show step by step that arbitrary choices made by constructing
W (K) (see items 1–4 above) do not affect its (T,U, L)-type. We begin with
the last item:

(1) There are many different ways of taking the curves ϕi(∂∆i) into general
position. By Lemma 1.3.13, all of them give equivalent blow-ups.

(2) One may choose another simple spine P1 of H3. By Theorem 1.2.27, there
is a sequence of moves T±1, L±1 transforming P1 into P . The same se-
quence can be used to relate the corresponding blow-ups. Attached cells
do not prevent us from making the moves. Each time the boundary curve
of an attached cell intersects a fragment replaced by the move, we apply
Lemma 1.3.13 for shifting the curve away.

(3) Suppose that H3 is orientable. It follows from Lemma 1.3.17 that any two
homotopy equivalences ϕ,ϕ′: |K(1)| → H3 differ by a homeomorphism
H3 → H3. This means that the corresponding blow-ups are equivalent.

(4) If we take a nonorientable handlebody H̃3, then for a specific choice of
homeomorphic spines for H3, H̃3 (which exist by Lemma 1.3.18) we get
equivalent blow-ups. By (1) and (2), the (T,U, L)-type of W (K) does not
depend on the choice of a spine. It follows that W (K) does not depend
on the choice of the handlebody.

We have shown that any two blow-ups of K are (T,U, L)-equivalent. ��

Lemma 1.3.20. Let K,L be 2-dimensional simplicial complexes such that
K

3d∼L. Then any sequence s1, s2, . . . , sn of elementary simplicial collapses and
expansions of dimension ≤ 3 transforming K into L can be rearranged so that
it consists of simplicial transient moves and deformations of dimension ≤ 2.

Proof. Let sk be the first 3-dimensional collapse in the sequence. The tetra-
hedron σ that disappears after sk (together with its free triangle face δ) has
been created by an expansion sm,m < k. At that moment and all the time
afterward δ was free since otherwise sk would be not the first 3-dimensional
collapse. Thus we can put sk exactly after sm and consider the pair sm, sk as
a transient move. Continuing this process as long as possible, we replace all
3-deformations by transient moves. ��

Recall that Bing’s House with two Rooms (see Fig. 1.6) is a special spine of
the cube consisting of the boundary of the cube with two punctures, a middle
disc, and two inside arches. We define a Bing membrane B2 as a simple poly-
hedron with boundary obtained by removing an open disc from the bottom of
Bing’s House. It will serve us as a substitute for a disc, although in contrast
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Fig. 1.38. Destroying the Bing membrane

to the disc, the Bing membrane can be 3-deformed into its boundary. Let
f : ∂B2 → P be a general position contractible curve in a simple polyhedron
P . We will say that the simple polyhedron P ∪f B2 is obtained from P by
attaching the Bing membrane.

Lemma 1.3.21. Let Q be obtained from P by attaching a Bing membrane
B2. Then Q

T,L∼ P .

Proof. First we shift B2 into a neighborhood of a nonsingular point of P .
This can be done by the moves T±1, U±1, L±1, see Remark 1.3.15. Then we
move the disc bounded by ∂B2 into the upper tube to get an arch with the
membrane, and destroy the arch. Lemma 1.2.29 shows how it can be done by
the move L−1. Similarly, we destroy the second arch, see Fig. 1.38. ��

Proposition 1.3.22. Blow-ups of 2-dimensional complexes possess the fol-
lowing properties:

(1) If the underlying polyhedron |K| of a complex K is simple, then any blow-
up W (K) of |K| is (T,L)-equivalent to |K|.

(2) If |K1|3d∼|K2|, then W (K)
T,L∼ W (L).

Proof. (1) Suppose that a simplicial complex K triangulates a simple poly-
hedron P = |K|. For every vertex v of K we choose a disc Dv ⊂ P such that
Dv ∩ SP either is empty, or is a diameter of Dv, or consists of three radii of
Dv, depending on the singularity type of v. Different discs must be disjoint.
Then for every vertex v we attach a 3-ball Bv to P along Dv. In other words,
we blow-up all the vertices of K to 3-balls. Then we repeat this operation
with respect to the edges of K. Namely, in a neighborhood of each edge e of
K we attach a beam which runs along e and joins the blow-ups of its vertices.

Denote by U the polyhedron obtained in this way. It consists of the union
H of balls and beams (which is a handlebody) and of remnants of the triangles
of K (which are 2-cells). Our next step consists in collapsing each ball Bv to
a Bing membrane contained in it by penetrating inside Bv through two holes
and exhausting the 3-dimensional material of Bv. We certainly can choose the
holes in such a way that they intersect neither Dv nor the beams. It follows
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from the construction that the union Q of P and all the Bing membranes is a
blow-up of K. It remains to note that by Lemma 1.3.21 the Bing membranes
can be created by moves T±1, U±1, L±1.

(2)By Lemma 1.3.20, it is sufficient to consider the case when K2 is
obtained from K1 by one of the following moves:

(i) A 1-dimensional simplicial expansion (or collapse)
(ii) A 2-dimensional simplicial expansion (or collapse)
(iii) A simplicial transient move

In Cases (i) and (iii) any blow-up of K2 is simultaneously a blow-up of
K1 since we do not change the homotopy type of K

(1)
1 and thus we can take

the same handlebody H (see the first step of the construction of a blow-up).
Consider Case (ii), when there is a simplex σ2 ⊂ K2 with a free edge δ1

such that K2 = K1 ∪ σ2 ∪ delta1. We can construct a blow-up W (K2) by
attaching to W (K1) an arch composed from a tube with a middle disc and
a membrane. The tube is obtained from the index 1 handle running along δ1

by pushing the 3-dimensional material to the middle disc starting from both
ends. The membrane corresponds to σ2. By Lemma 1.2.29, attaching the arch
is a (T,L)-equivalence. ��

Remark 1.3.23. The proof of property (1) of blow-ups can be easily modified
to show that any 2-dimensional polyhedron 3-deforms to a special one, namely,
to an appropriate blow-up of its triangulation.

Theorem 1.3.24. Let P,Q be two simple polyhedra such that P
3d∼Q. Then

P
T,L∼ Q.

Proof. Let simplicial complexes K and L triangulate P and Q, respectively.
Then there exists a simplicial 3-deformation of K to L. Thus we have

P1
T,L∼ W (K1)

T,L∼ W (K2)
T,L∼ P2,

where the first and last equivalences are given by part (1) of Proposition 1.3.22,
and the middle one is valid by part (2). ��

We are now ready to prove the main result of this section.

Proof of Theorem 1.3.8 (difficult part). Let P,Q be two special polyhedra
such that P

3d∼Q. By Theorem 1.3.24, one can pass from P to Q by moves
T±1, U±1, L and L−1. Just as in the Proof of Theorem 1.2.30, we use ad-
ditional arches to dispense with L−1. All the remaining L can be expressed
through T±1 and U±1. ��
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1.3.3 How to Hit the Target Without Inverse U-Turns

The main result of this section is Theorem 1.3.25. This fairly deep result
will be used in Sect. 1.3.4. Recall that a special polyhedron is unthickenable,
if it cannot be embedded into a 3-manifold. By Theorem 1.1.20, a special
polyhedron is unthickenable if and only if the boundary curve of at least one
2-component has a nontrivial normal bundle. From Theorem 1.3.8 we know
that if two special polyhedra P,Q are 3d-equivalent, then one can pass from P
to Q by a sequence of moves T±1, U±1. It turns out that if Q is unthickenable,
then one can get rid of move −1.

Theorem 1.3.25. Let P,Q be special polyhedra such that P
3d∼Q and Q is

unthickenable. Then one can transform P into Q by a finite sequence of moves
T±1, U , i.e., without using U−1.

We postpone the proof to the end of this section. Let us introduce now
two auxiliary moves. The first one we met earlier: It is the creation of a loop,
see Fig. 1.32. It would be natural to call it the loop move and denote it by L,
but L is occupied by the lune move. So we adopt the above name and denote
the loop move by α considering the shape of the letter as a motivation.

Remark 1.3.26. The loop move transforms a regular neighborhood of a triple
point that consists of three half-discs with a common diameter. To specify the
move, one should choose a moving half-disc that changes its position, and a
fixed half-disc that will contain the created loop. The third half-disc is neutral.
It turns out that only the choice of the neutral disc is important. For instance,
moving A and fixed C (see Fig. 1.32) and moving C and fixed A produce the
same result. Therefore, in a neighborhood of a triple point the move α can be
made in three different ways.

Remark 1.3.27. Just to fix terminology, let us say that a special polyhedron
P contains a loop if the singular graph SP of P contains a loop � such that
� is the boundary curve of a 2-component of P and has a nontrivial normal
bundle. It is evident that P contains a loop if and only if it can be obtained
from another special polyhedron by the loop move.

The second auxiliary move β is defined by Fig. 1.39. It will serve as a
substitute for the move U−1 we would like to avoid.

Lemma 1.3.28. The moves α and β±1 can be presented as compositions of
T±1, U .

Proof. Figure 1.34 shows how one can present α and β as compositions
of moves U,U, T−1 and U, T−1, respectively. For a presentation of β−1 see
Fig. 1.40. The last move in the Fig. 1.40 is the inverse of the vertex move V ,
which by Proposition 1.2.8 is a composition of T, T−1. ��
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Fig. 1.39. A substitute for U−1: the move β

Fig. 1.40. A presentation of the move β−1

The meaning of Lemma 1.3.29 is that loops are very movable: One may
transfer them from one place to another using T±1 and U , but not U−1.

Lemma 1.3.29. Let a, b be two triple points of a special polyhedron P . Sup-
pose that special polyhedra Pa and Pb are obtained from P by creating loops at
a and b, respectively. Then one can transform Pa into Pb by moves T±1, U .

Proof. We first consider the case when a and b lie in the same edge of P .
Then we may assume that they coincide. There are three ways to insert a
loop at a given point, see Remark 1.3.26. Suppose that Pa, Pb are obtained by
two of them. Then one can transform Pa into Pb by a composition of moves
β−1, α, T−1, and β as shown in Fig. 1.41. We use Lemma 1.3.28 to split β±1

and α into compositions of moves T±1, U .
If a and b lie in edges of P having a common vertex, the transformation of

Pa to Pb is carried out by β−1 and β: we create a U -turn instead of the loop
at a, and then replace it by a loop at b. It follows that we can move loops
along the singular graph SP wherever we like. ��

Corollary 1.3.30. (Cancellation of loops). Applying moves T±1 and U , one
can replace any two loops by one loop.
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Fig. 1.41. Turning a loop inside out

Fig. 1.42. Canceling loops

Proof. Using α, we add a third loop. Then we use Lemma 1.3.29 to stack them
one over another, and cancel a pair of loops by the move V −1, see Fig. 1.42.
It remains to recall that α is a composition of T±1, U by Lemma 1.3.28 and
V −1 is a composition of T±1 by Proposition 1.2.8. ��

Proposition 1.3.31. Any unthickenable special polyhedron P can be trans-
formed by the moves T±1 (without U±1!) to a special polyhedron with a single
loop.

Proof. By Theorem 1.1.20, there is a 2-component c of P such that the bound-
ary curve of c has a nontrivial normal bundle. We apply the vertex move V to
decompose c into two 2-components c′, c′′. The normal bundle of the boundary
curve of the smaller 2-component c′ is trivial while the one of c′′ is nontrivial.
Just as in the proof of Lemma 1.2.11, we apply moves T±1 to enlarge c′ and
diminish c′′ until we get a loop, see Fig. 1.43. ��

Proof of Theorem 1.3.25. Let P,Q be special polyhedra such that P
3d∼Q and

Q is unthickenable. By Proposition 1.3.31, we may assume that Q has a loop.
By Theorem 1.3.8, one can find a sequence of moves T±1, U±1 transforming P
into Q. We replace each move U−1 that occurs in the sequence by the move β,
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Fig. 1.43. Creating a loop without using U±1

which by Lemma 1.3.28 is a composition of moves T±1, U . The additional loops
that arise in this way do not interfere with carrying out each next move, since
by Lemma 1.3.29 we may assume that they are situated far from the place
where the move is performed. Finally, we get Q with several superfluous loops.
Since Q already has one loop, we can cancel all the other by Corollary 1.3.30.

��

1.3.4 Zeeman’s Collapsing Conjecture

The following innocuous-looking statement is known as the Zeeman conjecture
[138].

Conjecture (ZC). Let X be a contractible polyhedron of dimension ≤ 2.
Then X × I is collapsible.

Recall that X is called collapsible if X ↘ {∗}, i.e., X can be collapsed to a
point. Every collapsible polyhedron is contractible (it means that the identity
map X → X is homotopic to a constant map p:X → x0 ⊂ X). The converse
is not true. The Bing House and Abalone (see Fig. 1.6) are spines of the 3-ball
and thus contractible. Nevertheless, they are not collapsible since there are
no free edges to start the collapse. Taking a direct product with an interval
produces free 2-dimensional faces on the top and bottom, so one can start.
The problem is whether it is always possible to continue the collapse so that
we do not become stuck before we reach a point.

Definition 1.3.32. A polyhedron X is called 1-collapsible, if X × I ↘ {∗}.

In these terms Zeeman’s Conjecture can be reformulated as follows: Any
contractible 2-dimensional polyhedron is 1-collapsible. One can easily show
that the Bing House and Abalone are 1-collapsible. For a recent detailed
account of the contemporary status of Zeeman’s Conjecture, Andrews–Curtis
Conjecture and other conjectures in low-dimensional topology and combina-
torial group theory we refer the reader to the fundamental book [47]. Let us
recall now the famous Poincaré Conjecture.
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Conjecture (PC). Any simply connected closed 3-manifold is homeomor-
phic to S3.

Since a closed 3-manifold is simply connected if and only if it is homotopy
equivalent to S3, one can reformulate PC as follows: Any homotopy 3-sphere
is S3. Removing from a homotopy sphere an open ball, we get another equiv-
alent statement: Any compact contractible 3-manifold is homeomorphic to the
standard 3-ball.

Proposition 1.3.33 shows that the Zeeman Conjecture is very strong.

Proposition 1.3.33. The Zeeman Conjecture implies both the Poincaré and
Andrews–Curtis Conjectures.

Proof. ZC ⇒ PC. Let M be a compact contractible 3-manifold. Construct a
spine X ⊂ M of dimension ≤ 2. Assuming ZC, we have M×I ↘ X×I ↘ {∗},
i.e., M×I collapses to a point. Therefore, M×I is homeomorphic to a regular
neighborhood of a point, that is, to a 4-dimensional ball. Taking into account
that M = M ×{1} lies in ∂(M × I) = S3 and ∂M = S2, we get M is a 3-ball
by the Alexander Theorem (every 2-sphere in S3 bounds a 3-ball).

ZC ⇒ AC. Note that any 2-dimensional polyhedron X 3-expands to X×I.
Taking a contractible polyhedron X and assuming ZC, we have X

3d∼X×I
3d∼{∗}.

��

Remark 1.3.34. Proposition 1.3.33 remains true if we restrict ZC to the class
of special polyhedra. Only minor modifications in the proof are needed. For
proving ZC ⇒ PC one should take not an arbitrary but a special spine X
of M , and for proving ZC ⇒ AC one should first 3-deform X to a special
polyhedron and only then take the product with I. We may conclude that:

(1) ZC for special spines implies PC.
(2) ZC for unthickenable special polyhedra implies AC.

The aim of this section is to show that the converse is also true:

(1) PC implies ZC for special spines.
(2) AC implies ZC for unthickenable special polyhedra.

This close relation between the three classical conjectures seems to be
remarkable. The equivalence PC ⇐⇒ ZC for special spines was proved by
Gillman and Rolfsen in [36]. The following very important statement played
the main role in the proof.

Theorem 1.3.35. [36] If P is a special spine of a homology 3-ball M , then
P × I collapses to a subset homeomorphic to M .

It is easy to show that any 3-manifold M with nonempty boundary con-
tains a special spine satisfying the conclusion of Theorem 1.3.35. As we know,
any two special spines of M are related by the moves T±1 (Theorem 1.2.5).
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It would be natural to use this to give another proof of the above mentioned
Gillman–Rolfsen result. The idea turns out to be fruitful and allows us to get
an even stronger result: The statement is true for any M with ∂M = ∅.

Let P1, P2 be simple polyhedra having the same boundary, by which
we mean that ∂P2 is a copy of ∂P1, and an identification homeomorphism
id: ∂P1 → ∂P2 is fixed.

Definition 1.3.36. We say that P2 dominates P1 (notation: P1 � P2) if there
exists an embedding i:P1 × I → P2 × I such that the following holds:

1. The restriction of i onto ∂P1 × I is fiber-preserving and projects to the
identification homeomorphism id. This means that for any (x, t) ∈ ∂P1×I
we have i(x, t) ∈ {id(x)} × I.

2. P2 × I ↘ i(P1 × I).

Example 1.3.37. The following may help to visualize Definition 1.3.36. For
simplicity, we consider 1-dimensional special polyhedra, i.e., graphs with ver-
tices of valence 1 and 3. Let P1 and P2 be two trees such that each of them
consists of 5 segments and spans the union ∂P1 = ∂P2 = A ∪ B ∪ C ∪ D
of four points in two different ways. Then P1 dominates P2. One of the pos-
sible embeddings i:P1 × I → P2 × I is shown in Fig. 1.44. The property
P2 × I ↘ i(P1 × I) is evident.

Lemma 1.3.38. Let W be a half-disc bounded by a diameter d and a half-
circle c. Denote by C1, C2 its corner points. Then any embedding i: d × I →
W × I that takes each interval Cj × I, j = 1, 2 into itself can be extended to
an embedding i1:W × I → W × I such that:

1. The restriction of i1 onto c × I is fiber-preserving and projects to the
identity map c → c.

2. W × I ↘ i(W × I).

Proof. We extend i to an embedding i′: ∂W × I → ∂W × I by selecting a
fiber-preserving embedding c× I → c× I. Since the closed curve i′(∂W ×{∗})
is isotopic to the core circle of the annulus ∂W × I, it bounds a half-disc

Fig. 1.44. An example of 1-dimensional domination
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Fig. 1.45. A crafty half-disc (wing) inside the standard one

embedded into W×I. The desired embedding i1 can be now easily constructed
by considering an appropriate product structure (collar) on a close regular
neighborhood of this disc, see Fig. 1.45. ��

Let E be a simple polyhedron with boundary. We say that an embedded
general position curve b ⊂ E is proper if b ∩ ∂E = ∂b. If b is a proper curve
in E, one can attach to E a half-disc W by identifying the diameter d ⊂ ∂W
with b, and get a new simple polyhedron E ∪b W with boundary.

Definition 1.3.39. We will say that the polyhedron E ∪b W is obtained from
E by attaching a wing along b.

Lemma 1.3.40 shows that quite often the domination relation is preserved
under attaching of wings.

Lemma 1.3.40. Let E1, E2 be simple polyhedra with identical boundaries and
b ⊂ E1, c ⊂ E2 proper curves having the same endpoints in ∂E1 = ∂E2.
Suppose that E1 is dominated by E2 such that the embedding i:E1×I → E2×I
that realizes the domination takes b× I to c× I. Then E1 ∪b W is dominated
by E2 ∪c W .

Proof. Applying Lemma 1.3.38, we embed W × I into W × I and thus extend
the given embedding i:E1 × I → E2 × I to an embedding i1: (E1 ∪b W )× I →
(E2 ∪c W ) × I. To construct a collapse (E2 ∪c W ) × I ↘ i1((E1 ∪b W ) × I),
we collapse W × I to i1(W × I), and then apply the given collapse E2 × I ↘
i(E1 × I). ��

Lemma 1.3.40 is a powerful tool for constructing new pairs of special poly-
hedra such that one is dominated by the other. Given a pair P1 � P2, one
may attach, step by step, additional wings to P1 and P2, each time getting a
new pair. For a start, let us describe a nontrivial domination of the standard
round disc D2 by itself.

It is convenient to think of D2 as embedded in D2 × I as a horizontal
section D2 × {1/4}. Let D0 be a smaller round disc inside D2. We modify
this embedding by taking the center x0 of D0 to a point (x1, 3/4) and using
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Fig. 1.46. A crafty embedding of D2 × I into itself

the cone construction to get a new embedding ϕ:D2 → D2 × I. The point x1

should lie outside D0 in a diameter of D2 containing x0, see Fig. 1.46.
Since the disc ϕ(D2) lies in D2 × I with a collar, one can extend ϕ to an

embedding i:D2 × I → D2 × I such that the restriction of i onto ∂D2 × I is
fiber-preserving. Clearly, i is a domination embedding, i.e., D2×I ↘ i(D2×I).

Remark 1.3.41. The embedding ϕ constructed above is piecewise-smooth,
since we have used round discs and cone construction. If one prefers PL cate-
gory, one may replace the round discs with polygons. A smooth version of the
embedding ϕ can be obtained by gluing together two copies of the half-disc
W embedded with a collar into W × I, see Fig. 1.45.

Remark 1.3.42. Let a0, a1 ∈ ∂D0 be the two points where straight lines
passing through x1 are tangent to ∂D0. It is easy to see that the map pϕ:D2 →
D2 is a local homeomorphism everywhere except on the union U of the two
radii [x0, a0], [x0, a1], and the smaller arc of ∂D0 between a0, a1. It follows that
the embedding i can be assumed to be fiber-preserving everywhere except in
a small neighborhood of U .

Denote by d the diameter of D2 containing x0 and x1. We will consider
chords and half-chords of D2 that are orthogonal to d. Note that the embed-
ding i:D2×I → D2×I constructed above takes d×I into itself. Other useful
properties of i are described in Lemma 1.3.43.

Lemma 1.3.43. There exist a half-chord c0, a chord c1, and a simple curve
c2 in D2 such that the following holds:

(1) c1 ∩ c0 = ∅, ∂c2 = ∂c1, and c2 ∩ c0 is a point
(2) i embeds each fiber {∗} × I of c0 × I into itself
(3) The restriction of i onto c1 × I is a fiber-preserving embedding into c2 × I

Proof. Choose a half-chord c0 such that the point c0 ∩ d lies strictly between
D0 and x1. Since c0 ∩ D0 = ∅, we have (2). We take a chord c1 such that
the point c1 ∩ d lies in D0 very close to x0, but outside the segment [x0, x1]
of d. Since c1 does not intersect the singular set U (see Remark 1.3.42), the
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Fig. 1.47. Chord trading

Fig. 1.48. A convenient form of the T -move

restriction of i onto c1×I is a fiber-preserving map. Denoting by c2 the image
of i(c1 × I) under the direct product projection p:D2 × I → D2, we get (3)
automatically. Since c1 lies very close to x0, c2 passes close to x1 and thus
intersect c0. See Fig. 1.47. ��

Recall that the move T consists in replacing a fragment ET of a special
polyhedron by a fragment E′

T with the same boundary, see Definition 1.2.3.

Proposition 1.3.44. ET � E′
T .

Proof. Let c0, c1, c2, and d be as in Lemma 1.3.43. Present ET as the disc D2

with three wings W (d),W (c1),W (c0), where W (d) and W (c1) are attached
along d and c1, respectively, and W (c0) is attached along the union of c0 and
a half-chord in W (d) (see Fig. 1.48). E′

T has a similar structure. The only
difference is that instead W (c1) we attach another wing W (c2) along c2.

Now let us prove that ET � E′
T . Consider the embedding i:D2×I → D2×I

which satisfy conditions 2, 3 of Lemma 1.3.43. In order to convert i to an
embedding i1:ET × I → E′

T × I that realizes the domination ET � E′
T ,

we apply Lemma 1.3.40 three times. First, we extend i to an embedding
(ET ∪d W (d))×I into (E′

T ∪d W (d))×I. Then we do the same with respect to
the wings W (c1) and W (c0). Each time we use Lemma 1.3.43 to verify that
the assumptions of Lemma 1.3.40 are satisfied.
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Lemma 1.3.45. There exist a half-chord c0, a simple curve s1 in D2 and a
chord s2 such that the following holds:

(1) i embeds each fiber {∗} × I of c0 × I into itself.
(2) The restriction of i onto s1 × I is an embedding into s2 × I.
(3) s1 has the same endpoint as s2 and intersects d three times. Both s1, s2

are disjoint from co.

Proof. Choosing a half-chord c0 just as in the proof of Lemma 1.3.43, we get
(1). Then we take a chord s2 such that the point s2 ∩ d is strictly between x1

and c0 ∩ d, s2 ∩ c0 = ∅, and s2 ∩D0 is an interval. Let s1 be the inverse image
of s2 with respect to the map pϕ:D2 × I → D2. Thus we get (2). Since the
inverse image of the point s2 ∩ d under the above composition map consists
of three points, s2 has three common points with d. Thus we have (3). See
Fig. 1.49. ��

Let us modify the move V −1 (see Definition 1.2.6) to a new move S by
attaching two additional wings to the fragments E,EV as follows. We present
the butterfly E as D2∪W (s2) and extend it to a polyhedron E′

S by attaching
the wing W (c0). Similarly, we present EV as D2 ∪ W (s1) and attach to it
the same wing W (c0), thus getting a new polyhedron ES . The new move
S consists in cutting out a fragment homeomorphic to ES and replacing it
by the fragment E′

S . See Fig. 1.50, where the new fragments ES and E′
S are

presented as D2 with wings. Note that E′
S is homeomorphic with ET .

Fig. 1.49. Another chord trading

Fig. 1.50. The modified V −1
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Proposition 1.3.46. ES � E′
S

Proof. Just as in the proof of Proposition 1.3.44, we apply Lemma 1.3.40 three
times, each time using Lemma 1.3.45 to verify the assumptions. ��

Lemma 1.3.47. Let P1, P2 be simple polyhedra such that P2 can be obtained
from P1 by removing a proper fragment E1 ⊂ P1 and replacing it by another
fragment E2 having the same boundary. Then E1 � E2 implies P1 � P2.

Proof. The embedding i:E1×I → E2×I that realizes the domination E1 � E2

takes each fiber {x}×I, x ∈ ∂E1, into itself. Improving it by a fiber-preserving
isotopy, we may assume that the restriction of i onto ∂E1 × I is the identity
map ∂E1×I → ∂E2×I. Now we can extend it by the identity onto the rest of
P1×I and get an embedding P1×I → P2×I that determines the domination
P1 � P2. ��

Theorem 1.3.48. Let P1, P2 be T -equivalent special polyhedra. Then P1 � P2

and P2 � P1. In other words, there exist embeddings i1:P1 × I → P2 × I and
i2:P2 × I → P1 × I such that P2 × I ↘ i1(P1 × I) and P1 × I ↘ i2(P2 × I).

Proof. Since the relation � is transitive, it is sufficient to prove the theorem
for the case when P2 is obtained from P1 by a single move T . It follows from
Proposition 1.3.44 and Lemma 1.3.47 that P1 � P2. To get P2 � P1, we
present the move T−1 from P2 to P1 as a composition P2 → Q → P1 of moves
T and S, see Fig. 1.51. We get P2 � Q � P1, where the first domination follows
from Preposition 1.3.44 and the second one from Preposition 1.3.46. ��

Corollary 1.3.49. The Zeeman Conjecture for special spines is equivalent to
the Poincaré Conjecture.

Proof. Theorems 1.2.5 and 1.3.48 together imply that if some special spine
P1 of a 3-manifold M is 1-collapsible, then so is any other spine P2: We use
the domination P1 � P2 to collapse P2 × I to i(P1 × I) and then to a point.
Recalling that the Bing House with two Rooms (see Fig. 1.6) is 1-collapsible,
we get the 1-collapsibility of all special spines of the 3-ball and, assuming

Fig. 1.51. T−1 as a composition of T and S
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PC, of all contractible special spines. Thus PC implies ZC for special spines.
The inverse implication was proved earlier (see Proposition 1.3.33 and Re-
mark 1.3.34). ��

Remark 1.3.50. The original proof of the equivalence PC ⇐⇒ ZC for special
spines was based on a nontrivial observation that if P is a special spine of a
homology 3-ball M , then P×I collapses to a subset homeomorphic with M , see
Theorem 1.3.35. The restriction on the homology groups of M was used only
in one place: the 2-components of any special spine of a homology ball can be
oriented so that on any edge two of the three induced orientations are opposite
to the third. One can easily show that any 3-manifold M possesses a special
spine P having this property. Therefore P × I collapses to a subpolyhedron
homeomorphic with M . It follows from Theorem 1.3.48 that this remains
true for all special spines of M . Thus, Theorem 1.3.35 is true without any
restriction on M at all.

Let us turn our attention to the general case of simple polyhedra that are
not necessarily spines of 3-manifolds. We know from Theorem 1.3.8 that every
3-deformation of special polyhedra can be replaced by a sequence of moves
T±1, U±1. The moves T±1 preserve the 1-collapsibility. Our aim now is to
clarify how U affects it. Recall that the U -move consists in replacing a frag-
ment E of a special polyhedron by another fragment EU , see Definition 1.3.7.
It is not true anymore that E � EU or EU � E, so one should try other ways.

At first we prove a statement about arbitrary (not necessarily 2-dimensio-
nal) polyhedra. Let Y be a subpolyhedron of a polyhedron X. Recall that a
regular neighborhood of Y in X is defined as N(Y ) = |St(L′′,K ′′)|, where
(K,L) is a triangulation of the pair (X,Y ). Admitting an abuse of notation
(in general, N(Y ) is not a manifold), we will write ∂N(Y ) = N(Y )\ IntN(Y ),
and say that ∂N(Y ) is the boundary of the regular neighborhood. Consider
the quotient space X/Y . It has a natural polyhedral structure that can be
described as follows: if we remove Int N(Y ) from X and add the cone over
∂N(Y ), we get a polyhedron homeomorphic with X/Y . Note that the com-
plements of N(Y ) in X and of the cone neighborhood N(y) of the cone vertex
y in X/Y do coincide.

Theorem 1.3.51. Let Y be a collapsible subpolyhedron of a polyhedron X. If
(X/Y ) × I ↘ {∗}, then X × I ↘ {∗}.

Proof. Let y ∈ Z = X/Y be the point corresponding to Y . Since Z×I ↘ {∗},
there is a triangulation K of Z×I such that K simplicially collapses to a point.
Taking derivative subdivisions of K (if necessary), we may assume that y × I
is the underlying space of a subcomplex J ⊂ K and the star S =| St(J ′′,K ′′) |
coincides with N(y)× I. Decompose S into pieces | St(v,K ′′) |, where v runs
over all vertices of J ′. Each of the pieces is homeomorphic to N(y)×I, and they
are placed one over another to form the whole “pillar” N(y)× I ⊂ Z × I. Let
us replace each piece by a copy of N(Y )×I. We get a polyhedron W = W (K)
homeomorphic with X × I, see Fig. 1.52.
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W

Fig. 1.52. Z × I and a homeomorphic copy W of X × I

Fig. 1.53. How collapses of W (L) follow the ones of L

To prove that W is collapsible, for every subcomplex L ⊂ K define a
subpolyhedron W (L) ⊂ W as follows:

1. Add to L all the pieces N(y) × I that correspond to those vertices of L′

that lie in J ′.
2. Replace each of the above pieces by a copy of N(Y ) × I.

Using the collapsibility of Y , one can easily verify that the given simplicial
collapse K ↘s {∗} induces a polyhedral collapse W (K) ↘ W ({∗}). To be
more precise, consider an elementary simplicial collapse L1 ↘ L2 consisting
in removing a principal open simplex σ of L1, together with its free open face
δ. We have four possibilities:

1. If σ has no vertices in J , we can apply to W (L1) actually the same collapse
and get W (L2).

2. If σ has a vertex in J but δ is not in J , then instead of removing σ and
δ we collapse the closed simplex σ̄ to St((∂σ̄ \ δ)′′, σ̄′′). This collapse also
produces a collapse W (L1) ↘ W (L2).

3. If δ is a 1-dimensional simplex of J , we use the collapsibility of Y to
remove the piece N(Y )× I corresponding to the barycenter of δ. Then we
collapse the rest of σ as shown in Fig. 1.53 for the case L1 = J ∪ σ.
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4. If δ is a vertex of J , we collapse the corresponding piece N(Y ) × I and
then the rest of the open segment σ.

It remains to note that since K ↘ {∗}, W (K) collapses to the collapsible
polyhedron W ({∗}). ��

Corollary 1.3.52. Let a special polyhedron P2 be obtained from a special poly-
hedron P1 by one move U and P1 × I ↘ {∗}. Then P2 × I ↘ {∗}.

Proof. Let EU ⊂ P2 be the fragment which is inserted by the move U . Since
P2/EU = P1 and P1 × I ↘ {∗}, it follows from Theorem 1.3.51 that P2 × I ↘
{∗}. ��

Remark 1.3.53. It is not known whether the same result holds for U−1. If
it does, then it would imply the following weak (and natural !) form of the
Poincaré Conjecture: any compact 3-manifold M that 3-deforms to a point is
homeomorphic to the standard 3-ball. To prove the implication, assume that
M 3-deforms to a point. Let P be a special spine of M and B the Bing House.
By Theorem 1.3.8, the 3-deformation B → {∗} → M → P can be replaced
by a sequence of moves T±1, U±1 that transforms B into P . Since the Bing
House is 1-collapsible, and since we know already that T±1, U preserve the
1-collapsibility, the assumption on U−1 implies P × I ↘ {∗}, and thus M is
a genuine 3-ball.

The remark above explains our efforts to get rid of U−1, see Theorem 1.3.25,
which shows that quite often it is possible.

Theorem 1.3.54. Let P1, P2 be special polyhedra such that P1
3d∼P2 and P2 is

unthickenable. If P1 is 1-collapsible, so is P2.

Proof. By Theorem 1.3.25, there exists a sequence of moves T±1 and U trans-
forming P1 into P2. By Theorem 1.3.48 and Corollary 1.3.52, these moves
preserve the 1-collapsibility. ��

Remark 1.3.55. One can prove (see [78]) that under the same assumptions
as in Theorem 1.3.54 a more general conclusion is true: if P1×I collapses to a
subpolyhedron X of dimension ≤ 2, then P2 × I collapses to a subpolyhedron
homeomorphic with X.

Corollary 1.3.56 may serve as a powerful tool for producing a great variety of
2-dimensional polyhedra that satisfy the Zeeman Conjecture.

Corollary 1.3.56. ZC is true for all unthickenable special polyhedra that can
be 3-deformed to a point.

Proof. Suppose an unthickenable special polyhedron Q can be 3-deformed to
a point. Since the Bing House is 1-collapsible, so is Q by Theorem 1.3.54. ��
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Corollary 1.3.57. ZC restricted to unthickenable special polyhedra is equiv-
alent to AC.

Proof. By Corollary 11.3.56, AC implies ZC for unthickenable special poly-
hedra. Since any 2-dimensional polyhedron 3-deforms to an unthickenable
special one, the inverse implication is also true. ��

Combining Corollaries 1.3.49 and 1.3.57, we have

Theorem 1.3.58. [77] ZC restricted to special polyhedra is equivalent to the
union of PC and AC.

Theorem 1.3.58 may cast a doubt on the widespread belief that ZC is false.
If a counterexample indeed exists, then either it has a “bad” local structure
(is not a special polyhedron) or it is a counterexample to either AC or PC.
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Complexity Theory of 3-Manifolds

Denote by M the set of all compact 3-manifolds. We wish to study it system-
atically and comprehensively. The crucial question is the choice of filtration
in M. It would be desirable to have a finite number of 3-manifolds in each
term of the filtration, all of them being in some sense simpler than those in
the subsequent terms. A useful tool here would be a measure of “complexity”
of a 3-manifold. Given such a measure, we might hope to enumerate all “sim-
ple” manifolds before moving on to more complicated ones. There are several
well-known candidates for such a complexity function. For example, take the
Heegaard genus g(M), defined to be the minimal genus over all Heegaard
decompositions of M . Other examples include the minimal number of sim-
plices in a triangulation of M and the minimal crossing number in a surgery
presentation for M .

Each of these measures has its shortcomings. The Heegaard genus is ad-
ditive with respect to connected sums of 3-manifolds, but for g ≥ 1 there
are infinitely many distinct manifolds of Heegaard genus g, and already for
g = 2 one can hardly expect a simple classification. The surgery complexity
has the same defect (because of framing). The minimal number of simplices in
a triangulation is not a “natural” measure of complexity because the simplest
possible closed manifold, S3, already would have nonzero complexity, and we
would have no chances to get the additivity.

In this chapter, an integral non-negative function c:M → Z is constructed,
which has the following properties:

1. c is additive, that is, c(M1#M2) = c(M1) + c(M2).
2. For any k ∈ Z, there are only finitely many closed irreducible manifolds

M ∈ M with complexity c(M) = k.
3. c(M) is relatively easy to estimate.
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2.1 What is the Complexity of a 3-Manifold?

2.1.1 Almost Simple Polyhedra

As we know from Sect. 1.1.4, any homeomorphism between special spines can
be extended to a homeomorphism between the corresponding manifolds (The-
orem 1.1.17). This means that a special spine P of a 3-manifold M may serve as
a presentation of M . Moreover, M can be reconstructed from a regular neigh-
borhood N(SP ) in P of the singular graph SP of P : Starting from N(SP ),
one can easily reconstruct P by attaching 2-cells to all the circles in ∂N(SP ),
and then reconstruct M . If M is orientable, then N(SP ) can be embedded
into R3. This gives us a very convenient way for presenting 3-manifolds: we
simply draw a picture, see Fig. 2.1.

Theorem 2.1.1. For any integer k there exists only a finite number of special
spines with k true vertices. All of them can be constructed algorithmically.

Proof. We will construct a finite set of special polyhedra that a fortiori con-
tains all special spines with k true vertices. First, one should enumerate all
regular graphs of degree 4 with k true vertices. Clearly, there is only a finite
number of them. Given a regular graph, we replace each true vertex v by a
copy of the butterfly E that presents a typical neighborhood of a true vertex
in a simple polyhedron, see Definition 1.1.8. Neighborhoods in ∂E of triple
points of ∂E (we will call them triodes) correspond to edges having an end-
point at v. In Fig. 2.2 the triodes are shown by fat lines. For each edge e, we
glue together the triodes that correspond to endpoints of e via a homeomor-
phism between them. It can be done in six different ways (up to isotopy). We
get a simple polyhedron P with boundary. Attaching 2-discs to the circles in

Fig. 2.1. Bing’s House with two Rooms and its mutant (another special spine of
the cube) presented as regular neighborhoods of their singular graphs

Fig. 2.2. A decomposition of N(SP ) into copies of E
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∂P , we get a special polyhedron. Since at each step we have had only a finite
number of choices, this method produces a finite set of special polyhedra. Not
all of them are thickenable. Nevertheless, the set contains all special spines
with k true vertices. ��

It would be a natural idea to measure the complexity of a 3-manifold by the
number of true vertices of its special spine. This characteristic is convenient
in that there exists only a finite number of 3-manifolds having special spines
with a given number of vertices. But it has two shortcomings. First, it is
not additive with respect to connected sums. Second, restricting ourselves to
special spines, we lose the possibility to consider very natural spines such as
a point for the ball (and S3), a circle for the solid torus, and a projective
plane for the projective space RP 3. Also, working only with special spines,
we are sometimes compelled to make artificial tricks to preserve the special
polyhedra structure. For example, in the proof of Theorem 1.1.13 we used a
delicate arch construction instead of simply making a hole in a 2-cell.

All these shortcomings have the same root: the property of being special is
not hereditary. In other words, a subpolyhedron of a special polyhedron may
not be special, even if it cannot be collapsed onto a smaller subpolyhedron.
This is why we shall widen the class of special polyhedra by considering a
class of what we call almost simple polyhedra. Roughly speaking, the class of
almost simple polyhedra is the minimal class which contains special polyhedra
and is closed with respect to the passage to subpolyhedra.

Definition 2.1.2. A compact polyhedron P is said to be almost simple if the
link of any of its points can be embedded into Γ4, a complete graph with four
vertices. A spine P of a 3-manifold M is almost simple, if it is an almost
simple polyhedron.

It is convenient to present Γ4 as a circle with three radii or as the boundary
of the standard butterfly. One usually considers only almost simple polyhedra
that cannot be collapsed onto smaller subpolyhedra. It is easy to see that any
proper subpolyhedron of the circle with three radii can be collapsed onto a
polyhedron L having one of the following types:

(a) L is either empty or a finite set of n ≥ 2 points.
(b) L is the union of a finite (possibly empty) set and a circle.
(c) L is the union of a finite (possibly empty) set and a circle with a diameter.
(d) L is a Γ4.

The “cannot start” property assures us that an almost simple polyhedron
P cannot be collapsed onto a smaller subpolyhedron if and only if the link L
of any point of P is contained in the above list.

For example, a wedge of any simple polyhedron and any graph without
free vertices satisfies this condition and hence cannot be collapsed onto a
smaller subpolyhedron. This example is very typical, since any almost simple
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polyhedron P can be presented as the union of its 2-dimensional and its 1-
dimensional parts. The 1-dimensional part (the closure of the set of points with
0-dimensional links) is a graph, the 2-dimensional part consists of points whose
links contain an arc. If P cannot be collapsed onto a smaller subpolyhedron,
then its 2-dimensional part is a simple polyhedron (maybe disconnected).

The notions of a true vertex, singular graph, 2-component of an almost
simple polyhedron are introduced in the same way as for simple polyhedra,
see Sect. 1.1.3. A true vertex of an almost simple polyhedron P is a point with
the link L = Γ4, the singular graph SP consists of points whose links contain
a circle with a diameter, and 2-components are the connected components of
the set of all the points whose links contain a circle but do not contain a
circle with a diameter. Note that the 1-dimensional part does not affect these
notions. For instance, a 2-component may contain a point of the 1-dimensional
part, and this point is not a true vertex of P .

Almost simple spines are easier to work with than special spines, since we
may puncture cells and stay within the realm of almost simple spines. So, for
example, the process we used to construct a special spine for a given manifold
may be simplified to give an almost simple spine; there is no longer need for
the arch construction, see Fig. 1.8.

2.1.2 Definition and Estimation of the Complexity

The complexity function adverted to in the introduction to this chapter can
now be defined.

Definition 2.1.3. The complexity c(P ) of a simple polyhedron P is equal to
the number of its true vertices.

Definition 2.1.4. The complexity c(M) of a compact 3-manifold M is equal
to k if M possesses an almost simple spine with k true vertices and has no
almost simple spines with a smaller number of true vertices. In other words,
c(M) = minP c(P ), where the minimum is taken over all almost simple spines
of M .

Let us give some examples. The complexity of S3, of the projective space
RP 3, of the lens space L3,1, and the manifold S2 × S1 is equal to zero, since
they possess almost simple spines without true vertices: the point, the projec-
tive plane, the triple hat, and the wedge of S2 with S1, respectively. Recall
that by the triple hat we mean the quotient space of D2 by a free action of the
group Z3 on ∂D2. Among compact manifolds with boundary, zero complexity
is possessed by all handlebodies, I-bundles over surfaces, as well as some other
manifolds such as the complement of the trefoil knot. Indeed, any handlebody

collapses to a graph that (being considered as an almost simple polyhe-
dron) has no true vertices. The I-bundles collapse to surfaces, and the com-
plement of the trefoil collapses to the quotient space of the Möbius band by
a free action of the group Z3 on the boundary.
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In general, the problem of calculating the complexity c(M) is very difficult.
Let us start with a simpler problem of estimating c(M). To do that it suffices to
construct an almost simple spine P of M . The number of true vertices of P will
serve as an upper bound for the complexity. Since an almost simple spine can
be easily constructed from practically any presentation of the manifold, the
estimation problem does not give rise to any difficulties. Let us describe several
estimates of the complexity based on different presentations of 3-manifolds.
It is convenient to start with an observation that removing an open ball does
not affect the complexity.

Proposition 2.1.5. Suppose that B is a 3-ball in a 3-manifold M . Then
c(M) = c(M \ Int B).

Proof. If M is closed, then c(M) = c(M \ Int B) since M and M \ Int B have
the same spines by definition of the spine of a closed manifold. Let ∂M = ∅,
and let P be an almost simple spine of M \ Int B possessing c(M \ Int B) true
vertices. Denote by C the connected component of the space M \P containing
B. Since M is not closed, there exists a 2-component α of P that separates
C from another component of M \ P . Removing an open 2-disc from α and
collapsing yields an almost simple spine P1 ⊂ P of M . The number of true
vertices of P1 is no greater than that of P , since puncturing α and collapsing
results in no new true vertices. Therefore, c(M) ≤ c(M \ Int B).

To prove the converse inequality, consider an almost simple spine P1 of M
with c(M) true vertices. Let us take a 2-sphere S in M such that S ∩P1 = ∅.
Join S to P1 by an arc � that has no common points with P1 ∪ S except the
endpoints. Clearly, P = P1 ∪ S ∪ � is an almost simple spine of M \ Int B.
New true vertices do not arise. It follows that c(M) ≥ c(M \ Int B). ��

In Sect. 1.1.5 we described a relation between singular triangulations of
closed 3-manifolds and special polyhedra. The same method works for esti-
mating the complexity.

Proposition 2.1.6. Suppose a 3-manifold M is obtained by pasting together
n tetrahedra by affine identifications of their faces. Then c(M) ≤ n.

Proof. Recall that any tetrahedron ∆ contains a canonical copy P∆ =
∪| lki(vi,∆

′)| of the standard butterfly E, where vi, 0 ≤ i ≤ 3, are the vertices
of ∆. When pasting together the tetrahedra, these copies are glued together
into a simple polyhedron P ⊂ M that may have a boundary if M is not
closed. P has n true vertices and is a spine of M with several balls removed
from it. These balls are the neighborhoods of the points which are obtained
by gluing the vertices of the tetrahedra and lie in the interior of M . It follows
from Proposition 2.1.5 that c(M) ≤ n. ��

Remark 2.1.7. It follows from Corollary 1.1.27 that a closed 3-manifold M
possesses a special spine with n true vertices if and only if it can be obtained
by pasting together n tetrahedra. Further, we shall see that any minimal



64 2 Complexity Theory of 3-Manifolds

(in the sense of the number of true vertices) almost simple spine of a closed
orientable irreducible 3-manifold M which differs from the “exceptional” man-
ifolds S3, RP 3, L3,1, is special. Therefore, the complexity of such a manifold
may be defined as the minimal number of tetrahedra that is sufficient to
obtain M .

Proposition 2.1.8. Suppose M = H1∪H2 is a Heegaard splitting of a closed
3-manifold M such that the meridians of the handlebody H1 intersect the
ones of H2 transversally at n points. Suppose also that the closure of one of
the components into which the meridians of H1,H2 decompose the Heegaard
surface ∂H1 = ∂H2 contains m such points. Then c(M) ≤ n − m.

Proof. Denote by P the union of the Heegaard surface F = ∂H1 = ∂H2 with
the meridional discs of the two handlebodies. Then P is a simple polyhedron
whose true vertices are the crossing points of the meridians. Since the com-
plement of P in M consists of two open 3-balls, P is a spine of M punctured
twice. Removing from P the 2-component α ⊂ F whose closure contains m
true vertices, we fuse together the balls and get an almost simple spine of M
which has n−m true vertices, since the vertices in the closure of α will cease
to be true vertices, see Fig. 2.3. ��

Proposition 2.1.9. Suppose M̃ is a k-fold covering space of a 3-manifold M .
Then c(M̃) ≤ kc(M).

Proof. Let P be an almost simple spine of M having c(M) true vertices.
Consider the almost simple polyhedron P̃ = p−1(P ), where p: M̃ → M is the
covering map. Since the degree of the covering is k, the polyhedron P̃ has
kc(M) true vertices. If ∂M = ∅, then P̃ is an almost simple spine of M̃ , since
the collapse of M onto P can be lifted to a collapse of M̃ onto P̃ . Therefore,
c(M̃) ≤ kc(M).

If M is closed, P̃ is a spine of the manifold M̃ \ π−1(V ), where V is an
open 3-ball in M . The inverse image p−1(V ) consists of k open 3-balls, hence,
by Proposition 2.1.5, we have c(M̃) = c(M̃ \ p−1(V )) ≤ kc(M). ��

Fig. 2.3. Special spine of L4,1 obtained from the standard Heegaard diagram of L4,1
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Remark 2.1.10. If M in the above proof is closed, then one can get an al-
most simple spine of M̃ by puncturing those 2-components of P̃ that separate
different balls in p−1(V ). To fuse k balls together, we must make k − 1 punc-
tures, and each of them decreases the total number of true vertices by the
number of true vertices in the boundary of the 2-component we are piercing
through. Thus, as a rule, c(M̃) is significantly less than kc(M).

Now we turn our attention to link complements and surgery presentations
of 3-manifolds. Assume that a link L in the space R3 = S3 \ {∗} with coordi-
nates x, y, z is in a general position with respect to the projection of R3 onto
the plane R2 with the coordinates x, y. We will use the generally accepted
way of presenting L by its projection L̄, disconnecting it at the lower double
points. The words lower and higher are understood in the sense of the value
of the coordinate z. Connected components of the projection cut up in this
way will be called overpasses. Each overpass is bounded by two lower points,
and contains several upper crossing points. Their number will be called the
overpass degree. We may look at the link from below and disconnect it at
upper double points. Then we get underpasses. The number of lower points
on an underpass is called the underpass degree. Let us call an overpass and an
underpass independent, if the corresponding sets of double points (including
the endpoints) are disjoint.

Often it is convenient to think of L as being contained in S3 = R3 ∪ {∗}
rather than in R3. Then the projection L̄ of L is in the sphere S2 = R2 ∪{∗}.
In this case the complement space C(L) = S3 \ Int N(L), where N(L) is an
open tubular neighborhood of L in S3, is a compact 3-manifold.

Proposition 2.1.11. Suppose a link L ⊂ S3 is given by a projection L̄ with
n crossing points so that there are an overpass of degree k and an independent
underpass of degree m. Then the complexity of the complement space C(L) of
L is no greater than 4(n − m − k − 2).

Proof. Let us attach the annulus S1 × I along the projection L̄ to S2 and
to the other parts of the annulus previously pasted on. We get a “tunnel,”
see Fig. 2.4, where the attaching procedure is shown in the neighborhood of a
crossing point.

Fig. 2.4. Attaching a tunnel to S2 produces a simple spine of the twice punctured
link complement



66 2 Complexity Theory of 3-Manifolds

The result will be a simple polyhedron P with 4n true vertices: each cross-
ing point produces four of them. The complement to a regular neighborhood
N(P ) of P in S3 is the union of a tubular neighborhood N(L) of L and
two balls B1, V2 that lie inside and outside S2, respectively. In order to get
a spine of C(L), one should fuse the balls with N(L) by puncturing two 2-
components of P that separate N(L) from the balls. Choose for the puncture
the 2-components α ⊂ S1 × I and β ⊂ S2 that correspond to the overpass
of degree k and the underpass of degree m, respectively. When we remove α,
then 4k + 4 true vertices disappear (two pairs correspond to the endpoints
of the overpass, and 4k are related with k crossing points). Removing β, we
destroy 4m + 4 true vertices. It follows that after collapsing we get an almost
simple spine of C(L) with no more than 4(n − m − k − 2) vertices. ��

Remark 2.1.12. It can be shown that if the projection L̄ has n ≥ 6 crossings,
then one can always find an overpass and independent underpass satisfying
k+m ≥ 2. The complexity of C(L) can then be estimated by 4n−16. If there
are no independent overpasses and underpasses, then one can use dependent
ones or, alternatively, puncture a 2-component that lies on S2 and separates
the balls B1, B2. The number of disappearing true vertices in this case may
be smaller, since the same true vertex may be taken into account twice.

Consider now the surgery presentation of 3-manifolds [72]. For simplicity,
we restrict ourselves to the case when M is presented by a framed knot K.
Recall that the writhe w(K̄) of a projection K̄ may be defined as the framing
number of the “vertical” framing of K by the vector field orthogonal to R2.
To get an arbitrary framing s, one should twist the vertical framing |s−w(K̄)|
times in the appropriate direction.

Denote by � the preferred longitude of K, i.e., the simple closed curve in
∂N(K) that intersects a meridian m of ∂N(K) at one point and is homologous
to 0 in the complement to N(K). Let K have the framing s. To convert S3

to M , one should make two steps:

(1) Cut N(K) out of S3

(2) Glue in the solid torus D2 × S1 so that the meridian ∂D2 × {∗} winds
once around the longitude � and s times around the meridian m

Proposition 2.1.13. Suppose M is obtained by Dehn surgery along a knot
K with framing s such that the projection K̄ of K has n ≥ 1 crossing points.
Then c(M) ≤ 5n + |s − w(K̄)|.

Proof. First we assume that s = w(K̄) or, equivalently, that the framing of K
is vertical. Let P be a simple spine of the twice punctured complement C(K)
of K constructed in the proof of Proposition 2.1.11, i.e., the sphere S2 with a
tunnel attached along K̄. Then one can get a simple spine P1 of M punctured
three times by attaching the disc D2 along the top line of the tunnel. The disc
plays the role of the meridional disc of the solid torus that is glued in instead
of N(K). Each time when the tunnel climbs onto itself, there appear two new
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Fig. 2.5. An alternative construction of an almost simple spine of the link com-
plement. The top line of the tunnel contains a smaller number of triple points, and
each its winding around the meridian produces only one new true vertex

true vertices (where the base lines of the upper tunnel intersect the top line
of the lower one). Thus P1 possesses 6n true vertices (n is the number of
crossing points of K̄). To decrease the number of true vertices, we modify the
construction of P as shown in Fig. 2.5. The new spine P of C(K) punctured
twice has the same number of true vertices, but the corresponding new spine
P1 of trice punctured M will have only 5n true vertices. The explanation is
simple: if the tunnel climbs onto itself, then in the top line of the lower part
of the tunnel there appears only one new true vertex.

If s = w(K̄), one should force the top line of the tunnel to make |s−w(K̄)|
additional rotations. Each of them produces a new true vertex, so the total
number of true vertices would be 5n + |s − w(K̄)|. It remains to puncture
two 2-components of P1 that separate different balls and get an almost simple
spine of M with a smaller number of true vertices. ��

2.2 Properties of Complexity

2.2.1 Converting Almost Simple Spines into Special Ones

We have already stated the advantages of using almost simple spines, yet
there are important downsides too. In general, almost simple spines deter-
mine 3-manifolds in a nonunique way, and cannot be represented by regular
neighborhoods of their singular graphs alone. Since special spines, as has been
mentioned before, are free from such liability, we would like to go from almost
simple polyhedra to special ones whenever possible. So the question is: when
is it possible? We shall study it in this section.

Let P be an almost simple spine of a 3-manifold M that is not a special
one. Then P either possesses a 1-dimensional part or has 2-components not
homeomorphic to a disc. Our aim is to transform P into a special spine of M
without increasing the number of true vertices. In general this is impossible.
For example, if M is reducible or has compressible boundary, any minimal
almost simple spine of M must contain a 1-dimensional part. Nevertheless, in
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some cases it is possible. To give an exact formulation, we need to recall a few
notions of 3-manifold topology.

Definition 2.2.1. A 3-manifold M is called irreducible , if every 2-sphere in
M bounds a 3-ball.

If M is reducible, then either it can be decomposed into nontrivial con-
nected sum, or is one of the manifolds S2 × S1, S2×̃S1.

Recall that a compact surface F in a 3-manifold M is called proper, if
F ∩ ∂M = ∂F .

Definition 2.2.2. A 3-manifold M is boundary irreducible, if for every
proper disc D ⊂ M the curve ∂D bounds a disc in ∂M .

Definition 2.2.3. Let M be an irreducible boundary irreducible 3-manifold.
A proper annulus A ⊂ M is called inessential, if either it is parallel rel ∂ to
an annulus in ∂M , or the core circle of A is contractible in M (in the second
case A can be viewed as a tube possessing a meridional disc). Otherwise A is
called essential.

Of course, these notions will be considered in more detail later.

Theorem 2.2.4. Suppose M is a compact irreducible boundary irreducible 3-
manifold such that M = D3, S3, RP 3, L3,1 and all proper annuli in M are
inessential. Then for any almost simple spine P of M there exists a special
spine P1 of M having the same or a fewer number of true vertices.

Proof. Identify M (or M with a 3-ball removed, if M is closed) with a reg-
ular neighborhood of P . We will assume that P cannot be collapsed to a
smaller subpolyhedron. We convert P into P1 by a sequence of transforma-
tions (moves) of three types. To control the number of steps, we assign to any
almost simple polyhedron P the following three numbers:

1. c2(P ), the number of 2-components of P .
2. −χ2(P ) = −

∑
α χ(α), where the sum is taken over all 2-components α of

P and χ(α) is the Euler characteristic.
3. c1(P ) = min e(XP ), where the 1-dimensional part XP of P (i.e., the union

of points having 0-dimensional links) is presented as a graph with e(XP )
edges and the minimum is taken over all such presentations.

The triples (c2(P ),−χ2(P ), c1(P )) will be considered in the lexicographic or-
der.

Move 1. Suppose that the 1-dimensional part XP of P is nonempty.
Consider an arc � ⊂ XP and a proper disc D ⊂ M which intersects �
transversally at one point. Since M is irreducible and boundary irreducible,
D cuts a 3-ball B out of M . Removing B ∩ P from P and collapsing the
rest of P as long as possible, we get a new almost simple spine P ′ ⊂ M .
If B ∩ P contains at least one 2-component of P , then c2(P ′) < c2(P ). If
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B ∩ P is 1-dimensional, then the 2-dimensional parts of P, P ′ coincide and
thus c2(P ′) = c2(P ),−χ2(P ′) = −χ2(P ). Of course, c1(P ′) < c1(P ).

Assume that a 2-component α of P contains a nontrivial simple closed
curve l so that the restriction to l of the normal bundle ν of α is trivial. If
α is not D2, S2 or RP 2, then l always exists. It follows that one can find
a proper annulus A ⊂ M that intersects P transversally along l. Since all
annuli are inessential, either A is parallel to the boundary or its core circle is
contractible.

Move 2. Suppose that A is parallel to the boundary. Then it cuts off a
solid torus V from M so that the remaining part of M is homeomorphic to
M . Removing V ∩P from P , we obtain (after collapsing) a new almost simple
spine P ′ ⊂ M . This move annihilates α, so c2(P ′) < c2(P ).

Move 3. Suppose that the core circle of A is contractible. Then both circles
of ∂A are also contractible. Choose one of them. By Dehn’s Lemma [106], it
bounds a disc in M and, since M is boundary irreducible, a disc D in ∂M . It
follows that there is a disc D ⊂ Int M such that D∩P = ∂D = l. Since M \P
is homeomorphic to ∂M × (0, 1], D cuts a proper open 3-ball B out of M \P ,
see Definition 1.2.12. If we puncture D, collapse B and then collapse the rest
of D, we return to P . However, if we get inside the ball B through another
2-component of the free boundary of B (see Fig. 2.6), we get after collapsing
a new almost simple spine P ′ ⊂ M .

Let us analyze what happens to α under this move. If l does not separate
α, then the collapse eliminates α completely together with D. In this case we
have c2(P ′) < c2(P ).

Suppose that l separates α into two parts, α′ and α′′ (the notation is
chosen so that the hole is in α′′). Then the collapse destroys α′′, and we are
left with α′ ∪ D. In this case either c2(P ′) < c2(P ) (if the collapse destroys
some other 2-components of P ), or c2(P ′) = c2(P ) and −χ2(P ′) < χ2(P )
since −χ(α′ ∪ D) < −χ(α).

Now let us perform Steps 1, 2, 3 as long as possible. The procedure is
finite, since each step strictly decreases the triple (c2(P ),−χ2(P ), c1(P )) and
hence any monotonically decreasing sequence of triples is finite. Let P1 be the
resulting almost simple spine of M . By construction, P1 has no 1-dimensional

Fig. 2.6. Attaching D2 along l and puncturing another 2-component produces a
simpler spine
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part and no 2-components different from D2, S2, and RP 2. The following cases
are possible:

1. P1 has no 2-components at all. Since it also has no 1-dimensional part, P1

is a point and thus M = S3 or M = D3.
2. P1 contains a 2-component which is not homeomorphic to the disc. In this

case P1 is either RP 2 or S2. Suppose that P1=RP 2. Then M = RP 2 × I
or RP 3. We cannot have M = RP 2×̃I, since this manifold is a punctured
projective space and hence is reducible. For the same reason we cannot
have P1 = S2: the manifold S2 × I is reducible.

3. All the 2-components of P1 are discs and P1 has no true vertices but con-
tains triple points. Denote by k the number of 2-components of P1. We
cannot have k = 3, since the union of three discs with common bound-
ary is a spine of S3 with three punctures, which is a reducible manifold.
The simple polyhedron obtained by attaching two discs to a circle is un-
thickenable, see Example 1.1.18. We may conclude that P1 has only one
2-component, which is homeomorphic to the disc. In this case M is home-
omorphic to L3,1.

4. There remains only one possibility: P1 has true vertices and all its 2-
components are discs. In this case P1 is special.

��

2.2.2 The Finiteness Property

Theorem 2.2.5. For any integer k, there exists only a finite number of dis-
tinct compact irreducible boundary irreducible 3-manifolds that contain no es-
sential annuli and have complexity k.

Proof. Follows immediately from Theorems 2.2.4 and 2.1.1. ��
Restricting ourselves to the most interesting case of closed orientable irre-

ducible 3-manifolds, we immediately get Corollary 2.2.6.

Corollary 2.2.6. For any integer k, there exists only a finite number of dis-
tinct closed orientable irreducible 3-manifolds of complexity k.

Recall that a compact 3-manifold M is hyperbolic if Int M admits a com-
plete hyperbolic metrics of a finite volume. It is known (see [136]) that any
hyperbolic 3-manifold is irreducible, has incompressible boundary, and con-
tains no essential annuli.

Corollary 2.2.7. For any integer k, there exists only a finite number of dis-
tinct orientable hyperbolic 3-manifolds of complexity k.

Both corollaries follow immediately from Theorem 2.2.5. Let nc(k) and
nh(k) be the numbers of all closed orientable irreducible 3-manifolds of com-
plexity k and all orientable hyperbolic 3-manifolds of complexity k, respec-
tively. Then for small k the exact values of these numbers are listed in the
table below.
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k 0 1 2 3
nc(k) 3 2 4 7
nh(k) 0 0 2 9

Remark 2.2.8. To show that the assumptions of Theorem 2.2.5 are essential,
let us describe three infinite sets of distinct 3-manifolds of complexity 0. The
sets consist of manifolds that are either reducible (1), or boundary reducible
(2), or contain essential annuli (3).

(1) For any integer n the connected sum Mn of n copies of the projective
space RP 3 is a closed manifold of complexity 0. To construct an almost
simple spine of Mn without true vertices, one may take n exemplars of
the projective plane RP 2 and join them by arcs. Alternatively, one can
start with L3,1 and the triple hat instead of RP 3 and RP 2.

(2) The genus n handlebody Hn is irreducible, but boundary reducible. Since
it can be collapsed onto a 1-dimensional spine, c(Hn) = 0.

(3) Manifolds ∂Hn × I are irreducible and boundary irreducible, but contain
essential annuli. They have complexity 0 since can be collapsed onto the
corresponding surfaces.

2.2.3 The Additivity Property

Recall that the connected sum M1#M2 of two compact 3-manifolds M1,M2

is defined as the manifold (M1\Int B1) ∪h (M2\Int B2), where B1 ⊂ Int M1,
B2 ⊂ Int M2 are 3-balls, and h is a homeomorphism between their boundaries.
If the manifolds are orientable, their connected sum may depend on the choice
of h. In this case M1#M2 will denote any of the two possible connected sums.
Alternatively, one can use signs and write M1#(±M2)

To define the boundary connected sum, consider two discs D1 ⊂ ∂M1,
D2 ⊂ ∂M2 in the boundaries of two 3-manifolds. Glue M1 and M2 together
by identifying the discs along a homeomorphism h:D1 → D2. Equivalently,
one can attach an index 1 handle to M1 ∪ M2 such that the base of the
handle coincides with D1 ∪ D2. The manifold M thus obtained is called the
boundary connected sum of M1,M2 and is denoted by M1⊥⊥M2. Of course,
M depends on the choice of the discs (if at least one of the manifolds has
disconnected boundary), and on the choice of h (homeomorphisms that differ
by a reflection may produce different results). Thus the notation M1⊥⊥M2 is
slightly ambiguous, like the notation for the connected sum. When shall use
it to mean that M1⊥⊥M2 is one of the manifolds that can be obtained by the
above gluing.

Theorem 2.2.9. For any 3-manifolds M1,M2 we have:

1. c(M1#M2) = c(M1) + c(M2)
2. c(M1⊥⊥M2) = c(M1) + c(M2)
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Proof. We begin by noticing that the first conclusion of the theorem follows
from the second one. To see that, we choose 3-balls V1 ⊂ Int M1, V2 ⊂ Int M2,
and V3 ⊂ Int (M1#M2). It is easy to see that (M1 \ Int V1)⊥⊥ (M2 \ Int V2)
and (M1#M2)\V3 are homeomorphic, where the index 1 handle realizing the
boundary connected sum is chosen so that it joins ∂V1 and ∂V2. Assuming
(2) and using Proposition 2.1.5, we have: c(M1#M2) = c((M1#M2) \ V3) =
c(M1 \ Int V1) + c(M2 \ Int V2) = c(M1) + c(M2).

Let us prove the second conclusion. The inequality c(M1⊥⊥M2) ≤ c(M1)+
c(M2) is obvious, since if we join minimal almost simple spines of M1,M2 by
an arc, we get an almost simple spine of M1⊥⊥M2 having c(M1)+ c(M2) true
vertices.

The proof of the inverse inequality is based on Haken’s theory of normal
surfaces (see Chap. 3). So we restrict ourselves to a reference to Corollary 4.2.10,
which states that attaching an index 1 handle preserves complexity. ��

2.3 Closed Manifolds of Small Complexity

2.3.1 Enumeration Procedure

It follows from the finiteness property that for any k there exist finitely many
closed orientable irreducible 3-manifolds of complexity k. The question is:
how many? The constructive proof of Theorem 2.1.1 allows us to organize a
computer enumeration of special spines with k true vertices. Of course, the list
of corresponding 3-manifolds can contain duplicates as well as nonorientable,
nonclosed, or reducible manifolds. All such manifolds must be removed.

Let us briefly describe the enumeration results in historical order. First,
Matveev and Savvateev tabulated closed irreducible orientable manifolds up
to complexity 5, see [91]. The manifolds were listed with the help of a computer
and recognized manually. This was the first paper on computer tabulation of
3-manifolds. It contained all basic elements of the corresponding theory, which
much later have been rediscovered by various mathematicians. This table was
extended to the level of complexity 6 in [80,83]. The same approach was used
by Ovchinnikov [102, 103] in composing the table of complexity 7. The man-
ifolds were still recognized manually, although by an improved method (by
distinguishing and using elementary blocks). Later Martelli wrote a computer
program which is based on the same principle, but tabulates 3-manifolds in
two steps. First, it enumerates some special building blocks (bricks), and only
then assembles bricks into 3-manifolds. An interesting relative version of the
complexity theory (see [74]) serves as a theoretical background for the pro-
gram. We describe it in Sect. 7.7.

Let us present the results of these enumeration processes for k ≤ 7 (see
Sect. 7.5 for the similar results for k ≤ 12).

Theorem 2.3.1. The number nc(k) of closed orientable irreducible 3-mani-
folds of complexity k for k ≤ 7 is given by the following table:
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k 0 1 2 3 4 5 6 7
nc(k) 3 2 4 7 14 31 74 175

Closed orientable irreducible 3-manifolds of complexity 0 are the following
ones: the sphere S3, the projective space RP 3, and the lens space L3,1. Their
almost simple spines without true vertices were described in Sect. 2.1.2. The
complexity of S2×S1 is also equal to 0, but this manifold is reducible. Closed
orientable irreducible 3-manifolds of complexity 1 are lens spaces L4,1 and
L5,2. There are four 3-manifolds of complexity 2. They are the lens spaces
L5,1, L7,2, L8,3, and the manifold S3/Q8, where Q8 = {±1,±i,±j,±k} is
the quaternion unit group (the action of Q8 on S3 is linear). See Sect. 2.3.3
and the Appendix for the description and the complete table of manifolds of
complexity k ≤ 6.

Let us give a nonformal description of the computer program that was
used for creating the table up to complexity 7. The computer enumerates all
the regular graphs of degree 4 with a given number of vertices. The graphs
may be considered as work-pieces for singular graphs of special spines. For
each graph, the computer lists all possible gluings together of butterflies that
are taken instead of true vertices (see the proof of Theorem 2.1.1). Note that
if the graph has k vertices, then there are 2k edges, and thus potentially 62k

different gluings of the triodes. Not all of them produce spines of orientable
manifolds: it may happen that we get a special polyhedron which is not a spine
or is a spine of a nonorientable manifold. To avoid this, we supply each copy of
E with an orientation (in an appropriate sense), and use orientation reversing
identifications of the triodes. This leaves us with no more than 2k−13k spines
of orientable manifolds. One may decrease this number by selecting spines
of closed manifolds, but it still remains too large. The problem is that we
get a list of spines, while it is a list of manifolds we are interested in (as we
know, any 3-manifold has many different special spines). Also, some manifolds
from the list thus created would be reducible. A natural idea to obtain a list of
manifolds that does not contain duplicates and reducible manifolds consists in
considering minimal spines, i.e., spines of minimal complexity. Unfortunately,
there are no general criteria of minimality. The good news here is that there
are a lot of partial criteria of nonminimality. In Sect. 2.3.2 we present two of
them that appeared to be sufficient for casting out all reducible manifolds and
almost all duplicates up to k = 6.

The completion of the table of closed orientable irreducible 3-manifolds
up to complexity 6 was made by hand. It was a big job indeed: for each pair
of spines that had passed the minimality tests one must decide whether or
not they determine homeomorphic manifolds. In practice we calculated their
invariants: homology groups and, in worst cases, fundamental groups [83,91].
Later, after Turaev–Viro invariants had been discovered, we used them to
verify the table. If the invariants did not help to distinguish the manifolds, we
tried to transform one spine into the other by different moves that preserve
the manifold. In all cases a definitive answer was obtained.
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We point out that the Turaev–Viro invariants are extremely powerful for
distinguishing 3-manifolds. In particular, invariants of order ≤ 7 distinguish
all orientable closed irreducible 3-manifolds up to complexity 6 having the
same homology groups. The only exception are lens spaces, for which there is
no need to apply these invariants.

2.3.2 Simplification Moves

We describe here only two types of moves. The moves have the following
advantage: It is extremely easy to determine whether or not one can apply
them to a given special spine.

Definition 2.3.2. Let P be a special polyhedron and c a 2-component of P .
Then we say that the boundary curve of c has a counterpass, if it passes along
one of the edges of P twice in opposite directions. We say that the boundary
curve is short , if it passes through no more than 3 true vertices of P and
through each of them no more than once.

For instance, Bing’s House contains two 2-components with boundary
curves of length 1 while the boundary curve of the third 2-component has
a few counterpasses (see Fig. 1.6).

Proposition 2.3.3. Suppose that P is a special spine of a 3-manifold M such
that either:

1. P has a 2-component with a short boundary curve.
2. M is closed, orientable, and the boundary curve of one of the 2-components

of P has a counterpass.

Then M possesses an almost simple spine with a smaller number of true
vertices.

Proof. Assume that P has a 2-component c with a short boundary curve. A
regular neighborhood of Cl(c) in P can be presented as a lateral surface of a
cylinder with k ≤ 3 wings and the 2-component c as a middle disc. Attach
to P a disc parallel to c and drill a hole in a lateral face of the cylinder
thus obtained, see Fig. 2.7. Collapsing the resulting polyhedron, we get a new

Fig. 2.7. Attaching a new 2-cell and making a hole decreases the number of true
vertices
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Fig. 2.8. Collapsing the unique wing

Fig. 2.9. Simplification by a counterpass

almost simple spine of M . It has a smaller number of vertices, since attaching
the disc creates k new true vertices, and piercing the lateral face and collapsing
destroys at least four of them if k > 1, and at least two if k = 1. It may be
illuminating to note that the above transformation of P coincides with the
move L−1 if k = 2, and with the move T−1 if k = 3. For k = 1 the result is
drastic: We collapse not only the pierced 2-component, but also the unique
wing of the cylinder. See Fig. 2.8.

Assume now that M is closed and orientable, and the boundary curve of a
2-component c of P has a counterpass on an edge e. Then there exists a simple
closed curve l ⊂ Cl(c) that intersects e transversally at exactly one point. It
decomposes c into two 2-cells c′, c′′. Since M is closed and orientable, one can
easily find a disc D ⊂ M such that D ∩ P = ∂D = l. To construct D, one
may push l by an isotopy to the boundary of a regular neighborhood of P and
span it by a disc in the complementary ball. The polyhedron P ∪D is a special
spine of the twice punctured M , that is, of M with two balls B1, B2 cut out
of it. To get a spine of M , we make a hole in c′ or c′′ depending on which
of them is a common face of these balls. After collapsing we get an almost
simple spine of M having a smaller number of true vertices, see Fig. 2.9. ��

Remark 2.3.4. Suppose P has a 2-component such that its boundary curve
visits four true vertices, and each of them exactly once. If we apply the same
trick (glue in a parallel 2-cell and puncture a lateral one), we get another spine
of M having the same number of true vertices. Sometimes this transformation
is useful for recognition of duplicates.
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Fig. 2.10. The minimal spine of the complement of the figure eight knot has coun-
terpasses

Remark 2.3.5. The assumption that M is closed in item 2 of Proposi-
tion 2.3.3 can be replaced by the requirement that ∂M consists of spheres. If
∂M contains tori or surfaces of higher genus, in general the counterpass sim-
plification does not work. The reason is that the curve l in the proof may not
bound a disc in the complement to the spine. For example, the special spine of
the complement to the figure eight knot shown in Fig. 2.10 has counterpasses
but cannot be simplified since it is minimal.

2.3.3 Manifolds of Complexity ≤ 6

The list of all closed orientable irreducible 3-manifolds up to complexity 6
contains 135-manifolds, see Sect. A.2 and its description in the Appendix.
Each manifold is presented by a regular neighborhood of the singular graph
of its minimal special spine. If the manifold has several minimal spines, all of
them are included in the table. Let us comment on which kinds of 3-manifolds
can be found in the table.

A. All closed orientable irreducible 3-manifolds up to complexity 6 are
Seifert manifolds. All the manifolds of complexity ≤ 5 and many manifolds
of complexity 6 have finite fundamental groups. They are elliptic, that is, can
be presented as quotient spaces of S3 by free linear actions of finite groups.
Groups which can linearly act on S3 without fixed points are well known
(see [94]). They are:

1. The finite cyclic groups
2. The groups Q4n, n ≥ 2
3. The groups D2k(2n+1), k ≥ 3, n ≥ 1
4. The groups P24, P48, P120, and P ′

8(3k), k ≥ 2
5. The direct product of any of these groups with a cyclic group of coprime

order

Lower indices show the orders of the groups. Presentations by generators and
relations are given in the preliminary to Sect. A.2, see the Appendix.

B. The list contains representatives of all the five series of elliptic mani-
folds. In particular, the manifolds S3/P24, S

3/P48, and the Poincaré homology
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sphere S3/P120 have complexities 4,5, and 5, respectively. The first manifold
with a nonabelian fundamental group is S3/Q8, where Q8 is the quaternion
unit group. It has complexity 2. More generally, for 2 ≤ n ≤ 6 the manifolds
S3/Q4n have complexity n. The simplest manifold of the type S3/D2k(2n+1),
that is, S3/D24, has complexity 4 while the simplest manifold of the type
S3/P ′

8(3k), the manifold S3/P ′
72, has complexity 5. There also occur quotient

spaces of S3 by actions of direct products of the above-mentioned groups with
cyclic groups of relatively prime orders. The simplest of these (the manifold
S3/Q8 × Z3) has complexity 4.

C. All six flat closed orientable 3-manifolds have complexity 6, among them
the torus S1×S1×S1 and the Whitehead manifold obtained from S3 by Dehn
surgery on the Whitehead link with trivially framed components. The last two
are the only closed orientable irreducible manifolds of complexity ≤ 6 having
the first homology group of rank ≥ 2. Recall that the Whitehead manifold
coincides with the mapping torus of a homeomorphism S1 × S1 → S1 × S1

which is the Dehn twist along nontrivial simple closed curve.
D. Among the manifolds of complexity ≤ 6 there is just one nontrivial

homology sphere S3/P120. It has a unique minimal special spine with five
true vertices. The singular graph of the spine is the complete graph on five
vertices.

E. If the complexity of the lens space Lp,q with p > 2 does not exceed 6,
then it can be computed by the formula c(Lp,q) = S(p, q)−3, where S(p, q) is
the sum of all partial quotients in the expansion of p/q as a regular continued
fraction. Most probably, the formula c(Lp,q) = S(p, q) − 3 holds for all lens
spaces, but we know only how to prove the inequality c(Lp,q) ≤ S(p, q)− 3: it
follows from Remark 2.3.8.

In practice, it is more convenient to calculate c(Lp,q) by the following
empirical rule: if p > 2q, then c(Lp,q) = c(Lp−q,q)+1. For example, c(L33,10) =
c(L23,10) + 1 = c(L13,10) + 2 = c(L13,3) + 2 = c(L10,3) + 3 = c(L7,3) + 4 =
c(L4,3) + 5 = c(L4,1) + 5 = c(L3,1) + 6 = 6 since c(L3,1) = 0 (we have used
twice that lens spaces Lp,q and Lp,p−q are homeomorphic). This shows once
again how natural the notion of complexity is.

It should be noted that the number of true vertices of a special spine as
a measure of complexity of 3-manifolds was implicitly used by numerous au-
thors. Ikeda proved that any simply-connected manifold having a simple spine
with ≤ 4 vertices is homeomorphic to S3 [49]. Together with Yoshinobu [50]
he listed all closed 3-manifolds which in our terminology possess complex-
ity ≤ 2. A complete list of all closed orientable irreducible 3-manifolds of
complexity ≤ 5 was obtained by means of a computer as early as 1973 by
Matveev and Savvateev [91]. Gillman and Laszlo, who were interested only in
homology spheres [35], with the help of a computer proved that among mani-
folds of complexity ≤ 5 only S3/P120 and S3 have trivial homology. Actually,
this fact can be extracted easily from the Matveev and Savvateev list. A list
of closed orientable irreducible 3-manifolds of complexity 7 was obtained by
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Ovchinnikov [102, 103]. It consists of 175-manifolds and is too large to be
presented in full. Fortunately, a major part of the manifolds can be divided
into four series admitting clear descriptions. In Appendix we present these
descriptions and list the remaining exceptional manifolds.

It is interesting to note that not all regular graphs can be realized as
singular graphs of minimal special spines of 3-manifolds. Let us try to single
out several types of graphs that produce the majority of 3-manifolds up to
complexity 6.

Definition 2.3.6. A regular graph G of degree 4 is called a nonclosed chain if
it contains two loops, and all the other edges are double. G is a closed chain,
if it has only double edges. Finally, G is called a triangle with a tail, if it is
homeomorphic to a wedge of a closed chain with three vertices and a nonclosed
chain such that the base point of the tail (i.e., the common point of these two
chains) lies on a loop of the nonclosed chain. See Fig. 2.11.

We will say that a special spine of a closed orientable 3-manifold is pseudo-
minimal if it has no counterpasses and short boundary curves. In particular,
any minimal special spine is pseudominimal. For brevity we will say that a
special spine P is modeled on a graph G if G is homeomorphic to the singular
graph of P .

Proposition 2.3.7. A closed orientable 3-manifold M has a pseudominimal
special spine modeled on a nonclosed chain if and only if M is a lens space
Lp,q with p > 3.

Proof. Let P be a pseudominimal special spine of M modeled on a closed chain
G with n vertices. Denote by i an involution on G having n+2 fixed points: n
vertices and one additional point on each loop. The involution permutes edges
having common endpoints. Since the boundary curves have no counterpasses,
they are symmetric with respect to i. Moreover, there is a boundary curve that
passes a loop of G twice. Remove from P the corresponding 2-component, and
denote by P1 the resulting polyhedron. Note that P1 is a spine of M \ IntH1,
where H1 is a solid torus in M .

Fig. 2.11. Three useful types of singular graphs: a nonclosed chain, closed chain,
and a triangle with a tail
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Let us collapse P1 for as long as possible by removing other 2-components
together with their free edges, and free edges together with their free vertices.
Using the above-mentioned symmetry of the boundary curves, one can easily
show that we get a circle (actually, the second loop of G). To visualize this,
one may take the spine of any lens space from Sect. A.2 and carry out the
collapsing by hand. It follows that M \ IntH1 is a regular neighborhood of a
circle, that is, a solid torus. Thus M is a lens space. ��

Remark 2.3.8. Let us describe a simple method for calculating parameters
of the lens space presented by a picture that shows a regular neighborhood
of the singular graph of its pseudominimal special spine. The correctness of
this method can be easily proved by induction on the number of true vertices
of the spine. Assign to each double edge and to each loop of the singular
graph a letter � or r as shown in Fig. 2.12. We get a string w of letters that
we will consider as a composition of operators r, �:Z ⊕ Z → Z ⊕ Z given by
r(a, b) = (a, a+ b) and �(a, b) = (a+ b, b). Then the lens space has parameters
p = m + n, q = m, where (m,n) = w(1, 1). For example, for the lens space
shown in Fig. 2.12 we have w = rrrr���, (m,n) = (4, 17), and (p, q) = (21, 4),
since by our interpretation of r, � we have

(1, 1) �→ (2, 1) �→ (3, 1) �→ (4, 1) r→ (4, 5) r→ (4, 9) r→ (4, 13) r→ (4, 17).

The same method can be used for constructing a pseudominimal special spine
of a given lens space Lp,q: One should apply to the pair (p − q, q) operators
r−1, �−1 until we get (1, 1), and then use the string of letters r, � thus obtained
for constructing the spine.

Proposition 2.3.9. A closed orientable 3-manifold M has a pseudominimal
special spine modeled on a triangle with a tail if and only if M is an orientable
Seifert fibered manifold of the type (S2, (2, 1), (2,−1), (n, β)), where β, n > 0,
and (n, β) = (1, 1).

Proof. Let P be a pseudominimal special spine of M modeled on a triangle
with a tail. Since the boundary curves have no counterpasses, they pass over

Fig. 2.12. How to write down the developing string for a nonclosed chain
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the tail in a symmetric way with respect to the involution of the tail that
permutes the double edges and reverses the orientation of the loop. For the
same reason one of the boundary curves passes the loop twice. Remove from
P the corresponding 2-component and denote by P1 the resulting polyhedron.
Of course, P1 is a spine of M1 = M \ IntH, where H is a solid torus in M . Let
us collapse P1 as long as possible. Using the above-mentioned symmetry of
the boundary curves, one can easily show that the tail disappears completely,
together with all 2-cells that have common points with it, including all the
2-components whose boundary curves pass through the base point of the tail.
It follows that we get a simple spine without singular points, that is, a closed
surface K. Since the boundary of M1 is a torus, K is the Klein bottle, and
M1 = K×̃I. It is well known that K×̃I can be presented as the Seifert fibered
manifold over the disc with two exceptional fibers of types (2, 1) and (2,−1),
see Example 6.4.14. Thus attaching the solid torus H converts M1 to a Seifert
fibered manifold (S2, (2, 1), (2,−1), (n, β)). The parameters (n, β) show how
H is glued to K×̃I. We can always get n, β > 0 by reversing the orientation
of the manifold.

Just as in the proof of Proposition 2.3.7, let us describe a simple method for
calculating the parameters (n, β) starting from a pseudominimal special spine
modeled on a triangle with a tail. The correctness of the method can be easily
proved by induction on the number of vertices of the tail. Assign to the loop
and the double edges of the tail and to the pair of edges adjacent to it letters
� and r as shown in Fig. 2.13. We get a string w of letters which, as above,
can be considered as a composition of operators r, �:Z ⊕Z → Z ⊕Z given by
r(a, b) = (a, a+ b) and �(a, b) = (a+ b, b). Then (n, β) = w(1, 1). For example,
for the spine shown in Fig. 2.13 we have w = �r�� and w(1, 1) = (n, β) = (7, 4).

The same method can be used for constructing a pseudominimal special
spine of a given Seifert fibered manifold (S2, (2, 1), (2,−1), (n, β)): one should
recover the string of r, � by transforming (n, β) into (1, 1), and then use it for
choosing the correct tail. Since n = 0 and (n, β) = (1, 1), the string and the
tail exist. ��

Fig. 2.13. How to write down the developing string for a tail
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Note that for any pair of coprime positive integers (n, β) with n ≥ 1 the
fundamental group of the manifold Mn,β = (S3, (2, 1), (2,−1), (n, β)) is finite
and has the presentation

〈c1, c2, c3, t|c2
1 = t, c2

2 = t−1, cn
3 = tβ , c1c2c3 = 1〉

The order of the homology group H1(Mn,β ;Z) is 4β. Using this, it is not
hard to present Mn,β as the quotient space of S3 by a linear action of a group
from the Milnor list [94] presented above. It turns out that the following is
true:

(1) If n > 1 and β is odd, then Mn,β = S3/Q4n × Zβ

(2) If n > 1 and β is even, then Mn,β = S3/D2k+2n ×Z2m+1, where k and m
can be found from the equality β = 2k(2m + 1)

(3) If n = 1 and β = 0, 1, then Mn,β = L4β,2β+1

If n = 1 or β = 1, the pseudominimal special spine of Mn,β modeled on
the triangle with a tail is not minimal. An easy way to see that is to apply
the transformation described in Remark 2.3.4. This is possible since the spine
possesses a boundary curve that passes through four true vertices, and visits
each of them exactly once. After the transformation we get a spine that has
the same number of true vertices but possesses a boundary curve of length 3.
Therefore, one can simplify the spine. In the case n = 1 we get a spine of a
lens space modeled on a nonclosed chain with smaller number of true vertices.
If β = 1, we get a simple spine of the manifold S3/Q4n.

Proposition 2.3.10. A closed orientable 3-manifold M has a pseudominimal
special spine modeled on a closed chain with n ≥ 2 vertices if and only if M
is S3/Q4n.

Proof. One can easily show that any pseudominimal spine of a closed manifold
modeled on a closed chain contains a boundary curve that goes twice around
the chain and passes through all the edges. For any n ≥ 2 there is only one
such spine (see Fig. 2.14), and its fundamental group is Q4n. Removing the

Fig. 2.14. The unique pseudominimal special spine modeled on a closed chain with
n vertices is a spine of S3/Q4n



82 2 Complexity Theory of 3-Manifolds

corresponding 2-component and collapsing, we get the Klein bottle. There-
fore, M is a Seifert fibered manifold over S2 with three exceptional fibers of
degree 2, 2, and n. Among such manifolds only S3/Q4n has the fundamental
group Q4n. ��

The following conjectures are motivated by Propositions 2.3.7–2.3.10 and
the results of the computer enumeration.

Conjecture 2.3.11. Any lens space Lp,q with p ≥ 3 has a unique minimal
special spine. This spine is modeled on a nonclosed chain.

Conjecture 2.3.12. For any n ≥ 2 the manifold S3/Q4n has a unique minimal
special spine. This spine is modeled on a closed chain with n links.

Conjecture 2.3.13. Manifolds of the type S3/Q4n × Zβ , n > 1, β = ±1 and
S3/D2k+2n × Z2m+1 have minimal special spine modeled on triangles with a
tail.

Section A.2 shows that the conjectures are true for manifolds of
complexity ≤ 7.

Remark 2.3.14. One can prove that any pseudominimal special spine mod-
eled on a triangle with three tails is a spine of a Seifert fibered manifold M
over S2 with three exceptional fibers. Let wi, 1 ≤ i ≤ 3 be the developing rl-
strings of the tails. Then M = (S2, (n1, β1), (n2, β2), (n3, β3), (1,−1)), where
(ni, βi) = wi(1, 1) for 1 ≤ i ≤ 3. We have inserted the regular fiber of the type
(1,-1) to preserve the symmetry of the expression. Certainly, one may write
M = (S2, (n1, β1), (n2, β2), (n3, β3−n3)). The formula works also for triangles
with < 3 tails, if we adopt the convention that the developing string for the
empty tail is � and produces the exceptional fiber of type (2,1). See Fig. 2.15.

Fig. 2.15. The developing strings are � (for the empty tail), r�, and �rr. Thus
M = (S2, (2, 1), (2, 3), (4, 3), (1,−1))
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2.4 Graph Manifolds of Waldhausen

Our discussion in Sect. 2.3.3 shows that all closed orientable irreducible 3-
manifolds of complexity ≤ 6 belong to the class G of graph manifolds of Wald-
hausen. G contains all Seifert manifolds and all Stallings and quasi-Stallings
3-manifolds with fiber S1 × S1. Its advantage is that it is closed with respect
to connected sums. It follows that all closed orientable (not necessarily irre-
ducible) 3-manifolds of complexity ≤ 6 are also graph manifolds. In Sect. 2.4.2
we will show that the same is true for 3-manifolds of complexity ≤ 8, but first
we should study G in more detail.

2.4.1 Properties of Graph Manifolds

Graph manifolds have been introduced and classified by Waldhausen in
two consecutive papers [129]. They turned out to be very important for
understanding the structure of 3-manifolds. Indeed, it follows from JSJ-
decomposition theorem (see [55, 57] and Sect. 6.4) that for any orientable
closed irreducible 3-manifold M there exists a finite system T of disjoint
incompressible tori T1, T2, . . . , Tn in M (unique up to isotopy) such that the
following holds:

(1) T decomposes M into Seifert manifolds and manifolds which are not
Seifert and contain no essential tori. We will call these submanifolds JSJ-
chambers.

(2) T has the minimal number of tori among all systems possessing (1).

If T = ∅, then all the JSJ-chambers are sufficiently large (see Sect. 4.1.6).
Therefore, one can apply Thurston’s results [62, 111, 122, 123] and prove that
every non-Seifert JSJ-chamber is a hyperbolic manifold. The union of all
Seifert JSJ-chambers is not necessarily a Seifert manifold, but it is composed
of Seifert manifolds. In particular, it can have Stallings and quasi-Stallings
components (see Definitions 6.4.16 and 6.5.12) with fiber S1 × S1. Manifolds
which can be obtained from Seifert manifolds by gluing their boundary tori
are known as graph manifolds of Waldhausen.

Roughly speaking, the role of graph manifolds in 3-manifold topology may
be expressed by the informal relation

M = (G + H) ∪ (?).

Here M,G, and H are the classes of all closed irreducible 3-manifolds,
graph manifolds, and hyperbolic manifolds, respectively. The class G + H
consists of manifolds that can be decomposed by incompressible tori into graph
and hyperbolic manifolds. The additional term (?) stands for the class of closed
irreducible manifolds which contain no essential tori and are neither hyperbolic
nor graph manifolds. If Thurston’s Geometrization Conjecture [111] is true,
then (?) is empty.
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The class of graph manifolds was rediscovered by Fomenko [30]. It turned
out that there is a close relationship between the integrability of Hamiltonian
mechanical systems on symplectic 4-manifolds and the topological structure
of level surfaces of the Hamiltonian: If the system is integrable, then each
nonsingular level surface is a graph manifold. See [12] for further development
of the theory.

To give a rigorous formal definition of graph manifolds, we prefer to com-
pose them from Seifert manifolds of two very simple types. Denote by N2 the
disc D2 with two holes. Then the manifold N2 × S1 can be presented as the
solid torus D2 × S1 with two drilled out solid tori H1,H2 that are parallel to
the core circle {∗}×S1 of D2 ×S1. A more general way to view N2 ×S1 is to
cut out a regular neighborhood of c∪ � from D2 × S1, where c is a core circle
of D2×S1 and � is any simple closed curve in Int (D2×S1) that is parallel to
a nontrivial curve in ∂D2 × S1. The result does not depend on the choice of
� since all nontrivial simple closed curves in the boundary of S1 × S1 × I are
equivalent up to homeomorphisms of S1 × S1 × I. We will call the manifolds
D2 × S1 and N2 × S1 elementary blocks.

Definition 2.4.1. A compact 3-manifold M is called a graph manifold if it
can be obtained by pasting together several elementary blocks D2 × S1 and
N2 × S1 along some homeomorphisms of their boundary tori.

It is often convenient to present the gluing schema by a graph having
vertices of valence 1 and 3. The vertices of valence 3 correspond to blocks
N2 × S1. Vertices of valence 1 correspond either to blocks D2 × S1 or to free
boundary component of M . In Fig. 2.16 we represent them by black and white
fat dots, respectively.

We next recall some well-known properties of graph manifolds, accompa-
nying them with short explanations or informal proofs.

Proposition 2.4.2. The class G contains all orientable Seifert manifolds.

Proof. Suppose M is a Seifert manifold fibered over a surface F . Note that any
surface can be decomposed by disjoint circles into the following elementary

Fig. 2.16. A graph structure of a graph manifold
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pieces: discs, copies of N2, and Möbius bands. One may assume that all excep-
tional fibers correspond to the centers of the discs. Then the decomposition of
F induces a decomposition of M into inverse images of elementary pieces. It
remains to note that the inverse image of each piece P is either an elementary
block (if P = D2, N2), or can be decomposed into three elementary blocks (if
P is a Möbius band). The latter is true since the twisted product of a Möbius
band and S1 admits an alternative Seifert structure: it fibers over D2 with
two exceptional fibers of types (2,1), (2,-1), see Example 6.4.14. ��

Proposition 2.4.3. The class G is closed with respect to connected sums, that
is, M1#M2 ∈ G ⇐⇒ M1,M2 ∈ G.

Proof. To prove the implication ⇐, it suffices to find a graph presentation
of D2 × S1#D2 × S1. Let c be the core circle of D2 × S1 and m a circle
obtained from a meridian of D2×S1 by pushing it inward D2×S1. Denote by
N(c), N(m) regular neighborhoods of the circles. Then the manifold D2×S1\
IntN(m) is homeomorphic to the connected sum of two solid tori. On the other
hand, it can be obtained from the manifold D2 × S1 \ (Int N(c) ∪ IntN(m))
homeomorphic to N2 × S1 by pasting back the torus N(c).

To prove the inverse implication, assume that a graph manifold M con-
tains a nontrivial 2-sphere S. Consider a decomposition of M into extended
elementary blocks, where each extended block is the union of an elementary
block N2×S1 and all the solid tori adjacent to it. Applying the innermost cir-
cle argument to the intersection of S with the boundaries of extended blocks,
we locate an extended block B with compressible boundary. Recall that the
boundary of any Seifert manifold is incompressible unless it is the solid torus.
It follows that for B we have the following possibilities:

1. B is a solid torus (presented as a union of smaller elementary blocks). We
consolidate the initial structure of a graph manifold by considering B as
a new block.

2. B is not a Seifert manifold. This can happen only in the case when B is
composed of N2×S1 and solid tori so that the meridian of one of the solid
tori is isotopic to a fiber {∗} × S1 of N2 × S1. Then B can be presented
as B1#B2, where each Bi is either a solid torus or a lens space. Thus we
can decompose M into a connected sum of either simpler graph manifolds
or a simpler graph manifold and S2 × S1.

Continuing this process for as long as possible, we get a decomposition
of M into a connected sum of prime graph manifolds. Since the topological
types of the summands are determined by M , the prime decomposition sum-
mands for M1,M2 have the same types. It follows that M1 and M2 are graph
manifolds. ��

Now we investigate the behavior of G with respect to boundary connected
sums and, more generally, to cutting along discs. Of course, the statement
M1⊥⊥M2 ∈ G ⇐⇒ M1,M2 ∈ G is not true anymore. For example, let
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V be a solid torus and B a 3-ball. Then V ⊥⊥V ∈ G although V ∈ G and
V ⊥⊥B ∈ G although B ∈ G. To formulate the correct corresponding state-
ment, it is convenient to introduce the following notation: If M is a 3-manifold,
then M̂ denotes the 3-manifolds obtained from M by attaching 3-balls to all
the spherical components of ∂M . In particular, if ∂M contains no spherical
components, then M̂ = M . Recall also that if D is a proper disc in M , then
MD denotes the 3-manifold obtained from M by cutting along D.

Corollary 2.4.4. Let D be a proper disc in a connected 3-manifold M such
that ∂M consists of tori. Then M is a graph manifold if and only if so is M̂D.

Proof. Denote by T the torus component of ∂M containing ∂D and by N =
N(D∪T ) a regular neighborhood of D∪T in M . Then MD is homeomorphic
to the manifold M1 = Cl(M \ N). It is easy to see that M1 ∩ N is either a
sphere S (if ∂D does not decompose T ) or the union of a sphere S and a torus
T1 (if ∂D decomposes T ). There are three different cases, see Fig. 2.17. Let us
list all of them together with the corresponding relation between M̂ and M̂D

we wish to prove.
Case 1. D decomposes M into two components M ′,M ′′. Then M =

M̂ ′#M̂ ′′.
Case 2. ∂D decomposes T , but D does not decompose M . Then M =

M̂D#(S2 × S1).
Case 3. ∂D does not decompose T . Then M = M̂D#(D2 × S1).
Let us prove that. Suppose M1 ∩ N = S ∪ T1 is as in Cases 1, 2. Denote

by MS the 3-manifold obtained from M = M1 ∪ N by cutting along S. If we
attach N to M1 along T1, we get MS . It follows that M̂S can be obtained by
attaching N̂ to M̂1 along T1. On the other hand, N̂ is homeomorphic to T1×I,
so M̂S and M̂1 (hence M̂S and M̂D) are homeomorphic. We can conclude that
M can be obtained from M̂D by cutting out two 3-balls and identifying the two
boundary spheres of the manifold thus obtained. This operation is equivalent
to taking the connected sum with S2 × S1 (if M̂D is connected) or to taking
the connected sum of its components (if not).

Fig. 2.17. M is either M̂ ′#M̂ ′′ (on the left), or M̂D#(S2 × S1) (in the middle), or
M̂D#(D2 × S1) (on the right)
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If M1 ∩ N = S as in Case 3, then MS is the disjoint union of M1 (which
is homeomorphic to MD) and N (which is a punctured solid torus). It follows
that M = M̂D#(D2 × S1).

To conclude the proof of the corollary, it remains to recall that S2 × S1

and D2 × S1 are graph manifolds and apply Proposition 2.4.3. ��

Remark 2.4.5. One can easily generalize Corollary 2.4.4 as follows. Let D
be a proper disc in a connected 3-manifold M so that ∂M consists of spheres
and tori. Then M̂ is a graph manifold if and only if so is M̂D. Indeed, if ∂D
lies on a torus of ∂M , then the same proof works. Let ∂D lies on a sphere
S ⊂ ∂M . Then either M̂ = M̂D#(S1 × S2) (if D does not separate M), or
M̂ = M̂ ′#M̂ ′′ (if it decomposes M into two components M ′,M ′′).

By Definition 2.4.1, any graph manifold can be decomposed onto elemen-
tary blocks by a finite system of disjoint tori. Our next goal is to decrease the
number of tori by amalgamating the elementary blocks into Seifert manifolds
called Seifert blocks. We will restrict ourselves to considering graph manifolds
which are irreducible and boundary irreducible. This restriction is not very
important. Indeed, the behavior of graph manifolds with respect to connected
sums is already known (Proposition 2.4.3), and the only connected graph
manifold which is irreducible but boundary reducible is the solid torus.

Definition 2.4.6. A system T = {T1, T2, . . . , Tn} of disjoint incompressible
tori embedded into an irreducible boundary irreducible graph manifold M is
called canonical if:

(1) T decomposes M into a collection of Seifert blocks (that is, Seifert mani-
folds).

(2) For any torus Ti ⊂ T and for any choice of Seifert fibrations on the
adjacent blocks, the two S1-fibrations on T induced from the both sides
are not isotopic.

Proposition 2.4.7. Let a system T = {T1, T2, . . . , Tn} of disjoint incom-
pressible tori in an irreducible boundary irreducible graph manifold M decom-
pose it into Seifert blocks. Then T contains a canonical subsystem.

Proof. We introduce two moves that decrease the number of blocks for T .

(1) If the two S1-fibration on T ⊂ T induced by some Seifert fibrations of
the adjacent blocks are isotopic, we remove the torus T from T . The new
block arising in this way is a Seifert manifold, the Seifert structure being
composed from the Seifert structures of the old blocks.

(2) Suppose a torus T ⊂ T is compressible but is not the boundary of a block
D2 × S1. By irreducibility of M , it bounds a solid torus B in M . We
amalgamate all the blocks lying in B into the new block B by erasing all
the tori of T contained in B.
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Let us now apply the moves to T as long as possible. Evidently, the result-
ing system (still denoted by T ) is canonical. Indeed, since the first move is
impossible, any torus T ∈ T can inherit only distinct S1-fibrations from the
neighboring blocks. Also, all the tori in T are incompressible, because all
moves of the second type are performed. ��

At first glance a graph manifold M can contain many canonical systems.
Indeed, the initial decomposition into, say, elementary blocks is not unique,
and the blocks can be amalgamated into larger blocks in many different ways.
Nevertheless, if M is irreducible and boundary irreducible, then the canonical
system is unique up to isotopy. This result follows from the JSJ-decomposition
theorem (see Corollary 6.4.30 and Theorem 6.4.31) and, having been obtained
10 years earlier, can be considered as its infant stage. As a matter of fact,
the Waldhausen classification of graph manifolds is nothing more than the
JSJ-decomposition theorem for them. To supply a graph manifold M with
a unique “name” which distinguishes it from all other graph manifolds, we
simply describe its canonical Seifert blocks and the way how they are glued
together. The gluing schema can be most naturally presented by a graph. This
explains once more why graph manifolds are called so.

Proposition 2.4.8 shows that the class G is closed with respect to cutting
along essential annuli. For simplicity, we formulate and prove it for irreducible
manifolds. Recall that MF denotes a manifold obtained from a manifold M
by cutting along a surface F ⊂ M .

Proposition 2.4.8. Let A be an essential annulus in an irreducible 3-manifold
M . Then M ∈ G ⇐⇒ MA ∈ G.

Proof. Let us prove that if MA is a graph manifold, then so is M . Denote by Y 3

the connected component of a regular neighborhood of ∂M ∪A that contains
A. Since the boundary curves of A are nontrivial, ∂M ∪A fibers onto circles.
It follows that Y 3 also fibers onto circles over a surface F (one can prove that
either Y 3 = N2×S1 or Y 3 = K2×̃S1). By construction, M = M1∪Y 3, where
the manifold M1 = M \ Y 3 is homeomorphic with MA, and M1 ∩ Y 3 consists
of one or two boundary tori. It follows that MA ∈ G ⇒ M ∈ G.

To prove the inverse implication, we construct a canonical system T of
essential tori in M . As we have mentioned earlier, it coincides with the JSJ-
system for M . One of the properties of T is that A is isotopic to another
annulus (still denoted by A) which lies in the complement to T , see Sect. 6.4.4.
This means that A is contained in a JSJ-chamber Q of T . In our case all the
JSJ-chambers are Seifert manifolds. Since any essential annulus in a Seifert
manifold Q is saturated (with respect to a Seifert structure on Q), the manifold
QA is Seifert. It follows that MA, being composed of QA and all the other
JSJ-chambers of T , is a graph manifold. ��
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2.4.2 Manifolds of Complexity ≤8

As we know from Sect. 2.3.3, all closed orientable irreducible 3-manifolds of
complexity ≤6 are graph manifolds. By Proposition 2.4.3, the class G is closed
with respect to connected sums. It follows that all (not necessarily irreducible)
closed orientable 3-manifolds of complexity ≤6 are graph manifolds. The fol-
lowing question arises: what is the complexity of the simplest closed orientable
3-manifold not contained in the class G? In this section we show that the first
nongraph closed orientable 3-manifold has complexity 9.

Theorem 2.4.9. All closed orientable 3-manifolds of complexity no greater
than 8 are graph manifolds.

This was initially proved by computer. Later, a purely theoretical proof was
found (see [32]). The computer program is based on the following observation.

Proposition 2.4.10. Let M be an orientable 3-manifold with ∂M = S1×S1.
Suppose that M has an almost simple spine P whose singular graph SP is
either empty or consists of one or a few disjoint nonclosed chains with ≤2
vertices each. Then M ∈ G.

Proof. We apply to P the same simplification moves as in the proof of Theo-
rem 2.2.4, with the following modifications:

(1) Since M may be reducible or boundary reducible, removing an arc � from
the 1-dimensional part of P may produce not only another spine of M ,
but also a spine of a new 3-manifold M1. Let D be a proper disc in M
intersecting � transversally at one point. Then M1 can be viewed as the
manifold MD, obtained by cutting M along D. It follows from Corol-
lary 2.4.4 (see also Remark 2.4.5) that M ∈ G ⇐⇒ M̂DG is a graph
manifold.

(2) It may happen that the proper annulus A ⊂ M that intersects P along a
nontrivial simple closed curve l in a 2-component α of P is essential. In
this case we cannot apply moves 2 or 3 from the proof of Theorem 2.2.4,
but simply cut P along l and obtain a spine of the manifold MA. By
Proposition 2.4.8, M ∈ G ⇐⇒ MA ∈ G.

At any step of the simplification procedure the above assumption concern-
ing the singular graph is preserved: We obtain an almost simple spine whose
singular graph consists of nonclosed chains with ≤2 vertices. After terminating
the procedure, we get a collection of special spines modeled on closed chains
with ≤2 vertices such that the boundaries of the corresponding manifolds are
either empty or consist of tori. There are only a few such spines. It is easy to
enumerate them and verify that in all cases they determine graph manifolds.
Since our simplification moves preserve the property of a manifold to belong
to G, M is also a graph manifold. ��
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The computer works in the following way. It first looks through all the
regular graphs of degree 4 with ≤8 vertices and, for each graph, lists all the
possible spines modeled on it (see the proof of Theorem 2.1.1). Each spine P
is tested for the following questions:

1. Is there a short boundary curve?
2. Is there a counterpass?
3. Is the corresponding manifold closed and orientable ?

If it obtains a positive answer to one of the first two questions, or a negative
answer to the third question, the computer leaves aside P and goes on to the
next spine. Otherwise it tests P for the following property:

4. Does there exist a 2-component α of P such that P \ α collapses to an
almost simple polyhedron whose singular graph is either empty or consists
of nonclosed chains with ≤2 vertices?

The main result of the computer experiment is that in all cases the answer
to the last question turned out to be positive. By Proposition 2.4.10, this
implies the conclusion of Theorem 2.4.9.

The complete text of the above-mentioned theoretical proof ofTheorem2.4.9
takes upnearly a 100 pages and thereforewewill limit ourselves to a brief outline.
The proof naturally splits up into three stages. First, we prove that any closed
irreducible orientable 3-manifold of complexity ≤8 is obtained by attaching a
solid torus to a 3-manifold of complexity≤3 whose boundary is a torus. We then
find out that all such 3-manifolds are graph manifolds except 14 remarkable
manifolds Qi, 1 ≤ i ≤ 14, which are hyperbolic and hence do not belong to
the class G of graph manifolds. (In fact, Q12, Q13, Q14 are homeomorphic to
Q6, Q1, Q2, respectively. We distinguish them, since they have different special
spineswith three truevertices).This implies that all closed irreducible orientable
3-manifolds of complexity ≤8 are in the class G except possibly manifolds of
the form (Qi)p,q, 1 ≤ i ≤ 14 (p, q are coprime integers) obtained by pasting
solid tori to Qi. Finally, a more specific analysis shows that any (Qi)p,q is still
in G, provided that its complexity is ≤8.

Now let us comment on each step of the proof separately.
Step 1. Let P be a minimal special spine of a closed irreducible orientable

3-manifold M of complexity ≤8. We wish to prove that P has a 2-component
α such that after puncturing α and collapsing we get a spine with ≤3 true
vertices. To simplify the notation, we restrict ourselves to the case when P
has exactly eight true vertices. Recall that puncturing a 2-component of P
corresponds to removing a solid torus from M .

Let us study in more detail what happens to P when we puncture and
collapse its 2-component α. In the collapsing process α disappears completely.
Suppose α is adjacent to an edge e of P twice. Then the 2-component β that
is adjacent to e the third time also disappears completely. One can easily
show that the boundary curves of α, β, and of all the other 2-components
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Fig. 2.18. Fragments containing boundary curves that pass through six edges and
only four true vertices

that disappear under collapsing contain ≥5 true vertices of P together. This
means that we get a spine with ≤3 true vertices.

Suppose now that no boundary curve passes through an edge twice. Let
us call the length of a 2-component α of P (or of its boundary curve c(α))
the total number of passages of c(α) through edges (with multiplicity taken
into consideration). Since P has 16 edges, and since each of them is incident
to exactly three 2-components, the total length of the 2-components is equal
to 48. On the other hand, P has nine 2-components. It follows that there is
a 2-component α adjacent to ≥ 6 different edges. If α contains ≥5 different
true vertices, we may puncture it and get a spine with ≤3 true vertices. If
not, then the singular graph SP of P contains one of the fragments shown in
Fig. 2.18.

Analyzing the ways in which the boundary curves can pass through each
of the fragments, one can always find another boundary curve that contains
≥5 different true vertices of P .

Step 2. Let us introduce 14 remarkable special spines Pi, 1 ≤ i ≤ 14, with
≤3 true vertices that determine manifolds Qi with tori as boundaries. It is
convenient to do this by using Figs. 2.19 and 2.20. The manifolds Qi are the
complement spaces of knots in 3-manifolds of genus ≤1. For example, Q2 and
Q14 are homeomorphic to the complement space of **figure eight knot in S3.
One can show that Q1 is homeomorphic to Q13 and Q6 is homeomorphic to
Q12. All other manifolds Qi are distinct.

Proposition 2.4.11. Suppose that the boundary of a compact orientable 3-
manifold Q is a torus and that Q has a special spine P with ≤3 true vertices.
Then either Q is a graph manifold, or P is homeomorphic to one of the spines
Pi, 1 ≤ i ≤ 14.

The proof consists, roughly speaking, of going through all the possible
special spines with three or less true vertices and analyzing the corresponding
3-manifolds. There are seven different regular graphs with ≤3 vertices. Only 3
of them (the closed chains with 2 and 3 vertices, and the chain with 2 vertices
and with an additional loop) may produce manifolds that are not in G. By
using the symmetry of the three suspicious graphs and certain artificial tricks,
the process can be kept within reasonable limits, which, however, are too large
to be presented here. See [79] for details.
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Fig. 2.19. Seven remarkable special spines with ≤ 3 true vertices

Step 3. Now we prove that if a 3-manifold M of complexity c(M) ≤ 8
is obtained by a Dehn filling of one of Qi, 1 ≤ i ≤ 14, then M ∈ G. Let
P be a minimal special spine of M having ≤ 8 vertices. According to Step
1, one can puncture a 2-component α of P such that after collapsing we
get a special polyhedron P ′ with ≤ 3 true vertices. By construction, P ′ is
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Fig. 2.20. Another seven remarkable special spines with ≤3 true vertices

a special spine of a 3-manifold Q such that M is a Dehn filling of Q. It
follows from Proposition 2.4.11 that if P ′ is not homeomorphic to a polyhedron
Pi, 1 ≤ i ≤ 14, then Q and M are graph manifolds. It remains to investigate
the case when P ′ is one of Pi.

Proposition 2.4.12. Suppose a special spine P of a closed orientable 3-
manifold M has no more than eight true vertices and suppose that af-
ter puncturing one of its 2-components and collapsing we obtain the spine
Pi, 1 ≤ i ≤ 14. Then M is a graph manifold.
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Fig. 2.21. Cell decomposition of T̃

The proof of Proposition 2.4.12 should be carried out in all 14 cases but
it follows the same outline and uses the same tricks. Let us carry it out once
for the case i = 1.

Let us identify the manifold Q1 with a regular neighborhood of P1 in
M . Denote by T the boundary torus of Q1. Then the natural collapse of Q1

onto P1 induces a locally homeomorphic map T → P1 such that the inverse
image of each 2-component of P1 consists of two 2-cells. Since P1 contains
two 2-components, this map determines a decomposition of T onto four 2-
cells. Construct the universal covering T̃ of T . It can be presented as a plane
decomposed into hexagons, see Fig. 2.21. The group of covering translations is
isomorphic to the group π1(T ) = H1(T,Z). We choose a basis µ̄, λ̄ as shown in
Fig. 2.21. The corresponding elements µ, λ of π1(T ) (which can be also viewed
as oriented loops) form a coordinate system on T .

Since Q1 is a regular neighborhood of P1 in M , the difference V = M \
Int Q1 is a solid torus. This means that M has the form M = (Q1)p,q, where
coprime integers p, q are determined by the requirement that the curve µpλq

is homotopic to the meridian of V .
Denote by X the part of P1 that disappears after puncturing and collaps-

ing. Assume that X is an open 2-cell. In other words, the spine P of M is
obtained from P1 by attaching the 2-cell X̄ that disappears under puncturing
and collapsing. Denote by � the boundary curve of X̄. All the intersection
points of � with the graph SP1, as well as all the self-intersection points of �,
are true vertices of P . The number of such points must not be greater than
6, since the total number of true vertices is ≤ 8, and two of them are the true
vertices of P1.

Recall that if we factor this covering by the translations µ̄, λ̄ corresponding
to µ and λ, we recover T . If we additionally identify the hexagons marked by
the letter A with respect to the composition of the symmetry in the dotted
diagonal of the hexagon and the translation by −µ̄ + λ̄/2, and do the same
for hexagons marked by the letter B, we obtain P1. T is shown in Fig. 2.22 as
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Fig. 2.22. Cell decomposition of T

Fig. 2.23. Cell decomposition of P1 and decorated SP1

a polygonal disc D composed of four hexagons. Each side of D is identified
with another one via the translation along one of the three vectors µ̄,−2µ̄+ λ̄,
and −µ̄ + λ̄. P1 can be presented as the union of two hexagons, see Fig. 2.23.
The edges of the hexagons are oriented and decorated with four different
patterns. To recover P1, one should identify the edges having the same pattern.
Figure 2.23 shows also the singular graph SP1 of P1 equipped with the same
decoration.

To the curve � on P1 (the boundary curve of the attached 2-cell) there
corresponds a curve �̄ of type (p, q) on the torus T and an arc �̃ on T̃ . One
end of �̃ is obtained from the other by translation on the vector pµ̄+qλ̄. Since
� crosses the edges of P1 in ≤6 points, �̃ does the same with respect to the
edges of T̃ . Choosing one hexagon in T̃ as the initial one, and successively
marking off those cells which may be reached at the expense of 1, 2, 3, 4, 5,
or 6 intersections, one can select all the possible pairs of coprime parameters
(p, q) that potentially may produce a spine with ≤ 8 true vertices. In our case
they are the following: (1,0), (0,1), (1,1), (-1,1), (-2,1), (-3,1), (-4,1), (-1,2),
(-3,2), (-5,2), (-4,3), (-5,3) (up to simultaneous change of signs). See Fig. 2.24.

Let us investigate these pairs. The pairs (-4,1), (-5,2), (-5,3), (-4,3), (-1,2),
(1,1) are actually impossible, since in all these cases � intersects at least six
edges of P1 and has at least one self-intersection. For example, if �̃ joins the
hexagons (0,0) and (5,-2) as shown in Fig. 2.25a, it crosses the edges six times
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Fig. 2.24. Suspicious hexagons are shown in black

Fig. 2.25. A spine P ′ of (Q1)−5,2 having ten true vertices

and its projection � ⊂ P1 has two self-intersections, see Fig. 2.25b, where the
self-intersections are indicated with gray fat dots.

It can be checked directly that for all the remaining pairs (p, q) (i.e., for
(-3,1), (-2,1), (-3,2), (-1,1), (1,0), (0,1)) we get graph manifolds. Indeed, let
us attach a 2-cell to P1 so as to obtain a special spine P ′ of (Q1)p,q with ≤ 8
true vertices. It turns out that in all these cases one can find a 2-component
of P ′ so that after puncturing and collapsing we get a spine satisfying the
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assumption of Proposition 2.4.10. It follows that the corresponding manifold
(Q1)p,q belongs to the class G.

However, the part X of P which disappears after puncturing and collapsing
is a priori not necessarily a cell. One can represent it as a simple polyhedron
X̄ attached to P1 along ∂X̄. In this case ∂X̄ is a regular graph of degree 3
and hence has a nonzero even number of vertices.

Suppose it has two vertices, which are joined by three edges, i.e., it is
what is usually called a θ-curve. The case of spectacles (two circles joined by
a segment) is excluded since P would have a counterpass and hence could be
simplified. The case of four or more vertices is even simpler. So we restrict
ourselves to considering only X̄ such that ∂X̄ is a θ-curve.

Denote by ā, b̄, c̄ the edges of X̄. We can think of X̄ as being contained in
the solid torus V = M \ Int Q1, ∂V = T, such that ∂X̄ ⊂ T = ∂Q1 and the
complement of ∂V ∪ X in V is an open 3-ball. When we attach X̄ to P1, the
vertices of ∂X̄ become true vertices of P . Since P has not more than eight true
vertices, the images a, b, c of ā, b̄, c̄ under gluing may intersect the edges of the
singular graph SP1 in ≤ 4 points, and if in 4, then they cannot intersect each
other or possess self-intersections. If we lift ā, b̄, c̄ to the arcs ã, b̃, c̃ on T̃ having
a common endpoint, we get a triode (a wedge of three arcs) intersecting the
edges in ≤ 4 points. The free ends of the wedge lie on three different hexagons
which are obtained from each other by translations on nontrivial integer linear
combinations of µ̄, λ̄. A simple analysis of the covering shows that there exist
a few such triodes, but the projections onto P1 of their edges have at least
one additional intersection point. This finishes the proof of Proposition 2.4.12
and Theorem 2.4.9.

2.5 Hyperbolic Manifolds

2.5.1 Hyperbolic Manifolds of Complexity 9

As we have shown in the earlier section, all closed irreducible orientable 3-
manifolds up to complexity 8 are graph manifolds. Is this result sharp? The an-
swer is affirmative. We describe here a remarkable closed orientable 3-manifold
M1 of complexity 9 which is hyperbolic and thus does not belong to the class
G of all graph manifolds. This manifold was discovered by Weeks [46, 133]
and independently by Fomenko and Matveev [32]. We have called it “remark-
able,” since it is twice minimal. First, it has the minimal complexity among
all closed orientable hyperbolic 3-manifolds. Second, its hyperbolic volume
V (M1) ≈ 0.94272 is also minimal among all the known 3-manifolds of the
same class. Conjecture 2.5.1 is motivated by these facts, together with an as
experimental observation made in [32] that the growth of the volume corre-
lates (in some sense) with the growth of the complexity.

Conjecture 2.5.1 ( [32]). M1 has the least volume of any closed orientable
hyperbolic 3-manifold.
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No counterexamples to this conjecture have appeared and the difference
between the known lower estimates of the volumes and V (M1) remains sub-
stantial. Personally, I believe that the conjecture is true.

Let Q1 be the 3-manifold represented by its special spine P1 with two true
vertices, see Fig. 2.19. Its boundary T = ∂Q1 is a torus with coordinate system
(µ, λ). One can think of µ and λ as oriented simple closed curves on T which
are images of the oriented segments µ̄, λ̄ in T̃ under the universal covering
projection map T̃ → T , see Fig. 2.21. We define the above-mentioned remark-
able manifold M1 as the manifold (Q1)5,−2 obtained from Q1 by attaching a
solid torus such that the image of its meridian has the type µ5λ−2.

To show that M1 is hyperbolic, we recall briefly the Thurston method,
one of the most important and successful methods for understanding finite-
volume hyperbolic 3-manifolds by considering their decomposition into ideal
tetrahedra. This technique was introduced in [120] and was used for computa-
tion of volumes in [46,133] and [32]. It forms also the basis for the SNAPPEA
computer program, written by Weeks, which allows one to determine the hy-
perbolic structure and volume of a large number of hyperbolic manifolds.

First, we use Corollary 1.1.28 to decompose Int Q1 into two topological
ideal tetrahedra. Next to each ideal tetrahedron we associate a complex vari-
able that determines its geodesic shape. A system of complex polynomial
equations is generated, the equations coming from the need for the tetrahedra
to glue together correctly at the edges. This system of consistency conditions
for Q1 has many solutions parameterized by elements of U , where U is the set
of all complex numbers z such that Imz > 0 and z = 1/2(1+ti),

√
15 < t < ∞.

If both ideal tetrahedra are regular, then the hyperbolic structure on Q1 thus
obtained is complete. This means that Q1 is hyperbolic. By the way, all other
manifolds Q2–Q14 are also hyperbolic and, as shown in [32], are the only
orientable hyperbolic 3-manifolds of complexity ≤ 3 having one cusp.

It turns out that the parameter z and hence the geometric shape of the
ideal tetrahedra can be chosen so that z satisfies the consistency conditions
and that the completion of the corresponding hyperbolic structure on Q1 is a
closed hyperbolic manifold homeomorphic to M1, see [46, 133] and [32]. This
means that M1 is hyperbolic.

Remark 2.5.2. The value of z that produces the hyperbolic structure of
M1 has irrational real and imaginary parts. So there may arise the question
whether approximate values of z that can be found by computer (and that
satisfy the consistency and the completion conditions only approximately) are
sufficient for proving that M1 is hyperbolic. This difficulty can be overcome,
since z lies strictly inside U . On the other hand, M1 is arithmetic [22, 23], so
one can prove the existence of a hyperbolic structure without using computers.

Theorem 2.5.3. The complexity of M1 is equal to 9.

Proof. Let us construct a special spine of M1 having nine true vertices. Since
c(M1) > 8 by Theorem 2.4.9, this would be sufficient for proving that c(M1) =
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Fig. 2.26. Möbius triplet

9. The hexagon (5,-2) is one of “suspicious” hexagons, since it can be joined
with the initial hexagon (0,0) by an arc l̃ in T̃ intersecting six edges, see
Fig. 2.25. So it would be natural to look for l̃ such that its projection l onto
P1 has not more than one self-intersection point. If we find one, then a special
spine of M1 with 9=2+6+1 vertices can be obtained by attaching to P1 a new
disc 2-component along l. Unfortunately, the projections of all arcs on T̃ that
join (0,0) with (5,-2) and intersect not more than six edges have at least two
self-intersection points. Therefore, the maximum we can get by attaching a
disc is a spine of (Q1)−5,2 having ten true vertices.

It turns out that one can save one true vertex by attaching to P1 not a
disc, but a so-called Möbius triplet Y , see Fig. 2.26. One can think of Y as
being contained in the solid torus V = M1 \ Int Q1 such that ∂Y ⊂ T = ∂Q1

and the complement of ∂V ∪ Y in V is an open 3-ball.
If we cut out a disc D from the Möbius 2-component of Y , then the rest

collapses onto ∂Y . We need to track the behavior of ∂D under the collapse.
Observe that ∂D is deformed into the curve c−1ac−1b, where a, b, c are the
three coherently oriented edges of the θ-curve ∂Y . Let us attach Y to P1

to obtain a special polyhedron P ′ = P1 ∪ Y as shown in Fig. 2.27. The arcs
ã, b̃, c̃ ⊂ T̃ that corresponds to a, b, c form a triode such that its branch point
is in the hexagons (−1/2, 0) while the free ends of ã, b̃, c̃ are in the hexagons
(1/2, 0), (−1/2, 0), (−5/2, 1), respectively.

Therefore, the curve c−1ac−1b has type (3,-1)+(2,-1)=(5,-2). It follows
that P ′ is a special spine of (Q1)5,−2. The images in P1 of the arcs a, b, c have
only one intersection point (shown in Fig. 2.27 as a fat gray dot). Therefore, P ′

has nine vertices. A regular neighborhood of its singular graph is represented
in Fig. 2.28. ��

Remark 2.5.4. The manifold Q2 (the complement of the figure eight knot)
is a twin of Q1: Just as Q1, it admits a decomposition into two regular ideal
tetrahedra. It was used by W. Thurston to illustrate his method [120]. Just as
Q1, it admits a decomposition into two regular ideal tetrahedra. The manifold
M2 = (Q2)5,1 has complexity 9 and its volume is the second one among all
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Fig. 2.27. A special spine P of (Q1)−5,2 obtained by attaching a Möbius triplet
to P1

Fig. 2.28. A special spine of M1

known volumes of closed hyperbolic 3-manifolds. A special spine of M2 is
shown on Fig. 2.29.

2.6 Lower Bounds of the Complexity

As we have shown in Sect. 2.1.2, it is relatively easy to obtain upper bounds
for complexity. However, the problem of finding lower bounds is quite difficult.
Of course, we know the exact value of the complexity for all the manifolds
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Fig. 2.29. A special spine of M2

from the table (see Appendix), but there are only finitely many of them. In
this section we present several lower bounds for the complexity of arbitrary
3-manifolds and describe two infinite series of hyperbolic 3-manifolds whose
complexity is known exactly.

2.6.1 Logarithmic Estimates

The first bound is based on the evident observation that if the first homology
group of a 3-manifold M is large, then c(M) cannot be too small.

Lemma 2.6.1. Suppose that a special spine P of a closed orientable 3-
manifold M contains a 2-component α whose boundary curve passes along
some edge e three times. Then M has an almost simple spine having a smaller
number of true vertices.

Proof. If the boundary curve ∂α of α has a counterpass on the edge e, then
by Proposition 2.3.3 P can be simplified. Suppose ∂α passes along e all three
times in the same direction. Then P contains a simple closed curve � such
that � intersects SP at two points A,B ∈ e and visits all three wings adjacent
to e, see Fig. 2.30. � can be easily constructed by thinking of α as an attached
disc and considering two disjoint proper arcs in the disc that join points in
distinct preimages of e. One can easily see that � can be shifted away from P
into the boundary of a regular neighborhood N of P . Since M is closed, ∂N
is a 2-sphere. It follows that l bounds a disc D ⊂ M such that D∩P = �, and
we can simplify the spine by adding D to P and piercing another 2-cell. ��
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Fig. 2.30. � can be shifted from P

Denote by |Tor(H1(M))| the order of the torsion subgroup of the first
homology group H1(M ;Z) and by β1 the first Betti number of M , i.e., the
rank of the free part of H1(M ;Z).

Theorem 2.6.2. [90] Let M be a closed irreducible orientable 3-manifold
different from L3,1. Then c(M) ≥ 2 log5 |Tor(H1(M))| + β1 − 1.

Proof. Since for H1(M) = 0, Z2 the right-hand side of the above inequality
is negative, the conclusion of the theorem holds for M = S3 and M = RP 3.
So we can assume that M is not one of these manifolds. Choose an almost
simple spine P of M having c(M) true vertices. By Theorem 2.2.4, we may
assume that P is special. Let A(P ) be the relation matrix of the presentation
corresponding to P and n be the number of generators in that presentation.
Then n = c(M) + 1, and, as M is closed, A(P ) is a square matrix of order n.
Since P has the smallest number of true vertices, Lemma 2.6.1 implies that it
has no edges along which some component passes three times. There are no
counterpasses either, therefore each column of the matrix contains either two
nonzero elements (one of them is equal to ±2, and the other is equal to ±1),
or three elements (each is equal to ±1).

The matrix A(P ) has a minor A′ of order n − β1 whose determinant is
nonzero and is divisible by |Tor(H1(M))|. On the other hand, the absolute
value of the determinant is equal to the volume of the parallelepiped whose
base vectors are the columns of A′. The volume does not exceed the product
of the lengths of those vectors. It is clear that the length of each vector is
not greater than

√
5. Hence |det A′| ≤ (

√
5)n−β1 , which implies that n ≥

2 log5 |det A′| + β1. Since |det A′| is greater than any its divisor, and n =
c(M) + 1, we have c(M) ≥ 2 log5 |Tor(H1(M))| + β1 − 1. ��

In some cases (for instance, for L5,2) this bound is sharp. Let us show
that for an infinite series of lens spaces this bound is almost sharp (in certain
sense). Let ui, 1 ≤ i < ∞, be the Fibonacci numbers given by the initial values
u1 = u2 = 1 and the recurrence relation ui+1 = ui + ui−1. Denote by Ln the
lens space L(p, q) with parameters p = un, q = un−2.

Corollary 2.6.3. If n > 4, then nCn − 2 ≤ c(Ln) ≤ n − 4, where Cn =
(2/n) log5(

√
5un).
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Proof. It follows from Theorem 2.6.2 that c(Ln) ≥ 2 log5 un − 1 = nCn − 2,
so we get the first inequality. To get the second one, we recall that all partial
quotients in the expansion of un/un−2 as a regular continued fraction are 1,
so their sum S(un, un−2) is n− 1. Therefore, by item E of Sect. 2.3.3, we have
c(Ln) ≤ S(un, un−2) − 3 = n − 4 for all n > 4. ��

Remark 2.6.4. One can easily show that Cn > 0.5 for all n > 4 and that Cn

tends to 2 log5(
1+

√
5

2 ) ≈ 0.59798 as n → ∞.

Corollary 2.6.3 shows that for an infinite series of 3-manifolds complex-
ity depends logarithmically on the order of the torsion subgroup of the first
homology group. This remarkable fact was first observed by Pervova.

The bound in Theorem 2.6.2 has the following shortcoming: It is trivial for
closed manifolds having zero first homology group, i.e., for homology spheres.
It would be natural to attempt to find a bound depending on the fundamental
group.

Definition 2.6.5. Let a group G be given by a presentation

G = 〈g1, . . . , gn | r1, . . . , rm〉.

Then the length of that presentation is the number |r1| + . . . + |rm|, where
|ri| denotes the length of the word ri with respect to g1, . . . , gn. The presen-
tation complexity ĉ(G) of G is the minimum of the lengths of all its finite
presentations.

Let us consider some examples of estimates of complexity of groups. Evi-
dently, the complexity of the cyclic group Zn does not exceed n. It is interest-
ing to note that it may be much less than n. For example, the presentation
〈a, b, c | a4b, b5c, c2〉 of Z40 has length 13. It may appear that this small value
(compared with the order of the group) is due to the fact that 40 has non-
trivial divisors. However, the group Z47, which has prime order, can be given
by the presentation 〈a, b, c | a4b, b4c, c3a−1〉 of length 14.

Proposition 2.6.6. Let M be a closed irreducible orientable 3-manifold, dif-
ferent from S3, RP 3, and L3,1. Then c(M) ≥ −1 + ĉ(π1(M))/3.

Proof. Let P be a special spine of M having k = c(M) true vertices. Then
the length of the presentation of π1(M) that corresponds to P is 3(k + 1). It
follows that ĉ(π1(M)) ≤ 3(k + 1) and thus k ≥ −1 + ĉ(π1(M))/3. ��

Sometimes this proposition allows to obtain better bounds than those given
by Theorem 2.6.2. For example, it can be shown that the complexity of any
nontrivial finitely presented group G that coincides with its commutator sub-
group is at least 10. It follows from Proposition 2.6.6 that the complexity of
any homology sphere cannot be less than 3. This agrees with the fact that the
complexity of the first nontrivial homology sphere (the dodecahedron space)
equals 5, see [35,91].
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2.6.2 Complexity of Hyperbolic 3-Manifolds

Now we turn our attention to hyperbolic 3-manifolds. As we have mentioned
earlier, there is a correlation between their complexities and volumes. A very
nice partial case of this observation was found by Anisov [6]. Recall that all
regular ideal tetrahedra in the hyperbolic space H3 are congruent and have
the same volume V0 ≈ 1.0149. The volumes of all other ideal tetrahedra in
H3 are less than V0.

Lemma 2.6.7. Let M be a hyperbolic 3-manifold with nonempty boundary.
Then c(M) ≥ V (M)/V0, where V (M) is the hyperbolic volume of M .

Proof. Since M is hyperbolic, it is irreducible and boundary irreducible, and
contains no essential annuli. By Theorem 2.2.4, its minimal almost simple
spine is special. It follows from Corollary 1.1.28 that M can be decomposed
into k = c(M) topological ideal tetrahedra ∆i, 1 ≤ i ≤ k. Further we follow
Thurston’s arguments [120]. These tetrahedra can be lifted to H3, straightened
inside H3 to hyperbolic ideal tetrahedra and projected back into M . The new
tetrahedra ∆′

i can overlap, but they still cover M . It follows that V (M) ≤
∑k

i=1 V (∆i) ≤ kV0, where V (∆i) is the volume of ∆i. We can conclude that
k ≥ V (M)/V0. ��

In some cases Lemma 2.6.7 is sufficient for exact computation of complex-
ity [6].

Corollary 2.6.8. Suppose that a hyperbolic 3-manifold M can be decomposed
into k straight regular ideal tetrahedra. Then c(M) = k.

Proof. Since V (M) = kV0, we have c(M) ≥ k by Lemma 2.6.7. The inequality
c(M) ≤ k follows from Corollary 1.1.28. ��

There are not many 3-manifolds satisfying the assumption of Corol-
lary 2.6.8. Q1 and Q2 (see Remark 2.5.4) as well as all their finite coverings
are among them. Since H1(Q1;Z) = Z ⊕ Z5 and H1(Q2;Z) = Z, there are
infinitely many such coverings. These manifolds form the first nontrivial in-
finite series of 3-manifolds with known complexities: if a 3-manifold M is a
k-sheeted covering of Q1 or Q2, then c(M) = 2k.

Remark 2.6.9. Q2 can be represented as a Stallings manifold fibered into

punctured tori over S1 with the monodromy matrix
(

2 1
1 1

)

.

Let W1 be a closed Stallings manifold with fiber S1 × S1 and the same
monodromy matrix. Consider the k-sheeted covering Wk of W1 correspond-
ing to the kernel of the superposition of the abelinization map π1(W1) →
H1(W1;Z) = Z and the mod k reduction Z → Zk. One can easily construct
a special spine P of Wk with 2k + 5 true vertices. Indeed, it suffices to take
a k-sheeted covering of the spine P2 of Q2 and attach an additional 2-cell D
which fills up the puncture of the fiber. It follows that c(Wk) ≤ 2k+5 (see [5]).
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On the other hand, a short calculation shows that |Tor(H1(Wn))| =
u2n+1 + u2n−1 − 2. Taking into account that the first Betti number of Wn

is 1 and applying Theorem 2.6.2, we get c(Wn) ≥ 2C ′
nn, where C ′

n =
(1/n) log5(u2n+1 + u2n−1 − 2). It follows that 2C ′

nn ≤ c(Wn) ≤ 2n + 5, so
we have another example of a logarithmic growth of the complexity (compare
with Corollary 2.6.3). It is interesting to note that C ′

n has exactly the same
limit as Cn from Corollary 2.6.3.

2.6.3 Manifolds Having Special Spines with One 2-Cell

We describe for every n ≥ 2 an interesting class Mn of orientable 3-manifolds
having complexity n. The manifolds from Mn, 2 ≤ n < ∞ form the second in-
finite set of manifolds with known complexity (the first such set was described
in the earlier section). This class was introduced in [33], see also [40].

Definition 2.6.10. An orientable 3-manifold M belongs to the class Mn, if
it has a special spine with n true vertices and exactly one 2-cell.

Examples of spines with one 2-cell are shown in Fig. 2.31. Each Mn con-
tains a manifold presented either by the upper spine (if n = 3k + 1) or by the
lower one (if n = 3k + 1). The only exception is the case n = 1 when Mn is
empty. As proved in [33], the number of manifolds in Mn grows exponentially
as n → ∞.

Theorem 2.6.11. [33] Let M ∈ Mn. Then c(M) = n.

Proof. By definition of the class Mn, the manifold M has a special spine P
with n vertices. Therefore, c(M) ≤ n. To prove that c(M) = n, consider a
handle decomposition ξP of M that corresponds to P . Since P has only one
2-cell, the set of all normal surfaces in M can be easily described. All closed
normal surfaces are normally parallel to ∂M . Since χ(∂M) = 2(1 − n) and
n > 0, there are no normal spheres among them. Therefore, M is irreducible.
All nonclosed normal surfaces are contained in the union of all balls and

Fig. 2.31. Spines with one 2-cell
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beams of ξP . The set of such surfaces contains no discs, thus M is boundary
irreducible. This set can contain annuli, but all of them are compressible. It
follows from Theorem 2.2.4 that M has a special spine P ′ with m = c(M)
true vertices.

Let us prove that m ≥ n. Denote by k the number of 2-cells of P ′. Counting
the Euler characteristic of M , we get 2(k − m) = χ(M) = 2(1 − n) and
n + k − 1 = m. It follows that m ≥ n. ��

Manifolds from Mn possess many other good properties. They are hy-
perbolic manifolds with totally geodesic boundary and have Heegaard genus
n + 1. Moreover, each manifold M ∈ Mn has a unique special spine with n
vertices, which is homeomorphic to the cut locus of M (the set of points of
M having more than one shortest geodesic to ∂M). See [33] for the proof.
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Haken Theory of Normal Surfaces

Normal surfaces were introduced by Kneser in 1929 [66]. The theory of normal
surfaces was further developed by W. Haken in the early 1960s [38]. Its fun-
damental importance to the algorithmic topology cannot be overestimated.
Most of the work on 3-manifolds since then is based on or related to it.

3.1 Basic Notions and Haken’s Scheme

Haken is one of the first topologists who realized that the right strategy to
investigate 3-manifolds is to look over the set of surfaces that are contained in
them. It turned out that this infinite set has an algorithmically constructible
finite basis, and thus admits an explicit description. The main idea of Haken’s
method consists in decomposing a given manifold M into simple pieces and
considering how the surfaces intersect the pieces. There are several versions
of the method, but the main steps are common to all of them. Here are the
steps.

Step 1. We choose a type of decomposition. By a decomposition of a
3-manifold M we mean presenting M as the union of simple (in some sense)
3-dimensional pieces with disjoint interiors. The pieces are called elements of
the decomposition. Most common types of decompositions are triangulations
and handle decompositions. As a rule, the triangulation approach is easier to
describe, while handle decompositions are more flexible and efficient.

Step 2. Let M be a manifold with a fixed decomposition ξ and F a proper
surface in M . Then ξ generates a decomposition of F into elementary pieces,
where each elementary piece is a connected component of the intersection of F
with an element of ξ. We define a class of normal surfaces in M by specifying
certain allowed types of elementary pieces. As a rule, normal surfaces are con-
sidered up to isotopies of M that preserve the decomposition, i.e., take every
element of ξ to itself. Such an isotopy is called normal. Every allowed type is
just an equivalence class of elementary pieces contained in the corresponding
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element of ξ (with respect to normal isotopy). From the viewpoint of the al-
gorithmic approach, it is important to have only a finite number of allowed
types in any element of ξ. Another important requirement: if a finite collection
of elementary pieces in an element of ξ is realizable by disjoint pieces, then
the realization is unique up to normal isotopy.

Step 3. Let N denote the set of all normal surfaces in M (considered up
to normal isotopy). At this step, we further refine the notion of elementary
piece so as to ensure that N possesses the following two informal properties:

1. N is informative meaning that it contains representatives of all interest-
ing classes of surfaces in M . In other words, we do not lose important
information if we restrict ourselves to considering only normal surfaces.
Certainly, the notions of interesting class and important information dep-
end heavily on the problem we are trying to solve. Sometimes this item
can be reduced to a motivating example, postponed, or skipped.

2. N admits a more or less explicit description. The next two steps give a
general method for obtaining such a description.

Step 4. Let E1, E2, . . . , En denote all the allowed types of elementary
pieces in all the elements of ξ. A normal surface F ⊂ M can intersect the ele-
ments along several pieces of each type Ei. Let xi = xi(F ) denote the number
of these pieces. We get an n-tuple x̄(F ) = (x1, x2, . . . , xn) of non-negative
integers, that is, a vector with non-negative integer coordinates. We now need
to verify that two normal surfaces with the same vector are normally isotopic
(it is obvious from the above definitions that normally isotopic surfaces have
the same vector). Having done that, we can identify the set of all normal
surfaces in M with a subset of the set of integer points in Rn.

Step 5. We have established on the previous step that to any normal
surface there corresponds an n-tuple x̄ = (x1, x2, . . . , xn) of non-negative in-
tegers. Conversely, we could begin with an n-tuple x̄ of non-negative integers
and try to build the corresponding normal surface. This is possible only if we
subject the n-tuple to some constraints.

The first necessary condition is that, for every xi, xj = 0, the corresponding
types Ei, Ej must be compatible, that is, they must contain disjoint represen-
tatives. Such n-tuples will be called admissible. As a rule, the compatibility
condition guarantees us that for any admissible n-tuple not only two, but any
collection of types Ei with xi = 0 admits a collection of disjoint representa-
tives.

In order to describe the second necessary condition, for each i we put xi

disjoint pieces of type Ei into the corresponding element of ξ. If the n-tuple
is realizable by a normal surface, then the pieces must give normally isotopic
patterns in the intersection of every pair of neighboring decomposition ele-
ments. This condition can be described by linear homogeneous equations. The
equations together with the inequalities xi ≥ 0 form the so-called matching
system E(ξ). The main goal of this step consists in proving the following basic
conclusion of Haken’s theory:
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(A) The set of equivalence classes of normal surfaces in M can be parame-
terized by the set of admissible solutions to the matching system.

Step 6. This algebraic step is of general nature and does not depend on
a specific version of the normal surface theory. Let E be a system of linear
homogeneous equations with integer coefficients.

Definition 3.1.1. A non-negative integer solution x̄ to the system E is called
fundamental, if it cannot be presented in the form x̄ = ȳ + z̄, where ȳ, z̄ are
nontrivial non-negative integer solutions to E.

The second basic conclusion of Haken’s theory is:

(B) The set of fundamental solutions to any system of linear homogeneous
equations with integer coefficients is finite and can be constructed algorith-
mically. Any non-negative integer solution to the system can be presented
as a linear combination of the fundamental solutions with non-negative
integer coefficients.

In particular, conclusion (B) is applicable to the matching system from
Step 5. Let us return to geometry.

Definition 3.1.2. A normal surface F ⊂ M is called fundamental, if it
corresponds to an admissible fundamental solution of the matching system.

To get an explicit description of the set N of normal surfaces in M , it remains
now to select admissible fundamental solutions, realize them by fundamental
surfaces, and reveal a geometric interpretation of the algebraic summation of
solutions. The desired description looks as follows: N is the set {

∑k
i=1 αiFi}

of all linear combinations such that the coefficients αi of each combination∑k
i=1 αiFi are non-negative integers, and fundamental surfaces Fi with αi > 0

are compatible, i.e., consist of pairwise compatible pieces.
Thus, each normal surface in M can be constructed from a finite set of

fundamental surfaces. This fact has essential applications in algorithmic prob-
lems. Indeed, in many cases the problem in hand can be reduced to the ques-
tion of whether a given manifold M contains a surface with some specific
property P . Quite often it turns out that if M contains a surface possessing
P , then it contains a fundamental surface with that property. If P is algo-
rithmically recognizable, then by checking each fundamental surface against
possessing P , we find out in a finite number of steps whether M contains a
required surface. That gives us an algorithmic solution of our initial problem.

In what follows we apply the above scheme to describing two basic versions
of the Haken method. To facilitate understanding, we descend 1-dimension
down and start with a review of the theory of normal curves on surfaces. It
is remarkable that almost all key ideas of Haken’s theory can be presented
already at this level.
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3.2 Theory of Normal Curves

3.2.1 Normal Curves and Normal Equations

Let F be a triangulated surface (later on we assume that the triangulation is
fixed). By a curve we mean a 1-dimensional proper submanifold of F . It may
consist of several disjoint components, each being either a simple closed curve
or a simple arc with the endpoints on ∂F . We would like to describe the set
of all curves on F . To be more precise, we want to find an algorithmically
constructible list that contains nearly all isotopy classes of curves (possibly
with duplicates). Saying “nearly” we mean that we might neglect trivial com-
ponents, which cut off discs.

Let C be a curve on F . We may assume that C is in general position
with respect to the triangulation, i.e., it does not pass through the vertices
and intersects the edges transversally. Then the intersection of C with any
triangle consists of connected components that can have one of the following
three types:

(1) An arc with the endpoints on different edges of the triangle.
(2) An arc with the endpoints on the same edge e (we call this situation an

interior return if e is inside F , and a boundary return if e ⊂ ∂F ).
(3) A circle in the interior of the triangle.

Definition 3.2.1. A general position curve C on F is called normal, if the
intersection of C with any triangle contains no returns and no circles.

So far we have carried out the first two steps of the general scheme.
Theorem 3.2.2 shows that we do not loose anything by restricting ourselves
to normal curves.

Theorem 3.2.2. Any curve C on F can be transformed into a normal one by
an isotopy and crossing out boundary returns and circle components contained
in the interiors of the triangles.

Proof. We will simplify the intersection of C with the triangles of the trian-
gulation by a process called normalization. Assume that a triangle ∆ contains
an interior return of C. Any such return cuts off a half-disc D from ∆. Using
D, we construct an isotopy that pushes the return across the edge into the
adjacent triangle together with all the other interior returns and circle com-
ponents that may be contained in D. This move decreases the total number of
crossing points of C with edges by two or more (if D contains other returns).
Repeating it for as long as possible, we get a curve without interior returns.
It remains to cross out all boundary returns and circle components inside the
triangles. ��
Remark 3.2.3. It may happen that normalization destroys the curve C com-
pletely, that is, reduces it to the empty set. On the other hand, if C contains
no trivial component, which cuts a disc out of F , then we cross out nothing,
and the normalization process is an isotopy.
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Denote by N the set of all normal curves on F considered up to normal
isotopy, which preserves the triangulation. To compose the matching system
(see Step 5 above), in every angle of each triangle we put a variable xi. Thus
we get n variables x1, x2, . . . , xn numbered in some order, where n is the total
number of angles. For each interior edge e of the triangulation, there are four
angles adjacent to it. Let xi, xj , xk, xl be the corresponding variables such
that xi, xj are in ∆1 and xk, xl are in ∆2, where ∆1,∆2 are the two triangles
adjacent to e. Then we write the equation xi + xj = xk + xl.

Doing this for all the interior edges, we obtain a system of equations. The
number of the equations coincides with the number of the interior edges of
the triangulation. The matching system of linear homogeneous equations and
inequalities is obtained by adding n inequalities xi ≥ 0, 1 ≤ i ≤ n:

Matching system
xi + xj = xk + xl

xi ≥ 0, 1 ≤ i ≤ n

Let us relate integer solutions of the matching system (all of them admis-
sible) and normal curves considered up to normal isotopy. Note that the set of
such solutions is closed with respect to taking sums. Theorem 3.2.4 is just the
first basic conclusion of Haken’s theory for the case of triangulated surfaces.

Theorem 3.2.4. There exists a natural bijection between the set of integer
solutions of the matching system for F and the set of equivalence classes of
normal curves on F .

Proof. First, let us associate with a given normal curve C on F an n-tuple
x̄(C) = (x1, x2, . . . , xn) of non-negative integers. For each i, 1 ≤ i ≤ n, let ∆
be the triangle whose angle is labeled by xi. We put xi equal to the number
of arcs in C ∩ ∆ that join the sides of the angle (the arcs are 1-dimensional
counterparts of elementary pieces considered in Step 4 of Sect. 3.1). It follows
that if the angles labeled by xi, xj are adjacent to an edge e of the triangulation
from the same side, then xi + xj equals the number of points in e ∩ C. The
same is true for the angles adjacent to e from the other side: e ∩ C consists
of xk + xl points, where xk, xl correspond to these angles. We may conclude
that xi + xj = xk + xl. It follows that the n-tuple x̄(C) = (x1, x2, . . . , xn) is
an integer solution of the matching system.

Conversely, given an integer solution x̄ = (x1, x2, . . . , xn) of the system,
draw the corresponding number of arcs in each angle. It is obvious that these
arcs can be chosen so as to be disjoint. Thus all solutions are admissible. Since
x̄ is a solution, for each edge e the number of endpoints of arcs coming to e
from one side equals the number coming from the other. Adjusting the arcs
by an isotopy, we may assume that both sets of endpoints do coincide on each
edge. This means that the union of all the arcs forms a normal curve (neither
returns nor circles inside triangles can appear). ��
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Remark 3.2.5. One can show that two normal curves are isotopic in the
complement of the vertices if and only if they are normally isotopic. How-
ever, as the ensuing example shows, two curves can be isotopic without being
normally isotopic.

Remark 3.2.6. Let T be a finite set of triangles. Divide some of their edges
into pairs and identify the edges of each pair via a homeomorphism. We get
a surface F . By construction, F is decomposed into singular triangles (the
images of the triangles of T ). Such a decomposition of F is called a singular
triangulation of F . Although the intersection of two singular triangles may
consist of more than one vertex or edge, the normal curve theory works for
singular triangulations as well.

In the following educational example we apply Theorem 3.2.4 to describing
the set of normal curves on the Klein bottle. As a corollary we show that there
are only four nonisotopic nontrivial circles. See Fig. 3.1, where the bottle is
presented as two Möbius strips glued together along the boundary.

Example 3.2.7. Let K be the Klein bottle. To decrease the number of vari-
ables, we consider a singular triangulation of K into only two triangles, see
Fig. 3.2a. The matching system has the form

Fig. 3.1. Four simple closed curves on the Klein bottle: the meridian µ, the longitude
λ, and core circles c1, c2 of the Möbius bands

Fig. 3.2. Curves on the Klein bottle
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x1 + x2 = x1 + x3

x4 + x5 = x4 + x6

x2 + x3 = x5 + x6

xi ≥ 0, 1 ≤ i ≤ 6,

and we immediately get the solution

x1 = k, x2 = x3 = x5 = x6 = l, x4 = m,

where k, l,m are arbitrary non-negative integers. By Theorem 3.2.4, the set
of all normal curves on K is parameterized by 3-tuples k, l,m of non-negative
integers and thus consists of curves of the type c = c(k, l,m), see Fig. 3.2b.

Let us analyze the curves. If k, l,m > 0, then the curve c(k, l,m) contains
a trivial component that encircles the only vertex of K. Neglecting such com-
ponents, we may assume that at least one of the parameters k, l,m equals 0.

Case l = 0. The curve λ = c(2, 0, 0) (the longitude of K) is connected
and decomposes K into two Möbius strips with the core lines c(1, 0, 0) and
c(0, 0, 1). The curve c(0, 0, 2) is isotopic (but not normally!) to c(2, 0, 0), since
both of them are isotopic to the diagonal of the square, see Fig. 3.2c. Any
other curve of the type c = c(k, 0,m) is disconnected and consists of several
parallel copies of the longitude to which the core lines of one or both Möbius
strips may be added.

Case m = 0. The curve c(0, l, 0) consists of l parallel copies of the meridian
µ = c(0, 1, 0) of the Klein bottle. If k > 0 and l ≥ 2, then the isotopy shown
in Fig. 3.3 transforms the curve c(k, l, 0) into c(k, l − 2, 0).

After a few steps we get either c(k, 0, 0) (and we return to the Case l = 0)
or c(k, 1, 0). A similar isotopy transforms c(k, 1, 0) into c(k − 1, 0, 1), and we
get the Case l = 0 again. Case k = 0 is similar.

We may conclude that any curve on K without trivial components con-
sists either of several parallel copies of the longitude, to which core lines of
the Möbius strips may be added, or of several parallel copies of the merid-
ian. In particular, K contains exactly four nontrivial connected simple closed
curves shown in Fig. 3.1. Another corollary: If a curve contains no trivial and
no parallel components, then the number of its components is no greater
than 3.

Fig. 3.3. Isotopy across the vertex
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3.2.2 Fundamental Solutions and Fundamental Curves

We begin with a digression to the theory of linear equations. Consider a system
E of linear homogeneous equations

ai1x1 + ai2x2 + . . . + ainxn = 0, 1 ≤ i ≤ m,

where aij are integer.
Recall that a non-negative integer solution x̄ to E is fundamental, if it

cannot be presented in the form x̄ = ȳ + z̄, where ȳ, z̄ are nontrivial non-
negative integer solutions to E (see Definition 3.1.1).

Let us prove the second conclusion (B) of Haken’s theory (see Sect. 3.1).

Theorem 3.2.8. The set of fundamental solutions to any system E of linear
homogeneous equations is finite and can be constructed algorithmically. Any
non-negative integer solution to E can be presented as a linear combination
of the fundamental solutions with non-negative integer coefficients.

Proof. Let Rn be a Euclidean space with coordinates (x1, . . . , xn). Denote by
σn−1 the simplex in Rn with vertices (1, 0, . . . , 0), . . . , (0, 0, . . . , 1). Let S be
the set of all non-negative solutions to E over real numbers, L the support
plane for σn−1, and P = S ∩ L. Then we have:

(1) P is the intersection of L with the hyperplanes given by the above equa-
tions and with the half-spaces xi ≥ 0.

(2) P is contained in σn−1 and hence is bounded.

It follows that P is a convex polyhedron of dimension m ≤ n − 1. S can
be considered as the union of straight rays that start at the origin and pass
through points of P , see Fig. 3.4. The vertices of P have rational coordinates.
Multiplying each vertex v̄ by the smallest number k > 0 such that the coor-
dinates of kv̄ are integer, we get the set V of so-called vertex solutions. The
vertex solutions are necessarily fundamental.

Since P , as any convex polyhedron of dimension m, can be decomposed
into m-simplices without introducing new vertices, S can be presented as the

Fig. 3.4. The solution space is the cone over P
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union of the cones over m-simplices with vertices in V. It is sufficient to prove
that each such cone contains only finitely many fundamental solutions.

Let δ be an m-simplex with vertices V̄0, V̄1, . . . , V̄m ∈ V and Sδ ⊂ S the
cone over δ. Since any point of δ is a non-negative linear combination of its
vertices, any integer point x̄ ∈ Sδ can be presented in the form x̄ =

∑m
i=0 αiV̄i,

where all αi are non-negative. If one of the coefficients (say, αi) is greater
than 1, then x̄ is not fundamental, since it can be presented as the nontrivial
sum x̄ = (x̄ − V̄i) + V̄i of non-negative integer solutions. We can conclude
that all the fundamental solutions in Sδ are contained in the compact set
U = {

∑m
i=0 αiV̄i: 0 ≤ αi ≤ 1}. Since they are integers, there are only finitely

many of them.
To prove the second conclusion of Theorem 3.2.8, we successively decom-

pose a given solution x̄ into nontrivial sums of other solutions until only
fundamental summands remain. The number of the summands is bounded by∑n

i=1 xi (since each summand contributes to the sum at least 1), hence the
decomposition process is finite. Note that the presentation of a solution as a
sum of fundamental ones is, in general, not unique. ��

Remark 3.2.9. Theorem 3.2.8 remains true if we replace linear homogeneous
equations by inequalities. The proof remains the same. For example, the sys-
tem

−x + 4y ≥ 0
3x − y ≥ 0

has exactly six fundamental solutions see Fig. 3.5. The set U (shown shaded)
contains 14 integer points (including the origin).

3.2.3 Geometric Summation

Let F be a triangulated surface. Theorem 3.2.4 tells us that there is a natural
bijection between normal curves on F and non-negative integer solutions to
the matching system for F . On the other hand, the set of all non-negative
integer solutions possesses an evident additive structure. It follows that the

Fig. 3.5. Six fundamental solutions of the system −x + 4y ≥ 0, 3x − y ≥ 0
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set of all normal curves is also additive: For any two normal curves C1, C2 ⊂ F
one can define their sum C1 + C2 as a normal curve realizing the algebraic
sum of the corresponding solutions.

Let us describe the sum C1 + C2 geometrically. First, by means of normal
isotopies, we straighten the intersection of C1, C2 with each triangle into a
union of segments. We assume that the curves are in general position with
respect to the triangulation and to each other. In particular, this means that
the segments in the intersection of C1, C2 with each triangle have no common
endpoints. At each crossing point exactly two cut-and-paste operations are
possible: We cut both segments at the crossing point and glue the ends to-
gether in one of the two possible ways. We will call these operations switches.

Definition 3.2.10. Let I1, I2 be two intersecting straight segments in a
triangle ∆ such that the endpoints of each segment lie on different sides of ∆.
Let A be the crossing point of I1, I2. A switch at A is called regular if it
produces two arcs such that the endpoints of each arc lie in different sides of ∆.
Otherwise the switch is called irregular, see Fig. 3.6.

Remark 3.2.11. It is easy to see that the regular switch at A produces two
arcs that join the same sides of ∆ as the original segments.

Lemma 3.2.12. Let C1, C2 be two normal curves in a triangulated surface F
such that they intersect each triangle along straight segments without common
endpoints. Let C be obtained from C1, C2 by performing switches at all crossing
points of C1, C2. Then the following holds:

1. If all the switches are regular, then C is a normal curve that realizes the
sum of the corresponding solutions.

2. If at least one switch is irregular, then C has a return and hence is not
normal.

Proof. Let ∆ be a triangle of the triangulation. The segments C1∩∆ divide ∆
into several polygonal regions. One of them (denote it by Ω1) is adjacent to all
three sides of ∆. Analogously, there is a region Ω2 ⊂ ∆ bounded by segments
from C2 ∩∆ and three segments contained in different sides of ∆. Since both
regions have common points with all three sides of ∆, their intersection is
nonempty.

Fig. 3.6. Regular and irregular switches
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Fig. 3.7. Ω1 ∩ Ω2 is shaded

Fig. 3.8. (a) Irregular switches of two curves produce returns; (b) Regular switches
of three curves can also produce returns

Let us divide ∆ into three triangles ∆1,∆2,∆3 by joining an interior point
A ∈ Ω1∩Ω2 with the vertices of ∆. See Fig. 3.7, where the ends of the segments
C1 ∩ ∆ and C2 ∩ ∆ are shown as black and white dots, respectively.

We see that the intersection of C1 ∪C2 with each ∆i consists of segments
joining the common side ai of ∆i and ∆ with two other sides of ∆i. Regular
switches at all crossing points of these segments produce arcs of the same
type: they join ai with two other sides of ∆i. This implies the first statement
of the lemma.

Suppose that the switches at some points of C1 ∩ C2 ∩ ∆i are irregular.
Among all such points we choose a point x having the smallest distance to
ai. Then the irregular switch of C1 ∩ C2 at x produces a return, and this
return survives the switches at all other points of C1 ∩C2. It follows that the
resulting curve is not normal. See Fig. 3.8a. ��
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Remark 3.2.13. It is worth noticing that switches at all crossing points of
three sets of segments in a triangle can produce returns, even if all the switches
are regular. An example is shown in Fig. 3.8b.

Definition 3.2.14. A normal curve on a triangulated surface F is called fun-
damental, if it corresponds to a fundamental solution of the matching system.

Theorem 3.2.15 is a direct consequence of Theorem 3.2.4 and
Theorem 3.2.8:

Theorem 3.2.15. For any triangulated surface F , the set of fundamental
curves is finite and can be constructed algorithmically. Any normal curve on
F can be presented as a linear combination of the fundamental ones with non-
negative integer coefficients.

Remark 3.2.16. Theorem 3.2.15 has a simpler proof which can be easily
obtained from the following observation:

If a curve C crosses an edge e at least twice in the same direction, then it
is not fundamental.

It follows from the observation that any fundamental curve C crosses each
edge no more than twice (otherwise at least two crossings would have the same
direction). This is sufficient for proving Theorem 3.2.15, since the number of
normal curves that cross each edge in a bounded number of points is finite.

Let us prove the observation. We can assume that C is oriented and the
intersection of C with a collar e × I of e consists of oriented segments of
the type {∗} × I. Assume that C ∩ (e × I) contains two coherently oriented
segments. Removing them from C and joining the initial point of each segment
with the terminal point of the other, we present C as the sum of two curves
Ci, i = 1, 2, maybe with self-intersections. Then we switch each Ci regular at
all self-intersection points and get a collection of ≥ 2 normal curves whose
sum is C. Therefore, C is not fundamental. See Fig. 3.9.

Example 3.2.17. Let us describe the set N of normal curves for the bound-
ary of a tetrahedron ∆3 considered as a triangulated 2-sphere. First, we show
that there are exactly seven fundamental curves. Four curves (denote them by
Xi, 1 ≤ i ≤ 4) are the boundaries of triangles that cut off the corners of ∆3.

Fig. 3.9. Fundamental curve cannot cross an edge twice in the same direction
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Fig. 3.10. Fundamental curves on the boundary of ∆3

Each of the other three (denote them by Xi, 5 ≤ i ≤ 7) is isotopic to the
boundary of a quadrilateral plane section parallel to a pair of opposite edges
of ∆3, see Fig. 3.10.

Indeed, let C be a fundamental curve and e an edge. If the endpoints of
e lie in different components of ∂∆3 \ C, then C crosses e in an odd number
of points, hence exactly once by Remark 3.2.16. Of course, C decomposes
∂∆3 into two discs containing at least one vertex each. Since ∂∆3 has four
vertices, there are two cases: 1+3 and 2+2. It is easy to see that in the first
case we get four triangles Xi, 1 ≤ i ≤ 4, in the second one three quadrilaterals
Xi, 5 ≤ i ≤ 7.

By Theorem 3.2.15, we have N = {
∑k

i=1 αiXi}, where αi are non-negative
integers. Moreover, one can show that any normal curve can be decomposed
into the sum of fundamental ones in a unique way up to relation X1 + X2 +
X3 + X4 = X5 + X6 + X7.

The set of fundamental curves in F depends heavily on the triangula-
tion. For example, any subdivision of F increases the number of fundamental
curves, since there appear new vertices and hence small normal curves sur-
rounding them. There can also appear other normal curves. In general, the
growth is exponential. Therefore it would be reasonable to consider trian-
gulations with the number of triangles being as small as possible. Another
option is to consider decompositions of surfaces into polygons or other sim-
ple pieces. Section 3.2.4 is devoted to curves normal with respect to handle
decompositions.

3.2.4 An Alternative Approach to the Theory of Normal Curves

Let ξ be a handle decomposition of a compact surface F . In case ∂F = ∅
we will assume that ξ contains no handles of index 2. Handles of indexes 0,
1, and 2 are called islands, bridges, and lakes, respectively. Any bridge can
be presented as a strip (homeomorphic image of a rectangle) so that two
opposite sides of the rectangle are adjacent to islands. Thus the intersection
of any bridge with the union of the islands consists of two arcs which we call
the ends of the bridge.



120 3 Haken Theory of Normal Surfaces

Let l be a proper arc in an island D. We say that l is a return if one of the
following holds:

(1) (Bridge return) Both endpoints of l lie on the same end of a bridge.
(2) (Half-return) One endpoint of l lies on an end of a bridge, while the other

is on the adjacent arc of ∂F ∩ ∂D.
(3) (Boundary return) The endpoints of l lie on the same arc of ∂F ∩ ∂D.

Definition 3.2.18. A proper curve C ⊂ F is called normal (with respect to
ξ), if the following conditions hold:

1. C does not intersect lakes (handles of index 2).
2. The intersection of C with any bridge consists of simple arcs joining dif-

ferent ends of the bridge.
3. (No returns) The intersection of C with any island contains no returns of

any kind.
4. (No circles) The intersection of C with any island contains no closed

curves.

See Fig. 3.11 for allowed and forbidden types of arcs in islands.

It is easy to see that just as in the case of triangulated surfaces (see
Theorem 3.2.2), any curve on F can be transformed into a normal one by iso-
topies and crossing out boundary returns and closed curves inside the islands.
Isotopies that destroy half- and bridge returns by moving them across corre-
sponding bridges are shown in Fig. 3.12.

Fig. 3.11. Allowed and forbidden types of arcs are shown as bold and dotted lines,
respectively

Fig. 3.12. Destroying returns
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Note that if the valence v of an island D is 0 or 1, then all arcs in D are
forbidden. If v ≥ 2 and F is closed, then there are exactly C2

v = v(v − 1)/2
types of allowed arcs that join different ends of the bridges. Let ∂F = ∅. Then
there are exactly v(2v − 3) allowed types: C2

v of them join different bridges,
just as many join different boundary arcs, and v(v − 2) types join the ends of
the bridges with non-neighboring boundary arcs.

Let us begin to fulfill Steps 4, 5 of the Haken’s scheme. We wish to compose
a linear system and parameterize normal curves by its solutions. Since we are
1-dimension down, instead of elementary pieces we will consider elementary
arcs, which are allowed by Definition 3.2.18. Lakes contain no arcs at all, while
any bridge contains only one type of elementary arcs. So only elementary arcs
in islands are of interest.

Let E1, E2, . . . , En be all the equivalence classes of elementary arcs in
all the islands of ξ. Assign to them integer variables x1, x2, . . . , xn. To
write the matching system, consider a bridge b with ends s1, s2. Denote
by Ei1 , Ei2 , . . . , Eil

the elementary arcs having an endpoint on s1, and by
Ej1 , Ej2 , . . . , Ejr

those arcs that have an endpoint on s2. Then we write the
equation

xi1 + xi2 + . . . + xil
= xj1 + xj2 + . . . + xjr

,

see Fig. 3.13 to the left. The matching system consists of such equations writ-
ten for all the bridges of ξ, and of the inequalities xi ≥ 0, 1 ≤ i ≤ n. It turns
out that any normal curve C ⊂ F can be described by an integer solution
x̄(C) = (x1, x2, . . . , xn) of the system, that shows how many arcs of each type
are contained in the intersection of C with the islands.

In contrast to the case of triangulations, not every solution corresponds to
a normal curve. For example, let D be an island of valence ≥ 4. Choose two
arcs ei ∈ Ei, ej ∈ Ej in D joining two pairs of bridges such that ei crosses
ej transversally exactly once. Then the crossing point of ei, ej would survive
any normal isotopy, and hence no solution with xi, xj > 0 has a chance to be
realized by an embedded curve, see Fig. 3.13 to the right.

We say that a non-negative integer solution (x1, x2, . . . , xn) is admissible
if any pair xi, xj > 0 can be realized by disjoint arcs (compare with Step
5 of Sect. 3.1). Let us show that every admissible solution corresponds to a

Fig. 3.13. Bridges produce equations (left). There exist nonadmissible solutions
(right)
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normal curve. Indeed, the admissibility allows us to realize the given solution
(x1, x2, . . . , xn) by disjoint arcs in islands, and the equations tell us why these
arcs can be completed to a normal curve by adding parallel arcs inside the
corresponding bridges.

The remaining part of the handle decomposition version of the theory
of normal curves is similar to the one for triangulated surfaces. We restrict
ourselves to a few comments:

1. There exists a natural bijection between admissible solutions of the match-
ing system for ξ and equivalence classes of normal curves on F . The proof
is actually the same as for Theorem 3.2.4.

2. In general, not every fundamental solution is admissible. Thus the funda-
mental curves correspond only to admissible fundamental solutions.

3. The sum of two admissible solutions may not be admissible. On the other
hand, the sum of two solutions is admissible, then so are the summands.

4. To construct geometrically the sum of two normal curves with the admis-
sible algebraic sum, we make them disjoint inside the islands and straight
inside the bridges (with respect to a presentation of each bridge as a
rectangle). Then we make regular switches at all crossing points of the
curves. Similar to Definition 3.2.10, we call a switch between two curves
in a bridge regular, if it produces two arcs that join different ends of the
bridge.

5. Just as in the case of triangulated surfaces, the set of fundamental curves
on F is finite and can be constructed algorithmically. Any normal curve
can be presented as a linear combination of the fundamental ones with
non-negative integer coefficients.

6. Any triangulation T of a closed surface F generates a handle decomposi-
tion ξ of F , which is called dual. It can be easily obtained by inserting an
island into every triangle of T , and joining the islands by bridges across
the edges, see Fig. 3.14. One can easily see that the matching systems
for T and ξ do coincide. Thus the handle decomposition version of the
normal curve theory is at least as powerful as the triangulation version.
Moreover, the handle decomposition approach is more flexible and gives

Fig. 3.14. Dual handle decomposition
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us more freedom, especially in case ∂F = ∅. Hence in many cases it is
preferable.

7. Let a surface F be decomposed into handles of index ≤ 1. As in the case
of a triangulated surface (see Remark 3.2.5), two closed normal curves on
F are isotopic if and only if they are normally isotopic. For arcs this is
not true. Nevertheless, if there are no islands of valence ≤ 2, then any two
isotopic normal arcs are either normally isotopic or parallel to the ends of
the same bridge.

3.3 Normal Surfaces in 3-Manifolds

3.3.1 Incompressible Surfaces

As was pointed out in the beginning of this chapter, knowledge of surfaces
contained in a given 3-manifold is useful for understanding its structure. Let
us think a little about surfaces that are contained in R3. An example of such
surface (a cube with two knotted tubes) is shown in Fig. 3.15. This example
turned out to have a general nature: any connected closed surface F in R3

can be obtained from a 2-sphere by successive addition of tubes. The tubes
may be knotted and linked, and run inside each other.

Now let us return to the case of an arbitrary 3-manifold M . The same
procedure (adding tubes) works here as well, but all surfaces obtained in this
way seem to be not very interesting. One possible explanation is that all
surfaces that are contained in R3 are contained in every 3-manifold M and
thus carry no information on M . Therefore surfaces without tubes are the
most interesting. To give a formal description of surfaces without tubes, note
that if tubes are present, then the meridional disc of the last attached tube
meets the surface only along its boundary. We come naturally to the following
definitions.

Definition 3.3.1. A compressing disc for a surface F in a 3-manifold M is
an embedded disc D ⊂ M which meets F along its boundary, i.e., D∩F = ∂D.

Fig. 3.15. A surface in R3
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The disc D is inessential if the curve ∂D is trivial on F , i.e., bounds a disc
in F . Otherwise D is essential.

Definition 3.3.2. A surface F ⊂ M is called incompressible if it admits no
essential compressing discs.

Remark 3.3.3. According to our definition, any 2-sphere in any 3-manifold
is incompressible. The same holds for any disc. Sometimes topologists call
a sphere incompressible only if it does not bound a ball (see [43, 130]). We
prefer to call such spheres essential or nontrivial without overloading the
term “incompressible” with extra conditions.

Note that any essential compressing disc determines a nontrivial tube. To
visualize the tube, we may squeeze the surface along the disc and get an
isotopic surface with a thin tube. Therefore, incompressible surfaces contain
no nontrivial tubes and thus have a chance to be informative.

Let us compare the notion of incompressible surface with a close notion of
injective one.

Definition 3.3.4. A connected surface F
i
⊂ M is called injective, if the kernel

of the induced homomorphism i∗:π1(F ) → π1(M) is trivial.

Clearly, every injective surface is incompressible. The converse is in general
not true. For example, consider an orientable twisted I-bundle K×̃I over the
Klein bottle K. We will think of K as being contained in K×̃I as a cross-
section of the bundle. Let a 3-manifold Mh be obtained from K×̃I by pasting
a solid torus D2 ×S1 via a homeomorphism h: ∂D2 ×S1 → ∂(K×̃I). Since K
contains only two nontrivial orientation-preserving simple closed curves (see
Example 3.2.7), K is compressible in Mh only when h(D2) × {∗} is isotopic
to one of them. On the other hand, K is not injective for any h.

Recall that a surface F in a 3-manifold M is two-sided in M , if the normal
line bundle F ×̃I of F in M is trivial. Otherwise F is one-sided. The surface
F ×̃∂I will be denoted by F̃ . In case F is two-sided, F̃ consists of two parallel
copies of F .

Lemma 3.3.5. Let F be a proper connected surface in a 3-manifold M . Then
the following holds:

(1) If F is two-sided, then F is injective ⇐⇒ F is incompressible.
(2) If F is one-sided, then we have: F̃ is incompressible ⇐⇒ F̃ is injective

⇐⇒ F is injective ⇒ F is incompressible.

Proof. (1) Part =⇒ of the statement is trivial. Part ⇐= follows from the
Loop Theorem and Dehn Lemma [106], which imply that any noninjective
surface in the boundary of a 3-manifold is compressible. Indeed, suppose that
F is incompressible and fails to be injective. Then at least one of the surfaces
F × {0, 1} in the boundary of the 3-manifold MF = M \ Int (F × I) is not
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injective. By the Loop Theorem and Dehn Lemma, this surface is compressible
in MF and hence in M , which contradicts our assumption that the isotopic
surface F ⊂ M is incompressible.

(2) Let F be one-sided. Since F̃ is always two-sided, the first equivalence
follows from (1). The last implication is easy. Let us prove the middle equi-
valence. Since the restriction p|F̃ : F̃ → F of the normal bundle projection
is a covering, it induces an injection p∗:π1(F̃ ) → π1(F ), which allows us to
identify π1(F̃ ) with a subgroup of π1(F ). It follows that if F is injective, then
so is F̃ .

Let us prove the inverse implication. Suppose that F̃ is injective. First, we
assume that F = RP 2. This assumption guarantees us that π1(F ) contains
no elements of order ≤ 2 except the unit. Consider an arbitrary element α of
π1(F ) = π1(F ×̃I). Then α2 lies in the subgroup π1(F̃ ) of π1(F ). The following
implications are evident: α = 1 in π1(M) =⇒ α2 = 1 in π1(M) =⇒ α2 = 1 in
π1(F̃ ) (since F̃ is injective) =⇒ α2 = 1 in π1(F ) =⇒ α = 1 in π1(F ) by the
above assumption. Therefore F is injective.

The case F = RP 2 is simple, since F ×̃I is a punctured projective space.
Since ∂F ×̃I is a 2-sphere, F ×̃I and hence F are contained in M injectively.

��

Corollary 3.3.6. Any incompressible proper connected surface in a 3-ball is
either a 2-sphere or a proper disc.

Proof. Let F be a connected proper incompressible surface in a 3-ball B3.
Then F is two-sided (as any other proper surface in B3) and injective (by
Lemma 3.3.5). It follows that π1(F ) = 1, but the only connected surfaces
with the trivial fundamental group are S2 and D2. ��

To complete our discussion of the idea of interesting surfaces, let us intro-
duce a relative counterpart of incompressibility.

Definition 3.3.7. Let F be a surface in a 3-manifold M . An embedded disc
D ⊂ M is called a boundary compressing disc for F if D meets F along a
proper arc l ⊂ ∂D and meets ∂M along the remaining arc of ∂D. The disc D
is inessential, if l cuts off a disc D′ from F so that ∂D′ consists of a copy of
l and an arc on ∂M . Otherwise D is essential.

Definition 3.3.8. A surface F ⊂ M is called boundary incompressible if it
admits no essential boundary compressing discs.

We point out that Definitions 3.3.7 and 3.3.8 make sense also for nonproper
surfaces. Just as compressing discs determine tubes, boundary compressing
discs determine half-tubes, which we call tunnels .

Recall that a 3-manifold M is irreducible, if every 2-sphere in it is inessen-
tial, i.e., bounds a 3-ball. Also, M is boundary irreducible, if the boundary
curve of any proper disc D ⊂ M bounds a disc on ∂M . In other words,
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all proper discs in M must be inessential. It follows that M is boundary irre-
ducible if and only if ∂M is incompressible. So the statements “M is boundary
irreducible” and “∂M is incompressible” are completely equivalent. Also, it
is worth mentioning that if M is irreducible, then a proper disc D ⊂ M is
inessential if and only if it cuts off a 3-ball from M .

3.3.2 Normal Surfaces in 3-Manifolds with Boundary Pattern

We consider the theory of normal surfaces in triangulated 3-manifolds in
slightly more general setting for manifolds with boundary pattern, which we
will need later. The notion was introduced by Johannson [57].

Definition 3.3.9. A manifold (M,Γ ) with boundary pattern Γ is a
3-manifold M with a fixed graph (1-dimensional polyhedron) Γ ⊂ ∂M con-
taining no isolated vertices.

In particular, every manifold can be considered as a manifold with the
empty boundary pattern. A homeomorphism between manifolds with bound-
ary pattern is a homeomorphism M1 → M2 which takes Γ1 to Γ2, i.e., a
homeomorphism of pairs (M1, Γ1) → (M2, Γ2). Let (M,Γ ) be a manifold with
boundary pattern.

Definition 3.3.10. We say that a surface F ⊂ M is proper and write F ⊂
(M,Γ ), if F ∩∂M = ∂F and ∂F is in general position with respect to Γ . This
means that ∂F does not pass through vertices of Γ and intersects its edges
transversally.

Definition 3.3.11. A subset X of (M,Γ ) is called clean if it does not inter-
sect Γ . An isotopy ft:X → M is clean if ft(X) ∩ Γ = ∅ for all t.

Definition 3.3.12. If X
i
⊂ M is a closed subpolyhedron of M , then an isotopy

ft : X → M is called admissible if there is an ambient isotopy gt: (M,Γ ) →
(M,Γ ) of pairs such that gti = ft for all t. In particular, any clean isotopy is
admissible.

Similarly, a homeomorphism h:M → M is called admissible, if h(Γ ) = Γ ,
i.e., if it determines a homeomorphism (M,Γ ) → (M,Γ ) of pairs.

The presence of a boundary pattern does not influence the notions of
incompressible surface and irreducible 3-manifold. The notions of boundary
incompressible surface and boundary irreducible 3-manifold admit straight-
forward generalizations to the case of manifolds with boundary pattern. Let
F be a surface in a manifold (M,Γ ) with boundary pattern.

Definition 3.3.13. A boundary compressing disc for F is a clean disc D ⊂M
which meets F along an arc l ⊂ ∂D and meets ∂M along the remaining arc
of ∂D. The disc D is inessential if l cuts off a clean disc D′ from F so that
∂D′ consists of a copy of l and a clean arc on ∂M . Otherwise, D is essential.
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Definition 3.3.14. F ⊂ (M,Γ ) is called boundary incompressible if it admits
no essential boundary compressing discs.

Just as in the absolute case, Definitions 3.3.13 and 3.3.14 make sense also for
nonproper surfaces. It is worth mentioning that the property of a surface in
a 3-manifold (M,Γ ) to be incompressible does not depend on the boundary
pattern Γ . On the contrary, boundary incompressibility does. For example, let
A be a clean annulus in (M,Γ ) which is parallel rel ∂ to an annulus A′ ⊂ ∂M
such that A′∩Γ contains a copy of the middle circle of A′. Then A is boundary
compressible in (M, ∅) and incompressible in (M,Γ ).

Similarly, boundary irreducibility of (M,Γ ) depends on Γ . For example, a
solid torus with boundary pattern Γ is boundary reducible if and only if the
complement to Γ contains a meridian of the torus.

Let (M,Γ ) be a compact triangulated 3-manifold. We will always assume
that the boundary pattern Γ is a 1-dimensional subcomplex of the triangu-
lation T of M , i.e., it consists of vertices and edges. The case Γ = ∅ is also
allowed.

Definition 3.3.15. A proper surface F ⊂ M is called normal if F is in gen-
eral position with respect to the triangulation and the following holds:

1. The intersection of F with every tetrahedron consists of discs. Those
discs are called elementary (they play the role of elementary pieces in
the Haken’s scheme, see Sect. 3.1).

2. The boundary of every elementary disc crosses at least one edge and
crosses each edge at most once.

We point out that the property of a surface to be normal does not depend on
the boundary pattern Γ : F is normal in (M,Γ ) if and only if F is normal in
M = (M, ∅) (provided that Γ consists of edges).

It is easy to show that in each tetrahedron there are seven types of
allowed elementary discs: four triangles and three quadrilaterals. Their bound-
ary curves are just fundamental curves on ∂∆3, see Fig. 3.10. Recall that ele-
mentary discs as well as normal surfaces are usually considered up to normal
isotopy, which preserves the triangulation.

3.3.3 Normalization Procedure

We are now ready to fulfill Step 3 of Haken’s scheme by proving that all in-
teresting (in our case, incompressible and boundary incompressible) surfaces
are isotopic to normal ones. Consider a 3-manifold M equipped with a trian-
gulation T and a boundary pattern Γ such that Γ consists of edges. Recall
that a surface in M is in general position, if it does not pass through vertices
and intersects the edges and triangles of the triangulation transversally. We
introduce eight normalization moves N1–N8 on general position surfaces in
(M,Γ ). As we will see later, these moves are sufficient for converting every
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surface into a normal one. To control the number of moves we introduce an
integer characteristic called the edge degree (or the weight) of a surface.

Definition 3.3.16. Let F be a general position proper surface in a 3-manifold
M equipped with a fixed triangulation T and boundary pattern Γ . Then the
edge degree e(F ) of F is the number of points in the intersection of F with
all the edges of T .

Let F ⊂ M be a proper general position surface in (M,Γ ) and ∆3 a
tetrahedron of the triangulation. Then F∩∆3 is a proper surface in ∆3, maybe
disconnected. Normalization moves N1–N8 can be described as follows:

N1: Suppose that F ∩∆3 admits an essential compressing disc D ⊂ ∆3, which
meets F along ∂D. Then we compress F along D, i.e., cut F along ∂D
and fill in two new boundary circles by two parallel copies of D.

N2: Suppose that F ∩ ∆3, considered as a proper surface in ∆3, admits an
essential boundary compressing disc D such that D ∩ ∂∆3 is a closed
subinterval of an edge e not contained in ∂M . Then we use D to eliminate
two points in F ∩ e by an isotopy of F , see Fig. 3.16.

N3: Suppose that a component of F ∩ ∆3 is a 2-sphere. Then we remove it.
N4: Suppose that F has a spherical component intersecting a triangle ∆2

of the triangulation along a circle and consisting of two discs in the
tetrahedra adjacent to ∆2. Then we remove this component.

As we shall see later, these moves are sufficient for normalizing closed
surfaces. For surfaces with boundary we need additional moves.

Definition 3.3.17. A proper disc D in a triangulated 3-manifold M is called
edge-linked, if D intersects an edge e ⊂ ∂M of the triangulation in exactly
two points A,B ⊂ e and the intersection of D with any triangle ∆2 either is
empty (if e ⊂ ∆2), or is an arc joining A and B (if e ⊂ ∆2). Of course, any
edge-linked disc is inessential in M , see Fig. 3.17.

Fig. 3.16. Reducing e(F ) by an isotopy
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Fig. 3.17. An example of an edge-linked disc

Fig. 3.18. Compression along two parallel discs

N5: Suppose that F ∩ ∆3 admits a boundary compressing disc D such that
D ∩ ∂∆3 is a closed subinterval of an edge e ⊂ ∂M and the connected
component of F containing the complementary arc of ∂D is not an edge-
linked disc. Then we compress F along two parallel copies D′,D′′ of
D such that D′,D′′ intersect no edge of the triangulation. This move
converts F into an edge-linked disc and a surface having a smaller edge
degree, see Fig. 3.18.

N6: Suppose a component of F ∩ ∆3 is a proper disc D ⊂ ∆3 such that ∂D
lies inside a triangular face ∆2 ⊂ ∂M of ∆3. Then we remove D.

N7: Suppose that a component D of F∩∆3 is a disc linked to an edge e ⊂ ∂M
such that e ⊂ Γ . Then we remove D.

N8: The same as N7, but e is in Γ . Suppose that a component D of F ∩ ∆3

is a disc linked to an edge e ⊂ Γ . Then we remove D.

Remark 3.3.18. Let us analyze the behavior of F under moves N1–N8 from a
purely topological point of view, without taking into account the triangulation.
N1 compresses a tube, N2 is an admissible isotopy, N3 and N4 consist in
removing an inessential S2. Further, N5 compresses a tunnel while N6, N7

eliminate inessential discs. All these moves preserve ∂F ∩ Γ . In contrast to
this, move N8 changes ∂F ∩ Γ , but it is applicable only in a very specific
situation.
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Fig. 3.19. Local moves keep the surface fixed outside a 3-ball

Definition 3.3.19. Let (M,Γ ) be a 3-manifold with boundary pattern. Then
a proper disc D ⊂ M is called semiclean if ∂D ∩ Γ consists of two points.
D is said to be inessential, if D is parallel rel ∂D to a disc D′ ⊂ ∂M whose
intersection with Γ consists of one arc.

Adopting this terminology, we can say that N8 is just elimination of an inessen-
tial elimination of an inessential semiclean disc.

All moves are local in the sense that F remains fixed outside a 3-ball, see
Fig. 3.19.

Lemma 3.3.20. Let F∆ ⊂ ∆3 be a proper general position surface in a tetra-
hedron ∆3 such that the following holds:

1. Each component of F∆ is a disc.
2. Each component of ∂F∆ crosses at least one edge of ∆3 and at least one

component crosses an edge e more than once.

Then F∆ admits a boundary compressing disc D such that D∩∂∆3 is a closed
subinterval of e.

Proof. Consider the set A of all discs in ∂∆3 such that for every disc A ∈ A
the boundary ∂A of A is a component of ∂F∆ and at least one of the connected
components of A ∩ e is a closed subinterval in the interior of e.

The choice of e guarantees us that A is not empty. Let A be an innermost
disc in A, which contains no other discs from A. Denote by l a connected
component of A∩e that lies in the interior of e, and by B the disc component
of F∆ which spans ∂A. Since A is innermost, l has no common points with F
except the endpoints.

Now let us slightly push A relative ∂A inward ∆3. We get a proper disc
A′. Since ∂A′ = ∂A = ∂B, and since any two discs in ∆3 with the same
boundary are isotopic rel ∂, we may think of A′ and B as being identical. On
the other hand, pushing can be made so subtle that the trace of l would form
a boundary compressing disc D for B and thus for F ∩∆3 such that D∩∂∆3

is a closed subinterval of e. See Fig. 3.20. ��

Theorem 3.3.21 is a 3-dimensional version of Theorem 3.2.2.
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Fig. 3.20. Finding a compressing disc

Theorem 3.3.21. Any general position proper surface F in a triangulated
3-manifold (M,Γ ) can be transformed into a normal surface F ′ by a sequence
of moves N1–N8.

Proof. Let us apply to F moves N1–N8 as long as possible. We claim that the
procedure is finite and that the resulting surface is normal.

To prove the first claim, we associate to F ⊂ M the following numerical
characteristics:

(1) The edge degree e(F ).
(2) The reduced edge degree ê(F ) = e(F )−2k, where k is the number of edge-

linked disc components of F . Equivalently, ê(F ) is the edge degree of the
surface obtained from F by removing all edge-linked disc components.

(3) γ(F ) =
∑m

i=1(1 − χ(Fi)), where F1, . . . , Fm are those connected compo-
nents of the intersection of F with all the tetrahedra that are not home-
omorphic to S2.

(4) n(F ), the total number of connected components of F .

We will measure the complexity of general position surfaces in M by the
4-tuples t̄(F ) = (e(F ), ê(F ), γ(F ), n(F )) considered in the lexicographical
order.

Let us investigate the behavior of t̄ under the moves N1–N8. Obviously,
moves N2, N7, N8 decrease e(F ). Move N5 preserves e(F ), but decreases ê(F ).
Of course, moves N3, N4, N6 preserve e(F ), ê(F ), γ(F ), and decrease n(F )
while move N1 preserves e(F ) and does not increase ê(F ).

Let us prove that N1 decreases γ(F ). Suppose that N1 transforms a con-
nected component Fi of the intersection of F with a tetrahedron ∆3 into a
surface G ⊂ ∆3. In other words, N1 replaces F by the surface F ′ = (F \Fi)∪G.
Then χ(F ′) = χ(F ) + 2 and G consists of ≤ 2 components. Let us compare
the contributions of Fi and G to γ(F ), respectively, γ(F ′):

1. Suppose that G consists of two components G′, G′′. Since G is obtained
from Fi by compression along an essential disc, neither G′ nor G′′ is a
2-sphere. It follows that

γ(G) = (1 − χ(G′)) + (1 − χ(G′′)) = −χ(Fi) < 1 − χ(Fi) = γ(Fi).
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Fig. 3.21. Each line of the table describes the behavior of e, ê, γ, and n under
corresponding moves

2. Suppose that G is connected and different from S2. Then

γ(G) = 1 − χ(G) = −1 − χ(Fi) = γ(Fi) − 2 < γ(Fi).

3. Suppose that G = S2. Then Fi is a torus, γ(Fi) = 1 − χ(Fi) = 1, and
γ(G) = 0 (since spherical components are neglected).

In all three cases we have γ(G) < γ(Fi), which implies γ(F ′) < γ(F ).
The information on the behavior of e(F ), ê(F ), γ(F ), and n(F ) is summa-

rized in the table (see Fig. 3.21). It follows from the table that all the moves
strictly decrease t̄(F ). On the other hand, t̄(F ) is bounded from below by
(0,0,0,0). Therefore, the process of applying moves N1–N8 is finite.

Let us prove the second claim, which states that the surface F ′ obtained
from F by applying all possible moves N1–N8 is normal. Indeed, the inter-
section of F ′ with any tetrahedron ∆3 consists of incompressible surfaces
(otherwise we could apply move N1). Any proper incompressible surface in
∆3 is the union of discs and spheres, but we cannot have spheres because of
move N3. Also, all components of ∂(F ′∩∆3) must cross edges, since otherwise
we could apply move N6.

It remains to show that any component of ∂(F ′ ∩∆3) crosses any edge no
more than once. On the contrary, suppose that a component of ∂(F ′ ∩ ∆3)
crosses an edge e at least twice. Then there exists a boundary compressing
disc D for F ′ ∩∆3 such that D∩∂∆3 is a subinterval of e, see Lemma 3.3.20.
It follows that one can apply either move N2 (if e ⊂ ∂M) or one of moves
N5, N7, N8 (if e ⊂ ∂M), a contradiction. ��

Remark 3.3.22. We will refer to the process of applications of moves N1–
N8 used in the proof of Theorem 3.3.21 as normalization procedure. It is
important to note that, for any edge e, moves N1, N3, N4–N6 preserve its
individual degree (the number of points in F ∩ e), and each of the remaining
moves N2, N7, N8 either preserves it or decreases it exactly by two. It follows
that the normalization procedure never increases the edge degree. Moreover,
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if the intersection of F with an edge e consists of no more than one point,
then the normalization procedure preserves F ∩ e.

Remark 3.3.23. Suppose that the intersection of F with the boundary of a
tetrahedron of the triangulation contains a curve which crosses an edge more
than once. Then at least one of moves N2, N7, N8 must be performed. It follows
that the normalization procedure strictly decreases e(F ). In particular, if the
intersection of F with a triangle of the triangulation contains a return (an arc
having the endpoints in the same edge), then e(F ) becomes smaller.

Other properties of the normalization are collected in Proposition 3.3.24.

Proposition 3.3.24. Let T be a triangulation of a 3-manifold M whose
boundary pattern Γ consists of edges of T , and let F ⊂ (M,Γ ) be a gen-
eral position proper connected surface. Suppose that a normal surface F1 is
obtained from F by the normalization procedure. Then the following holds:

1. If F is an essential 2-sphere, then so is at least one connected component
F ′ of F1.

2. If F is a clean essential disc, then so is at least one connected component
F ′ of F1.

3. Suppose ∂F crosses each edge of T no more than once and no component of
∂F is a circle inside a triangle of T . Then ∂F ′ = ∂F . If, in addition, F is
incompressible and different from S2, then there exists a unique connected
component F ′ of F1 such that F ′ is homeomorphic to F . Furthermore, if
M is irreducible, then F ′ is admissibly isotopic to F .

4. Suppose that (M,Γ ) is irreducible and boundary irreducible, F is incom-
pressible and boundary incompressible, and F is neither a 2-sphere, nor a
clean disc, nor an inessential semiclean disc. Then there exists a unique
connected component F ′ of F1 such that F ′ is admissibly isotopic to F .

5. If F is orientable, then so is F1.
6. If the intersection of F with a triangle of the triangulation contains

a return (an arc with the endpoints contained in the same edge), then
e(F1) < e(F ).

Proof. 1. Evident, since the property of a surface of containing an essential 2-
sphere is preserved under moves N1–N4, which normalize a closed surface.

2. Also evident, since the property of a surface to contain a clean essential
disc is preserved under all eight normalization moves.

3. We can apply moves N5, N7, N8 only when ∂F crosses an edge twice. Also,
move N6 is possible only when ∂F contains a circle lying strictly inside a
triangle of T . Since both situations are forbidden by the assumption and
cannot be brought about by moves N1–N4, the normalization procedure
does not use moves N5–N8 at all. Obviously, moves N1–N4 preserve ∂F .
What can happen with F? Moves N2–N4 leave F essentially unchanged:
N2 is an isotopy, and N3, N4 consist in removing an inessential sphere. Let
us investigate the behavior of F with respect to N1. If F is incompressible,
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then N1 transforms F into a 2-sphere and a homeomorphic copy of F .
Moreover, if M is irreducible, then this 2-sphere bounds a 3-ball, which can
be used for constructing an admissible isotopy from F to its homeomorphic
copy. This is sufficient for proving item 3.

4. Just as above, one can easily show that the property of a surface to contain
an incompressible boundary incompressible connected component which is
admissibly isotopic to F is preserved under all eight normalization moves.

5. Evident, since each of N1–N8 preserves the orientability.
6. Follows from Remark 3.3.23. ��

Corollary 3.3.25. Let an incompressible boundary incompressible surface F
in an irreducible boundary irreducible 3-manifold (M,Γ ) is neither a 2-sphere,
nor a clean disc, nor an inessential semiclean disc. Then F is admissibly
isotopic to a normal surface of the same or a smaller edge degree.

Proof. Follows from conclusion 4 of Proposition 3.3.24 and Remark 3.3.22. ��

Remark 3.3.26. Corollary 3.3.25 tells us that the class of normal surfaces is
informative in the sense that quite often it contains representatives of interest-
ing classes of surfaces (here we have in mind surfaces which are incompressible
and boundary incompressible).

3.3.4 Fundamental Surfaces

To give an explicit description of the set of all normal surfaces in a given
3-manifold, we do the same as in the case of normal curves: We compose the
matching system of linear equations and prove that normal surfaces corre-
spond to admissible solutions. Note that the boundary pattern is irrelevant
here. Let M be a triangulated 3-manifold,and let E1, E2, . . . , En denote all
the equivalence classes of elementary discs in all the tetrahedra (we consider
the discs up to normal isotopy). Since each tetrahedron contains seven equiv-
alence classes of elementary discs (four triangles and three quadrilaterals),
we have n = 7t, where t is the number of tetrahedra in T . We assign to
these classes integer variables x1, x2, . . . , xn. To write the equations, consider
an angle of a common triangular face of two tetrahedra ∆3

1 and ∆3
2. Each

of the tetrahedra contains two types of elementary discs that intersect both
sides of the angle: one triangle and one quadrilateral. Let Ei, Ej ⊂ ∆3

1 and
Ek, El ⊂ ∆3

2 be the corresponding equivalence classes. Then we write the
equation xi + xj = xk + xl. Doing so for all the angles, we get a system of
3m equations, where m is the number of triangles in the interior of M (if
M is closed, then m = 2t). The matching system is obtained by adding n
inequalities xi ≥ 0, 1 ≤ i ≤ n:

Matching system
xi + xj = xk + xl

xi ≥ 0, 1 ≤ i ≤ n
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To each normal surface F we assign an n-tuple x̄(F ) = (x1, x2, . . . , xn)
of non-negative integer numbers in the following natural way: We take the
number of elementary discs (triangles or quadrilaterals) of each type Ei in
the intersection of F with the tetrahedra. It is obvious that the obtained
tuple will be a solution to the matching system.

On the other hand, just as for curves in handle decompositions, not all
solutions correspond to normal surfaces. Indeed, being embedded, our surface
has no self-intersections, yet any two quadrilateral discs that lie in the same
tetrahedron and have different types do intersect. Therefore, we should restrict
ourselves to considering admissible solutions such that for all three types of
quadrilateral discs in the same tetrahedron, no more than one of the corre-
sponding variables is positive. Certainly, we have in mind only non-negative
integer solutions. Let us prove the basic conclusion (A) of Haken theory for
this case.

Theorem 3.3.27. There exists a natural bijection between the set of admis-
sible solutions to the matching system for a triangulated 3-manifold M and
the set of equivalence classes of normal surfaces in M .

Proof. Let Ei1 , . . . , Ei7 be the seven equivalence classes of elementary discs
in a tetrahedron ∆3 such that Ei1 , . . . , Ei4 are triangular while Ei5 , Ei6 , Ei7

are quadrilateral. Let (xi1 , . . . , xi7) be a tuple of seven non-negative integers.
The proof is based on the following evident observations:

(1) (xi1 , . . . , xi7) can be realized by a collection of disjoint elementary discs in
∆3 if and only if at least two of the three numbers Ei5 , Ei6 , Ei7 are zeros.

(2) The realization is unique up to normal isotopy.

Using these observations, one can realize any admissible solution x̄ =
(x1, . . . , xn) by the corresponding set of elementary discs so that the discs
match along all triangle faces and thus form a normal surface, which is unique
up to normal isotopy. ��

By Theorem 3.2.8, the matching system has only finitely many fundamen-
tal solutions. Some of them are admissible and thus correspond to fundamental
surfaces. Just as earlier, all admissible solutions can be obtained as sums of
fundamental ones. Note that not every sum of admissible solutions is admis-
sible, though if the sum of solutions is admissible, then so are the summands.

3.3.5 Geometric Summation

Let us describe a geometric interpretation of algebraic summation of solutions.
Consider two normal surfaces F1, F2 such that the sum x̄ = x̄(F1) + x̄(F2) of
the corresponding admissible solutions is also admissible. Shift F1, F2 by a
normal isotopy so that their intersection inside each tetrahedron ∆3 consists
of double arcs with endpoints in the interiors of faces. Moreover, we require
that the intersection of any two elementary discs of F1, F2 in ∆3 consists of no
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more than two arcs. It is possible to achieve, because we may apply to each
surface a normal isotopy that afterward the following holds:

1. Each surface intersects all the triangle faces of the triangulation along
straight segments.

2. All triangular elementary discs in the intersection of the surfaces with
tetrahedra are planar.

3. In general, we cannot achieve that the quadrilaterals are planar, since
not every four points in edges of a tetrahedron are contained in a planar
section. Nevertheless, we may achieve that any quadrilateral elementary
disc in the intersection of the surfaces with tetrahedra is the union of two
planar triangles having a common edge. Two such quadrilaterals can have
no more than two common arcs.

Consider a double line c of F1 ∩ F2 and decompose it into arcs which are
connected components of the intersection of c with tetrahedra of the trian-
gulation. Let l ⊂ c ∩ ∆3 be one of these arcs. It belongs to the intersection
of two elementary discs D1,D2 (pieces of F1 and F2) in ∆3. Like in the case
of normal curves on surfaces (see Sect. 3.2.1), there are two cut-and-paste op-
erations along l: we cut the discs along l and glue them again in one of the
two possible ways. The operations are called exchange moves or switches. The
regular switch along l produces two elementary discs of the same types as
D1,D2. In the case of irregular switch we get at least one disc that crosses
an edge twice, i.e., does not satisfy condition 2 of Definition 3.3.15 of nor-
mal surface. See Fig. 3.22, where we illustrate the case of a triangle and a
quadrilateral.

Note that any switch of elementary discs induces switches at all crossing
points of their boundary curves (considered as normal curves on ∂∆3). The
switch is regular if and only if it induces regular switches of the curves. It
follows that regular switches along all arcs in c agree in the triangle faces and
thus give a global regular switch along c. In particular, if c is closed, then c is
either orientation preserving on both F1, F2 or orientation reversing on both
F1, F2.

Now let us perform regular switches along all double lines of F1 ∩ F2. By
construction, the resulting surface F is normal and x̄(F ) = x̄(F1) + x̄(F2).

Fig. 3.22. Regular and irregular switches
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We will write F = F1 + F2 and call F the geometric sum of F1 and F2. Note
that x̄(F ) depends only on x̄(F1), x̄(F2). Thus the normal isotopy class of F
is defined correctly although the relative position of F1, F2 (in particular, the
number of curves in F1 ∩ F2) can vary when we shift the surfaces by normal
isotopies. If they are disjoint, then the sum is their union.

For convenience of future references we formulate the following direct con-
sequence of Theorem 3.3.27 and Theorem 3.2.8.

Theorem 3.3.28. For any triangulated 3-manifold M , the set of fundamental
surfaces is finite and can be constructed algorithmically. Any normal surface
in M can be presented as a linear combination of the fundamental ones with
non-negative integer coefficients.

Remark 3.3.29. Evidently, the edge degree of surfaces (see Definition 3.3.16)
is additive with respect to geometric sums. Let us show that the Euler
characteristic possesses the same property, i.e., χ(F1 + F2) = χ(F1) + χ(F2).
Indeed, any normal surface F has a natural cell decomposition into connected
components of the intersection of F with the edges, faces, and tetrahedra of
the triangulation. Since the numbers of i-dimensional cells of F1, F2 sum up
to those of F, 0 ≤ i ≤ 2, the same happens with the Euler characteristics.

There are many ways to present F as a geometric sum of two surfaces
F1, F2. In general, F1 ∩ F2 consists of several connected components (circles
and arcs). The number of the components will be denoted by #(F1 ∩F2). Let
us describe a simple trick that helps us to decrease #(F1 ∩ F2).

Lemma 3.3.30. Let a connected normal surface F be presented in the form
F = F1 + F2 such that at least one of the following holds:

1. One of the surfaces F1, F2 is disconnected while the other is nonempty.
2. There is a curve C ⊂ F1 ∩ F2 which decomposes both F1, F2.

Then there is another presentation F = F ′
1 + F ′

2 such that #(F ′
1 ∩ F ′

2) <
#(F1 ∩ F2).

Proof. Assume that one of the surfaces F1, F2 (say, F1) consists of two or more
components. Denote by F̃1 one of them, and by F ′

1 the union of the remaining
ones. By making regular switches along all curves in F̃1 ∩ F2, we get a new
surface F ′

2. Then F = F ′
1 + F ′

2 and #(F ′
1 ∩ F ′

2) < #(F1 ∩ F2), see Fig. 3.23a.

Fig. 3.23. How regular switches produce a more economic presentation
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Assume now that F1, F2 are connected and a double curve C ⊂ F1 ∩ F2

decomposes both F1, F2. Then F1 \ C and F2 \ C consist of two pieces each.
The regular switch along C pastes together only two pairs of them, therefore
we get two new surfaces, maybe with self-intersections. Switching all self-
intersection curves regular, we get F ′

1, F
′
2. By construction, F = F ′

1 + F ′
2,

see Fig. 3.23b. ��

3.4 Normal Surfaces in Handle Decompositions

In this section we describe a handle decomposition version of the theory of
normal surfaces. All the basic facts remain the same, but sometimes, especially
when investigating special spines, the handle decomposition version is more
convenient. For simplicity we consider manifolds without boundary pattern.

Every 3-manifold M with nonempty boundary can be decomposed into
handles of indexes 0, 1, and 2 called balls, beams, and plates, respectively. In
case M is closed, its handle decomposition must contain at least one handle
of index 3. Each beam and each plate has a direct product structure D2 × I.
The difference is that the beam D2 × I is attached to balls along two discs
D2×{0, 1}, while the plate D2×I is attached to the union of balls and beams
along the annulus ∂D2 × I. The intersection of the balls with the beams is
the union of discs called islands. Connected components of the intersection of
the balls with the plates are called bridges. In the boundary of every ball, the
complement to the union of islands and bridges consists of several regions,
called lakes. See Fig. 3.24.

Let ξ be a handle decomposition of a 3-manifold M .

Definition 3.4.1. A proper surface F ⊂ M is called normal (with respect to
ξ) if the following conditions hold:

1. F does not intersect handles of index 3.
2. F intersects each plate D2 × I in a number of parallel copies of the form

D2 × {∗} of the disc D2.

Fig. 3.24. A fragment of a handle decomposition
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3. The intersection of F with each beam D2 × I has the form L × I, where
L is a finite system of disjoint simple proper arcs in D2. Here the disc
D2 can be identified with the island D2 × {0} as well as with the island
D2 × {1}.

4. None of the systems L contains a closed curve or a lake return (an arc
l ⊂ L such that the endpoints of l lie in the same connected component of
the intersection of an island with a lake).

5. The intersection of F with each lake contains no closed curves which are
trivial in the lake and no island returns (an island return is an arc in a lake
whose endpoints lie in the same connected component of the intersection
of the lake with an island).

6. The intersection of F with each ball consists of discs (these discs are called
elementary).

7. The boundary curve C of each elementary disc crosses each bridge and
each lake at most once. Moreover, if a bridge and a lake are adjacent,
then C can intersect only one of them.

Remark 3.4.2. Condition 7 implies further restrictions on L: The endpoints
of any arc l of L lie neither in the same end of the same bridge nor in a bridge
and in an adjacent lake. It follows from condition 1 that the intersection of
F with a lake A can be nonempty only if A ⊂ ∂M . By condition 5, ∂F ∩ A
cannot contain trivial circles and island returns. Together with condition 7, it
forbids once more lake returns from condition 4. See Fig. 3.25, where we the
dotted lines show all types of curves that are forbidden by conditions 4, 5,
and 7.

Remark 3.4.3. The intersection of a normal surface F with a lake can con-
tain a closed curve l, but this can happen only if F is a disc in a ball B of ξ
and each connected component of ∂B \ l contains at least one island.

Just as in the case of triangulated manifolds, normal surfaces have the
advantage that they may be presented algebraically. To describe this, let us
consider the set of all elementary discs. Let ξ be a handle decomposition of a
3-manifold M .

Fig. 3.25. Different types of curves in an island and lakes
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Definition 3.4.4. Two elementary discs D1,D2 in a ball B of ξ are called
equivalent if they are normally isotopic, that is, there exists an isotopy of the
ball that takes one disc onto the other and is invariant on the islands and
bridges.

Using condition 7, one can easily show that every ball of ξ contains only
a finite number of nonequivalent elementary discs. Let E1, E2, . . . , En denote
elementary discs representing without repetitions all the equivalence classes
in all the balls of ξ. A normal surface F ⊂ M can intersect the balls in several
parallel copies of each disc Ei. Let xi = xi(F ) denote the number of these
copies. We get an n-tuple x̄(F ) = (x1, x2, . . . , xn) of non-negative integers,
that is, a vector with non-negative integer coordinates.

Two normal surfaces F1, F2 are called equivalent if there exists a normal
isotopy ht : M → M which takes F1 to F2 (an isotopy is normal if it is in-
variant on all the handles of the decomposition). It is easy to see that F1, F2

are equivalent if and only if x̄(F1) = x̄(F2). Thus to any equivalence class of
normal surfaces there corresponds an n-tuple x̄. Conversely, we could begin
with an n-tuple x̄ of non-negative integers and try to build the correspond-
ing normal surface. This is possible only if we subject the n-tuple to two
constraints.

The first constraint is that, for every xi, xj > 0, the equivalence classes of
discs Ei, Ej must have disjoint representatives. Such n-tuples will be called
admissible. One can easily prove that if an n-tuple (x1, x2, . . . , xn) is admis-
sible, then not only pairs, but also all Ei with xi > 0 can be chosen to be
disjoint. In order to describe the second constraint, let us multiply each of
the discs Ei in xi parallel copies. In the beam D2 × I we choose a simple arc
l × {0} in the island D2 × {0}.

Let us count the total number of copies of l × {0} in the intersection of
D2×{0} with all the parallel copies of all discs Ei. We get a linear combination
of xi with coefficients 0 and 1, where the coefficient at xi is 1 if and only if
∂Ei contains an arc normally isotopic to l × {0} (it follows from the last
condition in Definition 3.4.1 that this coefficient cannot be greater than 1).
In exactly the same fashion, we calculate the number of copies of l × {1} in
the intersection of the discs with the island D2 × {1}. If x̄ corresponds to a
normal surface, these two numbers must be equal for all possible choices of
l. We get a system of linear homogeneous equations with integer coefficients.
Adding to it n inequalities xi ≥ 0, 1 ≤ i ≤ n, we get a handle decomposition
version of the matching system for ξ.

The second necessary condition for realizability is that the coordinates
of x̄ must form a solution of the matching system. Let us show that every
admissible solution corresponds to a normal surface. Admissibility allows us
to realize a given solution (x1, x2, . . . , xn) by disjoint elementary discs in balls,
and the equations tell us that the discs can be completed to a normal surface
by adding strips in beams and discs in plates.
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Therefore the first conclusion of Haken’s theory holds also for the handle
decomposition version:

The set of equivalence classes of normal surfaces in M can be parameter-
ized by the set of non-negative integer admissible solutions of the system.

Just as in the previous version of the theory of normal surfaces,
Theorem 3.2.8 tells us that the set of fundamental solutions to the matching
system is finite and can be constructed algorithmically. Fundamental surfaces
correspond to admissible fundamental solutions. They form a basis in the
following sense: each normal surface in M can be presented as a sum (with
non-negative integer coefficients) of fundamental ones.

To show the geometric meaning of the summation, suppose that normal
surfaces F1, F2 correspond to admissible solutions x̄(F1), x̄(F2). We will as-
sume that the solutions (and the surfaces) are compatible, that is, for any
positive coordinates xi(F1), xj(F2) the equivalence classes of the correspond-
ing elementary discs Ei, Ej have disjoint representatives. Then the solution
x̄ = x̄(F1) + x̄(F2) will also be admissible. Let a surface F correspond to x̄.
How can one geometrically reconstruct F from F1, F2?

The compatibility condition assures us that F1, F2 can be realized so that
their elementary discs are disjoint. The intersections of these surfaces with
each beam D2 × I consist of bands isotopic to bands of the form l × I, where
l is an arc in D2. Straightening the bands, we can make them intersect only
along double lines joining their lateral sides. Any two bands must intersect
along no more than one line, see Fig. 3.26a. Similarly, one can bring to an
appropriate form the sheets along which the surfaces intersect the plates of
ξ. We can arrange things so that the intersection of any two sheets consists
of arcs which join the endpoints of double lines in beams. So we may assume
that either the surfaces F1, F2 do not intersect at all or they intersect in a
collection of disjoint simple curves. Then “geometric summation” of F1 and
F2 can be achieved by switching along all the curves in F1 ∩ F2. Each switch
of the surfaces consists in cutting them along a common curve and gluing
back. Clearly, along any curve in F1 ∩ F2 there are two ways to switch, but
we perform a regular switch which yields a surface F = F1 + F2 essentially in
normal position without further isotopy, see Fig. 3.26b). Note that the Euler
characteristic of surfaces is additive with respect to the summation.

Fig. 3.26. Regular switches produce a normal surface
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Fig. 3.27. The intersection of compatible normal surfaces can contain triple points,
even after straightening bands and sheets

Having described geometric summation of two compatible normal surfaces,
we can inductively describe the sum of a larger number of them. For example,
one may consider F1 + F2 + F3 as (F1 + F2) + F3. The result does not depend
on the order of summation, since in all cases we get the surface that realizes
the algebraic sum of the corresponding n-tuples. One should point out that if
there are more than two compatible normal surfaces, then their intersection
can contain triple points, even after straightening. This means that in general
we cannot make the switches along the double lines simultaneously; we have
to perform them one after another. I am indebted to Benedetti, Lisca, and
Petronio for showing me a simple example of an unavoidable triple point (see
Fig. 3.27).

Let ξ be a handle decomposition of a 3-manifold M and F a proper surface
in M disjoint from handles of index 3.

Definition 3.4.5. The beam degree b(F ) of F is the total number of compo-
nents in the intersection of F with the union of all beams.

For each plate D2×I of ξ we choose an arc l = {∗}×I which is transversal
to F . The union Ld(ξ) of all these arcs is called a dual link for ξ. Any dual
link can be considered as a proper link in the union of all handles of indices
≤ 2. Ld(ξ) is called minimal if the number p(F ) = #(F ∩ Ld(ξ)) of points in
F ∩ Ld(ξ) is as small as possible.

Definition 3.4.6. p(F ) is called the plate degree of F .

The plate degree is a handle decomposition analogue of the edge degree of
a surface in a triangulated manifold. Let us describe a handle decomposition
version of the normalization procedure (see Sect. 3.3.3). We will use the same
normalization moves (see Remark 3.3.18): compressing tubes and tunnels, and
crossing out inessential spheres and discs. Since we are considering manifolds
without boundary pattern, the last move (crossing out an inessential semiclean
disc) is irrelevant.

Theorem 3.4.7. Any proper surface F in a handle decomposition ξ of a 3-
manifold M can be transformed into a normal surface F ′ by a sequence of
isotopic deformations and normalization moves.
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Fig. 3.28. Improving surfaces in plates

Proof. We divide the proof into several steps which we will take in turn.
Step 1. Any 3-handle D3 contains a small ball D3

0 disjoint from F . Blow
up D3

0 by an isotopy to the size of D3 and thus force out F to the outside
of D3.

Further on we will improve F by transformations described in Steps 2–6
below. After performing each of Steps 3–6 we start the procedure anew by
returning back to Step 2. To control the total number of steps, we use the
beam and plate degrees of F .

Step 2. For each plate D2×I of ξ choose a dual arc l = {∗}×I (transversal
to F ) which intersects F in the smallest possible number of points (among
such arcs). Stretching a small regular neighborhood of l in D2×I by an isotopy
to the whole D2 × I, we get condition 2 of Definition 3.4.1. See Fig. 3.28.

Step 3. Similarly, for each beam D2 × I choose a disc D = D2 × {∗}
such that D is transversal to F and the number of components of F ∩ D
is as small as possible. Condition 3 can be satisfied by stretching a regular
neighborhood of D in the beam to the whole beam. b(F ) and p(F ) remain the
same. After performing Steps 1–3, we get a surface satisfying conditions 1–3
of Definition 3.4.1.

Step 4. Compress all tubes and tunnels in the beams of ξ, thus obtaining
condition 4. Both transformations do not increase p(F ) and strictly decrease
b(F ).

Step 5. Suppose that the intersection of F with a lake contains a closed
component l. Compress the tube outgoing from l and throw out the inessential
proper disc obtained by the compression, thus diminishing the number of
circles in ∂F . If there is an island return l, eliminate it by an isotopy which
takes l into the adjacent beam, see Fig. 3.29. This transformation preserves
p(F ) and strictly decreases b(F ).

Step 6. Compressing nontrivial tubes in the intersection of F with all balls
of ξ converts the intersection into the union of discs and maybe inessential
2-spheres. Remove the spheres. b(F ) and p(F ) do not increase.

Step 7. To get condition 7, consider a disc D in the intersection of F
with a ball. Suppose that D either crosses a bridge twice or crosses a bridge
and an adjacent lake. Since all proper discs in a ball with the same boundary
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Fig. 3.29. Two cubes present a ball (left) and an adjacent beam (right). Plates and
other beams are not shown

Fig. 3.30. Killing tunnels

curve are isotopic rel ∂, we may assume that near the bridge and the lake
D looks like a tunnel. Destroy the tunnel by an isotopy. This transformation
preserves b(F ) and strictly decreases p(F ). If D crosses a lake twice, compress
the corresponding tunnel. p(F ) and b(F ) do not increase. All three cases are
shown in Fig. 3.30.

Let us perform now Steps 2–7 for as long as possible. It follows from the
description of the steps that we shall and up with a normal surface F ′. ��

Corollary 3.4.8. Let ξ be a handle decomposition of an irreducible boundary
irreducible 3-manifold M . Then any incompressible boundary incompressible
proper surface F ⊂ M without inessential spherical or disc components is
isotopic to a normal surface.

Proof. We do the same as in the proof of Proposition 3.3.24: We substitute
each tube or tunnel compression by an isotopic deformation of F . This is pos-
sible, since by assumption M is irreducible and boundary irreducible, and F
is incompressible and boundary incompressible. Since the forbidden compo-
nents do not appear under isotopy, the other two normalization moves are not
needed at all. ��
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Proposition 3.4.9. Let ξ be a handle decomposition of an irreducible 3-
manifold M . Suppose that M contains an essential proper disc D. Then M
contains a normal essential proper disc D1. Moreover, if D is nonseparating,
then one can find a nonseparating normal disc D1.

Proof. Perform the same steps as in the proof of Theorem 3.4.7. The only
difference is that each tunnel compression in Step 4 transforms an essential
disc into two discs, at least one of which is essential. We discard the other. ��
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Applications of the Theory of Normal Surfaces

4.1 Examples of Algorithms Based on Haken’s Theory

The theory of normal surfaces is used extensively in algorithmic topology.
Algorithms based on it most often follow the General Scheme described below.
Suppose that we wish to solve a problem about a given 3-manifold M .

General Scheme

1. Reduce the problem at hand to one of the existence in M of a surface with
some specific characteristic property, which we denote by P . Let P be the
class of all characteristic surfaces in M , i.e., the class of all surfaces that
possess P .

2. Choose a triangulation of M and show that if M contains at least one
characteristic surface F , then there exists a normal characteristic surface.
Quite often it can be done by proving that P is stable with respect to the
normalization procedure, i.e., with respect to isotopies and moves N1–N8

that bring surfaces in normal position, see Theorem 3.3.21. By stability
we mean that if F1 is obtained from F ∈ P by isotopies and moves N1–N8,
then at least one connected component of F1 is also in P.

3. Show that if there is a normal characteristic surface, then there is a fun-
damental characteristic surface. One possible way to do that is to prove
that if a characteristic surface F is not fundamental, then M contains a
less complicated characteristic surface. Certainly, we should know how to
measure the complexity of a surface in M . The edge degree e(F ), i.e., the
total number of points in the intersection of F with the edges, may serve
as a good candidate for the purpose.

4. Construct an algorithm to decide whether or not a given surface is char-
acteristic.

Assume that all four steps of the General Scheme are carried out. Then
the algorithm that solves the problem works as follows:
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1. Choose a triangulation T of M .
2. Write down the corresponding matching system of linear equations.
3. Find the finite set of fundamental solutions.
4. Realize the fundamental solutions by normal surfaces.
5. Test each of the obtained fundamental surfaces for being characteristic.

It follows that M contains a characteristic surface (i.e., that the prob-
lem in question has a positive answer) if and only if at least one of the
fundamental surfaces is characteristic.

4.1.1 Recognition of Splittable Links

We will illustrate the above scheme by describing algorithms for recognizing
splittable links in S3. Recall that a link L ⊂ S3 is a collection of disjoint
simple closed curves in S3. The curves are called the components of L. A link
L is called splittable, if there is a 2-sphere S ⊂ S3 such that S ∩ L = ∅ and
each connected component of the complement S3 \ S contains at least one
component of L. We will call S a splitting sphere. For example, a splittable
link of two components is nothing more than the union of two knots contained
in disjoint balls. The boundary sphere of either ball can be taken as a splitting
sphere.

Theorem 4.1.1. There is an algorithm to decide if a given link L ⊂ S3 is
splittable.

Proof. We will follow the General Scheme.
Step 1. It is convenient to replace the noncompact 3-manifold S3\L by the

compact manifold M = S3 \ Int N(L), where N(L) is a regular neighborhood
of L. The boundary of M is a collection of 2-dimensional tori. Let us formu-
late the following property P of closed surfaces in M : a surface S ⊂ Int M
possesses P if S is a splitting sphere for L. Clearly, P is characteristic for the
problem at hand: L is splittable ⇐⇒ M contains a sphere S ∈ P.

Note that a sphere S ⊂ M splits L if it is essential in M . Even more: S
splits L if and only if it determines a nontrivial element [S] of H2(M ;Z2).
Further, a closed surface in M determines a nontrivial element of H2(M ;Z2)
if and only if there exists a proper arc a ⊂ M which crosses L transversally
in an odd number of points.

Step 2. Choose a triangulation T of M . The statement we need to prove
here is that if M contains a splitting sphere, then it also contains a normal
splitting sphere.

The proof is natural: Take the splitting sphere S which exists by assump-
tion, and normalize it by a sequence of moves N1–N4. Note that moves N5–N8

(see Sect. 3.3.3) are irrelevant since S is closed. Each time we apply move N1,
we get two 2-spheres S′, S′′ such that [S′] + [S′′] = [S] = 0 in H2(M ;Z2).
Therefore at least one of them splits M . We cross out the other.

Step 3. We wish to prove that if M contains a normal splitting 2-sphere
S, then such a sphere can be found among fundamental surfaces. Our strategy
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is to show that if S is not fundamental, then there is another splitting sphere
which is simpler than S. For measuring the complexity of S we use the edge
degree e(S).

Let S be presented as a geometric sum S = F1 + F2 of two surfaces.
There are many ways to present S in such form. By Lemma 3.3.30, we may
assume that F1, F2 are connected, and no component of F1 ∩ F2 separates
both surfaces. Taking into account that the Euler characteristic is additive
with respect to geometric sums and χ(S) = 2, χ(Fi) ≤ 2, we come naturally
to two options: 2=1+1 and 2=2+0. The first option does not occur, since the
only closed surface with χ = 1 is the projective plane RP 2, which cannot be
embedded into S3.

In the second case we may conclude that one of the surfaces (say, F1) is a
sphere, while the other (F2) is a torus. The Klein bottle, which also has zero
Euler characteristic, does not embed into S3 either. Since [F1]+[F2] = [S] = 0,
at least one of elements [F1], [F2] is not zero.

Case 1. If [F1] = 0, then F1 splits M . Clearly, this new sphere is simpler
than S.

Case 2. Suppose [F1] = 0, [F2] = 0. We claim that there exists a proper arc
a ⊂ M which does not intersect F1 and intersects F2 transversally at an odd
number of points. Indeed, consider an arc b that joins two points x, y ∈ ∂M
contained in different components of M \F2 and is transversal to F1, F2. Since
[F1] = 0, the intersection F1∩b consists of an even number of points, while the
number of points in F2 ∩ b is always odd. The desired arc a can be obtained
by replacing the subarc of b between the first and the last points in F1 ∩ b by
an arc that runs near F1 but does not intersect it.

Recall that each circle c ⊂ F1 ∩ F2 does not separate at least one of the
surfaces. Since all circles on the sphere F1 do separate, c is a nonseparating
curve on F2 and thus is nontrivial. Note that any collection of disjoint non-
trivial simple closed curves in the torus F2 decomposes it into annuli. Since a
intersects F2 at an odd number of points, at least one of the annuli (denote
it by A) contains an odd number of crossing points.

Denote by d1, d2 the boundary circles of A. They bound in F1 disjoint discs
D1,D2. Let us perform (not necessarily regular) switches along d1, d2 which
adjoin the discs to A. The switches produce a sphere S′ that corresponds to
D1 ∪ A ∪ D2, and the remaining part R of F1 ∪ F2 that corresponds to the
union of F1 \ Int (D1∪D2) and F2 \ Int A. Note that S′ splits M , since a does
not intersect D1,D2 and thus the number of intersection points of a and S′

is odd, see Fig. 4.1.
Let us prove that either S′ is simpler than S or S′ is isotopic to a simpler

sphere. Denote by R′ the surface obtained from R by performing regular
switches along all the curves in the self-intersection of R. Of course, at least
one of the switches at d1, d2 is irregular, because otherwise S would consist of
S′ and R′ and thus be disconnected. This irregular switch produces a return,
i.e., an arc in a triangle of the triangulation having both endpoints on the
same edge. If the return is contained in R′, then e(R′) > 0, and we obtain
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Fig. 4.1. Constructing a simpler splitting sphere

e(S′) = e(S) − e(R′) < e(S). Let the return be in S′. Then we decrease
the degree of S′ by an isotopy which annihilates the return together with its
endpoints. Applying the normalization procedure to the resulting surface, we
get a new essential 2-sphere that has a strictly smaller edge degree.

Now we apply the simplification process as long as the sphere remains
nonfundamental. Since each time we get a smaller edge degree, the process
is finite and we end up with a fundamental splitting sphere. The last step of
the General Scheme is easy. According to the scheme, we get a recognition
algorithm for splittable links.

In conclusion we note that the proof works for any polyhedral subset of
S3. We have never used that L is the union of disjoint circles. ��

4.1.2 Getting Rid of Clean Disc Patches

Later we will describe other problems of 3-manifold topology whose algorith-
mic solutions are based on the theory of normal surfaces. Among they are:

1. Recognizing the Unknot.
2. Calculating the genus of a given simple closed curve on the boundary of

a 3-manifold.
3. Recognizing irreducibility and boundary irreducibility of a 3-manifold.
4. Testing two-sided surfaces for incompressibility and boundary incompress-

ibility.
5. Detecting sufficiently large 3-manifolds (see Sect. 4.1.6 for the definition

of a sufficiently large 3-manifold).

Solutions of all these problems follow the same General Scheme. In all cases
Step 3 (if M contains a surface having a specific characteristic property, then
such a surface can be found among the fundamental ones) plays a crucial role.
The right strategy for transforming a given normal surface into a fundamental
one consists in considering the so-called clean disc patches; in many cases
they are responsible for the existence of characteristic surfaces which are not
fundamental.
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It is surprising that four technical tricks, elaborated by Jaco and Oertel,
[56] work in all five cases listed above. We present the tricks in the form of
four lemmas, but before doing that we describe clean disc patches and related
notions.

Let a normal surface F in a triangulated 3-manifold (M,Γ ) be presented
as the geometric sum of two normal surfaces, i.e., have the form F = G1 +G2.
Then the union G1∪G2 is a 2-dimensional polyhedron of a very specific type.
The set G1∩G2 of its singular points consists of double lines (intersection lines
of the surfaces). If we cut G1 ∪G2 along all double curves, we get a collection
of pieces called patches. Each patch P is a compact surface. If P ∩ ∂M = ∅,
P is said to be a boundary patch. Otherwise P is an interior patch.

Performing the regular switches along all double curves of G1 ∪ G2, i.e.,
decomposing G1 ∪ G2 into patches and gluing the patches together in the
appropriate way, we restore F . It is convenient to think of F as being decom-
posed into the same patches by trace curves (images of the boundaries of the
patches under the gluing). If a double curve l of G1 ∪G2 is two-sided on both
G1 and G2, then it contributes two trace curves l1, l2 ⊂ F . They are called
twins. If l is one-sided on G1 and hence on G2, it contributes only one trace
curve, which is the twin of itself.

Let l be a double curve contained in two distinct patches P1, P2 of G1∪G2.
We say that P1, P2 are opposite at l, if they lie in the same surface Gi, i = 1, 2.
The patches are adjacent, if they are in different surfaces. The terminology is
motivated by the actual position of patches near l, see Fig. 4.2. It may happen
that the same patch P approaches l from opposite sides. Then we say that P
is self-opposite.

By a clean disc patch we mean a patch P homeomorphic to a disc such
that either ∂P is a closed double curve, or ∂P consists of a double arc and
a clean arc on ∂M . In the first case P is an interior clean disc patch, in the
second it is a boundary clean disc patch. We emphasize that if a clean patch
P intersects ∂M along two or more disjoint arcs, then P is not a clean disc
patch, even if it is homeomorphic to a disc. A boundary patch P is called
quadrilateral, if ∂P consists of two trace arcs and two arcs on ∂M such that
these pairs correspond to opposite sides of the quadrilateral.

Fig. 4.2. Trace curves are shown by dotted lines. Pairs a, c and b, d consist of
opposite patches, all other pairs consist of adjacent ones
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Fig. 4.3. Adjacent and opposite companions

Assume that E, ∂E = s, is a not self-opposite clean disc patch of F such
that the twin curve s′ of s cuts off a clean disc E′ from F . We say that E′ is
an adjacent or an opposite companion of E, if the patch of E′ containing s′ is
adjacent or opposite to E, respectively. For example, there are two clean disc
patches in Fig. 4.3. Patch E1 has the adjacent companion A ∪ E2, patch E2

has the opposite companion B ∪ A ∪ E2.
The next four lemmas show how the presence of clean disc patches helps

us to simplify nonfundamental normal surfaces. Here and later on we will
measure the complexity of a surface by its edge degree. So F is simpler than
F ′ if e(F ) < e(F ′).

Lemma 4.1.2. Let a normal surface F in a triangulated 3-manifold M be
presented in the form F = G1 + G2. Suppose that G1 ∪G2 has a self-opposite
disc patch E. Then the following holds:

1. M contains a normal projective plane P such that P is simpler than F .
2. M contains a surface F ′ such that ∂F ′ = ∂F , F ′ is homeomorphic to F ,

and F ′ is simpler than F .

Proof. We may assume that E is contained in G1. Then the connected com-
ponent G′

1 of G1 containing E is a normal projective plane having a smaller
edge degree. It intersects G2 along a unique closed curve l, which corresponds
to ∂E. This gives us the first conclusion.

To get the second conclusion, we replace the regular switch along l by
the irregular one. We get a surface F ′ which is homeomorphic to F and has
the same edge degree and the same boundary. See Fig. 4.4. Since the switch
is irregular, this surface has a return. Thus we can eliminate the return and
hence decrease e(F ) by an isotopy of F fixed on ∂F . ��

Lemma 4.1.3. Let a normal surface F in a triangulated 3-manifold (M,Γ )
be presented in the form F = G1+G2. Suppose that there is a not self-opposed
clean disc patch E of G1∪G2 having no clean companion discs. In other words,
we suppose that the twin curve s′ of s = ∂E is nontrivial in F . Then F is
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Fig. 4.4. Regular and irregular switches along l produce homeomorphic surfaces

Fig. 4.5. T consists of annular or quadrilateral patches and therefore is a surface
with χ(T ) = 0: a torus, a Klein bottle, an annulus, or a Möbius band

either compressible or boundary compressible, depending on whether E is an
interior or a boundary patch.

Proof. Evident, since a parallel copy E′ of E is an essential compressing or
boundary compressing disc for F . ��

Lemma 4.1.4. Let a normal surface F in a 3-manifold (M,Γ ) with boundary
pattern be presented in the form F = G1 + G2. Assume that any clean disc
patch E of G1 ∪G2 admits an adjacent companion disc E′. Then either there
is a clean disc patch E ⊂ F such that its adjacent companion disc E′ is also
a patch of F , or the following holds:

1. F can be presented in the form F = F1 + T , where T is a torus, a Klein
bottle, an annulus, or a Möbius band. Certainly, F1 is simpler than F .

2. All patches of T are either annuli or quadrilaterals, and each double curve
of F1 ∪ T cuts off a clean disc patch from F1, see Fig. 4.5. Here by a
quadrilateral we mean a patch P whose boundary consists of two trace
arcs and two arcs on ∂M such that these pairs correspond to opposite
sides of P .

3. F1 is homeomorphic to F as well as to the surface F ′ obtained from F1∪T
by irregular switches along all the curves in F1 ∩ T .

4. If (M,Γ ) is irreducible and boundary irreducible, then F is admissibly
isotopic to F1 and to F ′ (see Fig. 4.6).
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Fig. 4.6. Both regular and irregular switches convert F1 ∪ T into homeomorphic
surfaces

Proof. Let us construct an oriented graph Γ whose vertices are clean disc

patches of F . Two patches E1, E2 are joined by an oriented edge
−→

E1E2 if E2

is contained in the adjacent companion disc E′
1 of E1. Since any clean disc

patch admits an adjacent companion disc, which necessarily contains at least
one clean disc patch, every vertex of Γ possesses at least one outgoing edge.
It follows that Γ contains a simple cycle Z (a subgraph of Γ which consists
of coherently oriented edges and is homeomorphic to a circle).

Denote by E0, E1, . . . , Ek−1 the successive vertices of Z. For each i, the
clean disc patch Ei+1 is contained in the adjacent companion disc E′

i of Ei

(indices are taken modulo k). It may happen that k = 2 and E′
0 = E1. Then

we get a pair of clean disc patches, each being a companion of the other. This
corresponds to the first alternative of the conclusion of the lemma.

Assume that this situation never occurs. Then all Ai = E′
i \ Int Ei+1, 0 ≤

i ≤ k − 1, are either annuli (if Ei are interior patches) or quadrilaterals (if
they are boundary ones). Let us glue now each trace curve ∂Ei to its twin
trace curve back (the same result can be obtained by making regular switches
of G1 ∪ G2 along all double curves except those that correspond to ∂Ei). We
get a presentation F = F1 + T , where T is obtained by gluing Ai while F1 is
the union of all patches of F that are not contained in T . Conditions 1, 2 are
fulfilled by construction.

Let us prove that F1, F , and F ′ are homeomorphic. Performing regular
switches along all the curves in F1 ∩ T , which correspond to ∪k−1

i=0 ∂Ei, we
actually replace each clean disc patch Ei of F1 by the disc Ai ∪ Ei+1. Simi-
larly, irregular switches replace each disc Ei by the disc Ai−1 ∪ Ei−1. These
replacements preserve the homeomorphism type of F1. On the other hand,
the result is F in the case of regular switches, and F ′ in the case of irregular
ones. Thus F1, F , and F ′ are homeomorphic.

To prove 4, consider a collection {Si, 0 ≤ i ≤ k − 1} of surfaces in M
consisting either of 2-spheres or of clean proper discs. Each Si is composed
from Ai, Ei+1, and a copy of Ei, 0 ≤ i ≤ k − 1. Since (M,Γ ) is irreducible
and boundary irreducible, each member of the collection cuts off a clean ball
from M . These balls can be used for constructing an isotopy from F to F1

and from F to F ′. ��
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Lemma 4.1.5. Let F be an incompressible normal surface in a triangulated
3-manifold (M,Γ ). Suppose that F can be presented in the form F = G1 +G2

such that a not self-opposite clean disc patch E of G1∪G2 admits an opposite
companion disc E′. Then the following holds:

1. If E is an interior disc patch, than there exists a general position surface
F ′ ⊂ M such that F ′ is homeomorphic with F , has the same boundary,
and e(F ′) < e(F ). If, in addition, M is irreducible, then F ′ is admissibly
isotopic to F .

2. If E is a boundary clean disc patch and (M,Γ ) is irreducible and boundary
irreducible, then there exists a general position surface F ′ ⊂ M such that
e(F ′) < e(F ) and F ′ is admissibly isotopic to F .

Proof. Denote by s the double curve of G1∪G2 which corresponds to the twin
trace curves s1 ⊂ ∂E, s2 ⊂ ∂E′. Suppose that E is an interior disc patch.

Case 1. E′ does not contain E. Then the sphere S = E ∪ E′ does not
decompose M , thus M is reducible. Therefore this situation never occurs for
an irreducible manifold. Replacing the regular switch along s by the irregular
one, we get a homeomorphic surface F1 with a return, see Fig. 4.7a. Removing
the return by an isotopy, we get a surface F ′ with e(F ′) < e(F1) = e(F ). This
modification of F takes place far from ∂F , so ∂F = ∂F ′.

Case 2. E′ contains E. Let us replace again the regular switch along s by
the irregular one. We get the disjoint union F1 ∪ T of two surfaces. The first
surface F1 is homeomorphic to F and has the same boundary. The second
surface T is obtained from the annulus E′ \ Int E by identifying its boundary
circles and thus is either a torus or a Klein bottle. See Fig. 4.7b. Since the
switch is irregular, F1 ∪ T has a return. If the return is in F1, then we can
remove it by an admissible isotopy and get a surface F ′ with e(F ′) < e(F1) =
e(F ). If it is in T , then e(T ) = 0 and e(F1) = e(F )− e(T ) < e(F ). Therefore,
we can take F ′ = F1.

It remains to prove that F is admissibly isotopic to F1 (and hence to F ′),
provided that M is irreducible. Indeed, assuming that, attach to F a parallel
copy E1 of E. Then the sphere S = E′ ∪E1 bounds a ball which can be used
for constructing an isotopy from F to F1.

Fig. 4.7. Simplifying surfaces
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If E is a boundary clean disc patch and (M,Γ ) is irreducible and boundary
irreducible, we apply the same tricks. The only difference is that in this case
S is clean proper disc and T is either an annulus or a Möbius band. ��

As a first application of Lemmas 4.1.2–4.1.5 we describe an important
situation when clean disc patches are impossible. Let (M,Γ ) be a triangulated
3-manifold. As before, we will measure the complexity of a proper surface
F ⊂ M by its edge degree e(F ).

Definition 4.1.6. A normal surface F in (M,Γ ) is called minimal, if e(F ) is
the minimum for the values e(F ′), where F ′ ranges over all general position
surfaces in M that are admissibly isotopic to F .

Definition 4.1.7. Let a normal surface F in (M,Γ ) be presented in the form
F = G1+G2. Then the sum G1+G2 is in reduced form if F cannot be written
as F = G′

1 + G′
2, where G′

1, G
′
2 are normal surfaces admissibly isotopic to

G1, G2, respectively, and G′
1 ∩G′

2 consists of fewer components than G1 ∩G2.

It follows from conclusion 4 of Proposition 3.3.24 that if (M,Γ ) is irre-
ducible and boundary irreducible, F is incompressible and boundary incom-
pressible, and no component of F is an essential 2-sphere, an essential clean
disc, or an essential semiclean disc, then F is admissibly isotopic to a minimal
normal surface. Also, if a normal surface F is written in the form F = G1+G2,
then F can be written as a sum (of isotopic surfaces) in reduced form. Recall
that it makes sense to speak about incompressible and boundary incompress-
ible patches, though they are almost never proper.

Lemma 4.1.8. Let (M,Γ ) be an irreducible boundary irreducible 3-manifold
and F ⊂ (M,Γ ) a minimal normal surface presented in a reduced form F =
G1+G2. If F is incompressible and boundary incompressible, then G1∪G2 has
no clean disc patches. Moreover, all patches are incompressible and boundary
incompressible.

Proof. First, we note that since F is normal and M is irreducible, no compo-
nent of F is a sphere. Otherwise the sphere would be inessential and we could
decrease e(F ) by shifting the component into the interior of a tetrahedron.
Similarly, no component of F is a clean proper disc or RP 2. Let us prove that
G1∪G2 has no clean disc patches. To the contrary, suppose that such a patch
E does exist. Let us consider all possible types of E.

If E is self-opposite, then by Lemma 4.1.2 M contains a normal projective
plane P such that e(P ) < e(F ). It follows that M , being irreducible, is home-
omorphic to RP 3. Up to isotopy, RP 3 contains only one closed incompressible
surface without spherical components. Therefore, P is isotopic to F and we
get a contradiction with the minimality of F .

If E has no companion disc, then F is either compressible or boundary
compressible by Lemma 4.1.3. This contradicts our assumption. Suppose that
E has an opposite clean companion disc. Then Lemma 4.1.5 tells us that



4.1 Examples of Algorithms 157

F is admissibly isotopic to a general position surface F ′ such that e(F ′) <
e(F ), in contradiction with our assumption. Finally, suppose that every clean
disc patch of G1 ∪ G2 has an adjacent companion disc. Then we can apply
Lemma 4.1.4. Since F is minimal, conclusion 4 of Lemma 4.1.4 does not hold.
Therefore, there is a clean disc patch E such that its adjacent clean companion
disc E′ is also a patch. Let us merely permute E and E′ by performing the
regular switch of G1 ∪ G2 only along the double curve ∂E ∩ ∂E′. This gives
another presentation F = G′

1+G′
2 having a fewer number of double lines (since

#(G′
1 ∩ G′

2) = #(G1 ∩ G2) − 1). On the other hand, E ∪ E′ is a sphere or a
clean proper disc and thus cuts off a clean ball from the irreducible boundary
irreducible manifold (M,Γ ). Deforming E to E′ and E′ to E through the ball,
construct isotopies from G′

1 to G1 and from G′
2 to G2. But this contradicts

the assumption that G1 + G2 is in reduced form.
Since all possibilities led to a contradiction, G1 ∪ G2 has no clean disc

patches. To prove that any patch P of F is incompressible, consider a com-
pressing disc D for P . Our aim is to prove that D is inessential. Note that
D can intersect F not only along ∂D. We will assume that the intersection is
transversal.

Choose an innermost circle c ⊂ F ∩ D, which bounds a disc D′ ⊂ D such
that F ∩ Int D′ = ∅. Since F is incompressible, c bounds a disc D′′ ⊂ F . It
cannot happen that D′′ ⊃ P ; otherwise D′′ would contain at least one clean
disc patch of F . Therefore c can be eliminated by an isotopy of D′ to the
other side of F through the ball bounded by D′ ∪ D′′. Doing so as long as
possible, we get a new compressing disc for P (still denoted by D) such that
D has the same boundary and F ∩ Int D = ∅. Since F is incompressible, ∂D
must bound a disc in F and hence in P (otherwise that disc would contain at
least one clean disc patch). We may conclude that P is incompressible.

To see that P is boundary incompressible, consider a boundary compress-
ing disc D for P and follow actually the same procedure for eliminating first
all circles and then all arcs in F ∩ Int D, and for proving that D must be
inessential. The only difference is that we use boundary incompressibility of
F , boundary irreducibility of (M,Γ ), and an outermost arc argument for elim-
inating arcs. ��

4.1.3 Recognizing the Unknot and Calculating the Genus
of a Circle in the Boundary of a 3-Manifold

Let K be a knot in S3. We would like to know whether K is trivial, i.e.,
bounds a disc embedded in S3. It is well known that K is always spanned by
a connected orientable surface F ⊂ S3. Any such surface is called a Seifert
surface for K. The minimal possible genus of Seifert surfaces for K is called
the genus of K. Since D2 is the only connected nonclosed surface with χ = 1,
K is trivial if and only if its genus is 0. Hence the recognition problem for the
unknot is a partial case of the genus calculation problem.
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Denote by N(K) a tubular neighborhood of K in S3, and by MK the
complement space S3 \ Int N(K). Recall that a nontrivial simple closed curve
m ⊂ ∂N(K) is a meridian of K if it bounds a disc in N(K).

Any simple closed curve l ⊂ ∂N(K) which crosses m transversally exactly
once is a longitude of K. A longitude l0 is principal if there is an orientable
surface F ⊂ MK such that ∂F = l0. The principal longitude always exists
and is unique up to isotopy. To construct it, one may take any longitude l
and improve it by k negative twists along m, where k = lk(l,K) is the linking
number. Since the homology group H1(MK , Z) is cyclic and generated by the
meridional cycle [m], we get a curve l0 such that [l0] = [l] − k[m] = 0 ∈
H1(MK , Z). It follows that l0 bounds an orientable surface F in MK and
hence is a principal longitude.

It is important to note that there is actually no difference between Seifert
surfaces for K and surfaces that bound l0. Indeed, l0 is isotopic to the core
circle of the torus N(K), i.e., to K. Therefore any surface F ⊂ MK that spans
l0 is isotopic to a spanning surface for K. The converse is also true, since any
Seifert surface is isotopic rel K to a surface F ⊂ S3 such that F ∩ N(K) is
an annulus. Then the surface F ∩ MK spans l0.

Theorem 4.1.9. There exists an algorithm that calculates the genus of a knot.

It seems reasonable to expect that one can prove a more general statement
which deals with arbitrary curves in the boundary of arbitrary 3-manifolds.
Let l0 be a simple closed curve on the boundary of a 3-manifold M . Con-
sider the set of connected orientable surfaces in M that are bounded by l0.
The minimal genus of such surfaces is called the genus of l0. If l0 bounds no
orientable surface, then the genus is ∞.

Theorem 4.1.10. There exists an algorithm that calculates the genus of any
simple closed curve l0 in the boundary of any 3-manifold M .

Proof. Let us triangulate M so that l0 crosses each edge of the triangulation no
more than once and is not contained inside a triangle of the triangulation. We
will use the asterisk to indicate that a general position surface is connected and
bounded by l0. So F ∗ is a star surface, if F ∗ is connected, intersects the edges
transversally, and ∂F ∗ = l0. Let us prove that if the genus g0 of l0 is finite,
then there is an orientable star surface of genus g0 which is fundamental. This
is quite sufficient for algorithmic calculation of the genus. All what we have
to do is to construct all fundamental surfaces, select among them orientable
star surfaces, and take the minimum of their genera.

By the definition of the genus, there exists an orientable star surface of
genus g0. Note that it is incompressible (otherwise we could compress it and
get an orientable star surface of a smaller genus). Among all such surfaces
chose a minimal surface, which has the smallest edge degree, and apply to
it the normalization procedure described in Sect. 3.3.3. It follows from item
3 of Proposition 3.3.24 that l0 bounds a normal homeomorphic copy F ∗ of
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the minimal surface. Since the normalization procedure does not increase the
edge degree, F ∗ is also minimal.

Let us prove that F ∗ is fundamental. Assuming the contrary, choose a
presentation of F ∗ in the form F ∗ = G∗

1 + G2. By Lemma 3.3.30 we may
suppose that G∗

1, G2 are connected, and no circle from G∗
1∩G2 separates both

surfaces. One of the surfaces (G∗
1) is bounded by l0, the other one is closed

(otherwise l0 would intersect some edge more than once). It follows that there
are no boundary disc patches. Let us show that the presence of an interior
disc patch leads to a contradiction.

1. Assume that there is a self-opposite interior disc patch. Then we apply
conclusion 2 of Lemma 4.1.2 to construct an orientable star surface which
has a return and thus can be normalized into a simpler star surface by
items 3, 6 of Proposition 3.3.24. This contradicts the minimality of F ∗.

2. Since F ∗ is incompressible, every interior disc patch of G∗
1 ∪ G2 has a

companion disc by Lemma 4.1.3.
3. Assume that an interior disc patch of G∗

1 ∪ G2 admits an opposite com-
panion disc. Using conclusion 1 of Lemma 4.1.5, we can replace F ∗ by
an orientable star surface which is simpler than F ∗. This contradicts the
minimality of F ∗.

4. Assume that every interior disc patch E admits an adjacent companion
disc E′. Since the presentation F ∗ = G∗

1 + G2 had been chosen so that
no double curve of G∗

1 ∪ G2 separates both surfaces, there is no pair of
companion interior disc patches. Then conclusions 1–4 of Lemma 4.1.4
hold. In particular, F ∗ has the form F ∗ = F1+T , where F ∗

1 is an orientable
star surface homeomorphic to F ∗. Obviously, F ∗

1 has a smaller edge degree,
in contradiction with the minimality of F ∗.

In Cases 1–4 we have considered all the logical possibilities for interior
disc patches and found that all of them lead to a contradiction. Therefore
we can suppose that G∗

1 ∪ G2 contains no clean disc patches at all. Observe
the following important fact: The no-disc-patch condition implies that G2 is
neither a sphere nor a projective plane. Therefore, χ(G2) ≤ 0 and −χ(G∗

1) ≤
−χ(F ∗).

Let us prove that G∗
1 is nonorientable. Suppose, on the contrary, that it

is orientable. Then its genus g(G∗
1) = (1 − χ(G∗

1))/2 does not exceed g0 =
(1 − χ(F ))/2 and hence equals g0 because of the minimality of g0. On the
other hand, we have e(G∗

1) = e(F ) − e(G2) < e(F ), in contradiction with our
choice of F .

To proceed further, choose an orientation of F ∗ and supply all the patches
of G∗

1 ∪ G2 with the inherited orientations. Decompose the set of all double
curves of G∗

1 ∪ G2 into two subsets A,B. A double curve l is in A, if by the
irregular switch along l the orientations of the uniting patches match together
(by the regular switch they always do). Otherwise l is in B, see Fig. 4.8. Note
that l is in A if and only if the orientations of patches that are opposite at l
do not match. Since G∗

1 is nonorientable, A = ∅.



160 4 Applications of Normal Surfaces

Fig. 4.8. In Case A opposite patches have opposite orientations, and the orientations
of all patches match after any switch. In Case B opposite patches have coherent
orientations

Now perform irregular switches at all curves in A and regular switches
at all curves in B. We get an orientable star surface F ′∗. Normalizing it, we
decrease the edge degree (since at least one irregular switch has been made).
Just as above, the no-disc-patch condition assures us that the star component
of F ′∗ has the same or a bigger Euler characteristic. Therefore that component
is simpler than F ∗, in contradiction with the choice of F .

We may conclude that if the orientable star surface F ∗ is not fundamental,
then there always exists a simpler orientable star surface. So the simplest
orientable star surface must be fundamental. This completes Step 3 of the
General Scheme.

In order to calculate the genus of l0, it remains to construct all fundamental
surfaces and choose the simplest orientable star surface among them. Its genus
gives us the answer (if there are no orientable star surfaces at all, the genus
of l0 is ∞). ��

Recall that the genus of a nonorientable surface F with boundary S1 can
be defined as g(F ) = (1−χ(F ))/2, i.e., by the same formula as for orientable
surfaces. For example, if F is a punctured connected sum of m projective
planes, then g(F ) = m/2. The nonorientable genus of a simple closed curve
l0 ⊂ ∂M can be defined as the minimum of genera of all connected surfaces
which bound l0, including nonorientable ones.

Theorem 4.1.11. There exists an algorithm that calculates the nonorientable
genus of any simple closed curve l0 in the boundary of any 3-manifold M .

The proof is similar to the one of Theorem 4.1.10. The only difference is
that we do not need to care about orientability of surfaces and thus do not
need the last step of the proof. Instead, we simply replace F ∗ by G∗

1.

4.1.4 Is M3 Irreducible and Boundary Irreducible?

As we have indicated in the introduction to the book, Haken manifolds play an
important role in 3-manifold topology. By definition, Haken manifolds are irre-
ducible, boundary irreducible, and sufficiently large (see Sect. 4.1.6). But how
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do we know that a given 3-manifold M possesses these properties? Here we
show that irreducible and boundary irreducible 3-manifolds can be recognized
algorithmically (modulo algorithmic recognition of S3, which we describe in
Sect. 5).

Irreducibility. Recall that a 3-manifold M is irreducible, if every 2-sphere
S ⊂ M is inessential, i.e., bounds a 3-ball in M . Note that if M contains a
one-sided projective plane P , then either M is reducible or M = RP 3. Indeed,
the boundary S of a regular neighborhood of P is a 2-sphere (if P is normal,
one can take S = 2P , having in mind the geometric summation). The sphere
can be either essential or not. In the first case M is reducible, in the second
it is RP 3.

Theorem 4.1.12. Let M be an orientable triangulated 3-manifold. Then the
following holds:

1. If M contains a projective plane, then at least one of the projective planes
in M is fundamental.

2. If M is reducible, then there exists an essential sphere S ⊂ M such that S
either is fundamental or has of the form S = 2P , where P is a fundamental
projective plane.

Proof. Any projective plane P ⊂ M is incompressible, since the only nontriv-
ial simple closed curve on P is orientation-reversing, and thus cannot bound
a compressing disc. By conclusion 3 of Proposition 3.3.24, P can be replaced
by a normal projective plane (still denoted by P ). Suppose that P is not fun-
damental. We claim that then M contains a normal projective plane having
a smaller edge degree.

To prove this, present P as a nontrivial sum G1 + G2, where normal sur-
faces G1, G2 are connected and no double curve of G1 ∪G2 decomposes both
G1, G2. Since the Euler characteristics of the patches of G1 ∪ G2 sum up
to χ(P ) = 1, there is at least one clean disc patch E. If E is self-opposite,
then by Lemma 4.1.2 one of the surfaces G1, G2 is a simpler projective plane.
“No companion disc” situation is impossible, since P is incompressible (see
Lemma 4.1.3). If there is a clean disc patch with an opposite companion disc,
or if every clean disc patch admits an adjacent companion disc, then a simpler
normal projective plane in M can be found by conclusion 1 of Lemma 4.1.5
or conclusion 3 of Lemma 4.1.4, and normalization.

We have considered all logical possibilities and found that if P is not
fundamental, then there is a simpler normal projective plane. It follows that
any normal projective plane in M having the smallest edge degree must be
fundamental.

Suppose now that M is reducible and contains no projective planes (oth-
erwise one can take S = 2P , where P is a fundamental projective plane). By
conclusion 3 of Proposition 3.3.24, M contains an essential normal sphere S.
Assuming that S is not fundamental, present it as a nontrivial sum G1 + G2

such that normal surfaces G1, G2 are connected and no double curve of G1∪G2
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decomposes both G1, G2. Our goal is to prove the existence of an essential nor-
mal sphere which is simpler than S, i.e., has a smaller edge degree. Indeed,
since by the Jordan Theorem any circle in S bounds discs on both sides,
every clean disc patch of G1 ∪ G2 admits an adjacent companion disc. By
Lemma 4.1.4, we can construct a presentation S = S1 + T , where S1 is a
sphere and T is a torus or a Klein bottle. T consists of k ≥ 1 annular patches
Ai, 0 ≤ i ≤ k− 1, while S1 has k clean disc patches Ei, 0 ≤ i ≤ k− 1, and one
patch homeomorphic to a sphere with k holes.

If k = 1, then S1 does not decompose M and hence is essential. Evidently,
S1 is simpler than S. Assume now that k > 1. We get a collection of spheres
composed from Ei ∪ Ai and a copy of Ei+1, where 0 ≤ i ≤ k and indices are
taken modulo k. Each of these spheres is simpler than S. If at least one of
them is essential, then after normalization we get a simpler essential normal
sphere (see conclusion 3 of Proposition 3.3.24). Assume that all of them bound
balls. Then these balls can be used for constructing an isotopy from S to the
simpler sphere S1.

We may conclude that if S is not fundamental, then there is a simpler
essential normal sphere. It follows that the simplest essential normal sphere
in M must be fundamental. ��

Theorem 4.1.12 is insufficient for recognition of irreducibility. It is true
that if M is reducible, then an essential sphere can be found among a finite
algorithmically constructible set of 2-spheres. But how can we be sure that
a given 2-sphere S ⊂ M is essential? If S does not decompose M or if it
decomposes M into two parts, each containing a component of ∂M (as in the
recognition of splittable links), then we are happy. In general, to make the last
step of the General Scheme, we have to have a recognition algorithm for the
standard 3-ball or, equivalently, a recognition algorithm for S3. We describe
both algorithms in Chap. 6.

Boundary irreducibility. It is easy to show that the connected sum of
3-manifolds is boundary irreducible if and only so are the summands. There-
fore, it suffices to construct an algorithm that recognizes boundary irreducibil-
ity of irreducible manifolds.

Theorem 4.1.13. There exists an algorithm to decide whether or not a given
irreducible 3-manifold (M,Γ ) is boundary irreducible. In case it is boundary
reducible, the algorithm constructs an essential compressing disc.

Proof. Let us triangulate (M,Γ ). Suppose that ∂M admits an essential clean
compressing disc D. By conclusion 2 of Proposition 3.3.24, after normalization
we obtain a normal essential compressing disc (still denoted by D). Our goal
is to show that then such a disc can be found among fundamental surfaces.

We claim that if D is not fundamental, then there is a simpler essential
compressing disc. This is sufficient for proving the theorem, since then the
simplest essential compressing disc must be fundamental. For proving the
claim we apply the same procedure as in the proof of Theorem 4.1.12. Let D
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be presented in the form D = G1 + G2, where G1, G2 are connected surfaces
and each double curve does not separate at least one of them.

Assume that G1 ∪ G2 contains an interior disc patch. Then one can con-
struct a simpler disc D1 with the same boundary by the same tricks as in the
proof of Theorem 4.1.12. Indeed, if there exists a self-opposite disc patch E
or if an interior disc patch E admits an opposite companion disc E′, then it
suffices to switch all curves in G1 ∩ G2 regular except ∂E which we switch
irregular. By conclusion 1 of Lemma 4.1.2 or conclusion 1 of Lemma 4.1.5
and normalization, we get a simpler disc with the same boundary. Since every
circle in D bounds a disc, “no companion disc” situation is impossible. Thus
we can use Lemma 4.1.4 to present D in the form D = F1 + T and replace D
with the simpler disc D1 = F1 having the same boundary.x

Now assume that G1 ∪ G2 has no interior disc patches and has a clean
boundary disc patch. Observe that since every proper arc in D divides D into
two discs, every boundary disc patch admits an adjacent clean companion
disc. By Lemma 4.1.4, one may present D in the form D = F1 + T , where F1

is a proper disc and T is either an annulus or a Möbius band. Recall that T
consists of k ≥ 1 quadrilateral patches Ai and F1 is the union of k boundary
clean disc patches Ei plus one exceptional patch. If k > 1 and the collection
of proper discs Ei ∪ Ai ∪ Ei+1, 0 ≤ i ≤ k − 1, contains at least one essential
disc, then we replace D by that disc and normalize it, thus obtaining a simpler
essential compressing disc. If all the disc in the collection are inessential or
if k = 1, then we replace D by F1. In both cases we get a simpler essential
compressing disc, since F1 is admissibly isotopic to D for k > 1 and does not
separate ∂M for k = 1. ��

Corollary 4.1.14. There is an algorithm to decide whether a given irreducible
3-manifold M is a solid torus.

Proof. Evident, since the solid torus is the only irreducible boundary reducible
3-manifold whose boundary is homeomorphic to S1 × S1. ��

4.1.5 Is a Proper Surface Incompressible and Boundary
Incompressible?

Theorem 4.1.15. There is an algorithm to decide if a given two-sided surface
in a 3-manifold M is incompressible.

Proof. Denote by MF the manifold obtained from M by cutting along F . Then
∂MF contains two copies F1, F2 of F . Triangulate MF such that ∂F1 ∪ ∂F2 is
the union of edges and supply MF with the boundary pattern Γ composed of
all edges in ∂MF that have no common points with Int (F1 ∪ F2). It follows
from the construction that (MF , Γ ) is boundary reducible if and only if F is
compressible. It remains to apply Theorem 4.1.13. ��
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Remark 4.1.16. There is no algorithm known to decide if a one-sided surface
F is incompressible. However, injectivity of F can be recognized: It suffices to
test the double of F for incompressibility.

To describe a recognition algorithm for boundary incompressibility of surfaces
we need some preparation.

Lemma 4.1.17. Let an incompressible boundary incompressible connected
normal surface F in an irreducible boundary irreducible triangulated
3-manifold (MΓ ) be presented in the form F = G1 + G2. Assume that there
are two clean patches P1 ⊂ G1, P2 ⊂ G2 such that the following holds:

1. P1, P2 are quadrilateral discs, each having exactly two opposite sides in
∂M .

2. These four sides bound two clean biangles in ∂M .
3. P1∩P2 consists of the other two opposite sides of the quadrilaterals. Those

sides are not in ∂M .

Then either F is admissibly isotopic to a surface of a smaller edge degree
or the sum G1 + G2 is not in reduced form.

Proof. We say that a common side l of P1, P2 is of type a, if by the regular
switch at l the patches are pasted together, and of type b, if not. Then we
have four possibilities: aa, ab, ba, bb, see Fig. 4.9. Since F is connected, case
aa is impossible. In Cases ab and ba replace the regular switch along the
b-type arc by the irregular one. We get a new surface F ′ consisting of a
compressible annulus that cuts off a clean ball from M , and of a surface F ′′

that is admissibly isotopic to F . The isotopy consists in deforming a portion
of F through the ball. Normalizing F ′′, we get a normal surface admissibly
isotopic to F and having a smaller edge degree.

Consider the Case bb. Replacing G1 by G′
1 = (G1 \ P1) ∪ P2 and G2 by

G′
2 = (G2 \ P2) ∪ P1, i.e., merely switching G1 ∪ G2 along the two segments

P1 ∩ P2 irregular, we get another presentation F = G′
1 + G′

2 such that G′
i is

admissible isotopic to Gi, i = 1, 2, and G′
1 ∩ G′

2 consists of fewer components
than G1 ∩G2. This contradicts the assumption that G1 ∪G2 is in REDUCED
form. ��

Fig. 4.9. (aa) F is not connected; (ab, ba) F is not minimal; (bb) F is not in
reduced form
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Recall that a proper disc D ⊂ M is called semiclean if ∂D ∩ Γ consists of
two points, see Definition 3.3.19. D is said to be inessential, if D is parallel
rel ∂D to a disc D′ ⊂ ∂M whose intersection with Γ consists of one arc.

Lemma 4.1.18. Let (M,Γ ) be an irreducible boundary irreducible 3-manifold
and L a collection of disjoint circles in Γ such that each edge of L separates two
different components of M \ Γ . Then one can algorithmically decide, whether
or not (M,Γ ) contains an essential semiclean disc D such that both points of
∂D ∩ Γ lie in L.

Proof. Denote by D the set of all essential semiclean normal discs in (M,Γ )
whose boundaries intersect L in two points. Our goal is to construct an algo-
rithm to decide whether or not D is nonempty. Let us choose a triangulation of
M such that Γ is a subcomplex. We claim that D = ∅ if and only if D contains
a fundamental disc. Obviously, this is sufficient for proving the lemma.

To prove the claim, choose a disc D ∈ D having the minimal edge degree.
Clearly, D is incompressible. Since L separates two different regions of ∂M \Γ ,
D is boundary incompressible. Therefore we can normalize it by an admissible
isotopy (see conclusion 4 of Proposition 3.3.24). Let us prove that the resulting
essential semiclean normal disc D is fundamental.

Suppose, on the contrary, that there is a nontrivial presentation D =
G1 +G2. By Lemma 3.3.30, we can assume that G1, G2 are connected and no
double curve of G1 ∪ G2 decomposes both surfaces. We can also assume that
the presentation is in reduced form. Then by Lemma 4.1.8, G1 ∪ G2 contains
no clean disc patches.

Recalling that χ(D) = 1, χ(Gi) ≤ 2, and the Euler characteristic is ad-
ditive, we arrive at two options: 1=2+(-1) and 1=1+0. The first option is
impossible, since then one of the surfaces Gi is a sphere, which must contain
a disc patch. In the second case one of the surfaces (say, G1) is a disc, the
other one is either an annulus or a Möbius band. Moreover, both points in
D∩L lie in G1, since otherwise G1 would contain a clean disc patch. It follows
that G1 is a semiclean disc, automatically inessential, since it is simpler than
the minimal essential semiclean disc D.

The double curves decompose G1 into two disc patches, each containing a
point of ∂G1∩D, and several clean quadrilaterals. Recall that by our assump-
tion no double curve of G1 ∪G2 decomposes both surfaces. Since each proper
curve on G1 does decompose it, no double curve decompose G2. It follows that
all the patches of G2 (which is either an annulus or a Möbius band) are clean
quadrilaterals, each having two opposite sides in G1, the other two in ∂M .

Let P2 be a quadrilateral patch of G2 contained in the ball B bounded by
G1 and a disc in ∂M . Suppose that P2 is outermost with respect to B. Then
the arcs P2∩G1 cut out a quadrilateral patch P1 ⊂ G1 from G1, see Fig. 4.10.
By construction, P1, P2 satisfy the assumption of Lemma 4.1.17. Applying it,
we come to a contradiction with our assumption that D = G1 +G2 is minimal
and in reduced form. This contradiction shows that D is fundamental. ��
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Fig. 4.10. P1 and P2 are two quadrilateral patches having a common pair of opposite
sides

Theorem 4.1.19. There is an algorithm to decide if a given incompressible
two-sided surface in an irreducible boundary irreducible 3-manifold (M,Γ ) is
boundary incompressible.

Proof. Denote by MF the 3-manifold obtained from M by cutting along F .
Let F1, F2 ⊂ ∂MF be two copies of F thus obtained. We supply MF with the
boundary pattern Γ ′ = ΓF ∪ L′, where ΓF ⊂ ∂MF is obtained from Γ by
cutting along ∂F , and L′ = ∂F1 ∪ ∂F2. Obviously, each edge of L′ separates
two different components of ∂MF \ Γ ′.

Let us show that F is boundary compressible if and only if (MF , Γ ′) con-
tains an essential semiclean disc D such that both points of ∂D ∩ Γ ′ lie in
L′. Indeed, there is a natural map ϕ:MF → M obtained by the reverse iden-
tification of F1 with F2. It is easy to see that if D ⊂ MF is as above, then
ϕ(D) ⊂ M is an essential boundary compressing disc for F . The converse im-
plication is also easy, since cutting along F transforms any essential boundary
compressing disc for F into an essential semiclean disc in MF .

The desired algorithm for recognition of boundary incompressible surfaces
can be now constructed as follows: we simply apply Lemma 4.1.18 to (MG, Γ ′)
and all the circles of L′ ⊂ Γ ′. It follows from the claim that F is boundary
reducible if and only if we get at least one essential semiclean disc. ��

4.1.6 Is M3 Sufficiently Large?

Definition 4.1.20. A compact 3-manifold M is sufficiently large, if it con-
tains a closed connected surface which is different from S2, RP 2 and is
incompressible and two-sided.

Note that the exceptional surfaces listed above are the only closed surfaces
having a finite fundamental group. Since every two-sided incompressible sur-
face is injective (see Lemma 3.3.5), the fundamental group of every sufficiently
large manifold is infinite.

The class of sufficiently large 3-manifolds is “sufficiently large.” For
example, every irreducible 3-manifold M with nonempty boundary is either a
handlebody (orientable or not), or sufficiently large. To prove that, we define
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a core of a compact 3-manifold M . Recall that if F is a proper surface in M ,
then MF denotes the 3-manifold obtained from M by cutting it along F . It
is convenient to think of cutting as removing an open regular neighborhood
of F and thus consider MF as a submanifold of M .

Definition 4.1.21. Let M be an irreducible 3-manifold with nonempty bound-
ary. Then we call a compact 3-manifold Q ⊂ Int M a core of M , if the fol-
lowing holds:

1. Q is boundary irreducible and no connected component of Q is a 3-ball.
2. Q is obtained from M by successive cutting along proper discs, removing

all 3-ball components that might appear under this cutting, and removing
an open collar of the resulting 3-manifold to get a submanifold of Int M .

Remark 4.1.22. It follows from condition 1 that any continuation of the
cutting process brings us nothing new. Since Q is boundary irreducible, each
next cut results in the appearance of a new 3-ball and the removal of it. The
isotopy class of Q remains the same.

Remark 4.1.23. Sometimes the following reformulation of condition 2 is
more convenient: M can be obtained from Q by collaring ∂Q, adding dis-
joint 3-balls, and attaching handles of index 1, see Fig. 4.11. In particular, if
Q is empty, then M is a handlebody (the converse is also true).

Remark 4.1.24. Let D1,D2, . . . , Dn be the sequence of discs that determines
Q. Then each next disc is proper in the manifold obtained by cutting along
the previous discs, but it may not be proper in M . Nevertheless, the discs can
be modified by an isotopy so that afterward they are disjoint and proper in M .
The core remains the same (modulo isotopy). Indeed, arguing by induction,
we can assume that the first k discs D1, . . . , Dk are already disjoint and proper
in M . Then we simply shift the boundary ∂Dk+1 of the next disc from the
copies of D1, . . . , Dk in the boundary of Mk+1, where Mk+1 is the manifold
obtained from M by cutting along D1, . . . , Dk.

Fig. 4.11. Any 3-manifold can be obtained from its core Q by adding ∂Q × I,
disjoint 3-balls, and disjoint handles of index 1
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Proposition 4.1.25. Any irreducible 3-manifold has a core, which is unique
up to isotopy.

Proof. Let us construct a sequence D1,D2, . . . of disjoint proper discs in M .
Each next disc Dk must be essential in the 3-manifold Mk obtained from
M1 = M by cutting along D1 ∪ . . .∪Dk−1. If there appear 3-balls, we remove
them at once. Let us observe that for each k we have the following:

1. χ(Mk+1) ≥ χ(Mk) and β1(Mk+1) ≤ β1(Mk), where χ is the Euler char-
acteristic and β1 is the first Betti number.

2. If χ(Mk+1) = χ(Mk), then β1(Mk+1) < β1(Mk).

Indeed, cutting Mk along Dk increases χ by one. We can get χ(Mk+1) =
χ(Mk) only if there appears a 3-ball, whose removal decreases χ by one. In
this situation Dk, being essential, is a meridional disc of a component of
Mk homeomorphic to a solid torus or to a solid Klein bottle and we have
β1(Mk+1) = β1(Mk) − 1.

It follows that the process of constructing new essential discs and new
3-submanifolds without 3-ball components is finite and must stop with a
boundary irreducible 3-manifold Mn ⊂ M , which admits no essential proper
discs and contains no 3-ball components. Removing an open collar of ∂Mn

in Mn, we get a core Q of M .
To prove that Q is unique up to isotopy, consider another core Q′ with

the defining system D′
1,D

′
2, . . . , D

′
m of discs which are disjoint and proper

in M (see Remark 4.1.24). Let D = ∪n
i=1Di and D′ = ∪m

j=1D
′
j . Since M

is irreducible, we can eliminate all circles in D ∩ D′ and assume that the
intersection consists of proper arcs. The arcs decompose the discs into smaller
discs.

Let MD,MD′ , and MD∪D′ be 3-manifolds obtained from M by cutting
along, respectively, D,D′, and D ∪ D′ (the latter can be considered as the
union of those smaller discs). See Fig. 4.12. Since MD is boundary irreducible,
any disc in D′ ∩ MD is inessential. Therefore, cutting MD along it preserves
the isotopy class of Q. We can conclude that Q is isotopic to a submanifold
Q0 ⊂ M obtained from MD∪D′ by throwing away 3-ball components and

Fig. 4.12. Cutting M along D (solid lines) and along D′ (dotted lines)
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removing an open collar of the boundary of the resulting manifold. The same
is true for Q′. Therefore, Q and Q′ are isotopic. ��

Lemma 4.1.26. Let Q ⊂ Int M be the core of an irreducible 3-manifold M .
Then ∂Q is incompressible in M .

Proof. Consider an arbitrary compressing disc ∆ ⊂ M for ∂Q. We wish to
prove that ∆ is inessential, that is, its boundary curve bounds a disc in ∂Q.
If ∆ lies in Q, then it is inessential by condition 1 of Definition 4.1.21.

Suppose that ∆ lies outside Q. Let D = D1 ∪ . . . ∪ Dn be a collection of
disjoint proper discs in M which decomposes M into 3-balls and a copy Mn of
Q. Since M is irreducible, we can deform ∆ isotopically away from D. Then ∆
is contained in the collar Mn ⊂ Int Q = ∂Q× I and hence must be inessential
in this case as well. ��

Corollary 4.1.27. Every irreducible 3-manifold M with nonempty boundary
is either a handlebody or sufficiently large.

Proof. Follows from Proposition 4.1.25 and Lemma 4.1.26: if M is not a han-
dlebody, then the boundary of the core of M is an incompressible surface in
M different from S2 and RP 2. ��

Definition 4.1.28. A compact 3-manifold M is called Haken, if it is irre-
ducible, boundary irreducible, and sufficiently large.

It follows from Corollary 4.1.27 that every irreducible boundary irreducible
3-manifold M with nonempty boundary is either a 3-ball or Haken. So all
interesting non-Haken 3-manifolds are closed. Examples of such manifolds
can be found among Seifert manifolds fibered over S2 with three exceptional
fibers. Some closed hyperbolic 3-manifolds also possess this property, among
them the manifolds M1,M2 described in Sect. 2.5.1. In general, if you take
a closed irreducible 3-manifold by chance, then most probably it would be
Haken.

Lemma 4.1.29. Let M be a closed irreducible 3-manifold such that the group
H1(M ;Z) is infinite and M contains no projective planes. Then M is Haken.

Proof. Since H1(M ;Z) is infinite, there exists a map f :M → S1 such that the
induced homomorphism f	:π1(M) → H1(M ;Z) is surjective. Then the inverse
image of any regular point a ∈ S1 is a nonseparating surface. Compressing it
as long as possible, we get an incompressible surface F . Since the property of a
surface to be nonseparating is preserved under compressions, F is nonempty.
It follows from our assumption that F is different from S2, RP 2. ��

In this section we present the following important result of Jaco and
Oertel [56].

Theorem 4.1.30. There exists an algorithm to decide if an irreducible man-
ifold is sufficiently large.
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Since irreducibility and boundary irreducibility of a 3-manifold can be
recognized algorithmically (see Theorem 4.1.13), Corollary 4.1.31 is evident.

Corollary 4.1.31. There exists an algorithm to decide if an irreducible mani-
fold is Haken

The ideas used in the proof of Theorem 4.1.30 influenced significantly the
development of the normal surface theory and turned out to be very important
for analyzing the complexity of algorithms based on it. The proof follows the
same General Scheme, but before presenting it we prove several lemmas that
are useful not only for this particular proof.

Let (M,Γ ) be a triangulated 3-manifold. As before, we will measure the
complexity of a general position proper surface F ⊂ M by its edge degree
e(F ). We slightly generalize the notion of compressing disc for a surface by
extending it to the case of arbitrary subpolyhedra. Let X be a compact 2-
dimensional subpolyhedron of a 3-manifold (M,Γ ). By a singular graph S(X)
of X we mean the union of all points in X having no disc neighborhood.

Definition 4.1.32. A disc D ⊂ M is called a compressing disc for X if
D∩X = ∂D and the curve ∂D is transversal to S(X). Similarly, a clean disc
D ⊂ M is a boundary compressing disc for X if l = D ∩ X is an arc in ∂D,
l is transversal to S(X), and D ∩ ∂M is the complementary arc in ∂D.

Let F = G1 + G2 be a normal surface in a 3-manifold M presented as a
geometric sum of two normal surfaces, and let l be a component of G1 ∩ G2.
Locally, in a close neighborhood of every point x ∈ l, the surfaces G1, G2

look like two planes (or half-planes, if x ∈ ∂M) forming four dihedral angles.
A dihedral angle is called good, if the patches forming its sides are pasted
together under the regular switch at l. Otherwise the angle is bad.

Any compressing disc D for G1 ∪ G2 can be considered as a curvilinear
polygon whose angles are labeled by letters g or b depending on whether the
corresponding dihedral angles are good or bad, respectively. Analogously, any
boundary compressing disc D for G1 ∪ G2 is a polygon whose all but two
angles are labeled by letters g or b (each of the two angles without labels is
formed by an arc in D∩∂M and an arc in D∩G1 or D∩G2). Let us describe
the behavior of D with respect to the regular switch of G1 ∪ G2 and to the
resulting surface F = G1 + G2. Near each double line l of G1 ∪G2, consider a
strip A that runs along l and spans the trace curves of l. If l is closed, then A
is either an annulus (if l is two-sided in both G1, G2) or a Möbius band (if l
is one-sided). In case l is a proper arc, A is a disc band (homeomorphic image
of a rectangle) such that two opposite sides of A are in ∂M while the other
two coincide with the trace curves of l.

Consider the union of F with all strips obtained in this way. Then D
determines a compressing or boundary compressing disc D̃ for the union.
Near each good angle of D, the boundary curve of D̃ is contained in F while
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Fig. 4.13. Behavior of compressing discs near good and bad angles

Fig. 4.14. Parallel compressing discs for F ∪ A and a compressing disc ∆ for F

near each bad angle it crosses the corresponding strip. See Fig. 4.13. If all
angles of D are good, then D̃ is a compressing or boundary compressing disc
for F .

Lemma 4.1.33. Let an incompressible normal surface F in an irreducible
boundary irreducible manifold (M,Γ ) be presented in the form F = G1 + G2

such that there are no clean disc patches. Assume that G1 ∪ G2 admits a
compressing disc D such that precisely one angle of D is bad. Then the edge
degree of F can be decreased by an admissible isotopy.

Proof. Denote by l the double line of G1∪G2 that passes through the vertex of
the bad angle of D. Let A and D̃ be the corresponding band and compressing
disc for F ∪ A. Assume that l is closed. Denote by B′ the ball bounded by
D̃, a close parallel copy D̃′ of D̃ (see Fig. 4.14), and the portions A′ of A and
F ′ of F between them. Consider the disc ∆ ⊂ M composed of D̃, D̃′, and
the band Cl(A \ A′), see Fig. 4.14 to the right. It is easy to see that ∆ is a
compressing disc for F . Since F is incompressible and M is irreducible, there
is a ball B ⊂ M bounded by ∆ and a disc δ in F . It cannot happen that
B′ ⊂ B, otherwise each trace curve of l would be contained in δ and bound
a disc in F ∩ δ ⊂ F , which contradicts the “no clean disc patch” assumption.
Therefore B′∩B = D̃∪ D̃′, and the union B∪B′ is a solid torus T . This solid
torus helps us to construct an isotopy of F to the surface F1 = (F \ ∂T ) ∪ A
which is simpler than F (see Fig. 4.15).
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Fig. 4.15. Simplifying isotopy

The case when l is a proper arc is similar. Consider a disc ∆ ⊂ (M,Γ )
composed of D̃ and a connected component of A\(A∩D̃). Clearly, ∆ is a clean
boundary compressing disc for F . Since F is boundary incompressible and
(M,Γ ) is irreducible and boundary irreducible, there is a clean ball B ⊂ M
bounded by the union of ∆, a disc in F , and a disc in ∂M . A similar ball is
placed on the other side of ∆. The union T ∼ D̃ × I of these two balls helps
us to construct an admissible isotopy of F to the surface F1 = (F \ ∂T ) ∪ A
which is simpler than F . ��

Lemma 4.1.34. Let an incompressible boundary incompressible normal sur-
face F in a manifold (M,Γ ) be presented in the form F = G1 + G2 such that
there are no clean disc patches. Assume that G1 ∪ G2 admits a compressing
or boundary compressing disc D such that D has no bad angles and at least
one good angle. Then for i = 1, j = 2 or for i = 2, j = 1 there exists a disc
D0 ⊂ Gi such that ∂D0 consists of an arc in Gj, an arc in ∂D, and maybe
an arc in ∂M while Int D0 has no common points with Gj ∪ D ∪ ∂M .

Proof. Since there are no bad angles, D determines a compressing or boundary
compressing disc D̃ for F . The curve α = ∂D̃ ∩ F must cut off a disc D̃′

from F . Recall that trace curves decompose F into patches. Consider the
induced decomposition of D̃′. The boundary of every region of the induced
decomposition consists of arcs contained in trace curves and of arcs in ∂D̃′.
The “no clean disc patch” assumption assures us that D̃′ contains no closed
trace curves and proper trace arcs having both endpoints on ∂M . Therefore
there exists a region bounded by a trace arc, an arc in α, and maybe an arc
in ∂M . Any such region (in Fig. 4.16 they are marked by stars) determines a
disc D0 satisfying the conclusion of the lemma. ��

Let a proper normal surface F in a triangulated 3-manifold M be presented
in the form F = G1+G2 and let ∆ be a compressing or boundary compressing
disc for G1. We will assume that ∆ is in general position with respect to G2.
Then ∆∩G2 is a proper 1-dimensional submanifold of ∆. Define the weight of
∆ to be the number c(∆) + c∂(∆), where c(∆) is the number of components
of ∆ ∩ G2 and c∂(∆) is the number of points in ∂∆ ∩ G2 which are not on
∂M . Our goal is to decrease the weight.
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Fig. 4.16. Trace curves decompose F as well as D̃′

Lemma 4.1.35. Let F = G1 + G2 be a proper normal surface in a triangu-
lated irreducible boundary irreducible 3-manifold (M,Γ ) such that all patches
of F are incompressible and boundary incompressible. Let ∆ be an essential
compressing or boundary compressing disc for G1. Assume that there is a disc
D0 ⊂ M such that at least one of the following holds:

(1) D0 ⊂ ∆ and either D0 ∩G2 = ∂D0 or D0 ∩G2 is an arc in ∂D0 while the
complementary arc of ∂D0 is in ∂M .

(2) D0 ⊂ G1, ∂D0 = D0 ∩ (G2 ∪∆∪ ∂M), and ∂D0 consists of an arc in G2,
an arc in ∂∆, and maybe an arc in ∂M .

(3) D0 ⊂ G2 and ∂D0 consists of an arc in G1, an arc in ∂∆, and maybe an
arc in ∂M , while Int D0 is disjoint from G1 ∪ ∆ ∪ ∂M .

Then there is an essential compressing or boundary compressing disc ∆′

for G1 having a strictly smaller weight.

Proof. Case 1. It follows from the assumptions that ∂D0 ∩ G2 is contained
in a patch P ⊂ G2 of G1 ∪ G2. Since P is incompressible and boundary
incompressible, the curve ∂D0 ∩ G2 cuts off a clean disc D from P . Recall
that M is irreducible and boundary irreducible. It follows that D ∪ D0 cuts
off a clean ball from M . Using the ball, construct an isotopy of D0 to the
other side of P and get a new disc ∆′ having a smaller weight.

Case 2. We use D0 for constructing an isotopy of ∆ that shifts the arc
l = D0 ∩∆ to the other side of G2. Clearly, the isotopy decreases the weight.
See Fig. 4.17a,b for the cases ∂l ∩ ∂M = ∅ and ∂l ∩ ∂M = ∅.

Case 3. Compressing ∆ along D0, we get two simpler compressing or
boundary compressing discs for G1 with strictly smaller weights. It is clear
that if ∆ is essential, then so is at least one of the new discs. See Fig. 4.18. ��

Theorem 4.1.36. Let a minimal connected normal surface F in an irre-
ducible boundary irreducible 3-manifold (M,Γ ) be presented in the form
F = G1 +G2. If F is incompressible and boundary incompressible, then so are
G1, G2. Moreover, neither G1 nor G2 is a sphere, a projective plane, a clean
disc or a disc whose boundary crosses Γ exactly once.
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Fig. 4.17. Simplifying ∆ by shifting ∂∆ along G1

Fig. 4.18. Compressing ∆

Proof. It is sufficient to prove the theorem with the additional assumption
that F = G1 +G2 is in reduced form. Then Lemma 4.1.8 tells us that G1∪G2

has no clean disc patches and all the patches of G1∪G2 are incompressible and
boundary incompressible. Since any decomposition of S2, RP 2, or D2 with no
more than one point in ∂D2∩Γ into patches contains a clean disc patch, G1, G2

are different from these surfaces. By the symmetry, we only need to prove that
one surface, say, G1, is incompressible and boundary incompressible.

On the contrary, suppose that G1 admits an essential compressing or
boundary compressing disc ∆. The idea is to decrease the weight c(∆)+c∂(∆).

Assume that ∆ ∩ G2 contains a circle or an arc with the endpoints on
∂M . Using an innermost circle or an outermost arc argument, we find a disc
D0 ⊂ ∆ satisfying condition (1) of Lemma 4.1.35. Applying the lemma, we
find a simpler compressing or boundary compressing disc. So for the remainder
of the argument we may assume that ∆ ∩ G2 contains no circles and no arcs
with endpoints in ∂M . It follows that the arcs ∆ ∩ G2 cut ∆ into regions
which are homeomorphic to the standard disc and thus can be considered as
curvilinear polygons. Every region is a compressing or boundary compressing
disc for G1 ∪ G2.
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Let us count the number of good and bad angles in these polygons. Any
point in ∂∆ ∩ G2 is a common vertex of two angles belonging to different
polygons. One of the angles is good, the other is bad. We relate the total
number of polygons in ∆ and the total number of their bad angles. Denote
by m the number of arcs in ∆ ∩ G2 that are disjoint from ∂M , and by n the
number of arcs having one endpoint in ∂M . Then there are m+n+1 polygons
and 2m+n bad marks. Since 2(m+n+1) > 2m+n, there is a polygon having
≤ 1 bad angles.

Note that there are no polygons having precisely one bad angle; otherwise
F would be not minimal by Lemma 4.1.33. Therefore there is a polygon D
that has no bad angles. By Lemma 4.1.35, there exists a disc D0 ⊂ M satis-
fying either assumption (2) or assumption (3) of Lemma 4.1.35. Applying the
lemma, we get a simpler essential compressing or boundary compressing disc
again.

Continuing this simplification procedure for as long as possible, we get an
essential compressing or boundary compressing disc ∆ for G1 that has zero
weight and thus does not intersect G2. This contradicts the assumption that
all patches of G1 ∩ G2 are incompressible and boundary incompressible. ��

Corollary 4.1.37. Let a minimal connected normal surface F in an irre-
ducible boundary irreducible 3-manifold (M,Γ ) be presented as a sum F =∑n

i=1 Gi of n > 0 nonempty normal surfaces. If F is incompressible and
boundary incompressible, then so are all Gi. Moreover, no G1 is a sphere, a
projective plane, a clean disc or a disc whose boundary crosses Γ exactly once.

Proof. Rewrite F in the form F = G1 + G′, where G′ =
∑n

i=2 Gi. By Theo-
rem 4.1.36, G1 is incompressible, boundary incompressible, and different from
S2,D2, and RP 2. The same trick works for all other surfaces Gi. ��

Remark 4.1.38. If the surface F in the statements of Theorem 4.1.36 and
Corollary 4.1.37 is closed, then the assumption that M is boundary irreducible
is superfluous. Indeed, we have used it in the proofs of the theorem, corollary,
and preceding lemmas only when ∂F = ∅ (if ∂F = ∅, then all events are going
on strictly inside M).

Proof of Theorem 4.1.30 (On Recognizing Sufficiently Large Manifolds). Let
us triangulate a given manifold M and construct the finite set {Gi, 1 ≤ i ≤ n}
of all closed fundamental surfaces. Suppose that M contains a two-sided closed
incompressible surface F = S2, RP 2. We may assume that F is minimal.
Present F as a sum F =

∑n
i=1 kiGi, ki > 0, of some fundamental surfaces. It

follows from Theorem 4.1.36 that all surfaces Gi, 1 ≤ i ≤ n, are incompressible
and different from S2 and RP 2. However, this is not good enough to develop
the desired algorithm. It may be not true that at least one of Gi is two-sided.

To overcome this obstacle, consider the presentation 2F =
∑n

i=1 ki(2Gi).
Since 2F is also minimal and incompressible, all surfaces 2Gi are incompress-
ible by Corollary 4.1.37. Certainly, they are two-sided.
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The desired algorithm can be described as follows. We apply the algorithm
of Corollary 4.1.15 to the check whether the double 2G of each fundamental
surface G = S2, RP 2 is incompressible. If we get a positive answer at least once
(i.e., if we find a fundamental surface G = S2, RP 2 with an incompressible
double 2G), then M is clearly sufficiently large. If all the doubles turn to be
compressible, then M is not sufficiently large. ��

Remark 4.1.39. The algorithm constructed above can be sharpened by
reducing the set of all fundamental surfaces to a much smaller subset of
so-called vertex surfaces. Every vertex surface Gj corresponds to an admis-
sible vertex solutions V̄j to the matching system E for the triangulation of
M (see the proof of Theorem 3.2.8 for a description of vertex surfaces). Any
integer solution x̄ to E can be written in the form x̄ =

∑N
j=1 αj V̄j , where αj

are non-negative rational numbers. Obviously, if x̄ is admissible, then so are
all V̄j with αj > 0. It follows that for every normal surface F an appropriate
multiple 2kF can be presented in the form 2kF =

∑m
j=1 kj(2Gj), where all

kj are integer and Gj are vertex surfaces. If F is minimal and incompressible,
then Corollary 4.1.37 tells us that all these vertex surfaces are incompressible.
Therefore M is sufficiently large if and only if the double of at least one vertex
surface is incompressible.

4.2 Cutting 3-Manifolds along Surfaces

In this section we investigate what happens to the complexity of a 3-manifold
when we cut the manifold along an incompressible surface.

4.2.1 Normal Surfaces and Spines

Let M be a 3-manifold with nonempty boundary. There is a close relationship
between handle decompositions and spines of M . Indeed, let ξ be a handle
decomposition of M into balls, beams, and plates, without handles of index 3.
Collapsing the balls, beams, and plates of ξ onto their core points, arcs, and
discs, we get a spine P of M . By construction, P is equipped with a natural
cell decomposition into the core cells of the handles. Conversely, let P be a
cellular spine of M , i.e., a spine equipped with a cell decomposition. Replace
each vertex of P by a ball, each edge by a beam, and each 2-cell by a plate
(we used a similar construction in Sect. 1.1.4). We get a handle decomposition
ξ of a regular neighborhood N(P ) of P in M . Since ∂M = ∅, N(P ) can be
identified with the whole manifold M , so ξ can be considered as a handle
decomposition of M .

Consider a normal surface F ⊂ M and denote by MF the 3-manifold
obtained by cutting M along F . Let us investigate the behavior of ξ and P
under the cut.
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Since F is normal, it decomposes the handles of ξ into handles of the
same index. The new handles form a handle decomposition ξF of MF . Denote
by PF the corresponding cellular spine of MF . We can think of each handle
of ξF as being contained in the corresponding handle of ξ. This inclusion
relation induces a cellular map ϕ:PF → P (a map is cellular if it takes cells
to cells). For any vertex v of PF , the map ϕ, being cellular, induces a map
ϕv: lk(v, PF ) → lk(w,P ) between links, where w = ϕ(v).

Another way for describing ϕv consists in the following. Collapsing each
island in ∂Bv to its core point and each bridge to its core edge, we get a graph
isomorphic to lk(v, PF ). The same is true for the ball B of ξ containing w:
the island-beam configuration in ∂B has the shape of lk(w,P ). Then ϕv is
induced by the inclusion relation between islands and bridges of ξF and ξ.

Lemma 4.2.1. Suppose that a handle decomposition ξ of a 3-manifold M
with nonempty boundary corresponds to an almost simple cellular spine P of
M . Let F be a normal surface in M , and let ξF , PF , and ϕ be, respectively,
the induced handle decomposition of MF , cellular spine of MF , and cellular
map PF → P . Then PF is almost simple, and for any vertex v of PF and the
corresponding vertex w = ϕ(v) of P the induced map ϕv: lk(v, PF ) → lk(w,P )
is an embedding.

Proof. Let v, w = ϕ(v) be vertices of PF , P , and Bv ⊂ Bw the balls of ξF , ξ
containing them. We observe the following:

(a) Any bridge of Bv is contained in a bridge of Bw, and any bridge of
Bw contains no more than one bridge of Bv. The first statement is evident.
Let us prove the second (it is true for all handle decompositions, not only for
those arising from almost simple spines).

Suppose, on the contrary, that a bridge b of Bw contains two bridges b′, b′′

of Bv. We can assume that b′, b′′ are neighbors, that is, the strip S ⊂ b between
them contains no other bridges of Bv. Note that the region U = ∂Bv ∩ ∂Bw,
just as every connected region in ∂Bw ≈ S2 bounded by disjoint circles, has
exactly one common circle with each connected component of Cl(∂Bw \ U).
It follows that the lateral sides of S lie in the same circle C ⊂ ∂U . Since C is
the boundary of an elementary disc in F ∩Bw and since the boundary of any
elementary disc crosses each bridge no more than once, we get a contradiction.

(b) Any island of Bv is contained in an island of Bw, which contains
no other islands of Bv. Since ξ corresponds to an almost simple spine and
thus all islands of ξ have valence ≤ 3, the boundary curve of any elementary
disc passes through any island no more than once (otherwise condition 7 of
Definition 3.4.1 of a normal surface would be violated). Thus the same proof
as in (a) does work.

Since ϕv is induced by the inclusion relation between islands and bridges
of ξF and ξ, it follows from (a), (b) that ϕv is an embedding. Since it is true
for all vertices of PF and P is almost simple, PF is also almost simple. ��
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Fig. 4.19. Island-bridge-lake configurations in the boundaries of balls

Suppose P is a simple spine of a 3-manifold M with nonempty boundary.
It is convenient to choose a cell decomposition σ of P such that any true
vertex of P is incident to only four 1-cells, at any vertex of σ inside a triple line
only two or three 1-cells meet together, and inside 2-components there are no
vertices of σ incident to only one 1-cell. Denote by ξ the handle decomposition
of M induced by σ.

et v be a vertex of σ. Denote by Bv the corresponding ball. The boundary
of Bv is decomposed into islands, bridges, and lakes. If v is a true vertex of P ,
then ∂Bv contains 4 islands, 6 bridges, and 4 lakes such that any two islands
are joined by one bridge. If v is a triple point, then ∂Bv contains two or three
islands, and if v is a nonsingular point, then the islands and bridges compose
an annulus, see Fig. 4.19.

Let us investigate the types of elementary discs in Bv.

Definition 4.2.2. An elementary disc D ⊂ Bv has type (k,m) if its bound-
ary curve � intersects k bridges and m lakes (recall that by definition of an
elementary disc, � passes through each bridge and each lake no more than
once).

Lemma 4.2.3. Let a ball Bv of ξ corresponds to a vertex v of a simple spine
P . Then any elementary disc in Bv has one of the following types:

1. Types (4, 0), (3, 0), (2, 1), (1, 2), (0, 4), (0, 3), (0, 2), if v is a true vertex.
2. Types (2, 0), (1, 1), (0, 2), if v lies on a triple line and ∂Bv contains two

islands.
3. Types (3, 0), (2, 1), (2, 0), (1, 1), (0, 2), (0, 3), if v lies on a triple line and

∂Bv contains three islands.
4. Types (0, 2) and (k, 0), if v is a nonsingular vertex and ∂Bvcontains k

islands.

With a few exceptions, each type determines the corresponding elementary
disc in a unique way up to homeomorphisms of Bv taking islands to islands,
bridges to bridges, and lakes to lakes. The exceptions are:

1. If v is a true vertex, then Bv contains two elementary discs of the
type (0, 3).

2. If v is a triple vertex and Bv contains three islands, then there are two
elementary discs of the type (0, 2).
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3. If v is a nonsingular vertex of valence k, then there is one elementary
disc of the type (k, 0) and [k/2] discs of the type (0, 2), where [k/2] is the
integer part of k/2.

Proof. Let � be the boundary curve of a type (k,m) elementary disc. Then
n = k + m is the number of arcs in the intersection of � with the union of all
islands. Since each island has valence ≤ 3, � visits each islands no more than
once (otherwise condition 7 of Definition 3.4.1 would be violated). Moreover,
at least two islands must be visited.

Case 1. If v is a true vertex, then Bv contains four islands. Therefore,
2 ≤ k + m ≤ 4. It remains to enumerate all possible pairs (k,m) with 2 ≤
k+m ≤ 4 and verify that only the pairs listed in the statement of Lemma 4.2.3
are realizable by elementary discs, and that each of them admits a unique
realization except the pair (0,3) that admits two, see Fig. 4.20.

Case 2. If v is a triple vertex such that Bv contains two islands, then
k+m = 2. It is easy to verify that only the pairs listed in item 2 are realizable
and that the realizations are unique.

Case 3 is similar. The only difference is that there are two elementary
discs of the type (0, 2), see Fig. 4.21.

In the last Case 4 of a nonsingular vertex v the proof is evident. For the
annular island-bridge configuration with k = 6 islands presented on Fig. 4.21
to the right we show all three discs of type (0, 2). ��

Our next goal is to show that in many cases cutting a 3-manifold M along
an incompressible surface makes M simpler.

Lemma 4.2.4. Suppose that a handle decomposition ξ of a 3-manifold M
with nonempty boundary corresponds to a simple cellular spine P of M . Let
F be a connected normal surface in M , and let ξF , PF , and ϕ be, respectively,
the induced handle decomposition of MF , cellular spine of MF , and cellular
map PF → P . Then the following holds:

1. ϕ embeds the set of true vertices of PF into the one of P . This embedding
(denote it by ϕ0) is bijective if and only if all the elementary discs of F
in the balls around true vertices have type (3, 0).

2. If ϕ0 is bijective, then ϕ embeds the union of triple circles of PF into the
one of P . This embedding (denote it by ϕ1) is bijective if and only if all
elementary discs of F in the balls around triple vertices have type (3, 0)
or (2, 0).

3. If ϕ0 and ϕ1 are bijective and ∂F = ∅, then F is either an annulus or a
Möbius band intersecting only balls of ξP that correspond to nonsingular
vertices. Moreover, F can intersect these balls only along elementary discs
of type (0, 2) and F ∪ P is a middle circle of F .

Proof. Let us prove the first conclusion of the lemma. Let v1 and v = ϕ(v1)
be true vertices and B1 ⊂ B the corresponding balls. Then lk(v1, PF ) and
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Fig. 4.20. Eight types of elementary discs in a ball neighborhood of a true vertex

lk(v, P ) are homeomorphic. We claim that every elementary disc D ⊂ F ∩ B
has type (3, 0). Obviously, the first conclusion follows from the claim.

To prove the claim, suppose that D has type (k,m) with m > 0. Then cut-
ting B along D destroys at least one three-valent vertex of lk(v, P ), namely,
the one corresponding to the island where ∂D crosses the coast of a lake.
Since lk(v1, PF ) has four three-valent vertices and lk(v1, PF ) and lk(v, P )
are homeomorphic, it is impossible. Cutting along type (4, 0) disc preserves
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Fig. 4.21. The boundaries of elementary discs in ball neighborhoods of other
vertices

three-valent vertices, but decomposes lk(v, P ) into two graphs, each contain-
ing two three-valent vertices. Therefore this case is also impossible.

This observation can be easily verified by applying Lemma 4.2.3 and con-
sidering Fig. 4.22, which shows why type (3, 0) discs preserve the true vertex
and how discs of all other types destroy it.

The proof of the second conclusion of the lemma is similar. Denote by E
the union of all true vertices of P with all the triple edges that join them. Let
EF be the similar union for PF . Suppose that ϕ0 is bijective. Then ϕ induces
a homeomorphism between EF and E. Let us investigate the behavior of ϕ
on the set of triple circles. It follows from Lemma 4.2.3 that the image ϕ(C)
of a triple circle C ⊂ PF is a triple circle in P if and only if all the elementary
discs in the balls around vertices of ϕ(C) have types (2, 0) or (3, 0). Indeed,
cutting along such discs preserves the triple circle while cutting along discs of
type (k,m) with m > 0 destroys it.

Let us prove the last conclusion of the lemma. Suppose that ϕ0 and ϕ1

are bijective. It means that ϕ takes the union of singular points of PF onto
the one of P homeomorphically. Then ∂F cannot intersect the balls around
true and triple vertices, since otherwise at least one of them would not survive
the cut. It follows that ∂F is contained in the union of balls and beams of
ξ that correspond to the vertices and edges of P inside a 2-component of P .
Each such ball B can be presented as D2 × I such that D2 × ∂I are the lakes
of B. Suppose that B has at least one common point with ∂F . Then any
elementary disc D ⊂ F ∩ B has type (2, 2). Therefore D is a quadrilateral
having two opposite sides in the islands of B, the other two in the lakes.
Similarly, if ∂F passes along a beam D2 × I, then each strip in F ∩ (D2 × I)
has two opposite sides in the islands, the other two in ∂M .
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Fig. 4.22. Cutting along discs of all the types except (3,0) destroys the true vertex
(see continuation)

Consider the union F0 of all such quadrilaterals and strips. Since each
quadrilateral intersects exactly two strips along its two island sides, F0 is the
disjoint union of annuli and Möbius bands. On the other hand, ∂F0 = ∂F .
Taking into account that F is connected, we conclude that F = F0 and F0 is
either an annulus or a Möbius band intersecting P along its middle circle. ��

Recall that if P is an almost simple polyhedron, then c(P ) denotes the
complexity of P , i.e., the number of its true vertices.
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Fig. 4.22. Cutting along discs of the all types except (3,0) destroys the true vertex
(continued from the previous page)

Corollary 4.2.5. Suppose that a handle decomposition ξ of a 3-manifold M
with nonempty boundary corresponds to an almost simple cellular spine P of
M . Let F be a connected normal surface in M , and let ξF , PF , and ϕ be,
respectively, the induced handle decomposition of MF , cellular spine of MF ,
and cellular map PF → P . Then c(PF ) ≤ c(P ) and c(PF ) = c(P ) if and only
if all elementary discs of F in the balls around true vertices have type (3, 0).
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Proof. Follows from item 1 of Lemma 4.2.4. ��

Corollary 4.2.5 tells us that by cutting along any normal surface there
appear no new true vertices. However, we need a more complete informa-
tion. To any almost simple polyhedron we associate a triple (c, c1, c2) of
non-negative integers, which, in lexicographical ordering, will measure the
“extended complexity” of the polyhedron.

Definition 4.2.6. Let P be an almost simple polyhedron having c(P ) true
vertices, c1(P ) triple circles, and c2(P ) 2-components. Then the triple c̄(P ) =
(c(P ), c1(P ), c2(P )) is called the extended complexity of P .

Definition 4.2.7. The extended complexity c̄(M) = (c(M), c1(M), c2(M)) of
a compact 3-manifold M is defined as c̄(M) = minP c̄(P ), where the minimum
is taken over all almost simple spines of M .

Thus the extended complexity of M is the triple (c(M), c1(M), c2(M)),
where c(M) is the usual complexity of M as defined in Chap. 2, c1(M) is the
minimum number of triple circles over all almost simple spines of M with
c(M) vertices, and c2(M) is the minimum number of 2-components over all
almost simple spines of M having c(M) vertices and c1(M) triple circles. For
example, S3 has the extended complexity (0, 0, 0) and lens space L3,1 has the
extended complexity (0, 1, 1). The extended complexity of all I-bundles over
closed surfaces is (0, 0, 1).

Corollary 4.2.8. Suppose that a handle decomposition ξ of a 3-manifold
M with nonempty boundary corresponds to an almost simple cellular spine
P = H ∪ G of M , where H is a simple polyhedron (the 2-dimensional part
of P ) and G is a graph (the 1-dimensional part of P ). Let F be a connected
normal surface in M , and let ξF , PF , and ϕ be, respectively, the induced han-
dle decomposition of MF , cellular spine of MF , and cellular map PF → P .
Suppose that ∂F = ∅. Then PF can be collapsed onto a spine P ′

F of M such
that c̄(P ′

F ) ≤ c̄(P ). Moreover, if F is not a disc, then c̄(P ′
F ) < c̄(P ).

Proof. Step 1. Assume that P is simple, i.e., that P = H. If c(PF ) < c(P )
or if c(PF ) = c(P ) and c1(PF ) < c1(P ), we are done. Otherwise we are in
the situation of item 3 of Lemma 4.2.4 and hence can conclude that F is an
annulus or a Möbius strip such that F ∩P is its middle circle. This means that
PF is obtained from P by cutting along the circle contained in a 2-component
α of P . Collapsing PF , we eliminate α and get a spine P ′

F ⊂ PF of MF

such that either c(P ′
F ) < c(P ) (if the boundary circles of α pass through at

least one true vertex of P ), or c1(P ′
F ) < c1(P ) (if they are triple circles),

or c2(P ′
F ) = c2(P ) − 1 (if P is a closed surface). In all three cases we get

c̄(P ′
F ) < c̄(P ).
Step 2. Assume that P is not simple, i.e., G = ∅. Since F is normal, it

does not intersect the handles of ξ that correspond to edges of G. It follows
that either:
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(a) F lies in a ball of ξ around a vertex of G which is not in H.
(b) F is contained in the union N(Q) of handles that correspond to the cells

of H.

Evidently, in Case (a) F is a disc of the required type. Consider Case (b).
Recall that H is a simple polyhedron. If F is normal in N(H), then we apply
Step 1 and get the desired inequality c̄(P ′

F ) < c̄(P ). Therefore, we may assume
that F , being normal in M , is not normal in N(H). The only reason for that
phenomenon is violation of condition 5 of Definition 3.4.1. It follows that ∂F
is contained in a lake and is nontrivial there. We may conclude that in this
case F is a disc in a ball of ξ. ��

Remark 4.2.9. Condition ∂F = ∅ in Corollary 4.2.8 is essential. Indeed,
consider a normal surface F ⊂ M which is normally parallel to ∂M . Then PF

consists of a copy of itself and a copy of ∂M . Therefore, c̄(P ′
F ) > c̄(P ).

Lemma 4.2.10. If D is a proper disc in a 3-manifold M , then c(MD) = c(M)
and c̄(MD) = c̄(M). In other words, the complexity and extended complexity
of a 3-manifold are preserved under removing as well as under attaching a
handle of index 1.

Proof. It is sufficient to prove that c̄(MD) = c̄(M). First, we note that if PD

is a minimal almost simple spine of MD, then an almost simple spine of M
having the same extended complexity can be obtained from PD by adding
an appropriate arc. It follows that c̄(MD) ≥ c̄(M). Iterating this argument,
we can conclude that c̄(Q) ≥ c̄(MD) ≥ c̄(M), where Q is the core of M (see
Definition 4.1.21).

To prove the inverse inequality c̄(Q) ≤ c̄(M) we choose a minimal almost
simple spine P of M . Denote by ξP the corresponding handle decomposition.
If ∂M admits an essential boundary compressing disc, then, normalizing it,
we get an essential normal compressing disc D′. Then c̄(P ′

D′) ≤ c̄(P ) by
Corollary 4.2.8. It follows that c̄(MD′) ≤ c̄(M).

Let us perform now boundary compressions along essential normal discs
as long as possible. As it is explained in the proof of Proposition 4.1.25, after
a finite number of compressions we end up with a core Q′ of M . Since Q
and Q′ are isotopic by Proposition 4.1.25 and since each compression does
not increase c̄, we can conclude that c̄(Q) = c̄(Q′) ≤ c̄(M). Combining the
inequalities c̄(Q) ≥ c̄(M) and c̄(Q) ≤ c̄(MD) ≤ c̄(M), we get c̄(MD) = c̄(M).
Therefore any compression along any proper disc preserves both c(M) and
c̄(M). ��

Corollary 4.2.11. Let S be a 2-sphere in a 3-manifold M . Then c(MS) =
c(M).

Proof. Cutting along S can be realized by removing a ball and cutting along a
disc whose boundary lies in the boundary of the ball. Both preserve c(M). Or
vice-versa: Gluing two boundary spheres together means attaching an index
1 handle followed by attaching a 3-ball. Both preserve c(M). ��



186 4 Applications of Normal Surfaces

Remark 4.2.12. Cutting along a 2-sphere can increase the extended com-
plexity of a 3-manifold. For example, if M is a 3-ball, then c̄(M) = (0, 0, 0) <
(0, 0, 1) = c̄(MS)

Let ξ be a handle decomposition of a 3-manifold M and F ⊂ M a
proper incompressible surface. Then F can be normalized by the normaliza-
tion procedure described in Theorem 3.4.7, which consists of tube and tunnel
compressions, and eliminating trivial spheres and discs. Let us modify the pro-
cedure as follows. Since F is incompressible, each tube compression results in
appearance of a 2-sphere. If this sphere is inessential, then we accomplish the
compression by throwing it away. Other normalization moves remain the same.
Of course, the modified normalization procedure transforms F into actually
the same normal surface F ′ as the unmodified one. The only difference is that
we get a fewer number of trivial spherical components. Note also that if F is
a closed surface different from a sphere, then a connected component of F ′ is
homeomorphic to F .

Lemma 4.2.13. Suppose a handle decomposition ξ of a 3-manifold M corre-
sponds to an almost simple cellular spine P of M . Let F ⊂ M be a connected
incompressible surface and let a surface F ′ ⊂ M be obtained from F by the
modified normalization procedure described above. Then c(MF ) = c(MF ′) and,
if F is not a 2-sphere, c̄(MF ) < c̄(MF ′).

Proof. Let us analyze the behavior of c̄(MF ) under the modified normalization
moves.

1. Let us show that the modified tube compressions preserve c̄(MF ). Indeed,
denote by D the compressing disc of a tube and by D′ the disc bounded
by ∂D in F . Then the surface F ′ resulting from the tube compression can
be presented as F ′ = (F \ Int D′)∪D. Let W = (MF )D = (MF ′)D′ be the
manifold obtained from M by cutting along F ∪D = F ′ ∪D′. Then W is
obtained from MF by cutting along D, and simultaneously it is obtained
from M ′

F by cutting along D′, see Fig. 4.23. It follows from Lemma 4.2.10
that c̄(MF ) = c̄(W ) = c̄(MF ′).

2. Let us show that tunnel compressions also preserve c̄(MF ). Denote by D a
boundary compressing disc for F , which can be considered as a partition
wall inside a tunnel. Let W = (MF )D be the 3-manifold obtained from
MF by cutting it along D. Consider the surface F ′ obtained from F by
compressing along D. Then c̄(MF ) = c̄(W ) by Lemma 4.2.10, and c̄(W ) =
c̄(MF ′), since W and MF ′ are homeomorphic. It follows that c̄(MF ) =
c̄(MF ′), see Fig. 4.24.

3. Crossing out an inessential disc component of F preserves c̄(MF ) by
Lemma 4.2.10.

4. We may conclude that the first three modified normalization moves pre-
serve the extended complexity and hence the complexity of the manifold.
Consider the last normalization move (removing an inessential 2-sphere).



4.2 Cutting 3-Manifolds along Surfaces 187

Fig. 4.23. W is obtained from MF and MF ′ by cutting along discs

Fig. 4.24. W is homeomorphic to MF ′ and can be obtained from MF and by
cutting D

This move preserves c(MF ) by Corollary 4.2.11, but can decrease c̄(MF ).
Nevertheless, if F is not a sphere, then, thanks to the modification of the
first normalization move, spherical components do not appear at all. So
we do not need the last move at all. ��

Theorem 4.2.14. LetF be a connected incompressible surface in a 3-manifold
M . Then c(MF ) ≤ c(M). Moreover, if M is closed and contains no projective
planes, and F is not a 2-sphere, then c(MF ) < c(M).

Proof. Consider a handle decomposition of M corresponding to its minimal
almost simple spine P and a connected normal surface F ′ obtained from F by
the modified normalization procedure. By Lemma 4.2.13, c(MF ) = c(MF ′).
Therefore, the first conclusion of the theorem follows from Corollary 4.2.5.
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Let us prove the second. Let F ′
0 be a connected component of F ′ which

is homeomorphic to F . Consider a decomposition M = #n
i=1Mi of M into

the connected sum of prime summands. We can assume that P is obtained
from minimal almost simple spines Pi of Mi by joining them by arcs. Then,
since F ′

0 is normal and connected, there is j, 1 ≤ j ≤ n, such that F ′
0 is

contained in the union (Mj)0 of handles that correspond to the cells of Pj .
It cannot happen that Mj is S1 × S2, S1×̃S2 or L3,1, since these manifolds
contain no closed incompressible surfaces except S2. We cannot also have
Mj = RP 3, since by assumption M contains no projective planes. Since all
other closed manifolds have special minimal spines, we can assume that Pj is
special. Therefore, the only normal surface which is contained in (Mj)0 and
consists only of elementary discs of the type (3, 0), is a 2-sphere. It follows
that F ′

0 contains at least one elementary disc whose type is not (3, 0). By
Corollary 4.2.5, c(MF ′

0
) < c(M). ��

Theorem 4.2.15. Let F be a connected proper incompressible surface in a
3-manifold M such that ∂F = ∅. Then c̄(MF ) ≤ c̄(M). If, in addition, F is a
boundary incompressible surface not homeomorphic to a disc, then c̄(MF ) <
c̄(M).

Proof. Consider a handle decomposition of M corresponding to its minimal
almost simple spine P and a connected normal surface F ′ obtained from F by
the modified normalization procedure. By Lemma 4.2.13, c̄(MF ) = c̄(MF ′).
Therefore, the first conclusion of the theorem follows from Corollary 4.2.5. To
obtain the second conclusion of the theorem, we note that the above normal-
ization procedure preserves the property of a surface to be boundary incom-
pressible and contain a connected component which has nonempty boundary
and is not a disc. Therefore, F ′ contains such a component F ′

0. Applying
Corollary 4.2.8, we get c̄(MF ′

0
) < c̄(M). Since c̄(MF ) = c̄(MF ′) =≤ c̄(MF ′

0
),

we are done. ��

4.2.2 Triangulations vs. Handle Decompositions

As the reader might have observed, the triangulation and handle decompo-
sition versions of the normal surface theory are in a sense parallel. To make
the observation precise, we note that the triangulation version works with-
out any changes for closed manifolds equipped with singular triangulations.
Recall that by Corollary 1.1.27 one-vertex singular triangulations of a closed
manifold M correspond bijectively to special spines of M .

Let T be a one-vertex triangulation of a closed 3-manifold M and P
the corresponding dual special spine of M . Recall that P has a natural cell
decomposition into true vertices, edges, and 2-components. This decompo-
sition induces a handle decomposition ξP of M such that ξP has only one
handle of index 3, and balls, beams, and plates of ξP correspond natu-
rally to the true vertices, edges, and 2-components of P . Since P is dual
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Fig. 4.25. Elementary discs in ∆ correspond bijectively to the ones in the ball B∆

shown black

to T , ξP is dual to the handle decomposition ξT of M obtained by thickening
vertices, edges, and triangles of T to balls, beams, and plates, respectively, see
Chap. 1. The duality of the handle decompositions means that every index i
handle of ξT is considered as an index (3 − i) handle of ξP , 0 ≤ i ≤ 3.

Let T be a one-vertex singular triangulation of a closed 3-manifold M and
ξP the corresponding handle decomposition of M .

Theorem 4.2.16. The matching system for T (see Sect. 3.3.4) coincides with
the one for ξP (see Sect. 3.4).

Proof. We will think of ξP as being obtained from ξT by appropriate renum-
bering of indices of handles. Let ∆ be a tetrahedron of T . Denote by B∆ the
ball of ξP which is placed inside ∆. See Fig. 4.25, where B∆ is shown as a
black core of ∆. It is evident that any elementary disc for ∆ is normally iso-
topic to a disc that crosses B∆ along an elementary disc for B∆. This gives us
a one-to-one correspondence between the variables of the matching systems
for T and ξP . It means that the matching systems have actually the same
variables.

Similarly, each equation of the matching system for T appears by con-
sidering an arc l in a triangle having the endpoints in different sides of the
triangle. Each such arc l determines a strip in the corresponding beam of ξP

joining distinct islands, see Fig. 4.26. The strip is responsible for an equation
of the matching system for ξP . It is easy to see that these equations of the
matching systems for ξT and ξP are the same. This means that the systems
are identical. ��

Corollary 4.2.17. Let T be a one-vertex singular triangulation of a closed
3-manifold M and ξP the corresponding handle decomposition. Then any sur-
face in M normal with respect to T is normally isotopic to a surface normal
with respect to ξP . This correspondence determines a bijection between the sets
of the normal isotopy classes of normal surfaces in T and ξP , and respects
the summation.
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Fig. 4.26. Each arc in a triangle of T determines a strip in the corresponding beam
of ξP

Proof. Follows directly from Theorem 4.2.16. ��

Later on we will use Corollary 4.2.17 to switch from triangulations to
handle decompositions and back whenever we find it advantageous. Note that
for manifolds with boundary = ∅, S2 the matching systems are quite different.
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Algorithmic Recognition of S3

As we have mentioned earlier, recognizing irreducibility of 3-manifolds requires
the existence of a recognition algorithm for the sphere S3. Another motiva-
tion for constructing such an algorithm is the following. To the late 1970s
topologists elaborated methods for proving an algorithmic classification theo-
rem for Haken manifolds (though a complete proof appeared only in 1997, see
Chap. 6). These methods play a crucial role in solving many other problems
about Haken manifolds, but they do not work for manifolds which are not
sufficiently large. What can one do with them?

It would have been natural to begin expansion into the world of non-Haken
3-manifolds by considering the simplest non-Haken manifold S3. To that time
it was generally thought that the recognition algorithm for S3 does exist. This
view was supported by existence of two different algorithms for recognizing S3

in the class of manifolds of Heegaard genus 2 [48,127,128]. Also, Haken made
a short announcement on the existence of a general S3-recognition algorithm
(publication of the proof was prevented by its huge size).

In 1992 Rubinstein also announced the existence of an algorithm. His proof
was based on some ideas developed by him and Jaco, and never appeared in
full. Finally, in 1994 Thompson succeeded in realizing Rubinstein’s ideas in
a beautiful and purely topological proof [119] (see also [81]). The algorithm
is based on Rubinstein’s theorem. Its handle decomposition version states
that each special spine P of S3 possesses the following property: The handle
decomposition ξP corresponding to P contains a 2-normal 2-sphere with a
quadrilateral or an octagon. Most of this chapter is devoted to the development
of the necessary technique.

The above property enables us to construct an algorithm which succes-
sively decomposes each homology sphere into a connected sum of simpler
homology spheres until we get either a collection of spheres with one-point
spines or run into a homology sphere which does not possess that property and
hence is not S3. To complete the algorithm, we show that verifying whether
ξP contains a 2-normal 2-sphere with a quadrilateral or an octagon can be
done algorithmically.
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5.1 Links in a 3-Ball

5.1.1 Compressing Discs and One-legged Crowns

Let S be a 2-sphere in the interior of a 3-ball B. It divides B into two pieces,
the upper part, which contains ∂B, and the lower part. Anything in the upper
part lies above S, anything in the lower one lies below.

Definition 5.1.1. An arc α in B is called an upper arc for S, if the endpoints
of α lie on S and small initial and terminal segments of α lie above S; α is a
lower arc, if the segments lie below S.

We emphasize that an upper or a lower arc does not necessarily lie entirely
in the corresponding part of the ball. By a link in a 3-ball B we mean a finite
collection of disjoint proper arcs in B.

Definition 5.1.2. Let L be a link in B and S ⊂ Int B a 2-sphere which
intersects L transversally. A disc D ⊂ B is called an uppercompressing disc
for S (or, more precisely, for S ∪L) if ∂D can be represented as the union of
an upper arc α and an arc β ⊂ S such that D ∩ L = α and ∂α = ∂β. If the
same conditions hold, but α is a lower arc, then D is a lower compressing
disc. In both cases β is called the base of D.

We stress that no conditions are imposed on the possible intersections of
Int D with S. If S ∩ Int D = ∅, the D is called a strict (upper or lower)
compressing disc for S. An example of a nonstrict compressing disc for S ∪L
is shown in Fig. 5.1a.

Definition 5.1.3. An upper and a lower compressing discs for S are called
independent if the intersection of their base arcs either is empty or consists
of their common endpoint.

See Fig. 5.1b for examples of independent and dependent two-sided compress-
ing discs.

Fig. 5.1. (a) Nonstrict compressing disc; (b) independent and dependent compress-
ing discs
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Fig. 5.2. One can improve the leg by an isotopy

Now we make a digression and describe peculiar geometric objects called
one-legged crowns. A crown is a finite collection of disjoint arcs in the interior
of a 3-ball B. By a leg we mean the image G = λ(D2 × I) of an embedding
λ:D2×I → B such that G∩∂B = λ(D2×{1}). The discs ∂0G = λ(D2×{0})
and ∂1G = λ(D2×{1}) are called the lower and upper bases of the leg. Curves
of the form λ({∗} × I) are its generators.

Definition 5.1.4. Let C and G be, respectively, a crown and a leg in B such
that all the endpoints of C lie on ∂0G, and they are the only points in the
intersection of C with G. Then the union C ∪G is called a one-legged crown.

Consider two one-legged crowns on Fig. 5.2. They have the same crowns
but different legs. Each leg can be knotted and linked with the arcs of the
crown in arbitrary way. It is surprising, but any two such one-legged crowns
are isotopic (by an isotopy of (B, ∂B))!

Lemma 5.1.5. Let C∪G, C ′∪G′ be two one-legged crowns such that C∪∂0G
and C ′∪∂0G

′ are isotopic. Then there is an isotopy (B, ∂B) → (B, ∂B) taking
C ∪ G to C ′ ∪ G′.

Proof. Replacing C ∪ G by an isotopic one-legged crown (still denoted by
C ∪G), we may assume that ∂1G = ∂1G

′ and C ∪∂0G = C ′ ∪∂0G
′. It follows

from fairly general reasons borrowed from knot theory that C∪G can be trans-
formed into C ′ ∪G′ by isotopic deformations and moves (“crossing changes”)
of the following two types. Performing the first move, we pull a subarc l of
the crown through a portion λ(D2 × I1) of the leg G = λ(D2 × I), where I1

is a subinterval of I. The second move consists in pulling one portion of the
leg through another. Both moves are performed inside a small ball having no
other common points with the crown and the leg. See Fig. 5.3.

Claim. Each of the crossing change moves can be realized by an isotopy of
the one-legged crown.

Evidently, this is sufficient for proving the lemma. To prove the claim, we
start with a rigorous description of the first move.
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Fig. 5.3. Crossing changes

Fig. 5.4. Realizing the crossing change moves by isotopy

Let D be a disc in B such that D intersects the leg G = λ(D2 × I) in a
disc λ(D2 × {a}), D ∩L is an arc in ∂D, and D has no other common points
with C ∪G. Then the first move consists in replacing l by the complementary
arc l′ = ∂D \ Int l, see Fig. 5.4a.

Consider a sphere S ⊂ B such that S is parallel and very close to ∂B,
and intersects the leg G along a disc λ(D2 × {b}). If we look attentively at
Fig. 5.4b, we find easily a disc D1 ⊂ B which has the same boundary as D
and intersects C ∪G only in l. It consists of the tube λ(∂D2 × [a, b]) running
along the leg from D to S, and of the disc S \λ(D2×{b}). The existence of an
isotopy of C∪G that realizes the first move is now evident: We simply deform
l to l′ along D1 and extend this deformation by the identity to an isotopic
deformation of C ∪ G.

The case of the second move is similar. We may assume that the moving
portion of the leg is very thin, and operate with it in the same way. The only
difference is that the portion λ(D2 × [a, b]) of the leg running from D to S
should not contain the moving portion of the leg. This can be easily achieved
by choosing correctly which of the two leg portions participating in the move
should move. ��

Let C ∪ G ⊂ B be a one-legged crown. We associate with it the link
L ⊂ B consisting of the crown C and the generators of the leg G that join
the endpoints of the crown with ∂B. We will refer to C ∪G as to a one-legged
presentation of L.
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Definition 5.1.6. Let L be a link in B and S ⊂ Int B a 2-sphere which
intersects L transversally. We say that L admits an inverse leg (with respect
to S), if there is a one-legged presentation C∪G of L such that the lower base
∂0G of the leg is contained in S and the leg approaches S from below.

Recall that a link L = l1 ∪ l2 ∪ . . . ∪ lk in a 3-ball B is trivial if there are
disjoint discs D1,D2, . . . , Dk in B such that Di ∩ L = li is an arc in ∂Di and
Di ∩ ∂B is the complementary arc of ∂Di. Theorem 5.1.7 is the first step in
the construction of the recognition algorithm for S3.

Theorem 5.1.7. For any nontrivial link L in B there exists a transversal
2-sphere S ⊂ Int B such that the following holds:

1. S ∪ L admits an upper and a lower compressing discs.
2. S ∪ L admits no pair of independent compressing discs.
3. S ∪ L admits no inverse leg.

The proof is based on the concept of thin position of links [34]. It will take
Sect. 5.1.2 to develop the technique needed for the proof, which will be given
at the end of the section.

5.1.2 Thin Position of Links

Denote by B3 the standard unit ball in Euclidean space R3 centered at the
origin O. Let a link L ⊂ B3 consist of smooth proper arcs in B3 not passing
through the center. Consider a foliation F0 of B3 \ {O} with round spheres
Sr, 0 < r ≤ 1, centered at O (r is the radius of Sr). It is convenient to
divide these spheres into two types: transverse spheres, which intersect L
transversally, and singular spheres containing tangency points. We shall refer
to the spheres as level spheres, having in mind the height function h : B3 → R
given by the rule h(Sr) = r.

Definition 5.1.8. A link L ⊂ B3 is in general position (with respect to F0)
if the following holds:

1. There is only a finite number of singular spheres in F0.
2. Each singular sphere in F0 contains exactly one tangency point.
3. All the tangency points are minimum or maximum points with respect to

the restriction of h onto L. Here we mean local minima and maxima.

Remove from B3 all the singular spheres. We get a collection of 3-manifolds.
One manifold is an open ball, another one is homeomorphic to S2× [0, 1), and
all the other are homeomorphic to S2×(0, 1). The removal splits L into several
open and half-open arcs.

Definition 5.1.9. The total number w(L) of the arcs into which the singular
spheres decompose L is called the width of L.
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Fig. 5.5. Link in thin position of width 2+4+2=8

The width of a link is an unstable characteristic, since it may vary under
an isotopy of the link. However, if the isotopy is F0-regular, that is, at each
moment of time the link is in general position, then the width is preserved.
Moreover, the width is preserved under an F0-regular homotopy, when self-
intersections of L are allowed. The only requirement is that the minimum and
maximum points neither appear nor disappear, and never come to the same
level sphere.

Definition 5.1.10. A link L ⊂ B3 is in thin position if it has the minimum
width over all links isotopic to L.

An example of a one-component link in thin position is shown in Fig. 5.5.
Its width is 2+4+2=8.

Obviously, any link is isotopic to a link in thin position. Our next goal is
to investigate properties of links in thin position.

Lemma 5.1.11. Let L ⊂ B3 be a link, Sr ⊂ B3 a transverse level sphere, and
l ⊂ L an upper arc for Sr. Replace l by an upper arc l′ ⊂ B3 with the same
endpoints such that l′ has only one maximum point, this maximum point lies
below the global maximum of l, and the link L′ = (L \ l) ∪ l′ (not necessarily
isotopic to L) is in general position. Then w(L′) ≤ w(L).

Proof. Choose an upper arc l′′ ⊂ B3 such that ∂l′′ = ∂l, l′′ contains only
one maximum point, and the height of the maximum equals the height of the
global maximum of l. Then each singular sphere for the link L′′ = (L \ l)∪ l′′

is a singular sphere for L, and the number of arcs of L′′ between any two
neighboring singular spheres is no greater than the one of L between the
same spheres. It follows that w(L′′) ≤ w(L).

We now deform l′′ to l′ keeping the endpoints fixed so that at each moment
of time it has only one maximum point and this maximum moves strictly
downward, see Fig. 5.6. During the deformation l′′ may intersect the remaining
part of L′′. When the maximum point of l′′ passes through another singular
level sphere Sr′ of L′′, the width of L′′ is preserved if Sr′ contains a maximum
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Fig. 5.6. Pulling the unique maximum down does not increase the width

point of L′′, and decreases by four if it contains a minimum point. Hence
w(L′) ≤ w(L′′) and thus w(L′) ≤ w(L). ��

An analogous statement for lower arcs is also true. Indeed, let l ⊂ L and
l′ ⊂ B3 be two lower arcs with the same endpoints such that the only minimum
point of l′ is above the global minimum point of l. Then the replacement of l
by l′ does not increase the width.

We shall describe two methods for decreasing width. The first method
works when there are independent compressing discs.

Lemma 5.1.12. Let L ⊂ B3 be a general position link and Sr a transverse
level sphere. Suppose that Sr admits a pair of independent compressing discs
with respect to L. Then L is isotopic to a link of a smaller width.

Proof. Let Du be an upper compressing disc for Sr with the upper arc αu and
the base βu, and let Dl be an independent lower compressing disc with the
lower arc αl and the base βl. Then L is isotopic to the link L1 = L \ (αu ∪
αl)) ∪ βu ∪ βl (such an isotopy can be constructed by moving αu to βu and
αl to βl along Du and Dl, respectively). Slightly shift βu upward to an arc
α′

u having a single maximum point. Similarly, we shift βl a little downward
to an arc α′

l with a single minimum point. The shifts should be fixed at the
endpoints of the arcs.

Consider the link L′ = L\(αu∪αl))∪α′
u∪α′

l. It follows from Lemma 5.1.11
that w(L′) ≤ w(L). Since the shifts of βu upward and of βl downward are
small, we may assume that there are no singular level spheres between the
level of the maximum point of α′

u and the level of the minimum point of α′
l.

Then we can decrease w(L′) by lowering α′
u below Sr and raising α′

l above
Sr, see Fig. 5.7 for the case when α′

u and α′
l have no common points, and

Fig. 5.8 for the case they have a common endpoint. The maximum of α′
u and

the minimum of α′
l either change places or annihilate each other. In both cases

we get a link of a strictly smaller width. ��
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Fig. 5.7. The maximum and minimum change places

Fig. 5.8. The maximum and minimum annihilate each other

The second method of decreasing width works when there is an inverse leg.

Lemma 5.1.13. Assume that a general position link L ⊂ B3 admits an in-
verse leg with respect to a level sphere S. Then L is isotopic to a link of a
smaller width.

Proof. Let C ∪ G be a one-legged presentation of L such that the lower base
∂0G of the leg G is contained in S and approaches S from below. We choose
an arc of the crown C and move along it upward from one of its endpoints
to the first maximum point, which we denote by A. The part traversed will
be denoted by l. Let us now construct a new leg G′ with the same lower base
as follows. First, it must go down a little without intersecting singular level
spheres, simultaneously becoming very thin. Next, it turns upward to follow
very closely along l to the level of A. Finally, it goes monotonically upward
to ∂B3. Of course, the intersection C ∩ G′ must consist of the endpoints of
C. Joining these points with ∂B3 by generators of G′, we obtain a new link
L′ ⊂ B3 having the same crown and the new leg G′. Then it follows from
Lemma 5.1.11 that w(L′) ≤ w(L).

Let us prove that a transversal level sphere Sr, placed slightly below the
level of A, admits a pair of independent compressing discs. Indeed, the upper
compressing disc of this pair contains A, the lower one can be easily con-
structed by using the fact that G′ turns upward immediately and goes along
l. See Fig. 5.9.
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Fig. 5.9. Two independent compressing discs for Sr

It follows from Lemma 5.1.5 that L and L′ are isotopic, while Lemma 5.1.12
ensures the existence of an isotopy of L′ that strictly decreases its width. ��

Proof of Theorem 5.1.7. It is sufficient to prove the theorem for the standard
ball B3. Put L in thin position. Any link in B3 contains a minimum point,
and any nontrivial link contains at least one maximum point (with respect to
the height function h). It follows that there exists a transverse level sphere
S = Sr ⊂ B3 such that the first singular sphere Smax above S contains a
maximum point of L, while the first singular sphere Smin below S contains a
minimum point. We claim that S satisfies conclusions 1–3 of the theorem.

For proving conclusion 1 we note that a transverse sphere S′ immediately
below Smax admits an evident strict upper compressing disc containing the
unique maximum point of L in Smax. Since the portion of L between Smax and
S is the union of monotone arcs, there is an isotopy B3 → B3 that takes Smax

to S and is invariant on L. Thus S also admits a strict upper compressing disc.
The same argument shows the existence of a strict lower compressing disc.

Since L is in thin position, conditions 2 and 3 are true for every transverse
level sphere, in particular, for S (see Lemmas 5.1.12 and 5.1.13). ��

5.2 The Rubinstein Theorem

5.2.1 2-Normal Surfaces

2-Normal surfaces differ from normal once by allowing the boundary of any
elementary disc D in any tetrahedron ∆3 to intersect some edges twice. Every
normal surface is 2-normal, but not vice versa. Hence the class of 2-normal
surfaces is larger. Nevertheless, it possesses the same properties and thus
potentially is more useful. To give a rough idea which served as a motivation
for the introduction of 2-normal surfaces, consider an arbitrary (say, closed)
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surface F in a triangulated 3-manifold M . Let us try to normalize it by elimi-
nating returns, compressing tubes, and throwing away trivial 2-spheres as was
done in Sect. 3.3.3, see the proof of Theorem 3.3.21. Since the edge degree is
decreasing, we end up with a surface F ′ that realizes a “local minimum” of
the edge degree. It may happen that F ′ is an interesting (i.e., informative)
normal surface, but it may also happen that F ′ is either empty or a union of
vertex spheres (small normal spheres surrounding vertices).

Assume that M contains no interesting surfaces which are normal. Then
the idea of trapping other interesting surfaces consists in keeping balance
between the latter two possibilities, i.e., between falling down to the empty
set and to a collection of vertex spheres. Surfaces that realize such “unstable
local maxima” of the edge degree may also be interesting and informative. As
a rule, they can be realized by 2-normal surfaces (but not by normal ones).

Definition 5.2.1. Let T be a triangulation of a 3-manifold M , may be sin-
gular. A closed surface F is called 2-normal if F is in general position with
respect to T and the following holds:

1. The intersection of F with every tetrahedron consists of discs. Those discs
are called elementary.

2. The boundary ∂D ⊂ ∂∆3 of every elementary disc D ⊂ ∆3 is normal and
crosses each edge at most twice.

The weakening of the restrictions on elementary discs results in the
appearance of three new octagonal elementary discs in each tetrahedron ∆3,
see Fig. 5.10. To prove this we recall that the set of fundamental curves in ∂∆3

consists of four triangles and three quadrilaterals, and any connected normal
curve l in ∂∆3 is either a triangle or a curve of the form mXi + nXj , where
Xi,Xj are quadrilaterals of different types, see Lemma 3.2.17. If l intersects
an edge twice, then m = n = 1 and by examining Xi + Xj we can conclude
that l is an octagon.

Now we are ready to formulate the Rubinstein Theorem.

Theorem 5.2.2. For every one-vertex singular triangulation of S3 there is a
2-normal 2-sphere S ⊂ S3 such that the intersection of S with at least one
tetrahedron contains either a quadrilateral or an octagon.

Fig. 5.10. Three octagons
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Remark 5.2.3. The original Rubinstein’s statement is stronger: There always
exists an almost normal sphere, i.e., a 2-normal sphere containing exactly
one octagon. For our version of the recognition algorithm this restriction is
superfluous (although can be easily satisfied), so we have dropped it.

It is also worth mentioning that the condition that the intersection of
S with all the tetrahedra contains at least one quadrilateral or octagonal
elementary disc means that not all elementary disc in S are triangles or,
equivalently, that S is not a small normal sphere surrounding the unique
vertex of the triangulation.

We have mentioned earlier that the handle decomposition approach to the
theory of normal surfaces is more flexible than the triangulation one. The
same is true for 2-normal surfaces, so we shall use it for proving the Rubin-
stein Theorem. We shall consider handle decompositions generated by special
spines. The theory of closed normal surfaces in such handle decompositions of
closed manifolds coincides with the one in one-vertex triangulations (see The-
orem 4.2.16 and Corollary 4.2.17). The same is true for the theory of 2-normal
surfaces. For reader’s convenience we give here a direct definition of a closed
2-normal surface in a handle decomposition. Let ξ be a handle decomposition
of a 3-manifold M .

Definition 5.2.4. A closed surface F ⊂ M is called 2-normal (with respect
to ξ) if the following conditions hold:

1. F does not intersect handles of index 3.
2. F intersects each plate D2×I in a collection of parallel sheets of the form

D2 × {∗}.
3. The intersection of F with each beam D2 × I has the form L × I, where

L is a finite system of disjoint simple proper curves in D2. Here the disc
D2 can be identified with the island D2 × {0} as well as with the island
D2 × {1}.

4. None of the systems L contains a closed curve.
5. None of the systems L contains an arc having both endpoints in the same

end of the same bridge (such arcs are called bridge returns).
6. The intersection of F with each ball consists of discs (these discs are called

elementary).
7. The boundary curve C of every elementary disc crosses each bridge at

most twice.

This definition is just Definition 3.4.1 restricted to closed surfaces with
only one difference: We allow the boundary curve of any elementary disc to
pass through any bridge twice. For the case of a handle decomposition ξP

generated by a special spine P we have one more type of elementary discs (in
addition to triangle and quadrilateral types (3,0) and (4,0), which appear in
considering closed normal surfaces, see Definition 4.2.2 and Lemma 4.2.3). The
boundary of such a disc (called an octagon) is shown in Fig. 5.11a; the other
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Fig. 5.11. (a) Octagon; (b) Octagon destroys the vertex

two octagons can be obtained by rotation by ±120◦. If two octagons have
different types and lie in the same ball, then their intersection is nonempty.
The same is true for any quadrilateral and any octagon contained in the same
ball. Note that cutting a ball of ξP along an octagon followed by collapsing
destroys the corresponding true vertex of P , see Fig. 5.11b.

As we have mentioned earlier, all basic facts of the theory of normal sur-
faces for a handle decomposition ξP corresponding to a special spine P of a
3-manifold M remain true for 2-normal surfaces. In particular, we have the
following:

1. Equivalence classes of 2-normal surfaces can be parameterized by admis-
sible solutions of the corresponding matching system. Here the matching
system for 2-normal surfaces is obtained in exactly the same way as for
normal ones, see Sect. 3.4. The only difference consists in the appear-
ance of three new types of elementary discs (octagons) in each ball of ξP .
A non-negative integer solution to the matching system is admissible, if
in each ball of ξP among quadrilateral and octagonal types of elementary
discs no more than one type has a positive coefficient.

2. The set of fundamental solutions is finite and can be constructed algo-
rithmically. It follows that the same is true for the set of fundamental
surfaces, which correspond to admissible fundamental solutions.

3. Cutting M along a closed 2-normal surface produces a new manifold MF

with a natural almost simple spine PF such that c(PF ) ≤ c(P ) (i.e.,
the number of the true vertices of PF is not greater than the one of
P ). Moreover, if F contains an elementary disc of the quadrilateral or
octagonal type, then c(PF ) < c(P ).

Let P be a special spine of a closed 3-manifold M and ξP the corresponding
handle decomposition of M .

We will prove the Rubinstein Theorem in the following equivalent
formulation.
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Theorem 5.2.5. For every special spine of the standard ball B3 there is a 2-
normal 2-sphere S ⊂ S3 such that the intersection of S with at least one ball
of the handle decomposition ξP contains either a quadrilateral or an octagon.

5.2.2 Proof of the Rubinstein Theorem

Let P be a special spine of the standard ball B3 and ξP the corresponding
handle decomposition. Consider a plate D2 × I of ξP . An arc l = {∗} × I,
where {∗} is a point on D2, is called a transversal arc of the plate.

Definition 5.2.6. A link L(ξP ) ⊂ M consisting of transversal arcs for the
plates (one arc for each plate) is called a dual link of the decomposition ξP .

Since each plate of ξP corresponds to an edge of the related one-vertex
triangulation T of S3, L is simply the union of truncated edges of T .

Example 5.2.7. Dual links for the Abalone and Bing House with two Rooms
(see Sect. 1.1.4) are shown in Fig. 5.12.

The example above shows that the dual links for the Abalone and Bing
house with two rooms are nontrivial. The same turned out to be true for all
special spines of B3.

Lemma 5.2.8. For any special spine P of B3 the dual link L(ξP ) is nontrivial.

Proof. In fact, we prove more: L = L(ξP ) contains no trivial component.
Assuming the contrary, choose a trivial component l. It is convenient to shift
it into the intersection of the corresponding plate with a ball of the decom-
position ξP , i.e., into a bridge b. Since l is trivial, there is a disc D ⊂ B3

bounded by l and an arc l1 ⊂ ∂B3 such that D has no other common points
with L ∪ ∂B3. Taking into account that D ∩ L = l and l ⊂ b, one can easily
see that D can be isotoped rel L so that afterward it is contained in the union
of all balls and beams.

Fig. 5.12. Dual links for the Abalone (left) and Bing house with two rooms (right)
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Fig. 5.13. Simplifying the intersection of D with the islands

Put D in general position with respect to the union U of all the islands.
By an innermost circle argument we can destroy all closed curves in D∩U by
an isotopy of D fixed on ∂D. Similarly, considering arcs in D ∩ U which are
outermost in D and cut out from D discs not containing l, we can eliminate all
arcs in D∩U by an isotopy of D which keeps l fixed and moves l1 along ∂B3.
Here we use the following evident observation: If an arc in the intersection of a
beam or a ball of ξP with ∂B3 is disjoint from all plates and has both endpoints
in the boundary of the same island, then it can be shifted by an isotopy to the
adjacent ball or beam, respectively, see Fig. 5.13. Here the assumption that P
is special is essential.

After the complete annihilation of D ∩ U , the disc D and the arc l1 will
entirely lie in the ball containing b and in a lake, respectively. But this is
impossible, since l1 joins different sides of b, which lie in the coasts of differ-
ent lakes. ��

Proof of Theorem 5.2.5. Let P be a special spine of B3 and ξP the corre-
sponding handle decomposition. By Lemma 5.2.8, the dual link L = L(ξP ) is
nontrivial.

It follows from Theorem 5.1.7 that there is a sphere S ⊂ B3 admitting an
upper and a lower compressing discs, but no pair of independent compressing
discs and no inverse one-legged crown. S is a prototype of the 2-normal sphere
which we are looking for.

Since S is transversal to L, it can be isotoped rel L so that afterward S
possesses the following property:

The intersection of S with each plate D2 × I consists of sheets of the type
D2 × {∗}.

In this section we will only consider spheres that satisfy this property, call
them seminormal, and deform them by seminormal isotopies of B3 that are
invariant on all the plates (not on all the handles, as for normal isotopies).
Put S in general position with respect to the islands.
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Fig. 5.14. Bridge return determines a compressing disc

The main problem is to eliminate bridge returns, i.e., arcs that lie in the
intersection of S with the islands and have both endpoints at the end of the
same bridge, see Item 5 of Definition 5.2.4. Let v be a bridge return which lies
in an island J and has the endpoints in a bridge b. We call v an upper return
if the arc lv ⊂ J ∩ b between the endpoints of v is an upper arc for S, and a
lower return if lv is lower.

The following two observations are crucial for the proof:

1. Each upper or lower bridge return v determines an upper or, respectively,
a lower compressing disc Dv for S, not necessarily strict.

2. S cannot have at the same time both an upper and a lower bridge returns.
The same is true for every sphere seminormally isotopic to S.

Let us comment on the observations. The disc Dv corresponding to a
bridge return v ⊂ J consists of the disc D′

v ⊂J bounded by v ∪ lv, and of the
straight strip D′′

v ⊂ D2 × I joining lv with the corresponding subarc αv of
{∗} × I ⊂ L. Here D2 × I is the plate containing lv, see Fig. 5.14. The arc
βv = ∂Dv \ Int αv is the base of Dv. Since S is embedded, any two bridge
returns v, w are disjoint. Therefore the base arcs βv, βw of the corresponding
compressing discs Dv,Dw are either also disjoint or have at most one common
endpoint. It follows that either both v, w are lower returns, or both upper.
Otherwise S ∪L would admit a pair of independent compressing discs, which
contradicts the choice of S.

It is convenient to set out the continuation of the proof in several steps.
We begin the elimination of bridge returns by setting out in the opposite
direction: we create bridge returns.

Step 1. S is admissibly isotopic to a sphere Sl having a lower bridge return
and to a sphere Su having an upper bridge return.

Indeed, consider a strict lower compressing disc D for S. Since D intersects
only one component of L, D can be forced out from all the plates except the
plate P1 = D2 × I containing the arc c = D ∩ L.Moreover, we can arrange
for D ∩ P1 to consist of a straight strip D′′ joining c with an arc α in the
boundary of an island J . The remaining part D′ of D is a disc in the union
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Fig. 5.15. Creating a return

of the balls and beams. Choose a seminormal isotopy of B3 that shrinks D′

along itself to a disc D1 ⊂ J . This isotopy takes S to a seminormal sphere Sl

that has a lower bridge return, see Fig. 5.15.
We may conclude that there is a seminormal isotopy taking Sl to S. Sim-

ilarly, starting with a strict upper compressing disc for S, we can construct a
seminormal isotopy of S to a sphere Su having an upper bridge return.

Step 2. There exists a seminormal sphere S′ ⊂ B which is seminormally
isotopic to S and has no bridge returns.

The idea consists in considering a family {ht(Sl), 0 ≤ t ≤ 1} of seminormal
spheres which joins Sl with Su. The existence of such a family follows from
Step 1. The sphere Sl = h0(Sl) has a lower bridge return, the sphere Su =
h1(Sl) has an upper one, and we never see simultaneously returns of both
types. It means that for some t the sphere ht(Sl) has no bridge returns at all.

The rigorous proof of this claim is based on the well-known fact that any
ambient isotopy of a manifold can be replaced by a composition of local shifts
so that each shift is fixed outside a small ball. We replace the isotopy ht taking
Sl to Su by a composition of seminormal local shifts such that the following
holds:

(a) Before and after each shift the displaced sphere is in general position with
respect to the islands.

(b) The support ball of each shift intersects no more than one island.

Consider the sequence Sl = S1, S2, . . . , Sn = Su of seminormal spheres
obtained from Sl by successive application of the shifts. There are two possi-
bilities: At least one of the spheres has no bridge returns (then we are done),
and there is i, 1 ≤ i ≤ n−1, such that Si has a lower bridge return while Si+1

has an upper one.
Consider the second possibility. By construction, Si and Si+1 coincide in

a neighborhood of any island, except possibly an island J . All bridge returns
of Si are lower, all returns of Si+1 are upper. Therefore Si can have bridge
returns only in J . Otherwise a lower bridge return of Si in any other island
J ′ would be an upper bridge return of Si+1, which is impossible. Indeed, the
local shift taking Si to Si+1 keeps a neighborhood of J ′ fixed and thus cannot
convert a lower arc into an upper one.
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To purify J from bridge returns, we present the beam containing J as
D2 × I such that J = D2 × {1}. Let D2 × [0, ε] be a small neighborhood in
the beam of the other island D2×{0}, which contains no bridge return. Then
we stretch linearly D2 ×{0} to the size of the whole beam D2 × I and extend
the stretching to a seminormal isotopy of B3. This isotopy converts Si into a
seminormal sphere S′ without bridge returns.

What should be done further to convert S′ into a 2-normal sphere? Let
us recall conditions 1–7 in Definition 5.2.4 of a 2-normal surface. The first
condition is fulfilled automatically, since there are no handles of index 3. The
second one holds since S′ is seminormal. Condition 5 is the outcome of the
previous step. It is very easy to get condition 3 by the same trick as above:
for each beam D2×I we stretch a small neighborhood D2× [0, ε] of the island
D2 × {0} to the size of the whole beam.

Our next goal is to prove a version of condition 7. The remaining conditions
4, 6 will be considered later.

Step 3. Any curve in the intersection of S′ with the boundary of any ball
B1 of ξP crosses each bridge at most twice.

This property slightly differs from condition 7, since we do not know yet
that S intersects tetrahedra along discs. Assuming the contrary , suppose that
a closed curve C in the intersection of S′ with ∂B meets a bridge b in more
than two segments. From these we choose three adjacent (with respect to the
bridge) segments I1, I2, I3 such that I2 lies between I1 and I3.

Let us choose a starting point and an orientation for C such that, traversing
C, we meet consequently the segments I1, I2, I3. For i = 1, 2, 3, denote by x−

i

and x+
i the initial and the terminal points of Ii with respect to the orientation.

Then the arc of C between x+
1 , x−

2 and the arc l1 in ∂b between the same points
bound a disc D1 in ∂B. Similarly, the arc in C between x+

2 , x−
3 and the arc

l2 in ∂b between the same points bound a disc D2 in ∂B.
The interiors of D1,D2 may contain lakes and thus intersect ∂B3. To avoid

this, we slightly push them rel ∂ into the interior of B3. Now we append to
each Di, i = 1, 2, a straight strip Ai contained in the plate D2 × I such that
∂Ai ⊂ li ∪ L ∪ S, see Fig. 5.16.

Fig. 5.16. Triple passing through a bridge produces independent compressing discs
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We get two independent compressing discs whose base arcs have a common
endpoint. This contradicts the property of S that it admits no independent
compressing discs.

Now we turn our attention to conditions 4 and 6 of Definition 5.2.4. Vio-
lating any of them means that S′ contains tubes. It is convenient to present
S′ as an interior connected sum of 2-normal spheres, i.e., as a collection
S1, S2, . . . , Sk of 2-normal spheres connected by thin tubes. The tubes may
be knotted and linked, and may run one inside another. More exactly, the
spheres S1, S2, . . . , Sk can be obtained from S′ in the following way. Replace
the intersection of S′ with every ball B of ξP by a collection of discs in B
having the same boundary. Remove all spheres that are contained in the union
of balls and beams. Then the remaining spheres form the collection.

Step 4. At least one of the spheres S1, S2, . . . , Sk contains either a quadri-
lateral or an octagon.

Assuming the contrary, suppose that all spheres S1, S2, . . . , Sk intersect
the balls of ξP only along triangle pieces. Then each Si is normally parallel to
∂B3. If k = 1, then S1 = S′, and we get a contradiction with an obvious fact
that a boundary-parallel sphere admits no upper compressing disc. Suppose
that k ≥ 2. Without loss of generality we can assume that S1 is the outermost
sphere from the collection. Let S2 be the next one. Consider the upper part
U of B3 with respect to S2. Present it as S2 × I such that U ∩ L = E × I,
where E is a finite set in S2. Let D be a disc in S2 that contains E and has
no common points with tubes, i.e., D ⊂ S′. Note that a small neighborhood
of D in the upper part U lies below S1. It follows that the cylinder D × I is
an inverse leg for S′, see Fig. 5.17. This contradiction concludes the proof. ��

Fig. 5.17. Appearance of an inverse leg
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5.2.3 The Algorithm

By a homology sphere we mean a closed manifold M with H1(M ;Z) = 0.
A homology ball is a manifold M ′ with ∂M ′ = S2 and H1(M ′;Z) = 0. It is
easy to show that all homology groups of a homology sphere or a homology
ball coincide with the corresponding groups of S3 and B3, respectively.

Lemma 5.2.9. Let ξP be a handle decomposition corresponding to a special
spine P of a homology sphere M . Assume that there is a 2-normal sphere
S ⊂ M containing at least one quadrilateral or octagon. Then there exist
homology spheres M1,M2 and their almost simple spines P1, P2 such that
M = M1#M2 and c(P1) + c(P2) < c(P ). The spheres Mi and the spines Pi

can be constructed algorithmically.

Proof. To construct M1,M2, we fill with 3-balls the boundary spheres of the
disconnected manifold MS = M ′

1 ∪ M ′
2 obtained from M by cutting along S,

see Fig. 5.18a. Almost simple spines P1, P2 of manifolds M1,M2, respectively,
can be constructed essentially in the same way as in the proof of Lemma 4.2.1.
Indeed, only one homology ball (say, M ′

2) contains the unique index 3 handle
D3 of ξP . Denote by M ′′

2 the manifold M ′
2 \D3, which has the same homology

groups as S2 × I. Since S is 2-normal, it decomposes the handles of ξP into
the handles of the same index. The new handles form a handle decomposition
of M ′

1 ∪ M ′′
2 . Collapsing balls, beams, and plates of the new decomposition

onto their core points, arcs, and 2-cells, respectively, we get an almost simple
spine P1 of M ′

1 (and hence of M1) and a spine P ′′
2 of M ′′

2 . Since S contains a
quadrilateral or an octagon, the number of true vertices of P1 ∪P ′′

2 is strictly
less than the one of P , see Corollary 4.2.5 for the case S is normal. If S contains
an octagon, then c(P1) < c(P2) since cutting along an octagon destroys the
corresponding true vertex, see Fig. 5.11.

To construct P2, it suffices to puncture a 2-component of P ′′
2 which sep-

arates the two boundary components of M ′′
2 . On the level of manifolds, this

removal is equivalent to connecting the boundary components by a thin solid
tube which intersects the 2-component in a meridional disc of the tube. This
operation converts M ′′

2 (i.e., the twice punctured M2) into M2 punctured only
once (i.e., into a homeomorphic copy of M ′

2). See Fig. 5.18b.

Fig. 5.18. (a) S decomposes M into two homology balls; (b) Removing the ball
and the tube preserves the homeomorphism type
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Clearly, puncturing a 2-component of P ′′
2 cannot increase the number of

true vertices. Therefore, c(P1) + c(P2) < c(P ). ��

Lemma 5.2.10. For any almost simple spine P of a homology sphere M there
exists an algorithmically constructible finite collection of homology spheres Mi

and their spines Pi ⊂ Mi, 1 ≤ i ≤ n, such that M is the connected sum of
M1, . . . ,Mn,

∑n
i=1 c(Pi) ≤ c(P ), and for each i the spine Pi is either a point

or special.

Proof. We shall follow the same procedure as in the proof of Theorem 2.2.4.
For convenience we replace M by a regular neighborhood M ′ of P in M .
Surely, M ′ is a homology ball.

Step 1. Suppose that P possesses a 1-dimensional part. Consider an arc
� in it and a proper disc D ⊂ M ′ which intersects � transversely at one point.
D decomposes M ′ into two homology balls, so that their boundary connected
sum is M ′. Their almost simple spines can be obtained by removing � from P .

Step 2. Assume that a 2-component of P contains a nontrivial orientation
preserving simple closed curve l. Shifting l into ∂M ′ and considering a disc
bounded by it in ∂M , we construct a disc D ⊂ M ′ such that D∩P = ∂D = l
and D cuts a 3-ball V out of M ′ \ P . If we penetrate into V through a hole
in another 2-component of the free boundary of V (see Fig. 2.6), we get after
collapsing a new almost simple spine of M ′ with the same or a smaller number
of true vertices.

Step 3. Performing Steps 1, 2 for as long as possible, we get a finite
collection of almost simple spines Pi of homology balls M ′

i so that each Pi

has no 1-dimensional part (i.e., is a simple polyhedron), and no 2-component
containing a nontrivial orientation preserving simple closed curve, 1 ≤ i ≤ n.
Every homologically trivial polyhedron possessing these properties is either a
point or special, see the discussion at the end of the proof of Theorem 2.2.4.

It remains to fill the boundaries of M ′
i with 3-balls and get the desired

collection Mi of homology spheres. By construction, M is the connected sum
of Mi. ��

Lemma 5.2.11. There is an algorithm which for a given homology 3-sphere
M , a special spine P of M , and the corresponding handle decomposition ξP ,
determines whether there is a 2-normal sphere in M containing a quadrilateral
or an octagon. If the answer is affirmative, then the algorithm constructs one
of those spheres.

Proof. First we show that if ξP has a 2-normal sphere S containing a quadri-
lateral or an octagon, then such a sphere can be found among fundamental
surfaces. Assume that S is not fundamental, i.e., can be written as a sum of
fundamental surfaces Fi, 1 ≤ i ≤ n (maybe with repetitions). Since each pro-
jective plane RP 2 in a 3-manifold contributes Z2 to the first homology group
and H1(M ;Z) = 0, no Fi can be RP 2. Note that the Euler characteristics of
Fi sum up to χ(S) = 2. Therefore, at least one of the surfaces Fi (say, F1)
must be a 2-sphere.
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We claim that F1 contains at least one quadrilateral or octagon. Suppose,
on the contrary, that all elementary discs in F1 have type (3,0). Let us shift
them by a normal isotopy very close to the lakes contained in the boundaries
of the corresponding balls of ξP such that afterward they compose a new
sphere F1 disjoint from the other surfaces Fi, i = 1. Then the surface

∑n
i=1 Fi

would be disconnected, a contradiction.
The desired algorithm can now be easily constructed by enumerating the

fundamental surfaces and testing each of them for being a 2-sphere with a
quadrilateral or an octagon. ��

The Algorithm

Let M be a closed 3-manifold we wish to test. We calculate the first homology
group. If it is nontrivial, then M is not a 3-sphere. If M is a homology sphere,
we construct a special spine P of M and perform the following two steps.

Step 1. Using Lemma 5.2.11, we look for a 2-normal sphere in M con-
taining a quadrilateral or an octagon. If there are no such spheres, we stop.

Step 2. If such a sphere does exist, then we apply Lemmas 5.2.9 and
5.2.10 and present M as a connected sum of homology spheres Mi. At the
same time we construct spines Pi ⊂ Mi such that each Pi is either a point or
a special polyhedron.

We shall refer to Mi and Pi as the homology spheres and the spines of
the first level. Then for each homology sphere Mi such that Pi is special we
return to Step 1 and then to Step 2 taking Mi instead of M and Pi instead of
P . After processing all Mi and Pi we obtain a collection of homology spheres
and their spines of the second level, and so on. If all the spines of some level
are points, we stop.

Since each performing of Step 1 strictly decreases the complexity of the
spines, the process must end up after finitely many steps. If we stop at Step 1,
i.e., if some Mi contains no 2-normal sphere with a quadrilateral or an octagon,
then Mi (and hence M) is not S3 by the Rubinstein theorem. If all the spines
of some level are points, then all the corresponding homology spheres (and
hence M) are homeomorphic to S3.
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Classification of Haken 3-Manifolds

6.1 Main Theorem

The following is known as the recognition problem for 3-manifolds [39]:

Does there exist an algorithm to decide whether or not two given 3-manifolds
are homeomorphic?

Why is this problem important? The reason is that the positive answer
would imply the existence of algorithmic classification of 3-manifolds. Indeed,
one can easily construct an algorithm which enumerates step by step all com-
pact 3-manifolds. Using it, we could create a list M1,M2, . . . of all 3-manifolds
without duplicates by inquiring if each manifold has been listed before. It is
this list that is considered the classifying list of 3-manifolds. Certainly, this is
a classification in a very weak sense. The knowledge that the classifying list
exists would not help to answer many possible questions, for example, whether
the Poincaré conjecture is true. It is the proof of the existence that is impor-
tant, since the search for it would inevitably lead one to deeper understanding
of the intrinsic structure of 3-manifolds. Our goal is to present a positive so-
lution of the above problem for Haken manifolds (see Definition 4.1.28). This
case is especially important, since it implies a positive solution of the algo-
rithmic classification problem for knots, one of the most intriguing problems
of low-dimensional topology.

Recall that a knot is a circle embedded in S3. Two knots are equivalent,
if there is an isotopy S3 → S3 taking one knot to the other. Knots are usually
presented by knot diagrams, i.e., by generically immersed plane curves so that
at each crossing point it is shown which strand goes over.

If we know at advance that two given knots are equivalent, then one can
rigorously prove the equivalence by performing Reidemeister moves that trans-
form one diagram into the other. If the knots are distinct, then sometimes one
can prove that by calculating certain polynomial or numerical invariants. But
what can we do, if both potentially infinite procedures (comparing the knots
via Reidemeister moves or via knot invariants) do not stop? The right strategy
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consists in considering knot complement spaces, which happen to be Haken
manifolds. The only exception is the complement of the unknot, which is a
solid torus and hence boundary reducible.

This chapter is devoted to the proof of the following theorem and corol-
laries.

Theorem 6.1.1 (The Recognition Theorem). There is an algorithm to
decide whether or not two given Haken 3-manifolds are homeomorphic.

To keep the proof within reasonable limits we restrict ourselves to consid-
ering orientable 3-manifolds. The proof for the nonorientable case is essentially
the same. The only difference is that sometimes one has to consider additional
special cases.

Corollary 6.1.2. There exists an algorithmic classification of Haken
3-manifolds.

Remark 6.1.3. The conditions that 3-manifolds under consideration must
be irreducible and boundary irreducible are of technical nature. Both state-
ments remain true for compact 3-manifolds which can be decomposed into
connected sum of irreducible sufficiently large factors. The factors can be
boundary reducible, but this is not an obstacle, since any irreducible suffi-
ciently large 3-manifold can be decomposed into a boundary connected sum
of Haken manifolds and handlebodies.

Corollary 6.1.4. There exists an algorithmic classification of knots and links
in S3.

Formally speaking, this corollary does not follow from Theorem 6.1.1. Of
course, for the case of knots one can apply the Gordon and Luecke result that
knots are determined by their complements [37]. But links are not determined
by their complements, see an example in Fig. 6.1. Nevertheless, any link is
determined by its complement equipped with the boundary pattern consisting
of meridians of the link components. Therefore, Corollary 6.1.4 follows from
Theorem 6.1.6, a stronger version of Theorem 6.1.1.

Fig. 6.1. Complements of two distinct 3-component links are related by a 2π-twist
along the twice punctured disc N2
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Definition 6.1.5. An irreducible boundary irreducible 3-manifold (M,Γ ) with
boundary pattern is called Haken, if either M is sufficiently large or Γ = ∅
and M is a handlebody, but not a 3-ball.

In case Γ = ∅ this definition coincides with Definition 4.1.28. If Γ = ∅ and
M is not a handlebody, then M is sufficiently large by Corollary 4.1.27. So the
only essential new aspect here is that we include into the set of Haken man-
ifolds boundary irreducible handlebodies with boundary patterns. It follows
that any irreducible boundary irreducible 3-manifold (M,Γ ) with nonempty
boundary pattern is Haken, provided that M is not a 3-ball.

Theorem 6.1.6. There is an algorithm to decide whether or not for two given
Haken 3-manifolds (M,Γ ), (M ′, Γ ′) with boundary patterns there is a home-
omorphism (M,Γ ) → (M ′, Γ ′) taking Γ to Γ ′.

Since boundary patterns appear already at the first step of the proof of
Theorem 6.1.1, this generalization introduces no additional difficulties.

The history of the positive solution of the recognition problem for Haken
3-manifolds is very interesting. In 1962, Haken suggested an approach for
solving the problem [39]. However, this approach contained a conceptual gap.
Thanks to efforts of several mathematicians, by the early 1970s a crucial
obstacle was singled out, and, when in 1978 Hemion overcame it [41], it was
broadly announced that the problem has been solved [58,131]. Later on many
topologists used extensively this result.

Nonetheless, trying to understand in detail how the theorem was proved,
I discovered that there was no written complete proof at all. All papers and
even books [42, 58, 59, 131] devoted to this subject were written according to
the same scheme: they contained informal descriptions of Haken’s approach,
of the obstacle, of Hemion’s result, and the claim that these three ingredi-
ents provided a proof. But there has never appeared a paper containing a
proof! I undertook an investigation of the question and came to the following
conclusions:

1. The statement that the recognition problem for sufficiently large 3-
manifolds is algorithmically solvable is true.

2. There is another obstacle of a similar nature that cannot be overcome by
the same tools as the first one.

3. It can be overcome by using an algorithmic version of Thurston’s theory
of surface homeomorphisms that appeared only in 1995 in [9].

Thus for more than 20 years mathematicians relied on an unproven theorem.
In this chapter we prove the theorem. The proof is based on the idea of
Haken. We also make use of different ideas of Jaco, Johannson, Neumann,
Shalen, Thurston, Waldhausen, and others. Nevertheless, the proof presented
here is self-contained with the following two exceptions: We do not reprove
the results of Hemion [41] and Bestvina and Handel [9] mentioned earlier.
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6.2 The Waldhausen Theorem

In this section we prove the classical theorem of Waldhausen [130]. The proof
is based on the notion of hierarchy (a specific decomposition of 3-manifolds),
which is an important tool for solving many other problems. It is this approach
that the proof of the Recognition Theorem is based on. We will demonstrate
how the approach works by considering first its 2-dimensional version and
then the 3-dimensional one. Nevertheless, neither the statement nor the proof
of the Waldhausen Theorem will be used in the sequel.

It is well known that two closed surfaces are homeomorphic if and only if
they are homotopy equivalent. Moreover, it suffices to require that they have
isomorphic homology groups. This follows from the classification theorem for
closed surfaces. For surfaces with boundary the above statements are not
true. For example, the punctured torus and the disc with two holes, which
are distinct surfaces, can be collapsed onto a wedge of two circles and hence
are homotopy equivalent. Nevertheless, if a homotopy equivalence f :F → F ′

between compact surfaces takes ∂F to ∂F ′ homeomorphically, then it can be
deformed to a homeomorphism. A similar result for irreducible sufficiently
large 3-manifolds is known as the Waldhausen Theorem.

Theorem 6.2.1 (Waldhausen). Let f :M → M ′ be a homotopy equivalence
between orientable irreducible 3-manifolds such that either ∂M, ∂M ′ are non-
empty and f takes ∂M onto ∂M ′ homeomorphically, or M,M ′ are closed
and M ′ is sufficiently large. Then f can be deformed to a homeomorphism
M → M ′ by a homotopy fixed on ∂M .

There is a more general form of this theorem. For the sake of completeness
we present here its statement, but since the proof is based on the same ideas
(see [43,130]), we omit it.

Theorem 6.2.2. Let M,M ′ be irreducible 3-manifolds which are sufficiently
large. Suppose that f : (M,∂M) → (M ′, ∂M ′) is a map such that f∗:π1(M) →
π1(M ′) is injective and such that for each connected component F of ∂M the
induced map (f|F )∗:π1(F ) → π1(F ′) is injective, where F ′ is the connected
component of ∂M ′ containing f(F ). Then there is a homotopy ft: (M,∂M) →
(M ′, ∂M ′) such that f0 = f and at least one of the following holds:

1. f1:M → M ′ is a covering map;
2. M is an I-bundle over a closed surface, and f1(M) ⊂ ∂M ′;
3. M ′ (hence also M) is a solid torus or a solid Klein bottle and f1:M → M ′

is a branched covering whose branch set is a circle.

If f|F :F → F ′ is already a covering map, we may assume that ft is fixed
on F .

The significance of the Waldhausen Theorem can hardly be overestimated.
It belongs to the class of theorems that relate different categories, in our case
the homotopy category and the topological one. For example, the famous



6.2 The Waldhausen Theorem 217

Poincaré Conjecture stating that any homotopy sphere is a topological one
has the similar nature.

In a certain sense, the proof of the Waldhausen Theorem shows one rea-
son why the Poincaré Conjecture and other problems for closed 3-manifolds
containing no nontrivial incompressible surfaces are so difficult: there is no ap-
propriate surface to start the decomposition process. We cannot get around
this obstruction by puncturing the manifold, since this the punctured manifold
is reducible.

6.2.1 Deforming Homotopy Equivalences of Surfaces

We start by recalling two well-known facts that will be used in the sequel.

Lemma 6.2.3. Let f :M → M ′ be a map between connected manifolds of the
same dimension n. Suppose that at least one of the following holds:

1. M,M ′ are closed and orientable, and the degree deg (f) of f is ±1 ∈ Z
2. M,M ′ are closed and nonorientable, and deg (f) is 1 ∈ Z2

3. ∂M = ∅ and f takes ∂M onto ∂M ′ homeomorphically.

Then the induced homomorphism f∗:π1(M) → π1(M ′) is surjective.

Proof. After an appropriate deformation of f we may assume that f takes an
n-ball B ⊂ M onto an n-ball B′ ⊂ M ′ homeomorphically and f(M \ Int B) =
M ′ \ Int B′. Indeed, in the first two cases this is a well-known property of
degree one maps. In the last case it suffices to deform f so that afterwards
it takes a collar of ∂M onto a collar of ∂M ′ homeomorphically, and choose
B,B′ inside the collars.

Choose basepoints x0 ∈ Int B and x′
0 = f(x0) ∈ Int B′. Let C ′ ⊂ M ′ be a

simple loop with endpoints at x′
0. We may assume that f is transversal to C ′.

Then the 1-dimensional submanifold f−1(C ′) contains a unique simple closed
curve C passing through x0. It follows that the element [C ′] of π1(M ′, x′

0)
corresponding to C ′ lies in f∗(π1(M,x0)). Since π1(M ′, x′

0) is generated by
simple loops with endpoints at x′

0, f∗ is surjective. ��

Now we turn our attention to a 2-dimensional analogue of the Waldhausen
Theorem.

Proposition 6.2.4. Let f :F → F ′ be a homotopy equivalence between com-
pact connected surfaces that takes ∂F onto ∂F ′ homeomorphically. Then there
exists a homotopy of f which keeps f|∂F fixed and deforms f to a homeomor-
phism.

Proof. Case 1. F, F ′ have nonempty boundaries. Let C ′ be the union of dis-
joint proper arcs C ′

1, C
′
2, . . . , C

′
n in F ′ which cut up F ′ into a disc D′. The

existence of such arcs follows from the classification theorem for compact sur-
faces: arcs possessing the required property can be easily found on every model
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Fig. 6.2. Three arcs which cut up the Klein bottle with two holes into a disc

surface. For example, if F ′ is a Klein bottle with two holes, then one can take
the three arcs shown in Fig. 6.2. In general, exactly 1−χ(F ′) arcs are needed,
since each cut along an arc increases the Euler characteristic by one.

We may assume that f is transversal to C ′. Then the inverse image f−1(C ′)
is a proper 1-dimensional submanifold of F . It consists of n disjoint proper
arcs C1, C2, . . . , Cn that are mapped, respectively, onto C ′

1, C
′
2, . . . , C

′
n, and

maybe of several closed components. Deforming f by a homotopy, we may
assume that f takes each Ci to C ′

i homeomorphically.
The arcs Ci cut F into a connected surface D, whose boundary is homeo-

morphic to ∂D′ and thus is a circle. Since the Euler characteristics of F and
F ′ are equal, so are the ones of D and D′. It follows that D is a disc. There-
fore, we can apply the cone construction to take D onto D′ homeomorphically.
The homeomorphism F → F ′ thus obtained is homotopic to f . Indeed, since
∂F ′ = 0 and thus π2(F ′) = 0, there is no obstruction for constructing a
homotopy between two maps of D into F ′.

Case 2. F, F ′ are closed. Since f is a homotopy equivalence, deg (f) =
±1 if F, F ′ are orientable, and deg (f) = 1 ∈ Z2 if not. So we may assume
that f takes a disc D ⊂ F onto a disc D′ ⊂ F ′ homeomorphically and
f(F \ Int D) = F ′ \ Int D′. To deform the map f|(F\Int D): (F \ Int D) →
(F ′ \ Int D′) to a homeomorphism, we use the same method as in Case 1.
The method does work, since the surfaces F \ Int D, F ′ \ Int D′ have the
same Euler characteristic, and we have used only this property in the proof
of Case 1. ��

6.2.2 Deforming Homotopy Equivalences of 3-Manifolds to
Homeomorphisms

The proof of the 3-dimensional Waldhausen Theorem is based on the same
idea as the above proof of the 2-dimensional one: we decompose the target
3-manifold M ′ into balls and then try to transfer the decomposition to the
source 3-manifold M . There appear three essential differences.

First, instead of arcs, we take surfaces F ′
i in M ′. Their inverse images

Fi ⊂ M can be much more complicated, for example, have larger genera.
To overcome this obstacle, we take surfaces F ′

i that are incompressible. Then
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we compress their inverse images Fi by deforming the map f :M → M ′, thus
converting them to incompressible surfaces. Since f is a homotopy equivalence,
this allows us to deform f so that afterwards it takes Fi to F ′

i homeomorphi-
cally.

Second, in general it is not possible to choose F ′
i so that they are disjoint

and cut up M ′ into a ball. An iterative procedure is needed here. The boundary
curves of surfaces appearing at each next step must be allowed to be contained
in the union of the previous surfaces.

Third, we should prove that this inductive procedure of decomposing M ′

into one or several 3-balls is finite.
To realize this program, we need several preparatory lemmas. The first two

of them allow us to compress the inverse image of an incompressible surface
at the expense of a homotopy deformation of the map.

Lemma 6.2.5. Let M be a connected irreducible 3-manifold with infinite
π1(M). Then π3(M) = 0.

Proof. Since M is irreducible, π2(M) = 0 by the Sphere Theorem [106].
Therefore, the universal cover M̃ of M is a simply connected manifold with
π2(M̃) = π2(M) = 0. Since π1(M) is infinite and hence M̃ is noncompact,
we have H3(M ;Z) = 0. By the Hurewicz Theorem, π3(M̃) = H3(M̃ ;Z) = 0.
It follows that π3(M) = 0. ��

Lemma 6.2.6. Let f :B0 → M ′ be a map of a 3-ball into a connected irre-
ducible 3-manifold M ′ with infinite π1(M ′). Suppose that f is transversal to
a two-sided proper incompressible surface F ′ ⊂ M ′ such that F ′ = S2 and
F = f−1(F ′) is a proper tube (i.e., a proper annulus) in B0. Then there is a
map f1:B0 → M ′ homotopic to f via a homotopy fixed on ∂B0 such that f1 is
also transversal to F ′ and the surface F1 = f−1

1 (F ′) is the union of two discs.
In other words, F1 is obtained from F by compressing along a meridional disc
of the tube.

Proof. Choose two disjoint proper discs D1,D2 ⊂ B0 which are bounded by
∂F . They decompose B0 into three balls B1, B2, B3. Since F ′ is injective,
the curves f(∂D1), f(∂D2), which bound singular discs f(D1), f(D2) in M ′,
bound singular discs D′

1,D
′
2 in F ′. We define f1:B0 → M ′ by setting f1 = f

on ∂B0, sending D1,D2 to D′
1,D

′
2, and extending that map to the interiors

of B1, B2, B3 by taking them into M ′ \F ′. This is possible, since F ′ = S2 and
thus the manifold obtained by cutting M ′ along F ′ is irreducible and hence
has trivial π2. Evidently, the extension may be chosen so as to be transversal
to F ′. By construction, the surface F1 = f−1

1 (F ′) is the union of discs D1,D2

and the maps f and f1 coincide on ∂B0. Since π3(M ′) = 0 by Lemma 6.2.5,
f, f1 are homotopic rel ∂. See Fig. 6.3. ��

Lemma 6.2.7. Let f :M → M ′ be a homotopy equivalence between compact
connected irreducible 3-manifolds with infinite fundamental groups such that
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Fig. 6.3. Compressing the inverse image of F

Fig. 6.4. Improving f to f1

either M is closed or f takes ∂M onto ∂M ′ homeomorphically. Then for any
proper connected two-sided incompressible surface F ′ ⊂ M ′, F ′ = S2, there
exist a surface F ⊂ M and a homotopy ft:M → M ′ such that:

1. f0 = f and ft is fixed on ∂M
2. f1 takes a regular neighborhood N(F ∪ ∂M) onto a regular neighborhood

N(F ′ ∪ ∂M ′) homeomorphically
3. The restriction of f1 onto Q = M \ Int (N(F ∪ ∂M)) is a homotopy

equivalence of Q onto Q′ = M ′ \ Int (N(F ′ ∪ ∂M ′)), see Fig. 6.4

Proof. Step 1: Improving f so that f−1(F ′) is an incompressible surface.
If ∂M = ∅, then after an appropriate deformation of f by a homotopy, we may
assume that f is a homeomorphism on collars of ∂M, ∂M ′ and is transversal
to F ′. If M ′ is closed, then deg f = 1. Therefore, we can assume that there is
a ball B′ ⊂ M ′ such that:

1. B′ ∩ F ′ is a disc
2. B = f−1(B′) is a ball in M and f takes B onto B

′
homeomorphically

3. f(M \ Int B) = M ′ \ Int B′



6.2 The Waldhausen Theorem 221

If the surface G = f−1(F ′) is compressible, we choose a compressing disc
D ⊂ M for G. Consider a ball neighborhood B0 of D such that G ∩ B0 is a
tube. By Lemma 6.2.6, one can deform f by a homotopy fixed outside B0 so
that afterwards the inverse image of F ′ is obtained from G by compressing
G along D. Doing so as long as possible, we convert G to an incompressible
surface.

Step 2: Improving f so that it takes a component of f−1(F ) onto F ′

homeomorphically. Let F be a connected component of G that contains either
a component of ∂G (if ∂G = ∅) or the disc B0 ∩ G (if G is closed). Since
F is injective by Lemma 3.3.5 and f∗:π1(M) → π1(M ′) is an isomorphism,
(f|F )∗:π1(F ) → π1(F ′) is also injective. On the other hand, it is surjective
(see Lemma 6.2.3). It follows that the map f|F :F → F ′ is a homotopy equiva-
lence, which by Proposition 6.2.4 can be deformed to a homeomorphism. This
deformation can be easily extended to a regular neighborhood of F and then
to the whole M . The resulting map M → M ′ is still denoted by f .

Step 3: Eliminating superfluous components of G = f−1(F ′). Any other
connected component F1 of G is a closed incompressible surface. The map
(f|F1)∗:π1(F1) → π1(F ′) is also injective. Therefore, if ∂F ′ = ∅, then the
group π1(F1), being a subgroup of the free group π1(F ′), is free. The same is
true in the case ∂F ′ = ∅, since F1 is mapped into F ′ \ Int (B′ ∩ F ′). We can
conclude that F1 is a 2-sphere, since S2 is the only closed surface having a
free fundamental group.

By irreducibility of M , the sphere F1 bounds a ball V in M . If F ′ is
closed, then V cannot contain B, since otherwise it would contain F , which is
impossible. Let V1 be a slightly larger ball whose boundary does not intersect
G. Then the singular sphere f(∂V1) lies in M ′ \ F ′. Since M ′ is irreducible
and F ′ = S2 is incompressible, M ′ \ F ′ is also irreducible and hence π2(M ′ \
F ′) = 0. Therefore we may redefine f on V1 by taking it into M ′ \ F ′. This
transformation eliminates F1.

Doing so for as long as possible, we get a new map f1:M → M ′ such
that f−1

1 (F ′) = F , f1(M \ F ) = M ′ \ F ′, and the restriction of f1 onto
F ∪ ∂M is a homeomorphism F ∪ ∂M → F ′ ∪ ∂M ′. Obviously, f1 can be
improved so that afterwards f1 takes a regular neighborhood N(F ∪ ∂M)
onto a regular neighborhood N(F ′ ∪ ∂M ′) homeomorphically and f1 takes
Q = M \ Int N(F ∪ ∂M) onto Q′ = M ′ \ Int N(F ′ ∪ ∂M ′).

Step 4: Why is Q → Q′ a homotopy equivalence? To prove the last con-
clusion of the lemma, consider a connected component Qj of Q, which is
mapped onto the corresponding component Q′

j of Q′. By Lemma 6.2.3, the
map Qj → Q′

j induces a surjection π1(Qj) → π1(Q′
j). On the other hand, since

F is incompressible and two-sided, the embedding Qj ⊂ M induces an injec-
tion π1(Qj) → π1(M). It follows that π1(Qj) → π1(Q′

j) is also an injection
and hence an isomorphism. Taking into account that πi(Qj) = πi(Q′

j) = 0 for
i = 2, 3, we conclude that the map Qj → Q′

j is a homotopy equivalence. ��
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Lemma 6.2.8. Let M be an orientable connected 3-manifold. Suppose that
a connected component F0 of ∂M is not S2. Then M contains an orientable
proper incompressible boundary incompressible surface F such that ∂F = ∅ is
homologically nontrivial in ∂M , i.e., [∂F ] = 0 in H1(∂M ;Z).

Proof. Since F0 is an orientable surface of genus ≥ 1, it contains a pair c1, c2

of oriented simple closed curves such that their intersection number λ(c1, c2)
is not 0. Let α1, α2 ∈ H1(M ;Z) be the corresponding elements of the first
homology group of M . We claim that the order of at least one of them is
infinite.

Suppose that, on the contrary, there exist integers k1, k2 = 0 such that
k1α1 = k2α2 = 0. Then there exists orientable surfaces F1, F2 ⊂ M such that
for i = 1, 2 the boundary ∂Fi consists of ki parallel copies of ci. Of course,
F1, F2 can be singular, i.e., have self-intersections. The intersection F1 ∩ F2

consists of arcs with endpoints in ∂F1 ∩ ∂F2 such that the endpoints of each
arc have opposite signs. Therefore, λ(k1α1, k2α2) = k1k2λ(α1, α2) = 0, which
contradicts our assumption that λ(c1, c2) = 0.

Suppose that the order of α1 is infinite. Then we do the same as in the proof
of Lemma 4.1.29: we construct a surjective homomorphism ϕ:H1(M ;Z) → Z
such that ϕ(α1) = 0. All homotopy groups πi(S1), i > 1, are trivial, so there
is no obstruction for realizing ϕ by a map f :M → S1.

Now, let us take a point a ∈ S1 such that f is transversal to a. Then
G = f−1(a) is a proper orientable surface in M such that λ(c1, ∂G) = 0.
If G is compressible or boundary compressible, we compress it as long as
possible. Since the compressions preserve the property λ(c1, ∂G) = 0, the
resulting surface F is incompressible, boundary incompressible, and [∂F ] = 0
in H1(∂M ;Z). ��

Definition 6.2.9. Let M be a compact 3-manifold. By an hierarchy in M we
mean a finite sequence M = P0 ⊂ P1 ⊂ . . . ⊂ Pn of 2-dimensional subpolyhe-
dra of M such that the following holds:

1. P0 = ∂M and each Pi splits M into connected 3-manifolds called cham-
bers;

2. Pn is a skeleton of M , that is, all the chambers of Pn are 3-balls.

Example 6.2.10. Let M0 = S1 × S1 × [0, 1]. Then a hierarchy of M0 can be
constructed as follows:

1. P0 = S1 × S1 × {0, 1}
2. P1 = P0 ∪A0, where A0 = S1 ×{∗}× [0, 1] is an annulus. P1 has only one

chamber, which is a solid torus
3. The terminal skeleton P2 is obtained from P1 by inserting a meridional

disc D into the chamber. ��

Proof of Theorem 6.2.1. The proof is based on the same idea as the proof of
Proposition 6.2.4. We begin with constructing a hierarchy P ′

0 ⊂ P ′
1 ⊂ . . . ⊂ P ′

n

for M ′ as follows:
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1. P ′
0 = ∂M ′ if ∂M ′ = ∅ and P ′

0 = S2 is an incompressible surface in M ′ if
M ′ is closed (here is the only place where we use the assumption that M ′

is sufficiently large);
2. If 0 ≤ i ≤ n − 1, then P ′

i+1 is obtained from P ′
i by adding a surface F ′

i ,
where F ′

i is a proper incompressible boundary incompressible two-sided
nonseparating subsurface of a chamber Q′

j of P ′
i such that [∂F ′

i ] = ∅.

Let us prove that the process of erecting new “partition walls” F ′
i described

in item 2 above is finite and ends up with a skeleton of M ′. For that we use the
total extended complexity (

∑
j c(Qj),

∑
j c1(Qj),

∑
j c2(Qj)) of the chambers,

where the sums are taken over all chambers of P ′
i . Here c(Qj), c1(Qj), c2(Qj)

denote, respectively, the minimal possible numbers of true vertices, triple cir-
cles, and 2-components of almost simple spines of Qj , see Definition 4.2.7.
By Theorem 4.2.15, the erection of each next partition wall strictly decreases
the extended complexity of the corresponding chamber or, if the wall is a
disc, preserves it. Therefore, since each chamber admits only a finite number
of nontrivial disc compressions, we complete the process in a finite number of
steps. All chambers of the last polyhedron P ′

n will automatically be 3-balls,
since otherwise the process could be continued by Lemma 6.2.8.

Our next step consists in transferring the hierarchy from M ′ to M . Arguing
by induction, we assume that there is a polyhedron Pi ⊂ M such that f takes
a regular neighborhood N(Pi) onto a regular neighborhood N(P ′

i ) homeo-
morphically and the restriction of f onto each chamber of Pi is a homotopy
equivalence onto the corresponding chamber of P ′

i . The base i = 0 of the
induction is given by the assumption if ∂M = ∅, and by Lemma 6.2.7 if M is
closed. Applying the same lemma to the surface F ′

i and the chambers Q′
j ⊃ F ′

i ,
Qj = f−1(Q′

j), we perform the inductive step.
We have proved that f can be deformed so that afterwards f takes a regular

neighborhood N(Pn) onto a regular neighborhood N(P ′
n) homeomorphically

and the restriction of f onto each chamber Qj of Pn is a homotopy equivalence
onto the corresponding chamber Q′

j of P ′
n. Since all Q′

j are 3-balls and all Qj

are irreducible, they are also 3-balls. Therefore, Pn is a skeleton of M . Our
last step consists in replacing each map f|Qj

:Qj → Q′
j by a homeomorphism

of the balls. ��

Remark 6.2.11. The original concept of a hierarchy (see [39,57,130]) differs
from the one introduced above. The former referred to the process of split-
ting M along incompressible surfaces until one obtains a collection of 3-balls.
If two 3-manifolds possess identical hierarchies, then they are homeomorphic.
We prefer to insert surfaces into M instead of splitting M along them. The
advantage is that (under appropriate restrictions, see the next section) there
is no need to compare whole hierarchies. It suffices to compare the terminal
skeletons: if the skeletons are homeomorphic, then so are the manifolds.
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6.3 Finiteness Properties for Surfaces

We are now turning to the proof of the Recognition Theorem (Theorem 6.1.1).
To start with, we state it in a more specific form, which suggests the direction
the proof will take.

6.3.1 Two Reformulations of the Recognition Theorem

Recall that a 2-dimensional polyhedron is simple, if it has the simplest possi-
ble singularities: triple lines and true vertices (crossing points of triple lines).
A simple polyhedron is special, if all its 2-components are 2-cells, and there
is at least one true vertex (see Definitions 1.1.8 and 1.1.10). Let P be a sim-
ple subpolyhedron of a compact 3-manifold M . Then it decomposes M into
connected 3-manifolds called chambers.

Definition 6.3.1. A subpolyhedron P of a 3-manifold M is called a simple
skeleton of M if P is special, contains ∂M , and all the chambers of P are
3-balls. In case M is equipped with a boundary pattern, we will always assume
that the pattern is transversal to SP ∩ ∂M .

A simple skeleton can be viewed as a special spine of many times punctured
M , one puncture for each chamber.

Lemma 6.3.2. Let P, P ′ be simple skeletons of 3-manifolds M,M ′, respec-
tively. Assume that the boundaries of M,M ′ contain no 2-spheres. Then
any homeomorphism h : P → P ′ can be extended to a homeomorphism
H : M → M ′.

Proof. By Lemma 1.1.15, h can be extended to a homeomorphism H ′ between
regular neighborhoods of the skeletons. Since the rest of M consists of balls,
one can easily extend H ′ to a homeomorphism H:M → M ′. ��

Lemma 6.3.2 allows us to give the following reformulation of the Recogni-
tion Theorem.

Theorem 6.3.3. There is an algorithm that, to any Haken manifold M , assi-
gns a finite set P(M) of simple skeletons of M such that P(M) is character-
istic in the following sense: Haken manifolds M,M ′ are homeomorphic if and
only if P(M) and P(M ′) consist of the same number of pairwise homeomor-
phic polyhedra.

Remark 6.3.4. Taking liberties with the language, one can state the conclu-
sion of Theorem 6.3.3 as follows: M = M ′ ⇐⇒ P(M) = P(M ′). The part
⇐ of the theorem is easy: if a polyhedron P ∈ P(M) is homeomorphic to a
polyhedron P ′ ∈ P(M ′), then, according to Lemma 6.3.2, M is homeomorphic
to M ′.
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Let us prove that the Recognition Theorem (Theorem 6.1.1) and
Theorem 6.3.3 are equivalent. Indeed, Theorem 6.3.3 reduces the recognition
problem for Haken 3-manifolds to the one for 2-dimensional polyhedra. Since
the latter is easy, Theorem 6.3.3 implies the Recognition Theorem. On the
other hand, if the Recognition Theorem is true, then the characteristic set of
simple skeletons of a given Haken manifold M can be constructed as follows.

For each k = 1, 2, . . . we enumerate one after another all the special poly-
hedra with k true vertices (the number of such polyhedra being finite, see
Chap. 2). Each subsequent polyhedron P we subject to the following tests:

1. Is P a spine of a 3-manifold N?
2. Is the manifold N̂ , obtained from N by filling all the spheres on ∂N with

3-balls, a Haken manifold?
3. Is N̂ homeomorphic to M?

The verification of the first condition is easy, see Theorem 1.1.20. Also,
if the answer is affirmative, then N and N̂ can be effectively constructed.
If N̂ satisfies the second condition (that can be checked algorithmically, see
Sect. 4.1.4), we apply our assumption that the Recognition Theorem is true
to verify the last condition.

Since M is Haken, we inevitably meet the first polyhedron that withstands
the above tests. Selecting all other polyhedra that have the same number of
true vertices and also withstand the tests, we get the collection P(M) of simple
skeletons of M with the minimal possible number of true vertices. Since the
construction depends only on the topological type of M , the set P(M) is
characteristic.

The theorem below is apparently the most precise reformulation of the
Recognition Theorem.

Theorem 6.3.5. There is an algorithm that associates with every Haken 3-
manifold M its triangulation T (M) in such a way that T (M) is canonical
in the following sense: two Haken manifolds are homeomorphic if and only if
their associated triangulations are combinatorially isomorphic.

Let us prove that Theorem 6.3.5 is also equivalent to the Recognition
Theorem. Indeed, It is not difficult to verify whether or not two given simplicial
complexes are combinatorially isomorphic. Thus Theorem 6.3.5 implies the
Recognition Theorem. On the other hand, if the Recognition Theorem is true,
then the canonical triangulation can be constructed as follows.

First, we introduce an order on the set of all 3-dimensional simplicial
complexes. To do that, one can number the vertices, edges, triangles, and
tetrahedra of a given complex K and represent K by the incidence matrices.
Next, we combine the rows of the matrices into one line, obtaining a large
integer that encodes the complex. Finally, among all such numbers we take
the minimal number n(K) (the minimum is taken over all possible numberings
of simplices of K). The natural ordering of the numbers n(K) induces the fixed
ordering of simplicial complexes.
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Then we take one by one all the 3-dimensional simplicial complexes in the
fixed ordering. The first complex whose underlying space is homeomorphic
with a given Haken manifold M can be taken as the canonical triangulation
T (M). Here we have used our assumption that the Recognition Theorem
is true. Since the construction of T (M) depends only on the homeomor-
phism type of M , homeomorphic 3-manifolds have combinatorially isomorphic
canonical triangulations.

To prove the Recognition Theorem, reformulation 6.3.3 is most convenient.
As we have mentioned earlier, we will only prove it for orientable 3-manifolds
and allow the manifolds to be equipped with boundary patterns.

We describe the first steps towards constructing the characteristic set
P(M).

Definition 6.3.6. A simple subpolyhedron P of a 3-manifold (M,Γ ) with
boundary pattern is called admissible if the following holds:

1. P contains ∂M , and the singular graph SP of P is transversal to Γ ;
2. Every 2-component α ⊂ Int M of P is incompressible and separates two

different chambers.
3. Every 2-component α ⊂ ∂M is incompressible as a surface with the pattern

Γ ∩ α. It means that α admits no clean essential compressing discs.

Let P be an admissible subpolyhedron of a Haken 3-manifold (M,Γ ) and
Qj a chamber of P . We shall consider Qj as a 3-manifold with boundary
pattern ∆j = (SP ∪ Γ ) ∩ ∂Qj , where SP is the singular graph of P . Since
(M,Γ ) is boundary irreducible and all the 2-components of P are incompress-
ible, (Qj ,∆j) is boundary irreducible. It may happen that Qj is a reducible
manifold, but only when at least one connected component of P lies inside a
3-ball in M . We will always take care that this situation does not occur.

A fairly general method for constructing admissible subpolyhedra can be
described as follows. Let (Qj ,∆j) be a chamber of an admissible subpoly-
hedron P ⊂ (M,Γ ). Consider a connected two-sided proper incompressible
surface F ⊂ (Qj ,∆j). Certainly, we assume that ∂F is in general position
with respect to ∆j . It means that ∂F contains no vertices of ∆j and inter-
sects the edges transversally. If F does not separate Qj , we replace F by two
parallel copies of F . Then P ∪F is an admissible subpolyhedron of M . In some
sense, P ∪F is obtained from P by inserting a new partition wall into Qj . The
wall consists of F or of two parallel copies of F , if F does not separate Qj .

Definition 6.3.7. A finite sequence ∂M = P0 ⊂ P1 ⊂ . . . ⊂ Pn of admissible
subpolyhedra of a Haken 3-manifold (M,Γ ) is called an admissible hierarchy
of (M,Γ ), if Pn is a simple skeleton of M .

One can construct an admissible hierarchy just as in the proof of Theorem
6.2.1. We start with ∂M or with a closed incompressible surface if M is closed
(such a surface exists, since M is sufficiently large). Then, subsequently apply-
ing the above construction, we erect new and new partition walls until getting
a simple skeleton of M .
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This methods always works. For example, one can construct an admissible
hierarchy for S1×S1×[0, 1] as follows (compare with Example 6.2.10). We take
P0 = S1 ×S1 ×{0, 1}, P1 = P0 ∪ 2A, and P2 = P1 ∪ 2D1 ∪ 2D2, where 2A are
two parallel copies of the annulus A = S1 ×{∗}× [0, 1], and 2D1, 2D2 are two
pairs of parallel meridional discs of the two solid torus chambers of P1 ∪ 2A.
Certainly, the boundaries of the discs must cross the boundaries of the annuli
transversally (to be sure that P2 is simple).

Sometimes, we will also use a more general method for constructing
admissible hierarchies: we will allow to insert into chambers not only surfaces,
but also more complicated 2-dimensional polyhedra.

Denote by P∞(M) the set of the terminal skeletons of all possible hier-
archies of M considered, say, modulo self-homeomorphisms of M . Evidently,
P∞(M) possesses the characteristic property P∞(M) = P∞(M ′) ⇔ M = M ′

(compare with Theorem 6.3.3). A difficult problem is that the set P∞(M)
thus defined can be infinite, which completely destroys our hope to use it for
the algorithmic recognition of 3-manifolds.

6.3.2 Abstract Extension Moves

Fortunately, we do not have to take terminal skeletons of all hierarchies.
It turns out that one can subject the process of erecting partition walls to
such strong restrictions that for any Haken manifold we get a finite set of
terminal skeletons which still is characteristic.

Let us formulate this idea more explicitly. We will describe below a few
transformations of admissible subpolyhedra, which are called extension moves.
Let P be an admissible subpolyhedron of a Haken 3-manifold (M,Γ ). Each
extension move transforms P into a larger admissible subpolyhedron, which
is called an extension of P . Two extensions of P are equivalent, if there is an
admissible (i.e., taking Γ to Γ ) homeomorphism M → M taking one extension
to the other. The following properties must hold:

C1.For any admissible subpolyhedron P , the number of equivalence classes of
all possible extensions of P is finite

C2.There is an algorithm to construct a finite set E(P ) of extensions of P
which contains at least one representative of each equivalence class

C3.Any sequence P0, P1, P2, . . ., in which each subsequent polyhedron Pi+1 is
an extension of Pi, must be finite

C4.If P does not admit extension moves, then it must be a simple skeleton
of M .

Proof of Theorem 6.3.3 (Under the Assumption that the Extension moves
have Already been Described). Let (M,Γ ) be a given Haken manifold.
Denote by P0 the boundary of M (if M is closed, P0 is empty). Let us apply
to P0 step by step extension moves. Doing so, at each step we multiply the
pair (M,Pi) in several number of exemplars to be able to realize separately all
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possible extensions from the set E(Pi). Properties C3, C2 guarantee that this
branched process stops and that it is algorithmic. It follows from properties
C1, C4 that we get a finite set of simple skeletons of M . This set can contain
duplicates, i.e., homeomorphic skeletons (for example, at each step the set
E(Pi) may contain more than one representative of each equivalence class).
Removing the duplicates, we get a finite set P(M) of simple skeletons of M .

To show that P(M) is characteristic, we consider two Haken manifolds
M,M ′. Since at every step we apply all the extension moves (up to equiva-
lence), the result of our branched process depends only on the homeomorphism
type of the manifold. Therefore, if M,M ′ are homeomorphic, then P(M) and
P(M ′) must consist of the same polyhedra. On the other hand, if P(M) and
P(M ′) contain at least one pair of homeomorphic polyhedra, then M and M ′

are homeomorphic by Lemma 6.3.2. ��

6.3.3 First Finiteness Property and a Toy Form of the Second

It follows from the previous section that our only concern with proving
Theorem 6.3.3 is to define extension moves satisfying C1–C4. How can we
do that? Unfortunately, a whole bunch of preparatory work will be neces-
sary. We will not actually define extension moves until Sect. 6.5, but will in
the meantime establish three crucial finiteness properties for surfaces in 3-
manifolds. The first property tells that any Haken manifold contains only
a bounded number of disjoint incompressible boundary incompressible con-
nected surfaces which are pairwise nonparallel (Theorem 6.3.10). The second
property (Theorem 6.3.17) states that, up to a strong equivalence relation, any
simple Haken manifold contains only finitely many incompressible boundary
incompressible surfaces of bounded complexity. The third property is valid for
all (not necessarily simple) Haken manifolds. It tells us that the number of
equivalence classes of incompressible tori and annuli is finite for any Haken
manifold, see Theorem 6.4.44.

We begin by describing an idea of getting properties C1–C3. As above,
we consider each chamber as a 3-manifold with boundary pattern. As was
indicated before, we wish to extend our polyhedra by adding surfaces. Let us
look closer at this strategy keeping in mind our needed properties C1–C3.

It is natural to choose at each step of the construction of an hierarchy only
surfaces that are minimal in certain sense. There are many different notions
of the complexity of a proper surface F in a 3-manifold (M,Γ ) with boundary
pattern. All of them involve the Euler characteristic of F and #(∂F ∩Γ ), the
number of points in the intersection of ∂F with the pattern. One can take any
linear combination of −χ(F ) and #(∂F∩Γ ) with positive coefficients, or order
pairs of these numbers lexicographically. We prefer the simplest combination.

Definition 6.3.8. Let F be a proper surface in a 3-manifold (M,Γ ). Then
γ(F ) = −χ(F )+#(∂F∩Γ ) is called the pattern complexity (or, in abbreviated
form, p-complexity) of F .
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We emphasize that the pattern complexity does not depend on triangula-
tion of M and is preserved under admissible isotopy of the surface. In this res-
pect it drastically differs from the edge degree introduced in Definition 3.3.16.

The following proper connected surfaces have nonpositive p-complexity:

1. Spheres, projective planes, and clean discs (they have negative p-com-
plexity)

2. Clean annuli, clean Möbius bands, tori, Klein bottles, and proper discs
whose boundary circles cross the pattern at exactly one point (they have
p-complexity 0).

One can easily verify that all other proper connected surfaces in 3-
manifolds with boundary pattern have positive p-complexity.

We would like to use inserting p-minimal surfaces as extension moves. By a
p-minimal surface we mean a surface having the smallest possible p complexity
(among all surfaces of a given class). Let’s see what our chances for obtaining
properties C1–C3 are. Consider property C3. The following lemma is of use
here. Recall that two proper surfaces F0, F1 in a 3-manifold (M,Γ ) are called
admissibly parallel, if there is an embedding ϕ:F0 × [0, 1] → M such that the
following holds:

1. ϕ(F0 × {i}) = Fi, i = 0, 1
2. ϕ(∂F0 × [0, 1]) ⊂ ∂M and ϕ(∂F0 × [0, 1]) ∩ Γ consists of segments of the

type ϕ({∗} × [0, 1]).

Lemma 6.3.9. Let T be a triangulation of a 3-manifold (M,Γ ) with boundary
pattern such that Γ is the union of some edges. Suppose that F is a finite
family of disjoint two-sided proper connected normal surfaces in (M,Γ ) such
that no two of them are admissibly parallel. Then the number of surfaces in
F is not greater than 10t, where t is the number of tetrahedra in T .

Proof. The surfaces intersect the tetrahedra of T along discs called patches.
There are two types of patches: triangles and quadrilaterals. We call a patch
P good, if it lies between two parallel patches of the same type. Otherwise P
is bad. Since every tetrahedron contains at most 10 bad patches (see Fig. 6.5),
the total number of bad patches does not exceed 10t.

Fig. 6.5. Bad patches are shown black
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Assume that F contains more than 10t surfaces. Then at least one of them
(denote it by F ) consists only of good patches. The surfaces from F decompose
the tetrahedra of T into pieces. Consider the union U of all pieces which are
adjacent to F . Since F contains no bad patches and is two-sided, U can be
identified with F × I such that F × {1/2} = F , the surfaces F × {0, 1} also
belong to F , and (F×I)∩Γ consists of edge segments of the type {∗}×I. This
means that F contains even three admissibly parallel surfaces F ×{0, 1/2, 1},
a contradiction. ��

Now we are ready to prove the following First Finiteness Property for
surfaces in 3-manifolds, which is useful for proving property C3.

Theorem 6.3.10 (First Finiteness Property). Let (M,Γ ) be an irre-
ducible boundary irreducible 3-manifold with boundary pattern. Suppose that
F is a finite set of disjoint two-sided proper connected surfaces in (M,Γ ) such
that no surface is a sphere, a clean disc, or a trivial semi-clean disc, all the
surfaces are incompressible and boundary incompressible, and no two of them
are admissibly parallel. Then the number of surfaces in F does not exceed
n(M,Γ ), where n(M,Γ ) is a constant depending only on the topological type
of (M,Γ ).

Proof. Triangulate M such that Γ is the union of edges and take n(M,Γ ) =
10t, where t is the number of tetrahedra of the triangulation. By Corol-
lary 3.3.25, the union of surfaces from F is admissibly isotopic to a normal
surface, and we can apply Lemma 6.3.9. It follows that F contains not more
than n(M,Γ ) surfaces. ��

Now we consider properties C1, C2. Let (M,Γ ) be a 3-manifold with
boundary pattern. For property C1, we will need two equivalence relations
on the set of all 2-dimensional polyhedra in (M,Γ ).

Definition 6.3.11. Two subpolyhedra P1, P2 of (M,Γ ) are equivalent, if there
exists a homeomorphism h: (M,Γ ) → (M,Γ ) such that h(P1) = P2. In other
words, equivalent polyhedra are related by an admissible homeomorphism of
(M,Γ ).

Definition 6.3.12. Two subpolyhedra P1, P2 of (M,Γ ) are strongly equiva-
lent, if there exists a homeomorphism h: (M,Γ ) → (M,Γ ) such that h(P1) =
P2 and the restriction of h onto ∂M is admissibly isotopic to the identity.

Evidently, strong equivalence occupies an intermediate position between
equivalence and admissible isotopy: admissibly isotopic polyhedra are always
strongly equivalent, and strongly equivalent polyhedra are always equivalent.
We point out that it makes sense to speak about equivalent and strongly
equivalent surfaces in (M,Γ ) (since they are polyhedra).

It would be very nice if we could prove the following version of what we
will call the Second Finiteness Property. Let (M,Γ ) be a Haken 3-manifold
and k a number. Then:
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1. The set of all incompressible boundary incompressible surfaces of com-
plexity ≤ k in (M,Γ ) consists of only finitely many strong equivalence
classes

2. Representatives of all the equivalence classes can be constructed algorith-
mically

Clearly, this version would imply properties C1, C2 for extension moves,
if we define them as insertions of p-minimal incompressible boundary in-
compressible surfaces. Unfortunately, this version is not true: the number of
inequivalent p-minimal surfaces can be infinite. For example, if we twist any
surface in (M,Γ ) along a clean annulus, we get another surface of the same
complexity. Therefore, consecutive twists can produce infinitely many distinct
surfaces of the same p-complexity.

We describe a toy situation when the Second Finiteness Property holds in
an evident manner, even in a stronger form.

Proposition 6.3.13. Let (M,Γ ) be an irreducible boundary irreducible tri-
angulated 3-manifold. Suppose that (M,Γ ) contains no normal surfaces of
p-complexity ≤ 0. Then for any k the number of admissible isotopy classes of
incompressible boundary incompressible proper connected surfaces in (M,Γ )
of p-complexity ≤ k is finite. Representatives of the classes can be constructed
algorithmically.

Proof. Since (M,Γ ) is irreducible and boundary irreducible, all 2-spheres in
M are isotopic and there are only finitely many clean discs (one disc for each
connected component of ∂M \ Γ ). The number of trivial semi-clean discs
is bounded by the number of edges of Γ and thus is also finite. By Corol-
lary 3.3.25, any other incompressible boundary incompressible proper surface
in (M,Γ ) is admissibly isotopic to a normal one. Therefore it can be pre-
sented as a linear combination of fundamental surfaces. Since all the funda-
mental surfaces have positive p-complexity and since p-complexity is additive,
only a finite number of linear combinations of fundamental surfaces have p-
complexity ≤ k. ��

The assumption of Proposition 6.3.13 never occurs. For example, any tri-
angulation contains either a normal sphere that surrounds an interior vertex
or a normal disc that cuts off a boundary vertex. Also, if C is a simple loop
consisting of interior edges such that no two consecutive edges belong to the
same triangle, then a thin torus running along C is also normal. Moreover,
(M,Γ ) can contain other surfaces of complexity 0 such as incompressible tori
or clean incompressible annuli. Nevertheless, the idea turns to be sufficient for
proving the Second Finiteness Property for 3-manifolds which are simple.

6.3.4 Second Finiteness Property for Simple 3-Manifolds

The next step in our preparatory work will be to prove the Second Finite-
ness Property for surfaces in simple 3-manifolds. This property is stated in
Theorem 6.3.17.
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Definition 6.3.14. Let (M,Γ ) be a Haken 3-manifold. An incompressible
annulus A ⊂ ∂M is called almost clean if ∂A ∩ Γ = ∅ and A ∩ Γ either
is empty or consists of several parallel copies of the core circle of A.

Definition 6.3.15. An incompressible torus T in a Haken 3-manifold (M,Γ )
is called essential if it is not parallel to a torus in ∂M . An incompressible
boundary incompressible clean annulus A in (M,Γ ) is called essential if it is
not parallel to an almost clean annulus in ∂M .

We emphasize that the property of a torus in a 3-manifold to be essential
does not depend on the boundary pattern.

Definition 6.3.16. An irreducible boundary irreducible 3-manifold (M,Γ )
with boundary pattern is called simple if it contains no essential tori and
annuli.

Theorem 6.3.17 (Second Finiteness Property). Let (M,Γ ) be an ori-
entable simple 3-manifold. Then for any number k there is an algorithmically
constructible finite set Fk of surfaces in (M,Γ ) such that any two-sided proper
incompressible boundary incompressible connected surface F of p-complexity
≤ k is strongly equivalent to a surface in Fk.

The proof is based on the same idea as the proof of Proposition 6.3.13.
We triangulate (M,Γ ) and present a given surface F as the sum of fundamen-
tal surfaces. Then F = G++G−, where G+, G− are the sums of the summands
that have positive, respectively, nonpositive p-complexity. To prove the theo-
rem, it suffices to show that, up to replacement of F by a strongly equivalent
surface, the number of summands of G− is bounded by a constant depending
only on k. Recall that surfaces of nonpositive p-complexity are:

1. Spheres, projective planes, clean discs (they have negative p-complexity)
2. Clean annuli, clean Möbius bands, tori, Klein bottles, and proper discs

whose boundary curves cross the pattern at exactly one point (they have
p-complexity 0)

In general, G− can contain arbitrary many exemplars of each type. Let us
analyze what happens in our situation.

We can quietly forget about projective planes, since the only irreducible
orientable 3-manifold containing RP 2 is the projective space RP 3, which con-
tains only two incompressible surfaces: RP 2 and S2. We can always assume
that F is minimal, i.e., it has the smallest edge degree among all general posi-
tion surfaces admissibly isotopic to F . In addition, 2-spheres, clean discs, and
discs intersecting Γ at exactly one point are irrelevant, since they cannot be
summands of F by Corollary 4.1.37. Moreover, the same corollary tells us that
those clean annuli and tori that are summands of F must be incompressible
and boundary incompressible.
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Fig. 6.6. (aa) F is not connected; (ab, ba) F is not minimal; (bb) F is not in
reduced form

To estimate their number (see Propositions 6.3.20 and 6.3.21), we need
two preparatory lemmas. Klein bottles and Möbius bands bring no additional
difficulties and will be considered directly in the proof of Theorem 6.3.17. The
proof of the following lemma is similar to that of Lemma 4.1.17.

Lemma 6.3.18. Let an incompressible boundary incompressible connected
normal surface F in a triangulated Haken manifold (M,Γ ) be presented in
the form F = G1 + G2. Assume that two annular patches A1 ⊂ G1, A2 ⊂ G2

bound a solid torus V ⊂ M such that V ∩ (G1 ∪ G2) = ∂V and two circles
l1, l2 that form ∂A1 = ∂A2 are longitudes of V . Then F is either not minimal
or not in reduced form.

Proof. We shall say that li, i = 1, 2, has type a, if the annuli A1, A2 are pasted
together by the regular switch of G1 ∪ G2 along li. Otherwise li has type b.
There are four possibilities: aa, ab, ba, bb, see Fig. 6.6. Let us consider them.

(aa) By the regular switch of G1 ∪ G2 along l1, l2 the patches A1, A2 are
glued together and give us a connected component of F which does not coin-
cide with F . That contradicts the assumption that F is connected.

(ab) and (ba) Let us replace the regular switch along the b-type circle li
by the irregular one. We get a new surface F ′ consisting of the boundary of a
solid torus and a surface F ′′ isotopic to F (the isotopy consists in deforming
a portion of F ′′ through the solid torus). Since F ′′ has a return, e(F ′′) can
be decreased by an admissible isotopy, see Remark 3.3.23. Therefore, F is not
minimal.

(bb) Replacing G by G′
1 = (G1 \A1)∪A2 and G2 by G′

2 = (G2 \A2)∪A1,
i.e., merely switching A1 and A2, we get another presentation F = G′

1 + G′
2

such that G′
i is admissibly isotopic to Gi, i = 1, 2, and G′

1 ∩ G′
2 consists of

fewer components than G1 ∩ G2. This means that G1 ∪ G2 is not in reduced
form. ��

Lemma 6.3.19. Let an incompressible boundary incompressible connected
normal surface F in a triangulated Haken manifold (M,Γ ) be presented in
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Fig. 6.7. B ∪ P1 determines a clean boundary compressing disc

the form F = G1 + G2. Assume that there are two patches P1 ⊂ G1, P2 ⊂ G2

such that

1. P1 is a clean quadrilateral disc with the sides l1, l2, l3, l4 such that l2, l4
are opposite and lie in ∂M while the interiors of the other two opposite
sides l1, l3 are in Int M .

2. Among the sides of P2 there are three consecutive sides l′1, l
′
2, l

′
3 such that

l′1 = l1, l
′
3 = l3, and l′2, l2 bound a biangle B in ∂M .

Then F is either not minimal or not in reduced form.

Proof. Suppose, on the contrary, that F is minimal and in reduced form.
Then P2, just as any other patch of G1 ∪ G2, is boundary incompressible by
Lemma 4.1.8. It follows that ∂B is clean, since otherwise we could slightly
shift B inward M (keeping l2 fixed and letting l′2 slide along P2) and get a
nontrivial boundary compressing disc for P2. Also, the disc B∪P1 determines
a clean boundary compressing disc D for P2: we simply shift B∪P1 inward M
such that l4 slides along ∂M while the remaining part of ∂D slides along P2,
see Fig. 6.7. Since D must be trivial, P2 is a clean quadrilateral. Therefore,
we can apply Lemma 4.1.17 and conclude that F is either not minimal or not
in reduced form, in contradiction with our assumption. ��

Now we are ready to investigate the role of clean annuli. Fortunately, they
contribute nothing.

Proposition 6.3.20. Let F be a two-sided incompressible boundary incom-
pressible connected surface in a triangulated Haken manifold (M,Γ ). Suppose
that F can be presented in the form F = G + A, where G = ∅ and A is a
normal clean annulus admissibly parallel to an almost clean annulus A′ in
∂M . Then F is not minimal.

Proof. Suppose, on the contrary, that F is minimal. We may assume that
G + A is in reduced form. By Lemma 4.1.8, G ∪ A has no clean disc patches
and all the patches of G∪A are incompressible and boundary incompressible.
Recall that two-sided incompressible patches are injective. Denote by V the
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Fig. 6.8. If every patch Pi ⊂ V is an annulus running from A to A′, then any choice
of switches leads to a disconnected surface

solid torus in M bounded by A and A′. Since π1(V ) = Z, each patch of G in V
has a cyclic fundamental group and thus is either an incompressible annulus
or a disc.

Let us investigate how the curves G ∩ A lie in A. Since there are no clean
disc patches, either

1. G ∩ A consists of core circles of A
2. G ∩ A consists of radial arcs, which join different boundary components

of A

Case 1. G ∩ A consists of core circles of A. Then all the patches of G
contained in V are incompressible annuli.

Case 1.1. Suppose that G ∩ V is the union ∪n
i=1Pi of annuli such that

each annulus Pi has exactly one boundary circle li in A and the other in A′.
The circles li decompose A into annuli Xi, 0 ≤ i ≤ n. Let l0, ln+1 be the
boundary circles of A. We may assume that the notation is chosen so that
each Xi, 0 ≤ i ≤ n, is bounded by li and li+1, see Fig. 6.8(left).

We will say that for 0 < i ≤ n the circle li is positive or negative, if the
regular switch at li pastes together respectively Pi and Xi or Pi and Xi−1.
It cannot happen that some li is positive while li+1 is negative. Otherwise F
would contain a connected component composed from Pi,Xi, and Pi+1.

Assume that l1 is negative. Then X0 and P1 also produce a connected
component of F . If l1 is positive, then so are l2, . . . , ln, and we get a con-
nected component Xn ∪ Pn of F again. All three possibilities of getting a
connected component of F are shown in Fig. 6.8(right). Since F is assumed
to be connected, Case 1.1 cannot occur.

Another proof of the same fact can be obtained by the following counting
argument. Cutting G ∪ A along all n circles in G ∩ A, we get a collection
of ≥ 2n + 2 connected surfaces (patches of G ∪ A). Each switch decreases
the number of components by 2 or less. Therefore, having performed all the
switches, we get a disconnected surface.

Case 1.2. Now we can assume that at least one annular patch P ⊂ G has
both boundary circles in A. Then P is parallel rel ∂P to an annulus P ′ ⊂ A.
By an outermost annulus argument, we may assume that P ′ is also a patch
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of G∪A, in other words, that the solid torus V ′ bounded by P ∪ P ′ contains
no other patches of G ∪ A. Since the boundary circles of P are longitudes of
V ′, we can apply Lemma 6.3.18 and get a contradiction.

Case 2. G∩A consists of radial arcs. Let us investigate how G intersects
A′. For any arc l in G ∩ A′ we have two possibilities:

1. l is a return, i.e., it has both endpoints in the same component of ∂A′. Since
the patch containing l is boundary incompressible, l does not intersect Γ .

2. l is radial, i.e., its endpoints lie in different components of ∂A′. Since
Γ ∩ A′ consists of core circles of A′, l crosses each circle, and since the
patch containing l is boundary incompressible, l crosses each circle exactly
once.

Case 2.1. There is a return. It is convenient to denote it by l′2. Denote
also by a1, a3 its endpoints, by l2 the arc in ∂A between them, by l1, l3 two
radial arcs in G ∩ A outgoing from a1, a3, and by l4 the arc in ∂A between
the other two ends of these arcs. Let P1 ⊂ A,P2 ⊂ G be the patches adjacent
to l2, l

′
2, respectively, see Fig. 6.9. Then P1 is bounded by l1 ∪ l2 ∪ l3 ∪ l4, and

we are in the situation of Lemma 6.3.19. According to this lemma, F is either
not minimal, or not in reduced form, a contradiction.

Case 2.2. Now we may assume that all the arcs in ∂G ∩ A′ are radial.
Then the union of those arcs and the radial arcs in G ∩ A consists either of
meridional circles of V or of circles that go several times along the meridian
and at least once along the longitude of V . In the first case all the patches of
G in V are meridional discs, in the second they are annuli.

Case 2.2.1. All the patches of G in V are meridional discs. Denote them
by P ′

0, P
′
1, . . . , P

′
n−1. Let li ⊂ G, 0 ≤ i ≤ n − 1, be the corresponding radial

arcs in A that cut P ′
i out of G. Then the arcs decompose A into quadrilateral

patches P0, P1, . . . , Pn−1. We can choose notation so that each Pi is adjacent
to li and li+1 (indices are taken modulo n). As in Case 1.1, we call li positive,
if the regular switch at li pastes P ′

i to Pi, and negative otherwise. It cannot

Fig. 6.9. Returns in A′ lead to parallel quadrilaterals
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Fig. 6.10. F = G + A is admissibly isotopic to G

happen that li is positive while li+1 is negative, since in that case F would
contain a component P ′

i ∪Pi ∪P ′
i+1 and hence be disconnected. Therefore all

li have the same sign and F is admissibly isotopic to the simpler surface G,
see Fig. 6.10, where all li are negative.

Case 2.2.2. All the patches of G in V are annuli. Let P be one of them.
Since any incompressible annulus in a solid torus is parallel to the boundary,
any part of P adjacent to A′ can be considered as a tunnel with radial base
arcs. The tunnel has an evident meridional disc, which does not intersect Γ
and hence is a nontrivial boundary compressing disc for P . Therefore case
2.2.2 does not occur. We have now considered all logical possibilities. ��

In contrast to annuli, addition of inessential tori can produce new surfaces,
but only finitely many of them up to strong equivalence. Recall that strong
equivalence of surfaces in (M,Γ ) is generated by homeomorphisms (M,Γ ) →
(M,Γ ) whose restrictions onto ∂M are admissibly isotopic to the identity, see
Definition 6.3.12.

Proposition 6.3.21. Let F be a connected two-sided incompressible bound-
ary incompressible normal surface in a triangulated Haken manifold (M,Γ ).
Suppose that a torus T0 ⊂ ∂M contains exactly m ≥ 0 boundary circles of F
and F can be presented in the form F = G + G′, where G = ∅ and G′ is the
union of n disjoint tori parallel T0. Let either m = 0 and n = 1 or m ≥ 1
and n ≥ m. Then there is a surface F ′ ⊂ (M,Γ ) such that F ′ is strongly
equivalent to F and has a strictly smaller edge degree.

Proof. We can assume that F is minimal (i.e., it has the smallest edge degree
among all admissibly isotopic surfaces) and that F = G + G′ is in reduced
form. Let T1, . . . , Tn be the tori forming G′. It is convenient to number them
from ∂M inwards so that Ti lies between Tj and T0 for all 0 < i < j.

Denote by V the submanifold of M bounded by Tn and ∂M . Then V
is homeomorphic with S1 × S1 × I. By Lemma 4.1.8, G ∪ G′ has no disc
patches, and all the patches of G ∪ G′ are incompressible. It follows that if
G crosses a torus Ti, then it crosses it along circles which are nontrivial and
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hence mutually parallel in Ti. The same lemma tells us that every patch of
G ∪ G′ contained in V is incompressible and hence is an annulus.

Case 1. Suppose that G contains an annular patch A ⊂ V such that
both boundary circles of A are contained in a torus Ti, 1 ≤ i ≤ n. Then A is
parallel rel ∂A to an annulus A′ ⊂ Ti. By an outermost annulus argument,
we may assume that A′ is a patch of Ti, in other words, that the solid torus
bounded by A ∪ A′ contains no other patches of G ∪ G′. Since the boundary
circles of A are longitudes of the torus, we can apply Lemma 6.3.18 and get a
contradiction with our assumptions.

Note that if m = 0, i.e., if ∂F ∩ T0 = ∅, then we always are in Case 1.
Hence for m = 0 the proof is finished. Further we will assume that m ≥ 1
and m = n (this is sufficient, since we can ensure this by replacing G by
G + Tm+1 + . . . + Tn.

Case 2. Suppose that we are not in Case 1, i.e., no annulus from G ∩ V
has both boundary circles in the same torus Ti. Then G ∩ V is the union of
annuli Aj , 0 ≤ j ≤ m − 1 such that each annulus Aj has one boundary circle
in ∂M , the other one in Tm. We assume that the annuli are numbered in a
cyclic order such that each Aj lies between Aj−1 and Aj+1 (indices are taken
modulo m).

The circles lij = Ti ∩ Aj decompose G′ and Aj , respectively, into annuli
Xij and Yij such that ∂Xij = lij ∪ lij+1 and ∂Yij = lij ∪ li+1j for 0 ≤ i, j <
m − 1, see Fig. 6.11. We will say that lij is positive, if the regular switch at
lij pastes together the annuli Yij and Xij−1, and negative, if it pastes Yij and
Xij . It cannot happen that for some j the curve l1j is positive while l1j+1 is
negative, otherwise F would contain a connected component composed from
Y0j ,X1j , and Y0j+1, which is shown in Fig. 6.11 as a dotted line. Therefore
all curves l1j have the same sign. Similar considerations show that all curves
l2j on T2 have the same sign as well as the curves on T3, . . . , Tm. So we may
divide the tori Tj into positive and negative. Further, any two neighboring
tori Tj , Tj+1, 1 ≤ j ≤ m − 1 have the same signs. Otherwise F would not be
minimal, since it would be isotopic to the surface G+(G′ \ (Tj ∪Tj+1)), which
has the smaller edge degree. See Fig. 6.12(left). So we may assume that all Tj

Fig. 6.11. The lattice of Ti and Aj
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Fig. 6.12. (a) Canceling opposite tori by isotopy; (b) canceling same sign tori by
twists

have the same sign. Then F is isotopic rel ∂ to a surface obtained from G by
one twist along any of Ti, see Fig. 6.12(right) for the case m = 3. Since G has
a smaller edge degree, it satisfies the conclusion of the lemma. So we can take
F ′ = G. ��

Proof of Theorem 6.3.17. Let k be given. Choose a triangulation of M such
that Γ is the union of edges. Construct the finite set of all fundamental
surfaces. Let G1, . . . , Gm be those of them that have positive p-complexity,
T1, . . . , Tn all incompressible fundamental tori (necessarily boundary-parallel),
K1, . . . ,Kr all fundamental Klein bottles, and M1, . . . ,Ms all fundamental
Möbius bands. Consider the set F ′

k of normal surfaces in M that can be
presented in the form

m∑

i=1

γiGi +
n∑

i=1

τiTi +
r∑

i=1

εiKi +
s∑

i=1

µiMi,

where γi ≥ 0, 0 ≤ τi ≤ k+2, 0 ≤ εi < 2(k+3), and µi = 0, 1 for all i. Certainly,
we take only one surface from every normal isotopy class. Since all Gi are of
positive complexity and the coefficients at all other surfaces are bounded, F ′

k

is finite (see the proof of Proposition 6.3.13). Let D be a set of trivial discs
and trivial semi-clean discs that represent all the admissible isotopy classes
of such discs. This set is also finite, since the number of the discs is bounded
by the number of edges of Γ plus the number of connected components of
∂M \Γ . We add to D an embedded 2-sphere (necessarily trivial) and all clean
incompressible boundary incompressible annuli. The annuli are considered up
to admissible isotopy. All of them are parallel to almost clean annuli in ∂M ,
thus the number of such annuli is also finite.

Let us set Fk = F ′
k ∪ D. We will show that any two-sided incompressible

boundary incompressible connected surface F of p-complexity ≤ k is strongly
equivalent to a surface in Fk. If F is a sphere, or a clean disc, or a trivial semi-
clean disc, then, according to the definition of D, F is admissibly isotopic to
a surface from Fk. So we may assume that F is not one of the above sur-
faces and thus is admissibly isotopic to a normal surface by Corollary 3.3.25.
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All incompressible boundary incompressible clean annuli are also included into
Fk, so we can also suppose that F is not an annulus.

Represent F as a linear combination F =
∑N

i=1 kiFi of the fundamental
surfaces. Certainly, we include in this combination only surfaces that have
positive coefficients. Replacing F by a strongly equivalent surface, we can
assume that F is strongly minimal, i.e., has the smallest edge degree among
all surfaces strongly equivalent to F . By Corollary 4.1.37, all Fi are incom-
pressible and boundary incompressible, and no Fi is a sphere, a projective
plane, or a disc crossing Γ at ≤ 1 points. Let us investigate the remaining
surfaces of p-complexity 0.

If Fi is an incompressible torus (necessarily boundary parallel), then ki ≤
k+2. Indeed, suppose that ki ≥ k+3. Since p-complexity of F does not exceed
k, ∂F consists of not more than k+2 circles. It follows from Proposition 6.3.21
that in this case F is not strongly minimal, a contradiction.

Let Fi be a Klein bottle. Consider the torus T = 2Fi. Suppose that T
is compressible. Then M is a closed 3-manifold obtained from a thick Klein
bottle K2×̃I by attaching a solid torus. Any incompressible surface in such a
manifold is composed of an incompressible boundary incompressible annulus
in K2×̃I and two meridional discs of the solid torus. Therefore, it is a 2-
sphere and thus this case cannot occur (see Remark 6.4.14 for the description
of K2×̃I).

If T is incompressible, then it is parallel to ∂M . This can occur only if M
is homeomorphic to the thick Klein bottle K2×̃I. We claim that εi < 2(k+3).
Suppose, on the contrary, that εi ≥ 2(k + 3). Then F can be presented as the
sum F ′ +2(k +3)Fi = F ′ +(k +3)T , where F ′ = F − 2(k +3)Fi and T = 2Fi

is a torus. Just as above, we may conclude that F is not strongly minimal, a
contradiction.

It follows from Proposition 6.3.20 that if Fi is a clean incompressible
boundary incompressible annulus, then F = Fi. Since all such annuli are
in Fk, so is F . Suppose that Fi is a clean incompressible Möbius band. Then
2Fi is a clean annulus, necessarily parallel to a clean or semi-clean annulus in
∂M . This can occur only if M is a solid torus and Γ consists of disjoint simple
closed curves. If µi ≥ 2, then F can be presented as the sum (F − 2Fi) + 2Fi,
which is impossible by Proposition 6.3.20 and the minimality of F . Therefore,
µi = 0, 1.

We have considered all Fi of p-complexity ≥ 0 and found that their coeffi-
cients satisfy the required inequalities. Therefore, F is strongly equivalent to
a surface from Fk. ��

6.4 Jaco–Shalen–Johannson Decomposition

Throughout this prolonged section, our main goal will be to establish one more
“finiteness” result, Theorem 6.4.44. The advantage of this theorem compared
to Theorem 6.3.17 is that it works for all (not necessarily simple) irreducible
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boundary irreducible 3-manifolds. However, its statement is weaker, since only
tori and annuli are considered. Together with Theorem 6.3.17, it will play
a central role in carrying out our task. To prove the theorem, we need to
establish a version of the usual JSJ-decomposition theorem [54, 57] for 3-
manifolds with boundary pattern. In the case of the empty boundary pattern
our approach is very close to that of Neumann and Swarup. In fact, reading the
paper [97] helped me significantly to improve the exposition presented in [85].

The JSJ-Decomposition Theorem states that any irreducible boundary
irreducible 3-manifold (M,Γ ) with boundary pattern contains a canonical
system of disjoint essential tori and clean essential annuli that cut (M,Γ )
into simple manifolds, Seifert manifolds and I-bundles. In order to obtain an
algorithmic version (see Theorem 6.4.42), we need to develop some technique
for working with tori and annuli constructively.

6.4.1 Improving Isotopy that Separates Surfaces

Let F,G be two-sided surfaces in an irreducible boundary irreducible 3-
manifold (M,Γ ) with boundary pattern such that each is either an incom-
pressible torus or a clean incompressible boundary incompressible annulus.
Assume that G is admissibly isotopic to a surface that is disjoint from F . Our
first aim is to present a very accurate isotopy of G that shifts it from F and
consists of simple steps such that each step strictly decreases the number of
circles in F ∩ G (Theorem 6.4.1). To this end we introduce five elementary
separating moves. Each move strictly decreases the number of curves in F ∩G.

Move 1 (Disc shift). Assume that F ∩ G contains a circle C that is con-
tractible in M . Since F,G are incompressible, C bounds discs in both surfaces,
see Lemma 3.3.5. Suppose that C is an innermost trivial circle with respect
to G. Then it bounds a disc D ⊂ G such that D∩F = ∂D. Denote by D1 the
disc in F bounded by C. Since M is irreducible, the sphere D ∪D1 bounds a
3-ball X. We use the ball for constructing an isotopy of G which annihilates
C together with other circles in D1 ∩ G.

Move 2 (Half-disc shift). Assume that F ∩G contains a proper arc l that
is trivial in G, that is, cuts a half-disc D out of G. We may assume that l
is an outermost trivial arc in G. Since F is boundary incompressible, l cuts
a half-disc D1 out of F as well. By boundary irreducibility of (M,Γ ), the
clean proper disc D ∪D1 cuts a clean 3-ball X out of M . We use the ball for
constructing an admissible isotopy of G which annihilates l together with all
other circles and arcs in D1 ∩ G.

Move 3 (Interior annulus shift). Assume that the closure of a connected
component of G \ F is an incompressible annulus G1 ⊂ Int M such that it is
parallel rel ∂G1 to an annulus F1 ⊂ F . This means that F1∪G1 bound a solid
torus X = D2 × S1 in M such that F1 = α × S1, G1 = β × S1, where α, β
are two complementary arcs in ∂D2. One may assume that F1 ∩G = ∂F1. We
use the torus X = h(F1 × I) for constructing a shift of G1 through F1 which
annihilates ∂F1 ⊂ F ∩ G.
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Move 4 (Boundary annulus shift). This move is similar to Move 3. Assume
that the closure of a connected component of G \ F is an incompressible
annulus G1 ∈ Int M such that one circle of ∂G1 (say, C1) is in ∂M while the
other (say, C2) is in Int M . We require also that G1 is admissibly parallel to
F1. This means that there is a clean solid torus X = ∆2 × S1 in M such that
G1 = α×S1, F1 = β ×S1, and X ∩ ∂M = γ ×S1, where ∆2 is a triangle and
α, β, γ are its edges. The shift moves G1 through X to the other side of F ,
thus eliminating one circle of F ∩ G.

Move 4 is applicable only when F,G are annuli with disjoint boundaries.
For the case of annuli with intersecting boundaries we introduce another move.

Move 5 (Band shift). Assume that the closure G1 of a connected com-
ponent of G \ F is a band (homeomorphic image of a rectangle) admissibly
parallel to a connected component F1 of F \ G bounded by two radial seg-
ments of F . We assume that F1 ∩ G = F ∩ G1. The move consists in shifting
G1 through the ball X bounded by F1, G1 and ∂M .

All five moves are shown in Fig. 6.13.

Theorem 6.4.1. Suppose F,G are two proper surfaces in a 3-manifold (M,Γ )
with boundary pattern such that each is either an incompressible torus or a
clean incompressible annulus and F,G are in general position. If the surfaces
can be separated by an admissible isotopy, then they can be separated by Moves
1–5.

Remark 6.4.2. One can easily see that application of elementary separating
moves is an algorithmic procedure.

Fig. 6.13. Elementary moves
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The proof of the theorem is based on three Lemmas 6.4.3–6.4.5. The first
lemma is a partial case of the theorem when F,G can be separated by an
admissible parallel shift of F .

Lemma 6.4.3. Let F,G be two proper surfaces in a 3-manifold (M,Γ ) with
boundary pattern such that each is either an incompressible torus or a clean
incompressible annulus and F,G are in general position. Additionally, we
assume that there exists a surface F ′ ⊂ M such that F ′ ∩ G = ∅ and F ′

is admissibly parallel to F . Then F,G can be separated by Moves 1–5.

Proof. Since F, F ′ are admissibly parallel, there is an embedding h:F×I → M
such that h(F × {0}) = F, h(F × {1}) = F ′, and h(∂F × I) is a clean subset
of ∂M . The image of h is denoted by W . Clearly, W is homeomorphic either
to T 2 × I or to A2 × I, where T 2 is a torus and A2 is an annulus.

First we remove all trivial circles and arcs in F ∩ G by disc and half-disc
shifts of G. F ′ remains fixed. We get a new surface (still denoted by G). Since
F ∩ G contains now no trivial circles or arcs, it is either a collection of par-
allel nontrivial circles or a collection of radial arcs joining different boundary
components of F and of G (the latter is possible only if F,G are annuli with
intersecting boundaries).

Case 1. F ∩ G consists of nontrivial circles. Since nontrivial circles de-
compose G into annuli, G ∩ W is the union of incompressible annuli. Let
A ⊂ G∩W be one of them. Then either ∂A ⊂ F or A has one boundary circle
in F and the other in ∂M . Since W is either a thick torus or a thick annulus,
in both cases A is parallel to an annulus A1 ⊂ F . By an outermost annulus
argument, we may assume that G ∩ Int A1 = ∅. Therefore, one can apply
Move 3 or Move 4 to destroy, respectively, two or one circle in F ∩G without
touching F ′. Applying the moves for as long as possible, we annihilate all the
circles in F ∩ G.

Case 2. F,G are annuli such that F∩G consists of radial segments (simple
curves that join different boundary circles). In this case W is A2×I and G∩W
consists of bands that have ends in F and lateral sides in different annuli of
W ∩∂M . Any such band B is parallel to a part of F . Starting from outermost
bands, we apply Move 5 until annihilating all segments in F ∩ G. ��

The next lemma can be considered as an inductive step.

Lemma 6.4.4. Let F,G be two proper surfaces in a 3-manifold (M,Γ ) with
boundary pattern such that each is either an incompressible torus or a clean
incompressible annulus and F,G are in general position. Additionally, we as-
sume that there exists a surface F ′ ⊂ M such that F ′ is admissibly parallel to
F and G can be separated from F ′ by Moves 1–5. Then G can also be separated
from F by Moves 1–5.

Proof. As in the proof of Lemma 6.4.3, we begin with removing all trivial
circles and arcs in G ∩ (F ∪ F ′) by Moves 1, 2. Then we apply to F ′, G the
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Fig. 6.14. Any shift of G through F ′ is a superposition of shifts of G through F
and a shift of G through F ′ far from F

sequence of Moves 3–5 that shifts G from F ′. Each of these moves shifts a
part G1 of G through a part F ′

1 of F ′. Before carrying out the move, we apply
Moves 3–5 to G,F in order to annihilate all curves in G1 ∩ F . See Fig. 6.14.
Each of these moves shifts a component of G2 = Cl(G1\(F ∩G1)) (an annulus
or a band) through the parallel component of F2 = Cl(F \ (F ∩ G1)). Such
parallel pairs do exist, since the manifold W bounded by F ′

1, G1 is either a
thick annulus or a thick disc and hence has the same property as earlier: any
proper annulus or band in W is parallel to the boundary.

After getting F ′ ∩ G = ∅, we apply Lemma 6.4.3 to surfaces F,G for
annihilating all curves in F ∩ G. ��

The last of the three lemmas shows that any admissible isotopy that sep-
arates F and G can be replaced by a superposition of admissible parallel
displacements of F .

Lemma 6.4.5. Let F, F ′ be admissibly isotopic surfaces in a 3-manifold
(M,Γ ). Then there exists a sequence of surfaces F0, . . . , Fn ⊂ M such that
F ′ = F0, F = Fn, and Fi is disjoint from and admissibly parallel to Fi+1 for
all 0 ≤ i < n.

Proof. Let ht:F → M, 0 ≤ t ≤ 1, be an admissible isotopy such that
h0(F ) = F ′ and h1(F ) = F . Decompose the time interval [0, 1] into so small
subintervals [εk, εk+1], 0 = ε1 < ε2 < . . . < εm = 1 that for εk ≤ t ≤ εk+1 the
surface ht(F ) remains strictly inside a regular neighborhood Nk ≈ F × I of
hεk

(F ). Put F2k = hεk
(F ). Then we replace the isotopy ht, εk ≤ t ≤ εk+1, by

the superposition of two isotopic shifts. The first shift moves F2k to a surface
F2k+1 which is very close to a boundary component of Nk, the second one
moves F2k+1 to F2k+2, see Fig. 6.15. By construction, Fi is parallel to Fi+1

for all 0 ≤ i < n, where n = 2m. ��
Proof of Theorem 6.4.1. Since G can be shifted from F , F is admissibly iso-
topic to a surface F ′ disjoint from F . By Lemma 6.4.5, there exists a sequence
of surfaces F0, . . . , Fn such that F ′ = F0, F = Fn, and Fi is admissibly par-
allel to Fi+1 for all 0 ≤ i < n. Then the conclusion of Theorem 6.4.1 can be
easily obtained by induction on n. Lemmas 6.4.3 and 6.4.4 supply us with the
base of the induction and the inductive step. ��
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Fig. 6.15. F2k+1 is parallel to both F2k and F2k+1

Corollary 6.4.6. Let Fi, 1 ≤ i ≤ n, be disjoint incompressible tori and clean
incompressible boundary incompressible annuli in a 3-manifold (M,Γ ). Sup-
pose G ⊂ M is another incompressible torus or clean incompressible, boundary
incompressible annulus that can be shifted from each Fi by an admissible iso-
topy. Then one can construct an admissible isotopy M → M that shifts G
from ∪n

i=1Fi and keeps fixed those surfaces Fi that were disjoint from G from
the very beginning.

Proof (By Induction on n). For n = 1 the conclusion coincides with the as-
sumption. Assume that the assertion of the theorem has been proved for n−1
surfaces Fi. Now consider n surfaces. By the inductive assumption, G can be
shifted from F1, . . . , Fn−1, so we can assume that G is already disjoint from
Fi, 1 ≤ i ≤ n − 1. Then we apply Theorem 6.4.1 to construct a sequence
of elementary separating moves that shift G from Fn. Each elementary move
shifts a part G1 of G through X, where X is either a clean ball or a solid torus
bounded by G1 and the corresponding part of Fn. Since for i, 1 ≤ i ≤ n − 1,
G ∩ Fi = Fn ∩ Fi = ∅, and since X contains no incompressible tori or incom-
pressible boundary incompressible annuli, we can conclude that X ∩ Fi = ∅.
Therefore the shift of G1 through X can be carried out so that G would
remain disjoint from Fi. Doing so, we annihilate all intersections of G and Fn

keeping G disjoint from other Fi. ��

6.4.2 Does M3 Contain Essential Tori and Annuli?

In this section, we describe algorithms for finding essential tori and annuli
in 3-manifolds. We need them to prove an algorithmic version of the JSJ-
decomposition Theorem. In case the algorithmic approach is irrelevant, it is
possible to proceed directly to the statement and proof of the theorem in
Sect. 6.4.4.

Recall that an incompressible torus T in a 3-manifold (M,Γ ) is called
essential, if it is not parallel to a torus in ∂M . An incompressible boundary
incompressible clean annulus A in (M,Γ ) is essential, if it is not parallel rel
∂ to an almost clean annulus in ∂M .
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Lemma 6.4.7. Let (M,Γ ) be an irreducible orientable triangulated 3-manifold.
If (M,Γ ) contains an essential torus, then an essential torus can be found
either among fundamental tori or among tori of the type K + K, where K is
a fundamental Klein bottle in (M,Γ ).

Proof. Among all essential tori and injective Klein bottles in (M,Γ ) we choose
a normal surface F having the minimal edge degree. We claim that F is
fundamental.

Suppose, on the contrary, that there is a nontrivial presentation F =
G1 + G2. By Lemma 3.3.30 and Theorem 4.1.36, we can assume that G1, G2

are connected, incompressible, and different from S2, RP 2. Since χ(F ) = 0,
the additivity of the Euler characteristic tells us that each Gi is a torus parallel
to the boundary (we cannot get a Klein bottle or a torus not parallel to the
boundary because of minimality of F ). It follows from Proposition 6.3.21 (case
m = 0, n = 1) that F is not minimal, a contradiction.

To conclude the proof, we note that F is either an essential torus (then we
are done) or an injective Klein bottle. In the second case the surface K +K is
an incompressible torus. It cannot be parallel to the boundary, since otherwise
M would be homeomorphic to K2×̃I, which contains no essential tori. Thus
the torus K + K is essential. ��
Lemma 6.4.8. Let (M,Γ ) be a triangulated Haken manifold and U, V two
subsets of ∂M consisting of connected components of ∂M \ Γ (the cases U =
∂M \Γ or V = ∅ are allowed). Suppose that (M,Γ ) contains a clean essential
annulus having at least one boundary circle in U and no boundary circles in
V . Then such an annulus can be found either among clean fundamental annuli
or among annuli of the type B + B, where B is a clean fundamental Möbius
band in (M,Γ ).

Proof. Consider the set of all surfaces F in (M,Γ ) possessing the following
properties:

1. F is either a clean essential annulus or a clean injective Möbius band
2. U ∩ ∂F = ∅ and V ∩ ∂F = ∅

From among all surfaces of this set we choose a normal surface F0 having
the smallest edge degree. We claim that F0 is fundamental.

Suppose, on the contrary, that there is a nontrivial presentation F0 =
G1 + G2. By Lemma 3.3.30 and Theorem 4.1.36, we can assume that G1, G2

are connected, incompressible, boundary incompressible, and different from
S2, RP 2, and clean D2. To be definite, we suppose that U ∩ ∂G1 = ∅. Since
χ(G1) + χ(G2) = χ(F ) = 0 and S2, RP 2, D2 are the only connected surfaces
with positive Euler characteristics, χ(G1) = χ(G2) = 0. It follows that G1 is
either an annulus (essential or not), or a Möbius band. If G1 is an essential
annulus or a Möbius band, we get the direct contradiction with the choice
of F0. If G1 is inessential annulus, i.e., if it is parallel rel ∂ to an almost
clean annulus in ∂M , then F0 is not minimal by Lemma 6.3.20, and we get a
contradiction again. ��
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Lemma 6.4.9. There are algorithms to decide if a given torus or a clean
proper annulus in an irreducible boundary irreducible 3-manifold (M,Γ ) is
parallel to a torus or, respectively, is admissibly parallel rel ∂ to an almost
clean annulus in ∂M .

Proof. Let A be a clean proper annulus in (M,Γ ). We investigate whether
A decomposes (M,Γ ) into two parts and whether one of these parts is a
solid torus for which the boundary circles of A are longitudes. The latter can
be easily done by finding a nontrivial compressing disc D and calculating
the intersection number of ∂D with a circle from ∂A (compare with Corol-
lary 4.1.14). Obviously, A is boundary parallel if and only if both questions
are answered positively.

Similarly, let T be a torus in (M,Γ ). We investigate whether T decom-
poses (M,Γ ) into two parts, and whether one of them (denote it by W ) is
homeomorphic to S1 × S1 × I. The latter can be done by constructing an
essential annulus A in W . Indeed, W is S1×S1× I if and only the 3-manifold
WA, obtained by cutting W along A, is a solid torus for which the traces of
∂A under cutting are longitudes. ��

Theorem 6.4.10. There exist algorithms to decide whether an irreducible
boundary irreducible 3-manifold (M,Γ ) contains an essential torus and whe-
ther it contains a clean essential annulus. Moreover, if U, V are two subsets
of ∂M consisting of connected components of ∂M \ Γ , then one can decide
algorithmically whether (M,Γ ) contains an essential annulus having at least
one boundary circle in U and no boundary circles in V . In all these cases a
surface of the required type can be constructed algorithmically (if it exists).

Proof. To find an essential torus, we triangulate (M,Γ ) and construct all
fundamental surfaces. Then we construct the set T1, . . . , Tn of all fundamental
tori and tori of the type K + K, where K is a fundamental Klein bottle.
Lemma 6.4.7 tells us that (M,Γ ) contains an essential torus if and only if at
least one of Ti is essential, i.e. incompressible and not parallel to a component
of ∂M . It remains to test each Ti for possessing these properties. That can be
done by Theorem 4.1.15 and Lemma 6.4.9.

Also, (M,Γ ) contains a clean essential annulus if and only if one of the
clean fundamental annuli and annuli of the type B + B, where B is a clean
fundamental Möbius band, is essential (Lemma 6.4.8). We look for such an-
nuli using Theorems 4.1.15, 4.1.19, and Lemma 6.4.9. If we are interested in
essential annuli having a boundary circle in U and no boundary circles in V ,
we restrict our attention to fundamental annuli and annuli of the type B + B
which possess this property. ��

Corollary 6.4.11. Let (M,Γ ) be a Haken manifold and C a simple closed
curve on ∂M \ Γ . Then one can algorithmically decide if (M,Γ ) contains an
essential annulus A such that C is a boundary circle of A.
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Proof. Let N be a regular neighborhood of C in ∂M \ Γ . We apply the
algorithm described in Theorem 6.4.10 to the 3-manifold (M,Γ ∪ ∂N) and
U = Int N,V = ∂M \ (Γ ∪ ∂N). Obviously, (M,Γ ) contains an essential
annulus with a boundary circle C if and only if (M,Γ ∪ ∂N) contains an
essential annulus having a boundary circle in U . ��

6.4.3 Different Types of Essential Tori and Annuli

In this step we will classify tori and annuli according to how they intersect
each other (Definitions 6.4.12 and 6.4.13). Not only will this classification be
useful in progressing towards our final goal, it also happens to be algorithmic,
which is what the next section is all about.

Consider an irreducible boundary irreducible 3-manifold (M,Γ ).

Definition 6.4.12. Let F be an incompressible torus or a clean incompress-
ible boundary incompressible annulus in (M,Γ ). Then F is called rough if
any incompressible torus and any clean incompressible boundary incompress-
ible annulus in M is admissibly isotopic to a surface disjoint from F .

The terminology is derived from the observation that people tend to avoid
contacts with a rough person. Let us introduce two types of essential annuli
in (M,Γ ).

Definition 6.4.13. A clean incompressible boundary incompressible annulus
A ⊂ (M,Γ ) is called longitudinal if any clean incompressible boundary incom-
pressible annulus A1 ⊂ (M,Γ ) is admissibly isotopic to an annulus A′

1 such
that ∂A ∩ ∂A′

1 = ∅. Otherwise A is called transverse.

It follows from the definition that all rough annuli are longitudinal, while
transverse annuli are never rough. Note that if A and A1 are any clean in-
compressible boundary incompressible annuli in (M,Γ ), then all trivial circles
and trivial arcs in A∩A1 can be easily eliminated by an admissible isotopy of
A1. After that A ∩ A1 will either be empty, or consist of core circles of both
annuli, or consist of their common radial segments. A is transverse if and only
if for at least one annulus A1 we can never get the first or the second option.

Example 6.4.14. Let us investigate the types of annuli and tori in (K2×̃I, ∅),
the orientable twisted product of the Klein bottle K2 and I. It is convenient
to represent K2×̃I as the “thick” cylinder S1 × I × I with its base annuli
S1×I×{0, 1} identified. The identification map ϕ:S1×I×{0} → S1×I×{1}
can be presented as the superposition of an involution α:S1 × I × {0} →
S1 × I × {0} having exactly two fixed points and the parallel translation
τ :S1 × I × {0} → S1 × I × {1} given by the rule τ(x, y, 0) = (x, y, 1). To
be definite, we will assume that the restriction of α onto S1 × {1/2} × {0}
is the reflection on a diameter and that α preserves the decomposition of
S1 × I × {0} into radial segments. Thus the two fixed points p, q of α are
the intersection points of S1 × {1/2} × {0} and the diameter. See Fig. 6.16.
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Fig. 6.16. Two essential annuli in the thick Klein bottle

Alternatively, one can present K2×̃I as the twisted product M2×̃S1 (the fibers
have the form S1 ×{∗}×{∗}). It admits also a structure of a Seifert manifold
fibered over D2 with two exceptional fibers with parameters (2, 1), (2,−1)
(see Remark A.1.1 for the definition of Seifert manifolds). Any regular fiber
is obtained by gluing two segments of the type {x} × I and {ϕ(x)} × I while
each of the segments {p, q} × I gives an exceptional fiber.

There is only one incompressible torus T in K2×̃I, which is parallel to
the boundary. Recall that, up to isotopy, K2 contains exactly two different
orientation preserving simple closed curves: the meridian µ, which does not
decompose K2, and the longitude λ, which decomposes K2 into two Möbius
bands (see Example 3.2.7). The annuli Aµ = µ×̃I and Aλ = λ×̃I are essential.
Any other essential annulus in K2×̃I is isotopic to the one of them.

It is easy to see that Aµ, Aλ are transversal. If we forbid one of them by
inserting an appropriate boundary pattern (for example, a circle parallel to
boundary components of the other annulus), then the other annulus becomes
longitudinal, but still not rough. If we forbid also the second annulus by taking
a pattern that decomposes ∂(K2×̃I) into 2-cells, then T becomes rough.

This information helps us to answer the following question: which 3-
manifolds can be obtained by attaching a solid torus to K2×̃I? The answer
is that they are all Seifert. Indeed, K2×̃I possesses two Seifert fibrations; Aµ

is saturated (i.e., consists of fibers) with respect to the one of them, Aλ is
saturated with respect to the other. If the meridian m of the attached torus is
not isotopic to µ or λ, then both Seifert fibrations on K2×̃I can be extended
to Seifert fibrations on the resulting 3-manifold. It is easy to see that in both
exceptional cases, when m is isotopic to µ or λ, we get reducible 3-manifolds:
S2 × S1 (if m is isotopic to µ) and RP 3#RP 3 (if m is λ). ��

The aim of this section is to show how one can determine the type of a given
torus and a given annulus algorithmically. This is done in Theorem 6.4.23 for
tori and in Theorem 6.4.28 for annuli.

The torus case. Let F be an incompressible torus in an orientable 3-
manifold (M,Γ ). We wish to know if it is rough. The answer depends on how
incompressible annuli approach to F from different sides. It is convenient to
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cut M along F and get a 3-manifold MF containing two copies F+, F− of F
in the boundary. If we identify F+, F− back via the natural identification map
ϕ:F− → F+, we recover M . We supply MF with the boundary pattern ΓF ,
which is a copy of Γ in ∂MF . Of course, if (M,Γ ) is irreducible and boundary
irreducible, then so is (MF , ΓF ).

We introduce two sets A±(F ) of clean essential annuli in (MF , ΓF ). The
set A−(F ) consists of annuli having at least one boundary circle in F−, the
set A+(F ) consists of annuli that have at least one boundary circle in F+. If
A ∈ A−(F ) has only one boundary circle in F−, then this circle is denoted
by ∂−A. If both boundary circles of A are in F−, then ∂−A is one of them
(the other is parallel to it). Similarly, if A ∈ A+(F ), then ∂+A is a circle in
∂A ∩ F+.

Now we recall the definition of the intersection number of curves on a
surface. Let C1, C2 be two transversal closed oriented 1-dimensional subman-
ifolds of an oriented surface G. If p is a crossing point of C1, C2, then the
orientations of C1, C2 determine a local orientation of G at p. We assign to p
its sign ε = ±1 by setting ε = +1 if the local orientation at p agrees with the
global orientation of G, and ε = −1, if not. The intersection number λ(C1, C2)
is the sum of the signs of all the crossing points.

It is well known that λ(C1, C2) is invariant under isotopy (and even homo-
topy) of C1, C2 and hence is determined also for 1-dimensional submanifolds
which are not in general position. If C1, C2 and G are not oriented, but C1, C2

are connected and G is orientable, then λ(C1, C2) is also defined, but only up
to sign. Evidently, if G is a torus and C1, C2 ⊂ G are nontrivial simple closed
curves, then C1, C2 are isotopic if and only if λ(C1, C2) = 0.

In our situation we will use the intersection number in a slightly more
general sense. Recall that we have an incompressible torus F in an orientable
3-manifold (M,Γ ) and two copies F± of F in the boundary of MF . Let C1, C2

be two circles in F−∪F+. Then their intersection number λ′(C1, C2) is defined
as the intersection number of the corresponding curves in F . The case when
one circle is in F−, the other in F+ is also allowed. If both C1, C2 lie in the
same surface F±, then λ′(C1, C2) = λ(C1, C2).

We are ready now to suggest a simple criterion for an incompressible torus
to be rough.

Proposition 6.4.15. Let F be an incompressible torus in an orientable Haken
manifold (M,Γ ) with boundary pattern. Then F is not rough if and only if
there exist annuli A ∈ A−(F ), B ∈ A+(F ) such that λ′(∂−A, ∂+B) = 0.

Proof (=⇒). Assume that F is not rough. Then there is a surface G ⊂ (M,Γ )
which is either an incompressible torus or a clean incompressible boundary
incompressible annulus and which cannot be shifted from F by an admissible
isotopy. Applying to F,G elementary separating moves for as long as possible,
we get a new surface of the same type (denoted also by G) that still intersects
F . Then the intersection of F and G consists of nontrivial circles. If G is a
torus and F ∩G consists of only one circle C, then F cuts G into an annulus
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Fig. 6.17. (a) F ∩ G decomposes G into annuli; (b) A and two copies of B consti-
tute G

A ⊂ MF such that A ∈ A−(F ) ∩A+(F ) and λ′(∂−A, ∂+A) = λ(C,C) = 0. If
G is an annulus or F ∩ G is the union of ≥ 2 circles, then the circles F ∩ G
decompose G into a collection {A1, . . . , Ak}, k ≥ 2 of clean annuli such that
each annulus has at least one boundary circle in F− ∪ F+, see Fig. 6.17a.

The annuli are essential, since otherwise we could perform elementary
separating moves. Obviously, A−(F ) contains at least [k/2] of them, and the
same is true for A+(F ). Since G is embedded, all the boundary circles of the
annuli are parallel in F and thus have zero intersection number.

(⇐=) Suppose that there exist annuli A ∈ A−(F ), B ∈ A+(F ) such that
λ′(∂−A, ∂+B) = 0. To prove that F is not rough, we find an incompressible
torus or a clean proper incompressible boundary incompressible annulus in
(M,F ) that cannot be shifted from F .

Case 1. Suppose that there exists an annulus R ∈ A−(F ) ∩ A+(F )
such that λ′(∂−R, ∂+R) = 0. We can assume that the identification map
ϕ:F− → F+ takes ∂−R to ∂+R. After the identification we get either a torus
in M , which intersects F along one circle, or a Klein bottle in M , which also
intersects F along one circle and which we transform into a torus by taking the
boundary of its regular neighborhood. In both cases the torus G thus obtained
and F admit no elementary separating moves. It follows from Theorem 6.4.1
that G cannot be shifted from F by an isotopy.

Case 2. Suppose that there is no annulus R ∈ A−(F )∩A+(F ) such that
λ′(∂−R, ∂+R) = 0. According to our assumption, one can find two clean es-
sential annuli A ∈ A−(F ), B ∈ A+(F ) such that λ′(∂−A, ∂+B) = 0. Applying
to them elementary separating moves for as long as possible, we get two new
annuli (still denoted by A,B) such that their intersection either is empty or
consists of core circles of both annuli. The second option is impossible, since
otherwise it would be easy to construct an annulus R ∈ A−(F )∩A+(F ) with
λ′(∂−R, ∂+R) = 0 as follows. Let C be a unique circle in A∩B such that the
annulus A1 ⊂ A bounded by C and ∂−A contains no other circles of A ∩ B.
Denote by B1 the annulus in B bounded by C and ∂+B. Then R = A1 ∪ B1

is in A−(F ) ∩ A+(F ). Therefore we can conclude that A,B are disjoint.
Case 2.1. ∂A ⊂ F−, ∂B ⊂ F+. Since λ′(∂−A, ∂+B) = 0, we can assume

that ϕ takes ∂A to ∂B. Then, just as in Case 1, the union of A and B
determines a torus or a Klein bottle in M , which we convert into a torus by
taking the boundary of its regular neighborhood. It follows from Theorem 6.4.1
that in both cases the resulting torus cannot be shifted from F .
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Case 2.2. ∂A ⊂ F− and only one circle of ∂B is in F+. Then we construct
a clean incompressible annulus G ⊂ (M,Γ ) from a copy of A in M and two
parallel copies of B in M , see Fig. 6.17b. Again, Theorem 6.4.1 assures us that
one cannot shift G from F . The case when ∂B ⊂ F+ and only one circle of
∂A is in F− is similar.

Case 2.3. Each of the annuli A,B has only one boundary circle in F−∪F+.
This case is similar to Case 2.2: We construct G ⊂ M as the union of a copy
of A and a copy of B.

We can conclude that in all cases F is not rough. ��

This criterion is not satisfactory, since it is not algorithmic. Clearly, we can
use Theorem 6.4.10 for finding two annuli A ∈ A−(F ), B ∈ A+(F ). Suppose
that they do exist. Then F is not rough provided that λ′(∂−A, ∂+B) = 0. But
if λ′(∂−A, ∂+B) = 0, then the criterion tells us nothing. Nevertheless, it turns
out that with exactly two types of exceptions the inequality λ′(∂−A, ∂+B) = 0
guarantees us that F is rough. To clarify the appearance of these exceptions,
we recall the notion of Stallings manifold [118].

Definition 6.4.16. Let S be a surface and f :S → S a homeomorphism. Then
the Stallings manifold Mf = S × I/f with fiber S and monodromy homeo-
morphism f is obtained from S × I by identifying each point (x, 1) ∈ S × {1}
with the point (f(x), 0) ∈ S × {0}.

If S is a torus with a fixed coordinate system, then f can be presented
by the monodromy matrix Af of order 2. The trace Tr(Af ) of Af does not
depend on the choice of the coordinate system on S.

Lemma 6.4.17. Let (M,Γ ) be an orientable Haken manifold with boundary
pattern and F an essential torus in (M,Γ ). Suppose that for ε = + or for
ε = − there exist annuli A,A1 ∈ Aε(F ) such that λ(∂εA, ∂εA1) = 0. Then
either M is a Stallings manifold with fiber F or F bounds in M a thick Klein
bottle K2×̃I.

Proof. By symmetry, we can assume that ε = −. Since A,A1 are essential,
we can eliminate all trivial circles and trivial arcs in A ∩ A1 by admissible
isotopies of the annuli. It follows that the intersection of the new annuli (still
denoted by A,A1) consists of radial arcs of both annuli.

Denote by X the union of A and A1. Then the natural fibrations of A and
A1 into radial segments determine an I-fibration of X.

Case 1. Suppose that the I-fibration of X is trivial, i.e., X = Y ×I, where
Y is a graph. Then Y ×∂I consists of two copies of Y such that one copy, say,
Y0, is in F− while the other, Y1, is in ∂MF \F−. Obviously, Y0 coincides with
the union of ∂−A and ∂−A1, which decomposes F− into 2-cells. See Fig. 6.18.

Denote by N = N(X∪F−) a regular neighborhood of X∪F− in (MF , ΓF ).
Then its interior boundary ∂int(N) = Cl(∂N \ ∂MF ) is the disjoint union of
clean proper discs. Since (MF , ΓF ) is Haken, these discs cut clean balls out
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Fig. 6.18. (a) Y0 decomposes F− into 2-cells. (b) ∂intN consists of clean discs

of MF . Adding these balls to N , we get a clean connected component of MF

homeomorphic to F− × I. One boundary torus of this component is F−, the
other must be F+ (otherwise F would be parallel to a clean torus in ∂M ,
which contradicts our assumption that F is essential). It follows that M is a
Stallings manifold with fiber F .

Case 2. Suppose that the fibering of X is nontrivial, i.e., X = Y ×̃I, where
Y is a graph. Then Y ×̃∂I is connected and coincides with ∂A∪∂A1 ⊂ F−. In
this case the interior boundary ∂intN of N = N(X∪F−) consists of 2-spheres.
By irreducibility of MF , they must be trivial. Filling the spheres by 3-balls,
we get a connected component (MF )0 of MF bounded by the torus F−. As in
Case 1, the I-bundle structure on X can be extended to an I-bundle structure
on (MF )0. It remains to observe that the unique I-bundle whose boundary is
a torus is K2×̃I. ��

Remark 6.4.18. Suppose that under the assumptions of Lemma 6.4.17, M
turns out to be a Stallings 3-manifold with fiber F . It follows from the proof
of the lemma that a Stallings structure on M , i.e., a homeomorphism MF →
F × [0, 1] and the corresponding monodromy homeomorphism F → F can be
constructed algorithmically. In particular, we can calculate the trace of the
monodromy matrix.

Similarly, if a connected component (MF )0 of MF is homeomorphic to
K2×̃I, then a homeomorphism (MF )0 → K2×̃I can also be constructed al-
gorithmically.

The following proposition supplements Proposition 6.4.15.

Proposition 6.4.19. Let F be an incompressible torus in an orientable Haken
manifold (M,Γ ) with boundary pattern. Suppose that M is not a Stallings
manifold with fiber F and that F does not bound a thick Klein bottle in M .
Then F is rough if and only if either at least one of the sets A−(F ),A+(F )
is empty or there exist annuli A ∈ A−(F ), B ∈ A+(F ) such that λ′(∂−A,
∂+B) = 0.

Proof. It follows from Proposition 6.4.15 that F is rough if and only if either
at least one of the sets A−(F ),A+(F ) is empty or λ′(∂−A, ∂+B) = 0 for
all pairs of annuli A ∈ A−(F ), B ∈ A+(F ). It remains to prove that if for
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at least one pair of annuli A ∈ A−(F ), B ∈ A+(F ) the intersection number
λ′(∂−A, ∂+B) is not 0, then the same holds for all such pairs.

Suppose, on the contrary, that there exist annuli A,A1 ∈ A−(F ) and
B,B1 ∈ A+(F ) such that λ′(∂−A, ∂+B) = 0, but λ′(∂−A1, ∂+B1) = 0. Then
either λ(∂−A, ∂−A1) = 0 or λ(∂+B, ∂+B1) = 0, since otherwise we would
have λ′(∂−A, ∂+B) = λ′(∂−A1, ∂+B1). In this situation Lemma 6.4.17 tells
us that either M is a Stallings manifold with fiber F or F bounds a thick
Klein bottle in M , which contradicts our assumption. ��

Before describing the algorithm to decide whether a given incompressible
torus F in a given 3-manifold (M,Γ ) is rough, we investigate the aforemen-
tioned exceptional cases:

1. M is a Stalling 3-manifold with fiber F
2. F bounds K2×̃I in M

To be more precise, we explain how to recognize exceptions and how to
determine the type of F , if we encounter one of them. The following three
lemmas solve these problems.

Lemma 6.4.20. There are algorithms to decide if a given 3-manifold M is
homeomorphic to T 2 × I or to K2×̃I.

Proof. Let M be a given 3-manifold. The desired algorithm can be described
as follows (compare with Lemma 6.4.9 and Example 6.4.14).

1. We check whether M is orientable and Haken. If not, then M is neither
T 2 × I nor K2×̃I.

2. We look for an incompressible boundary incompressible annulus A ⊂ M ,
see Theorem 6.4.10. If A does not exist, then M = T 2 × I,K2×̃I. Other-
wise, we insert A into M .

3. Suppose that A decomposes M into two solid tori such that A runs twice
along their longitudes. Then M = K2×̃I.

4. Suppose that after cutting M along A we get a solid torus Q such that
each of the two copies of A in ∂Q runs once along a longitude of Q. Then
M = K2×̃I, if ∂M is a torus, and M = T 2× I, if ∂M consists of two tori.

5. If neither 3 nor 4 happen, then M = T 2 × I,K2×̃I. ��

Now that we know how to recognize the exceptional cases, let us see what
we do when the first of them (a Stallings 3-manifold) comes our way.

Lemma 6.4.21. Let Mf = T 2 × I/f be an orientable Stallings manifold,
where T 2 is a torus and f :T 2 → T 2 an orientation preserving homeomor-
phism. Then the fiber T 2 × {0} of Mf is not rough if and only if for some
(and thus for every) coordinate system on T 2 the trace of the monodromy
matrix Af of f is equal to ±2.
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Proof. Suppose that the trace of Af equals ±2. Then the characteristic poly-
nomial of Af is λ2 ± 2λ + 1 and Af has an eigenvector (p, q) with coprime
integer coordinates whose eigenvalue is ±1. This means that f can be changed
by an isotopy such that afterwards it would take a simple closed curve C ⊂ T 2

of type (p, q) to itself. Then G = C × I/f ⊂ T 2 × I/f is either an incom-
pressible torus or a Klein bottle in Mf such that the boundary of its regular
neighborhood is an incompressible torus. In both cases the torus cannot be
shifted from T 2 × {0} by an isotopy. This means that T 2 × {0} is not rough.

Conversely, suppose that an incompressible torus G ⊂ Mf cannot be
shifted from T 2×{0} by an isotopy. We can assume that the pair (G,T 2×{0})
does not admit elementary separating moves. Then all circles in G∩(T 2×{0})
are nontrivial and decompose G into annuli, say A1, . . . , An. These annuli,
considered as annuli in T 2 × I, are essential and hence run from T 2 × {0} to
T 2 × {1}. If there is only one such annulus, i.e., if G ∩ (T 2 × {0}) consists of
only one circle C, then C is invariant with respect to f and thus determines
an eigenvector of Af with eigenvalue ±1. If there are more, then f takes any
circle C ⊂ G∩ (T 2×{0}) to a circle which is disjoint from C and thus parallel
to it. Therefore C again determines an eigenvector of Af with eigenvalue ±1.
Evidently, ±1 is an eigenvalue of Af if and only if the trace is ±2. ��

Suppose now that we have stumbled upon the second of our problematic
cases, which is the thick Klein bottle. Recall that K2×̃I contains two essential
annuli Aµ, Aλ (the inverse images of a meridian µ and a longitude λ of K2

under the projection K2×̃I → K2, see Example 6.4.14). By (µ̃, λ̃) we will
denote a meridian-longitude pair on ∂(K2×̃I) composed from a circle µ̃ ⊂ ∂Aµ

and a circle λ̃ ⊂ ∂Aλ. It does not matter, which circle of ∂Aµ (or of ∂Aλ) is
taken, since they are parallel.

Lemma 6.4.22. Let F be an incompressible torus in an orientable Haken
manifold (M,Γ ). Suppose that F decomposes M into two components M−

F ⊃
F− and M+

F ⊃ F+ such that one of them (say, M−
F ) is K2×̃I. Then F is not

rough if and only if there is a clean annulus B ⊂ M+
F such that ∂B contains

a circle isotopic to either µ̃ or λ̃.

Proof. Follows from Proposition 6.4.15, since any essential annulus in K2×̃I
is isotopic to either Aµ or Aλ. ��

Having learnt how to handle the exceptional cases, we are ready to estab-
lish the desired conclusion.

Theorem 6.4.23. There is an algorithm to decide, whether or not a given
incompressible torus F in an orientable Haken manifold (M,Γ ) is rough.

Proof. First we decide whether or not we have one of the two exceptional cases.
It can be done algorithmically by Lemma 6.4.20. If the answer is positive, i.e.,
if we are in an exceptional situation, then the type of F can be determined
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by Lemma 6.4.21 or Lemma 6.4.22. Suppose that the answer is negative.
Then for ε = ± we apply Theorem 6.4.10 to the 3-manifold (MF , ΓF ) and
U = Fε, V = ∅ for finding clean essential annuli A ∈ A−(F ), B ∈ A+(F ). If at
least one of these annuli does not exist, then F is rough by Proposition 6.4.19.
Otherwise we construct them and calculate λ′(∂−A, ∂+B). Propositions 6.4.15
and 6.4.19 tell us the type of F in this case. ��

Annulus case. According to Definition 6.4.13, there are three types of
clean incompressible boundary incompressible annuli: longitudinal which are
rough, longitudinal which are not rough, and transverse. We now need to learn
how to determine algorithmically the type of a given annulus.

Let F be a clean proper annulus in an orientable 3-manifold (M,Γ ). Cut-
ting M along F , we get a 3-manifold MF containing two copies F+, F− of
F in the boundary. If we identify F+, F− back via the natural identification
map ϕ:F− → F+, we recover M . We supply MF with the boundary pattern
ΓF = Γ ′ ∪ ∂F− ∪ ∂F+, where Γ ′ is the copy of Γ in ∂MF . Clearly, if (M,Γ )
is Haken, then so is (MF , ΓF ).

Just as in the torus case, we introduce two sets A±(F ) of clean annuli in
(MF , ΓF ). Assume that either ε = − or ε = +. Then we say that a proper
annulus A ⊂ (MF , ΓF ) belongs to Aε(F ) if and only if the following conditions
hold:

1. A is clean, incompressible, and boundary incompressible
2. At least one boundary circle of A is in Fε

3. A is not parallel rel ∂ to an annulus A′ ⊂ ∂MF such that A′ ∩ ΓF is one
of the boundary circles of Fε

Note that Aε(F ) can contain inessential annuli. Each of them is parallel
rel ∂ to an annulus A′ ⊂ ∂MF such that A′ ∩ ΓF consists of more than one
circles of ΓF .

Below we show how the sets A±(F ) help us to recognize longitudinal
annuli. Two other sets Bε(F ), ε = ±, are responsible for F to be transverse.
They consist of semi-clean bands and are defined below.

Definition 6.4.24. Let F ⊂ (M,Γ ) be a clean incompressible annulus. We
say that a proper disc B ⊂ (MF , ΓF ) is a semi-clean band for F− ∪ F+, if
B ∩Γ ′ = ∅ and ∂B ∩ (F− ∪F+) consists of two radial arcs r1, r2 of the annuli
F−, F+. The arcs are called the ends of the band. B is trivial, if ∂B bounds a
disc B′ ⊂ ∂MF such that B′ ∩ ΓF = ∂r1 ∪ ∂r2, see Fig. 6.19.

Note that any semi-clean band having one end in F−, the other in F+ is
always nontrivial.

Remark 6.4.25. Denote by Γ ′
F the boundary pattern in ∂MF obtained from

ΓF by removing ∂F− ∪ ∂F+ and inserting a core circle C− of F− and a core
circle C+ of F+. Then any semi-clean band B for F− ∪F+ determines a semi-
clean disc D in (MF , Γ ′

F ) (see Sect. 3.3.3) having both points of ∂D ∩ Γ ′
F
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Fig. 6.19. B is trivial if and only if X, Y are clean discs

in C− ∪ C+. Vice versa, any semi-clean disc D in MF , Γ ′
F whose boundary

crosses C− ∪ C+ in two points determines a semi-clean band B for F− ∪ F+.
Moreover, B is nontrivial if and only if so is D. It follows that there is an
algorithm to decide whether F− admits a nontrivial semi-clean band. We
simply use Lemma 4.1.18 for finding a nontrivial semi-clean disc for C−∪C+.

Now we introduce two sets Bε(F ), ε = ±1, of bands in (MF , ΓF ) as follows:
Bε(F ) consist of nontrivial semi-clean bands having at least one end in Fε.
As we have mentioned above, the sets A±(F ),B±(F ) help us to determine
the type of a given annulus F . They also help us to recognize the exceptional
cases, of which, just as in the torus case, there are two.

Lemma 6.4.26. Let F be a clean proper incompressible annulus in an ori-
entable Haken manifold (M,Γ ) with boundary pattern such that all four
sets A−(F ), A+(F ), B−(F ), B+(F ) are nonempty. Then M = T 2 × I or
M = K2×̃I, and Γ = ∅.

Proof. Case 1. Suppose that there is an annulus A ∈ A−(F )∩A+(F ), which
has one boundary circle in F−, the other in F+. Let B− ∈ B−(F ) be a band.
We can assume that each end of B− contained in F− crosses the circle ∂−A =
∂A∩F− at exactly one point. Further, since A is incompressible and boundary
incompressible and B is a disc, we can assume that A∩B− contains no circles
or arcs having both endpoints in ∂−A. Then the intersection of A and B
consists of an arc joining F− and F+. Denote by N a regular neighborhood
of A ∪ B ∪ F− ∪ F+ in MF . The interior boundary ∂intN = Cl(∂N \ ∂MF )
is the union of two disjoint clean proper discs in (MF , ΓF ). Since (MF , ΓF )
is Haken, these discs are parallel rel ∂ to clean discs in ∂M . It follows that
(MF , ΓF ) is homeomorphic to (A × I, ∂A × {0, 1}).

Recall that (M,Γ ) can be reconstructed from (MF , ΓF ) by identifying
F−, F+ via ϕ:F− → F+ and removing ∂F−∪∂F+ from the pattern. Therefore,
(M,Γ ) can be obtained from (A× I, ∂A×{0, 1}) by identifying A×{0} with
A×{1}. There are only two (isotopy classes of) homeomorphisms A×{0} →
A × {1} which give an orientable 3-manifold. One of them can be obtained
from the other by postcomposing with an orientation preserving involution
A × {1} → A × {1} having two fixed points. One of these homeomorphisms
gives us (T 2 × I, ∅), the other (K2×̃I, ∅).
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Fig. 6.20. The arcs A− ∩B− join different ends of B− and different circles of ∂A−
(only the boundary of A− is shown)

Case 2. Suppose that A−(F ) ∩ A+(F ) = ∅. Choose an annulus A− ∈
A−(F ) and a band B− ∈ B−(F ). As above, we can assume that each end
of B− in F− crosses each circle of ∂A− ∩ F− at exactly one point and that
A− ∩ B− contains no circles and no arcs having both endpoints in the same
end of B− or in the same circle of ∂A−. It follows that both ends of B− are
in F− and that A− ∩B− consists of two arcs such that the endpoints of each
arc lie in different ends of B− and different circles of ∂A−, see Fig. 6.20.

It is not hard to prove that in this situation MF consists of two components
and the component containing A−, B− is a solid torus with F− running twice
along the longitude. Since the same is true for the other component of MF ,
(MF , ΓF ) is K2×̃I. Nevertheless, we prefer to save ourselves some effort by
reducing Case 2 to Case 1 as follows.

Construct an annulus A+ ∈ A+(F ) and a band B+ ∈ B+(F ) having the
same properties as A− and B−. We may assume that the identification map
ϕ:F− → F+ takes (A− ∪B−) ∩ F− to (A+ ∪B+) ∩ F+. Then, reconstructing
M , i.e., identifying F− with F+ via ϕ, we get an incompressible annulus
F ′ = B− ∪ϕ B+ ⊂ M and a torus T = A− ∪ϕ A+ ⊂ M . Cutting M along F ′,
we obtain the situation of Case 1. Indeed, the cut transforms T into even two
incompressible annuli joining F ′

− with F ′
+, and it transforms F into even two

semi-clean bands with ends in F ′
−, F ′

+. It follows that (M,Γ ) is (K2×̃I, ∅). ��

Now we relate the type of F with the sets A±(F ),B±(F ). By doing so,
we will provide a key to the sought-after algorithmic recognition of types of
annuli.

Proposition 6.4.27. Let F be a clean proper incompressible boundary in-
compressible annulus in an orientable Haken manifold (M,Γ ) with boundary
pattern. Suppose that (M,Γ ) is not (T 2 × I, ∅) or (K2×̃I, ∅). Then the fol-
lowing implications are true:

1. F is longitudinal but not rough 1⇐⇒ A−(F ) = ∅,A+(F ) = ∅;
2. F is transverse 2⇐⇒ B−(F ) = ∅,B+(F ) = ∅;
3. F is rough 3⇐⇒ at least one of the sets A−(F ),A+(F ) is empty and at

least one of the sets B−(F ),B+(F ) is empty.
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Fig. 6.21. A−(F ),A+(F ) consist of, respectively, 3 and 2 annuli. The boundary
patterns of M and MF are shown by stars

Proof. ( 1=⇒) Let F be longitudinal but not rough. Then there is a surface
G ⊂ (M,Γ ) which is either an incompressible torus or a clean incompressible
boundary incompressible annulus such that ∂G ∩ ∂F = ∅, but G cannot
be shifted from F by an admissible isotopy. Applying to F,G elementary
separating moves for as long as possible, we get a new surface (denoted also
by G), which still intersects F . Then the intersection of F with G consists
of nontrivial circles. If F ∩ G consists of one circle, then G is a torus, which
determines an annulus GF ⊂ MF in A−(F ) ∩ A+(F ). If F ∩ G is the union
of more than one circles, then these circles decompose G into a collection
{A1, . . . , Ak} of k ≥ 2 clean annuli in (MF , ΓF ) such that each annulus has at
least one boundary circle in F−∪F+. The annuli are in A−(F )∪A+(F ), since
otherwise we could perform elementary separating moves further. Obviously,
A−(F ) contains at least [k/2] of them, and the same is true for A+(F ) = ∅,
see Fig. 6.21.

( 2=⇒) Let F be transverse. Then there is a clean incompressible boundary
incompressible annulus G ⊂ (M,Γ ) which intersects F along radial segments
and cannot be shifted from F by an admissible isotopy. It follows that the
segments decompose G into bands in (MF , ΓF ) such that at least one is in
B−(F ) and at least one in B+(F ).

( 3=⇒) Let F be rough. We wish to prove that at least one of the sets
A−(F ),A+(F ) is empty and at least one of the sets B−(F ),B+(F ) is empty.
Suppose, on the contrary, that either A−(F ) and A+(F ) are nonempty or
B−(F ) and B+(F ) are nonempty. To obtain a contradiction, we construct an
incompressible torus or a clean proper incompressible boundary incompress-
ible annulus in (M,F ) that cannot be shifted from F .

Case A1. There exists an annulus A ∈ A−(F ) ∩ A+(F ). We can assume
that the identification map ϕ:F− → F+ identifies the boundary circles of A.
Therefore, after the identification, we get either a torus in M , which intersects
F along one circle, or a Klein bottle in M , which also intersects F along one
circle and which we transform into a torus by taking the boundary of its
regular neighborhood. It follows from Theorem 6.4.1 that in both cases the
obtained torus G cannot be shifted from F by an isotopy.

Case A2. There exist two clean essential annuli A− ∈ A−(F ), A+ ∈
A+(F ), but A−(F ) ∩ A+(F ) = ∅. Applying to the annuli elementary sep-
arating moves for as long as possible, we get two new annuli (still denoted
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by A−, A+) such that their intersection either is empty or consists of circles
which are nontrivial in both annuli. The second option is impossible, since
otherwise one could easily construct an annulus in MF connecting the core
circles of F− and F+ from a portion of A− and a portion of A+. Therefore,
A−, A+ are disjoint.

Case A2.1. ∂A− ⊂ F−, ∂A+ ⊂ F+. We can assume that ϕ takes ∂A−
to ∂A+. Then, just as in Case A1, their union determines a torus or a Klein
bottle in M , which we convert into a torus by taking the boundary of its
regular neighborhood. It follows from Theorem 6.4.1 that in both cases the
resulting torus cannot be shifted from F .

Case A2.2. ∂A− ⊂ F− and only one circle of ∂A+ is in F+. Then we con-
struct a clean incompressible annulus G ⊂ (M,Γ ) from an annulus A′

− ⊂ M
corresponding to A− and two parallel copies of the annulus A′

+ ⊂ M corre-
sponding to A+. Again, Theorem 6.4.1 assures us that one cannot shift G from
F . The case when ∂A+ ⊂ F+ and only one circle of ∂A− is in F− is similar.

Case A2.3. Each of the annuli A−, A+ has only one boundary circle in
F− ∪F+. This case is similar to Case A2.2: we construct G ⊂ M as the union
of a copy of A− and a copy of A+.

Case B1. There exists a band B ∈ B−(F ) ∩ B+(F ). This case is similar
to Case A1. We can assume that the identification map ϕ:F− → F+ identi-
fies the ends of B, and we get either a clean annulus in M which intersects
F along one segment, or a clean Möbius band in M which also intersects F
along one segment and which can be replaced by a clean annulus by taking the
interior boundary of its regular neighborhood. It follows from Theorem 6.4.1
that in both cases the annulus G thus obtained cannot be shifted from F by
an admissible isotopy.

Case B2. There exist two bands B− ∈ B−(F ), B+ ∈ B+(F ), but
B−(F ) ∩ B+(F ) = ∅. Just as in Case A2.1, we may assume that they are
disjoint and that ϕ takes the ends of B− to the ends of B+. Then their union
determines in (MF , ΓF ) either an annulus, or a Möbius band, which we double
to an annulus. In both cases the annulus thus obtained cannot be shifted from
F by an admissible isotopy.

(
1,2,3⇐=). Let us divide the set X of all clean incompressible boundary in-

compressible annuli in (M,Γ ) into three disjoint subsets X1,X2,X3, where
X1 consists of longitudinal annuli which are not rough, X2 is the set of
all transverse annuli in X, and X3 is the set of all rough annuli. Consider
also three other subsets of X: Y1 = {F ∈ X : A−(F ) = ∅,A+(F ) = ∅},
Y2 = {F ∈ X : B−(F ) = ∅,B+(F ) = ∅}, and Y3 = X \ (Y1 ∪ Y2).

Implications (
1,2,3
=⇒), which we have already proved, tell us that Xi ⊂ Yi, i =

1, 2, 3. Obviously, Y1 ∩ Y3 = Y2 ∩ Y3 = ∅. If there is an annulus F ∈ Y1 ∩ Y2,
then we get a contradiction between Lemma 6.4.26 and our assumption that
(M,Γ ) is not (T 2 × I, ∅), (K2×̃I, ∅). Therefore Y1 and Y2 are also disjoint.
Since Y1 ∪ Y2 ∪ Y3 = X, it follows that Xi = Yi, i = 1, 2, 3, and that implica-
tions (

1,2,3⇐=) are also true. ��
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Theorem 6.4.28. There is an algorithm to determine the type of a given
clean incompressible boundary incompressible annulus F in an orientable
Haken manifold (M,Γ ).

Proof. First we use Lemma 6.4.20 to decide whether or not (M,Γ ) is homeo-
morphic to one of the exceptional 3-manifolds (T 2 × I, ∅), (K2×̃I, ∅). If it is,
then F is transverse, because so are all incompressible boundary incompress-
ible annuli in (T 2 × I, ∅) and (K2×̃I, ∅).

Suppose that (M,Γ ) is not exceptional. Then we take ε = ± and look
for a clean annulus Aε ∈ Aε(F ) and for a band Bε ∈ Bε(F ) as follows.
First we use Lemma 6.4.8 for finding an essential annulus having at least one
boundary circle in Fε. If it does not exist, we look for an annulus in Aε(F ) by
considering all the annuli which are parallel to almost clean annuli in ∂MF

(there are only finitely many of them). The search for bands can be performed
by using Lemma 4.1.18 and Remark 6.4.25. Proposition 6.4.27 tells us how
the information thus obtained allows us to determine the type of F . ��

6.4.4 JSJ-Decomposition Exists and is Unique

Definition 6.4.29. Let (M,Γ ) be a 3-manifold. A JSJ-system S for (M,Γ )
is a collection of disjoint clean connected surfaces in M such that:

1. Every surface in S is either a rough torus not parallel to a clean torus in
∂M , or a rough annulus not parallel to an almost clean annulus in ∂M .

2. No two surfaces from S are admissibly parallel.
3. S is maximal with respect to 1, 2. It means that any other system S ′

satisfying 1, 2 and containing S must be isotopic to S.

It is worth noticing that all annuli in S are essential, while some tori
are not. Indeed, S can include tori that are parallel to nonclean tori in ∂M .
Also, since all the surfaces in S are rough, any incompressible torus and any
clean incompressible boundary incompressible annulus in (M,Γ ) is admissibly
isotopic to a surface in the complement of S.

Example 6.4.30. If M is a graph manifold (see Sect. 2.4), then any canonical
system for M is a JSJ-system for M . ��

Theorem 6.4.31. For every irreducible boundary irreducible orientable 3-
manifold (M,Γ ) with boundary pattern a JSJ-system exists, is unique up to
admissible isotopy, and can be constructed algorithmically.

Proof. Step 1. We begin with constructing a set F of disjoint tori and clean
annuli in (M,Γ ) such that F possesses the following properties:

(I) All tori in F are incompressible and nonparallel to each other or to clean
tori of ∂M .

(II) All annuli in F are essential and no two of them are admissibly parallel.
(III) F cannot be included into a larger system satisfying I, II.
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Starting from F0 = ∅ and arguing inductively, we assume that we have already
obtained a system Fn = {F1, . . . , Fn} satisfying I, II. Denote by W the 3-
manifold obtained from M by cutting along all the surfaces from Fn. The
boundary of W contains two copies F−

i , F+
i of each surface Fi. We equip W

with the boundary pattern ∆ consisting of the copy of Γ and of the boundaries
of all surfaces F±

i , 1 ≤ i ≤ n.
To replace Fn by a larger system, we use Theorem 6.4.10 for finding an

essential torus or a clean essential annulus in W that has no boundary circles
in ∪n

i=1F
±
i . If we find one, we add it to Fn. If not, we look for a clean annulus

A in W such that:

1. A is disjoint from ∪n
i=1F

±
i and parallel rel ∂ to an almost clean annulus

A′ ⊂ ∂W .
2. A, considered as an annulus in (M,Γ ), is essential and not admissibly

parallel to an annulus from Fn.

If we find one, we add it to Fn. If not, we look for a torus A in W which
is parallel to a nonclean torus of ∂W but not parallel to a clean torus of ∂W .
Again, having found such a torus, we add it to Fn.

Now, let us perform this process for as long as possible. The procedure
is finite by Theorem 6.3.10. By construction, we end up with a system F
satisfying properties I–III above.

Step 2. Using Theorems 6.4.23 and 6.4.28, we select from F rough tori
and annuli. Denote the surfaces thus obtained by S1, . . . , Sk. We claim that
they form a JSJ-system S for (M,Γ ).

By construction, all these surfaces are rough and pairwise nonparallel. Let
us prove that S is maximal. Suppose, on the contrary, that there is a larger
system S ′ satisfying conditions 1, 2 of Definition 6.4.29. Choose a surface
S ∈ S ′\S. Then S is a rough torus or a rough annulus disjoint with S1, . . . , Sk.
By Corollary 6.4.6, we can assume that S is also disjoint with all the other
surfaces from F . It follows from construction of S and property III of F that
S is admissibly parallel to a surface from F , which is also rough and thus is
one of Si, a contradiction. Therefore, the system S1, . . . , Sk is a JSJ-system.

Step 3. Let us prove that the JSJ-system is unique. Suppose that R =
{F1, . . . , Fk} and R′ = {G1, . . . , Gm} are two JSJ-systems of rough tori and
annuli. By Corollary 6.4.6, one can assume that the surfaces of both systems
are disjoint. Since the system R is maximal, each surface of R′ is parallel to a
surface of R, and no two surfaces of R′ are parallel to the same surface of R.
We may conclude that R′ is isotopic to a part of R. Since R′ is also maximal,
this part coincides with R. ��

Let S = {S1, . . . , Sk} be a JSJ-system in an irreducible boundary irre-
ducible orientable 3-manifold (M,Γ ). Denote by MS the 3-manifold obtained
from M by cutting along all the surfaces from S. The boundary of MS con-
tains two copies S−

i , S+
i of each surface Si, 1 ≤ i ≤ k. We equip MS with the

boundary pattern ΓS consisting of the copy of Γ in ∂MS and all the bound-
ary circles of ∪k

i=1(S
−
i ∪ S+

i ). Since all surfaces Si are incompressible and
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boundary incompressible, the manifold (MS , ΓS) is irreducible and boundary
irreducible. In general, it consists of several connected components (Qi,∆i),
where Qi are connected components of MS and ∆i = ΓS ∩ ∂Qi. These con-
nected components of (MS , ΓS) are called JSJ-chambers. It turns out that
JSJ-chambers contain no essential rough tori or annuli anymore. Moreover,
their JSJ-systems are empty.

Lemma 6.4.32. Let S = {S1, . . . , Sk} be a JSJ-system for an irreducible
boundary irreducible orientable 3-manifold (M,Γ ), and (Q,∆) a JSJ-chamber
of (M,Γ ). Then the JSJ-system for (Q,∆) is empty.

Proof. It suffices to prove the following assertion:

(∗) Any rough torus F in (Q,∆) is parallel to a clean torus in ∂Q, and any
rough annulus F in (Q,∆) is parallel to an almost clean annulus in ∂Q.

Let us do that. First we suppose that F is an annulus and that a circle
C ⊂ ∂F is contained in some surface S = Sε

i ∈ S, ε = ±. Denote by S′

a proper surface in Q which is close and parallel to S. Since F is rough in
(Q,∆), it can be shifted from S′ by an admissible isotopy. Therefore, we can
assume that F is contained in the region S × I between S and S′. It cannot
happen that both boundary circles of F lie in S, since then F would be
boundary compressible, see Fig. 6.22. This contradicts our assumption that F
is rough. If only one circle of ∂F lies in S, then F is parallel rel ∂ to an almost
clean annulus in ∂Q. Hence in this case the assertion (*) is true.

Now we suppose that F is either a torus or an annulus such that ∂F does
not intersect surfaces S±

i , 1 ≤ i ≤ k, and hence lies in ∂M . We claim that
then F , considered as a proper surface in (M,Γ ), is also rough.

Indeed, let G be an arbitrary incompressible torus or an arbitrary clean in-
compressible boundary incompressible annulus in (M,Γ ). By Corollary 6.4.6,
we can shift G from all surfaces Si by an admissible isotopy. Then the new
surface G′ thus obtained is contained in only one JSJ-chamber. If this cham-
ber is different from (Q,∆), then G′ ∩ F = ∅. If the chamber coincides with
(Q,∆), then G′ can be shifted from F since F is rough in (Q,∆). In both

F  

Q  M  M  

SS

Fig. 6.22. F can be shifted from S′ into S × [0, 1)
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cases, we can conclude that any G as above can be shifted from F by an
admissible isotopy of (M,Γ ). It follows that F is rough in (M,Γ ).

We can conclude that F , being rough in (M,Γ ), is admissibly parallel
either to:

(1) A surface Si from S, or
(2) To a clean torus component of ∂M .

In both cases the assertion (*) is also true. ��

6.4.5 Seifert and I-Bundle Chambers

Let S = {S1, . . . , Sk} be a JSJ-system for an irreducible boundary irreducible
orientable 3-manifold (M,Γ ) and (Q,∆) a JSJ-chamber of (M,Γ ). Then the
JSJ-system for (Q,∆) is empty (by Lemma 6.4.32). It follows that (Q,∆)
contains no tori or annuli which are simultaneously essential and rough. It may
happen that (Q,∆) contains no essential tori and annuli at all. Then (Q,∆)
is simple, and this is fine, since any simple 3-manifold contains only finitely
many surfaces of bounded complexity, see Theorem 6.3.17. On the other hand,
(Q,∆) may contain essential tori and annuli, which are not rough. What can
we say about such nonsimple JSJ-chambers? They turned out to be fibered
either into circles, or into segments. Let us present two basic examples.

Example 6.4.33. Let Q be an orientable Seifert manifold fibered over a sur-
face F (see Remark A.1.1 for the definition of Seifert manifolds). Denote by X
the finite set in F consisting of the images of all exceptional fibers under the
fibration projection p:Q → F . Suppose that Q is equipped with a boundary
pattern ∆ composed of a finite number of fibers. Then the JSJ-system for
(Q,∆) is empty, although, with a few exceptions, (Q,∆) contains essential
tori or annuli (which are necessarily not rough). Such tori and annuli can be
found among surfaces of the type p−1(C), where C is an orientation preserv-
ing essential curve on F \X. (Recall that a circle in F \X is essential, if it is
not parallel to ∂F and does not bound a disc in F containing ≤ 1 points of
X. A proper arc in F \ X is essential, if it is not parallel in F \ X to an arc
in ∂F ). The exceptional manifolds without essential tori or annuli are fibered
solid tori, manifolds fibered over S2 with ≤ 3 exceptional fibers, and manifolds
fibered over RP 2 with ≤ 1 exceptional fibers.

Example 6.4.34. Let Q = F ×̃I be an orientable I-bundle, i.e., an orientable
direct or skew product of a surface F and an interval. Suppose that Q is
equipped with a boundary pattern ∆ consisting of nonempty collections of
nontrivial circles in each annulus of ∂F ×̃I. Then the JSJ-system for (Q,∆)
is empty and, with a few exceptions, (Q,∆) contains essential annuli (inverse
images of essential circles in F under the bundle projection). The exceptions
are I-bundles over S2, RP 2,D2, A2, and M2, where A2 is an annulus and M2

is a Möbius band. ��
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Later we show (see Propositions 6.4.35 and 6.4.41) that these examples
exhaust all types of orientable Haken manifolds that contain essential tori or
annuli, but have empty JSJ-systems.

Proposition 6.4.35. Suppose that an orientable Haken manifold (Q,∆) with
boundary pattern has the empty JSJ-system, but contains either an essential
torus or an essential longitudinal annulus. Then Q admits a structure of a
Seifert manifold with ∆ consisting of fibers, and such a structure can be con-
structed algorithmically.

Remark 6.4.36. Saying that a Seifert structure can be constructed algorith-
mically, we mean the following. One can construct a triangulation of (Q,∆)
and a simplicial map p:Q → S of Q to a triangulated surface S such that p
is a Seifert fibration.

The proof of Proposition 6.4.35 requires a certain amount of preparatory
work, which is carried out in Lemmas 6.4.38, 6.4.39 and 6.4.40. First go a
few notations and definitions. Let us introduce a class ZQ of 3-submanifolds
of Q. We assume that the boundary ∂Z of each manifold Z ∈ ZQ is the
union of the exterior boundary ∂extZ = ∂Z ∩ ∂Q and the interior boundary
Cl(∂Z \ ∂intZ) ⊂ Q. The intersection ∂extZ ∩ ∂intZ must be disjoint from ∆
and consist of circles in ∂Q. We equip Z with the boundary pattern ∆Z =
(∂intZ∩∂extZ)∪(∆∩∂extZ). For convenience of terminology, we call a subset
of a Seifert fibered manifold saturated, if it the union of whole fibers.

Definition 6.4.37. Let (Q,∆) be an orientable Haken manifold. A connected
submanifold Z ⊂ Q with the boundary pattern ∆Z belongs to the class ZQ,
if Z possesses a Seifert fibration which is faithful in the following sense:

1. ∆Z is saturated
2. Z contains a surface FZ which is also saturated and, being considered

as a surface in (Q,∆), is either an essential torus or a clean essential
longitudinal annulus.

For example, any regular neighborhood N of an essential torus or a clean
essential annulus in (Q,∆) belongs to ZQ. We will use N as a starting point
for constructing a Seifert structure on (Q,∆).

Lemma 6.4.38. Let (Q,∆) be an orientable Haken manifold with boundary
pattern, and let a submanifold Z of Q belong to the class ZQ. Then for
any collection of disjoint incompressible boundary incompressible clean an-
nuli Ai ⊂ (Z,∆Z), 1 ≤ i ≤ k, there exists a faithful Seifert fibration of Z such
that all Ai are saturated.

Proof. It suffices to prove the lemma for k = 1; the general case can be easily
obtained by induction. Let A = A1 be given.

Case 1. Suppose that A has a boundary circle C either in an annular
component of ∂intZ or ∂extZ, or in a torus of ∂extZ containing a circle of ∆Z .
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Then, since ∆Z and ∂intZ ∩ ∂extZ consist of fibers of a faithful fibration of
(Z,∆Z) and A is clean, C is admissibly isotopic to a fiber of the same fibration.
It follows that there exists an admissible isotopy ht:Q → Q, 0 ≤ t ≤ 1, such
that h0 = 1 and the annulus A′ = h1(A) is saturated. Then the inverse isotopy
h1−th

−1
1 :Q → Q, 0 ≤ t ≤ 1, deforms the faithful fibration of (Z,∆Z) to a new

faithful fibration so that A is saturated.
Case 2. Suppose that both circles of ∂A are in clean torus components

of ∂Z and that Z is not homeomorphic to a thick torus T × I or a thick
Klein bottle K×̃I. Then A is boundary incompressible and hence essential
in Z considered as a 3-manifold without boundary pattern. It is well known
that any essential annulus in any Seifert manifold is saturated with respect to
some Seifert fibration. Therefore, A A is saturated with respect to a Seifert
fibration of Z. This new fibration is isotopic to the original one, since T × I
and K×̃I are the only 3-manifolds with nonempty boundary that contain
essential annuli and admit more than one isotopy class of Seifert fibrations.
Certainly, this isotopy can be made admissible.

Case 3. In this remaining case, when (Z,∆Z) is either (T × I, ∅) or
(K×̃I, ∅), we simply change a given Seifert fibration of Z in order to make A
saturated. The new fibration remains faithful, since ∆Z = ∅. ��

Let a submanifold Z ⊂ Q belong to the class ZQ. Our intention is to extend
a faithful fibration of Z to a faithful fibration of a larger submanifold Z ′ ∈ ZQ,
with the final goal to obtain (after a finite number of steps) a faithful fibration
of Q. We consider five cases when such an extension is always possible. In all
of them the extension consists in “filling a gap”. Namely, we replace Z by
Z ′ = Z ∪ U , where the “hole” U is the closure of a connected component of
Q \ Z. Certainly, we should care on extension of the fibration. We point out
that all the nonsingular fibers of Z are homotopic. It follows that all of them
are nontrivial in Q, since otherwise all fibered tori and annuli in Z would be
compressible, in contradiction with condition 2 of Definition 6.4.37. Let us
describe these five types of extensions:

1. (Filling up a solid torus gap). Suppose that U is a solid torus in the interior
of Q. Since the fibers of ∂U are nontrivial in Q, they are not meridians of
U . It follows that any faithful fibration of Z can be extended to a faithful
fibration of Z ′ = Z ∪ U .

2. (Filling up a thick torus gap). Let U ≈ T × I be the region between to
parallel boundary tori T, T1 of ∂Z. Assume that there is a proper annulus
A ⊂ U whose boundary circles lie in distinct boundary tori of U and are
fibers of a faithful fibration of Z. This assumption guarantees us that the
faithful fibration of Z can be extended to a faithful fibration of Z ′ = Z∪U .

3. (Adding a torus collar). Let U ≈ T × I be a collar of a boundary torus
T ⊂ ∂Q such that the other end T1 of U is a torus of ∂intZ. Suppose that
there is an annulus A ⊂ U joining a clean circle in T with a fiber C ⊂ T1

of a faithful fibration of Z. Then the fibration of Z extends to a faithful
fibration of Z ′ = Z ∪ U in an evident manner.
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Fig. 6.23. The behavior of base surfaces of Seifert manifolds under five completion
moves

4. (Filling up an annular tunnel). Suppose that U is a tunnel, i.e., a region
between a clean incompressible annulus A ⊂ ∂intZ which is inessential in
(Q,∆), and the corresponding almost clean annulus A′ in ∂Q. Then any
faithful fibration of Z extends easily to a faithful fibration of Z ′ = Z ∪U .

5. (Filling up a thick annulus gap). Suppose that U ≈ A × I is a region
between two parallel annuli A0 = A × {0}, A1 = A × {1} of ∂intZ such
that ∂extU = ∂A× I consists of two almost clean annuli in ∂Q. Then any
faithful fibration of Z can be extended to a faithful fibration of Z ′ = Z∪U .

By construction, in all these cases Z ′ also belongs to the class ZQ. We will
refer to the transitions from Z to Z ′ described above as to completion moves.
All five completion moves are shown in Fig. 6.23. If neither of them is possible,
Z is called complete.

If Z is a submanifold of a 3-manifold Q, then the total number of connected
components of ∂intZ is denoted by #(∂intZ).

Lemma 6.4.39. Let (Q,∆) be an orientable Haken manifold such that its
JSJ-system is empty. Suppose that a submanifold Z ∈ ZQ is complete. Then
all tori and annuli in ∂intZ are essential in (Q,∆).

Proof. Suppose, on the contrary, that a component F of ∂intZ is an inessential
torus or a clean inessential annulus.

Case 1. Let F be a compressible torus. Then, since Q is irreducible, F
bounds a solid torus U ⊂ Q. If Z ∩ Int U = ∅, then Z = U , in contradiction
with the requirement that Z contains an essential surface FZ . If Z ∩ Int U =
∅, then U is a solid torus gap for Z, and we get a contradiction with our
assumption that Z is complete.

Case 2. Let F be parallel to a torus T ⊂ ∂Q. Then F cuts off from Q a
collar U ≈ T ×I of T . If Z = U or if T is clean, we get the same contradictions
as above.

Case 3. Let F be parallel to a torus T ⊂ ∂Q and cut off from Q a collar
U ≈ T × I such that Z = U and T is not clean. Since the JSJ-system for
(Q,∆) is empty, F is not rough. It follows that there exists an incompressible
boundary incompressible clean annulus A′ ⊂ (Q,∆) such that A′ cannot be
shifted from F by an admissible isotopy. Let us apply to A′ and all the annuli
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and tori in ∂intZ all possible elementary separating moves (A′ is moving,
∂intZ is fixed), see Sect. 6.4.1. We get a new annulus (still denoted by A′)
that consists of annuli A1, A2, . . . , Am such that A1 has a boundary circle
in T and the annuli lie alternately in the complement of Z and in Z. Since
further separating moves are impossible, the annuli A2, A4, . . ., considered as
annuli in (Z,∆Z), are clean and essential. By Lemma 6.4.38, we can assume
that they are saturated. It follows that A1 joins T with a fiber of F .

Case 3.1. Suppose that not all connected components of ∆∪T are circles.
Then ∆ ∪ T contains a pattern strip, i.e., a connected component of ∆ which
is not a circle and which is contained in an incompressible annulus in A′ ⊂ T
with the clean boundary. Denote by Ā a proper annulus in Q obtained from
A′ by shifting it rel ∂ inward. Then Ā is rough and essential, which contradicts
our assumption that the JSJ-system for (Q,∆) is empty. This contradiction
shows that ∆ ∩ T consists of disjoint circles.

Case 3.2. Suppose that ∆ ∪ T is a collection of disjoint circles. Then we
can extend Z by adding the torus collar U . This contradicts our assumption
that Z is complete.

Since in all above cases we get contradictions, we may conclude that if F
is a torus, then it is essential.

Case 4. Suppose F is an annulus. Then it cannot be compressible, since
each circle of ∂F is a fiber of Z and hence is nontrivial in Q. Moreover, it
cannot be boundary compressible, since then it would be parallel to a clean
annulus in ∂Q. This contradicts our assumption that Z is complete and, in
particular, admits no annular tunnels. By the same reason F cannot be parallel
to an almost clean annulus in ∂Q. It follows that F is essential. ��

Lemma 6.4.40. Let (Q,∆) be an orientable Haken manifold such that the
JSJ-system for (Q,∆) is empty. Suppose a manifold Z ⊂ Q,Z = Q, belongs
to the class ZQ. Then one can construct a complete manifold Z ′ ∈ ZQ so that
Z ⊂ Z ′ and either a connected component of ∂intZ

′ is not admissibly parallel
in (Q,∆) to a surface in Z, or #(∂intZ

′) < #(∂intZ).

Proof. Evidently, each completion move decreases #(∂intZ), so if Z is not
complete, then we can easily get Z ′ by applying to Z all possible completion
moves. Assume that Z is complete. Consider a connected component F of
∂intZ, which by Lemma 6.4.39 is either an essential torus or a clean ess-
ential annulus. Since the JSJ-system for (Q,∆) is empty, F is not rough in
Q. Therefore, there is a clean surface G ⊂ Q such that G is either a clean
incompressible boundary incompressible annulus or an incompressible torus,
and G cannot be shifted from F by an admissible isotopy. Applying to G and
all the components of ∂intZ elementary separating moves as long as possible
(G is moving, ∂intZ remains fixed), we may assume that G admits no further
separating moves. Then either the intersection of G with ∂intZ consists of
nontrivial circles, or G∩∂intZ consists of radial arcs. In both cases G∩F = ∅.

Let us prove that the second case, when G ∩ ∂intZ consists of radial arcs
and hence F is a transverse annulus, is impossible. Assume the contrary. Then
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the arcs G ∩ ∂intZ decompose G into quadrilaterals, which lie alternately in
Z and Cl(Q \ Z). Since G admits no further elementary separating moves,
each quadrilateral disc D = I × I from G∩Z is a nontrivial compressing disc
for ∂Z. The only Seifert 3-manifold with compressible boundary is a solid
torus, hence Z can be identified with S1 × I × I so that D = {∗} × I × I,
∂extZ = S1 × ∂I × I, and ∂intZ = S1 × I × ∂I. It follows that the annulus
FZ , which is essential in (Q,Γ ) and is contained in Z by Definition 6.4.37, is
admissibly isotopic to F = S1 × I × {∗}. All these annuli are transverse in
(Q,∆), since G intersects the annuli ∂intZ = S1×I×∂I along radial segments
and this intersections cannot be removed by an isotopy of G. This contradicts
the assumption that FZ is longitudinal.

Therefore G∩ ∂intZ consists of nontrivial circles. They decompose G into
annuli, which lie alternately in Z and Cl(Q \ Z) and which are essential in
(Z,∆Z). Denote by Ai, 1 ≤ i ≤ k, the annuli which are in Z. By Lemma 6.4.38,
we can assume that they are saturated with respect to a faithful fibration of
Z. Then a regular neighborhood N = N(Z ∪ G) of Z ∪ G in Q also belongs
to the class ZQ. We extend N(Z ∪ G) to a complete submanifold Z ′ ∈ ZQ.

In order to prove the conclusion of the lemma, let us suppose that each
connected component F ′ of ∂intZ

′ is admissibly parallel to a surface in Z.
Then F ′ is admissibly parallel to a connected component of ∂intZ which lies
between F ′ and the aforementioned surface in Z. Since distinct components
of ∂intZ

′ are not admissibly parallel to each other (otherwise we could fill
the thick torus or annulus gap between them), the corresponding compo-
nents of ∂intZ are distinct. This implies #(∂intZ

′) ≤ #(∂intZ). The equality
#(∂intZ) = #(∂intZ

′) cannot hold, because otherwise the admissible paral-
lelism between ∂intZ

′ and ∂intZ would ensure the existence of an admissible
isotopic deformation of Z ′ into the interior of Z. This would contradict to the
assumption that G cannot be shifted from F . ��
Proof of Proposition 6.4.35. Let F be an essential torus or an essential lon-
gitudinal annulus in Q. Then a regular neighborhood N(F ) of F in Q be-
longs to the class ZQ. Applying to Z = N(F ) and to each of the subse-
quent submanifolds Lemma 6.4.40 as long as possible, we construct a sequence
Z = Z1 ⊂ Z2 ⊂ . . . of manifolds in ZQ. Each time either #(∂intZi) decreases
or a new torus or annulus appears in ∂intZi+1 that is not parallel to a surface
in Zi. It follows from the First Finiteness Property (Theorem 6.3.10) that the
sequence Z = Z1 ⊂ Z2 ⊂ . . . has finite length. The last manifold Zn coincides
with Q, therefore Q is a Seifert manifold possessing a faithful fibration. ��
The following proposition extends Proposition 6.4.35 to the case of transverse
annuli.

Proposition 6.4.41. Suppose that an orientable Haken manifold (Q,∆) with
boundary pattern has the empty JSJ-system, but contains a transverse annu-
lus. Then Q admits a structure of an I-bundle F ×̃I with ∆ consisting of a
nonempty collection of nontrivial circles in each annulus of ∂F ×̃I. The bundle
structure on (Q,∆) can be constructed algorithmically.
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Proof. This is very similar to the proof of Proposition 6.4.35, so we restrict
ourselves to sketching details. First we define a class IQ of submanifolds of Q
as follows. A submanifold Z ⊂ Q belongs to the class IQ if:

1. Z is an I-bundle F1×̃I such that F1×̃∂I is a clean surface in ∂Q and
each annulus from ∂F1×̃I is either an annulus in ∂intZ or an almost clean
annulus in ∂Q containing at least one circle of ∆.

2. Z contains a clean proper annulus AZ which is transverse in (Q,∆).

Next we describe three types of completion moves, which extend the I-
bundle structure of Z to an I-bundle structure of a larger submanifold Z ′.
Each such move consists in filling up a gap , i.e, in adding to Z a connected
component U of Cl(Q \ Z):

1. Suppose that U is a 3-ball D2×I such that D2×∂I are two clean discs in
∂Q and ∂D2 × I is an annulus in ∂intZ. Then we extend the I-fibration
of Z to an I-fibration of Z ′ = Z ∪ U .

2. Suppose that U = S1×I×I is the region between two admissibly parallel
annuli A0 = S1×{0}×I,A0 = S1×{1}×I of ∂intZ. Then the I-fibration
of Z can be easily extended to an I-fibration of Z ′ = Z ∪ U .

3. Suppose that U is a tunnel, i.e., a region between a clean incompressible
boundary incompressible annulus A ⊂ ∂intZ which is inessential in (Q,∆)
and the corresponding almost clean annulus A′ in ∂Q. Then the I-bundle
structure of Z extends easily to an I-fibration of Z ′ = Z ∪ U .

Note that IQ is nonempty, since it contains a regular neighborhood N(AZ)
of the transverse annulus AZ ⊂ (Q,∆), which exists by the assumption. Start-
ing with Z1 = N(AZ), we will extend Z by completion Moves 1–3 as long as
possible. Suppose that some Zi obtained in this way is complete, that is, it
does not admit further completion moves. Then each annulus in ∂intZi+1 is
essential and thus is not rough in (Q,∆). Therefore, we can replace Zi by a
regular neighborhood Zi+1 = N(Zi ∪G) of Zi∪G, where G is a clean annulus
in (Q,∆) that intersects ∂intZi along radial segments and cannot be shifted
from ∂intZi by an admissible isotopy. Then we apply completion Moves 1–3
again, and so on. The same arguments as in the proof of Proposition 6.4.35 en-
sure us that the process ends up with a manifold Zn ∈ ZQ coinciding with Q.

��

Finally, we are summing up.

Theorem 6.4.42. Any JSJ-system for an irreducible boundary irreducible
orientable 3-manifold (M,Γ ) decomposes M into JSJ-chambers {(Qi,∆i)}
of the following three types: simple 3-manifolds, Seifert manifolds (as in
Example 6.4.33), and I-bundles (as in Example 6.4.34). The types of the
JSJ-chambers as well as Seifert or I-bundle structures on them (if exist) can
be found algorithmically.

Proof. Follows from Propositions 6.4.35 and 6.4.41. ��
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Remark 6.4.43. There are exactly two types of JSJ-chambers which are
simultaneously Seifert manifolds and I-bundles: S1 × S1 × I and K2×̃I =
M2×̃S1 with the empty boundary pattern, where M2 is the Möbius band
and K2 is the Klein bottle. They contain no essential tori or longitudinal
annuli, so we prefer to consider them as I-bundles.

6.4.6 Third Finiteness Property

Now we are ready to establish the main result of Sect. 6.4 (the Third Finiteness
Property, see Theorem 6.4.44). Recall that two surfaces F, F ′ in a 3-manifold
(M,Γ ) are equivalent, if they are related by an admissible homeomorphism
h: (M,Γ ) → (M,Γ ), and strongly equivalent, if h can be chosen so that its
restriction onto ∂M is admissibly isotopic to the identity, see Definitions 6.3.11
and 6.3.12.

Theorem 6.4.44 (Third Finiteness Property). Any irreducible boundary
irreducible orientable 3-manifold (M,Γ ) contains only finitely many essential
tori and longitudinal annuli up to strong equivalence, and only finitely many
transverse annuli up to equivalence. Representatives of all equivalence classes
of tori and annuli can be constructed algorithmically.

We would like to emphasize an important difference between longitudi-
nal and transverse annuli: homeomorphisms (M,Γ ) → (M,Γ ) that relate
transverse annuli can be nontrivial (i.e., not admissibly isotopic to the iden-
tity) on ∂M . In other words, we consider tori and longitudinal annuli up to
strong equivalence while transverse annuli only up to admissible homeomor-
phisms. If M is a chamber of a larger manifold (M ′, Γ ′), then such home-
omorphisms are usually not extendible to homeomorphisms of (M ′, Γ ′). On
the contrary, strong equivalence can be always realized by homeomorphisms
(M,Γ ) → (M,Γ ) which are extendible to (M ′, Γ ′).

Before proving the theorem, we need to prove its 1-dimensional analogue.
Let F be a compact surface with a boundary pattern γ ⊂ ∂F consisting of
a finite number of points. We say that two connected simple proper curves
C1, C2 ⊂ F disjoint from γ are strongly equivalent , if there is a homeomor-
phism h:F → F such that h(C1) = C2 and h|∂F is isotopic to the identity via
an isotopy fixed on γ. The set of strong equivalence classes of essential curves
in F is denoted by C(F, γ).

Lemma 6.4.45. For any compact surface F with boundary pattern γ the set
C(F, γ) is finite. Representatives of all the equivalence classes from C(F, γ)
can be constructed algorithmically.

Proof. We can assume that F is connected. Denote by C(F ) the set of simple
proper curves in F modulo homeomorphisms F → F which induce homeo-
morphisms ∂F → ∂F isotopic to the identity. Let C′(F ) be the set of the
same curves considered modulo arbitrary homeomorphisms F → F . Finally
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let F(F ) be the set of one- or two-component surfaces (considered modulo
homeomorphisms) whose Euler characteristic is greater than or equal to χ(F ).

There are natural finite-to-one maps p1: C(F, γ) → C(F ), p2: C(F ) →
C′(F ), and p3: C′(F ) → F(F ). To get p1, we simply forget about γ, to get p2,
we forget about the requirement that the induced homeomorphism F → F
must be isotopic to the identity. The last map assigns to every simple proper
curve C ⊂ F the surface FC obtained from F by cutting along C. Note that
χ(FC) = χ(F ), if C is a circle, and χ(FC) = χ(F ) + 1, if C is a proper arc.
It follows from the classification theorem for compact surfaces that F(F ) is
finite. Therefore C(F, γ) is also finite.

Analyzing this proof, one can notice that two proper curves C1, C2 deter-
mine the same element of C(F, γ) if and only if one of the following conditions
holds:

1. Both curves are closed, do not separate F , and either both reverse or both
preserve orientation

2. Both curves are closed and decompose F into two surfaces that have the
same topological type and contain the same components of ∂F

3. Both curves are nonseparating arcs with endpoints contained in the same
components of ∂F and in the same intervals of ∂F \ γ

4. Both curves are separating arcs that have endpoints in the same compo-
nent of ∂F and decompose F into parts which contain the same remaining
components of ∂F and the same points of ∂γ

Representing each situation described in 1–4 by a curve (if possible), we
get an algorithmically constructible list of all elements of C(F, γ). ��

Proof of Theorem 6.4.44. Let S = {S1, . . . , Sk} be a JSJ-system for (M,Γ )
and F an incompressible torus or a clean incompressible boundary incom-
pressible annulus in (M,Γ ). Since all tori and annuli of S are rough, F is
admissibly isotopic to a surface which is disjoint with S. So we can assume
that from the very beginning F is contained in a JSJ-chamber (Q,∆).

Suppose that (Q,∆) is a simple JSJ-chamber. Then F is either a torus
parallel to a torus of ∂Q or an annulus parallel rel ∂ to an almost clean
annulus in ∂Q. All such surfaces can be easily enumerated.

Suppose that (Q,∆) is a Seifert JSJ-chamber. Then S is either a torus
isotopic to a saturated torus in (Q,∆) or a longitudinal annulus admissibly
isotopic to a saturated annulus in (Q,∆). Therefore it can be represented as
the inverse image (with respect to the fibration projection) of a curve on the
base surface of the chamber. It follows from Lemma 6.4.45 that the number
of strong equivalence classes of such surfaces is finite and that their represen-
tatives can be constructed algorithmically. It remains to select essential tori
and longitudinal annuli among them.

Finally, we suppose that (Q,∆) is an I-bundle JSJ-chamber with Q = G×̃I
and ∆ consisting of nontrivial circles in ∂G×̃I. Then S is a transverse annulus
admissibly isotopic to an annulus of the form C×̃I, where C is an essential
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curve on F . Therefore, transverse annuli correspond to simple closed curves
in the base surface. Then we apply Lemma 6.4.45 again. ��

Remark 6.4.46. Let F be a clean proper surface in (M,Γ ). Recall that a
twist of M along F is a homeomorphism (M,Γ ) → (M,Γ ) which is fixed
outside a small regular neighborhood of F in M . For example, if F is an
annulus, then a twist along F can be described as follows: we cut M along F ,
rotate one of the two annuli arising in this way by 2π, and glue them again
via the identity homeomorphism.

Theorem 6.4.44 can be sharpened by stating that any irreducible boundary
irreducible 3-manifold M with boundary pattern Γ contains only finitely many
incompressible tori and longitudinal annuli up to twists along incompressible
tori, and only finitely many transverse annuli up to twists along transverse
annuli. The proof is the same; all what we need is to replace Lemma 6.4.45
by a version of Mennike–Lickorish result [68] that any self-homeomorphism of
a compact surface can be presented as a product of Dehn twists along simple
closed curves. In the case of a Seifert manifold M the twists along curves in
the base surface correspond to the twists along their inverse images, which
are tori in M . In the case of an I-bundle the inverse images are proper annuli.

6.5 Extension Moves

Now we are ready to begin the realization of the program described in
Sect. 6.3.2: we define extension moves and prove that they possess proper-
ties C1–C4.

6.5.1 Description of General Extension Moves

We describe here the first five extension moves. They are called general since
they fit into the general scheme of constructing admissible subpolyhedra de-
scribed in Sect. 6.3.1: we extend a given admissible subpolyhedron by inserting
a proper surface. We prove that those moves possess properties C1–C3. Yet,
in general, they do not possess property C4: in many cases we end up with
an admissible polyhedron having not only 3-ball chambers. Special extension
moves, which help us to overcome this difficulty and prove the recognition
theorem for Haken 3-manifolds, will be described later.

Let P be an admissible subpolyhedron of an orientable Haken manifold
(M,Γ ) and (Q,∆) a chamber of P . Recall that Q is a compact 3-manifold such
that Q∩P = ∂Q and ∆ = (SP ∪Γ )∩∂Q. In other words, ∆ consists of those
parts of the pattern Γ and those of the singular graph SP of P that are in
∂Q. It follows from the definition of an admissible subpolyhedron that (Q,∆)
is Haken. Each of the following extension moves E1–E5 consists in inserting
a proper surface into (Q,∆). The surface either is connected or consists of
two parallel copies of a connected surface (we use such double surfaces for
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Fig. 6.24. Inserting surfaces into chambers

avoiding nonseparating 2-components, see condition 2 of Definition 6.3.6). In
both cases, we decompose Q into two new chambers Q′, Q′′, see Fig. 6.24.

E1: Inserting an Essential Torus

Suppose that Q contains an essential torus T (recall that the property of a
torus to be essential does not depend on the boundary pattern: T is essential,
if it is incompressible and not parallel to a torus of ∂Q). Then, we add to P
either T or two parallel copies of T depending on whether or not T separates Q.

E2: Inserting a Longitudinal Annulus Which is not Parallel rel ∂
to an Annulus in ∂Q

Suppose that (Q,∆) contains a longitudinal annulus A which, considered as
an annulus in Q, is not parallel rel ∂ to an annulus in ∂Q. Then we add
to P either A or two parallel copies of A depending on whether or not A
separates Q.

E3: Inserting a Clean Essential Annulus Which is Parallel to an
Annulus in ∂Q

Suppose that (Q,∆) contains a clean essential annulus A which, considered
as an annulus in Q, is parallel to an annulus A′ in ∂Q. Of course, A′∩∆ must
contain noncircle components, since otherwise A would be inessential. Then
we add A to P .

E4: Inserting a p-minimal proper disc

. Suppose that (Q,∆) is a simple 3-manifold, which contains no essential tori
and no clean essential annuli. Note that Q, being boundary irreducible as
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a 3-manifold with the boundary pattern ∆, can be boundary reducible as a
3-manifold with the empty boundary pattern. Suppose that:

(a) Q is boundary reducible, i.e., ∂Q is compressible
(b) Q is not a solid torus having a clean longitude

Among all nontrivial compressing discs for ∂Q we choose a disc D having
the smallest p-complexity. Then we add to P either D or two parallel copies
of D, depending on whether or not D separates Q.

E5: Inserting a p-Minimal Surface with Nonempty Boundary

Suppose that:

(a) (Q,∆) is a simple 3-manifold and Q is boundary irreducible
(b) Q contains a connected proper incompressible boundary incompressible

surface which is not S2 or D2 and, if ∂Q = ∅, has nonempty boundary

Among all surfaces described in (b) we choose a surface F having the
smallest p-complexity. Then we add to P either F or two parallel copies of F
depending on whether or not F separates Q.

Remark 6.5.1. It follows from Lemma 6.2.8 that if ∂Q = ∅ and Q is not
a 3-ball, then (a) implies (b). Suppose that Q is closed. Then M = Q (i.e.,
we are applying the very first move), and the existence of an incompressible
surface in Q follows from our assumption that M is sufficiently large. This is
the only place when this assumption is used. At all subsequent moves we will
have nonclosed chambers, which are either handlebodies or are automatically
sufficiently large.

Our next goal is to prove that moves E1–E5 satisfy properties C1–C3 (see
Sect. 6.3.2). Recall that two admissible subpolyhedra of a 3-manifold (M,Γ )
with boundary pattern are called equivalent, if there is a homeomorphism
(M,Γ ) → (M,Γ ) transforming one subpolyhedron into the other.

Proposition 6.5.2. Extension moves E1–E5 satisfy properties C1, C2.

In a more detailed form Proposition 6.5.2 can be formulated as follows. Let
P be an admissible subpolyhedron of an orientable Haken 3-manifold (M,Γ ).
Then there exist only finitely many nonequivalent admissible subpolyhedra
that can be obtained from P by performing exactly one of moves Ei, 1 ≤
i ≤ 5. Moreover, representatives of the equivalence classes can be constructed
algorithmically.

Proof. For moves E1, E2, E3 the conclusion follows from the Third Finiteness
Property (Theorem 6.4.44). Indeed, applying this theorem to each chamber
(Qi,∆i), we obtain an algorithmically constructible set of essential tori and
longitudinal annuli which represent all the strong equivalence classes of such
tori and annuli. Then we select among them annuli which are essential in
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(Qi,∆i). Each of these tori and annuli determines one of moves E1, E2, E3

and hence an extension of P . By construction, we obtain all such extensions
up to strong equivalence, i.e., up to homeomorphisms (Qi,∆i) → (Qi,∆i)
of the corresponding chambers that induce homeomorphisms ∂Qi → ∂Qi

admissibly isotopic to the identity. Any such homeomorphism can be extended
to a homeomorphism (M,Γ ) → (M,Γ ).

Let us prove the proposition for moves E4, E5. Let (Qi,∆i) be a simple
chamber. It follows from the second finiteness property (Theorem 6.3.17) that
for any k there exists a finite algorithmically constructible set Fk of proper
surfaces in (Qi,∆i) such that any proper incompressible boundary incom-
pressible surface F of p-complexity ≤ k is strongly equivalent to a surface
from Fk. As above, strong equivalence of surfaces F1, F2 implies equivalence
of the corresponding extensions P ∪F1, P ∪F2. This means that if k is given,
then the number of different extensions of P obtained by adding a surface of
p-complexity ≤ k is finite.

Suppose now that (Qi,∆i) contains a proper disc D which is nontrivial
in Q considered as a 3-manifold without boundary pattern. Its p-complexity
we denote by k. Clearly, the number of different discs of p-complexity ≤ k is
finite. Therefore, the number of p-minimal nontrivial discs and corresponding
moves E4 is also finite. Certainly, the discs and the moves can be constructed
algorithmically.

Suppose that Qi is boundary irreducible and contains an incompressible
boundary incompressible surface F such that F = S2,D2 and ∂F = ∅. Denote
by k the p-complexity of F . Using that the set Fk is finite at the same way
as above, we can conclude that the number of moves E5 is also finite. ��

For proving property C3 we need a preparation. To any Haken 3-manifold
(Q,∆) we associate seven numerical characteristics:

(1) The maximal number t(Q) of disjoint pairwise nonparallel essential tori
in Q

(2–4) The extended complexity c̄(Q) = (c(Q), c1(Q), c2(Q)) of Q, see Defini-
tion 4.2.7

(5) The maximal number a(Q,∆) of disjoint longitudinal annuli in Q which,
considered as annuli in Q, are not parallel to each other and to annuli
in ∂Q

(6) The maximal number d(Q) of disjoint nontrivial proper discs in (Q,Γ )
not parallel to each other

(7) The number s(Q,∆) of pattern strips in ∂Q, where by a pattern strip
in ∂Q we mean a connected component of ∆ which is not a circle and
which is contained in an incompressible annulus in ∂Q with the clean
boundary. Two examples of pattern strips are shown in Fig. 6.25.

Note that t(Q), c̄(Q), d(Q) depend only on Q; the boundary pattern is
irrelevant. In contrast to this, a(Q,∆) and s(Q,∆) depend on Q as well as
on ∆. All these numbers are nonnegative and finite. For t(Q) and a(Q,∆) it
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Fig. 6.25. Two pattern strips

follows from the first finiteness property (Theorem 6.3.10), for c̄(Q,∆) from
Definition 4.2.7, and for s(Q,∆) it is evident. d(Q) is finite since it coincides
with the length of the longest sequence of nontrivial cuts that transforms Q
into its core (see Definition 4.1.21 and Proposition 4.1.25).

Definition 6.5.3. Let P be an admissible subpolyhedron of an orientable
Haken manifold (M,Γ ), and let (Qi,∆i), 1 ≤ i ≤ n, be all the chambers
of P different from a solid torus with a clean longitude. Then the chamber
complexity C(P ) of P is the tuple of seven numbers

( n∑

i=1

t(Qi),
n∑

i=1

c̄(Qi),
n∑

i=1

a(Qi,∆i),
n∑

i=1

d(Qi),
n∑

i=1

s(Qi,∆i)
)
,

where the sum
∑n

i=1 c̄(Qi) of the extended complexities of the chambers con-
sists of three numbers

∑n
i=1 c(Qi),

∑n
i=1 c1(Qi), and

∑n
i=1 c2(Qi). The tuples

are considered in lexicographic ordering.

Remark 6.5.4. We point out that if Q is a solid torus, then t(Q), c̄(Q), and
a(Q,∆) are zeros. Therefore, taking the sums above over only those chambers
which are not homeomorphic to a solid torus with a clean longitude, we ignore
the meridional discs of such tori and pattern strips in their boundaries.

Lemma 6.5.5. Let F be a compact connected surface and G a proper incom-
pressible subsurface of F × I such that G ∩ (F × ∂I) = ∅ and G is either a
torus, or an annulus not parallel rel ∂ to an annulus in ∂F × I, or a disc not
parallel rel ∂ to a disc in ∂F × I. Then there exists an isotopy F × I → F × I
which keeps F × ∂I fixed and takes G to a surface of the form F × {∗}.

Proof. Suppose that G is a disc not parallel to a disc in ∂F × I. Then ∂G is
isotopic to a core circle of the annulus of ∂F × I it is contained in. This can
happen only if F is a disc and G has the form F × {∗}.

Suppose that G is an annulus not parallel to an annulus in ∂F × I. Then
it is boundary incompressible in the manifold (F ×I, ∂F ×∂I) with boundary
pattern. If G is a torus, then it is also boundary incompressible because it
has no boundary. Choose a triangulation T of (F × I, ∂F × ∂I) such that all
its vertices are in F × ∂I. Such a triangulation can be easily constructed as
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follows. First we triangulate F and decompose F × I into prisms of the type
∆ × I, where ∆ is a triangle in F . Next we subdivide coherently each prism
into tetrahedra without introducing new vertices.

By Corollary 3.3.25, G is admissibly isotopic to a clean normal surface
G′ ⊂ (F × I, ∂F × ∂I). It is easy to see that any such surface has the form
F × {∗}. ��

The following proposition plays a crucial role in proving property C3.

Proposition 6.5.6. Let (M,Γ ) be an orientable Haken manifold. Suppose
that an admissible polyhedron P ′ ⊂ (M,Γ ) is obtained from an admissible
polyhedron P ⊂ (M,Γ ) by one move Ei, 1 ≤ i ≤ 5. Then the chamber com-
plexity of P ′ is strictly less then the one of P .

Proof. Let Ei consists in inserting a surface G into a chamber (Q,∆) of P .
Recall that G either is connected and separates Q, or consists of two parallel
copies of a nonseparating surface. In both cases G decomposes Q into two
chambers (Q′,∆′), (Q′′,∆′′), see Fig. 6.24.

In the following five steps we obtain information on the behavior of
t(Q), c̄(Q), a(Q,∆), d(Q), and s(Q,∆) under the move. The information is
summarized in the table shown in Fig. 6.26 (to the left). Each column of the
table corresponds to one step and tells us whether the contribution of (Q′,∆′)
and (Q′′,∆′′) to the corresponding numerical characteristic of P ′ is less, equal,
or less or equal than the contribution of (Q,∆) to the same characteristic of P .

By performing move Ei, i.e., inserting G into Q, the topological types of
other chambers remain the same, but ∂G can contribute new circles and arcs
to the boundary patterns of the neighboring chambers. Step 6 describes the
behavior of the numerical characteristics of such neighboring chambers. The
results are summarized in the right-handside table of Fig. 6.26. It follows from
the tables that any move Ei, 1 ≤ i ≤ 5, strictly decreases C(P ). Since C(P ) is
bounded from below by the zero tuple, for proving the proposition it remains
to describe Steps 1–6.

Fig. 6.26. The behavior of t(Q), c̄(Q), a(Q, ∆), d(Q), s(Q, ∆) under application of
moves E1–E5 to a chamber (Q, ∆) (left) and to a neighboring chamber (right).
For convenience we include nick-names of surfaces which are inserted under the
corresponding moves
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Step 1. Let us prove that t(Q′) + t(Q′′) < t(Q) for i = 1, and t(Q′) +
t(Q′′) ≤ t(Q) for 2 ≤ i ≤ 5. Consider maximal collections T ′ = {T1, . . . , Tk}
and T ′′ = {Tk+1, . . . , Tk+m} of disjoint pairwise nonparallel essential tori in
Q′ and Q′′, respectively. Then t(Q′) + t(Q′′) = k + m.

Claim. T1, . . . , Tk+m, considered as tori in Q, are pairwise nonparallel and
essential.

Suppose, on the contrary, that there is a direct product T × I ⊂ Q such
that T × {0} is a torus Tj , 1 ≤ j ≤ k + m, and T × {1} is either another
torus Tj′ , j′ = j, or a torus in ∂Q. Since T ′ consists of pairwise nonparallel
essential tori and the same holds for T ′′, at least one connected component
G0 ⊂ ∂Q′ ∩ ∂Q′′ of G must lie in T × I. By Lemma 6.5.5, it is parallel to Tj ,
which contradicts our assumption that Tj is not parallel to the boundary of
Q′ or Q′′.

Recall that t(Q) is the maximal number of disjoint pairwise nonparallel
essential tori in Q. It follows from the claim that t(Q) ≥ k +m, which implies
that t(Q′) + t(Q′′) ≤ t(Q). Moreover, if we are performing move E1, i.e., if a
connected component G0 of G is a torus, then the system G0, T1, . . . , Tk+m

consists of k+m+1 pairwise nonparallel essential tori in Q. Therefore, t(Q) ≥
k + m + 1 and t(Q′) + t(Q′′) < t(Q).

Step 2. It follows from Theorem 4.2.15 that if i = 1, 5 (when Ei inserts
into Q an incompressible surface with nonempty boundary), then c̄(Q′) +
c̄(Q′) ≤ c̄(Q). Let i = 5. If Q is closed then c(Q′) + c(Q′′) < c(Q) and thus
c̄(Q′) + c̄(Q′′) < c̄(Q) by Theorem 4.2.14. If ∂Q = ∅, then the inequality
c̄(Q′) + c̄(Q′′) < c̄(Q) follows from Theorem 4.2.15.

Step 3. Let us prove that a(Q′,∆′) + a(Q′′,∆′′) < a(Q,∆) for i = 2 and
a(Q′,∆′)+a(Q′′,∆′′) ≤ a(Q,∆) for i = 3, 4. If i = 3, then one of the chambers
Q′, Q′′ is a solid torus while the other is homeomorphic to Q, so the inequality
a(Q′,∆′) + a(Q′′,∆′′) ≤ a(Q,∆) (even the equality a(Q′,∆′) + a(Q′′,∆′′) =
a(Q,∆)) is evident. Suppose that i = 2, 4. Then we do the same as in Step 1.
Consider maximal collections A′ = {A1, . . . , Ak} and A′′ = {Ak+1, . . . , Ak+m}
of disjoint clean annuli in (Q′,∆′) and, respectively, in (Q′′,∆′′), which are
nonparallel to each other and to ∂Q.

We can assume that ∂Aj ∩G = ∅ for all j, 1 ≤ j ≤ k +m. Indeed, suppose
that G consists of one or two annuli, i.e., that we are considering E2. Then we
can eliminate all the circles in ∂Aj ∩G by letting them jump over a boundary
circle of ∂G to the outside of G in ∂Q′ or ∂Q′′. Evidently, such jump can be
realized by an isotopy of Aj , see Fig. 6.27. If we are considering move E4, then
G consists of one or two discs. In this case ∂Aj ∩ G is automatically empty
for all j, since all Aj are clean and ∂G is included into ∆′ and ∆′′.

We claim that A1, . . . , Ak+m, considered as annuli in Q, are nonparallel
to each other and to annuli in ∂Q. Indeed, suppose that there is a direct
product A × I ⊂ Q such that A × {0} is an annulus Aj , 1 ≤ j ≤ k + m, and
A × {1} is either another annulus Aj′ , j′ = j or an annulus in ∂Q. Then at
least one connected component G0 of G must lie in A × I. By Lemma 6.5.5,
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Fig. 6.27. Moving ∂Aj away from G

it is parallel to Aj , which contradicts the assumption that Aj is not parallel
to the boundary.

It follows from the claim that a(Q,∆) ≥ k + m and thus a(Q′,∆′) +
a(Q′′,∆′′) ≤ a(Q,∆). Moreover, if we are performing E2, i.e., if a compo-
nent G0 of G is a clean annulus in (Q,∆), then the system G0, A1, . . . , Ak+m

consists of k + m + 1 pairwise nonparallel essential annuli in Q. Therefore,
a(Q,∆) > k + m and a(Q′,∆′) + a(Q′′,∆′′) < a(Q,∆).

Step 4. Let us investigate the behavior of d(Q) with respect to E4. This
move inserts into Q a surface G consisting of a nontrivial separating disc
or of two parallel copies of a nonseparating disc. To prove the inequality
d(Q′) + d(Q′′) < d(Q), we do the same as in Steps 1, 2. Consider maximal
collections D′ = {D1, . . . , Dk} and D′′ = {Dk+1, . . . , Dk+m} of disjoint discs
in (Q′,∆′) and, respectively, in (Q′′,∆′′), which are nonparallel to each other
and to disc in ∂Q. Shifting each Dj from G, we can assume that ∂Dj ∩G = ∅
for all j, 1 ≤ j ≤ k + m.

We claim that D1, . . . , Dk+m, considered as discs in Q, are nonparallel to
each other and to discs in ∂Q. Indeed, suppose that there is a direct product
D × I ⊂ Q such that D × {0} is a disc Dj , 1 ≤ j ≤ k + m, and D × {1} is
either another disc Dj′ , j′ = j or a disc in ∂Q. Then at least one connected
component G0 of G must lie in D × I. By Lemma 6.5.5, it is parallel to Dj ,
which contradicts the assumption that Dj is not parallel to the boundary.

It follows from the claim that the system G0,D1, . . . , Dk+m consists of
k + m + 1 pairwise nonparallel essential discs in Q. Therefore, d(Q) > k + m
and d(Q′) + d(Q′′) < d(Q).

Suppose that i = 3, i.e., that move Ei consists in inserting in Q a clean
boundary parallel annulus. Let us prove that the contribution of Q′, Q′′ to∑

j d(Qj) coincides with the one of Q. Indeed, one of the manifolds Q′, Q′′

(let Q′) is homeomorphic with Q while the other is a solid torus having a
clean longitude (for example, a core circle of the inserted annulus). Since by
calculating C(P ) we ignore solid tori with clean longitudes, Q′′ contributes
nothing. Actually, this is the first reason for ignoring such tori (the second
one is explained in the next step).

Step 5. Let us investigate the behavior of s(Q,∆) with respect to E3.
This move consists in inserting a boundary parallel clean annulus A which
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is essential in (Q,∆). As we have seen above, A decomposes Q into a solid
torus Q′′ and a chamber Q′ homeomorphic to Q. Since A is essential, Q′′

must contain at least one pattern strip of ∆, so (Q′,∆′) has a fewer number
of pattern strips than (Q,∆). It follows that s(Q′,∆′) < s(Q,∆) (since Q′′ is
a solid torus with a clean longitude, we do not count the strips in ∂Q′′. This
is the second reason for ignoring such tori).

Step 6. Performing move Ei, i.e., inserting G into Q, we do not change
the topological types of other chambers. Therefore, their characteristics t, c̄, d
remain the same. On the other hand, if 2 ≤ i ≤ 5, then Ei creates new circles
or arcs in the boundary pattern ∆j of any neighboring chamber Qj and thus
can change a(Qj ,∆j) and s(Qj ,∆j).

Let us show that Ei never increases a(Qj ,∆j) (we will need that fact only
for 2 ≤ i ≤ 4). Indeed, denote by ∆̃j ⊃ ∆j the boundary pattern of Qj after
the move. Let A1, . . . , Ak, k = a(Qj , ∆̃j) be the maximal set of disjoint clean
annuli in (Qj , ∆̃j) which are not parallel in Qj to each other and to annuli
in ∂Qj . Then the same annuli form a set of disjoint clean annuli in (Qj ,∆j),
which are also not parallel in Qj to each other and to annuli in ∂Qj . It follows
that a(Qj , ∆̃j) = k ≤ a(Qj ,∆j).

Concerning the number of pattern strips, we will need only the evident fact
that if we apply E3 to a chamber (Q,∆), then for any neighboring chamber
(Qj ,∆j) the number of its pattern strips s(Qj ,∆j) remains the same. ��

Corollary 6.5.7. Extension moves E1–E5 satisfy property C3. In other words,
any sequence P1 ⊂ P2 ⊂ . . . of admissible subpolyhedra of any orientable
Haken manifold (M,Γ ), where each Pi+1 is obtained from Pi by one of moves
E1–E5, is finite.

Proof. It follows from Proposition 6.5.6 (see also Fig. 6.26) that each of the
moves E1–E5 strictly decreases C(Pi). On the other hand, any 7-tuple repre-
senting the chamber complexity of an admissible subpolyhedron is bounded
from below by the zero 7-tuple. Thus the process of applying moves E1–E5

must be finite. ��

Remark 6.5.8. Figure 6.28 shows, why we have forbidden inserting discs
into solid tori with clean longitudes (see the description of move E4). Indeed,
if such insertions were allowed, we could get an infinite sequence of moves
E3, E4, E3, . . .. ��

6.5.2 Structure of Chambers

Suppose that (M,Γ ) is an orientable Haken manifold such that ∂M = ∅.
Let us apply to (M,Γ ) general extension moves for as long as possible. By
Corollary 6.5.7, after a finite number of moves we shell stop. Let as describe
the structure of chambers of the resulting admissible polyhedron P ⊂ M .
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Fig. 6.28. Each E3 disables a pattern strip si, but each next E4 creates a new strip
si+1

Definition 6.5.9. A chamber (Q,∆) of an admissible subpolyhedron P ⊂
(M,Γ ) is called an I-bundle chamber, if it is a twisted or an untwisted I-
bundle F ×̃I such that χ(F ) < 0 and ∆ consists of nontrivial circles in each
annulus of ∂F ×̃I (see Example 6.4.34).

It is convenient to decompose the boundary ∂Q of any I-bundle chamber
Q = F ×̃I into two parts: the lateral boundary ∂F ×̃I and the base boundary
F ×̃∂I. The lateral boundary consists of annuli, each containing at least one
circle of ∆. In the case of a direct product F×I the base boundary of Q consists
of two copies of F , the orientable base surface of the fibration F ×̃I → F . If
the product F ×̃I is twisted, then F is nonorientable and the base boundary
of Q is an orientable double covering of F . Since χ(F ) < 0, the base boundary
of any I-bundle chamber is neither a disc, nor an annulus, nor the union of
two discs or two annuli. Möbius strips are also impossible. In contrast, the
boundary pattern of any 3-ball or solid torus chamber Q of P decomposes ∂Q
into discs and/or annuli.

Lemma 6.5.10. Let P be an admissible subpolyhedron of an orientable Haken
manifold (M,Γ ). If P admits no extension moves E1–E5, then for any cham-
ber (Q,∆) of P exactly one of the following holds:

1. Q is a 3-ball
2. Q is a solid torus having a clean longitude
3. (Q,∆) is an I-bundle chamber

Proof. First, (Q,∆) does not contain essential tori and essential longitudinal
annuli (otherwise, we could apply one of moves E1–E3). Since any rough
annulus is longitudinal, (Q,∆) does not contain essential rough annuli either.
It follows from Proposition 6.4.41 that if (Q,∆) contains a transverse annulus,
then (Q,∆) is an I-bundle of the desired type.

It remains to consider the case when (Q,∆) does not contain clean essential
annuli and tori at all, i.e., it is simple. Suppose that Q is boundary reducible.
Then Q is a solid torus with a clean longitude, since otherwise we could apply
move E4. It cannot happen that Q is boundary irreducible and Q is not a 3-
ball, since then we could apply move E5 (see Remark 6.5.1). We can conclude
that Q is a 3-ball. ��
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Recall that our goal is to construct extension moves so that we always
end up with a simple skeleton, which has only 3-ball chambers. A natural
idea to proceed further would be to subdivide solid torus chambers by in-
serting meridional discs. However, doing so we take chances to run into an
infinite process. Indeed, inserting meridional discs can produce pattern strips
in neighboring chambers. Therefore, we should apply move E3 again, thus
producing new solid torus chambers, and so on, see Remark 6.5.8. Thus we
prefer to postpone subdividing solid torus chambers until Sect. 6.5.8 and turn
our attention to I-bundle chambers.

Let F0 be a connected component of the base boundary of an I-bundle
chamber. Since χ(F0) < 0, it cannot lie in the boundary of a 3-ball or solid
torus chamber. Therefore, F0 either lies in ∂M or separates two different I-
bundle chambers. It follows that all the I-bundle chambers are organized into
closed or nonclosed chains. Nonclosed chains of chambers can end up at ∂M
as well as inside M .

Remark 6.5.11. Recall that the lateral boundary ∂F ×̃I of any I-bundle
chamber Q = F ×̃I consists of annuli, each intersecting the boundary pattern
∆ in a nonempty collection of disjoint circles. To be definite, we will always
assume that ∆ contains ∂F ×̃∂I and that Q has no common lateral annuli
with other I-bundle chambers. This can be easily achieved (at the expense of
there appearing a few new solid torus chambers with clean longitudes) by in-
serting into Q additional clean annuli which are parallel to annuli from ∂F ×̃I,
see Fig. 6.29. The new chamber Q′ (a slightly squeezed copy of Q) possesses
the required property and thus can be presented as F ×̃I with ∆′ ⊃ ∂F ×̃∂I.

As we observed above, I-bundle chambers form closed or nonclosed chains.
To give a rigorous formulation of this observation, we describe the so-called
quasi-Stallings 3-manifolds.

Definition 6.5.12. Let F be an orientable surface and α, β:F → F two ori-
entation reversing free involutions. Then the quasi-Stallings 3-manifold M(α,β)

with fiber F is obtained from F × I by identifying each point (x, 0) ∈ F × {0}
with the point (α(x), 0), and each point (x, 1) ∈ F × {1} with the point
(β(x), 1).

Fig. 6.29. Improving I-bundles
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Fig. 6.30. Two ways of looking at a quasi-Stallings manifold

Recall that any Stallings manifold fibers over S1. Similarly, any quasi-
Stallings manifold M(α,β) admits a fibration p:M(α,β) → I. All but two fibers
of this fibration are homeomorphic to the fiber F of M(α,β). The two ex-
ceptional fibers G0 = p−1(0), G1 = p−1(1) are homeomorphic nonorientable
surfaces and admit two-sheeted coverings by F . It follows that the inverse
images p−1([0, 1/2]) and p−1([1/2, 1]) are homeomorphic to the twisted I-
bundles G0×̃I, respectively, G1×̃I. This provides us another way of looking
at quasi-Stalling 3-manifolds. See Fig. 6.30. According to our definition, all
quasi-Stallings manifolds are orientable.

Now we introduce four types of chains of I-bundle chambers.

Definition 6.5.13. Let an admissible subpolyhedron P of an orientable Haken
manifold (M,Γ ) decompose M into 3-balls, solid tori, and I-bundle chambers
without common lateral annuli. Consider a connected component U of the
union of all I-bundle chambers. Then we say that:

1. U is a direct chain of I-bundle chambers, if U is a direct product F × I
of an orientable surface F and I such that F × ∂I ⊂ ∂M . In this case all
the I-bundle chambers of U have the form F × I

2. U is a twisted chain, if U is a twisted product G×̃I of a nonorientable
surface G and I such that the surface F = G×̃∂I lies in ∂M . In this case
all the I-bundle chambers in U have the form F × I, except exactly one
chamber of the form G×̃I

3. U is a Stallings chain, if U is a Stallings 3-manifold with fiber F and all
the chambers in U are of the form F × I

4. U is a quasi-Stallings chain, if U is a quasi-Stallings 3-manifold with fiber
F and all the chambers in U are of the form F × I, except exactly two
chambers of the form G×̃I

We supply U with the boundary pattern ∆U = ∂U ∩ (Γ ∪ SP ) consisting of
those points of Γ and singular points of P that are contained in ∂U .

Proposition 6.5.14. Let an admissible subpolyhedron P of an orientable
Haken manifold (M,Γ ) decompose M into 3-balls, solid tori, and I-bundle
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chambers without common lateral annuli. Then any connected component of
the union of all I-bundle chambers is a chain having one of the above four
types, i.e., it is either direct, or twisted, or Stallings, or quasi-Stallings.

Proof. To describe the mutual position of the I-bundle chambers of P , we
construct a graph γ(P ) as follows. The vertices of γ(P ) are of two types: black
and white. Black vertices correspond bijectively to the I-bundle chambers of
P , white vertices represent connected components of the base boundaries of
the I-bundle chambers. Two vertices are joined by an edge if and only if they
correspond to an I-bundle chamber and a connected component of its base
boundary.

Recall that any I-bundle chamber has either one base boundary component
(if it is twisted) or two base boundary components (if it is a direct product).
Therefore any black vertex has valence 1 or 2. Similarly, any component of
the base boundary of any I-bundle chamber either separates two different
chambers or lies in ∂M . Thus any white vertex has also valence 1 or 2. It
follows that γ(P ) is a 1-dimensional manifold, i.e., a collection of disjoint
circles and arcs. The white ends of the arcs correspond to surfaces in ∂M , the
black ends stand for quasi-Stallings chambers in M .

Consider now a connected component U of the union of all I-bundle cham-
bers and the corresponding component γU of γ(P ), see Fig. 6.31.

Case 1. γU is an arc with white endpoints. Then U consists of trivial I-
bundle chambers such that two connected components of their base surfaces
lie in ∂M . Therefore, U is a direct chain.

Case 2. γU is an arc having one black endpoint and one white one. Then
U consists of a twisted I-bundle chamber Q0 and a chain of trivial I-bundles,
whose addition does not change the topological type of Q0. It follows that U
is a twisted chain.

Case 3. γU is a circle. Then U is a closed chain of trivial I-bundle chambers
and hence a Stallings chain.

Fig. 6.31. I-bundle chambers form chains of four types: direct, twisted, Stallings,
and quasi-Stallings
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Case 4. γU is an arc with black endpoints. Then U is a chain of I-chambers
which begins and ends up with twisted bundles. Therefore, U is a quasi-
Stalling chain. We have considered all the possibilities. ��

6.5.3 Special Extension Moves: Easy Case

Our next goal consists in subdividing I-bundle chambers by inserting proper
annuli and discs. However, to preserve properties C1, C2 (see Sect. 6.3.2) we
will insert such surfaces into all the chambers of a given chain U simultane-
ously. In other words, we will insert into U finite collections of discs and annuli
which are organized in a regular manner. There are three types of such col-
lections: perturbed strips, annuli, and tori. Therefore, there are three types of
corresponding special extension moves: E6, E7, E8. Move E6 completely solves
the problem of subdividing direct and twisted chains. Applying E6 together
with E3, one can decompose into solid tori with clean longitudes all the I-
bundle chambers of any direct or twisted chain. In contrast to that, moves
E7, E8 only improve the structure of Stallings and quasi-Stallings chains by
transforming them into chains whose underlying manifolds are simple.

First we describe E6. Let an admissible subpolyhedron P of an orientable
Haken manifold (M,Γ ) decompose M into 3-balls, solid tori, and I-bundle
chambers without common lateral annuli. Let (Q,∆) be an I-bundle chamber.
Then (Q,∆) admits a decomposition into segments, i.e., a presentation as a
direct product F × I or as a twisted product G×̃I We always assume that
∆ consists of nontrivial circles of the type C × {∗}, where C is a boundary
circle of F , respectively, of G. Any two such decompositions are equivalent in
the following sense: there exists an admissible isotopy (Q,∆) → (Q,∆) taking
one decomposition to the other. Certainly, this isotopy can be extended to an
admissible isotopy of M .

Now, we consider a direct or twisted chain U = Q0 ∪ . . .∪Qm of I-bundle
chambers. There is a fibration p1:U → I with fiber F , which has no singular
fibers in the direct product case and exactly one singular fiber G in the twisted
one. We can assume that the fibration and the numbering of Qk are chosen so
that for some points 0 = y0 < y1 < . . . < ym+1 = 1 of I the following holds:

1. Qk = p−1
1 ([yk, yk+1]) for 0 ≤ k ≤ m;

2. For each k the image p1(∆k) of the boundary pattern of Qk consists of a
finite number of points.

Let us construct an I-bundle structure of U by concatenating I-bundle
structures of the chambers Qi. Then the I-bundle projection p2:U → S,
where S = F in the direct product case and S = G in the twisted one, agrees
with the I-bundle projections of Qi. See Fig. 6.32. Since the structures of the
chambers are unique up to an admissible isotopy of M , so is the structure
of U .

Denote by PU the admissible subpolyhedron P ∩U of U . It consists of ∂Q
and the fibers Fi = p−1

1 (yi), 1 ≤ i ≤ m, which decompose U into chambers Qi.
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Fig. 6.32. Any direct or twisted chain admits two fibrations

Fig. 6.33. Perturbing a strip

Our idea is to subdivide U into simpler chambers by inserting discs, which are
called nontrivial strips. To realize it, we choose a nontrivial proper arc l ⊂ S
and insert into U the strip L = p−1

2 (l). Obviously, L cuts the chambers Qi of
U into simpler pieces. However, the polyhedron PU ∪L is not admissible, since
it contains fourfold lines L∩Fi, 1 ≤ i ≤ m. The lines decompose L into shorter
strips Li = L ∩ Qi, 0 ≤ i ≤ m. We convert all the four-fold lines into pairs of
parallel triple lines by perturbing L. The perturbation procedure consists in
replacing each strip Li ⊂ Qi, 0 ≤ i ≤ m, by a parallel strip L′

i ⊂ Qi such that
all strips thus obtained are disjoint. We will refer to the collection L̂ of strips
L′

i as a perturbed strip corresponding to L, see Fig. 6.33.

E6: Subdividing a Direct or a Twisted Chain

Suppose that U is a direct or twisted chain of I-bundle chambers of an ad-
missible subpolyhedron P ⊂ (M,Γ ) and L a nontrivial strip in U . Then we
add to P two parallel copies of L and perturb them.

Let us comment on this move. The inserted perturbed strips decompose
the I-bundle chambers of U into solid tori and smaller I-bundle chambers. We
take two copies of L in order to preserve the condition that different I-bundle
chambers have no common lateral annuli.

Now we turn our attention to moves E7, E8. Basically, they consist in
inserting essential tori and annuli into a given Stallings or quasi-Stallings
chain U . If such tori and annuli exist, then they can be found algorithmically.
However, the intersection of such tori and annuli with fibers of U can be very
nasty. Therefore, in order to get the finiteness property C1 one should take
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Fig. 6.34. An example of a vertical torus

into account their position with respect to the fibers of U which divide U into
the I-bundle chambers. Let us describe a class of tori and annuli which are
placed well with respect to all fibers.

Definition 6.5.15. Let U be an orientable Stallings or quasi-Stallings mani-
fold with fiber F . Then a proper two-sided surface G ⊂ U is called vertical, if
it is transversal to all fibers of U .

For any vertical surface G in U and any fiber F the intersection G∩F is a
proper 1-dimensional submanifold of F , i.e., a collection of disjoint circles and
proper arcs. If we replace F by a close neighboring fiber, then the topological
type of the intersection remains the same. It follows that any vertical surface
in U consists of disjoint tori and proper annuli. So any connected vertical
surface is either a torus or a proper annulus. See Fig. 6.34.

Let an admissible subpolyhedron P of an orientable 3-manifold (M,Γ )
decompose M into 3-balls, solid tori, and I-bundle chambers without common
lateral annuli. Let U ⊂ M be a Stallings or quasi-Stallings chain with fiber
F . Denote by PU the admissible subpolyhedron P ∩U of U , which consists of
∂U and several fibers of U . The fibers decompose U into I-bundle chambers
Qi. We wish to subdivide U into simpler chambers by inserting vertical tori
and annuli. Let T be a vertical torus in U . Then T ∩ PU contains four-fold
circles. We convert them into pairs of parallel triple circles by perturbing T .
The perturbation procedure consists in replacing each annulus in T ∩ Qi by
a parallel annulus so that all resulting annuli are disjoint. We will call the
collection T̂ of these new annuli a perturbed torus corresponding to T .

The description of a perturbed annulus Â corresponding to a vertical an-
nulus A ⊂ U is similar: It consists of parallel copies of discs in the intersection
of A with chambers Qi.

E7: Inserting a Perturbed Pair of Vertical Parallel Tori

Suppose that a direct or a twisted chain U of I-bundle chambers for an admis-
sible subpolyhedron P ⊂ (M,Γ ) contains a vertical torus T which is essential
in U . Then we add to P two parallel copies of T and perturb them.
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E8: Inserting a Perturbed Pair of Vertical Parallel Annuli

Suppose that a direct or a twisted chain U of I-bundle chambers for an ad-
missible subpolyhedron P ⊂ (M,Γ ) contains a vertical annulus A which is
essential in U . Then we add to P two parallel copies of A and perturb them.

Our next goal is to show that extension moves E1–E8 satisfy properties
C1, C2, C3. For this we need a few facts about vertical tori and annuli in
Stallings and quasi-Stallings 3-manifolds.

Lemma 6.5.16. Let M be an orientable Stallings or quasi-Stallings manifold
with fiber F such that χ(F ) < 0. Then for any essential torus and any essential
annulus G in M one can construct an isotopic vertical surface.

Proof. Choose a fiber F ⊂ M transversal to G. Since G and F are incompress-
ible and boundary incompressible, one can easily eliminate all trivial circles
and arcs in the intersection of G with F . Nontrivial circles and arcs in G∩ F
remain fixed. They decompose G either into annuli or into quadrilaterals,
depending on the type of G.

Denote by MF the 3-manifold obtained from M by cutting along F . If M is
a Stallings manifold, then MF is F×I. If M is a quasi-Stallings manifold, then
MF is the disjoint union of two twisted I-bundles Si×̃I over the singular fibers
S1, S2 of M . We supply MF with the boundary pattern ΓF = ∂F− ∪ ∂F+,
where F−, F+ are two copies of F in ∂MF . Denote by G1, . . . , Gn the pieces
of G in (MF , ΓF ). Since G ∩ F contains no trivial circles and arcs, there are
two cases:

1. G is a torus and all Gi are annuli
2. G is an annulus and all Gi are quadrilaterals, each having two opposite

sides in F− ∪ F+, the other two in ∂MF \ (F− ∪ F+)

It cannot happen that G and Gi are annuli, since otherwise either G would
be boundary compressible or F would be an annulus.

Consider the first case. If an annulus Gi is boundary compressible in
(MF , ΓF ), then Gi is parallel to an annulus A contained in F+ ∪ F−. It fol-
lows that we can deform the annulus in M corresponding to Gi to the other
side of F by an isotopy of M , thus diminishing the total number of circles in
G ∩ F . Performing such deformations for as long as possible, we get a new
torus (still denoted by G) such that all annuli Gi ⊂ MF are incompressible
and boundary incompressible. It follows that they are isotopic rel ∂ to annuli
which are transversal to all the fibers of MF . Therefore, we obtain an isotopy
of G to a transversal torus.

The case when G is an annulus and Gi are quadrilaterals is similar. If a
quadrilateral Gi is boundary compressible in (MF , ΓF ), then the correspond-
ing quadrilateral in M can deformed by an isotopy to the other side of F .
The number of arcs in G∩F becomes smaller. Performing such deformations
as long as possible, we get a new annulus (still denoted by G) such that all
quadrilaterals Gi ⊂ MF are boundary incompressible. Then there is an isotopy
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MF → MF which keeps F− ∪F+ fixed and takes all Gi to discs transversal to
all fibers. This isotopy determines an isotopy of G to an annulus transversal
to fibers. ��

Let M be a Stallings manifold with fiber F ⊂ M and the monodromy map
f :F → F . Our next goal is to show that the vertical position of any essential
torus or annulus G ⊂ M is unique up to fiber-preserving isotopy of M . The
corresponding statement for quasi-Stalling manifolds will be obtained later as
a corollary. We suppose that G is transversal to a fixed fiber F ⊂ M . It turns
out that the vertical position of G is completely determined by any essential
curve in G ∩ F . Let us discuss some properties of such curves. They can be
extracted from or are related to the proof of Lemma 6.5.16.

Let C be either an essential circle or a proper essential arc in F . Then the
set Of (C) = {fk(C),−∞ < k < ∞} of curves in F is called the orbit of C.
We will consider the curves up to isotopy, so any orbit determines a set of
isotopy classes of curves in F . If two orbits determine the same set, we do not
distinguish them.

Lemma 6.5.17. Let G be an essential torus or a proper essential annulus in
an orientable Stallings 3-manifold M with the monodromy map f . Suppose
that the fibers of M have negative Euler characteristics. Let us choose a fiber
F ⊂ M intersecting G transversally. Then the following holds:

1. Any two essential curves in G ∩ F have isotopic orbits.
2. If a surface G′ ⊂ M is isotopic to G, then the orbits of essential curves

in G′ ∩ F are isotopic to the orbits of essential curves in G′ ∩ F .
3. If G is vertical, then the set {C0, . . . , Cn−1} of all the curves in G ∩ F is

isotopic to the orbit of any of them.
4. Let G be vertical. Suppose that G′ is another essential vertical surfaces in

M such that a curve in G∩F is isotopic to a curve in G′∩F . Then G,G′

are fiberwise isotopic.

Proof. 1. We may assume that all curves in G ∩ F are essential (inessential
curves can be eliminated by an isotopy of G without touching essential curves).
They decompose G into a finite number of annular or quadrilateral pieces
Gi. It is convenient to think of Gi as being contained in the 3-manifold MF

obtained by cutting M along F . As before, we supply MF with the boundary
pattern ΓF = ∂F− ∪ ∂F+, where F−, F+ are two copies of F in ∂MF .

Suppose that a piece Gi joins a curve on F− with a curve in F+. Then the
corresponding curves in F are in the same orbit, since one of them is isotopic
to the image under f of the other. If Gi joins two curves contained both in
F− or both in F+, then the corresponding curves in F are isotopic. Evidently,
any curve C ⊂ G ∩ F can be obtained from any other curve C ′ ⊂ G ∩ F by
such jumps along annular or quadrilateral pieces of G. Therefore, the orbits
of C and C ′ are isotopic.

2. Let us orient G,F , and M . After doing that it makes sense to speak
about positive and negative normal vectors for G,F and about positive and
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Fig. 6.35. One of the two modifications of the Morse type

Fig. 6.36. Two essential circles on a torus fuse to an inessential circle

negative ordered triples of linearly independent vectors. Next, we orient every
component of G ∩ F according to the following rule: at each point x ∈ G ∩ F
the triple (n̄G(x), n̄F (x), τ̄(x)) must be positive, where n̄G, n̄F are positive
normal vectors for G,F and the tangent vector τ̄(x) for G ∩ F shows its
orientation at x. By the general position argument, any isotopy between G,G′

can be replaced by a finite sequence of local moves so that each move either
preserves the isotopy classes of G∩F in F and in G or subjects G∩F to one
of the following two Morse modifications:

(a) Emerging a circle or a arc which is trivial in F and hence in G, or elimi-
nating such circle or arc

(b) Replacing two disjoint proper oriented arcs AB,CD ⊂ G ∩ F contained
in a small disc in F by two disjoint arcs AD,CB, see Fig. 6.35.

Recall that any two disjoint essential curves in a torus or an annulus
are parallel. It follows that both modifications preserve the set of essential
curves in G ∩ F except the case when two essential circles fuse together to
an inessential circle or, vice-versa, appear after a fusion of an inessential cir-
cle with itself (see Fig. 6.36). In both exceptional situations at least one of
the remaining curves in G ∩ F (denote it by C) is essential. Otherwise G
would be isotopic to an essential surface G′ ⊂ M such that G′ ∩ F = ∅.
This is impossible. Indeed, any essential torus or a clean essential annulus in
(MF , ∂F− ∪ ∂F+) = (F × I, ∂F × ∂I) has the form F × {∗} by Lemma 6.5.5,
in contradiction with our assumption that χ(F ) < 0. Therefore, the orbits of
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curves in G ∩ F before and after the modification can be determined by the
same curve C. It follows from item 1 that then they coincide.

3. Let G be vertical. We can assume that the curves {C0, . . . , Cn−1} in
G ∩ F are numbered in a cyclic order with respect to their position in G.
They decompose G into annuli or quadrilaterals which, considered as surfaces
in MF , run from F+ to F−. It follows that for each i the curve Ci+1 is isotopic
to fε(Ci) (indices are taken modulo n), where ε is ±1 and does not depend
on the i. Thus {C0, . . . , Cn−1} is the orbit of any Ci.

4. Let G,G′ be two essential vertical surfaces in M such that a curve on
G∩F is isotopic to a curve in G′ ∩F . It follows from item 3 that then G∩F
and G′∩F are isotopic. After an appropriate fiber-preserving isotopy of G we
can assume that G ∩ F = G′ ∩ F . Let the surfaces GF , G′

F ⊂ MF = F × I
be obtained from G,G′ by cutting along G∩F,G′ ∩F . Both are vertical, i.e.,
transversal to all fibers F×{∗}. Moreover, GF∩(F×∂I) = G′

F∩(F×∂I). Since
χ(F ) < 0, it follows that there exists a fiber-preserving isotopy of MF = F ×I
which keeps F×∂I fixed and takes GF to G′

F . This isotopy determines a fiber-
preserving isotopy between G and G′. ��

Corollary 6.5.18. Let G1, G2 be two essential vertical surfaces in an ori-
entable Stallings manifold M with fiber F such that χ(F ) < 0. Suppose that
they are isotopic. Then they are isotopic by a fiber-preserving isotopy.

Proof. We can assume that G1, G2 are connected. It follows from conclusions
2, 3 of Lemma 6.5.17 that G1 ∩ F and G2 ∩ F are isotopic. Then G1, G2 are
fiberwise isotopic by conclusion 4 of the same lemma. ��

A similar statement is true for quasi-Stallings manifolds, but for proving
it we need to relate quasi-Stallings manifolds to Stallings ones.

Lemma 6.5.19. Let M(α,β) be the quasi-Stallings manifold defined by invo-
lutions α, β:F → F and let Mαβ be the Stallings manifold having the mon-
odromy αβ:F → F . Then there is a 2-sheeted covering p:Mαβ → M(α,β) such
that the restriction of p onto each fiber of Mαβ is either a homeomorphism
onto a nonsingular fiber or a 2-sheeted covering map onto a singular fiber of
M(α,β).

Proof. Consider two copies (F ×I)1, (F ×I)2 of F ×I and identify their bases
(F×{0, 1})1, (F×{0, 1})2 by the following rules: (x, 0)1 = (α(x), 0)2, (x, 1)1 =
(β(x), 1)2. See Fig. 6.37. The manifold Mαβ thus obtained is a Stallings man-
ifold with the monodromy αβ.

On the other hand, the rule (x, t)1 ↔ (x, t)2 determines a free involution
i:Mαβ → Mαβ such that the quotient map p:Mαβ → M(α,β) possesses the
required properties. ��

Corollary 6.5.20. Let M(α,β) be a quasi-Stallings manifold with fiber F such
that χ(F ) < 0. Then the following holds: if two essential vertical surfaces in
M(α,β) are isotopic, then they are isotopic by a fiber-preserving isotopy.
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Fig. 6.37. Mαβ is a 2-sheeted covering of M(α,β)

Proof. Let G1, G2 be two isotopic essential vertical surfaces in M(α,β). Denote
by G̃1, G̃2 their inverse images under the covering map Mαβ → M(α,β) con-
structed in Lemma 6.5.19. Note that any isotopy M(α,β) can be replaced by
a superposition of isotopic local moves and that any local move can be lifted
to a pair of isotopic local moves of Mαβ . It follows that G̃1, G̃2 are isotopic in
Mαβ .

Let F be a nonsingular fiber of M(α,β). Then p−1(F ) consists of two
homeomorphic copies of F . Denote by F0 one of them. Now we apply Corol-
lary 6.5.18: since G̃1, G̃2 are isotopic in Mαβ , they are fiberwise isotopic. The
restriction of any such isotopy onto F0 takes G̃1 ∩ F0 to G̃2 ∩ F0. Projecting
it to F , we get an isotopy of F taking G1 ∩ F to G2 ∩ F .

The remaining part of the proof is similar to the proof of conclusion 4
of Lemma 6.5.17. Indeed, since G1 ∩ F and G2 ∩ F are isotopic in F , we
can assume that G1 ∩ F = G2 ∩ F . Let us cut M(α,β) along F . We get two
twisted I-bundles, each contained a copy F± of F in the boundary. All the
pieces of G1, G2 in them are transversal to fibers, incompressible and boundary
incompressible. Since χ(F ) < 0, one can construct fiber-preserving isotopies
ϕ1, ϕ2 of the bundles that keep F−, F+ fixed and take the pieces of G1 to
the pieces of G2. Reconstructing M(α,β) and concatenating ϕ1, ϕ2, we get a
fiber-preserving isotopy of M(α,β) that takes G1 to G2. ��

Proposition 6.5.21. Extension move E1–E8 satisfy properties C1, C2, C3.

In a more detailed form Proposition 6.5.21 can be formulated as fol-
lows. Let P be an admissible subpolyhedron of an orientable Haken manifold
(M,Γ ). Then

1. There exist only finitely many admissible subpolyhedra that can be ob-
tained from P by performing exactly one of moves Ei, 1 ≤ i ≤ 8 (the
polyhedra are considered modulo the equivalence relation generated by
homeomorphisms (M,Γ ) → (M,Γ )).

2. Representatives of the equivalence classes of such polyhedra can be con-
structed algorithmically.

3. Any sequence P1 ⊂ P2 ⊂ . . . of admissible subpolyhedra of (M,Γ ), where
each Pi+1 is obtained from Pi by one of moves E1–E8, is finite.
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Proof. For moves Ei, i ≤ 5 the statements 1, 2 are already known (Proposi-
tion 6.5.2), so it suffices to consider moves E6–E8. To apply one of them to a
chain U , we should do the following:

1. If U is either direct or twisted, we choose a nontrivial strip in U . Let
U be a Stallings or a quasi-Stallings manifold. Suppose that it contains
essential vertical tori or essential vertical annuli. Then we choose one of
these surfaces.

2. Insert two parallel copies of the surface thus obtained into U and perturb
them.

Let us show that both steps are algorithmic and that at each step we have
only a finite choice. Indeed, if U is a direct chain S × I or a twisted chain
S×̃I, then L is determined by a proper arc l ⊂ S. By Lemma 6.4.45, we can
choose l in a finite number of ways up to homeomorphisms S → S which are
isotopic to the identity on ∂S. Any such homeomorphism can be extended to
a homeomorphism (M,Γ ) → (M,Γ ) taking P to P . This means that we have
only a finite choice for L.

Consider the case of a Stallings chain U . By Theorem 6.4.10, we can de-
termine if U contains an essential torus or an essential annulus. If the an-
swer is affirmative, we construct one. Note that any essential annulus in a
Stallings or quasi-Stallings manifold with fiber F, χ(F ) < 0, is longitudinal.
By Theorem 6.4.44, the number of such tori and annuli is finite up to strong
equivalence. Then we use Lemma 6.5.16 to replace the torus or the annu-
lus constructed above by an isotopic vertical surface, which is determined
uniquely by Corollaries 6.5.18, 6.5.20. It remains to note that each of these
surfaces can be perturbed in a finite number of ways.

For proving property C3, we use the chamber complexity C(P ) of P . Moves
E6, E8 can be presented as superpositions of moves E4, move E7 is a superpo-
sition of moves E2. By Proposition 6.5.6, each of them decreases C(P ), which
guarantees us that, performing moves E1–E8, we inevitably stop. ��

6.5.4 Difficult Case

In this section, we describe move E9 for subdividing simple Stallings and
quasi-Stallings chains. Let U = (F × I)/f be a Stallings chain of direct I-
bundle chambers with fiber F in an orientable Haken manifold (M,Γ ) with
an admissible simple subpolyhedron P . Why cannot we proceed at the same
manner as in the case of, say, a direct chain F × I: choose a nontrivial proper
arc l ⊂ F , insert the strip L = l× I into F × I, and perturb it in the quotient
space (F × I)/f? Well, we can, but doing so we run into the following crucial
obstacle: the set of strips obtained in this way is infinite, even if we consider
them up to homeomorphisms of (M,Γ ). The reason is that not every home-
omorphism F → F of the fiber of U can be extended to a homeomorphism
of U and hence to a homeomorphism of M . As we will see later, the set of
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extendible homeomorphisms is very small, even finite, if we consider them up
to multiplication by a power of the monodromy map f .

Definition 6.5.22. A 1-dimensional subpolyhedron X of a compact connected
surface F with nonempty boundary is called a simple skeleton of F , if the
following conditions hold:

1. X is the union of ∂F and disjoint simple proper arcs C1, . . . , Cn

2. The arcs decompose F into discs
3. Each arc Ci separates different discs

Definition 6.5.23. Let (Q,∆) be an I-bundle chamber. Then a simple skele-
ton PQ of Q is called vertical, if there are a presentation F ×̃I of Q and a
simple skeleton X of F such that PQ = (X×̃I) ∪ (F ×̃∂I).

In other words, PQ is obtained from ∂Q by inserting quadrilaterals
p−1(Ci), where p:Q → F is the bundle projection and C1, . . . , Cn are the
arcs of X which are not in ∂Q.

Definition 6.5.24. Let U be an orientable Stallings or quasi-Stallings man-
ifold presented as a chain of I-bundle chambers Q0, . . . , Qm−1. Then a sim-
ple skeleton S of U is called vertical , if S ∩ Qi is a vertical skeleton of
Qi, 0 ≤ i ≤ m − 1.

Note that any vertical skeleton S of U contains all fibers that decompose U
into the union of I-bundle chambers. These fibers contain all the true vertices
of S. The remaining part of S consists of quadrilaterals. As usual, we will
measure the complexity of S by the total number c(S) of its true vertices.
The next move allows us to subdivide Stallings and quasi-Stallings chains of
I-bundle chambers.

E9: Inserting a Minimal Vertical Skeleton of a Simple Stallings or
Quasi-Stallings Chain

Suppose that a Stallings or quasi-Stallings chain U of I-bundle chambers for
an admissible subpolyhedron P ⊂ (M,Γ ) contains no essential annuli or tori,
i.e., is simple. Then we add to P a vertical skeleton of U having the minimal
number of true vertices. See Fig. 6.38.

Our goal (which we achieve at the end of Sect. 6.5.7) is to show that any
simple Stallings or quasi-Stallings chain U has only finitely many minimal
vertical skeletons (up to homeomorphisms (M,Γ ) → (M,Γ ) taking P to P ),
and that all of them can be constructed algorithmically. One can easily find
an upper bound for the complexity of minimal vertical skeletons of U : it
suffices to construct a particular vertical skeleton of U and take the number k
of its true vertices. It is also easy to show that the number of vertical skeletons
of complexity ≤ k and hence the number of minimal vertical skeletons of U
is finite. But how can one enumerate all minimal skeletons? One successful
strategy for doing that consists in forgetting for a while about 3-manifolds
and concentrating on skeletons considered as abstract special polyhedra.
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Fig. 6.38. Inserting a vertical skeleton

Definition 6.5.25. An abstract special polyhedron S is vertical, if it is home-
omorphic to a vertical skeleton of an orientable Stallings or quasi-Stallings
manifold.

Let k be an integer and F an orientable surface having a negative Euler
characteristic. Denote by S(F, k) and SQ(F, k) the sets of all abstract special
polyhedra such that each polyhedron S ∈ S(F, k) ∪ SQ(F, k) has ≤ k true
vertices and is homeomorphic to a vertical skeleton of an orientable Stallings
or, respectively, quasi-Stallings chain with fiber F . Of course, we consider the
polyhedra up to homeomorphisms.

Lemma 6.5.26. For any surface F and for any integer k the sets S(F, k) and
SQ(F,k) are finite and can be constructed algorithmically.

Proof. By Theorem 2.1.1, one can construct a finite list of polyhedra contain-
ing all special spines with 1, 2, . . . , k vertices. It remains to select among them
vertical skeletons of Stallings and quasi-Stallings manifolds with fiber F . Let
us describe in detail the selection procedure.

Consider a special polyhedron S with ≤ k vertices. First we use Theo-
rem 1.1.20 to decide if S is a special spine of an orientable 3-manifold W . If it
is, then W is unique up to homeomorphism (see Theorem 1.1.17). To decide
if S is a vertical skeleton of a Stallings manifold, we subject it to several tests.

Test 1. Does ∂W consist only of spheres and tori? If not, we reject S and
take the next spine. If yes, then we denote by W ′ the 3-manifold obtained by
attaching 3-balls to all spherical components of ∂W .

Test 2. Does S contain a finite collection of disjoint tori such that they
cut off a collar of ∂W ′? If not, we reject S again. If yes, we denote by W ′′ the
3-manifold obtained from W ′ by cutting off the collar of ∂W ′. The boundary
∂W ′′ ⊂ S of W ′′ consists of the tori constituting the collection.

Test 3. Does S contain the union G = F0 ∪ . . . ∪ Fm−1 ⊂ S of m ≥ 2
disjoint copies of F such that the following holds:
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1. G is proper in W ′′, and G contains all true vertices of S.
2. G decomposes W ′′ into m connected components Qi, 0 ≤ i ≤ m− 1, such

that Qi ∩ Qi−1 = Fi for all i (indices are taken modulo m).
3. The closure Cl(α) of any 2-component α of S contained in Qi and not

contained in Fi ∪ Fi+1 is a quadrilateral having one side in Fi and the
opposite side in Fi+1.

All three questions are of algorithmic nature, i.e., they can be answered
algorithmically. It is easy to show that S ∈ S(F, k) if and only if all three
answers are affirmative. Indeed, if they are, then every pair (Qi, Fi ∪ Fi+1) is
homeomorphic to the pair (F ×I, F ×{0, 1}). It follows that W ′′ is a Stallings
manifold and S is a vertical skeleton of W ′′.

The quasi-Stallings case is similar. To decide whether or not S is in
SQ(F, k), we subject it to the same Tests 1 and 2. Test 3 should be mod-
ified as follows:

(A) In item 2 we require that G decompose W ′′ into m + 1 connected com-
ponents Qi, 0 ≤ i ≤ m, such that Qi ∩ Qi+1 = Fi for 0 ≤ i ≤ m − 1 and
Qm ∩ Q0 = ∅;

(B) In item 3 we preserve the constraint that the closure Cl(α) of any 2-
component α ⊂ S contained in Qi\(Fi∪Fi−1) is a quadrilateral. However,
two opposite sides of Cl(α) must lie in distinct copies of F only for 0 <
i < m. If i = 0 or i = m, then Cl(α) must have two opposite sides in
the unique copy F ′ = F0 or F ′ = Fm−1 of F contained in Qi. Moreover,
Cl(α) must be boundary incompressible in Qi considered as a 3-manifold
with the boundary pattern ∂F ′.

These modifications of Test 3 reflect the distinction between the structure
of Stallings and quasi-Stallings manifolds. Evidently, all three answers to the
modified tests are affirmative if and only if W ′′ is quasi-Stallings and S is a
vertical skeleton of W ′′. Components Q0 and Qm correspond to the twisted
I-bundle chambers of W ′′, which contain singular fibers. ��

At first glance Lemma 6.5.26 is sufficient for proving that E9 possesses
properties C1, C2 of extension moves. Indeed, let U be a Stallings or quasi-
Stallings chain of I-bundle chambers. To subdivide it into balls, i.e., to perform
E9, one can choose among the polyhedra in S(F, k) or SQ(F, k) an abstract
vertical polyhedron homeomorphic to a minimal vertical spine of U and insert
it into U . However, we have to overcome two obstacles.

First S(F, k) and SQ(F, k) contain abstract polyhedra homeomorphic to
vertical skeletons of many different simple Stallings or quasi-Stallings mani-
folds. Therefore, a recognition algorithm for Stallings and quasi-Stallings man-
ifolds is needed to select skeletons of 3-manifolds homeomorphic to U .

Second any abstract polyhedron homeomorphic to a skeleton of U can be
inserted into U in many different ways. We have to show that the number of
such insertions is essentially finite. Sections 6.5.5–6.5.7 are devoted to solving
these problems.
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6.5.5 Recognition of Simple Stallings Manifolds with Periodic
Monodromy

Suppose that (M,Γ ) is an orientable Haken manifold. Let us apply to (M,Γ )
moves E1–E8 as long as possible. We get an admissible polyhedron P ⊂ M ,
which decomposes M into 3-balls, solid tori, and I-bundle chambers such that
every chain U of I-bundle chambers is a simple Stallings or quasi-Stallings
manifold. As we mentioned earlier, Haken’s idea of controlled decomposition
of the 3-manifold into smaller pieces does not work anymore. One can sharpen
the situation by considering the case when from the very beginning M is
a simple Stallings manifold (say, closed). Then our construction of simple
skeletons for M stops just after the first step (inserting two parallel copies of
the fiber).

As we will see later, any simple orientable Stallings manifold Mf belongs
to one of the following two types:

1. Mf is a Seifert manifolds fibered over S2 with 3 exceptional fibers. Its
monodromy map f is periodic up to isotopy. This means that all curves
on F are periodic.

2. Mf is not a Seifert manifold and f admits no essential periodic curves at
all.

Let us give an exact definition of an essential periodic curve. By a singular
curve in a surface F we mean an arbitrary map c:S1 → F or c: (I, ∂I) →
(F, ∂F ). A singular curve is essential, if it cannot be contracted to a point by
a proper homotopy.

Definition 6.5.27. Let f :F → F be a homeomorphism of a surface F onto
itself. Then a singular curve c in F is called periodic (with respect to f),
if for some nonnegative integer number n the curves c and fnc are properly
homotopic.

Clearly, any inessential singular closed curve is periodic with period 1.
The condition that f :F → F have no essential periodic curves ad-

mits a very convenient geometric interpretation. Recall that a singular torus
ϕ:T → M in an orientable Haken 3-manifold M is essential, if the induced
homomorphism ϕ∗:π1(T ) → π1(M) is injective and its image is not conjugate
to a subgroup of π1(∂M). A proper singular annulus ϕ: (A, ∂A) → (M,∂M)
is essential, if ϕ∗:π1(A) → π1(M) is injective and the restriction of ϕ onto a
proper arc l ⊂ A joining different components of ∂A is not properly homotopic
to a map into ∂M .

Lemma 6.5.28. Let Mf be a Stallings manifold with fiber F and monodromy
map f :F → F such that χ(F ) < 0. Then f has an essential periodic curve
if and only if Mf contains either an essential singular torus or an essential
singular annulus.
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Proof. Suppose that f admits a closed essential singular curve c of period n.
Then c determines a singular torus T in the finite covering Mfn of Mf , which
is obtained by cyclic gluing n exemplars of F ×I via f . Indeed, T is composed
from n copies of c × I ⊂ F × I. Of course, T is essential and projects into an
essential singular torus in Mf .

Vice versa, by the same arguments as in the proof of Lemma 6.5.16, any
essential singular torus T can be shifted to vertical position, where each circle
in F ∩ T is a periodic essential curve.

The proof for singular annuli and arcs is similar. ��
This lemma shows that if the monodromy map f :F → F, χ(F ) < 0, has

no periodic curves, then Mf is simple. The converse is also true, with the
exception of Seifert manifolds fibered over S2 with three exceptional fibers.

Proposition 6.5.29. Let Mf be an irreducible Stallings or quasi-Stallings
manifold. Suppose there exists an essential singular annulus in M . Then there
exists an embedded essential annulus in Mf .

Proposition 6.5.30. Let Mf be an irreducible Stallings or quasi-Stallings
manifold. Suppose there exists an essential singular torus in M . Then at least
one of the following assertions is true:

1. There exists an embedded essential torus in Mf ;
2. Mf is a Seifert manifold.

Both propositions are partial cases of the famous torus-annulus theo-
rem [52, 55]. In [57] Johannson proved them by using the machinery of
Nielsen [98], which, however, can be replaced by a more efficient elementary
technique of Jaco and Shalen [53].

Corollary 6.5.31. Let Mf be an orientable simple Stallings manifold with
fiber F, χ(F ) < 0, and monodromy map f :F → F . Then exactly one of the
following holds:

1. f has no essential periodic curves;
2. Mf is a Seifert manifold fibered over S2 with three exceptional fibers.

Proof. Suppose that conclusion 1 does not hold, i.e., that f has essential
periodic curves. Since Mf is simple, it follows from Propositions 6.5.29 and
6.5.30 that Mf is a Seifert manifold. All simple orientable Seifert manifolds
are known: they are fibered either:

(a) Over S2 with ≤ 3 exceptional fibers, or
(b) Over RP 2 with ≤ 1 exceptional fiber

In case (a) we cannot have less than three exceptional fibers, since other-
wise Mf would be either a lens space or S2 × S1. This is impossible, since
a Stallings manifold with χ(F ) < 0 cannot have a finite fundamental group
or be reducible. It remains to note that every orientable Seifert manifold as
in (b) admits another fibration as in (a). The only exception is the manifold
RP 2×̃S1, which is reducible and thus cannot be Stallings. ��
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Denote by S(3) the class of all Seifert manifolds fibered over S2 with
three exceptional fibers. Let us consider the recognition problem for Stallings
manifolds which are in S(3). First we recall a general way for constructing such
manifolds. Suppose that (αi, βi), 1 ≤ i ≤ 3, are three pairs of coprime integers,
where αi > 1. Let us cut two solid tori D1 ×S1,D2 ×S1 out of the solid torus
D2×S1. We get the manifold N2×S1, where N2 = D2\Int (D1∪D2) is a disc
with two holes. N2 and S1 are considered as subsets of the standard plane R2.
They inherit the standard orientation of R2 and thus determine orientations
of N2, ∂N2, N2 × S1. We equip the tori ∂N2 × S1 with coordinate systems
composed from oriented meridians ci ×{∗} and oriented longitudes {∗}×S1,
where ci, 1 ≤ i ≤ 3, are the boundary circles of N2. Then we attach each
torus Di × S1 back to N2 × S1 via a homeomorphism taking the meridian
∂Di×{∗} to a curve of the type (αi, βi). The oriented Seifert manifold M thus
obtained is denoted by M(S2, (α1, β1)(α2, β2)(α3, β3)). Pairs (αi, βi) are called
nonnormalized parameters of its exceptional fibers. The sum e(M) =

∑
i βi/αi

is called the Euler number of M .
The classification of such manifolds is well known [96, 99]: Two manifolds

M = M(S2, (α1, β1)(α2, β2)(α3, β3)) and M ′ = M(S2, (α′
1, β

′
1)(α

′
2, β

′
2)(α

′
3, β

′
3)

are homeomorphic via an orientation-preserving homeomorphism if and only
if after an appropriate renumbering of (αi, βi) we have αi = α′

i, βi = β′
i mod

αi, 1 ≤ i ≤ 3, and e(M) = e(M ′). Changing signs of all βi corresponds to
reversing orientation of the manifold.

We are interested in fiber-preserving classification of Stallings manifolds
from S(3) (saying “fiber-preserving,” we mean fibers of Stallings fibrations).
To begin with, we describe an example of a surface in a Seifert manifold.

Example 6.5.32. Let M = M(S2, (α1, β1)(α2, β2)(α3, β3)) be a Seifert man-
ifold presented as N2 × S1 whose boundary components are filled with three
solid tori. Suppose that e(M) = 0. Denote by n the smallest integer n > 0
divisible by each αi. Let x0, . . . , xn−1 ∈ S1 be the cyclically ordered vertices
of a regular n-gon with vertices in S1. Denote by γ1, γ2 two disjoint segments
in N2 joining the first and the second boundary circles of N2 with the third
one. Let Nk = N2 × {xk}, 0 ≤ k ≤ n− 1 be n copies of N2 in N2 × S1. Then
we transform them into a surface G0 ⊂ N2×S1 as follows. For i = 1, 2, we cut
N2 × S1 along the annulus Ai = γi × S1, rotate one of the annuli A±

i arising
in this way to the right by 2πβi/αi, and glue the annuli back. See Fig. 6.39
for β1 = 2 and β2 = −1.

One can easily show that the boundary circles of G0 on the first two tori
∂N2×S1 have types (αi, βi), i = 1, 2. The assumption e(M) = β1/α1+β2/α2+
β3/α3 = 0 says that the boundary circles of G0 on the third boundary torus
have type (α3, β3). Adding to G0 meridional discs of the solid tori attached
to N2 × S1 , we get a closed surface G ⊂ M .

Lemma 6.5.33. The surface G constructed in Example 6.5.32 possesses the
following properties:
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Fig. 6.39. A Stallings fiber of a Seifert manifold over S2 with three exceptional
fibers of types (5,2),(5,-1),(5,-1)

1. G is a connected orientable nonseparating surface in M .
2. G is a fiber of a Stallings fibration p:M → S1 whose monodromy map

g:G → G has period n.
3. χ(G) = n(−1 + 1/α1 + 1/α2 + 1/α3).

Proof. Since n is the smallest number divisible by α1, α2, α3, G is connected.
Obviously, it is orientable and nonseparating. Indeed, G decomposes each
circle {∗} × S1 ⊂ N2 × S1 into arcs joining different sides of G. The same
arcs determine also a direct product structure G × I on the manifold MG

obtained from M by cutting along G. Since G is composed from n sheets, the
monodromy map has period n. By construction, G is obtained by attaching
n/α1+n/α2+n/α3 discs to G0 having the Euler characteristic −n. Therefore,
χ(G) = n(−1 + 1/α1 + 1/α2 + 1/α3).

Proposition 6.5.34. A 3-manifold M = M(S2, (α1, β1)(α2, β2)(α3, β3)) con-
tains a connected closed incompressible surface F = S2 if and only if e(M) =
0. Such surface is unique up to isotopy and is a fiber of a Stallings fibration
on M with periodic monodromy. Moreover, if χ(F ) < 0, then the period n of
the monodromy map does not exceed −42χ(F ).

Proof. Let us present M as N2 × S1 with three attached solid tori. Consider
an incompressible surface F ⊂ M and deform it so that afterwards it crosses
the solid tori at the minimal number of meridional discs. Since F = S2, it
crosses each torus along at least one meridional disc. Let us investigate how
the surface F0 = F ∩ (N2 × S1) intersects the annuli Ai = γi × S1, see
Example 6.5.32 and Fig. 6.39. Deforming F0 by an isotopy, we can ensure that
the intersections F0 ∩ Ai, i = 1, 2, consist of radial segments of the annuli.
The remaining part of F0 in the solid torus obtained from N2 ×S1 by cutting
along Ai is the union of meridional discs of this solid torus. It follows that
F is isotopic to the surface G constructed in Example 6.5.32, with some n
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divisible by each αi. Since F is connected, n is as small as possible. We can
conclude that e(M) = 0 and that any two closed incompressible surfaces in
M are isotopic (since they are isotopic to G).

Conversely, if e(M) = 0, then H1(M ;Z) is infinite and M is Haken by
Lemma 4.1.29. Therefore, it contains a closed incompressible surface different
from S2.

By Lemma 6.5.33, F is a fiber of a Stallings fibration of M with mon-
odromy map of period n = −χ(F )/κ, where

κ = κ(α1, α2, α3) = 1 − 1/α1 − 1/α2 − 1/α3.

If χ(F ) < 0, then κ > 0. The set of all triples (α1, α2, α3) with 2 ≤ α1 ≤ α2 ≤
α3 and κ > 0 can be divided into three subsets:

1. α1 = 2, α2 = 3, α3 ≥ 7
2. α1 = 2, α2 ≥ 4, α3 ≥ 5
3. α1 ≥ 3, α2 ≥ 3, α3 ≥ 4

The minimal value of κ for all such triples is 1 − 1/2 − 1/3 − 1/7 = 1/42.
Therefore, n = −χ(F )/κ ≥ −42χ(F ). ��

Corollary 6.5.35. There is an algorithm to decide if a given simple Stallings
manifold M with fiber F, χ(F ) < 0, is a Seifert manifold fibered over S2 with
three exceptional fibers. In case M is Seifert, a Seifert structure on M can be
constructed algorithmically.

Proof. Let f be the monodromy map for M . It follows from Propositions 6.5.31
and 6.5.34 that M ∈ S(3) if and only if f is periodic with period n ≤ −42χ(F ).
Therefore, in order to decide if M ∈ S(3), it suffices to test all powers
fn, 1 ≤ n ≤ −42χ(F ), for being homotopic to the identity map F → F .

Suppose that M ∈ S(3). Then a Seifert structure on M can be constructed
as follows. Let T be a triangulation of M . For any k, there are finitely many
star subdivisions of T with ≤ k tetrahedra. We can find them all and test each
triangulation for existence of a simplicial map p of M onto a triangulated 2-
sphere such that p is the projection of a Seifert fibration with three exceptional
fibers. Eventually we must find such p. This follows from the assumption that
M ∈ S(3) and the Alexander theorem [1] that any two triangulation of the
same 3-manifold have combinatorially isomorphic star subdivisions. ��

A more economic way of constructing a Seifert structure can be extracted
from [53], see also [73,115].

Proposition 6.5.36. There is an algorithm to decide if two given simple
Stallings manifolds with fiber F, χ(F ) < 0, from S(3) are homeomorphic via
a homeomorphism taking Stallings fibers onto Stallings fibers.

Proof. Let M,M ′ be two given simple Stallings manifolds. By Corollary 6.5.35,
we can construct Seifert fibrations of M,M ′ and hence calculate parameters
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(αi, βi) and (α′
i, β

′
i), 1 ≤ i ≤ 3, of their exceptional fibers. Recall that any

two homeomorphic manifolds from S(3) are fiber-preserving homeomorphic.
Taking into account that e(M) = e(M ′), we can conclude that M,M ′ are
homeomorphic via an orientation preserving homeomorphism if and only if,
after an appropriate renumbering of (α′

i, β
′
i), we have αi = α′

i and βi = β′
i mod

αi for 1 ≤ i ≤ 3. It remains to note that every homeomorphism M → M ′

is isotopic to a fiber-preserving one. This follows from the fact that, up to
isotopy, M ′ contains a unique closed incompressible surface different from S2,
namely, the fiber. See Proposition 6.5.34. ��

6.5.6 Recognition of Simple Stallings Manifolds with Nonperiodic
Monodromy

In this section we consider the recognition problem for simple Stallings man-
ifolds whose monodromy maps are nonperiodic and hence have no essen-
tial periodic curves. To continue the construction of admissible skeletons, we
must solve this problem. Numerous attempts to overcome this obstacle had
no success. Mathematicians came to the conclusion that Haken’s approach
was insufficient and that the recognition problem for such Stallings manifolds
(which can be easily reduced to the conjugacy problem for their monodromy
maps) should be solved by independent methods. This indeed was done by
Hemion [41,42]. Clearly, the recognition problem for quasi-Stallings manifolds
also requires an independent solution. Surprisingly, Hemion’s solution for the
Stallings case is insufficient for the quasi-Stallings one; this problem turned
out to be much more difficult. We tackle it in Sect. 6.5.7.

Note that at the present time an alternative solution of the algorithmic
recognition problem for simple Stallings manifolds with nonperiodic mon-
odromy and for simple quasi-Stallings manifolds can be obtained by using
the fact that they are hyperbolic [62, 100, 120, 121]. Nevertheless, I prefer to
keep the exposition within the limits of elementary combinatorial approach by
using the Hemion solution for the Stallings case (Proposition 6.5.42). For the
quasi-Stallings case I borrow the notion of stretching factor from Thurston’s
theory of surface homeomorphisms (see the proof of Proposition 6.5.49).

First we reduce the recognition problem for Stallings manifolds to the
conjugacy problem for their monodromy maps. Let f, g:F → F be two home-
omorphisms of a surface F onto itself. Suppose that there exists a homeomor-
phism h:F → F such that hfh−1 is isotopic to g. In this case, we say that h
conjugates f to g or that f and g are conjugate. The set of all isotopy classes of
homeomorphisms F → F that conjugate f to g is denoted by Conj(f, g). Let
Mf ,Mg be two Stallings manifolds with fiber F . It is convenient to represent
them in the form Mf = (F × I)/ ∼,Mg = (F × I)/ ∼, where the equivalence
relation ∼ is generated by identifications (x, 1) = (f(x), 0) in the first case
and identifications (x, 1) = (g(x), 0) in the second. We will think of F as being
contained in Mf and Mg as F × {0}.
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Recall that a homeomorphism Mf → Mg is fiber-preserving, if it takes
each fiber F ×{t} of Mf onto the corresponding fiber F ×{t} of Mg. Denote
by Homeo(Mf ,Mg) the set of all fiber-preserving homeomorphisms Mf → Mg

considered modulo fiber-preserving isotopy. It is evident that the restriction of
any H ∈ Homeo(Mf ,Mg) onto F conjugates f to g, i.e., belongs to Conj(f, g).
Indeed, rewrite H(x, t) as (ht(x), t). Then, recalling that H is a homeomor-
phism between the Stallings manifolds, not just between direct products F×I,
we obtain gh1 = h0f . Since h0 and h1 are isotopic, f and g are conjugate.
Any ht can be taken as a conjugating homeomorphism.

Let us assign now to every homeomorphism H ∈ Homeo(Mf ,Mg) its
restriction onto F . This assignment induces a map ψ: Homeo(Mf ,Mg) →
Conj(f, g). If f = g and hence Mf = Mg, then Homeo(Mf ,Mf ) and Conj(f, f)
are groups and ψ is a homomorphism.

The following lemma is easy.

Lemma 6.5.37. For any two Stallings manifolds Mf ,Mg the map ψ defined
above is a bijection between Homeo(Mf ,Mg) and Conj(f, g).

Proof. Let a homeomorphism h:F → F conjugate f to g, that is, hfh−1 be
isotopic to g. Then h and ghf−1 are also isotopic. Choose an isotopy ht:F → F
such that h0 = ghf−1 and h1 = h. Then the map H ′:F × I → F × I given
by the rule H ′(x, t) = (ht(x), t) determines a fiber-preserving homeomorphism
H:Mf → Mg. It is easy to verify that assigning h → H determines the inverse
map ψ−1: Conj(f, g) → Homeo(Mf ,Mg). ��

To formulate Hemion’s theorem, we need a preparation. Let F be a com-
pact surface with nonempty boundary. Then any disc ∆ obtained from F by
cutting it along nonseparating disjoint proper arcs is called a fundamental disc
of F . All the liftings of these arcs to the universal covering F̃ of F cut F̃ into
copies of ∆. Any such copy is called a fundamental region of F̃ . Recall that
any homeomorphism f :F → F can be lifted to a homeomorphism f̃ : F̃ → F̃ .

Definition 6.5.38. Let ∆ be a fundamental disc for a surface F , let δ ⊂ F̃
be a fundamental region corresponding to ∆, and let f :F → F be a homeo-
morphism. Then the ∆-size d(f)∆ of f is the smallest number N such that
f̃(δ) is contained in N fundamental regions of F̃ , see Fig. 6.40.

Evidently, d(f)∆ does not depend on the choice of δ. The following prop-
erty of the ∆-size is easy, see [41].

Lemma 6.5.39. Let F be a compact surface and ∆ a fundamental disc for
F . Then for any number N there exists an algorithmically constructible finite
set of homeomorphisms F → F such that every homeomorphism h:F → F of
size d(f)∆ ≤ N is isotopic to one of them.

Theorem 6.5.40 (Hemion [41,42]). Suppose that homeomorphisms f, g of
a surface F onto itself admit no essential periodic curves. Let ∆ be a funda-
mental disc for F . Then there exists an integer number N = N(f, g) having
the following properties:
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Fig. 6.40. Seven fundamental regions are required in order to cover the image of
one fundamental region

1. N can be calculated algorithmically.
2. Any homeomorphism h:F → F that conjugates f to g is isotopic to a

homeomorphism of the form h′fn, where n is an integer and h′:F → F
is of size d(h′)∆ ≤ N .

Corollary 6.5.41. Suppose that homeomorphisms f, g:F → F of a surface
F onto itself admit no essential periodic curves. Then one can algorithmically
decide whether or not f, g are conjugate. Moreover, if they are, then one can
construct a finite set h1, . . . , hk of homeomorphisms F → F such that the
following holds:

1. Each hi conjugates f to g
2. Any homeomorphism h:F → F conjugating f to g is isotopic to a home-

omorphism of the form hif
n, where 1 ≤ i ≤ k and −∞ < n < ∞.

Proof. Let ∆ and N be as in Theorem 6.5.40. Using Lemma 6.5.39, we con-
struct a finite set of homeomorphisms F → F representing all homeomor-
phisms of size ≤ N . Then we select among them homeomorphisms which
conjugate f to g (this can be done algorithmically). If the set thus obtained is
empty, then f, g are not conjugate. Suppose that it is nonempty, i.e., consists
of homeomorphisms h1, . . . , hk. Let h:F → F be any other homeomorphism
that conjugates f to g. Applying Theorem 6.5.40 again, we can replace h by
an isotopic homeomorphism of the form h′fn such that d(h′)∆ ≤ N . Since h′

also conjugates f to g, it is isotopic to one of hi. ��

It may be illuminating to reformulate Corollary 6.5.41 as follows. Recall
that Conj(f, g) denotes the set of isotopy classes of homeomorphisms F →
F that conjugate f to g, and that f acts on Conj(f, g) by the rule h →
hf . Suppose that f, g admit no essential periodic curves. Then the orbit set
Conj(f, g)/f of this action is finite and representatives of the orbits can be
constructed algorithmically (for example, one can take h1, . . . , hk, see above).
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Let Mf = (F × I)/f be the Stallings 3-manifold with fiber F such that
f have no essential periodic curves. Consider the family {Hs, 0 ≤ s ≤ 1} of
maps F × I → F × I given by the following rule:

Hs(x, t) =
{

(x, t + s), if t + s ≤ 1;
(f(x), t + s − 1), if t + s ≥ 1.

If t + s = 1, then Hs(x, t) consists of two points (x, 1) and (f(x), 0).
Since they determine the same point of Mf , we get an isotopy Hs:Mf →
Mf such that H0 = 1,Hs takes fibers to fibers, and H1 takes each fiber to
itself. It may be illuminating to think of Hs as follows: it moves each fiber
F around Mf and returns to its initial position so that the resulting map
F → F is f . If we descend Hs to the base circle of the fibration p:Mf → S1,
we get a full rotation of S1. Having that in mind, we redenote H1 by Rf .
Clearly, Rf = ψ−1(f), where the map ψ−1 is inverse to the isomorphism
ψ: Homeo(Mf ,Mf ) → Conj(f, f), see Lemma 6.5.37. We emphasize that Rf

is isotopic to the identity, but there is no such isotopy taking each fiber onto
itself.

The next proposition is actually a geometric reformulation of Corol-
lary 6.5.41. It solves the algorithmic recognition problem for Stallings mani-
folds whose monodromy maps have no essential periodic curves.

Proposition 6.5.42. Suppose that the monodromy maps f, g:F → F of
Stallings manifolds Mf ,Mg with fiber F have no essential periodic curves.
Then one can algorithmically decide whether or not Mf and Mg are fiber-
wise homeomorphic. Moreover, if they are, then one can construct a finite
set H1, . . . , Hk of fiber-preserving homeomorphisms Mf → Mg such that any
fiber-preserving homeomorphism H:Mf → Mg is fiberwise isotopic to a home-
omorphism of the form HiR

n
f , where 1 ≤ i ≤ k and −∞ < n < ∞.

Proof. Follows from Lemma 6.5.37, Corollary 6.5.41, and the fact that f cor-
responds to Rf . ��

Propositions 6.5.36 and 6.5.42 solve the recognition problem for sim-
ple Stallings manifolds and thus eliminate the first obstacle for subdividing
Stallings chains, which was mentioned at the end of Sect. 6.5.4. To overcome
the second obstacle, i.e., to prove that each abstract vertical skeleton can be
inserted into a Stallings chain U in essentially a finite number of ways, let
us analyze fiber-preserving homeomorphisms between Stalling manifolds. Our
goal is to prove that the set of their restrictions onto the boundaries of the
manifolds is finite up to fiber-preserving isotopy.

Definition 6.5.43. Let Mf ,Mg be Stallings manifolds with fiber F . We say
that two fiber-preserving homeomorphisms h, h′ ∈ Homeo(Mf ,Mg) are bound-
ary equivalent, if their restrictions onto ∂Mf are fiberwise isotopic (with
respect to the induced fiberings of ∂Mf , ∂Mg into the boundary circles of the
fibers of Mf ,Mg).
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We emphasize that the isotopy must be fiber-preserving in the strong sense:
the image of each boundary circle must remain fixed during the isotopy.
The set of all boundary equivalence classes of homeomorphisms Mf → Mg

will be denoted by Homeo∂(Mf ,Mg). There is a natural surjective map
ϕ: Homeo(Mf ,Mg) → Homeo∂(Mf ,Mg), which assigns to each homeomor-
phism h ∈ Homeo(Mf ,Mg) its boundary equivalence class. The proof of
the following proposition is based on the observation that any element of
Homeo∂(Mf ,Mg) is essentially determined by the induced bijection between
the boundary tori of Mf and Mg.

Proposition 6.5.44. For any simple orientable Stallings manifolds Mf ,Mg

the set Homeo∂(Mf ,Mg) is finite. Homeomorphisms Mf → Mg representing
all its elements can be constructed algorithmically.

Proof. It is sufficient to prove the proposition for the case f = g, when
Homeo(Mf ,Mf ) and Homeo∂(Mf ,Mf ) are groups and ϕ is a homomorphism.
Let us define a subgroup Homeo0(Mf ,Mf ) ⊂ Homeo(Mf ,Mf ) by setting that
h ∈ Homeo(Mf ,Mf ) belongs to Homeo0(Mf ,Mf ) if and only if h takes each
torus of ∂Mf onto itself. We claim that ϕ(Homeo0(Mf ,Mf )) = 1 or, equiva-
lently, that the restriction of any h ∈ Homeo0(Mf ,Mf ) onto ∂Mf is fiberwise
isotopic to the identity. Since the permutation group of the boundary tori of
Mf is finite, the proposition follows from the claim.

Let us prove the claim. Consider a torus T of ∂Mf . Since h is fiber-
preserving, the restriction h|T is fiberwise isotopic to a power τk

C of the Dehn
twist τC along a circle C ⊂ F ∩T (all such circles are parallel in T ). It follows
that we get a homomorphism from Homeo0(Mf ,Mf ) to the infinite cyclic
group 〈τC〉 generated by τC . Note that the image of the rotation Rf under
this homomorphism is trivial, since Rf :Mf → Mf is isotopic to the identity.
On the other hand, Proposition 6.5.42 tells us that, up to multiplication by
powers of Rf , the number of homeomorphisms in Homeo(Mf ,Mf ) is finite.
We can conclude that the image of Homeo0(Mf ,Mf ) in 〈τC〉 is finite and
hence trivial. ��

Remark 6.5.45. Proposition 6.5.44 can be extracted from the fact that any
simple Stallings manifold whose monodromy map has no essential periodic
curves is hyperbolic [101] and thus has a finite self-homeomorphism group.

6.5.7 Recognition of Quasi-Stallings Manifolds

Our last business before we are done with subdividing I-bundle chambers
is to construct a recognition algorithm for quasi-Stallings manifolds. As we
have mentioned in the introduction to Sect. 6.5.6, Hemion’s theorem is in-
sufficient for this. This was discovered a long time after the classification
theorem for Haken manifolds (see Theorem 6.1.1 and its corollary) was an-
nounced. For so many years the correctness of the theorem remained unset-
tled, not only because no proof was written, but also because some crucial
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ideas had not been discovered yet. The text you are reading now contains
the first complete resolution of the problem. We follow the main lines of
Sect. 6.5.5. The crucial difficulty consists in solving the recognition prob-
lem for quasi-Stallings manifolds, i.e., in obtaining an analog of Proposi-
tion 6.5.42. Let M(α,β) be a quasi-Stallings manifold with fiber F . Similar
to the Stallings case, it is convenient to represent it in the form M(α,β) =
(F × I)/ ∼, where the equivalence relation ∼ is generated by the equalities
(x, 0) = (α(x), 0), (x, 1) = (β(x), 1). We assume that F is contained M(α,β)

as F × {1/2}. Let M(α′,β′) be another quasi-Stallings manifold with fiber F .
We assume that it is also presented in the form (F × I)/ ∼. In particular,
F ⊂ M(α′,β′). Then a homeomorphism M(α,β) → M(α′,β′) is called fiber-
preserving, if it takes each fiber F × {t} of M(α,β) onto the corresponding
fiber F × {t} of M(α′,β′).

Denote by Homeo(M(α,β),M(α′,β′)) the set of all fiber-preserving home-
omorphisms M(α,β) → M(α′,β′) considered modulo fiber-preserving isotopy.
Let Conj(α, β, α′, β′) be the set of all homeomorphisms F → F that conju-
gate α to α′ and β to β′. Just as in the Stallings case, restricting homeomor-
phisms M(α,β) → M(α′,β′) onto F , we get a map ψ: Homeo(M(α,β),M(α′,β′)) →
Conj(α, β, α′, β′). The following lemma is evident.

Lemma 6.5.46. For any two quasi-Stallings manifolds M(α,β),M(α′,β′) the
map ψ:Homeo(M(α,β),M(α′,β′)) → Conj((α, β); (α′, β′)) defined above is bi-
jective.

This lemma tells us that in order to decide if M(α,β),M(α,′β′) are fiberwise
homeomorphic, it suffices either to find h which conjugates α to α′ and β
to β′, or to prove that such h does not exist. However, Hemion’s solution of
the conjugacy problem cannot be directly used here, since α, β are periodic
and we wish to find a common conjugating homeomorphism. On the other
hand, if h does exist, then it conjugates αβ to α′β′ and this property can be
used for reducing the set of potential candidates for h to a finite number of
one-parameter series. However, we should be sure that αβ to α′β′ have no
essential periodic curves.

Lemma 6.5.47. If a quasi-Stallings manifold M = M(α,β) with fiber F , where
χ(F ) < 0, is simple, then the homeomorphism αβ:F → F has no essential
periodic curves.

Proof. Suppose, on the contrary, that αβ has at least one essential periodic
curve. Then the Stallings manifold Mαβ contains an essential singular surface
(a torus or an annulus) by Lemma 6.5.28. Projecting this surface to M (which
is a quotient of Mαβ), we get an essential singular surface in M . Since M is
simple, then it is a Seifert manifold by Propositions 6.5.29 and 6.5.30. Clearly,
its base surface is S2 and it has three exceptional fibers (see the proof of
Corollary 6.5.31). By Proposition 6.5.34, any such manifold can contain only
one incompressible connected surface different from S2, and this surface is
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nonseparating. On the other hand, M is a quasi-Stallings manifold and thus
its fiber F is a separating surface of the above type. This is a contradiction.

��

Lemma 6.5.48. Let α, β, α′, β′:F → F be orientation reversing free involu-
tions of an orientable surface F such that χ(F ) < 0 and the homeomorphisms
αβ, α′β′ admit no essential periodic curves. Then one can construct a finite set
X = X(α, β, α′, β′) of homeomorphisms F → F such that a homeomorphism
h′:F → F is in Conj(α, β, α′, β′) if and only if h′ has the form h′ = h(αβ)n,
where h ∈ X and n is an integer solution of the equation (αβ)2n = h−1α′hα.

Proof. Using Corollary 6.5.41, we construct a finite set X of homeomorphisms
F → F so that the following holds:

1. Each h ∈ X conjugates αβ to α′β′

2. Any homeomorphism h′:F → F conjugating αβ to α′β′ is isotopic to a
homeomorphism of the form h(αβ)n, where h ∈ X and −∞ < n < ∞.

Let us prove that for this X the conclusion of the lemma is true. We
begin with the observation that a homeomorphism h′:F → F of the form
h′ = h(αβ)n conjugates α to α′ if and only if (αβ)2n = h−1α′hα. Indeed,
since α and β are involutions, we have

h′α(h′)−1 = h(αβ)nα(αβ)−nh−1 = h(αβ)nα(βα)nh−1 = h(αβ)2nαh−1.

It follows that h′α(h′)−1 = α′ if and only if h(αβ)2nαh−1 = α′, i.e., (αβ)2n =
h−1α′hα.

Now suppose h′ conjugates α to α′ and β to β′. Then it conjugates αβ to
α′β′ and hence by item 2 has the form h′ = h(αβ)n, where h ∈ X. The above
observation tells us that n is satisfies the equation (αβ)2n = h−1α′hα.

Vice versa, if h′ has the form h′ = h(αβ)n such that h ∈ X and
(αβ)2n = h−1α′hα, then it conjugates αβ to α′β′ and α to α′. It follows
that h′ conjugates β to β′ and hence h′ ∈ Conj(α, β, α′, β′). ��

At first glance, Lemma 6.5.48 provides a solution of the recognition prob-
lem for simple quasi-Stallings manifolds. Given M(α,β) and M(α′,β′), we con-
struct X = X(α, β, α′, β′) and for every h ∈ X look for an integer number n
such that (αβ)2n = h−1α′hα. It follows from Lemma 6.5.46 that the manifolds
are fiberwise homeomorphic if and only if we find one. However, we cannot
test all n, therefore this procedure is potentially infinite and thus not algorith-
mic. This crucial fact was overlooked by Waldhausen [131], Johannson [58,59]
and Hemion [42].

Considering this situation from the geometric point of view, we come to
the same conclusion. Indeed, if M(α,β),M(α,β) are fiberwise homeomorphic,
then so are their 2-sheeted coverings Mαβ and Mα′β′ . In general, the converse
is not true, since not every fiber-preserving homeomorphism h:Mαβ → Mαβ′

is fiberwise isotopic to an equivariant one. Not only h, but also all homeomor-
phisms of the form hRn

αβ should be tested for this property.
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Let us return to the equation (αβ)2n = h−1α′hα. Denoting αβ by f and
h−1α′hα by g, we come naturally to the following problem.

Problem. Can we decide algorithmically whether or not g is isotopic to
an integer power of f?

If the answer is affirmative, even only for homeomorphisms admitting no
periodic curves, we get a recognition algorithm for quasi-Stallings manifolds.
It turns out that the answer is indeed affirmative.

Proposition 6.5.49. Let two homeomorphisms f, g:F → F of a surface F
onto itself admit no essential periodic curves. Then one can algorithmically
decide whether or not g is isotopic to an integer power fn of f . Moreover, if
it is, then n is uniquely defined and can be calculated algorithmically.

The proof is based on the Thurston theory of surface homeomorphisms
[124] and references therein. We derive from it a few facts needed for the
proof. The main fact is that if a homeomorphism f :F → F has no periodic
curves and χ(F ) < 0, then f is isotopic to a pseudo-Anosov homeomorphism.
Therefore, one can assign to f a number λ(f) called a stretching factor. It
possesses the following properties (see [21,124]):

1. λ(f) is an algebraic number greater than 1
2. λ(fn) = λ(f)|n| for any integer n = 0
3. Isotopic homeomorphisms have the same stretching factor

Moreover, it is proved in [9] that the stretching factor can be calculated
algorithmically. One can write a computer program that assigns to any f
a matrix with non-negative integer elements such that λ(f) is the maximal
eigenvalue of that matrix.

Proof of Proposition 6.5.49. Let f, g be given, say, as compositions of Dehn
twists. We calculate λ(f) and λ(g). Since λ(f) > 1 by property 1, one can
find an integer number N such that λN (f) > λ(g). It follows from properties
2, 3 that if an integer power fn of f is isotopic to g, then | n |< N . So to
answer the question whether or not g is isotopic to an integer power of f it
suffices to test all integer numbers n between −N and N for possessing the
required property. Note that if such n does exist, then it is unique. Indeed, if
g = fn and g = fm, then n = m, since f is not periodic. ��

Proposition 6.5.50. Suppose that quasi-Stallings manifolds M(α,β),M(α′,β′)

with fiber F are simple. Then one can algorithmically decide whether or not
they are fiberwise homeomorphic. Moreover, if they are, then the set of fiber-
preserving homeomorphisms M(α,β) → M(α′,β′) is finite (up to fiber-preserving
isotopy) and all the homeomorphisms can be constructed algorithmically.

Proof. Since M(α,β),M(α′,β′) are simple, then αβ and α′β′ admit no essen-
tial periodic curves by Lemma 6.5.47. Therefore we can apply Lemma 6.5.48
and construct a finite set X = X(α, β, α′, β′) of homeomorphisms F → F
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such that h′ ∈ Conj(α, β, α′, β′) if and only if h′ has the form h′ = h(αβ)n,
where h ∈ X and n is an integer solution of the equation (αβ)2n = h−1α′hα.
Then for each h we use Proposition 6.5.49 to find n (if it does exist).
The corresponding homeomorphisms h(αβ)n are in Conj(α, β, α′, β′). By
Lemma 6.5.46, they determine a finite set of fiber-preserving homeomorphisms
M(α,β) → M(α′,β′) which by construction contains all fiber-preserving home-
omorphisms M(α,β) → M(α′,β′). The manifolds M(α,β),M(α′,β′) are fiberwise
homeomorphic if and only if this set is nonempty. ��

We are ready to deliver the final blow to the problem of I-bundle cham-
bers. Let an admissible subpolyhedron P of an orientable 3-manifold (M,Γ )
decompose M into 3-balls, solid tori, and I-bundle chambers without common
lateral annuli. Suppose that U ⊂ M is a Stallings or quasi-Stallings chain of
I-bundle chambers with fiber F . We will say that two vertical skeletons of
U are equivalent, if there exist a homeomorphism (M,Γ ) → (M,Γ ) which is
invariant on P . The following proposition tells us that E9 satisfies properties
C1, C2 of extension moves (property C3 is evident, since there are only finitely
many Stallings and quasi-Stallings chains, and each move E9 decomposes one
of these chains into 3-balls).

Proposition 6.5.51. For any simple Stallings or quasi-Stallings chain U ⊂
M the set of equivalence classes of minimal vertical skeletons of U is finite.
Representatives of the equivalence classes can be constructed algorithmically.

Proof. Let F0, . . . , Fm−1 be the fibers of U that decompose it into the I-bundle
chambers. All fibers are homeomorphic to a fixed surface F . We divide the
proof into several steps.

Step 1. Construct a vertical skeleton of U and denote by k the number
of its true vertices.

Step 2. Let S(F, k) and SQ(F, k) be the set of all vertical skeletons with
≤ k true vertices of all Stallings and quasi-Stallings manifolds with fiber F .
We consider the skeletons up to homeomorphisms. By Lemma 6.5.26, these
sets are finite and can be constructed algorithmically.

Step 3. We choose in S(F, k) or in SQ(F, k) (depending on the type of
U) all skeletons S1, . . . , Sn which satisfy the following conditions:

1. Each Si contains exactly m disjoint exemplars F ′
0, . . . , F

′
m−1 of the fiber

F such that any true vertex of Si is contained in one of them.
2. The Stalling or quasi-Stallings manifold Ui determined by Si is fiberwise

homeomorphic to U .
3. Si is minimal, i.e., its complexity (the number of its true vertices) does

not exceed the complexity of any other skeleton satisfying 1 and 2.

It follows from Propositions 6.5.42 and 6.5.50 that the selection can be per-
formed algorithmically.

Step 4. For each Ui we choose a fibration pi:Ui → I so that F ′
0, . . . , F

′
m−1

are fibers. Consider the set Hi of all homeomorphisms Ui → U which take
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fibers to fibers and ∪m−1
i=1 F ′

i to ∪m−1
i=1 Fi. The homeomorphisms are consid-

ered up to the equivalence relation generated by postcomposing with fiber-
preserving homeomorphisms U → U whose restrictions onto ∂U are fiberwise
isotopic to the identity. It follows from Proposition 6.5.44 in the non-Seifert
Stallings case and Proposition 6.5.50 in the quasi-Stallings one that Hi con-
sists of finitely many equivalence classes of homeomorphisms. If U is a Seifert
manifold fibered over S2 with three exceptional fibers, then Hi is finite au-
tomatically. Let h

(i)
1 , h

(i)
2 , . . . , h

(i)
N be representatives of all the elements of Hi

(of course, they can be constructed algorithmically). We use all these homeo-
morphisms to insert Si into U and get vertical skeletons h

(i)
j (Si), 1 ≤ j ≤ N,

of U .
Step 5. Let us prove that vertical skeletons h

(i)
j (Si), 1 ≤ i ≤ k, 1 ≤ j ≤

N, represent all the equivalence classes of minimal vertical skeletons of U .
Indeed, let S be a minimal vertical skeleton of U . Then it is homeomorphic
to a skeleton Si, 1 ≤ i ≤ n and hence is obtained by an insertion of Si into
U . Since the set h

(i)
1 , h

(i)
2 , . . . , h

(i)
N contains representatives of all elements of

Hi, the homeomorphism Ui → U used for the insertion differs from one of
h

(i)
j , 1 ≤ j ≤ N by a fiber-preserving isotopy. It follows that S equivalent to

one of the skeletons h
(i)
j (Si). ��

6.5.8 Subdivision of Solid Tori

In this final section we deal with the last remaining case, the chambers that
are solid tori with clean longitudes. Let P be an admissible subpolyhedron
of a Haken 3-manifold (M,Γ ) such that P does not admit moves E1–E9.
Then any chamber (Q,∆) of P is either a 3-ball or a solid torus having a
clean longitude on the boundary. ∆ decomposes ∂Q either into discs (if Q is
a ball) or into discs and annuli (if Q is a solid torus). Those discs and annuli
will be called disc and annular patches of P . The only difference between
patches and 2-components of P is that Γ decomposes some 2-components of
P contained in ∂M into smaller patches. If (Q,∆) is a solid torus chamber,
then any annular patch of ∂Q contains a longitude of Q. Otherwise we could
apply either E4 or E3, depending on whether or not (Q,∆) contains essential
annuli. By the same reason, ∆ consists of disjoint circles and not more than
one pattern strip.

To extend P to a simple skeleton of (M,Γ ), we need to subdivide the
solid torus chambers. Here is an idea how to do that. Let U be a connected
component of the union of all the solid torus chambers of P . We supply U
with the boundary pattern ∆U = ∂U ∩ (Γ ∪SP ) consisting of those points of
Γ and singular points of P that are contained in ∂U . Since any annulus and
any solid torus can be fibered into circles, we have good chances to represent
U as a circle bundle over a surface. Any such bundle admits a section. The
idea consists in inserting into U a minimal section and perturbing it.
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It turns out, however, that sometimes U admits no circle fibration. For ex-
ample, it can happen that the intersection of two neighboring annular patches
consists not of circles, but of disjoint arcs. This situation occurs when a pat-
tern strip in the boundary ∂Q of a chamber (Q,∆) degenerates to a necklace
placed between two annular patches of ∂Q (by a necklace in ∂Q we mean a
pattern strip that can be covered by discs joined by arcs into a closed chain
which goes once along a longitude). Also, two solid torus chambers can inter-
sect each other along several disjoint discs.

If at least one of these situations occurs, then the circle bundle structures
on annuli and tori cannot be extended to a circle bundle structure on U . The
explanation is simple: in both cases one can find fibers of neighboring solid
torus chamber which have common points but do not coincide. So we begin
the realization of the above idea with introducing a new class of admissible
subpolyhedra, for which a circle bundle structure on U always exists.

Definition 6.5.52. We say that an admissible subpolyhedron P of (M,Γ ) is
faithful, if it decomposes (M,Γ ) into 3-balls and solid torus chambers with
clean longitudes such that the following holds:

1. Each solid torus chamber (Q,∆) is simple. This means that ∆ consists of
several disjoint longitudes and at most one pattern strip.

2. The intersection of any two annular patches of P either is empty or con-
sists of one or two disjoint circles of their boundaries.

3. No two different solid torus chambers have a common disc patch.

Lemma 6.5.53. Let P be an admissible subpolyhedron of an orientable Haken
3-manifold (M,Γ ) such that all its chambers are 3-balls and solid tori having
clean longitudes. Suppose that P is faithful. Then any connected component
(U,∆U ) of the union of all solid torus chambers can be presented as a circle
bundle over a surface so that all the annular patches and solid torus chambers
of (U,∆U ) are saturated (i.e., consist of fibers).

Proof. We construct a fibration of (U,∆U ) as follows. First, we decompose
into circles all the annular patches of P . The remaining part of the boundary
∂Q of every solid torus chamber (Q,∆) consists of annuli decomposed into
disc patches. Here, we have used the first property of a faithful polyhedron.
Indeed, the union of disc patches of ∂Q cannot have a connected component
homeomorphic to a disc, since otherwise the intersection of the two annuli
adjacent to this disc would consist of arcs.

It follows that the circle fibration of the annular patches can be extended
to circle fibrations of the boundaries of all solid torus chambers. Since no disc
patch lies in the boundary of two different solid torus chambers, this extension
is well-defined. It remains to extend it to the interiors of all the solid torus
chambers. One can do that without introducing exceptional fibers, since all
fibers in the boundary of every solid torus chamber are longitudes. ��
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The fibration of U constructed above possesses the property that all the
annular patches and solid torus chambers of PU = P∩U are saturated. We will
call such fibrations faithful too. Evidently, U admits many faithful fibrations.
Any two of them are isotopic by a faithful isotopy of U which is invariant on
the solid torus chambers and annular patches. We point out that in general
a faithful isotopy is not admissible: it can move disc patches of ∂U together
with their boundaries, which are in ∆U ).

In view of Lemma 6.5.53, our next goal is quite natural: we wish to extend
any P to a faithful subpolyhedron. For doing that we introduce two auxiliary
extension moves. They are very similar to E3 and E4, so we denote them by
E′

3 and E′
4.

E′
3: Inserting a Clean Annulus Which Embraces a Necklace,

Followed by Adding a Double p-Minimal Meridional Disc

Suppose that the boundary pattern ∆ of a solid torus chamber (Q,∆) of
P contains a necklace N . Then we insert into Q a clean annulus that cuts
off a solid torus V such that V ∩ ∆ = N . After that we choose a p-minimal
meridional disc D of V and insert into V two parallel copies of D, see Fig. 6.41.

E′
4: Doubling a Disc Patch that Separates two Solid Torus

Chambers

Suppose that a 2-cell D of P separates two solid torus chambers. Then we
add to P a parallel copy of D, see Fig. 6.42.

It is easy to see that each move E′
3 decreases the number of necklaces

and does not increase the number of disc patches that separate solid torus
chambers. Also, each E′

4 decreases the number of such disc patches and does
not create new necklaces. It follows that after several moves E′

3, E
′
4 we get a

Fig. 6.41. Cutting off a necklace

Fig. 6.42. Doubling a disc patch
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faithful subpolyhedron. Evidently, moves E′
3, E

′
4 possess properties C1–C3 of

extension moves.
Further on we assume that P is a faithful subpolyhedron of an orientable

Haken manifold (M,Γ ). Thus every connected component U of the union of all
solid torus chambers of P admits a faithful fibration. For a while the behavior
of P and M outside U is irrelevant for us. So for now we are considering U as
a 3-manifold with the boundary pattern ∆U = ∂ ∩ (Γ ∪ SP ) and the faithful
subpolyhedron PU = P ∩ U .

Definition 6.5.54. A surface F ⊂ U is called a section of (U,∆U ), if there
is a faithful fibration of U such that F intersects every fiber at exactly one
point.

Our next extension move consists in subdividing U into balls by inserting
a section. Such a section always exists unless U is closed and hence M =
U is a circle bundle over a closed surface. Any such bundle is completely
determined by its base surface S and the Euler number, which takes values
in Z or Z2, depending on whether or not S is orientable. Therefore, we could
easily solve the recognition problem for such circle bundles separately, without
using hierarchies and extension moves.

Nevertheless, we prefer stay within the general scheme at the expense of
introducing another auxiliary move E′′

4 (compare with E4 from Sect. 6.5.1).

E′′
4 : Inserting a Pair of Parallel Meridional Discs of a Solid Torus

Chamber

Suppose that a faithful subpolyhedron P of a closed orientable Haken manifold
(M,Γ ) decomposes it into chambers such that all of them are solid tori. Choose
a simple chamber (Q,∆) of P and a meridional disc D ⊂ Q having the smallest
p-complexity. Then we add to P two parallel copies of D.

The meaning of E′′
4 is that the union of all solid torus chambers for the

resulting faithful polyhedron P ′ ⊂ M is not closed anymore. Therefore, any
connected component of the union admits a section. By definition, E′′

4 pos-
sesses properties C1, C2 of extension moves. Since we apply it not more than
once, it possesses also property C3.

We are ready now to describe the last special extension move. Let P be a
faithful subpolyhedron of an orientable Haken 3-manifold (M,Γ ) and U = M
a connected component of the union of all solid torus chambers of P . As above,
we endow U with the boundary pattern ∆U = ∂U ∩ (Γ ∪ SP ). Let C be a
1-dimensional submanifold of ∂U . We assume that C is in general position
with respect to ∆U , that is, it does not contain vertices of ∆U and intersects
edges transversally. By the length �(C) we mean the number of points in
∆U ∩ C.

Definition 6.5.55. A section F of U is called minimal, if for any other sec-
tion F ′ of U we have �(∂F ) ≤ �(∂F ′).
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Fig. 6.43. Perturbing sections

One should point out that we do not require F, F ′ above be sections of the
same faithful fibration. So any minimal section of U is minimal globally, i.e.,
�(F ) takes the minimal value among all sections of all faithful fibrations.

Extension Move E10: Inserting a Perturbed Minimal Double
Section

Let P be a faithful subpolyhedron of a Haken 3-manifold (M,Γ ) and U a
connected component of the union of all solid torus chambers such that U =
M . Let ∆U = ∂U ∩ (Γ ∪ SP ). Suppose that U admits a section. Then we
insert into (U,∆U ) two parallel copies of a minimal section and perturb them,
see Fig. 6.43.

Our next goal is to prove that E10 satisfies properties C1–C2 of extension
moves (property C3 is evident). We begin with recalling a few well-known facts
about sections of circle bundles. Let W be a circle bundle over a surface S with
nonempty boundary (we do not assume that W is equipped with a boundary
pattern or contains an admissible subpolyhedron). Then the following is true:

(i) W admits a section F . For example, if W is the direct product bundle
S × S1, then one can take F = S × {∗}, where ∗ is a point of S1. If W
is a twisted S1-bundle, then the existence of a section can be proved by
using elementary obstruction theory [45]. Indeed, the obstruction to con-
structing a section vanishes, since ∂S = ∅ and thus the second homology
group of S is trivial. It may be illuminating to consider an example of the
twisted product M2×̃S1 of a Möbius strip and the circle, which is simply
a thick Klein bottle. The annulus Aλ (see Example 6.4.14 and Fig. 6.16)
decomposes M2×̃S1 into two twisted I-bundles over M2. Each of them
has a section, which simultaneously is a section of M2×̃S1.

(ii) Fiber-preserving twists of W along saturated annuli and tori take sections
to sections. Vice versa, any two sections F1, F2 of W are related by fiber-
preserving isotopies and twists along saturated annuli and tori. Moreover,
if ∂F1 = ∂F2, then one can take F1 to F2 by fiber-preserving isotopies
and twists along saturated tori such that ∂W remains fixed.

(iii) A section C of ∂W (i.e., a 1-dimensional submanifold of ∂W intersecting
each fiber of ∂W exactly once) is extendible to a section of W if and only
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if the intersection number λ(C, ∂F ) of C with the boundary of some (and
hence of any) section F of W is zero. Indeed, if λ(C, ∂F ) = 0, then we can
take ∂F to C (and hence F to a section extending C) by fiber-preserving
isotopies and twists along proper saturated annuli. Conversely, suppose
that there is a section F ′ of W such that C = ∂F ′. We can assume that
F and F ′ are transversal. Then λ(∂F ′, ∂F ) = 0, since the endpoints of
any proper arc in F ′ ∩ F have opposite signs.

Remark 6.5.56. One should point out that the intersection number λ(C, ∂F )
used above is defined correctly, although we do not suppose that the circles of
C and ∂F are oriented. We simply orient them such that the orientations be
induced by the same orientation of ∂F0, where F0 is the base surface of the
fibration. The value of λ(C, ∂F ) thus obtained does not depend on the chosen
orientation of ∂F0.

Let us return now to the union U of all solid torus chambers. We consider it
as a 3-manifold with the boundary pattern ∆U and the faithful subpolyhedron
PU .

Definition 6.5.57. Two 1-dimensional submanifolds of ∂U are equivalent,
if they are related by admissible isotopies of (U,∆U ) and twist along clean
circles.

Obviously, equivalent 1-dimensional submanifolds have the same length.

Lemma 6.5.58. For any number k the boundary of (U,∆U ) contains only
finitely many equivalence classes of 1-dimensional submanifolds of length ≤ k.
Representatives of the equivalence classes can be constructed algorithmically.

Proof. To construct a 1-dimensional submanifold C ⊂ (∂U,∆U ) of length
l ≤ k, one should choose l points in ∆U and join them into a collection of
disjoint circles by arcs that intersect ∆U only at their endpoints. The first
choice is finite up to isotopy of PU . Since all patches of (∂U, PU ) are discs and
annuli, the second choice is also finite up to isotopy of (∂U, PU ) and twists
along core circles of the annular patches. ��

Lemma 6.5.59. Let C be a 1-dimensional submanifold of ∂U having one cir-
cle in each component of ∂U . Then it can be extended to a section FC of a
faithful fibration of U if and only if the following conditions hold:

1. If a boundary circle S of an annular patch is contained in ∂U , then C
crosses S at exactly one point.

2. λ(C, ∂F ) = 0, where F is a section of any faithful fibration of U .

Proof. The “only if” part is easy. Indeed, suppose that C is the boundary
of a section FC . Denote by S1, S2, . . . , Sn those boundary circles of annular
patches of PU that are contained in ∆U . Since they are fibers, we have item 1.
Property (iii) above implies that λ(C, ∂F ) = 0 for any section F of the same
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faithful fibration. If F and FC are sections of different faithful fibrations of U ,
the equality λ(C, ∂F ) = 0 remains true, since it is preserved under isotopy.

Let us prove the “if” part. Denote by Aj , 1 ≤ j ≤ n, the annuli in ∂U
into which the circles Si decompose ∂U . Since C crosses each Si at exactly
one point, it intersect each annulus Aj along an arc which is radial, i.e., joins
different boundary circles of Aj . Therefore, one can construct a fibration of
Aj into circles such that the arc C ∩Aj crosses each fiber exactly once. Doing
so for all Aj , we construct a fibration of ∂U into circles and then extend
it to a faithful fibration of U . By construction, C is a section of ∂U . Since
λ(C, ∂F ) = 0, this section can be extended to a section of U , see property
(iii) above. ��

Let (U,∆U ) be a 3-manifold with a faithful subpolyhedron PU and let
F1, F2 be two sections of U . We say that they are equivalent, if there exists a
homeomorphism h: (U,∆U ) → (U,∆U ) such that h(F1) = F2, h(PU ) = PU ,
and the restriction of h onto ∆U is isotopic to the identity.

Proposition 6.5.60. Let P be an admissible subpolyhedron of an orientable
Haken 3-manifold (M,Γ ) such that all its chambers are 3-balls and solid tori
having clean longitudes. Suppose that P is faithful. Then for any connected
component (U,∆U ) of the union of all solid torus chambers the number of
equivalence classes of minimal sections of U is finite. Representatives of the
equivalence classes can be constructed algorithmically.

Proof. First we construct a section F of U . The length �(∂F ) is denoted by k.
Next we apply Lemma 6.5.58 to construct representatives of all equivalence
classes of 1-submanifolds of ∂U having length ≤ k.

Case 1. Suppose ∂U contains no annular patches. Using Lemma 6.5.59,
we select among the representatives constructed above all submanifolds which
can be extended to sections of U . Then we construct those sections and choose
among them sections of the minimal length.

Case 2. Suppose that ∂U contains at least one annular patch A. Then
we select among the representatives submanifolds C1, . . . , Cm which satisfy
condition 1 of Lemma 6.5.59. Twists along a core circle of A helps us to
modify C1, . . . , Cm so that afterwards condition 2 of Lemma 6.5.59 holds.
This is possible, since each such twist change λ(Ci, ∂F ) by ±1. Then we do
the same as in Case 1: we extend the selected submanifolds to sections of U
and choose minimal ones.

In both cases we get a finite list F1, . . . , Fn of sections of U . This list turns
out to consist of representatives of all the minimal sections. To prove that,
consider an arbitrary minimal section F ′ of U . It follows from the construction
of F1, . . . , Fn that ∂F ′ can be transformed into the boundary ∂Fi of one of
them by an admissible isotopy and twists along clean circles in ∂U . Obviously,
twists can appear only in the second case.

Let us fix a clean circle S0 in ∂U and replace each twist of ∂F ′ along
any clean circle S ⊂ (∂U,∆U ) by the twist of F ′ along a saturated annulus
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A ⊂ U with ∂A = S∪S0. We obtain a section F ′′ such that ∂F ′′ is admissibly
isotopic to ∂Fi inside all the patches of ∂U , except possibly the annular patch
A0 containing S0. Property λ(∂Fi, ∂F ′′) = 0 (which is true for any pair of
sections) tells us that ∂F ′′ is isotopic to ∂Fi also inside A0. Therefore, we
can assume that ∂F ′′ = ∂Fi. It remains to conclude that by property (ii)
for sections of fiber bundles (see above), F ′′ can be transformed into Fi by
faithful isotopy and twists along saturated tori. It follows that F ′ is equivalent
to Fi. ��

Corollary 6.5.61. Extension move E10 satisfies properties C1–C3.

Proof. In a more detailed form this corollary can be formulated as follows. Let
P be an admissible subpolyhedron of a Haken 3-manifold (M,Γ ) such that
any chamber is either a 3-ball or a solid torus and every connected component
U of the union of all the solid torus chambers admits a faithful fibration. Then:

1. There exist only finitely many admissible subpolyhedra that can be ob-
tained from P by performing exactly one move E10 (as usual, we consider
the polyhedra up to homeomorphisms (M,Γ ) → (M,Γ )).

2. Representatives of the equivalence classes of such polyhedra can be con-
structed algorithmically.

First, we note that for every U all the annular patches of ∂U are contained
in ∂M . Indeed, if A is an annular patch of ∂U , then A is contained neither in a
ball chamber (since A is an annulus) nor in a solid torus chamber (otherwise U
would be only a part of a connected component of the union of all solid torus
chambers). Therefore, U ∩ Cl(M \ Int U) consists of disc patches. It follows
that any homeomorphism h: (U,∆U ) → (U,∆U ) such that h(PU ) = PU and
the restriction of h onto ∆U is isotopic to the identity can be extended to an
admissible homeomorphism (M,Γ ) → (M,Γ ). Therefore, equivalent sections
of U differ by admissible homeomorphisms (M,Γ ) → (M,Γ ). By Proposi-
tion 6.5.60, there exist only finitely many inequivalent minimal sections. Each
of them can be perturbed only in finitely many ways. So the number of admis-
sible subpolyhedra of (M,Γ ) that can be obtained from P by applying E10 is
finite. Clearly, representatives can be constructed algorithmically. ��

Theorem 6.5.62. Extension moves E1 − E10 (together with auxiliary moves
E′

3, E
′
4, E

′′
4 ) satisfy properties C1–C4.

Proof. Properties C1–C3 follow from Proposition 6.5.2 (C1, C2 for E1–E5),
Corollary 6.5.7 (C3 for E1–E5), Proposition 6.5.21 (for E1–E8), Proposi-
tion 6.5.51 (for E9), and Corollary 6.5.61 (for E10). At each step we get cham-
bers of more and more restricted types: balls, solid tori and I-bundles after
moves E1–E5, balls, solid tori and I-bundles whose union consists of simple
Stallings and quasi-Stallings manifolds after E7, E8, only balls and solid tori
after E9. Auxiliary moves E′

3, E
′
4 transform the union of solid torus chambers

into faithful circle bundles. Finally E10 decomposes the bundles into balls.
This means that we get a simple skeleton of (M,Γ ). ��
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6.5.9 Proof of the Recognition Theorem

One can offer a short informal proof, which consists of two references: to
Theorem 6.5.62 and to the proof of Theorem 6.3.3 modulo the existence of
extension moves, see the end of Sect. 6.3.2. Indeed, the proof of Theorem 6.3.3
tells us that the Recognition Theorem is true provided that there exist exten-
sion moves with properties C1–C4. On the other hand, moves E1–E10 together
with three auxiliary moves E′

3, E
′
4, E

′′
4 possess the required properties by The-

orem 6.5.62.
Nevertheless, for the sake of completeness, we present a formal proof of

Theorem 6.1.6 (which can be considered as the Recognition Theorem for
Haken manifolds with boundary pattern). In the case of the empty boundary
pattern Theorem 6.1.6 is equivalent to Theorem 6.1.1.

Proof of Theorem 6.1.6. Let (M,Γ ) be a Haken 3-manifold with boundary
pattern. Starting with ∂M and arguing inductively, we construct a sequence
{∂M} = P0(M,Γ ),P1(M,Γ ), . . . of finite sets of admissible subpolyhedra. We
think of each polyhedron P ∈ Pi(M,Γ ) as being embedded into its own copy
of (M,Γ ). Since P contains ∂M , it contains Γ . To carry out the inductive
step, we describe a multi-valued version Ẽk of move Ek, 1 ≤ k ≤ 10. Unlike
the move Ek, which to a given polyhedron P assigns only one polyhedron, Ẽk

creates a finite set of polyhedra, each obtained from P by Ek. Clearly, multi-
valued versions Ẽ′

3, Ẽ
′
4, Ẽ

′′
4 , of auxiliary moves E′

3, E
′
4, E

′′
4 are also needed.

Let k be fixed and let P ∈ Pi(M,Γ ). By properties C1, C2 of extension
moves, we can construct a set Ẽk(P ) of admissible subpolyhedra of (M,Γ )
such that

1. Ẽk(P ) is finite
2. For any admissible subpolyhedron P ′ of (M,Γ ) obtained by applying Ek

to P , there exists a homeomorphism (M,Γ ) → (M,Γ ) taking P ′ to a
subpolyhedron from Ẽk(P )

If P has no Ek-extensions, i.e., if Ek is not applicable, then we set Ẽk(P ) =
{P}. Then we define Pi+1(M,Γ ) to be the disjoint union ∪P Ẽk(P ) over all
P ∈ Pi(M,Γ ) of the sets Ẽk(P ), write Pi+1(M,Γ ) = Ẽk(Pi(M,Γ )), and say
that Pi+1(M,Γ ) is obtained from Pi(M,Γ ) by applying Ẽk. See Fig. 6.44.

Fig. 6.44. The multi-valued move Ẽk
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Let us now apply to P0(M,Γ ) multi-valued moves Ẽk, 1 ≤ k ≤ 10, as long
as possible. The order of moves is not very important; the only requirement is
that it should be the same for all manifolds (M,Γ ). To be definite, we accept
the following rule: we apply Ẽk to Pi(M,Γ ) only if Ẽm(Pi(M,Γ )) = Pi(M,Γ )
for all m < k, i.e., if no polyhedron P ∈ Pi(M,Γ ) admits an extension move
Em with m < k. In other words, we must first always try to apply moves with
smaller numbers.

Property C3 of extension moves guarantees that the process stops: after a
finite number of steps we get a finite set PN (M,Γ ) such that Ẽk(PN (M,Γ )) =
PN (M,Γ ) for all k. By property C4, PN (M,Γ ) consists of simple skeletons of
M . Obviously, PN (M,Γ ) can contain many homeomorphic copies (duplicates)
of the same skeleton. Saying “homeomorphic copies,” we take also into account
the pattern Γ , which is contained in ∂M ⊂ P . In other words, we consider
the skeletons as pairs (P, Γ ). Removing aforementioned duplicates, we get a
new set P(M,Γ ).

Let us show that P(M,Γ ) is characteristic, i.e., that P(M1, Γ1),P(M2, Γ2)
consist of the same number of pairwise homeomorphic polyhedra if and only
if (M1, Γ1) and (M2, Γ2) are homeomorphic. By construction, P(M,Γ ) de-
pends only on the homeomorphism type of (M,Γ ). Therefore, (M1, Γ1) =
(M2, Γ2) implies P(M1, Γ1) = P(M2, Γ2). The inverse implication follows from
Lemma 6.3.2.

To prove Theorem 6.1.6, it remains to note that the recognition problem
for 2-dimensional polyhedra with pattern is algorithmically solvable in an
evident manner. ��

This mathematically rigorous proof guarantees that the recognition algo-
rithm for Haken manifolds does exist. However, to facilitate the understanding
how the algorithm works, we describe below once more its main procedures.
We are far from anticipating a practical realization of the algorithm by a com-
puter program, since many its steps are at least exponential. Nevertheless, to
emphasize that theoretically such realization is possible, we employ the ter-
minology from computer programming and call the procedures subprograms.

Subprogram (A): Constructing Fundamental Surfaces

Let (Q,∆) be a 3-manifold with boundary pattern. Then we do the following:

1. Triangulate Q so that ∆ consists of edges.
2. Write down the matching system of normal equations.
3. Construct the set of all fundamental solutions.
4. Select admissible fundamental solutions and realize them by surfaces.

Subprogram (B): Constructing a JSJ-Decomposition

Let (Q,∆) be an irreducible boundary irreducible 3-manifold with boundary
pattern. We construct a JSJ-decomposition of (Q,∆) and determine the types
of its JSJ-chambers as follows.
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1. Using (A), triangulate Q and construct the set of all fundamental surfaces.
2. Test all fundamental tori and clean annuli as well as doubles of all funda-

mental Klein bottles and clean Möbius bands for being essential. Having
found such a surface F , we insert it into (Q,Γ ). See Sect. 6.4.2.

3. Then we cut Q along F and apply to the manifold thus obtained Steps 1,
2 again. We do that as long as possible until the procedure stops. Denote
by F the resulting set of disjoint tori and annuli.

4. Using Theorems 6.4.23 and 6.4.28, we select from F rough tori and annuli.
By Theorem 6.4.31, they form a JSJ-system for (M,Γ ).

5. Using Theorem 6.4.42, we determine the types of the JSJ-chambers and
construct Seifert and I-bundle structures on Seifert and, respectively, I-
bundle JSJ-chambers.

Our next task is to realize by subprograms general multi-valued moves
Ẽ1–Ẽ10. Let P be an admissible subpolyhedron of a Haken 3-manifold (M,Γ )
with boundary pattern and (Qi,∆i), 1 ≤ i ≤ m, the chambers of P . Using
(B), we construct a JSJ-decomposition of each (Qi,∆i) and determine the
types of the JSJ-chambers.

Subprogram (Ẽ1): Inserting Essential Tori

Let (Sij , δij) and (Fij , γij) be all Seifert JSJ-chambers of (Qi,∆i) and their
base surfaces, respectively. Denote by Cijk representatives of all strong equiv-
alence classes of simple closed curves in (Fij , γij). Let Tijk be the correspond-
ing tori in Qi, i.e., the inverse images of Cijk under the fibration projections.
We select among them tori T1, . . . , TN which are essential in the JSJ-chambers
they are contained in. Then we take N copies of P and add each Ts, 1 ≤ s ≤ N,
or two exemplars of Ts to the corresponding copy of P inside the correspond-
ing copy of (M,Γ ). See Sect. 6.4.6 and the description of E1 in Sect. 6.5.1 for
details. The set of polyhedra thus obtained is Ẽ1(P ).

Remark 6.5.63. According to our rule, the construction of the characteristic
set P(M,Γ ) begins with applying Ẽ1 as long as possible. The chambers of all
resulting polyhedra contain no essential tori. A pleasant (although not needed
for the proof) observation is that this property is preserved under all other
extension moves. This means that we will never apply move Ẽ1 again.

Subprogram (Ẽ2): Inserting Longitudinal Annuli not Parallel to
the Boundary

We do the same as above, but this time {Cijk} is the set of proper arcs
in Fij , whose inverse images Aijk are annuli. We select among them annuli
A1, . . . , AN which are not parallel to the boundary of the corresponding JSJ-
chambers. Then we take N copies of P and add each As, 1 ≤ s ≤ N, or two
exemplars of As to the corresponding copy of P inside the corresponding copy
of (M,Γ ).
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Fig. 6.45. F divides the simple manifold W ∪M3 into the non-simple manifold W
and its simple complement M3

Remark 6.5.64. In contrast to the previous move, the property of P to not
admit E2-moves is not preserved under other moves. For example, move E5

can create new nontrivial longitudinal annuli. To show that, consider three
orientable simple 3-manifolds M1,M2,M3 such that ∂M1, ∂M2 are genus two
surfaces, while a connected component F of ∂M3 is a surface of genus three.
We suppose that manifolds are placed in some RN so that M1 ∩M2 = ∂M1 ∩
∂M2 is a nonseparating annulus and W ∩ M3 = ∂W ∪ ∂M3 = F , where
W = M1 ∪A M2. Then the union W ∪M3 is a simple manifold. Nevertheless,
F cuts off from it the manifold W , which admit an essential annulus A. See
Fig. 6.45.

Subprogram (Ẽ3): Inserting Clean Essential Annuli Which are
Parallel to the Boundary

Each Qi contains only finitely many clean incompressible annuli Aij such
that each Aij is parallel rel ∂ to an annulus A′

ij ⊂ ∂Q containing at least
one pattern strip, see the definition of E3 in Sect. 6.5.1 and Fig. 6.25. Let
N be the total number of such annuli in all chambers (Qi,∆i). Then we
take N exemplars of (M,Γ ) and add each Aij to the copy of P inside the
corresponding exemplar of (M,Γ ).

Subprogram (Ẽ4): Inserting p-Minimal Proper Discs

This time we consider simple chambers which, considered as manifolds without
boundary pattern, are boundary reducible. Let (Qi,∆i) be one of them and
let Di ⊂ Qi be a nontrivial boundary compressing disc. By Theorem 4.1.13,
such disc can be constructed algorithmically. Denote by ki its p-complexity.
By Theorem 6.3.17, there exists an algorithmically constructible finite set of
surfaces in (Qi,∆i) containing all two-sided proper incompressible boundary
incompressible connected surfaces of complexity ≤ ki. Since all nontrivial p-
minimal proper discs in Qi are contained in this set, they can be constructed
algorithmically. We take all such discs in all boundary reducible chambers and
add them to P , each inside the corresponding copy of (M,Γ ).
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Subprogram (Ẽ5): Inserting p-Minimal Proper Surfaces

We do the same as above, but consider p-minimal incompressible boundary in-
compressible surfaces with boundary instead of discs and insert them into sim-
ple chambers (Qi,∆i) with irreducible Qi. See the proof of Proposition 6.5.2
for details.

Remark 6.5.65. We emphasize that application of each next move Ẽi re-
quires often application of subprogram (B) to new chambers that appeared
on the previous step as well as to their neighbors. We determine if those cham-
bers are simple, and if not, construct their JSJ-decompositions. We need that
for testing whether they admit some move Em with m < k. So the subpro-
gram (B) is repeatedly used many times. The subprogram (A) is used even
more, since it is needed not only for (B), but also for testing if Qi is bound-
ary reducible and if a given surface F ⊂ Qi is incompressible and boundary
incompressible.

Let us now turn our attention to special extension moves. Let P be an
admissible subpolyhedron of a Haken 3-manifold (M,Γ ) with boundary pat-
tern and (Qi,∆i), 1 ≤ i ≤ m, the chambers of P . According to our rule, we
assume that P admits no moves Ẽi, 1 ≤ i ≤ 5. We wish to subdivide all chains
of I-bundle chambers of P . Since I-bundle structures of these chambers can
be constructed algorithmically, we can assume that each component U of the
union of all I-bundle chambers of P is already presented as a direct, twisted,
Stallings, or quasi-Stallings chain.

Subprogram (Ẽ6): Subdividing Direct and Twisted Chains

This move is easy, since nontrivial strips in U correspond to nontrivial arcs
in the base surface of U . The number of such strips is finite up to strong
equivalence. We insert the strips into U , double them, and perturb in all
possible ways, placing each perturbed double strip into its own copy of (M,Γ ).
See the description of E6 in Sect. 6.5.3.

Subprograms (Ẽ7), (Ẽ8): Inserting Perturbed Pairs of Vertical
Annuli and Tori

These moves are also easy. Just as in the case of moves Ẽ1, Ẽ2, we construct
all essential tori and annuli in U . Then we bring them into vertical position
(see Lemma 6.5.16), take two parallel copies of each such surface, perturb
them in all possible ways, and insert into different copies of M .

Subprogram (Ẽ9): Inserting Minimal Vertical Skeletons into
Simple Stallings and Quasi-Stallings Chains

To perform Ẽ9, we need several other subprograms. First we should be able
to find out if the monodromy map f of a given simple Stallings manifold U
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is periodic. Since the upper bound for the conjectural period is known (see
Proposition 6.5.34), it suffices to test only finitely many powers of f for being
isotopic to the identity. For that we need a separate subprogram. Such sub-
program can be easily written, since one can recognize isotopic curves by elim-
inating all biangles bounded by their union and testing if the resulting curves
are disjoint and parallel. If f happens to be periodic, then M coincides with U
and is a Seifert manifold fibered over S2 with three exceptional fibers. Since a
Seifert structure on M can be constructed algorithmically (Corollary 6.5.35),
recognition of such manifolds is easy.

Suppose that f is not periodic. Then it has no essential periodic curves
and we can apply Hemion’s theorem. Creating a subprogram for construct-
ing all homeomorphisms conjugating f to another given homeomorphism g
seems to be the most difficult part of the whole recognition algorithm. It is
not known yet whether the upper bound N(f, g) of the size of conjugating
homeomorphisms (see Theorem 6.5.40) is exponential, super-exponential, or
even more. Nevertheless, Theorem 6.5.40 says that N(f, g) can be calculated
algorithmically, and this is enough for recognition of simple Stallings mani-
folds.

We must have a subprogram for constructing all minimal vertical skeletons
of U . Such subprogram is described in the proof of Proposition 6.5.26. Adding
to P those minimal vertical skeletons of all Stallings chains, we get the desired
set of values of Ẽ9 for the Stallings case.

The case of simple quasi-Stallings manifolds is similar. Here we need a
subprogram for calculating the stretching factor. Such subprogram can be
easily written on the base of the original algorithm [9].

Subprogram (Ẽ10): Inserting Perturbed Minimal Double Section

This subprogram can be written on the base of Sect. 6.5.8. We construct a
section of the union U of all solid torus chambers and calculate its length
k. Then we construct all 1-dimensional submanifolds of ∂U of length ≤ k
(Lemma 6.5.58), select among them boundaries of sections (Lemma 6.5.59),
and construct representatives of all equivalence classes of minimal sections
(Proposition 6.5.60). It remains to double these sections, perturb them, and
insert into different copies of (M,Γ ).
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3-Manifold Recognizer

In preceding chapters we described a number of important algorithms, which
make heavy use of the Haken method of normal surfaces. As a rule, algorithms
based on that method have exponential complexity and hence are impractical.
In particular, although the recognition problem for Haken manifolds has an
algorithmic solution, there is no chance of it being be realized by a computer
program, at least in the foreseeable future. On the other hand, quite often
experienced topologists recognize 3-manifolds rather quickly. They use other
algorithms which, whether based on rigorous mathematics or intuition, are
much more efficient. However, this gain does not come for free. The price is
that one has to allow an algorithm to be only partial (i.e., not an algorithm
at all in the formal meaning of this term). The problem of finding an efficient
partial algorithm for answering a particular class of geometric questions is in
itself a well-stated mathematical problem. Trying to solve it, we inevitably
discover new structural properties of geometric objects.

In this chapter we describe the theoretical foundations and applications of
the 3-Manifold Recognizer, which is a computer program for working with
3-manifolds written by Tarkaev according to an algorithm elaborated by
Matveev and other members of the Chelyabinsk Topology Group. The pro-
gram passed several extensive tests. It recognized successfully all closed ir-
reducible orientable 3-manifold up to complexity 12 (altogether more than
30,000 manifolds). It recognized also several monster-sized examples prepared
especially for that purpose. See Sects. 7.5 and 7.6 for the detailed survey of
the obtained results. We begin with a description of how one can present
3-manifolds in computer memory and how one can manipulate them.

7.1 Computer Presentation of 3-Manifolds

What we need now is an economic way of presenting 3-manifolds in a form
that computer would understand. The idea consists in replacing 3-manifolds
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Fig. 7.1. Returns inside edges are forbidden

by cell complexes (their special spines) and encoding the spines by strings of
integers.

7.1.1 Cell Complexes

In topology of manifolds the notion of a cell complex is usually considered in
a more general sense than in computer topology (see [65, 67]). So we briefly
recall it, restricting ourselves to the 2-dimensional case. We prefer an inductive
definition:

1. A 0-dimensional cell complex X(0) is a finite collection of points called
vertices.

2. A 1-dimensional cell complex X(1) is obtained from a 0-dimensional com-
plex X(0) by attaching several 1-dimensional cells (i.e., arcs). The end-
points of the arcs are attached to the vertices of X(0), and the arcs must
have no other common points. In other words, a 1-dimensional cell com-
plex is simply a graph (loops and multiple edges are allowed).

3. A 2-dimensional cell complex X(2) is obtained from a 1-dimensional com-
plex X(1) by attaching several 2-dimensional cells. In other words, we take
a collection {D1, . . . , Dn} of disjoint 2-dimensional discs and attach each
disc Di to X(1) via an attaching map ϕi: ∂Di → X(1). It is convenient to
assume that the inverse image ϕ−1(e) of each open 1-cell e of X(1) con-
sists of open connected subarcs of ∂Di such that each of them is mapped
onto e homeomorphically. In other words, we require that the boundary
curve li = ϕi(∂Di) of every 2-cell passes along the edges monotonically,
without returns inside them. For example, the situation shown in Fig. 7.1
is forbidden. X(1) is called the 1-dimensional skeleton of X(2).

In general, the incidence relation between cells does not determine X(2).
It is also necessary to know in which direction the boundary curve l of each
2-cell passes along each edge as well as the cyclic order in which li passes
along different edges. For example, consider 2-cell complexes obtained from a
rectangle by identification of its vertices to one point and by different iden-
tifications of its sides (see Fig. 7.2). Each of them has one vertex, two loop
edges, and one 2-cell attached to each edge exactly twice. Nevertheless, the



7.1 Computer Presentation of 3-Manifolds 329

Fig. 7.2. Two complexes with the same incidence relation

complexes are different, since one of them is a torus while the other is a
2-sphere with three identified points.

On the other hand, information on the graph X(1), the orientations of
edges, and the order in which the boundary curves of the 2-cells of X(2)

pass along the oriented edges is quite sufficient for reconstructing X(2). The
corresponding data can be expressed numerically as follows. First we number
the vertices and the edges, and write down all the edges as a sequence of
pairs (i1, j1), . . . , (im, jm). Here ik, jk are the numbers assigned to the vertices
joined by k-th edge. Simultaneously, we orient each edge (ik, jk) by an arrow
directed from the vertex ik to the vertex jk. Second, for each 2-cell we write
down a string (p1 p2 . . . pn) of nonzero integers (± edges’ numbers) which
show how the boundary curve of the 2-cell passes along edges. The signs of pi

show the directions. For example, the complexes in Fig. 7.2 can be described
by the following data:

1. Edges: (1, 1), (1, 1) (in both cases)
2. 2-Cells: (1 2 − 1 − 2) in the first case and (1 − 1 2 − 2) in the second

Obviously, the total number of vertices, the sequence of pairs, and the
collection of strings determine X(2). It is less obvious that if the link of each
vertex is connected (i.e., if each vertex of X(2) has a cone neighborhood with
a connected base), then X(2) is completely determined by the strings only.
Indeed, to recover X(2), it suffices to do the following:

1. Realize the strings by boundaries of disjoint polygons with oriented and
numbered edges.

2. Identify the edges that have the same numbers via orientation preserving
homeomorphisms.

Then the 2-dimensional cell complex thus obtained is homeomorphic to X(2).
We do not describe any specific realization of the above data in the com-

puter memory. One can use arrays of integers; when an object-oriented pro-
gramming language is used, the concepts of the cell complex, the spine, and
others lend themselves to be used as classes. In that case, this chapter serves
toward developing these classes; indeed, in the upcoming sections we describe



330 7 3-Manifold Recognizer

Fig. 7.3. T 2
0 × S1 and N2 × S1 are not homeomorphic, but have the same simple

spine Θ × S1

the main algorithms we will apply to spines, and this description will help us
to determine which methods should be incorporated into that class, as well
as which operations would be applied to its objects.

7.1.2 3-Manifolds as Thickened Spines

Recall that by Theorem 1.1.17, any 3-manifold is determined by its special
spine. Therefore, numerical representation of cell complexes is sufficient for
presenting 3-manifolds: We simply use representation of their special spines.
However, while manipulating manifolds, it is convenient to have more freedom
by allowing spines which are not special (almost simple would be more than
enough). The problem is that an almost simple and even simple spine does
not determine the manifold.

For example, direct and twisted I-bundles over a closed surface F are not
homeomorphic, but have the same simple spine (a copy of F ). In this ex-
ample one of the manifolds is orientable, while the other is not. An example
of closed orientable 3-manifolds having homeomorphic almost simple spines
can be obtained by considering connected sums M1#M2 and M1#(−M2),
where M1,M2 are oriented. If neither M1 nor M2 admit an orientation revers-
ing homeomorphism, then M1#M2 and M1#(−M2) are distinct, although
they have homeomorphic almost simple spines obtained from simple spines
of M1,M2 by joining them by an arc. Finally, an example of two orientable
3-manifolds with boundary having the same simple spine is shown in Fig. 7.3.
The direct products of a punctured torus T 2

0 and a twice punctured disc N2

by S1 are distinct, but have the same simple spine Θ × S1, where Θ is a
theta-curve.

It is clear now that an almost simple spine P of a 3-manifold M determines
M only if we supply P with additional information. Let us describe an example
of what information that should be, for the case when P is simple. We assume
that P is decomposed into cells, i.e., is presented as a cell complex. Since
P ⊂ M , each 2-cell of P has two sides. It is easy to show that P determines
M , if we know how these sides are glued together in a neighborhood of each
edge of P . This information can be written into a matrix which encodes the
gluing of the sides.
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Fig. 7.4. The behavior of a DS-diagram near ∂P

However, this approach does not seem very natural. We are forced to
decode the information written into the matrix each time we need it, and
then to encode it again. On the other hand, the sides of 2-cells have a very
clear geometric interpretation, which can be used for specifying the thickening.
Let us identify M with a close regular neighborhood of P . There is a natural
retraction M → P such that its restriction p: ∂M → P possesses the following
properties:

1. The inverse image p−1(C) of every open k-dimensional cell C of P consists
of two open 2-cells if k = 2, three or two open arcs if k = 1, and two,
three, or four points if k = 0.

2. The restriction of p onto each of these 2-cells and arcs is a homeomorphism
onto the corresponding 2-cell or edge of P .

The 2-cells, arcs and points in ∂M described above form a cell decompo-
sition of ∂M . So the sides of 2-cells of P are just the 2-cells of ∂M . Under the
name “DS-diagrams” such decompositions had been introduced and investi-
gated by Ikeda and Inoue [50]. An example of a DS-diagram for the hyperbolic
3-manifold Q1 can be found on Fig. 2.22. There, we show a special spine P1

decomposed into two vertices, four edges, and two 2-cells. The induced cell
decomposition of ∂Q1 (which is a torus) consists of eight vertices, 12 edges,
and four 2-cells.

Let us consider now almost simple spines containing no points with dis-
connected links, in particular, no 1-dimensional part. They too determine DS-
diagrams on ∂M . The only difference is that each free (i.e., having valence 1)
edge of P has only one counterpart in ∂M , see Fig. 7.4.

It is evident that P and ∂M , represented by cell complexes as described
above (together with the correspondence relation between cells of ∂M and P
induced by p: ∂M → P ), determine M in a unique way.

The case when P contains a 1-dimensional part is slightly more compli-
cated. The same relates to all almost simple spines having points with discon-
nected links, like the cone over several disjoint segments. The problem is that
we loose the correspondence between cells of ∂M and P . For example, if e is
a principal edge, i.e., an edge of the 1-dimensional part of P , then p−1(e) is a
tube (an annulus) in ∂M .
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There are several ways to work with such spines. First, one can allow
annular or more complicated components of the corresponding DS-diagrams.
However, this is not convenient, since one of the advantages of DS-diagrams
is that they are composed form 2-cells. Another way consists in forgetting
principal edges. This is equivalent to cutting M along proper discs (meridional
discs of the solid tubes that correspond to the edges). This is also not very
convenient, since one would have to store information on which components
of the boundary of the resulting 3-manifold should be joined by tubes. We
prefer the third way: Spines having points with disconnected links are not
considered at all.

7.2 Simplifying Manifolds and Spines

Let M be a 3-manifold and P its almost simple spine without points having
disconnected links. We will simplify M and P by different transformations
(moves), which can be divided into four groups. Moves of the first group reduce
the cell structures of P and ∂M , but preserve their topological types. Moves
of the second and fourth group also preserve M , but change P . The third
group consists of surgeries, which change M and P , but only in a controlled
manner.

For example, one of the surgery moves cuts off N2 × S1 from M , where
N2 is a disc with two holes. Clearly, N2 × S1 and the remaining piece M1 of
M do not determine M . In order to reconstruct M , it suffices to know the
following:

1. Which tori of ∂M1 and ∂(N2 × S1) should be glued together.
2. Coordinate systems on them.
3. Matrices that determine the gluing homeomorphisms.

This observation motivates our further strategy. On the one hand, we reduce
ourselves to considering orientable 3-manifolds whose boundaries consist only
of spheres and tori. Some tori must be equipped with coordinate systems.
On the other hand, we organize such manifolds into special structures just
as chemical atoms are organized into molecules. These structures are called
labeled molecules. The exact definition will be given later; for now we describe
a convenient way for representing coordinate systems on the boundary tori.

7.2.1 Coordinate Systems on Tori

Let T be a torus presented as a cell complex. We suppose that T and all
its edges are oriented. By a coordinate system on T we mean an ordered pair
(µ, λ) of oriented simple closed curves on T with their intersection number ±1.
We are going to use coordinate systems for describing homeomorphisms of tori
by integer matrices. So only the homology classes of µ and λ are essential.
Those can be represented by 1-dimensional chains, i.e., by linear combinations
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Fig. 7.5. Instead of passing along e, we go around the remaining part of ∂C

µ =
∑n

i=1 miei, λ =
∑n

i=1 liei, where ei, 1 ≤ i ≤ n, are the edges of T and
mi, li are integers.

Further on under a presentation of an oriented 3-manifold M by its cellular
spine we mean a set of the following data:

1. An oriented cell complex P whose body is an almost simple spine of M
having no points with disconnected links.

2. An oriented nonempty surface (the boundary of M) which consists of
spheres and tori and is also presented as an oriented cell complex.

3. A cellular map p: ∂M → P such that p preserves orientations of all cells
and the restriction of p onto each open cell is a homeomorphism.

4. Coordinate systems on some boundary tori presented by ordered pairs of
1-dimensional chains.

We assume that the orientation of ∂M agrees with the orientation of M .
Before considering simplification moves, let us describe an auxiliary move E1.
We need it for shifting the coordinate curves aside and clear space for other
moves.

Definition 7.2.1. Let a 3-manifold M with boundary be presented by its cel-
lular spine P . Then an edge e ⊂ ∂M is called clean, if either:

1. e is contained in a spherical component of ∂M .
2. e lies on a torus T ⊂ ∂M such that either T is not endowed with a

coordinate system or the coefficients at e of the coordinate chains µ, λ of
T are 0.

An edge a of P is clean, if so are all its preimages on ∂M .

E1: Cleaning edges. Let µ =
∑n

i=1 miei, λ =
∑n

i=1 liei be coordinate chains
on a torus T ⊂ ∂M . Suppose that ∂C =

∑n
i=1 εiei is the boundary chain of a

2-cell C ⊂ T such that it passes through an edge ek only once, i.e., εk = ±1.
Then we clean ek by replacing µ and λ by the new chains µ′ = µ − mkεk∂C
and λ′ = λ− lkεk∂C, whose coefficients at ek are 0. Obviously, the new chains
determine the same homology classes. A visual interpretation of this move is
shown in Fig. 7.5, where l stands either for µ or for λ.
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Fig. 7.6. Reducing cell decomposition

7.2.2 Reduction of Cell Structures

Now we begin describing the promised moves. Let M be a 3-manifold pre-
sented by its cellular spine P . It can happen that the decomposition of P into
cells is unnecessarily complicated. Below we describe several transformations
that simplify it. The topological types of M and P remain the same.

R1: Removing vertices of valence 2. Suppose that P contains a vertex A
where exactly two different edges a, b meet together. Suppose also that all
boundary curves that pass through A do that without returns. This means
that a boundary curve is allowed to proceed from a to b or from b to a.
Situations when it enters A and goes at once back are forbidden. Then we
remove this vertex and amalgamate a, b into a new edge c.

R2: Fusing 2-cells. Let an edge a of P be a common edge of exactly two
different 2-cells X,Y of P . Suppose that a is clean (if not, we clean it by
applying E1). Then we remove a and amalgamate X,Y to a new 2-cell Z.

R3: Removing needles. Let a be a needle in P , i.e., an edge of valence 2
having a free vertex A. We assume that the needle is not degenerate, i.e., its
other vertex is not free. Then we remove a and A.

All three moves are shown in Fig. 7.6.

Remark 7.2.2. There is only one case when P contains a degenerate needle:
A connected component of P is a 2-sphere decomposed into two vertices, one
edge, and one 2-cell. In this case we do not collapse the needle, since after
doing that we would get a 2-sphere without edges. This would be confusing,
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Fig. 7.7. Doubling an edge

since the attaching map of the unique 2-cell (which should be presented by a
string of integers) would be presented by the empty set.

7.2.3 Collapses

Let M be a 3-manifold presented by its cellular spine P . Suppose that P
contains a free edge a. This means that a lies in the boundary of exactly
one 2-cell C of P . We wish to collapse P onto P1 = P \ (Int a ∪ Int C). At
first glance, this operation is trivial: we simply remove a and C. However, one
should be careful, since P1 thus obtained can contain points with disconnected
links, and we have decided to consider spines without such points. Indeed,
there can appear principal edges as well as vertices with disconnected links.
To avoid that, we replace the collapse by several more elementary moves that
either realize it or reduce to cutting move S1 (see Sect. 4.2.8). The first move
prevents appearance of principal edges.

C1: Doubling an edge. Let a 2-cell C of P have a free edge a. Suppose
that the boundary curve of C passes two or three times through another edge
b such that b is not incident to any other 2-cells of P . Then we insert into
C a new edge b′ which joins the endpoints of b, see Fig. 7.7. The new edge
decomposes C into a biangle and a new 2-cell C ′.

This move improves the cell decomposition of P , since the collapse of C ′

through a does not convert b into a free edge while the collapse of C does so.
The second move collapses a 2-cell through its free edge without creating

vertices with disconnected links. Let C be a 2-cell of P and l an arc in C joining
interior points of two consecutive edges of ∂C. Then l cuts off a triangle from
C. We will call this triangle a vertex wing. Clearly, creating a vertex wing
requires introducing not only a new edge l, but also two new vertices (its
endpoints).

C2: Winged collapsing. Suppose that the boundary curve of a 2-cell C of
P contains a free edge a and that every other edge of ∂C is incident to at
least one 2-cell of P different from C. Let us clean a by move E1 and insert
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Fig. 7.8. Winged collapsing

vertex wings into all corners of C except the ones at the endpoints of a. Then
we collapse the remaining part of C through a, see Fig. 7.8.

This move eliminates C completely, only the wings remain. Thanks to
introducing the wings, the links of the vertices are not changed and thus re-
main connected. Quite often the wings are useless, i.e., the links are still con-
nected without them. The next move allows us to eliminate such superfluous
wings.

C3: Collapsing nonseparating wings. Let P contain an embedded triangle
2-cell W having exactly one free edge a (such 2-cells appear under winged
collapses). Let A be the vertex of W opposite to a. Suppose that the collapse
of W through a does not produce vertices with disconnected links (it suffices
to require that the link of A remains connected). Then we clean a and perform
this collapse.

If a triangle wing cannot be removed without creating disconnected links,
then we convert it into a quadrilateral convenient for performing move S1 (see
Sect. 7.2.4).

C4: Transforming a triangle wing into a quadrilateral with two opposite
free sides. Let P contain an embedded triangle 2-cell W having exactly one
free edge a. Suppose that the collapse of W through a converts the link of
the vertex A opposite to a into a disconnected graph G = G′ ∪ G′′. Then
we replace W by a quadrilateral W ′ having two opposite free edges. In other
words, we stretch up A into a new free edge a′ that joins the cones over G′, G′′.
See Fig. 7.9, where we illustrate C3 and C4.

7.2.4 Surgeries

Let us describe surgery moves. In contrast to reductions and collapses, they
can change the manifold. Each time when this happens, we specify which
information should be stored in order to enable the reconstruction of the
original manifold. Let M be a 3-manifold presented by its cellular spine P .

S1: Cutting 2-cells. Suppose that a 2-cell C of P contains two free edges
a, b such that they cannot be joined by a chain of consecutive free edges of C.
Let us join a middle point of a with a middle point of b by a proper arc l in
C. Then we cut P along l, see Fig. 7.10.
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Fig. 7.9. Working with triangle wings

Fig. 7.10. Cutting a 2-cell

Obviously, the resulting polyhedron P1 is a spine of a 3-manifold M1 ob-
tained by cutting M along a proper disc D ⊂ M such that D ∩ P = l. Let us
investigate the relation between M and M1 (a similar investigation was carried
out in the proof of Corollary 2.4.4). There are three cases. Figure 2.17 illus-
trates them quite adequately, although it was designed for a slightly different
purpose.

Case 1. Suppose D separates M into two components M ′ and M ′′. Then
M = (M ′ ∪ D3)#M ′′, where the notation M ′ ∪ D3 means that we fill up a
boundary sphere of M ′ with a 3-ball. To get a sphere S that separates M into
the connected sum, it suffices to take ∂M ′ and slightly push it inside M .

Case 2. Suppose ∂D separates the component F of ∂M it is contained
in, but D does not separate M . Then M = (M1 ∪ D3)#(S2 × S1). Indeed,
let F ′, F ′′ be the two components of ∂M1 obtained from F . Recall that F is
either a sphere or a torus. Therefore, at least one of the surfaces F ′, F ′′ is a
2-sphere. If we push it inside M , we get a nonseparating sphere S in M . The
existence of such sphere explains the appearance of the summand S2 × S1.
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Case 3. Suppose that ∂D does not separate the component F of ∂M it
is contained in. Then M = (M1 ∪D3)#(D × S1). Evidently, in this case F is
a torus. Compressing it along D and pushing inside M , we get a 2-sphere S
decomposing M into the connected sum.

Let us specify what information is required for reconstructing M from
M1. Filling the spherical boundary components with 3-balls can be done in a
unique way. Since we are working with oriented 3-manifolds, connected sums
are also uniquely determined by the summands. So M can be reconstructed
quite easily in all three cases.

However, if the component T of ∂M containing ∂D is a torus, then one
should take care of the coordinate curves µ, λ on it. In the first two cases
we simply use E1 to shift µ, λ away from the copies ã, b̃ of a, b in ∂M . This
is possible, since ∂D bounds a disc in T . Case 3 is slightly more difficult.
Note that, up to equivalence relation generated by homeomorphisms of the
solid torus V = D × S1 onto itself, any pair (µ, λ) of coordinate curves on
∂V is completely determined by their intersection numbers wµ, wλ with the
meridian m = ∂D × {∗} (pairs wµ, wλ and −wµ,−wλ determine equivalent
coordinate systems). These numbers can be calculated quite easily. Indeed,
denote by ma,mb the coefficients of µ at the edges ã, b̃ ⊂ T , and by la, lb the
corresponding coefficients of λ. Suppose that ã, b̃ are oriented coherently as
shown in Fig. 7.10. Then wµ = ma + mb, wλ = la + lb. Clearly, if ã, b̃ have
opposite orientations, then wµ = ma − mb, wλ = la − lb. These two numbers
should be stored for the future reconstruction of M .

In order to describe the geometric meaning of wµ, wλ, let us present m
in the form m = µpλq. It follows from properties of the intersection number
that p = −wλε, q = wµε, where ε = ±1 is the intersection number of µ and
λ. Therefore, ±(p, q) are the coordinates of m with respect to the coordinate
system µ, λ.

S2: Delicate piercing. Suppose that ∂M consists of at least two compo-
nents, and at least one of them is a sphere. Then we can find a 2-cell C of P
that separates a spherical component S of ∂M from another one. This means
that one of the two copies of C in ∂M lies in S while the other one is contained
in a different component of ∂M . Choose a disc D ⊂ Int C and join it with
a vertex of C by a simple arc. Then the piercing consists in removing Int D
from P , see Fig. 7.11.

Fig. 7.11. Piercing
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Fig. 7.12. Coordinate curves on the boundary torus

We have called this piercing delicate since it induces a very mild modifi-
cation of M . Indeed, the new manifold M1 is homeomorphic to a 3-manifold
obtained from M by filling up a spherical boundary component with a 3-ball.
Clearly, all points of the new spine P1 have connected links (for this reason
we do not remove the whole cell C but only make a small hole).

S3: Rough piercing. We apply this move only in case when ∂M = S2 and
all opportunities for other simplification moves have already been exhausted.
In particular, P must be special. Let C be a 2-component of P . To apply S3,
we do the same as in the case of S2. We choose a disc D ⊂ Int C, join it with
a vertex of C by a simple arc, and remove Int D from P .

Rough piercing transforms M into a new 3-manifold M1 whose boundary
T is a torus. According to our rule, we should introduce coordinate curves
on T . We do that as follows. The first curve µ ⊂ T corresponds to ∂D, the
second curve λ is an arbitrary closed curve on T which crosses µ exactly once.
See Fig. 7.12.

S4: Cutting along a proper annulus with nontrivial boundary compo-
nents. Suppose that a 2-component α of P contains a nontrivial orientation-
preserving simple closed curve l. We assume that l intersects the edges of P
transversally. Let A be a proper annulus in M such that A∩P = l. We assume
that the boundary circles of A are nontrivial in ∂M (see move U1 in Sect. 7.2.5
for the case when at least one of them is trivial). Then we cut P along l and
M along A, see Fig. 7.13 (only a half of A is shown).

Fig. 7.13. Cutting along a circle
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Fig. 7.14. Y = Cl(M \ M1) is an orientable circle bundle over N2 or M2
0

The new spine P1 of the new manifold M1 obtained by the cut contains n
pairs of new vertices and n pairs of new free edges, where n is the number of
intersection points of l with the edges.

Let us investigate what information should be stored to enable the subse-
quent reconstruction of M from M1. Denote by L the connected component
of A∪∂M that contains A. It consists of A and one or two boundary tori. Let
Y be a regular neighborhood of L in M such that P1 is contained in the man-
ifold Cl(M \ Y ), which can be identified with M1. Then P1 is a spine of M1,
M = M1∪Y , and M1∩Y consists of one or two common boundary tori. Since
the boundary circles of A are nontrivial in ∂M , L fibers onto circles. It follows
that Y is a circle bundle over a surface F . It is easy to see that χ(F ) = −1
and ∂F consists of three or two circles. Therefore, F is homeomorphic either
to a twice punctured disc N2 or to a once punctured Möbius band M2

0 . The
second option takes place when the coherently oriented boundary circles of A
lie on the same boundary torus of M and have opposite orientations there.
See Fig. 7.14, where we show 2-dimensional pictures. We may conclude that
Y = N2 × S1 or Y = M2

0 ×̃S1.
A coordinate system on every torus T ⊂ Y ∩M1 can be chosen arbitrarily,

but the most natural choice for λ is an arbitrarily oriented fiber of Y contained
in T . Of course, the fiber should be replaced by a curve composed of edges,
i.e., by a homologous 1-chain. The choice of µ does not really matter; one
can take any curve on T crossing λ once. Nevertheless, in the case when
T ⊂ Y ∩M1 consists of two tori it is convenient to take coherent orientations
for their longitudes and to orient the meridians so as to have equal intersection
numbers with the longitudes.

However, we face the following problem. Since M1 is presented by its spine
P1, the coordinate systems on the tori of ∂M1 can be presented as usual, i.e.,
by 1-chains. In contrast to this, Y is not endowed with a spine. How can we
describe the coordinate curves on ∂Y ? We must do that for the new curves
on the tori Y ∩ M1 as well as for the curves on the tori Y ∩ ∂M , which
determine coordinate systems on the toral components of ∂M . This problem
has a simple solution. Suppose that Y = N2 × S1. Let Ti, 1 ≤ i ≤ 3, be
the boundary tori of Y and (µi, λi) the coordinate curves on them. Choose
canonical coordinate curves (si, fi) on Ti, where si is the oriented boundary
circle of N2 × {∗} contained in Ti and fi is an oriented fiber, 1 ≤ i ≤ 3. Of
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course, the orientations of si and fi must be induced by the same orientations
of N2 and S1, respectively. Then µi, λi can be written in the form µi =
sai

i f bi
i , λi = sci

i fdi
i , i.e., they can be represented by (2 × 2)-matrices Ci =

(
ai ci

bi di

)
with determinants ±1.

If Y = M2
0 ×̃S1, then we do the same. Choose a section F ⊂ Y , i.e., a

surface intersecting each fiber at exactly one point. F is of course homeomor-
phic to M2

0 . The canonical coordinate systems (si, fi) on the boundary tori
Ti, i = 1, 2, of Y are composed of the boundary circles of F and fibers. The
matrices C1, C2 representing the systems have the same meaning: they express
µi, λi through (si, fi).

To be definite, we will always assume that for if Ti ⊂ Y ∩ M1, then Ci

is the unit matrix. This corresponds to the “must natural choice” described
above.

S5: Cutting along a theta-curve. Suppose that M contains a proper punc-
tured torus T0 such that Θ = T0 ∩P is a theta-curve which does not separate
T0, and C = ∂T0 is contained in a spherical component S of ∂M . We supply
T0 with a coordinate system (µ, λ) composed of two distinct circles contained
in Θ. Then we cut M along T0 and P along Θ. The manifold M1 obtained
in this way contains two new toral boundary components T±, each consisting
of a copy of T0 and a disc of S. We supply them with coordinate systems
(µ±, λ±) composed of the copies of µ and λ.

Let us describe a method of finding a torus T0 which satisfies the above
conditions. For simplicity, we consider only the case when the spine P is special
and its cell structure is reduced, i.e., coincides with the intrinsic decomposition
of P into true vertices, triple edges, and 2-components. Suppose that there
exist two edges a, b and three 2-cells C1, C2, C3 of P such that their boundary
curves, being properly oriented, pass through a in the same direction and pass
through b also in the same direction. Let us choose two points A ∈ a, B ∈ b
and join them by three arcs li ⊂ Ci, 1 ≤ i ≤ 3. We get a theta-curve Θ ⊂ P so
that its regular neighborhood N(Θ) in P is Θ × I and thus consists of three
strips joining a subarc of a with a subarc of b. Suppose that each of these
strips approaches the union of the other two from different sides, see Fig. 7.15
to the left. Then the inverse image C = p−1(Θ) under the projection map
p: ∂M → P is a circle in ∂M bounding a proper punctured torus T0 ⊂ M
such that T0∩P = Θ, see Fig. 7.15 to the right. If C is contained in a spherical
component of ∂M , then move S5 is applicable.

S6: Cutting along a theta-curve and adding a torus. This move is a twin of
S5. Suppose M contains a proper punctured torus T0 such that Θ = T0 ∩ P
is a theta-curve, C = ∂T0 is contained in a toral component of ∂M , and C
bounds a disc D ⊂ ∂M . Such punctured tori, if they exist, can be found by
the same method as above. We supply T0 with a coordinate system (µ, λ)
composed of two distinct circles contained in Θ. This time we cannot cut M
along T0, since then we would obtain a manifold with a genus 2 surface in
the boundary. The procedure is slightly more complicated. First, we push the
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Fig. 7.15. A regular neighborhood of Θ in P and the transversal punctured torus

Fig. 7.16. Cutting M along a torus intersecting P at a theta-curve

torus T0 ∪ D inward and get a torus T ⊂ Int M parallel to T0 ∪ D. Next
we cut M along T and supply both boundary tori created in this way by
the coordinate systems inherited from the system (µ, λ) on T0. A spine P1 of
the new manifold M1 obtained in this way can be constructed as follows. We
replace P by a polyhedron P ∪ T−, where T− is a parallel copy of T placed
between T and T0 ∪ D. Finally we cut P along the theta-curve T ∩ P , see
Fig. 7.16.

Remark 7.2.3. Move S5 considered above produces a spine P1 which has free
edges and thus can be collapsed onto a smaller spine. In fact, the combined
move (cutting along a theta-curve and collapsing) is very powerful, since it
entirely eliminates the cells C1, C2, C3 of P that intersect T0.

The situation with the move S6 is more delicate. On the one hand, adding
T− to P creates two new vertices, whose links are even more complicated than
the link of the standard true vertex. On the other hand, cutting and collapsing
destroys three half-cells and all true vertices contained in their boundaries.
Therefore, in order to have a real simplification, we should take care that
the number k of such vertices be at least 3. One can easily show that, since
C1, C2, C3 are distinct, k is always greater than one. Moreover, k = 2 if and
only if T cuts off from M a piece which contains exactly two true vertices of
P . This piece is always homeomorphic either to a thick torus T 2 × S1 or to a
solid torus D2 × S1. In all other cases we have k ≥ 3.
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Fig. 7.17. A disc replacement move

7.2.5 Disc Replacement Moves

We are now going to describe the last portion of transformations. Let M
be an oriented 3-manifold presented by its simple cellular spine P . Any disc
replacement can be considered as 2-cell trading: we attach to P a new 2-cell
D ⊂ M and remove another one. The manifold remains the same. We define
here a general disc replacement move and then describe some specific versions
which quite often simplify P .

Let us identify M with a close regular neighborhood of P . Suppose �̃ is a
trivial circle on ∂M . Denote by � the closed curve p(�̃) ⊂ P , where p: ∂M → P
is the standard projection. We always assume that � is in general position,
i.e., intersects the edges of P and itself transversally. The total number of
points where l crosses SP and itself is called the weight of �. Since �̃ is trivial
in ∂M , there is a disc D in M with the embedded interior (but maybe with
self-intersecting boundary) such that ∂D = � and D has no other common
points with P . Then D cuts off from M \ P a 3-ball B. Let C = D be a
2-component of the simple polyhedron P ′ = P ∪ D which separates B from
another component of M \P ′. Removing from C an open disc, i.e., performing
a delicate piercing (move S2), we get another simple spine P1 of M . We say
that P1 is obtained from P by a disc replacement move, see Fig. 7.17.

Remark 7.2.4. Suppose that the component T ⊂ ∂M containing �̃ is a torus
with a coordinate system (µ, λ). What happens to µ, λ (represented by integer
1-dimensional chains) under the disc replacement move described above? Let
�̃ cross edges e0, e1, . . . , en−1 of T in a cyclic order. Denote by D1 the disc on T
bounded by �̃. Then the cell decomposition of the new torus T ′ corresponding
to T can be constructed in two steps. First, we insert into T new coherently
oriented edges whose union is �̃. Then we replace the union of all 2-cells
contained in D1 by a new 2-cell D′

1, see Fig. 7.18.
Denote by mi the coefficient of µ at ei, 0 ≤ i ≤ n − 1. Then the new

1-dimensional chain µ′ can be described as follows:

1. The coefficients of µ′ at the initial segments e′i of ei are mi, 0 ≤ i ≤ n− 1.
2. For each k the coefficient of µ′ at the edge of �̃ = ∂D′

1 between the
endpoints of e′k−1, e

′
k (indices are taken modulo n) is ck = c0 +

∑k−1
i=0 mi,

where c0 is a fixed constant. For instance, one can take c0 = 0.
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Fig. 7.18. The behavior of µ under the disc replacement move

Since
∑n−1

i=0 mi = 0, the chain µ′ is defined correctly. The second coordi-
nate curve λ′ can be described in the same way.

Disc replacements had been used in Sect. 2.2.1 for converting almost simple
spines into special ones. Note that addition of D creates new true vertices at
self-crossings of � and at points where � crosses the triple edges of P . The
total number of such vertices is called the weight of the move (it is equal to
the weight of �). We are mainly interested in cases when, after collapsing P1,
we get an almost simple polyhedron P2 which is simpler than P (recall that
we measure the complexity of an almost simple polyhedron X by the number
c(X) of its true vertices).

Definition 7.2.5. A disc replacement move is called admissible if the follow-
ing conditions are satisfied:

1. The weight of the move does not exceed 4. It means that the addition of
D creates not more than four new true vertices, i.e., c(P1) − c(P ) ≤ 4.

2. The combined move (attaching D, piercing, and collapsing) does not in-
crease c(P ), i.e., c(P2) ≤ c(P ).

An admissible disc replacement move is called monotone if c(P2) < c(P ),
and horizontal if c(P2) = c(P ).

We describe several admissible disc replacement moves. The first move has
weight 0 and is actually a form of Move 3 from the proof of Theorem 2.2.4.

U1: � has weight 0. Let D be a disc in Int M such that D ∩ P = ∂D is a
nontrivial embedded circle in a 2-component C of P . Then we attach D to P
and perform a delicate piercing. See Fig. 2.6 in Chap. 2.

It is easy to see that this move is admissible. We do not create new true
vertices while some true vertices and triple lines may disappear under collaps-
ing. In any case, C becomes simpler, since its Euler characteristic increases.

We want a simple method of finding a disc D and a circle � satisfying the
required conditions. Here is one. Let C̃ be the inverse image of a 2-component
C of P under the projection p: ∂M → P . Then C̃ is either the union of two



7.2 Simplifying Manifolds and Spines 345

Fig. 7.19. � is of weight 1

copies of C or a 2-sheeted covering of C, depending on whether or not C is
two-sided. In both cases C̃ contains a circle trivial in ∂M and nontrivial in C
if and only if such a circle can be found among boundary components of C̃.
It follows that we need to consider only those circles in C̃ which are parallel
to ∂C̃. In our situation, when ∂M consists of spheres and tori, all boundary
circles of C̃ are nontrivial only if C̃ is either a nontrivial annulus in a toral
component of ∂M or the union of two such annuli. Evidently, C is a Möbius
strip in the first case and an annulus in the second.

Further on we consider only the case when P is special and its cell struc-
ture is reduced, i.e., coincides with the intrinsic decomposition of P into true
vertices, triple edges, and 2-components. Recall that then M possesses the
induced cell decomposition (DS-diagram). We describe all possible types of
curves of weight ≤ 4 which bound discs in the complement of P and thus can
be used for performing disc replacement moves. It turns out that in all these
cases a place for piercing can be chosen so that the resulting move be admissi-
ble, i.e., is either monotone or horizontal. Altogether, there are six nontrivial
moves.

The moves are presented by pictures, each consisting of two parts. The left
part shows a circle �̃ ⊂ ∂M contained in a subdisc of ∂M . The places where
we can potentially puncture P ∪ D are marked by asterisks. The right part
shows a regular neighborhood of � in P . Obviously, the collapse destroys all
true vertices at the boundary of a chosen asterisked region.

U2: � is of weight 1. Denote by C the 2-component of P whose closure
contains � and by a the edge of P intersecting �. Then the boundary curve of
C has a counterpass on �. So the move is monotone, since after puncturing
and collapsing there disappears not only the new true vertex, but also at least
one old vertex. See Fig. 2.9 and 7.19.

U3: � is of weight two. In this case the combined move (U3 plus collaps-
ing) destroys both new vertices, see Fig. 7.20. It is always monotone, except
the situation when � crosses the same edge twice and the move produces a
homeomorphic spine. The inverse of the lune move (see Definition 1.2.9) is a
partial case of U3.

U4: � is of weight 3 and has no self-intersections. The corresponding com-
bined move destroys two new vertices and at least one old vertex. Moreover,
if � is not contained in a regular neighborhood of a true vertex, then one of
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Fig. 7.20. � is an embedded circle of weight 2

Fig. 7.21. � is of weight 3 and has no self-intersections

Fig. 7.22. � is of weight 3 and has one self-intersection

the three asterisked 2-components contains at least two old vertices. So the
move can be made monotone by a right choice of a 2-component for piercing.
See Fig. 7.21.

U5: � is of weight 3 and has one self-intersection.
In this case the removal of the 2-component marked by the large asterisk

destroys all three new true vertices and at least one old true vertex. So this
move is always monotone. See Fig. 7.22.

U6: � is of weight 4 and has no self-intersections.
In this case the boundary curve of at least one of the asterisked 2-

components contains two new and at least two old vertices. Therefore, U6

is at least horizontal. See Fig. 7.23.
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Fig. 7.23. � is an embedded circle of weight 4

Fig. 7.24. � is of weight 4 and has one self-intersection

U7: � is of weight 4 and has one self-intersection.
In this case the removal of at least one of the asterisked components

destroys all four or more true vertices. So this move is either horizontal or
monotone. See Fig. 7.24.

One can easily show that moves U2–U6 exhaust all types of disc replace-
ment moves on special spines such that addition of the new disc creates ≤ 4
true vertices.

7.3 Labeled Molecules

In this section we use a convenient terminology introduced by Fomenko for
investigation of integrable Hamiltonian systems [11,30].

7.3.1 What is a Labeled Molecule?

A labeled molecule is an arbitrary graph G, some of whose vertices and edges
are equipped with labels of different kind, see Fig. 7.25.

There are five types of vertices and two types of edges. Labeled vertices
are called atoms. Let us describe them:

1. Solid torus vertices. They have valence 1 and are shown as fat black dots.
2. Möbius vertices. They are of valence 2 and labeled by white circles.
3. Triple vertices. They have valence 3 and no label.



348 7 3-Manifold Recognizer

Fig. 7.25. Edges labeled by matrices join atoms of different types into a labeled
molecule

4. Exceptional vertices. Each such vertex stands for an oriented 3-manifold
X presented by its simple spine P and a map ∂X → P . The boundary of
X consists of spheres and tori. We assume that there is a fixed bijection
between the boundary tori of X and the edges of G having an endpoint at
the vertex (if an edge has both endpoints at the vertex, then it corresponds
to two boundary tori). The boundary tori which are joined by edges with
vertices of types 1–4 are equipped with coordinate systems.

5. Virtual vertices. They are of valence 1 and not labeled.

These labels have a clear meaning. Vertices of the first three types cor-
respond to standard 3-manifolds and are considered as known atoms. Each
Möbius atom is an oriented S1-bundle M2

0 ×̃S1 over a once punctured Möbius
strip M2

0 . Since M2
0 is homeomorphic to the twice punctured projective plane,

the boundary tori are symmetric in the sense that they are related by an orien-
tation preserving involution of the bundle. We equip the tori with coordinate
systems so that the meridians are the boundary components of a section of the
bundle while the longitudes are fibers. The meridians and longitudes are ori-
ented so that the intersection numbers of the meridian with the corresponding
longitudes are equal. There are eight choices of such orientations. Any two of
them are related by a homeomorphism of M2

0 ×̃S1.
Triple vertices correspond to N2 × S1, where N2 is the twice punctured

disc. We introduce coordinate systems on the boundary tori of N2 × S1 as
follows: The meridians are the boundary circles of an oriented section endowed
with the induced orientations. The longitudes are oriented fibers, and the
intersection numbers of the meridians with the corresponding longitudes are
equal. Any two such triples of coordinate systems differ by a homeomorphism
of N2 × S1.

Clearly, solid torus vertices correspond to solid tori. Each such torus V =
D2 × S1 must be labeled by an ordered pair (p, q) of coprime integers. These
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integers are the coordinates of the meridian m = ∂D×{∗} of V in a coordinate
system (µ, λ) on ∂V . An explicit presentation of (µ, λ) is not needed. We only
require that the matrix label (see below) for the incoming or outgoing edge
must be written with respect to the same system.

Exceptional atoms can correspond to known 3-manifolds, for example, to
hyperbolic 3-manifolds contained in known tables [46] or to complements of
tabulated knots [44, 109]. They can also correspond to 3-manifolds which are
unknown in the sense that we only know their simple spines.

Virtual vertices correspond to empty atoms. They are introduced to indi-
cate the valences of other atoms and stand for their toral boundary compo-
nents.

Let us describe the edges of G. They can be divided into two groups: true
edges with vertices of types 1–4 and virtual edges that have a virtual vertex.
Each true edge e is oriented and labeled by order 2 matrix A with determinant
±1. We can reverse the orientation of e, but then A must be replaced by A−1.
Virtual edges have no labels.

Finally we assume that any labeled molecule is equipped with three global
labels (g1, g2, g3), which are non-negative integers. They tell us how many 3-
balls have been added and how many solid tori and copies of S2 × S1 have
been cut out during the construction the molecule.

It turns out that any labeled molecule G determines a connected 3-
manifold M(G) whose boundary consists of spheres and tori. To reconstruct
M(G), we take into account the meaning of atoms and edge labels. This infor-
mation allows us to compose a 3-manifold M ′(G) as follows. We replace each
vertex v of type 1–4 by a copy of the corresponding manifold. The boundary
tori of this manifold are parameterized by the edges that have an endpoint in
v. If e is a true edge, then the corresponding tori are equipped with coordinate
systems, and e is labeled with a matrix. We glue together the manifolds that
correspond to the endpoints of e via the homeomorphism described by the
matrix. Of course, if G is disconnected, then so is the obtained 3-manifold
M ′(G). In this case we replace it by the connected sum of all its components
(since we are considering only oriented manifolds, the connected sum is well
defined). We denote the connected sum also by M ′(G).

What is the role of the global labels g1, g2, g3? To get M(G), we add to
M ′(G) exactly g1 copies of the standard 3-ball. This is equivalent to punctur-
ing M ′(G) exactly g1 times. Then we add g2 copies of the solid torus and g3

copies of the manifold S2 × S1. In other words,

M(G) = M ′(G)#g1B
3#g2(D2 × S1)#g3(S2 × S1).

7.3.2 Creating a Labeled Molecule

What we have said in Sect. 7.3.1 implies that each labeled molecule determines
a manifold. Now we go in the opposite direction. Let M be an oriented 3-
manifold whose boundary consists of spheres and tori. We describe a procedure
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Fig. 7.26. Action of S1 onto labeled molecules

that assigns to M a labeled molecule G such that M = M(G). Clearly, we
wish the atoms be as simple as possible.

We begin with constructing a special spine P of M and creating a molecule
G0 consisting of only one exceptional atom M with label P . The atom has
only virtual outgoing edges. We then apply to G0 and all labeled molecules
arising in this way all moves described in Sect. 7.2 for as long as possible.

Moves E1 (cleaning edges) and R1–R3 (reductions of cells) do not affect
the molecule. Moves C1–C4 (collapses) as well as disc replacement moves U1–
U7 modify the spines of exceptional vertices. The molecules remain the same.
In contrast with this, surgeries S1–S6 do change the labeled molecule. Let
us describe what happens with the molecule when we apply move Si to an
exceptional atom X of G represented as a thickening of its simple spine P .

Move S1. Recall that this move consists in cutting X and P along a
proper disc D ⊂ X and along the arc l = D∩P , respectively. It either divides
X into two new atoms (Case 1), or replaces (X,P ) by a new pair (X ′, P ′)
and increases the global label g3 by 1 (Case 2), or tears off from X a solid
torus (Case 3). See Fig. 7.26, where we show the first two possibilities and two
versions of the third one. Which version takes place depends on the behavior
of D, see the description of move S1. If ∂D is a nonseparating curve on a torus
T ⊂ ∂X, then we take into account the type of the edge e of G corresponding
to T . If e is virtual, then we remove e and add 1 to g2. If e is true, then we cut
off a solid torus atom V together with e. Then we label V with two integers
(p, q), which are the coordinates of the meridian of V . The matrix label of e
remains unchanged.

Moves S2, S3. Delicate piercing S2 replaces the pair (X,P ) by a new pair
(X ′, P ′) and increases the global label g1 by 1. Rough piercing S3 transforms
an exceptional atom of valence 0 into a new atom joined with a unique solid
torus atom by an edge. It follows from the description of S3 that the labels

for the atom and the edge are (1,0) and the unit matrix E =
(

1 0
0 1

)

, see

Fig. 7.27 to the left.
Move S4. This move consists in cutting X and P along a proper annulus

A ⊂ X and the circle l = A ∩ P , respectively. There appears a new atom X ′
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Fig. 7.27. How S2, S3, S4 transform molecules

Fig. 7.28. How S5, S6 transform molecules

with its simple spine P ′ such that X = X ′ ∪ Y , where Y homeomorphic to
either N2 ×S1 or M2

0 ×̃S1. The corresponding transformation of the molecule
is shown in Fig. 7.27 to the right. There are three cases, depending on the
type of Y and the number of edges that join Y with the remaining part X ′ of
X. The new matrices A′, B′ determine the same gluing maps, but are written
for a standard coordinate system on Y .

Moves S5, S6. These moves consist in cutting X along a torus intersecting
P along a theta-curve Θ. In the case of move S5 the torus is punctured and its
boundary is contained in a spherical component of ∂X. In the case of move S6

the torus is closed and lies in the interior of X. In both cases we cut P along
Θ. The corresponding transformation of the molecule depends on whether or
not Θ splits P into two parts. We replace X either by two new atoms joined
by a new edge, or by one new atom with a new loop, see Fig. 7.28. We label the
new edge by the matrix E, since the coordinate systems on the corresponding
boundary tori are composed of oriented copies of the same circles in Θ.

7.3.3 Assembling Seifert Atoms

Let G be a labeled molecule obtained for a 3-manifold M by the procedure
described above. Note that the atoms of the types M2

0 ×̃S1, N2×S1 are Seifert
manifolds. We will denote them by squares. Now we begin the reverse process
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of assembling them into larger Seifert manifolds. Combined Seifert atoms thus
obtained will also be denoted by squares. We consider each square as a closed
box containing complete information about the corresponding oriented Seifert
manifold X and the coordinate systems on its boundary tori.

Let us show why this information can be reduced to the following data:

1. The base surface F of X.
2. The non-normalized Seifert invariants (p1, q1), . . . , (pm, qm) of m distin-

guished fibers such that all exceptional fibers (i.e., fibers with p = ±1)
are included. We can always add a new fiber (1, 0) and thus assume that
m ≥ 1.

Let F and (pi, qi), 1 ≤ i ≤ m, be given. Then we reconstruct X as follows. Let a
surface F0 be obtained from F by cutting out m disjoint discs Di, 1 ≤ i ≤ m.
Consider an oriented circle bundle X0 over F0, i.e., an orientable direct or
twisted product of F0 and S1. If F0 is orientable, then the product is direct,
otherwise twisted. In both cases it admits a section S ⊂ X0. We endow the
tori of ∂X0 with coordinate curves (µi, λi), where µi are boundary circles of
the section and λi are fibers. Of course, µi, λi must be properly oriented. It
means:

1. The intersection number of µi and λi must be 1.
2. If F is orientable, then the orientations of µi must be induced by an

orientation of F .

Let Ti, 1 ≤ i ≤ n, be the boundary tori of ∂X0 such that Ti = ∂Di × S1

for 1 ≤ i ≤ m and Ti ⊂ ∂F × S1 for m + 1 ≤ i ≤ n. In order to get X, it
remains to attach solid tori Vi, 1 ≤ i ≤ m, so that the meridian of each torus
Vi is mapped to a circle of the type µpi

i λqi

i . We will call the coordinate systems
(µi, λi),m + 1 ≤ i ≤ n, on the remaining tori of ∂X0 (i.e., on the tori of ∂X)
canonical.

The difference between normalized and non-normalized Seifert invariants
of exceptional fibers is that in the first case we know qi only modulo pi. If
the manifold is closed, then the normalized invariants do not determine it; we
must know one additional integer parameter. In the case of non-normalized
parameters each qi can be an arbitrary number coprime to pi, and no addi-
tional parameters are needed.

Remark 7.3.1. Consider an oriented Seifert atom X with the base sur-
face F , distinguished fibers (pi, qi), 1 ≤ i ≤ m, and coordinate curves
(µi, λi),m + 1 ≤ i ≤ n, for ∂X. Let us reverse the orientation of X, the signs
of all qi, and the orientations of all µi. Then X and the new atom X̄ thus
obtained are homeomorphic via an orientation preserving homeomorphism
h:X → X̄ which takes coordinate curves to the corresponding coordinate
curves and preserves their orientations. The same remains true, if we reverse
orientations of all λi. In the first case h is induced by a map F → F which
reverses orientations of all circles of ∂F . In the second case it is induced by
an orientation reversing map S1 → S1.
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Fig. 7.29. Assembling moves W1, W2

Let us describe three assembling moves.
Move W1. Adjoining a solid torus atom. Let a molecule contain a solid

torus atom V with parameters (p, q) joined by an edge e with a Seifert atom X.
If e is directed from X to V , then we reverse it, and replace its matrix label by

the inverse matrix. Suppose that the label of e has the form
(

a b
c d

)

such that

ap + bq = 0. This means that the corresponding attaching map ϕ: ∂V → ∂X
takes the meridian of V to a curve which is not isotopic to a fiber. We remove
V and replace X by the combined Seifert atom X ′ = X∪ϕV . The base surface
F ′ of X ′ is obtained from the base surface F of X by attaching a disc to the
corresponding circle of ∂F . Also, X ′ obtains an additional distinguished fiber
with Seifert invariants (ap + bq, cp + dq).

Move W2.Uniting two Seifert atoms. Suppose that two Seifert atoms

X1,X2 are joined by an edge e with the label of the form
(
−1 0
−c 1

)

. This

means that the gluing map ϕ of the corresponding tori takes oriented longi-
tudes to oriented longitudes. We replace X1,X2 by the combined Seifert atom
X ′ = X1 ∪ϕ X2. The base surface F ′ of X ′ is obtained by the induced gluing
of the base surfaces of X1,X2. The set of distinguished fibers of X ′ consists
of those of X1 and X2 with the same Seifert invariants, and of one additional
regular fiber with parameters (1, c). See Fig. 7.29. We can apply this move
also in the case X1 = X2, when e is a loop.

Move W3. Removing loops. Suppose that a Seifert atom X with the base

surface F has a loop edge e with the label of the form
(

1 0
c −1

)

. We replace

X by a new Seifert atom X ′ whose base surface F ′ is obtained by the induced
gluing of two boundary circles of F . The set of distinguished fibers of X ′

consists of those of X and of one additional fiber with parameters (1, c).
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We describe also two auxiliary moves induced by homeomorphisms which
reverse orientations of all meridians or of all longitudes. The homeomorphisms
are described in Remark 7.3.1.

Moves W ′
4,W

′′
4 . Reversing signs of rows and columns. Let A1, . . . , Ak and

Ak+1, . . . , As be the matrix labels corresponding to all incoming, respectively,
outgoing edges for a Seifert atom X. Then W ′

4 consists in two operations:

1. Reversing the signs of the first rows of A1, . . . , Ak and of the first columns
of Ak+1, . . . , As. For loops we perform both operations.

2. Replacing parameters (pi, qi) of all distinguished fibers of X by (pi,−qi).

Move W ′′
4 is similar: we reverse the signs of the second rows/columns and

the signs of all qi.

7.4 The Algorithm

Let M be a 3-manifold whose boundary is either empty or consists of tori.
Let G be a labeled molecule obtained for M by the disassembling process
described above. Suppose that G contains only atoms of the first three types
(solid tori, M2

0 ×̃S1, N2 × S1), which are Seifert manifolds. Let us begin the
reverse process of applying to G assembling Moves W1–W3. Suppose that at
some step we obtain two different atoms joined by an edge with the label of the

form
(

a 0
c d

)

. We use moves W ′
4,W

′′
4 to get the label of the form

(
−1 0
±c +1

)

.

Then we unite the atoms by W2.
Let us perform moves W1–W3 for as long as possible. Of course, one must

keep in mind the possibility of replacing the manifold (D2; (2, 1), (2,−1)) by
the manifold M2×̃S1 and conversely. Suppose that the process stops at a
connected molecule such that g1 = g2 = g3 = 0. The following cases are
possible:

1. If all the atoms of the molecule turn out to be Seifert, then we obtain a
graph manifold with known parameters. In particular, if the molecule has
only one atom and no loops, then we obtain a Seifert manifold. If there
remains a single atom T 2 × I with one loop edge, then the type of the
manifold (Seifert or Sol) is determined by the monodromy matrix.

2. If the molecule consists of a known hyperbolic atom of type Qi and an
atom D2 ×S1 that are joined by a single edge, then the original manifold
is of the form (Qi)p,q, where the parameters p and q are computed by
using the gluing matrix.

3. The molecule can contain both Seifert and hyperbolic atoms. In this case
we get the JSJ decomposition of M presented in the form of geometric
chambers of M and gluing matrices.

4. The molecule may contain unknown atoms (that is, atoms that are not
yet recognized). In this case the solution of the recognition problem is
conditional, up to recognition of the unknown atoms in the molecule.
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Finally, suppose that the obtained molecule is disconnected or g1, g2, g3

are not zeros. Then M is the connected sum of 3-manifolds that correspond
to the connected components of the molecule plus g1 balls, g2 solid tori, and
g3 copies of S2 × S1.

It turned out that the software program based on the above principles
recognizes manifolds rather well. The program (called 3-Manifold Recognizer)
was written by V. Tarkaev and is available from

< http : //www.topology.kb.csu.ru/ ∼ recognizer >.
Why is the program useful? Suppose that, doing mathematics, mechanics,

physics, you got a 3-manifold and would like to get info on it. Then you can
put it into the Recognizer and get a lot of information, including values of
different invariants, JSJ decomposition, type of geometry, and, in best cases,
its name.

7.5 Tabulation

Theorem 7.5.1. The numbers of closed orientable irreducible 3-manifolds up
to complexity 12 are given in Table 7.1:

As we described in Sect. 2.3, the first three columns of the table had been
obtained by Matveev, Savvateev, and Ovchinnikov (see [80, 91, 102]). Later
Martelli wrote a computer program which tabulates 3-manifolds in two steps.
First, it enumerates some special building blocks (bricks), and only then as-
sembles bricks into 3-manifolds. An interesting relative version of the complex-
ity theory (see [74]) serves as a theoretical background for the program. We
describe it in Sect. 7.7. Using this method, Martelli composed tables of closed
orientable manifolds up to complexity 9 and corrected an error of Ovchinnikov,
who had not noticed that two of the manifolds of complexity 7 were home-
omorphic. Elements of manual recognition were still present. The manifolds
of complexity 10 were tabulated by Martelli, who used his earlier approach,
and (slightly earlier) by Matveev, who recognized manifolds by a computer
program written by Tarkaev. A comparison of intermediate results helped to

Table 7.1. Closed 3-manifolds up to complexity 12

Type\c ≤ 5 6 7 8 9 10 11 12 Total

S3 61 61 117 214 414 798 1,582 3,118 6,365
E3 0 6 0 0 0 0 0 0 6
Nil 0 7 10 14 15 15 15 15 91

H2 × R 0 0 0 2 0 8 4 24 38

S̃L2R 0 0 39 162 513 1,416 3,696 9,324 15,150
Sol 0 0 5 9 23 39 83 149 308
H3 0 0 0 0 4 25 120 459 608

Composite 0 0 4 35 185 777 2,921 10,345 14,267
Total 61 74 175 436 1,154 3,078 8,421 23,434 36,833
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get rid of some deficiencies of both the Martelli method and the Matveev
algorithm. At last, the results coincided for all complexities ≤ 10. The last
step was taken by Matveev and Tarkaev, who tabulated all closed irreducible
orientable 3-manifolds up to complexity 12 by using an improved tabulation
program [86,87].

In Fig. 7.30 the growth of the number of manifolds of diverse types is shown
graphically. Note that the scale for the ordinate axis is logarithmic. Since all

Fig. 7.30. Growth of the number of manifolds in dependence on the growth of their
complexity
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the manifolds possessing geometries S3, E3, Nil, H2 × R, ˜SL2R are Seifert
manifolds, the data on them are presented on a single graph. Both manifolds
S2 × S1 and RP 3#RP 3 possessing the geometry S2 × R are reducible and
thus have no influence on the table and graphs.

A few words on enumeration of nonorientable 3-manifolds. First results
in this direction had been obtained by Casali with the help of the theory of
crystallizations, see Sect. 7.6.2. She found all seven nonorientable 3-manifolds
admitting crystallizations with up to 26 vertices [17], among them five P 2-
irreducible manifolds. Amendola and Martelli [2] proved that there are no
closed nonorientable 3-manifolds of complexity ≤ 5 and only 5-manifolds of
complexity 6 (they coincide with P 2-irreducible manifolds from Casali’s list).
Later Amendola and Martelli showed that there are three closed nonorientable
3-manifolds of complexity 8 [3]. See also [18]. The same result has been proved
independently by Burton [14] using his computer program Regina [13]. More
than that, he classified all minimal singular triangulations with at most seven
and later with eight tetrahedra [16]. Note that Regina turned out to be very
useful for the orientable case too [15].

7.5.1 Comments on the Table

The first conclusion which one can make after looking at the table and
some information about specific manifolds is that the table contains noth-
ing unexpected. Everything is just as is predicted by the theory. Namely,
every manifold is either geometric or composite, that is, can be assem-
bled from geometric manifolds. Moreover, the complexity of the manifolds
increases as they become more complicated in the informal meaning of the
word.

As we have mentioned in Sect. 2.3.3, all closed orientable irreducible 3-
manifolds up through complexity 5 are elliptic. One of the most interesting
elliptic manifolds, the dodecahedron space (the Poincaré homology sphere),
is of complexity 5. All the six flat (that is, having geometry E3) orientable
3-manifolds have complexity 6. The first seven Nil-manifolds are also at this
level.

First manifolds (S2, (2, 1), (2, 1), (3, 1), (3,−4)) and (RP 2, (3, 1), (3,−1))
with the geometry H2×R have complexity 8. Note that all closed 3-manifolds
of complexity ≤ 8 are graph-manifolds (this was theoretically proved in [80]).
The structure of nontrivial graph-manifolds of complexity ≤ 11 is very simple.
There are only three types of manifolds of this kind:

1. Two Seifert manifolds glued together. Each of them is fibered over a disc
and has two or three exceptional fibers.

2. Three Seifert manifolds glued together. One of them is (S1 × I; (α, β)),
the other two are fibered over the disc and have two exceptional fibers.

3. Seifert manifold (S1 × I; (α, β)), with boundary tori glued together.
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Fig. 7.31. Graphic structure of manifolds of complexity ≤ 12

The corresponding reduced molecules are as follows: an isolated vertex, a
circle with single vertex, a segment, and a wedge of two segments (see Fig. 7.31
to the left). At complexity level 12, five new types of molecules arise. Of course,
the four types encountered at complexity levels ≤ 11 are preserved.

The first manifolds that have hyberbolic structure and therefore are not
graph-manifolds occur at complexity level 9. We discuss hyperbolic manifolds
in detail in Sect. 7.5.2. For now, we mention only that all 3-manifolds up
through complexity 11 whose JSJ-decomposition is nontrivial and contains a
hyperbolic chamber have the same structure, namely, they are of the form
(M2×̃S1) ∪ Qi, where i = 1. Other 24-manifolds of the same type appear
at complexity 12 for i = 1, 4, 9, see Proposition 2.4.11 for the description
of Qi.

7.5.2 Hyperbolic Manifolds up to Complexity 12

The complete table of closed hyperbolic manifolds up to complexity 12 con-
tains 608 manifolds. We restrict ourselves to a small part of the table, the
manifolds of complexity 9 and 10, and order these manifolds by their vol-
umes. In Table 7.2 we present the volumes with three digits after the decimal
point.

Theorem 7.5.2. All closed orientable hyperbolic 3-manifolds of complexity
≤ 10 are given in Table 7.2.

We comment on some interesting points which can be noted by studying
both this table and the complete electronic table of hyperbolic manifolds.

(1) It turns out that every closed hyperbolic manifold up through com-
plexity 12 can be presented in the form Qp,q, where Q is a finite volume
hyperbolic manifolds with a cusp that have complexity from 2 to 7. All these
manifolds can be found in the table of manifolds with cusps in SnapPea soft-
ware by Weeks [132]. See also [32] and Proposition 2.4.11 for the description
of all eleven cusped hyperbolic manifolds Qi, 1 ≤ i ≤ 11 of complexities 2 and
3. Most of the closed hyperbolic manifolds have several such representations.
For instance, the Thurston manifold (Q2)5,1 is homeomorphic to the manifolds
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Table 7.2. Closed hyperbolic manifolds of complexity ≤ 10

no. H1 volume no. H1 volume

1 Z5 ⊕ Z5 0.942 16 Z3 ⊕ Z9 1.583
2 Z5 0.981 17 Z30 1.588
3 Z3 ⊕ Z6 1.014 18 Z30 1.588
4 Z5 ⊕ Z5 1.263 19 Z5 1.610
5 Z6 1.284 20 Z7 1.649
6 0 1.398 21 Z15 1.649
7 Z6 1.414 22 Z7 1.757
8 Z10 1.414 23 Z3 ⊕ Z3 1.824
9 Z35 1.423 24 Z2 ⊕ Z12 1.831
10 Z3 1.440 25 Z7 ⊕ Z7 1.885
11 Z5 1.529 26 Z39 1.885
12 Z21 1.543 27 Z40 1.885
13 Z35 1.543 28 Z30 1.910
14 Z40 1.583 29 Z35 1.953
15 Z21 1.583

(Q1)1,2, (Q7)1,1 and (Q11)2,−1. One can reduce the number of needed hyber-
bolic bricks Qi by means of such homeomorphisms. On studying the results of
the computer experiment it turned out that, to represent four closed hyper-
bolic manifolds of complexity 9, it suffices to have two bricks Q1 and Q2. For
complexity 10 one needs all bricks Qi, 1 ≤ i ≤ 11. For complexity 11 we need
12 additional bricks from the cusped census of Weeks, while at the complexity
level 12 Dehn fillings of Qi represent only about a half of all closed hyperbolic
manifolds.

(2) Three manifolds in the table (with numbers 14, 19, 20) are missed in
the Weeks table of closed hyberbolic manifolds which is contained in the
accompanying package of the “SnapPea” software. Moreover, the volume 1.610
of manifold number 19 is also absent in the monotone list of volumes pre-
sented in this package. Among 120 closed hyperbolic manifolds of complex-
ity 11 the number of missed manifolds is 52. The reason is that Weeks did
not pose for himself the problem of listing the closed hyperbolic manifolds
and volumes without gaps. He intentionally neglected some manifolds since
their geometries were too close to the geometry of the corresponding cusped
manifolds. Therefore, it is not surprising that a systematic and exhaustive
search in order of increasing complexity has led to new manifolds and new
volumes.

(3) The volume of the manifold (Q2)7,−9 of complexity 10 is equal to
1.649, whereas the manifold (Q2)7,−8 of complexity 11 has smaller volume
1.463. This disproves the conjecture on correlation between the complexity of
3-manifolds and its hyperbolic volume (within a single series of manifolds of
the form Qpq). See [32].
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Fig. 7.32. Useful links

(4) Tarkaev observed that among 608 closed orientable hyperbolic mani-
folds of complexity ≤ 12 almost all have Heegaard genus 2. To be more precise,
he proved that 600 manifolds have genus 2 and 4 manifolds have genus greater
than 2. Most probably that the remaining 4-manifolds also have genus greater
than 2. The first closed hyperbolic manifold of genus 3 has complexity 11. It
has volume 2.468 and H1 = Z3 ⊕ Z3 ⊕ Z3.

Tarkaev has also shown that the majority (577 from 608) of closed ori-
entable hyperbolic manifolds of complexity ≤ 12 can be obtained by Dehn
surgery of S3 along either the 3-component Chain link or Borromean rings
(see Fig. 7.32).

7.5.3 Why the Table Contains no Duplicates?

Inaccurate results have been obtained (and published) several times in the
course of creating tables of manifolds, namely, some tables have contained
duplicates. For this reason, we carried out an independent check of the table
of manifolds up to complexity 12 by comparing their first homology groups
and the values of the Turaev–Viro invariants (see [126] and Chap. 8) of orders
≤ 14 and, in some cases, of orders 15 and 16. Note that the invariants have
been computed from spines while the manifolds have been tabulated after
recognition, according to their names. So the absence of duplicates can be
considered as an indirect confirmation that the recognition program works
correctly.

The invariants were computed by software developed by Pervova and
Tarkaev. Here the lens spaces were set aside, because the problem which lens
spaces have the same Turaev–Viro invariants has been completely solved [117].
To avoid the problem of the approximate nature of computer calculations, we
used the representations of the invariants by values of polynomials with inte-
ger coefficients at the corresponding roots of unity rather than the numerical
values of the invariants. This joint use of homology and Turaev–Viro invari-
ants turned out to be extremely effective: We succeeded in distinguishing all
manifolds of complexity ≤ 11 excepts for a few pairs. The first pair among
manifolds of complexity 11 is obtained from the Seifert manifold with base
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an annulus and with one exceptional fiber of type (2, 1) by gluing together

its boundary tori along the homeomorphisms given by the matrices
(

1 4
0 −1

)

and
(
−1 −4
0 1

)

. The second pair differs only in the type of the exceptional

fiber, which is given by the parameters (3, 2) and in the matrices, which are

now
(

1 3
0 −1

)

and
(
−1 −3
0 1

)

.

The coincidence of all the Turaev–Viro invariants of these manifolds is
explained by the fact that in both cases one of the matrices differs from the
other by changing the signs of all its elements. This is sufficient for the coin-
cidence of invariants of all orders (and not just of the computed invariants),
see Sect. 8.2.

The manifolds of the all other pairs are Seifert manifolds fibered over
the sphere with three exceptional fibers. Here is an example of such a pair:
the manifolds (S2, (2, 1), (3, 1), (6, 1)) and (S2, (2, 1), (3, 1), (6,−11)) have the
same homology groups and the same values of Turaev–Viro invariants up
through order 14 (including the homologically trivial summands correspond-
ing to integral colorings). We note that the first parameters of the excep-
tional fibers of these manifolds are the same. This observation holds also
for all the other pairs of complexity 11: If the calculated Turaev–Viro in-
variants do not distinguish Seifert manifolds of the indicated type, then
the homology and the first invariants of the exceptional fibers of these
manifolds coincide. However, Seifert manifolds (S2, (2, 1), (7, 3), (13,−5)) and
(S2, (3, 1), (3, 2), (13,−2)) of complexities 10 and 11 also have the same homol-
ogy group Z99 and the same values of Turaev–Viro invariants up through order
14 while manifolds (S2, (2, 1), (5, 2), (5,−8)) and (S2, (2, 1), (5, 1), (5,−7)) of
complexities 7 and 8 having H1 = Z35 can be distinguished by invariants of
order 5.

Let us describe the results of the corresponding computer experiment
for manifolds of complexity 12. Here we found eight new pairs of different
graph manifolds having the same homology groups and the same values of
all Turaev–Viro invariants. First four pairs have the same structure as above.
The only difference is that they are obtained by gluing boundary tori of Seifert
manifolds fibered not over annuli, but over punctured Möbius bands. Each of
the manifolds of the next two pairs is composed from a Seifert manifold fibered
over the disc with two exceptional fibers and the direct product N2 × S1,
where N2 is a disc with two holes. The reason why all Turaev–Viro invari-
ants of paired manifolds coincide, it the same: The matrix labels of the loop
edges of the corresponding reduced molecules differ by reversing signs of all
elements.

We found also two pairs of manifolds with isomorphic homology groups
such that they have the same values of Turaev–Viro invariants up to order 16,
but this fact cannot be explained by reversing signs of gluing matrices. Each
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Table 7.3. Comparison of Turaev–Viro invariants

k 3 4 5 6 7 8 9 10–12

% 9 22 59 4 5 0.2 0.06 <0.005

of those four manifolds is composed from two Seifert manifolds fibered over a
disc with two exceptional fibers. Their types are the following:
(D2, (2, 1), (3,−8))∪ (D2, (2, 1), (3,−2)), (D2, (2, 1), (3, 1))∪ (D2, (2, 1), (3, 7))
for the first pair and
(D2, (2, 1), (3,−5))∪ (D2, (2, 1), (3,−5)), (D2, (2, 1), (3, 4))∪ (D2, (2, 1), (3, 4))
for the second one.

The gluing matrix for all 4-manifolds is
(

1 3
0 −1

)

, but the homology groups

are different: Z123 in the first case and Z321 in the second. We proved that the
manifolds are distinct, by using the fact that the JSJ-decomposition is unique
up to isotopy (Theorem 6.4.31). This is the only case when the manual work
was necessary.

Below we present statistical information about utility of Turaev–Viro in-
variants of various orders. Tarkaev made an interesting experimental observa-
tion: If 3-manifolds of complexity c ≤ 12 can be distinguished by Turaev–Viro
invariants of order 14 or less, then they can be distinguished by invariants of
order ≤ c.

From 108 pairs only 34,8602 cannot be distinguished by homology. Among
them 32% are distinguished only by Turaev–Viro invariants, 8% only by the
ε-invariant, and 60% by both of them. Table 7.3 shows the percent of pairs of
the tabulated manifolds, which have isomorphic homology groups and can be
distinguished by invariants of order k, 3 ≤ k ≤ 12, while all their invariants of
orders < k coincide.

Five pairs of manifolds have been distinguished by invariants of order 10,
ten pairs by invariants of order 11 and only two pairs required invariants of
order 12.

7.6 Other Applications of the 3-Manifold Recognizer

7.6.1 Enumeration of Heegaard Diagrams of Genus 2

Let (F ;u1, u2; v1, v2) be a genus 2 Heegaard diagram of a closed orientable
3-manifold M . Here F is a closed surface which decomposes M into two han-
dlebodies H1,H2 of genus 2, u1, u2 are meridians of H1, and v1, v2 are merid-
ians of H2. We will always assume that all crossing points of the meridians
are transversal and that the diagram is normalized (the latter means that
among the regions into which the meridians split F there are no biangles).
The total number of those crossing points is called the Heegaard complexity
of the diagram.



7.6 Other Applications of the 3-Manifold Recognizer 363

Fig. 7.33. Three types of genus 2 Heegaard diagrams

Fig. 7.34. 6-Tuple (2, 3, 2, 1, 2, 4) represents a Heegaard diagram of Seifert manifold
(S2, (2, 1), (3, 1), (3,−1)). The gluing maps ϕ1, ϕ2 take stars to stars.

Let us cut F along u1, u2. We obtain a sphere with four holes D±
1 ,D±

2

which are conveniently interpreted as distinguished discs on the sphere. The
meridians v1, v2 will then be cut into arcs which join the holes. We agree to
depict k parallel arcs as one arc marked by the number k ≥ 0.

It is well known (see [29, 31, 48]) that the set of all genus 2 Heegaard
diagrams can be decomposed into three types shown in Fig. 7.33.

Since type III diagrams are definitely nonminimal (they admit waves [29])
and type II diagrams appear only episodically, we will mainly consider
diagrams of type I. Each such diagram can be determined by a 6-tuple
(a, b, c, d, e, f), where a, b, c, d are as above and e, f determine the gluing maps
ϕi: ∂D−

i → ∂D+
i , i = 1, 2. In order to give exact descriptions of ϕi, we in-

troduce topological symmetries si: ∂D−
i → ∂D+

i and topological rotations
Ri: ∂D+

i → ∂D+
i by the following rules:

1. si takes ∂D−
i ∩ (v1 ∪v2) to ∂D+

i ∩ (v1 ∪v2) such that the endpoint of each
b-arc (respectively, c-arc) is taken to the other endpoint of the same arc.

2. Ri shifts each point of D+
i ∩ (v1 ∪ v2) to the next point of D+

i ∩ (v1 ∪ v2)
(here we assume that the orientation of ∂D+

i is chosen so that Ri takes
the last endpoint of d-arcs to the first endpoint of a-arcs). See Fig. 7.34.

Now we define ϕ1 and ϕ2 as follows: ϕ1 = Re
1s1 and ϕ2 = Rf

2s2.
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Table 7.4. Manifolds of Heegaard complexity ≤ 32

c E3 H2 × R S3 Nil S̃L2R Sol H3 Composite Total

8 0 0 1 0 0 0 0 0 1
9 0 0 1 0 0 0 0 0 1

10 0 0 4 0 0 0 0 0 4
11 0 0 4 0 0 0 0 0 4
12 2 0 5 0 0 0 0 0 7
13 1 0 9 1 1 0 0 0 12
14 1 0 8 4 4 0 0 0 17
15 0 0 11 2 12 0 0 0 25
16 0 0 6 4 18 1 0 1 30
17 0 0 16 1 26 2 0 1 46
18 0 1 9 5 38 2 2 4 61
19 0 0 14 0 56 2 2 4 78
20 0 1 12 1 63 4 2 9 92
21 0 1 21 1 83 2 10 14 132
22 0 0 12 3 100 2 15 16 148
23 0 1 24 0 136 2 21 19 203
24 0 3 13 6 147 6 29 20 224
25 0 0 29 0 193 2 40 42 306
26 0 1 19 1 211 2 56 46 336
27 0 0 32 1 274 2 79 56 444
28 0 2 19 3 283 6 87 62 462
29 0 1 42 0 363 2 131 95 634
30 0 4 22 4 380 2 162 91 665
31 0 1 39 0 480 2 216 131 869
32 0 1 27 2 485 8 238 135 896
Total 4 17 399 39 3, 353 491, 090 746 5, 697

Let us call a 6-tuple admissible, if it represents a Heegaard diagram. The-
orem 7.6.1 summarizes the results of enumerating admissible 6-tuples up to
Heegaard complexity 32 and recognizing the corresponding 3-manifolds. Of
course, before starting the recognition process, computer tried to simplify
6-tuples by different moves, which modify the tuples, but preserve the corre-
sponding Heegaard decompositions.

Theorem 7.6.1. The numbers of closed orientable irreducible genus 2
3-manifolds of Heegaard complexity ≤ 32 are given in Table 7.4.

In Fig. 7.35 the growth of the number of manifolds of diverse types is shown
graphically. We see that the growth within the given range is polynomial (at
most cubic).

Let us list a few examples of 6-tuples, which represent manifolds possessing
different geometries. For each geometry we show one of the manifolds having
the minimal Heegaard complexity. We also show two additional manifold. The
first manifold is the minimal composite manifold, which can be obtained from
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Fig. 7.35. Growth of the number of genus 2 manifolds

Table 7.5. Examples of genus 2-manifolds represented by 6-tuples

6-Tuple Manifold Homology Geometry

2 1 1 1 2 3 (S2, (2,−1), (2, 1), (2, 1)) Z2 ⊕ Z2 S3

2 2 2 2 1 1 (S2, (2,−1), (4, 1), (4, 1)) Z2 ⊕ Z E3

2 3 2 2 1 1 (S2, (2,−1), (4, 1), (5, 1)) Z2 S̃L2R
2 3 2 2 2 1 (S3, (3, 1), (3, 1), (3, 1))) Z3 ⊕ Z3 Nil

4 2 1 3 8 2 T 2 × I/

(
−2 −1
−1 −1

)

Z5 ⊕ Z Sol

3 5 3 2 3 4 (RP 2, (3, 1), (3,−1)) Z6 ⊕ Z6 H2 × R
4 3 3 2 3 3 (Q1)(2,−3), V = 0.9427 Z5 ⊕ Z5 H3

4 5 1 3 6 1 (S1 × I, (2, 1))/

(
0 1
1 0

)

Z ⊕ Z3 Composite

6 1 1 5 10 11 (S2, (2,−1), (2,−1), (2, 1), (3, 1)) Z2 ⊕ Z2 S̃L2R

(S1 × I, (2, 1)) (the Seifert manifold fibered over an annulus with one excep-
tional fiber (2, 1)) by identification of boundary tori via the given matrix. The
second one is the first genus 2-manifold fibered over S2 with four exceptional
fibers. See Table 7.5

7.6.2 3-Manifolds Represented by Crystallizations
with ≤ 32 Vertices

Let Γ be a regular graph of degree four whose edges are colored with four
colors such that at each vertex edges of all four colors come together. In this
case the pair (Γ, γ), where γ is the coloring, is called a gem. As indicated in the
name (gem=Graph-Encoded Manifold), there is a close relationship between
gems and manifolds.

Let (Γ, γ) be a 3-gem. Select two colors (say a, b) and consider the union
U(a, b) of all edges colored with a and b. Since any vertex of Γ is incident
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to exactly one edge of color a and exactly one edge of color b, U(a, b) is
a collection of disjoint circles. We will call them (a, b)-cycles. Thus for the
black–white–red–green palette we have six types of 2-colored cycles: black–
white, black–red, black–green, white–red, white–green, and red–green.

Definition 7.6.2. A polyhedral realization of a 3-gem (Γ, γ) is a 2-dimensio-
nal polyhedron P = P (Γ, γ) obtained from Γ by attaching 2-dimensional cells
along all 2-colored cycles.

Remark 7.6.3. It is convenient to think of 2-cells of P (Γ, γ) to be 2-colored
too, the colors being inherited from the colors of their boundary cycles.

Theorem 7.6.4. For any 3-gem (Γ, γ) the polyhedral realization P (Γ, γ) is a
special spine of a 3-manifold.

Proof. First we show that P = P (Γ, γ) has singularities of the required types,
see Definition 1.1.8. Since any color participates in three pairs of distinct
colors, each edge e of G belongs to three 2-colored cycles. It follows that e is
a triple line of P . Let v be a vertex of Γ . Since v is incident to four edges
of distinct colors, exactly six 2-colored cycles pass through it such that every
pair of edges belongs to exactly one cycle. It follows that v has a neighborhood
of the required type. We conclude that P is a special polyhedron.

Let us show that P is a spine of a 3-manifold M = M(Γ, γ) with boundary.
By Theorem 1.1.20, it suffices to prove that the boundary curve δ of every
2-cell of P has the trivial normal bundle. Denote by a, b the colors of δ and
choose a third color c from the given palette. Then a trivialization of the
normal bundle of δ is given by the following rule: The normal vector must be
directed inward the (a, c)- or (b, c)-colored cell provided that the initial point
of the vector belongs to an a-colored or a b-colored edge of δ, respectively. ��

The boundary of M = M(Γ, γ) always consists of four nonempty surfaces,
possibly disconnected. If ∂M consists of four spheres, then the pair (Γ, γ) is
called a crystallization of the closed manifold M̄ obtained from M by filling
these spheres by balls. It is known that every closed orientable 3-manifold
admits a crystallization. See the paper [28], which is a good survey of the
crystallization theory, including crystallizations of higher-dimensional mani-
folds. See also [19,24] for relation between the complexity of a 3-manifold M
and the number of vertices of a minimal crystallization of M .

Theorem 7.6.5 summarizes the results of computer classification of closed
orientable irreducible 3-manifolds which can be represented by crystallizations
with at most 32 vertices.

Theorem 7.6.5. The numbers of closed orientable irreducible 3-manifolds
represented by crystallizations with v vertices are given in Table 7.6:

The first row of the table was obtained by Lins [70]. However, Lins iden-
tified 17 of 67 manifolds only hypothetically, by means of their fundamental
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Table 7.6. Manifolds represented by crystallizations with ≤ 32 vertices

v E3 H2 × R S3 Nil S̃L2R Sol H3 Composite Total

v ≤ 26 6 0 44 8 7 2 0 0 67
v = 30 0 0 10 4 13 4 3 7 41
v = 32 0 2 38 4 34 10 5 17 110
Total 6 2 92 16 54 16 8 24 218

groups. The next step was made by Casali. She confirmed the results of Lins
and classified all manifolds admitting crystallizations with ≤ 30 vertices [25].
At last, Tarkaev and Fominykh extended this classification to manifolds rep-
resented by crystallizations with ≤ 32 vertices. The computer program for
enumeration of crystallizations was based on the same principles; the deci-
sive progress was obtained thanks to a more refined algorithm and using
3-Manifold Recognizer. For v ≤ 30 their results coincide with the results of
Casali.

7.6.3 Classification of Crystallizations of Genus 2

Definition 7.6.6. We say that a crystallization (Γ, γ) has genus 2 if the set
of colors can be decomposed into two pairs a, b and c, d such that there are
exactly three cycles colored by a, b and exactly three cycles colored by c, d.

In order to explain the terminology, we note that the union F of all 2-
cells of P glued along the remaining ac-, ad-, bc-, and bd-cycles form a closed
surface of genus 2. This surface decomposes M into two handlebodies. The ab-
and cd-colored cells are meridional discs of these handlebodies and decompose
each of them into two balls. Therefore, it is not surprising that crystallizations
of genus 2 are very close to Heegaard diagrams of the same genus.

Recall that a genus 2 Heegaard diagram is a collection (F ;u1, u2; v1, v2),
where F is a closed orientable surface of genus 2 and u1, u2 and v1, v2 are two
pairs of disjoint simple closed curves in F such that the complement to each
system is connected (and homeomorphic to a 2-sphere with four holes). We
modify that notion by increasing the number of curves in each system.

Definition 7.6.7. A system u1, u2, u3 of simple closed curves in a closed ori-
entable surface F of genus 2 is called admissible if the curves cut F into two
connected parts such that each curve separates one part from the other.

Definition 7.6.8. An extended Heegaard diagram of genus 2 is a collection
(F ;u1, u2, u3; v1, v2, v3), where F is a closed orientable surface of genus 2 and
(u1, u2, u3), (v1, v2, v3) are admissible systems of disjoint simple closed curves
in F .

Remark 7.6.9. Just as classic Heegaard diagrams, any extended Heegaard di-
agram (F ;u1, u2, u3; v1, v2, v3) determines a genus 2 Heegaard decomposition
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H1∪H2 of the corresponding 3-manifold M such that H1,H2 are handlebodies
and ∂H1 = ∂H2 = F . The curves ui, vj , 1 ≤ i, j ≤ 3 bound meridional discs
of H1,H2, which split each handlebody Hk, k = 1, 2 into two balls Bk

1 , Bk
2 .

It follows from Definition 7.6.6 that any genus 2 crystallization of a 3-
manifold M determines a genus 2 extended Heegaard diagram of the same
manifold. Vice versa, any extended Heegaard diagram (F ;u1, u2, u3; v1, v2, v3)
of M = H1 ∪ H2 determines a genus 2 crystallization (Γ, γ) of M as follows.
Let us assign four different colors to the four balls Bk

1 , Bk
2 , k = 1, 2 and take

Γ = ∪iui ∪j vj . Then each edge e of Γ is in the boundary of exactly three
distinct balls of three different colors. We color e with the remaining fourth
color.

It is known that all closed orientable manifolds of genus 2 can be repre-
sented by the so-called symmetric crystallizations that are encoded by numer-
ical 6-tuples of the form (n1, n2, n3, k1, k2, k3), (see [8]). We prefer to describe
them in the language of extended Heegaard diagrams.

Let B be a 3-ball. By a triangular pattern on the sphere ∂B we mean a
family D1,D2,D3 of coherently oriented disjoint discs in ∂B together with a
family L of arcs joining the discs. The arcs must be disjoint, and the ends of
each arc must belong to the boundaries of distinct discs.

We denote by ni the numbers of arcs joining ∂Dj to ∂Dk, where (i, j, k) is
a cyclic permutation of the numbers (1, 2, 3). Then the total number of arcs
in L is equal to n1 + n2 + n3. By a primitive topological rotation of a disc Di

we mean an orientation-preserving homeomorphism Ri:Di → Di taking each
end of an arc in L∩∂Di to an end of the next arc (with respect to the positive
orientation of the circle ∂Di).

We construct a 6-parameter family of extended diagrams of genus 2 as
follows. Let (n1, n2, n3, k1, k2, k3) be an arbitrary 6-tuple of non-negative in-
tegers. We take two balls B and B′ with the same triangular (n1, n2, n3)-
patterns located symmetrically with respect to some plane α, (see Fig. 7.36).

Fig. 7.36. Symmetric triangular (n1, n2, n3)-patterns for n1 = 3, n2 = 5, n3 = 4
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We denote by s the symmetry with respect to this plane. Let us glue
together the balls B and B′ by identifying each disc Di with the symmetric
disc D′

i, 1 ≤ i ≤ 3. The gluing homeomorphism hi:Di → D′
i is given by

rule hi = sRki
i , where s is the symmetry and Rki

i is the kith power of the
corresponding primitive topological rotation. The gluing results in a genus 2
handlebody H with a system λ1∪λ2∪ . . .∪λm of several simple closed curves
on ∂H glued together from arcs in L and L′. We denote by µ1 ∪ µ2 ∪ µ3 the
circles in ∂H obtained by identifying the boundaries of the discs Di and D′

i.

Definition 7.6.10. A numerical 6-tuple (n1, n2, n3, k1, k2, k3) is said to be
regular, if

1. m = 3, that is, we have three curves λ1, λ2, λ3, and they are admissible.
2. After cutting ∂H along λ1 ∪ λ2 ∪ λ3, the arcs into which the meridians

µ1, µ2, µ3 are cut form a triangular pattern.

It follows from this definition that if a 6-tuple (n1, n2, n3, k1, k2, k3) is
regular, then the triple (F ;µ1, µ2, µ3;λ1, λ2, λ3) is a genus 2 extended Hee-
gaard diagram. We denote this diagram and the corresponding 3-manifold by
D(n1, n2, n3, k1, k2, k3) and M(n1, n2, n3, k1, k2, k3), respectively. It is conve-
nient to measure the complexity of the diagram D(n1, n2, n3, k1, k2, k3) by
the total number N = 2(n1 + n2 + n3) of crossing points of the meridians
µi, λj , 1 ≤ i, j ≤ 3.

Theorem 7.6.11. Each genus 2 Heegaard decomposition M = H1 ∪ H2 of a
closed orientable 3-manifold M can be represented by a diagram of the form
D(n1, n2, n3, k1, k2, k3).

Proof. Let us chose admissible meridians µ1, µ2, µ3 for H1 and admissible
meridians λ1, λ2, λ3 for H2 such that they decompose F = ∂H1 = ∂H2 into
regions without biangles. Let us cut F along µ1 ∪ µ2 ∪ µ3. Suppose that the
pattern formed from resulting arcs of the curves in λ1, λ2, λ3 is not triangular.
Then there is an arc � ⊂ λ1 ∪ λ2 ∪ λ3 such that both endpoints of � lie in a
meridian µi and � has no other crossing point with µ1 ∪ µ2 ∪ µ3. Then the
extended diagram (F ;µ1, µ2, µ3;λ1, λ2, λ3) can be simplified by replacing µi

with the connected sum along � of the other two meridians µj , µk. Analogous
move simplifies the diagram in the dual case in which the meridians µ1, µ2, µ3

and λ1, λ2, λ3 exchange their roles. Making these simplifications as long as
possible, we achieve the situation in which both patterns are triangular. ��

We present the result of a computer enumeration of regular 6-tuples and
the recognition of the corresponding manifolds M(n1, n2, n3, k1, k2, k3) with
N = 2(n1 + n2 + n3) ≤ 64.

Theorem 7.6.12. The numbers of closed orientable irreducible 3-manifolds
represented by genus 2 extended Heegaard diagrams with N ≤ 64 crossing
points are given in Table 7.7:
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Table 7.7. Manifolds of Heegaard genus 2

N/2 E3 H2 × R S3 Nil S̃L2R Sol H3 Composite Total

9 0 0 1 0 0 0 0 0 1
10 0 0 0 0 0 0 0 0 0
11 0 0 1 0 0 0 0 0 1
12 0 0 3 0 0 0 0 0 3
13 0 0 1 0 0 0 0 0 1
14 0 0 4 0 0 0 0 0 4
15 1 0 2 0 0 0 0 0 3
16 1 0 5 1 0 0 0 0 7
17 2 0 3 1 0 0 0 0 6
18 0 0 8 4 3 0 0 0 15
19 0 0 1 0 3 0 0 0 4
20 0 0 7 4 10 2 0 0 23
21 0 0 3 0 4 0 1 2 10
22 0 0 8 1 20 2 0 0 31
23 0 1 3 0 4 0 3 4 15
24 0 0 8 3 37 3 1 0 52
25 0 0 4 2 8 0 5 6 25
26 0 0 9 1 47 3 0 6 66
27 0 0 1 0 11 0 10 8 30
28 0 1 8 1 70 2 4 5 91
29 0 0 5 0 15 0 23 11 54
30 0 0 15 1 85 2 8 4 115
31 0 1 4 0 14 0 33 18 70
32 0 1 10 1 120 3 15 13 163
Total 4 4 114 20 451 17 103 77 790

This result is stronger than the Bandieri–Gagliardi–Ricci Theorem [8] on
existence of exactly 26 closed irreducible manifolds of genus 2 which admit a
crystallization with N ≤ 34 vertices. See also [86] for N ≤ 48.

7.6.4 Recognition of Knots and Unknots

Let K be a knot in S3. Then K is trivial if and only if its complementary
space S3 \ Int N(K) is a solid torus. Therefore, the 3-Manifold Recognizer
can be used for recognition of the unknot. The result of the corresponding
computer experiment was positive: The Recognizer successfully recognized
that the diagrams shown in Figs. 7.37–7.39 represent the unknot.



7.7 Two-Step Enumeration of 3-Manifolds 371

Fig. 7.37. The Unknot of Gordon

Fig. 7.38. The Unknot of Dynnikov

Figure 7.40 shows the famous Perko pair of knots, listed as distinct knots
in many knot tables since the nineteenth century, until Kenneth Perko showed
in 1974 that they were in fact the same knot. Less than in a minute Recognizer
showed that their complements are homeomorphic (this implies that the knots
are equivalent [37]).

7.7 Two-Step Enumeration of 3-Manifolds

We present here results of Martelli and Petronio [74] on enumeration of 3-
manifolds. The main idea which enabled them to extend the tabulation of
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Fig. 7.39. The Unknot of Haken

Fig. 7.40. Perko’s knots

closed orientable irreducible 3-manifolds to complexity 9 consists in decom-
posing the enumeration into two steps. First they list the so-called prime
bricks (building blocks of a special type). Next they assemble the bricks into
3-manifolds. A remarkable experimental discovery is that the number of differ-
ent bricks needed for assembling all closed orientable irreducible 3-manifolds
of complexity ≤ 9 is surprisingly small. Some of those bricks can be seen al-
ready at the level of complexity 6, where not only manifolds, but also minimal
special spines had been enumerated [83, 84]. To describe the bricks, we need
a relative version of the complexity theory. This version possess all important
properties of the absolute complexity theory, and the upcoming Sect. 7.7.1 is
devoted to establishing them.

7.7.1 Relative Spines and Relative Complexity

Recall that a graph Γ ⊂ F is a spine of a closed connected surface F if F \ Γ
is an open disc. If F is closed but not connected, then a spine of F is the
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union of spines of its connected components. A spine of F is special, if it can
be presented as a graph such that all its vertices have valence 3. Note that
any special spine of any surface has a nonzero even number of vertices and
that S2 has no special spines.

Definition 7.7.1. Let (M,Γ ) be a 3-manifold with boundary pattern such that
Γ is a spine of ∂M . Then a subpolyhedron P ⊂ M is called a relative spine
of (M,Γ ), if the following holds:

1. P is a spine of M \ Int D3, where D3 is a 3-ball in M
2. P ⊃ ∂M
3. ∂M ∩ Cl(P \ ∂M) ⊂ Γ

A relative spine is almost simple, simple, or special if it is a polyhedron of
the corresponding type.

Obviously, if M is closed, then any relative spine of (M, ∅) is a spine of
M in the sense of Definition 1.1.4. Theorem 7.7.2 can be easily proved by the
same method as Theorem 1.1.13.

Theorem 7.7.2. Let (M,Γ ) be a 3-manifold with boundary pattern such that
Γ is a special spine of ∂M . Then (M,Γ ) has a special relative spine.

Just as in the absolute case, any 3-manifold (M,Γ ) can be reconstructed
from any of its special relative spines in a unique way. Let us show this.

Theorem 7.7.3. Let (Mi, Γi) be 3-manifolds with boundary pattern such that
Γi is a special spine of ∂Mi, i = 1, 2. Suppose that (M1, Γ1) and (M2, Γ2) have
homeomorphic special spines. Then (M1, Γ1) and (M2, Γ2) are homeomorphic
(as pairs).

Proof. Let P1 and P2 be homeomorphic special relative spines of (M1, Γ1)
and (M2, Γ2). By Theorem 1.1.17 and Definition 7.7.1, M1 \ Int D3 is homeo-
morphic to M2 \ Int D3. Since P1, P2 are special and S2 has no special spine,
the boundaries of the removed 3-balls are the only spherical components of
∂Mi \ Int D3. It follows that M1 is homeomorphic to M2. It remains to note
that for i = 1, 2 the pattern Γi coincides with ∂Mi ∩Cl(Pi \ ∂Mi) and thus is
also determined by Pi. ��

We measure the complexity of an almost simple relative spine P of (M,Γ )
by the number cint(P ) of its interior true vertices, which lie strictly inside the
manifold. In other words, counting cint(P ), we forget about true vertices on
∂M . Each such vertex must be a vertex of Γ , so cint(P ) ≤ c(P )−2n, where n
is the number of boundary components of M (each of them contains at least
two vertices of Γ ).

Definition 7.7.4. Let (M,Γ ) be a 3-manifold with boundary pattern such that
Γ is a spine of ∂M . Then the complexity c(M,Γ ) of (M,Γ ) is equal to k if
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Fig. 7.41. Two relative spines B1, B2 of solid tori with different boundary patterns

(M,Γ ) possesses an almost simple relative spine with k interior true vertices
and has no almost simple relative spines with a smaller number of interior
true vertices. In other words, c(M,Γ ) = minP cint(P ), where the minimum is
taken over all almost simple relative spines of (M,Γ ).

If M is closed, then this definition is equivalent to Definition 2.1.4. For
nonclosed manifolds with one boundary component the absolute complexity
c(M) is, as a rule, smaller than c(M,Γ ). Indeed, puncturing the boundary
component and collapsing the rest, we convert any almost simple relative
spine P of (M,Γ ) into an almost simple spine of M . This operation never
creates new interior true vertices and quite often destroys some of them.

Example 7.7.5. Let V be a solid torus with a meridian µ. Consider two
theta-curves Θ1, Θ2 on ∂V . Θ1 consists of µ and an embedded arc that joins
two different points of µ and approaches µ from different sides, Θ2 is obtained
by adding a subarc of µ to an embedded circle that intersects µ twice in the
same direction. Then c(V,Θi) = 0 for both theta-curves. Almost simple spines
Bi of (V,Θi) are shown in Fig. 7.41. B1 consists of ∂M and a meridional disc
bounded by µ. It contains no true vertices at all. B2 is the union of ∂V and a
Möbius triplet inside V . It has two true vertices, but they are on the boundary
of V and thus make no contribution to the complexity.

Definition 7.7.6. An almost simple relative spine P of a 3-manifold (M,Γ )
is called minimal, if it has exactly c(M,Γ ) interior true vertices.

Denote by T the class of all manifolds (M,Γ ) such that each component T
of ∂M is a torus and T ∩ Γ is a nonseparating theta-curve. Closed manifolds
are included.

Theorem 7.7.7. Suppose (M,Γ ) ∈ T is an irreducible 3-manifold such that
(M,Γ ) is neither one of the manifolds (S3, ∅), (RP 3, ∅), (L3,1, ∅), nor the man-
ifold (V,Θ1) described in Example 7.7.5. Then (M,Γ ) has a special relative
spine which is minimal, i.e., has c(M,Γ ) interior true vertices.



7.7 Two-Step Enumeration of 3-Manifolds 375

Proof. Let P be an almost simple relative spine of (M,Γ ) which has c(M,Γ )
interior true vertices and thus is minimal. We can assume that P cannot be
collapsed onto a smaller subpolyhedron. Let us prove that then P is special.
If M is closed, then the conclusion follows from Theorem 2.2.4. Suppose that
∂M = ∅. If P has a 1-dimensional part or a noncell 2-component inside M ,
then one can simplify P by the same tricks as in the proof of Theorem 2.2.4.
This contradicts the minimality of P .

Suppose that P has a 2-component α which is not a cell and is contained
in ∂M . Since P is a spine of M \ Int D3, then M is boundary reducible and
hence is a solid torus. It follows that ∂M ∩ Cl(P \ ∂M) is a circle in Θ and
thus Cl(P \∂M) is a meridional disc. Therefore, (M,Γ ) = (V,Θ1) and we get
a contradiction again. ��

Let us establish further properties of the relative complexity c(M,Γ ). The
additivity property c(M1#M2, Γ1 ∪ Γ2) = c(M1, Γ1) + c(M1, Γ1) with respect
to connected sums is true (since cutting M along a normal sphere creates
no new interior vertices, a similar proof as for the absolute case works). For
manifolds from the class T boundary connected sums are not defined, since we
can get boundary components of genus ≥ 2. To prove the finiteness property
we need the following lemma.

Lemma 7.7.8. Let P be a special relative spine of an irreducible 3-manifold
(M,Γ ) ∈ T with nonempty boundary. Suppose that an edge e of P is not
contained in ∂M , but joins two true vertices v1, v2 ⊂ ∂M of P . Then either
∂M is a torus or M is T 2 × I.

Proof. Case 1. Suppose that v1, v2 lie on the same boundary torus. Then
they are vertices of the same theta-curve Θ ⊂ ∂M . Note that G = Θ ∪ e is a
subgraph of the singular graph SP of P , G contains exactly two true vertices
v1, v2 of P , and these vertices have valence 4 in G. It follows that G = SP .
We can conclude that SP contains only one theta-curve and that ∂M is a
torus.

Case 2. Suppose that v1, v2 lie in different boundary tori T1, T2. Denote
by C a unique 2-component of P contained in T1. Since P is a spine of once
punctured M , then P \C is a spine of M . Let us collapse P \C for as long as
possible. Since the collapse preserves T2 and destroys all 2-cells adjacent to e,
we get an almost simple spine P ′ of M so that:

(i) P ′ contains T2

(ii) P ′ has no triple points on T2

Suppose that P ′ contains a 1-dimensional part. Then there exists a proper
disc D ⊂ M intersecting ∂M transversally at exactly one point. Since M is
irreducible and not a solid torus, D cuts out a 3-ball from M . This means
that cutting P ′ at the point D ∩ P ′ and collapsing, we get another spine
of M which contains T2 and has a smaller 1-dimensional part. Doing so for
as long as possible, we get a spine of M which is simple and still possesses
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Fig. 7.42. Three special relative spines presented by regular neighborhoods of their
interior singular graphs

properties (i), (ii) above. It follows that this spine coincides with T2 and hence
M = T 2 × I. ��

Proposition 7.7.9. For any integer k, the class T contains only a finite
number of distinct compact irreducible 3-manifolds (M,Γ ) of relative com-
plexity k.

Proof. Let (M,Γ ) be an irreducible 3-manifold of complexity k having n > 0
boundary tori. Suppose (M,Γ ) is other than the exceptional manifold (V,Θ1)
considered in Example 7.7.5. Then (M,Γ ) has a special relative spine P with
k + 2n true vertices: k vertices inside M and 2n vertices on ∂M (they corre-
spond to the vertices of Γ ). We claim that n ≤ 2k + 2. The conclusion of the
proposition follows from the claim, since then M has a relative special spine
with ≤ 5k + 4 true vertices, and we can apply Theorem 2.2.5.

Let us prove the claim. Suppose that P has an edge that joins two true
vertices v1, v2 ⊂ ∂M of P and is not contained in ∂M . Then the claim follows
from Lemma 7.7.8. If P has no such edges, then any interior edge of P with
an endpoint on ∂M has the other endpoint at an interior true vertex of P .
Since any boundary torus of M contains two true vertices and every interior
vertex has valence 4, we get n ≤ 2k. ��

For a graphical representation of spines in the absolute case, we used regu-
lar neighborhoods of singular graphs. The same method works for the relative
case. Let P be a special relative spine of a 3-manifold (M,Γ ) such that the
boundary curve of every 2-component α ⊂ ∂M of P meets ∂M not more
than once. Denote by SPint its interior singular graph which consists of all
true vertices and triples edges of P not contained in ∂M . Then P can be pre-
sented by a regular neighborhood N = N(SPint) of SPint in Cl(P \ ∂M). See
Fig. 7.42, where we show a few relative spines. Free ends of N (each of them is
marked by a fat triode, a wedge of three segments) correspond to the vertices
of Γ . It is very easy to determine, which triodes lie in the same theta-curve:
they must be joined by three boundary arcs.
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Fig. 7.43. Reconstruction of B2

To reconstruct P , it suffices to do the following:

1. Locate all closed curves C1, . . . , Cm and all theta-curves Θ1, . . . , Θn in
∂N .

2. Attach m disjoint discs D1, . . . , Dm to N such that ∂Di = Ci, 1 ≤ i ≤ m.
3. Attach n other disjoint discs D′

1, . . . , D
′
n to N such that the boundary

curve of each D′
i is contained in Θi and D′

i ∪ Θi is a torus.

Suppose now that the above condition on P does not hold, i.e., that the
boundary curves of some interior 2-components of P meet ∂M more than once.
Then N(SPint) does not determine P anymore, since we lack information on
which pairs of endpoints of the fat triodes belong to the same edges of Γ .
The endpoints are joined by arcs of ∂N . Some of these arcs show us right
connections and thus can be considered as edges of Γ . In all other cases we
enumerate the remaining edges of Γ and mark the remaining endpoints of
the triodes by the corresponding numbers. Then the marked neighborhood
N does determine P . Indeed, to get P , we reconstruct Γ as follows. First,
we extend the union of triodes by adding those arcs of ∂N which show right
connections and attaching new arcs joining endpoints with the same numbers.
Next, we attach to N ∪ Γ disjoint discs D1, . . . , Dm so that their boundaries
run along ∂N∪Γ without passing through the vertices of Γ . Finally, we attach
n disjoint discs D′

1, . . . , D
′
n to recover the boundary tori. See Fig. 7.43, where

we illustrate the reconstruction process for the simplest relative special spine
B2 described in Example 7.7.5.

Graphical presentations of pines B0, B3, B4 are shown in Fig. 7.44. First
two spines B0 and B3 are special relative spines of M0 = M3 = T 2×I, the last
one is a special relative spine of M4 = N2 × S1. These spines are important
for the sequel, so we also present them by showing the fragments Cl(Bi \∂Mi)
of Bi, i = 0, 3, 4. To get actual spines, we have to identify the arrows on the
top with the corresponding arrows on the bottom, and add the boundary tori.

7.7.2 Assembling

Let (Mi, Γi), i = 1, 2, be two manifolds from T with nonempty bound-
aries and relative spines Pi. Choose two tori T1 ⊂ ∂M1, T2 ⊂ ∂M2 and a
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Fig. 7.44. Two relative spines of T 2 × I and the simplest relative spine of N2 ×S1,
where T 2 is a torus and N2 is a twice punctured disc

homeomorphism ϕ:T1 → T2 taking theta-curve Θ1 = Γ1 ∩ T1 to theta-curve
Θ2 = Γ2 ∩ T2. We can then construct a new manifold (W,∆) ⊂ T , where
W = M1 ∪ϕ M2, and ∆ = (Γ1 \ Θ1) ∪ (Γ2 \ Θ2). Its relative spine P can
be obtained by gluing P1 and P2 along ϕ and removing the 2-component of
P1 ∪ϕ P2 which is obtained by identifying T1 \ Θ1 with T2 \ Θ2.

Definition 7.7.10. We say that the manifold (W,∆) ∈ T described above is
obtained by assembling of (M1, Γ1) and (M2, Γ2). The same terminology
is used for spines: P is obtained by assembling of P1 and P2. The assem-
bling is nontrivial, if the spines are different from B0.

It follows from the definition that two relative manifolds as well as two
relative spines can be assembled in a finite number of inequivalent ways. We
point out that the relative complexity of spines is additive with respect to
assembling: if P is obtained by assembling of P1 and P2, then c(P,∆) =
c(P1, Γ1) + c(P2, Γ2).

It is possible to assemble not only one relative manifold with another, but
also a manifold with itself. Let (M,Γ ) be a manifold from T with at least two
boundary tori and a special relative spine P . Choose two tori T1, T2 ⊂ ∂M
and a homeomorphism ϕ:T1 → T2 such that Θ2 and the image Θ′

1 = ϕ(Θ1)
of Θ1 intersect each other transversally in two points. This is the minimal
number of intersection points of two transversal nonseparating theta-curves.
We can then construct a new manifold (W,∆) ⊂ T with the boundary pattern
∆ = Γ \ (Θ1 ∪Θ2) by identifying T1 with T2 via ϕ. Its relative spine Q is also
obtained from P by identifying T1 with T2 via ϕ. In contrast to assembling
of two relative manifolds, we do not remove the 2-component obtained by
identifying T1 \ Θ1 with T2 \ Θ2. It is easy to see that Q has six new interior
vertices: four of them correspond to the vertices of Θ′

1, Θ2, and two vertices
are the intersection points of Θ′

1 with Θ2. It follows that c(Q,∆) = c(P, Γ )+6.
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Fig. 7.45. Two relative spines of T 2 × I/(−E) = K2×̃I which can be assembled,
respectively, self-assembled from simpler special relative spines

As mentioned above, only a finite number of self-assemblings of a given
manifold (M,Γ ) ∈ T (or of its special relative spine) are possible. In the sequel
we will refer to a combination of assemblings and self-assemblings simply as
an assembling.

Example 7.7.11. Looking at the special spine P of the Stallings manifold

M with fiber T 2 and the monodromy matrix −E =
(
−1 0
0 −1

)

(Fig. 7.45),

one can easily see that it is assembled from two copies B′, B′′ of a special
relative spine B of the thick Klein bottle K2×̃I. It is not surprising, since M
is homeomorphic to the double of K2×̃I. Another special spine Q of M is
self-assembled from the relative special spine B0 of T 2 × I. This is also not
surprising, since M is a Stallings manifold with fiber T 2.

Definition 7.7.12. A special relative spine P of a manifold (M,Γ ) ∈ T is
called prime, if it cannot be obtained by self-assembling or nontrivial assem-
bling of some other spines of manifolds from T .

For example, blocks B0–B4 are prime while the ones shown in Fig. 7.42
are not.

Theorem 7.7.13. Any special relative spine can be assembled from prime
special relative spines.
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Proof. Let P be a given spine of a 3-manifold (M,Γ ) ∈ T . Denote by σ(P )
the first Betti number of the interior singular graph SPint of P . Suppose
that P can be assembled from two special relative spines P ′, P ′′ of manifolds
(M ′, Γ ′), (M ′′, Γ ′′). Then σ(P ′) + σ(P ′′) = σ(P )− 1 < σ(P ). If P is obtained
by self-assembling of a special relative spine P ′, then the inequality σ(P ′) <
σ(P ) is obvious.

Let us disassemble P and all components arising in this way for as long as
possible. Since each time we decrease the total Betti number of the interior
singular graphs of the components, the process is finite and we stop. By con-
struction, all resulting spines are prime. ��

7.7.3 Modified Enumeration of Manifolds and Spines

Looking at the list of all minimal special spines of closed irreducible orientable
3-manifolds up to complexity 6 (Sect. A.2), we see that almost all of them are
not prime. For example, all spines of lens spaces can be assembled out of two
copies of B2 and several copies of B3. All spines modeled on triangles with
tails can be assembled out of B4 and several copies of B2, B3. So the idea first
to list prime spines up to a given complexity and only then assemble out of
them other spines looks promising.

But how can we get a list of prime spines? At first glance, this problem
seems to be even more difficult than enumeration of all spines: We should
not only enumerate spines, but also select among them prime ones. Clearly,
we are only interested in minimal spines. The answer is simple. There are
several powerful criteria which allow us to recognize that a relative spine P
of a 3-manifold (M,Γ ) is either not minimal or not prime, and reject it at a
very early step of its construction. We present two of them (see [74] for other
criteria).

Proposition 7.7.14. Let P be a special relative spine of (M,Γ ) ∈ T . Suppose
that the boundary curve l of a 2-cell C of P passes through an interior edge e
of P twice. Then P is either not minimal or not prime (or neither minimal
nor prime).

Proof. Suppose that l passes along e in two different directions, i.e., has a
counterpass. Then P is not minimal, since we can simplify it by move U2. Let
l pass along e in only one direction. Then there is a circle m ⊂ P that crosses
SP transversally at a point of e. A regular neighborhood N(m) of m in P
is a Möbius triplet consisting of a Möbius strip and a disc, see Fig. 7.41, to
the right. This means that P can be assembled from B2 and another special
relative spine. ��

Proposition 7.7.15. Let P be a special relative spine of (M,Γ ) ∈ T . Suppose
that a pair e1, e2 of interior edges of SP disconnects SP . Then P is either
not minimal or not prime.
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Proof. Denote by C1, C2, C3 the 2-cells of P adjacent to e1. By Proposi-
tion 7.7.14, we can assume that they are distinct. Since e1, e2 disconnect SP ,
the cells C1, C2, C3 are also adjacent to e2. Choose points X1 ∈ e1,X2 ∈ e2

and join them by three arcs so that their union Θ (which is a theta-curve) is
contained in the union of all 3-cells C1, C2, C3, but not contained in the union
of any two of them. One can easily construct a proper surface F ⊂ M such
that ∂F is contained in the spherical component of M \ Int D3, F ∩ P = Θ,
and Θ is a spine of F .

Since M is orientable and F decomposes it, F is also orientable. Thus we
have two possibilities: F is a twice punctured disc and F is a punctured torus.
In the first case P is not minimal, since one can perform simplifying move U3

(see Sect. 7.2.5). In the second case we fill up ∂F by a disc D ⊂ D3 ⊂ M and
get a torus T that decomposes (M,Γ ) into two relative manifolds (M ′, Γ ′)
and (M ′′, Γ ′′). Their special relative spines P ′, P ′′ can be obtained by cutting
P along Θ and adding two copies of T . By construction, P is assembled from
P ′, P ′′. Therefore, it is not prime. ��

These criteria significantly facilitate enumeration of prime minimal relative
spines.

Let k be an integer. Suppose that we have constructed the set Sk of all
prime minimal relative spines of complexity ≤ k. Assembling them in all
possible ways, we get a list of special spines containing all minimal special
spines of closed irreducible orientable 3-manifolds of complexity ≤ k. This two-
step procedure is much faster than a straightforward enumeration of spines.

Moreover, if we are only interested in 3-manifolds, then we can replace
Sk by a much smaller set S ′

k. Indeed, any 3-manifold (M,Γ ) can have many
different minimal relative spines. If all these spines are prime, then we include
into S ′

k only one of them. If (M,Γ ) has at least one nonprime minimal relative
spine, then no spine of (M,Γ ) is included into S ′

k. Replacing spines from S ′
k by

corresponding relative manifolds (called prime bricks) and assembling them
appropriately, we get a finite list containing all closed irreducible orientable
3-manifolds up to complexity k.

This idea was invented and carried out by Martelli and Petronio for k = 9,
see [74]. Altogether there are 28 prime bricks of complexity ≤ 9. Exactly 9 of
them are nonclosed. Assembling the bricks to closed 3-manifolds and casting
off reducible manifolds and duplicates, Martelli and Petronio proved that there
exist exactly 436 closed irreducible orientable 3-manifolds of complexity 8 and
1,156 such manifolds of complexity 9. Turaev–Viro invariants were used for
proving that all these manifolds are distinct. See Sect. 2.3.1 and [74] for details.
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The Turaev–Viro Invariants

8.1 The Turaev–Viro Invariants

These invariants were first described by Turaev and Viro [126]. They possess
two important properties. First, just like homology groups, they are easy
to calculate. Only the limitations of the computer at hand may cause some
difficulties. Second, they are very powerful, especially if used together with
the first homology group.

8.1.1 The Construction

We divide the construction of the Turaev–Viro invariants into six steps.
Step 1. Fix an integer N ≥ 1.
Step 2. Consider the set C = {0, 1, . . . , N − 1} of integers. We will think

of them as representing colors. To each integer i = 0, 1, . . . , N − 1 assign a
complex number wi called the weight of i.

Step 3. Let E be a butterfly, see Fig. 1.4. Recall that it has six wings.
We will color the wings by colors from the palette C in order to get different
colored butterflies. The butterfly admits exactly N6 different colorings.

Definition 8.1.1. Two colored butterflies are called equivalent if there exists
a color preserving homeomorphism between them.

The number of different colored butterflies up to equivalence is significantly
less than N6. It is because the butterfly is very symmetric: it inherits all the
24 symmetries of the regular tetrahedron, see Fig. 1.5. It is convenient also to
present a colored butterfly by coloring the edges of a regular tetrahedron ∆.
The body of the butterfly is the cone over the vertices of ∆ while its wings
are the cones over corresponding edges and have the same colors.

Step 4. To each colored butterfly, assign a complex number called the
weight of the butterfly. There arises a problem: how to denote colored butter-
flies and their weights? Let us call two wings of a butterfly opposite if their
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Fig. 8.1. The butterfly and its boundary graph

intersection is the vertex (not an edge). Note that any colored butterfly is
determined (up to equivalence) by:

(a) Three pairs (i, l), (j,m), (k, n) of colors that correspond to three pairs of
opposite wings.

(b) A triple (i, j, k) of representatives of each pair that correspond to wings
having a common edge.

An example of a colored butterfly and its boundary graph are shown in
Fig. 8.1.

For typographic convenience, and following some earlier conventions, such
a butterfly will be denoted by the (2 × 3)-matrix

(
i j k
l m n

)

,

where the top row gives the colors of three adjacent wings and each column
gives colors of opposite pairs of wings. The weight associated with the above
butterfly is denoted by ∣

∣
∣
∣
i j k
l m n

∣
∣
∣
∣

and called a (q−6j)-symbol, for reasons we will not go into here. An interested
reader is referred to [125,126] and references therein.

The (q − 6j)-symbol has many symmetries, corresponding to the symme-
tries manifest in the butterfly. The symmetry group of a butterfly presented
as the cone over one-dimensional skeleton ∆(1) of a regular tetrahedron is iso-
morphic to the symmetric group S4 on four elements 1, 2, 3, 4 that correspond
to the vertices of ∆(1). Assume that the edges (1,2), (1,3), (1,4), (3,4), (2,4),
and (2,3) have colors i, j, k, l,m, n, respectively. Then the following equalities
correspond to generators (the transposition (2,3) and the cyclic permutation
(1,2,3,4)) of S4:

∣
∣
∣
∣
i j k
l m n

∣
∣
∣
∣ =

∣
∣
∣
∣

j i k
m l n

∣
∣
∣
∣ ,

∣
∣
∣
∣
i j k
l m n

∣
∣
∣
∣ =

∣
∣
∣
∣
n m i
k j l

∣
∣
∣
∣ .

Step 5. Let P be a special polyhedron, V (P ) the set of its vertices, and
C(P ) the set of its 2-cells.
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Definition 8.1.2. A coloring of P is a map ξ : C(P ) → C.

Denote by Col(P ) the set of all possible colorings of P . It consists of N#C(P )

elements, where N is the number of colors and #C(P ) is the number of 2-cells
in P . To each coloring ξ ∈Col(P ) assign a weight w(ξ) by the rule

w(ξ) =
∏

v∈V (P )

∣
∣
∣
∣
i j k
l m n

∣
∣
∣
∣
v

∏

c∈C(P )

wξ(c). (8.1)

Note that any coloring ξ determines a coloring of a neighborhood of every
vertex v ∈ V (P ). It means that in a neighborhood of v we see a colored
butterfly (

i j k
l m n

)

v

with the (q − 6j)-symbol
∣
∣
∣
∣
i j k
l m n

∣
∣
∣
∣
v

.

Every 2-cell c of P is painted in the color ξ(c) having the weight wξ(c).
Thus the right-hand part of the formula (8.1) is the product of all the symbols
and the weights of all used colors (with multiplicity).

Definition 8.1.3. Let P be a special polyhedron. Then the weight of P is
given by the formula

w(P ) =
∑

ξ∈Col(P )

w(ξ).

Step 6. Certainly, the weight of a special polyhedron P depends heavily on
the weights wi of colors and the values of (q − 6j)-symbols. We will think of
them as being variables; thus we have finitely many variables. If we fix their
values, we get a well defined invariant of the topological type of P . Now let
us try to subject the variables to constraints so that the weight of a special
polyhedron will be invariant with respect to T -moves. In order to do that, let
us write down the following system of equations:
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∣
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∣
i j k
l m n
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∣
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∣
∣
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l′ m′ n′
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∣
∣
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z
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∣
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∣
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z n′ m′
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∣
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∣
∣
∣
∣
j l n
z n′ l′

∣
∣
∣
∣

∣
∣
∣
∣
k l m
z m′ l′

∣
∣
∣
∣ , (8.2)

where i, j, k, l,m, n, l′,m′, n′ run over all elements of the palette C.
The geometrical meaning of the equations is indicated in Fig. 8.2 and

explained in the proof of Theorem 8.1.4. We emphasize that the system is
universal, i.e., it depends neither on manifolds nor on their spines.

In order to get a feeling of the system, let us estimate the number of vari-
ables and the number of equations. If we ignore the symmetries of symbols,
then the number of variables is N +N6: there are N weights of colors and N6

symbols. The equations are parameterized by 9-tuples (i, j, k, l,m, n, l′,m′, n′)



386 8 The Turaev–Viro Invariants

Fig. 8.2. Geometric presentation of equations

of colors. Therefore, we have N9 equations (if we ignore symmetries of equa-
tions). In general, the system appears over-determined, but, as we shall see,
solutions exist.

Let us show that every solution determines a 3-manifold invariant. Let M
be a 3-manifold. Construct a special spine P of M having ≥ 2 vertices, and
define an invariant TV (M) by the formula TV (M) = w(P ), where w(P ) is
the weight of P , see Definition 8.1.3.

Theorem 8.1.4. If the (q − 6j)-symbols and weights wi are solutions of the
system (8.2), then w(P ) does not depend on the choice of P . Therefore,
TV (M) is a well defined 3-manifold invariant.

Proof. According to Theorem 1.2.5, it is sufficient to show that w(P ) is
invariant with respect to T -moves. Let a special polyhedron P2 be obtained
from a special polyhedron P1 by exactly one T -move, i.e., by removing a frag-
ment ET and inserting a fragment E′

T , see Definition 1.2.3. For any coloring
ξ of P1, let Colξ(P2) be the set of colorings of P2 that coincide with ξ on
P1\ET = P2\E′

T . Since only one 2-cell of the fragment E′
T (the middle disc)

has no common points with ∂E′
T , the set Colξ(P2) can be parameterized by

the color z of this 2-cell. It follows that the set Colξ(P2) consists of N colorings
ζz, 0 ≤ z ≤ N − 1.

Because of distributivity, the equation of the system (8.2) that corresponds
to the 9-tuple (i, j, k, l,m, n, l′,m′, n′) implies the equality w(ξ) =

∑
z w(ζz),

see Fig. 8.2. To see this, multiply both sides of the equation by the constant
factor that corresponds to the contribution made to the weights by the exte-
riors of the fragments. Summing up the equalities w(ξ) =

∑
z w(ζz) over all

colorings of P1, we get w(P1) = w(P2).

Definition 8.1.5. Any 3-manifold invariant obtained by the above construc-
tion will be called an invariant of Turaev–Viro type. The number r = N + 1,
where N is the number of colors in the palette C, will be called the order of
the invariant.

8.1.2 Turaev–Viro Type Invariants of Order r ≤ 3

There are no Turaev–Viro type invariants of order 1, since r = N + 1 and
N ≥ 1. If r = 2, then N = 1. Hence we have a very poor palette consisting of
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only one color 0, and there is only one colored butterfly
(

0 0 0
0 0 0

)

.

Denote by w0 and x the weight of the unique color and the symbol of the
butterfly, respectively. In this case the system (8.2) consists of one equation
x2 = w0x

3. If x = 0, we get solutions that produce the trivial 3-manifold
invariant TV (M) ≡ 0. Otherwise, we get a set of solutions {x = z−1, w0 =
z} parameterized by nonzero numbers z. Each of the solutions produces a
3-manifold invariant TV (M) = zχ(P ) (one should point out here that χ(P ) =
χ(M) if ∂M = ∅, and χ(P ) = 1 if M is closed). Indeed, by Definition 8.1.3
we have TV (M) = w(P ) = z−V (P )zC(P ) = zC(P )−V (P ), where V (P ) is the
number of vertices of a special spine P ⊂ M and C(P ) is the number of its
2-cells. Since every vertex of P is incident to exactly four edges, the number
of edges of P is equal to 2V (P ). It follows that C(P ) − V (P ) = χ(P ).

Let us investigate the case N = 2, when there are two colors: 0 and 1.
We will call them white and black, respectively. There are 11 different col-
ored butterflies. Their symbols together with the weights w0, w1 of the colors
form a set of 13 variables. Note that the transposition {0, 1} ↔ {1, 0} of the
colors induces an involution i on the set of variables. See Fig. 8.3, where the
butterflies are presented by their boundary graphs. The lower indices of the
corresponding variables show the number of black-colored wings. The weights
of the black and white colors are also indicated.

It turns out that there are 74 equations. They correspond to different
colorings of the boundary graph of the fragment ET . See Fig. 8.4 for an
example of a graphically expressed equation that corresponds to the equation
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of system (8.2) for i = k = 1, j = l = m = n = l′ = m′ = n′ = 0.

Fig. 8.3. Thirteen variables for N = 2
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Fig. 8.4. An example of an equation

There are too many equations to list them all here, so we will take a
shortcut. To simplify the calculations, we subject the symbols to the following
constraints: if a butterfly contains one black and two white wings adjacent to
the same edge, then the symbol must be zero. In other words, we assume that
the symbols of the type

∣
∣
∣
∣
0 0 1
∗ ∗ ∗

∣
∣
∣
∣ ,

that is, the variables x1, x2, y2, x3, z3, and x4 are zeros. The motivation for this
restriction was triangle inequality conditions of Turaev–Viro, see Sect. 8.1.4.
My former student Maxim Sokolov had verified that, in case N = 2, only
restricted solutions of system (8.2) were interesting (unpublished). In other
words, unrestricted solutions do not give any additional invariants. So we are
left with seven variables x0, y3, y4, x5, x6, and w0, w1. It is easy to see that this
leaves only 14 equations:

(1) x2
0 = w0x

3
0; (8) x2

5 = w1y4x
2
5;

(2) x0y3 = w1y
3
3 ; (9) y3x5 = w1y3x

2
5;

(3) y2
3 = w0x0y

2
3 ; (10) y4x5 = w1x

3
5;

(4) y2
4 = w0y

2
3y4; (11) x2

5 = w0x5y
2
3 ;

(5) y3y4 = w1y3y
2
4 ; (12) x2

5 = w0y4x
2
5 + w1x5x

2
6;

(6) y2
3 = w0y

3
4 + w1x

3
5; (13) x5x6 = w1x

2
5x6;

(7) 0 = w0y
2
4x5 + w1x

2
5x6; (14) x2

6 = w0x
3
5 + w1x

3
6.

They correspond to the colorings of ∂ET shown in Fig. 8.5.
Let us solve the system. It follows from (4) and (8) that if y3 = 0, then

y4 = x5 = 0. This leaves only two equations x2
0 = w0x

3
0, x

2
6 = w1x

3
6. Just

as in the case N = 1, one can show that then we get the sum TV (M) =
w

χ(M)
0 + w

χ(M)
1 of the two-order 2 invariants. Hence one may assume that

y3 = 0 and, as it follows from the third equation, x0 = 0. Note that the
system is quasihomogeneous in the following sense: if we divide all xi and yj
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Fig. 8.5. Fourteen equations for N = 2

by x0 and multiply w0, w1 by the same factor, we get an equivalent system.
Hence we may assume that x0 = 1 and, by the first equation, w0 = 1.

The further events depend on whether or not x5 = 0. Let x5 = 0. Recall
that x0 = w0 = 1. Set w1 = u. It is easy to see that (2), (4), and (6) imply
y3 = u−1/2, y4 = u−1, and u2 = 1. All the other equations become identities
except the last equation x2

6 = ux3
6. We get two solutions:

x0 = w0 = 1, w1 = u, y3 = u−1/2, y4 = u−1, x5 = x6 = 0; (8.3)

x0 = w0 = 1, w1 = u, y3 = u−1/2, y4 = u−1, x5 = 0, x6 = u−1, (8.4)

where u = ±1 and for y3 one may take any square root of u−1.
Let x5 = 0. Set w1 = ε. Just as before, we get y3 = ε−1/2 and y4 = ε−1.

From (9) and (7) one gets x5 = ε−1 and x6 = −ε−2. All other equations
become identities except (6), (12), (14), that are equivalent to ε2 = 1 + ε. We
get a new solution:

x0 = w0 = 1, w1 = ε, y3 = ε−1/2, y4 = ε−1, x5 = ε−1, x6 = −ε−2, (8.5)

where ε = (1 ±
√

5)/2.
Denote by TV±(M) the invariants corresponding to solution (8.3) for

u = ±1. Let us describe a geometric interpretation of them. Any special poly-
hedron contains only finitely many different closed surfaces. Denote by ne(P )
and no(P ) the total number of surfaces in P having even and, respectively,
odd Euler characteristics.

Lemma 8.1.6. For any special spine P of M we have TV±(M) = ne(P ) ±
no(P ).

Proof. There is a natural bijection between closed surfaces in P and black–
white colorings of P with nonzero weights. Indeed, if we paint a surface F ⊂ P
in black, and the complement P\F in white, we get a coloring ξ of P such
that it admits only three types of butterflies: the totally white butterfly
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Fig. 8.6. Three butterflies having nonzero symbols

(
0 0 0
0 0 0

)

,

and butterflies (
0 0 0
1 1 1

)

,

(
0 1 1
0 1 1

)

,

see Fig. 8.6.
Since their symbols

x0 =
∣
∣
∣
∣
0 0 0
0 0 0

∣
∣
∣
∣ , y3 =

∣
∣
∣
∣
0 0 0
1 1 1

∣
∣
∣
∣ ,

and

y4 =
∣
∣
∣
∣
0 1 1
0 1 1

∣
∣
∣
∣

are nonzero, the weight w(ξ) is also nonzero.
Conversely, let ξ be a black–white coloring of P with a nonzero weight

w(ξ) =
∏

v∈V (P )

∣
∣
∣
∣
i j k
l m n

∣
∣
∣
∣
v

∏

c∈C(P )

wξ(c).

Denote by F (ξ) the union of all black cells in P . Then F (ξ) inherits the local
structure of black parts of butterflies. Since w(ξ) = 0, the butterflies have
nonzero symbols. In the case of solution (8.3), only the butterflies shown in
Fig. 8.6 come into consideration. Hence F (ξ) is a closed surface.

It turns out that the weight w(ξ) = 0 of a coloring ξ is closely related to
the Euler characteristic χ(F ) of the corresponding surface F = F (ξ). Let us
show that w(ξ) = uχ(F ). Denote by k3 and k4 the numbers of butterflies in
P having the symbols y3 and y4, respectively. Then F inherits from P the
cell structure with k3 + k4 vertices, (3k3 + 4k4)/2 edges, and some number of
2-cells, which we denote by c2(F ). It follows that χ(F ) = −k3/2−k4 + c2(F ).
Taking into account that w1 = u, y3 = u−1/2, and y4 = u−1, we get that
w(ξ) = w

c2(F )
1 yk3

3 yk4
4 = u−k3/2−k4+c2(F ) = uχ(F ).
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To conclude the proof, denote by ξ1, . . . , ξn the colorings of P with nonzero
weights. Then w(P ) =

∑n
i=1 w(ξi) =

∑n
i=1 uχ(F (ξi)) = ne ± no for u = ±1.

It turns out that the invariants TV±(M) admit a very nice homological
interpretation, see [126]. Note that for any compact 3-manifold M the homol-
ogy group H2(M ;Z2) is finite, and any homology class α ∈ H2(M ;Z2) can be
presented by an embedded closed surface. We say that α is even or odd if it
can be presented by an embedded surface in M having an even or odd Euler
characteristic, respectively. Denote by ne(M) and no(M) the number of even
and, respectively, odd homology classes.

Proposition 8.1.7. For any 3-manifold M we have:

(a) TV+(M) = ne(M) + no(M) (= the order of H2(M ;Z2));
(b) TV−(M) = ne(M) − no(M);
(c) In case M is orientable either TV−(M) = TV+(M) or TV−(M) = 0

depending on whether or not M contains an odd surface.

Proof. Choose a special spine P of M . Denote by F(P) the set of all closed
surfaces in P . Each surface F ∈ F(P) represents an element of H2(P ;Z2).
Thus we have a map ϕ : F(P ) → H2(P ;Z2) = H2(M ;Z2). It is easy to see
that, due to the nice local structure of simple polyhedra, ϕ is a bijection.
We may apply Lemma 8.1.6 and get TV±(M) = ne(P ) ± no(P ). Since P
is a deformation retract of M , we have ne(P ) = ne(M), no(P ) = no(M),
that implies (a) and (b). To get (c), consider the map H2(M ;Z2) → Z2 that
takes even classes to 0 and odd classes to 1. If M is orientable, the map is
a homomorphism. Hence even elements of H2(M ;Z2) form a subgroup that
either coincides with H2(M ;Z2) or has index 2 (if there is at least one odd
element). It follows that either no = 0 (and we get TV−(M) = TV+(M)) or
ne = no (and we get TV−(M) = 0).

Examples. The values of TV±-invariants for some 3-manifolds are given
in the following table. The list contains all closed orientable prime manifolds
of complexity ≤ 2 (see Chap. 2), and two nonorientable manifolds: S1 × RP 2

and K2 × S1, where K2 is the Klein bottle.

M TV+ TV− M TV+ TV−
S3 1 1 L8,3 2 2
S2 × S1 2 2 L5,2 1 1
RP 3 2 0 L5,1 1 1
L3,1 1 1 L7,2 1 1
L4,1 2 2 S3/Q8 4 4
S1 × RP 2 4 2 K2 × S1 8 4

Note that TV−-invariant distinguishes S2 × S1 and RP 3 even though the
manifolds have isomorphic homology groups with coefficients in Z2. Never-
theless, it does not distinguish between L3,1 and S3, or some other pairs from
among the manifolds listed above.
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Remark 8.1.8. In view of Proposition 8.1.7, the first five lines of the table
are evident, since the corresponding 3-manifolds are orientable and only RP 3

contains an odd surface. Let us explain the last statement. The manifold
S1×RP 2 contains four homologically distinct surfaces that realize elements of
H2(M ;Z2): the empty surface, projective plane {∗}×RP 2, the torus S1×RP 1,
and the Klein bottle S1×̃RP 1. The best way to imagine S1×̃RP 1 ⊂ S1×RP 2

is to let a point x ∈ S1 move around S1, rotating simultaneously {x} × RP 1

inside {x}×RP 2 such that the total rotation angle would be 180◦. Since only
one of the surfaces (projective plane) has an odd Euler characteristic, no = 1
and ne = 3. It follows from Proposition 8.1.7 that TV+(S1 × RP 2) = 4 and
TV−(S1 × RP 2) = 2. The following conjecture was stated by Kauffman and
Lins:

Conjecture [60]. Consider an arbitrary closed 3-manifold M , and let X
be a special spine for M . Let ne be the number of closed surfaces contained in
X that have even Euler characteristic and no the number of closed surfaces
in X that have odd Euler characteristic. Then either ne = no or no = 0.

Moreover, ne = no if and only if the same is true for all special spines
of M , and no = 0 if and only if the values of Turaev–Viro invariants for
θ = (2 ± 1)π/4 are integers and equal.

As we have seen above, for orientable manifolds the first part of the con-
jecture is true while the manifold S1 ×RP 2 disproves it for the nonorientable
case. The second part of the conjecture is also wrong, see [113] and Sect. 8.1.5.

Let us turn now our attention to solution (8.4). One can easily see that it
gives nothing new, since we get the sum of the TV±-invariant and of an order
two invariant uχ(P ). The reason is that if the weight w(ξ) of a black–white
coloring ξ of a special polyhedron P is nonzero, then the black part of P
is either a closed surface or coincides with P . Thus solution (8.4) produces
invariants TV±(M)+(±1)χ(P ). On the contrary, the invariants corresponding
to the solution (8.5) are very interesting since they are actually the simplest
nontrivial invariants of Turaev–Viro type. We consider them in Sect. 8.1.3.

8.1.3 Construction and Properties of the ε-Invariant

We start with an alternative description of the new invariant. Let P be a
simple polyhedron. Denote by F(P) the set of all simple subpolyhedra of P
including P and the empty set.

Lemma 8.1.9. F(P) is finite.

Proof. It is easy to see that if a simple subpolyhedron F ⊂ P contains at least
one point of a 2-component α of P , then α ⊂ F . It follows that for describing
F it is sufficient to specify which 2-components of P are contained in F . Thus
the total number of simple subpolyhedra of P is no greater than 2n, where n
is the number of 2-components in P .



8.1 The Turaev–Viro Invariants 393

Let us associate to each simple polyhedron F its ε-weight

wε(F ) = (−1)V (F )εχ(F )−V (F ),

where V (F ) is the number of vertices of F , χ(F ) is its Euler characteristic,
and ε is a solution of the equation ε2 = ε + 1. One may take ε = (1 +

√
5)/2

as well as ε = (1 −
√

5)/2.

Definition 8.1.10. The ε-invariant t(P ) of a simple polyhedron P is given
by the formula t(P ) =

∑
F∈F(P) wε(F ).

Below we will prove that the ε-invariant of a special polyhedron P coincides
with the weight w(P ) that corresponds to solution (8.5), see Sect. 8.1.2. Hence
it is invariant under T -moves. Nevertheless, we prefer to give an independent
proof since it reveals better the geometric nature of the invariance.

Theorem 8.1.11. t(P ) is invariant under T -moves.

Proof. Let a simple polyhedron P2 be obtained from a simple polyhedron P1

by the move T . Denote by ET the fragment of P1 which is cut out and replaced
by a fragment E′

T of P2. It is convenient to assume that the complement
P1\ET of ET and the complement P2\E′

T of the fragment E′
T do coincide.

Let us analyze the structures of ET and E′
T .

The fragment ET consists of two cones and three sheets called wings. Each
cone consists of three-curved triangles. E′

T consists of six-curved rectangles,
the middle disc, and three wings. Let us divide the set F(P∞) of all simple
subpolyhedra of P1 into two subsets. A simple subpolyhedron F ∈ F(P1) is
called rich (with respect to ET ), if F ∩ ET contains all six triangles of ET ,
and poor otherwise.

We wish to arrange a finite-to-(one or zero) correspondence between simple
subpolyhedra of P2 and those of P1 such that the correspondence respects
ε-weights.

(a) Let F1 be a poor subpolyhedron of P1. Since ET without a triangle is
homeomorphic to E′

T without the corresponding rectangle, there exists exactly
one simple subpolyhedron F2 of P2 such that F1∩(P1−ET ) = F2∩(P2−E′

T ).
Moreover, F2 is homeomorphic to F1 and hence has the same ε-weight.

(b) Let F1 be a rich subpolyhedron of P1. Then there exist exactly two
simple subpolyhedra F ′

2 and F ′′
2 of P2 such that F1 ∩ (P1 \ ET ) = F ′

2 ∩ (P2 \
E′

T ) = F ′′
2 ∩ (P2 \E′

T ), namely, the one that contains the middle disc, and the
other that does not. The intersection F1∩ET can contain 0, 2, or 3 wings. It is
easy to verify that in all three cases the equation wε(F1) = wε(F ′

2) + wε(F ′′
2 )

is equivalent to ε2 = ε + 1. See Fig. 8.7 for the case of 0 wings: C denotes
the product of weights and symbols that correspond to 2-cells and vertices
outside ET and E′

T .
(c) We have not considered simple subpolyhedra of P2 the intersec-

tions of which with E′
T contain six rectangles and exactly one wing. The

set of such polyhedra can be decomposed onto pairs F ′
2, F

′′
2 such that
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Fig. 8.7. The behavior of a rich surface that does not contain wings

F ′
2 ∩ (P2 \ E′

T ) = F ′′
2 ∩ (P2 \ E′

T ), and exactly one of the subpolyhedra F ′
2, F

′′
2

contains the middle disc. For each such pair we have wε(F ′
2) + wε(F ′′

2 ) = 0.
We can conclude that t(P1) = t(P2).

Theorems 8.1.11 and 1.2.5 show that the following definition makes sense.

Definition 8.1.12. Let M be a compact 3-manifold. Then the ε-invariant
t(M) of M is given by the formula t(M) = t(P ), where P is a special spine
of M .

Now we relate the ε-invariant to the TV -invariant that corresponds to
solution (8.5) in Sect. 8.1.11.

Proposition 8.1.13. The ε-invariant coincides with the TV-invariant corre-
sponding to solution (8.5).

Proof. We use the same ideas as in the proof of Lemma 8.1.6. Assign to any
black–white coloring ξ of a special spine P the union F (ξ) of all black cells
of P . Note that the black part of any butterfly has a singularity allowed for
simple polyhedra if and only if the corresponding symbol (with respect to
solution (8.5)) is nonzero. Hence the assignment ξ → F (ξ) induces a bijection
between colorings with nonzero weights and simple subpolyhedra of P .

Now, let us verify that the ε-weight wε(F ) of a simple subpolyhedron
F = F (ξ) ⊂ P coincides with the weight w(ξ) of the coloring ξ. Denote
by k3, k4, k5, k6 the numbers of butterflies in P with symbols y3, y4, x5, x6,
respectively. Clearly, k6 is the number of totally black butterflies in P and
thus coincides with the number V (F ) of true vertices of F . Note that the
first butterfly has three black edges while the other three have four black
edges each. F (ξ) inherits from P the cell structure with k3 + k4 + k5 + k6

vertices, (3k3 + 4k4 + 4k5 + 4k6)/2 edges, and some number of 2-cells that
we denote by c2(F ). It follows that χ(F ) = −k3/2 − k4 − k5 − k6 + c2(F ).
Taking into account that w1 = ε, y3 = ε−1/2, y4 = x5 = ε−1, and x6 = −ε−2,
we have w(ξ) = w

c2(F )
1 y

k3/2
3 yk4

4 xk5
5 xk6

6 = (−1)V (P )εχ(F )−V (P ). Taking sums of
the weights, we get the conclusion.

Example. Let us compute “by hand” the ε-invariant of S3. One should
take a special spine of S3, no matter which one. Let us take the Abalone A,
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see Fig. 1.1.4. It contains two 2-cells; one of them is the meridional disc D of
the tube. There are three simple subpolyhedra of A:

1. The empty subpolyhedron with the ε-weight 1.
2. The whole Abalone with the ε-weight (−1)V εχ(A)−V (A) = −1, since

V (A) = 1 and χ(A) = 1.
3. The subpolyhedron A\Int D, i.e., the subpolyhedron covered by the

remaining 2-cell. It contains no vertices and has zero Euler characteristic.
Hence it has ε-weight 1.

Summing up, we get t(S3) = 1.

One can see from this example that the calculation of the ε-invariant is
theoretically simple, but may be cumbersome in practice, especially when the
manifold is complicated. Sokolov wrote a computer program that, given a
special spine, calculates the ε-invariant of the corresponding 3-manifold. The
results are presented in Table 8.1.

8.1.4 Turaev–Viro Invariants of Order r ≥ 3

As we have seen in Sect. 8.1.1, the number of variables of the system (8.2)
grows as N6, where N = r − 1 is the number of colors in the palette C
= {0, 1, . . . , N − 1}. One may decrease the number of variables by imposing
some constraints on butterflies with nonzero symbols.

Definition 8.1.14. An unordered triple i, j, k of colors taken from the palette
C is called admissible if

1. i + j ≥ k, j + k ≥ i, k + i ≥ j ( triangle inequalities).
2. i + j + k is even.
3. i + j + k ≤ 2r − 4.

Remark 8.1.15. In the original paper [126], where this definition is taken
from, Turaev and Viro used the half-integer palette {0, 1/2, . . . , (r − 2)/2}.
There are some deep reasons behind this choice but we prefer to consider the
integer palette C. In any case, this is only a problem of notation.

Let us give a geometric interpretation of admissibility. Consider a disc D
with three adjacent strips that contain i, j, and k strings, respectively. Then
the triple (i, j, k) satisfies conditions 1, 2 if and only if the strings can be
joined together in a nonsingular way as shown in Fig. 8.8.

To be more precise, the united strings should be disjoint and no string
should return to the strip it is coming out of. The third condition i + j + k ≤
2r − 4 is of technical nature and can be avoided.

Definition 8.1.16. A coloring ξ of a special polyhedron P is called admissible
if the colors of any three wings adjacent to the same edge form an admissible
triple. The set of all admissible colorings will be denoted by Adm(P ).
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Table 8.1. ε-Invariants of closed irreducible orientable 3-manifolds up to
complexity 5

ci M t(M) ci M t(M)

01 S3 1 52 L13,2 ε + 1

02 RP 3 ε + 1 53 L16,3 1

03 L3,1 ε + 1 54 L17,3 ε + 1

11 L4,1 1 55 L17,4 ε + 1

12 L5,2 0 56 L19,4 1

21 L5,1 ε + 2 57 L20,9 ε + 2

22 L7,2 ε + 1 58 L22,5 ε + 1

23 L8,3 ε + 1 59 L23,5 ε + 1

24 S3/Q8 ε + 3 510 L23,7 ε + 1

31 L6,1 1 511 L24,7 1

32 L9,2 1 512 L25,7 0

33 L10,3 0 513 L25,9 ε + 2

34 L11,3 1 514 L26,7 1

35 L12,5 ε + 1 515 L27,8 ε + 1

36 L13,5 ε + 1 516 L29,8 1

37 S3/Q12 ε + 3 517 L29,12 1

41 L7,1 ε + 1 518 L30,11 ε + 2

42 L11,2 1 519 L31,12 1

43 L13,3 ε + 1 520 L34,13 1

44 L14,3 ε + 1 521 S3/Q8 × Z5 ε + 2

45 L15,4 ε + 2 522 S3/Q12 × Z5 ε + 2

46 L16,7 1 523 S3/Q16 × Z3 ε + 1

47 L17,5 ε + 1 524 S3/Q20 3ε + 2

48 L18,5 ε + 1 525 S3/Q20 × Z3 −ε + 2

49 L19,7 1 526 S3/D40 −ε + 2

410 L21,8 1 527 S3/D48 ε + 3

411 S3/Q8 × Z3 2ε + 3 528 S3/P24 × Z5 ε + 2

412 S3/Q16 1 529 S3/P48 ε + 1

413 S3/D24 2ε + 3 530 S3/P ′
72 ε + 3

414 S3/P24 2ε + 3 531 S3/P120 3ε + 2

51 L8,1 ε + 1
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Fig. 8.8. Disjoint strings without returns

Similarly, one may speak about admissible butterflies: a colored butterfly
(

i j k
l m n

)

is admissible if all the triples (i, j, k), (k, l,m), (m,n, i), (j, l, n) are admissible
(they represent the wings that meet together along the four edges of the
butterfly).

The constraint on butterflies we have mentioned above is the following:

The symbols of nonadmissible butterflies must be zeros.

Another way of saying this is that we define the weight (see Definition 8.1.3)
of a special polyhedron P by taking the sum over admissible colorings only:

w(P ) =
∑

ξ∈Adm(P )

w(ξ)

The following nonrigorous considerations show that the system (8.2) (sub-
jected to the admissibility restrictions from Definition 8.1.14) should not have
too many solutions (if any). For simplicity assume that the symbols of all
admissible butterflies are nonzero. Since all equations are quasihomogeneous,
we may assume w0 = 1 (see Sect. 8.1.2). Denote by sk the symbol

∣
∣
∣
∣
0 0 0
k k k

∣
∣
∣
∣ =

∣
∣
∣
∣
k 0 k
0 k 0

∣
∣
∣
∣ .

(a) Write down an equation of system (8.2) for the case l = 0. If j = n or
k = m, all terms in both sides of the equation contain symbols of nonadmissi-
ble butterflies (this is because a triple of the type (0, x, y) is admissible if and
only if x = y). This annihilates the equation. We may assume therefore that
n = j and m = k. Similarly, l′ = z, and we get the equation
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∣
∣
∣
∣
i j k
0 k j

∣
∣
∣
∣

∣
∣
∣
∣
i j k
z m′ n′

∣
∣
∣
∣ = wz

∣
∣
∣
∣
i k j
z n′ m′

∣
∣
∣
∣

∣
∣
∣
∣
j 0 j
z n′ z

∣
∣
∣
∣

∣
∣
∣
∣
k 0 k
z m′ z

∣
∣
∣
∣ ,

that after dividing both sides by
∣
∣
∣
∣
i j k
z m′ n′

∣
∣
∣
∣ =

∣
∣
∣
∣
i k j
z n′ m′

∣
∣
∣
∣

gives ∣
∣
∣
∣
i j k
0 k j

∣
∣
∣
∣ = wz

∣
∣
∣
∣
j 0 j
z n′ z

∣
∣
∣
∣

∣
∣
∣
∣
k 0 k
z m′ z

∣
∣
∣
∣ .

(b) Taking z = 0, we get n′ = n = j,m′ = m = k, and
∣
∣
∣
∣
i j k
0 k j

∣
∣
∣
∣ = sjsk.

This converts the preceding equation to sjsk = wzsjszsksz or, equiva-
lently, to wz = s−2

z .
(c) Next, let us write down the equation of system (8.2) for i = j = k = 0.

The admissibility implies that l′ = m′ = n′ and l = m = n. Taking into
account that

∣
∣
∣
∣
0 l l
z l′ l′

∣
∣
∣
∣ =

∣
∣
∣
∣
z l′ l
0 l l′

∣
∣
∣
∣ = slsl′ ,

we get the equation slsl′ =
∑

z wz(slsl′)3, which is equivalent to wlwl′ =∑
z wz (both sums are taken over all z ≤ r − 2 such that the triple (l, l′, z) is

admissible). In particular, for l′ = 1 and 1 ≤ l ≤ r − 2 we get the system

w1w1 = w0 + w2

w2w1 = w1 + w3

. . .
wr−3w1 = wr−4 + wr−2

wr−2w1 = wr−3

To solve it, present w1 in the form

w1 = −(q + q−1) = −q2 − q−2

q − q−1
,

where q is a new variable. Since

qi+1 − q−i−1

q − q−1
=

qi − q−i

q − q−1
(q + q−1) − qi−1 − q−i+1

q − q−1
,

we get inductively

wi = (−1)i q
i+1 − q−i−1

q − q−1
for 1 ≤ i ≤ r − 2 and

qr − q−r

q − q−1
= 0.
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We can conclude that the solutions of the system have the form

wi = (−1)i q
i+1 − q−i−1

q − q−1
, 1 ≤ i ≤ r − 2,

where q runs over all roots of unity of degree 2r.
It follows from the above considerations that system (8.2) is very restric-

tive because a very small part of it allows us to find the weights wi of all
colors and some symbols. It is surprising that any solutions exist! Below we
present solutions found by Turaev and Viro [126]. To adjust our notation
to the original one (see Remark 8.1.15), we adopt the following notational
convention:

k̂ = k/2

for any integer k. Let q be a 2r-th root of unity such that q2 is a primitive
root of unity of degree r. Note that q itself may not be primitive.

For an integer n set

[n] =
qn − q−n

q − q−1
. (8.6)

Note that all [n] are real numbers and [n] = 0 if and only if n = 0 mod r.
Define the quantum factorial [n]! by setting

[n]! = [n][n − 1] . . . [2][1].

In particular, [1]! = [1] = 1. Just as for the usual factorial, set by definition,
[0]! = 1.

For an admissible triple (i, j, k) put

∆(i, j, k) =

(
[̂i + ĵ − k̂] ! [ĵ + k̂ − î]! [k̂ + î − ĵ]!

[̂i + ĵ + k̂ + 1]!

)1/2

.

Remark 8.1.17. As we will see later, it does not matter, which square root
of the expression in the round brackets is taken for ∆(i, j, k). The resulting
3-manifold invariant will be the same.

Now we are ready to present the solution. The weights of colors from the
palette C = {0, 1, . . . , r − 2} are given by

wi = (−1)i[i + 1]. (8.7)

The symbol
∣
∣
∣
∣
i j k
l m n

∣
∣
∣
∣

of the butterfly
(

i j k
l m n

)
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is given by
∣
∣
∣
∣
i j k
l m n

∣
∣
∣
∣ =

∑

z

(−1)z[z + 1]!A(i, j, k, l,m, n)

B

(

z,

(
i j k
l m n

))

C

(

z,

(
i j k
l m n

)) , (8.8)

where

A(i, j, k, l,m, n) = i(i+j+k+l+m+n)∆(i, j, k)∆(i,m, n)∆(j, l, n)∆(k, l,m),

B

(

z,

(
i j k
l m n

))

= [ẑ− î− ĵ− k̂]! [z− î−m̂− n̂]! [z− ĵ− l̂− n̂]! [z− k̂− l̂−m̂]!,

C

(

z,

(
i j k
l m n

))

= [̂i + ĵ + l̂ + m̂− z]! [̂i + k̂ + l̂ + n̂− z]! [ĵ + k̂ + m̂ + n̂− z]!,

and the sum is taken over all integer z such that all expressions in the square
brackets are nonnegative. In other words, one should have α ≤ z ≤ β, where

α = max(̂i + ĵ + k̂, î + m̂ + n̂, ĵ + l̂ + n̂, k̂ + l̂ + m̂),

β = min(̂i + ĵ + l̂ + m̂, î + k̂ + l̂ + n̂, ĵ + k̂ + m̂ + n̂)

(it follows from the triangle inequalities that α ≤ β).

Remark 8.1.18. The bold letter i in the above expression for A(i, j, k, l,m, n)
is the imaginary unit (do not confuse with the symbol i denoting a color from
the palette C). If we replace i by −i, we get a different solution producing
the same 3-manifold invariant. It is because for any coloring with a nonzero
weight the number of butterflies

(
i j k
l m n

)

with an odd number (i + j + k + l + m + n) is even.

Why do the presented values of variables form a solution to the sys-
tem (8.2)? Turaev and Viro proved this by a reference to a paper of Kirillov
and Reshetikhin [64], who had used the so-called Biederharn-Elliot iden-
tity [10,27] to obtain a solution to a similar system. Meanwhile there appeared
many different ways to prove the existence of the invariants. Probably, one of
the simplest approaches is based on remarkable results of Kauffman, Lickor-
ish and others, and belongs to Roberts, see [108] and references therein. An
exhaustive exposition of the subject along with deep connections to quantum
groups, motivating ideas in physics and to other areas of mathematics can be
found in the fundamental monograph [125].
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Definition 8.1.19. The 3-manifold invariant corresponding to the above
solution will be called the order r Turaev–Viro invariant and denoted by
TVq(M).

Remark 8.1.20 (On the Terminology). We distinguish between invari-
ants of Turaev–Viro type and Turaev–Viro invariants TVq(M). The former
correspond to arbitrary solutions (that potentially would be found in future),
the latter are related to the particular solutions given by (8.7) and (8.8). For
example, the ε-invariant is of Turaev–Viro type but it is not a Turaev–Viro
invariant.

Remark 8.1.21. One should point out that our exposition of results in [126]
differs from the original approach. In the first place, to simplify the con-
struction, we do not pay any attention to the relative case, which is very
important from the point of view of category theory. In particular, we do
not reveal the functorial nature of the invariants, nor how they fit into the
conception of Topological Quantum Field Theory (TQFT) [7]. On the other
hand, it is sometimes convenient to consider (as we do) absolute invariants of
not necessarily closed 3-manifolds

Secondly, our version of the invariants is S3-normalized, i.e., TVq(S3) = 1
for all q. The invariant | M | presented in [126] for a degree 2r root of unity
q = q0 is related to TVq(M) by the formula

| M |= − (q − q−1)2

2r
TVq(M).

Thirdly, the solution given by (8.7) and (8.8) satisfies additional equations
of the type

∑

z

wz

∣
∣
∣
∣
i l m
z m′ l′

∣
∣
∣
∣

∣
∣
∣
∣
j l m
z m′ l′

∣
∣
∣
∣ = δi

j ,

where i, j, l,m, l′,m′ run over all elements of the palette C and δi
j is the

Kronecker symbol. These equations guarantee that the weight of a simple
polyhedron is invariant under lune moves, see Fig. 1.16. Moreover, one can cal-
culate the invariants starting from any simple (not necessarily special) spine
of a manifold. The only difference is that one should take into account the
Euler characteristics of 2-components by defining the weight of a coloring ξ by

w(ξ) =
∏

v∈V (P )

∣
∣
∣
∣
i j k
l m n

∣
∣
∣
∣
v

∏

c∈C(P )

w
χ(c)
ξ(c) ,

instead of corresponding formula (8.1) for the case of disc 2-components.
Finally, for the solution given by (8.7) and (8.8), the following holds:

there exists a number w (it is equal to −2r/(q − q−1)2) such that for all j

wj = w−1
∑

(k,l)

wkwl,
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where the sum is taken over all k, l such that the triple (j, k, l) is admissi-
ble. This condition guarantees that performing a bubble move on a simple
polyhedron is equivalent to multiplying its weight by w.

8.1.5 Computing Turaev–Viro Invariants

Just after discovering the invariants, Turaev and Viro calculated all of them
for the sphere S3, real projective space RP 3, for S2 × S1, and the lens space
L3,1. The calculation was facilitated by the fact that these manifolds have
simple spines without vertices. For example, L3,1 admits a spine consisting of
one 2-cell and having one triple circle. It can be presented as the identification
space of a disc by a free action of the group Z3 on the boundary. Sometimes it
is called triple hat. Note that the three wings adjacent to any segment of the
triple circle belong to the same 2-cell, and hence have the same color i ∈ C
(for any coloring). The admissibility conditions (see Definition 8.1.14) imply
that i must be even and no greater than (2r − 4)/3. It follows that

TVq(L3,1) =
∑

i

wi, (8.9)

where the sum is taken over all even i such that 0 ≤ i ≤ (2r − 4)/3.
If every simple spine of a given 3-manifold contains vertices, obtaining

explicit expressions for order r Turaev–Viro invariants (as functions on q) for
all r is difficult, see [137] for the case of lens spaces. On the other hand, if
r is fixed, the problem has a purely combinatorial nature and can be solved
by means of a computer program. One should construct a special spine of the
manifold and, using formulas (8.6)–(8.8), calculate the weights and symbols.
Then one can enumerate all colorings and find out the value of the invariant
by taking the sum of their weights. Extensive numerical tables of that kind
can be found in [60,113].

Let us make a digression. Soon after the discovery of the invariants, many
mathematicians (and certainly Turaev and Viro) noticed that the invariants
of M were actually sums of invariants of pairs (M,h), where M is a 3-manifold
and h ∈ H2(M ;Z2). We describe this observation in detail. Let ξ be an admis-
sible coloring of a special spine P of a 3-manifold M by colors taken from the
palette C = {0, 1, . . . , N −1}. Reducing all colors mod 2, we get a black–white
coloring ξ mod 2 that happens to be also admissible owing to condition 2
of Definition 8.1.14. As we know from the proof of Lemma 8.1.6, admissible
black–white colorings correspond to black (i.e., colored by the color 1) surfaces
in P or, what is just the same, to elements of H2(M ;Z2). This decomposes
the set of all admissible colorings of P into classes corresponding to elements
of H2(M ;Z2): two colorings belong to the same class Adm(P, h) if their mod
2 reductions determine the same homology class h ∈ H2(M ;Z2) (and hence
the same surface in P ).

Assume now that the pair (M,h) and a special spine P of M are given.
Define an invariant TVq(M,h) by setting TVq(M,h) = w(P, h), where the
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h-weight w(P, h) is given by

w(P, h) =
∑

ξ∈Adm(P,h)

w(ξ).

The same proof as given for Theorem 8.1.4 shows that this definition is cor-
rect, i.e., TVq(M,h) does not depend on the choice of P . We need only one
additional observation. Let a special spine P2 of M be obtained from a spe-
cial spine P1 by exactly one T -move, i.e., by removing a fragment ET and
inserting a fragment E′

T , see Definition 1.2.3. For any admissible coloring ξ of
P1, let Colξ(P2) be the set of admissible colorings of P2 that coincide with ξ
on P1\ET = P2\E′

T . Then all the colorings in Colξ(P2) determine the same
homology class h ∈ H2(M ;Z2) as the coloring ξ.

It follows from the definition of TVq(M,h) that the Turaev–Viro invariant
TVq(M) is the sum of TVq(M,h) taken over all h ∈ H2(M ;Z2). Especially
important is the homologically trivial part TVq(M)0 of the Turaev–Viro
invariant that corresponds to the zero element of H2(M ;Z2). Recall that
h ∈ H2(M ;Z2) is even or odd, if it can be realized by a closed surface in
M having the Euler characteristic of the same parity. We follow [113] and
denote by TVq(M)1 the odd part of TVq(M), that is equal to the sum of
TVq(M,h) over all odd elements h ∈ H2(M ;Z2). Similarly, by TVq(M)2 we
denote the sum of TVq(M,h) taken over all even elements h ∈ H2(M ;Z2)
different from 0. Clearly, TVq(M) = TVq(M)0 + TVq(M)1 + TVq(M)2.

Remark 8.1.22. Note that since any special spine P ⊂ M is two-dimensional,
the 2-cycle group C2(P,Z2) coincides with H2(P ;Z2). Therefore, the mod 2
reduction of an admissible coloring ξ ∈ Adm(P ) determines the trivial element
of H2(P ;Z2) if and only if just even colors 0, 2, . . . have been used. Thus, the
only difference between TVq(M) and its homologically trivial part TVq(M)0
is that we consider all admissible colorings in the first case and only even ones
in the second.

At the end of the book we reproduce from [116] (with notational modifi-
cations) tables of Turaev–Viro invariants of order ≤7 and their summands for
all closed orientable irreducible 3-manifolds up to complexity 6 (Table A.1;
see Chap. 2 for the definition of complexity). We subject q to the following
constraint: q must be a primitive root of unity of degree 2r. This constraint is
slightly stronger than the one in the definition of Turaev–Viro invariants, see
Sect. 8.1.4. Nevertheless, we do not lose any information because of the follow-
ing relation proved in [116]: TVq(M)ν = (−1)νTV−q(M)ν , where ν ∈ {0, 1, 2}.

The invariants are presented by polynomials of q. This presentation is much
better than the numerical form since we simultaneously encode the invariants
evaluated at all degree 2r primitive roots of unity, and avoid problems with the
precision of calculations. For the sake of compactness of notation, we write
σk instead of qk + q−k. For instance, we set σ1 = q + q−1, σ2 = q2 + q−2,
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Table 8.2. Turaev–Viro invariants of order r ≤ 7 and their summands for closed
orientable irreducible 3-manifolds of complexity ≤ 2

M ν\r 3 4 5 6 7

0 1 1 1 1 1
S3 1 0 0 0 0 0

2 0 0 0 0 0∑
1 1 1 1 1

0 1 2 σ2 + 2 4 −σ3 + 2σ2 + 3
RP 3 1 −1 −σ1 −σ2 − 2 −2σ1 σ3 − 2σ2 − 3

2 0 0 0 0 0∑
0 −σ1 + 2 0 −2σ1 + 4 0

0 1 1 σ2 + 2 3 σ2 + 2
L3,1 1 0 0 0 0 0

2 0 0 0 0 0∑
1 1 σ2 + 2 3 σ2 + 2

0 1 2 1 4 σ2 + 2
L4,1 1 0 0 0 0 0

2 1 0 1 0 σ2 + 2∑
2 2 2 4 2σ2 + 4

0 1 1 0 1 −σ3 + 2σ2 + 3
L5,2 1 0 0 0 0 0

2 0 0 0 0 0∑
1 1 0 1 −σ3 + 2σ2 + 3

0 1 1 σ2 + 3 1 −σ3 + 2σ2 + 3
L5,1 1 0 0 0 0 0

2 0 0 0 0 0∑
1 1 σ2 + 3 1 −σ3 + 2σ2 + 3

0 1 1 σ2 + 2 1 0
L7,2 1 0 0 0 0 0

2 0 0 0 0 0∑
1 1 σ2 + 2 1 0

0 1 2 σ2 + 2 4 1
L8,3 1 0 0 0 0 0

2 1 2 σ2 + 2 0 1∑
2 4 2σ2 + 4 4 2

0 1 4 σ2 + 4 10 2σ2 + 7
S3/Q8 1 0 0 0 0 0

2 3 6 3σ2 + 12 18 6σ2 + 21∑
4 10 4σ2 + 16 28 8σ2 + 28

For each M the first three lines present TVq(M)ν ; the fourth line contains the values
of TVq(M). For brevity, we write σk instead of qk + q−k
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and so on. For your convenience, a small part of the table (for manifolds of
complexity ≤ 2) is given.

Items (1–4) below are devoted to analysis of the table and commentaries.

(1) Selected testing has shown that the table agrees with the ones presented
in [60, 61, 63], as well as with the above-mentioned calculations made by
the authors of the invariants.

(2) The manifold 412 = S3/Q16 disproves the second part of the Kauffman–
Lins Conjecture (see Remark 8.1.8). We see from Table A.9 that TVq

(S3/Q16) is equal to 6 for every primitive root of unity q of degree 8,
including q = exp((2 ± 1)π/4). Nevertheless, since TVq(S3/Q16)1 = 0,
there is at least one surface with odd Euler characteristic. Therefore, no =
0.

(3) Let us call 3-manifolds twins if their Turaev–Viro invariants of order ≤ 7
have the same triples of summands. The distribution of twins is shown in
Fig. 8.9. Each line of the table consists of twin manifolds. Cells painted in
gray contain genuine twins, i.e., manifolds having the same TV-invariants
of all orders. They cannot be distinguished by Turaev–Viro invariants.

Let us comment on the table. There are no twins up to complexity 3. First two
pairs of twins appear on the level of complexity ≤ 4: manifold 34 (= L11,3) is
a twin of 42 (= L11,2), and 36 (= L13,5) is a twin of 43 (= L13,3). At the level
of complexity ≤ 5 there appear new twin pairs and twin triples, and at the
level ≤ 6 we can find even a 7-tuple of twins.

Note that TVq(M)1 and TVq(M)2 are not invariants of Turaev–Viro type
(see Definition 8.1.5) since the constraints on mod 2 reduction of colorings

Fig. 8.9. Each line of the table contains twin manifolds. Cells painted in gray
contain genuine twins (manifolds having the same TV-invariants of all orders)
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have global nature. On the other hand, one can extract from Table A.9
that TVq(M)1 and TVq(M)2 add actually nothing to information given by
TVq(M)0 and TVq(M). For that reason, for manifolds of complexity 6 we
include only values of TVq(M) and TVq(M)0.

(4) Analyzing the tables, we can notice that TV3(M)TVq(M)0 = TVq(M)
for odd r the following holds: In fact, this equality is always true and fol-
lows from the similar formula of Kirby and Melvin for Reshetikhin–Turaev
invariants [63], and the Turaev–Walker theorem saying that each Turaev–
Viro invariant is equal to the square of the absolute value of the corresponding
Reshetikhin–Turaev invariant (see, for instance, [108,125]).

(5) It is not difficult to observe that all coefficients in the polynomials
presenting Turaev–Viro invariants in our tables are integers. This is not an
accident. Robers and Masbaum gave in [75] an elegant proof that values of
Turaev–Viro invariants are algebraic integers.

(6) As we have mentioned above, there exist explicit expressions for
Turaev–Viro invariants for lens spaces. Using Yamada’s formulas [137], Soko-
lov found a simple solution to the following interesting problem: Which lens
spaces can be distinguished by Turaev–Viro invariants?

For any integer v define a characteristic function hv : Z → Z2 by setting
hv(k) = 1 if k = ±1 mod v, and hv(k) = 0, otherwise.

Theorem 8.1.23. [117] Lens spaces Lp1,q1 and Lp2,q2 have the same Turaev–
Viro invariants of all orders if and only if p1 = p2 and for any divisor v > 2
of p1 we have hv(q1) = hv(q2).

Sokolov noticed also that if p1 = p2, then Lp1,q1 and Lp2,q2 can be distin-
guished by Turaev–Viro invariant TVq of some order r ≤ 2R, where R is the
minimal natural number such that R is coprime with p1, p2, and p1 = p2 mod
R. In case p1 = p2 it is sufficient to consider only invariants of order r ≤ p1.
If p is prime, then the criterion is especially simple.

Corollary 8.1.24. If p is prime, then Lp,q1 and Lp,q2 have the same Turaev–
Viro invariants if and only if for i = 1, 2 either qi = ±1 mod p or qi = ±1
mod p.

Note that all lines of the table in Fig. 8.9 except the last three contain only
lens spaces. Thus Theorem 8.1.23 and the above corollary are sufficient for
selecting genuine twins among them. See Remark 8.2.15 in Sect. 8.2 for an
explanation why the last three lines contain genuine twin pairs.

Remark 8.1.25. It is interesting to note that if p is prime, then Reshetikhin–
Turaev invariants can distinguish any two nonhomeomorphic lens spaces Lp,q1

and Lp,q2 , see [51].
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8.1.6 More on ε-Invariant

Comparing Tables 8.1 and A.9, one can see that ε-invariant coincides with
the homologically trivial part TVq(M)0 of order 5 Turaev–Viro invariant. Let
us prove that.

Theorem 8.1.26. [89] Let M be a closed 3-manifold. Then ε(M) = TVq(M)0,
where ε = (1+

√
5)/2 for q = exp(±π

5 i) and ε = (1−
√

5)/2 for q = exp(± 3π
5 i).

Proof. The values of q and ε presented above are related by the equality
ε = q2 + 1 + q−2. Indeed, q10 = 1 implies

q5 − q−5

q + q−1
= q4 + q2 + 1 + q−2 + q−4 = 0,

which is equivalent to (q2 + 1 + q−2)2 = (q2 + 1 + q−2) + 1. Recall that for
calculating ε-invariant we use two colors: 0 and 1. For calculating TVq(M)0 in
the case r = 5 we use even colors from the palette {0, 1, 2, 3}, i.e., two colors
0 and 2 (see Remark 8.1.22). It remains to verify that the correspondence
(0, 1) → (0, 2) transforms weights of colors and symbols for ε-invariant (see
solution (8.5) on page (389)) to those for TVq(M)0 (see formulas (8.7) and
(8.8) on page 399). For instance, the weight of the color 1, in the case of ε-
invariant, equals ε while the weight of the color 2, in the case of Turaev–Viro
invariant, equals q2 + 1 + q−2.

Let us discuss briefly the relation between ε-invariant and TQFT. A three-
dimensional TQFT is a functor F from the three-dimensional cobordism cate-
gory to the category of vector spaces. The functor should satisfy some axioms,
see [7]. In particular, “quantum” means that F takes the disjoint union of
surfaces to the tensor product of vector spaces. In our case the base field
corresponding to the empty surface is the field R of real numbers. It follows
that to every closed 3-manifold there corresponds a linear map from R to R,
that is, the multiplication by a number. This number is an invariant of the
manifold.

As explained in [126], Turaev–Viro invariants fit into conception of TQFT.
The only difference is that instead of the cobordism category one should con-
sider a category whose objects have the form (F, Γ ), where F is a surface
and Γ is a fixed one-dimensional special spine of F . Here a one-dimensional
special polyhedron is a regular graph of valence 3. Morphisms between objects
(F−, Γ−), (F+, Γ+) have the form (M, i−, i+), where M is a 3-manifold with
boundary ∂M presented as the union of two disjoint surfaces ∂−M , ∂+M+,
and i± : F± → ∂±M are homeomorphisms.

The ε-invariant, as any other Turaev–Viro type invariant, admits a similar
interpretation. From general categorical considerations (see [126, Sect. 2.4]) it
follows that there arises a homomorphism Φ from the mapping class group of
the two-dimensional torus T 2 = S1×S1 to the matrix group GL5(R). Given a
homomorphism h : T 2 → T 2, we construct the cobordism (T 2 × I, i−, i+(h)),
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Fig. 8.10. Five black–white colorings for a spine of a torus

where i− : T 2 → T 2×{0} ⊂ T 2×I is the standard inclusion and i+(h) : T 2 →
T 2×{1} ⊂ T 2×I is the inclusion induced by h. We assume that T 2 is equipped
with a fixed special spine Θ. By definition, put Φ(h) = F(T 2 × I, i−, i+(h)),
where F is the functor corresponding to the ε-invariant. Then Φ(h) is a linear
map R5 → R5. The dimension is 5, since Θ admits exactly five black–white
colorings (see Fig. 8.10) that are admissible in the following sense: one black
and two white edges never meet at the same vertex.

The mapping class group of the torus is generated by twists τm and τl

along a meridian and a longitude, respectively. The twists satisfy the rela-
tions τmτlτm = τlτmτl and (τmτlτm)4 = 1. Denote by a and b the matrices
of the corresponding linear maps R5 → R5. One can verify that a5 = 1,
(aba)2 = 1 and that the group 〈a, b | aba = bab, (aba)2 = 1, a5 = 1〉 is
finite. Actually, the presentation coincides with the standard presentation
〈a, b | aba = bab, (a2b)2 = a5 = 1〉 of the alternating group A5.

The following theorem is a direct consequence of this observation [89]:

Theorem 8.1.27. Let F be a closed surface and n a nonnegative integer.
Denote by M(F, n) the set of all Seifert manifolds over F with n exceptional
fibers. Then the set {t(M),M ∈ M(F, n)} of the values of the ε-invariant is
finite.

The number 60n (60 is the order of the alternating symmetric group A5)
serves as an upper estimate for the number of values of t(M). Certainly, the
estimate is very rough. More detailed considerations show that for lens spaces
the number of values of ε-invariant is equal to 4. We give without proof an
exact expression for the ε-invariant of the lens space L(p, q).

Theorem 8.1.28.

t(Lp,q) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if p ≡ ±1 mod 5;
ε + 1, if p ≡ ±2 mod 5;
ε + 2, if p ≡ 0 mod 5 and q ≡ ±1 mod 5;

0, if p ≡ 0 mod 5 and q ≡ ±2 mod 5.
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8.2 3-Manifolds Having the Same Invariants
of Turaev–Viro Type

This section is based on the following observation of Lickorish [69]: if two
3-manifolds M1,M2 have special spines with the same incidence relation
between 2-cells and vertices (in a certain strong sense), then their Turaev–Viro
invariants of all orders coincide. Manifolds having spines as above are called
similar. We construct a simple example of similar 3-manifolds with different
homology groups, and present a result of Nowik and the author [88] stating
that under certain conditions similar manifolds are homeomorphic.

Let P be a special spine of a 3-manifold M and V = V (P ) the set of its
vertices. Denote by N(V, P ) a regular neighborhood of V in P . It consists
of some number of disjoint copies of the butterfly E. The intersection of the
union of all open 2-cells in P with each butterfly consists of exactly six wings.

Definition 8.2.1. Two special polyhedra P1 and P2 are called similar if there
exists a homeomorphism ϕ : N(V (P1), P1) → N(V (P2), P2) such that for any
two wings w1 and w2 of P1 the following condition holds: w1 and w2 belong
to the same 2-cell of P1 if and only if ϕ(w1) and ϕ(w2) belong to the same
2-cell of P2. The homeomorphism ϕ is called a similarity homeomorphism.

A good way to think of it is the following: let us paint the 2-cells of P1 in
different colors and the corresponding 2-cells of P2 in the same colors. Then
the similarity homeomorphism ϕ is required to preserve the colors of wings.
In other words, P2 must contain exactly the same colored butterflies as P2.

Definition 8.2.2. Two 3-manifolds M1 and M2 are said to be similar if a
special spine of M1 is similar to a special spine of M2.

Examples of similar but nonhomeomorphic 3-manifolds will be presented
later. The following proposition is based on an idea of Lickorish [69]. It is
related to all invariants of Turaev–Viro type, not only to Turaev–Viro ones
(see Definition 8.1.5 and Remark 8.1.20).

Proposition 8.2.3. Similar manifolds have the same invariants of Turaev–
Viro type.

Proof. Let us look carefully through the construction of Turaev–Viro type
invariants (Sect. 8.1.1). We come to the conclusion that all what we need to
know to calculate the invariants is just the number of vertices and 2-cells, and
the incidence relation between vertices and 2-cells, see Definition 8.2.1. For
similar spines these data coincide and hence produce the same invariants.

Below we describe moves on special polyhedra and moves on manifolds
that transform them into similar ones. We start with moves on manifolds.

Let M be a (not necessarily orientable) 3-manifold and F ⊂ Int M a
closed connected surface such that F is two-sided in M and χ(F ) ≥ 0. The
last condition means that F is homeomorphic to S2, RP 2, T 2 = S1 × S1, or
to the Klein bottle K2. Choose a homeomorphism r : F → F such that:
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(1) If F = S2, then r reverses the orientation.
(2) If F = RP 2, then r is the identity.
(3) If F = T 2 or F = K2, then r induces multiplication by −1 in H1(F ;Z).

It is clear that r is unique up to isotopy. In case (3) one can explicitly
describe it as follows: present the torus or the Klein bottle as a square with
identified opposite edges. Then r is induced by the symmetry of the square
with respect to the center.

Now cut M along F and repaste the two copies of F thus obtained ac-
cording to the homeomorphism r. We get a new 3-manifold M1.

Definition 8.2.4. We say the new 3-manifold M1 arising in such a way is
obtained from M by the manifold move along F .

Remark 8.2.5. The manifold move along RP 2 does not change the manifold,
and neither does the move along any trivial (i.e., bounding a ball) 2-sphere.
Suppose F = T 2 and F bounds a solid torus in M . Since r : T 2 → T 2 can
be extended to the interior of the solid torus, we have M1 = M . The same is
true for any Klein bottle that bounds in M a solid Klein bottle S1×̃D2.

Now let us turn our attention to moves on special polyhedra. Let G be a
connected graph with two vertices of valence 3. There exist two such graphs:
a theta-curve (a circle with a diameter) and an eyeglass curve (two circles
joined by a segment). Choose a homeomorphism � : G → G such that:

(1) If G is a theta-curve, then � = �1, where �1 : G → G permutes the vertices
and takes each of the three edges into itself.

(2) If G is an eyeglass curve, then � = �2, where �2 : G → G leaves the joining
segment fixed and inverses both loops, see Fig. 8.11.

Definition 8.2.6. An one-dimensional subpolyhedron G of a special polyhe-
dron P is called proper if a regular neighborhood N(G,P ) of G in P is a
twisted or untwisted I-bundle over G. If N(G,P ) ≈ G × I, then G is called
two-sided.

Let G ⊂ P be a two-sided theta-curve or an eyeglass curve in a special
polyhedron P . Cut P along G and repaste the two copies of G thus obtained
according to the homeomorphism �. We get a new special polyhedron P1.

Fig. 8.11. Involution � on the theta-curve and eyeglass curve
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Definition 8.2.7. We say the new special polyhedron P1 is obtained from P
by a spine move σi along G, where i = 1 if � = �1 and i = 2 if � = �2.

Proposition 8.2.8. Spine moves transform special polyhedra to similar ones.

Proof. Let G ⊂ P be a two-sided theta-curve or a two-sided eyeglass curve
in a special polyhedron P . The edges of G decompose some 2-cells of P into
smaller parts that are glued together to new 2-cells. Since � takes each edge of
G to itself, the boundary curves of the new 2-cells run along the same edges as
before, although may pass along them in a different order. Nothing happens
near vertices. It follows that the new special polyhedron is similar to P .

Recall that we have two types of spine moves: theta-move σ1 and glasses-
move σ2. It is convenient to introduce the third move σ3.

Let G ⊂ P be a proper theta-curve with edges l1, l2, l3 such that

(1) G separates P .
(2) l1 and l2 belong to the same 2-cell C of P .

Choose a homeomorphism �3 : G → G such that �3 leaves l3 fixed and
permutes l1 and l2. Cut P along G and repaste the two copies of G thus
obtained according to �3. We say that the new special polyhedron P1 arising
in such a way is obtained from P by the move σ3.

Lemma 8.2.9. σ3 can be expressed through σ1 and σ2.

Proof. Let l1, l2 be the two edges of G which are contained in the same 2-cell
C such that σ3 transposes them. Then there exists a simple arc l ⊂ C such
that l ∩ G = ∂l and l connects l1 with l2. Consider a regular neighborhood
N = N(G ∪ l) of G ∪ l in P . Since G separates P , it has a neighborhood
homeomorphic to G × [0, 1]. Hence N can be presented as G × [0, 1] with a
twisted or an untwisted band B attached to G × {1}, see Fig. 8.12.

Fig. 8.12. Two types of N = (G × [0, 1]) ∪ B; the rotation by 180◦ determines a
homeomorphism of N
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Fig. 8.13. Spine move across e: we cut out the region A and paste it back by
a homeomorphism that permutes the white and black vertices and is invariant on
edges

If the band is untwisted, then N is bounded by G1 and G2, where G1

is a theta-curve isotopic to G and G2 is an eyeglass curve. There exists a
homeomorphism h : N → N such that h|G1 = �3 and h|G2 = �2 (h can
be visualized as the symmetry in the vertical plane shown on Fig. 8.12). It
follows that the move σ3 along G1 (and along G) is equivalent to the move σ2

along G2.
Let the band be twisted. Then N is bounded by two theta-curves G1 and

G2, where G1 is isotopic to G. There exists a homeomorphism h : N → N
(this time the rotation by 180◦ around the vertical axis) such that h

∣
∣
G1

= �1�3

and h
∣
∣
G2

= �1. Hence, the superposition of the moves σ1 and σ3 along G1 is
equivalent to the move σ1 along G2. Taking into account that �2

1 = 1, we can
conclude that the move σ3 along G is equivalent to the superposition of the
move σ1 along G1 and the move σ1 along G2.

Suppose the boundary curve of a 2-cell C of a special spine P passes along
an edge e of P three times. Choose two points on e and join them by three
arcs in C as it is shown on Fig. 8.13. The union G of the arcs is a proper
two-sided theta or an eyeglass curve in P . One can consider the spine move
along G. To distinguish this type of spine move we supply it with a special
name.

Definition 8.2.10. Let G be a proper two-sided theta-curve or an eyeglass
curve in a special polyhedron P such that both vertices of G lie in the same
edge. Then the spine move along G is called a spine move across e.

Our next goal is to prove that spine moves induce moves on manifolds,
and vice versa, manifold moves can be realized by spine moves.

Lemma 8.2.11. Let G be a proper theta or an eyeglass curve in a special
spine P of a closed 3-manifold M . Then there exists a closed connected surface
F ⊂ M such that χ(F ) ≥ 0, F ∩ P = G, and F is transversal to the singular
graph SP of P .
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Proof. Let N = N(P,M) be a regular neighborhood of P in M . Present N
as the mapping cylinder Cf = P ∪ (∂N × [0, 1])/ ∼ of an appropriate locally
homeomorphic map f : ∂N → P . Then F1 = (f−1(G)× [0, 1])/ ∼ is a surface
in N such that

(1) F1 ∩ ∂N = ∂F1, F1 ∩ P = G, and F1 is transversal to SP .
(2) G is a spine of F1.

To obtain F , attach disjoint 2-cells contained in the 3-cell M \ N to the
boundary components of F1. Since χ(F1) = χ(G) = −1, we have χ(F ) ≥ 0.

Proposition 8.2.12. Let P be a special spine of a closed 3-manifold M , and
let G ⊂ P be a two-sided theta-curve or a two-sided eyeglass curve. Denote by
P1 the special polyhedron obtained from P by the spine move along G. Then

(1) P1 is a spine of a closed 3-manifold M1.
(2) M1 can be obtained from M by a manifold move.

Proof. Let F ⊂ M be the surface constructed in Lemma 8.2.11. Since G is two-
sided, F is also two-sided. The homeomorphism � : G → G can be extended
to a homeomorphism r : F → F . It is clear that r satisfies conditions (1)–(3)
preceding Definition 8.2.4 of a manifold move. Denote by M1 the 3-manifold
obtained from M by the manifold move along F . Since r

∣
∣
G

= �, P1 is a spine
of M1.

Proposition 8.2.13. Let a closed 3-manifold M1 be obtained from a closed
3-manifold M by a manifold move along a surface F ⊂ M . Then M and M1

are similar.

Proof. Let us construct a special spine P of M such that G = P ∩ F is a
proper two-sided theta-curve. To do it, remove an open ball D3 from M such
that D = D3 ∩ F consists of one open disc if F = T 2,K2, and of three open
discs if F = S2. We do not take F = RP 2 since in this case the manifold move
is trivial. Denote by F1 the surface F \ D. Starting from F1 × ∂I, collapse
a regular neighborhood N = F1 × I in M \ D3 onto G × I, where G is a
theta-graph in F1. The collapsing can be easily extended to a collapsing of
M \ D3 onto a special spine P ⊃ G × I.

Apply to P the spine move along G. It follows from Proposition 8.2.12
that the special polyhedron P1 thus obtained is a spine of M1. Since P and
P1 are similar, the same is true for M and M1.

Example 8.2.14. We are ready now to construct two similar manifolds with
different homology groups. Take M1 = S1 × S1 × S1 and consider the torus
T 2 = S1×S1×{∗} ⊂ M . To construct M2, perform the manifold move on M1

along T 2. By Proposition 8.2.13, M2 is similar to M1. A simple calculation
shows that H1(M1;Z) = Z ⊕ Z ⊕ Z, and H1(M2;Z) = Z2 ⊕ Z2 ⊕ Z.
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Remark 8.2.15. According to Preposition 8.2.3, manifolds M1 and M2 above
have the same Turaev–Viro invariants. For instance, if q = exp(π

7 i), then
TVq(M1) = TVq(M2) = −63q3 +189q2 +378+189q−2−63q−3, see Table A.1,
where M1, M2 have names 670, 671, and Fig. 8.9, where they are shown as
genuine twins. Manifolds 665, 667 as well as 668, 669 occupying the neighboring
lines, also form genuine twin pairs since they are related by the same manifold
move.

It is interesting to recall here that Turaev–Viro invariants of order 2 de-
termine the order of the second homology group with coefficients Z2, see
Sect. 8.1.7. This agrees with the observation that H2(M1;Z2) = H2(M2;Z2) =
Z2 ⊕ Z2 ⊕ Z2.

As we have claimed at the beginning of this section, under certain condi-
tions similarity of 3-manifolds implies homeomorphism. The idea of the proof
is to transform a special spine P1 of the first manifold into a similar special
spine P2 of the second one step by step. Our first goal is to define graph moves
for transforming the singular graph of P1 to the one of P2.

Let Γ be a finite (multi)graph. Fix a finite set A. By a coloring of Γ by
A we mean a map c : E(Γ ) → A, where E(Γ ) is the set of all open edges
of Γ . Denote by V (Γ ) the set of vertices of Γ and by N(V, Γ ) a regular
neighborhood of V in Γ . The intersection of open edges with N(V, Γ ) consists
of half-open 1-cells, which are called thorns.

Definition 8.2.16. Two colored graphs Γ1 and Γ2 are called similar, if there
exists a homeomorphism ϕ : N(V (Γ1), Γ1) → N(V (Γ2), Γ2) preserving the
colors of thorns. The homeomorphism ϕ is called a similarity homeomorphism.

Let Γ be a colored graph. Choose two edges e1 and e2 of the same color and
cut each of them in the middle. Repaste the four “half edges” thus obtained
into two new edges which do not coincide with the initial ones.

Definition 8.2.17. We say the new colored graph Γ1 arising in such a way is
obtained from Γ by a graph move along e1 and e2. The graph move is called
admissible, if Γ and Γ1 are connected.

Remark 8.2.18. For any given e1 and e2 there exist two different graph
moves along e1 and e2. Suppose Γ is connected and Γ \ Int (e1 ∪ e2) con-
sists of two connected components such that each of them contains one vertex
of each edge. Then precisely one of the moves is admissible, see Fig. 8.14. If
Γ \ Int (e1 ∪ e2) is connected, then both moves are admissible.

Lemma 8.2.19. Let Γ1 and Γ2 be similar colored graphs. If they are con-
nected, then one can pass from Γ1 to Γ2 by a sequence of admissible graph
moves.
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Fig. 8.14. Admissible and nonadmissible graph moves

Proof. It follows from Definition 8.2.16 that there exists a homeomorphism
ϕ : N(V (Γ1), Γ1) → N(V (Γ2), Γ2) preserving the colors of thorns. We call
an edge e in Γ1 correct if ϕ maps the two thorns t1 and t2 contained in
it into the same edge f in Γ2. The thorns t1 and t2, the edge f and the
thorns ϕ(t1), ϕ(t2) ⊂ f are also called correct . The homeomorphism ϕ can be
extended to an edge e if and only if e is correct, so to prove Lemma 8.2.19
it is sufficient to show that the number of correct edges can be increased by
admissible graph moves on Γ1 and Γ2.

Let t1 be an incorrect thorn in Γ1 and let t2, t3, . . . , t2n be all other
incorrect thorns of the same color (say, red). We shall say that a thorn ti,
2 ≤ i ≤ 2n, is good (with respect to t1), if t1 and ti belong to the same edge
or if they can be transferred to the same edge by an admissible graph move on
Γ1. Denote by T the set {τi = ϕ(ti), 1 ≤ i ≤ 2n} of all red incorrect thorns
in Γ2. We shall say that a thorn τi, 2 ≤ i ≤ 2n, is good , if τ1 and τi belong to
the same edge or if they can be transferred to the same edge by an admissible
graph move on Γ2.

Consider two subsets A1 and A2 of the set T . The subset A1 ⊂ T consists of
the images of good thorns in Γ1, the subset A2 ⊂ T is the set of all good thorns
in Γ2. Let #X denote the number of elements in X. Since any red incorrect
edge in Γ1 and Γ2 contains at least one good thorn, we have #A1 ≥ n and
#A2 ≥ n. Note that #T = 2n and, because t1 and τ1 = ϕ(t1) are not good,
τ1 does not belong to A1 ∪ A2. Hence, #(A1 ∪ A2) < 2n, and A1 ∩ A2 = ∅.
We can conclude that there exist i and j, 2 ≤ i, j ≤ 2n, such that ti and
τj are good. By definition of good edges, we can perform admissible graph
moves such that after these moves t1 and t2 belong to the same edge and τ1

and τ2 also belong to the same edge. The moves are performed along incorrect
edges. Hence, all correct edges are preserved, but now a new correct edge has
appeared (just the one containing t1 and t2).

Our next step is to prove Proposition 8.2.22 below stating that under
certain conditions any similarity homeomorphism between neighborhoods of
vertices of special spines can be extended to the union of edges. We need two
lemmas.
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Lemma 8.2.20. Let P be a special spine of a closed 3-manifold M . Suppose
that every surface F ⊂ M with χ(F ) ≥ 0 separates M . Then each proper theta
or eyeglass curve G ⊂ P separates P .

Proof. Let F ⊂ M be the surfaces constructed in Lemma 8.2.11. Since F
separates M and P is a spine of M , Γ = F ∩ P separates P .

Suppose P is a special spine of a closed 3-manifold M . Let us color the
2-cells of P in different colors. At each edge of P three 2-cells meet, and
so to each edge there corresponds some unordered triplet of colors (possibly
with multiplicity). We call this triplet the tricolor of the edge. Thus, we may
consider SP as a colored graph. Note that each spine move on P induces an
admissible graph move on SP . It turns out that under certain conditions all
admissible graph moves can be obtained in this way.

Lemma 8.2.21. Let P be a special spine of a 3-manifold M . If every surface
F ⊂ M with χ(F ) ≥ 0 is separating, then each admissible graph move γ on
SP is induced by a spine move on P .

Proof. Let γ be performed along edges e1 and e2. Then e1 and e2 have the
same tricolor. Connect the middle points of e1 and e2 by three disjoint arcs
lj ⊂ P (j = 1, 2, 3) in such a way that G = l1 ∪ l2 ∪ l3 is a proper theta-
curve. If the tricolor has multiplicity, this is also possible. By Lemma 8.2.20,
G separates P into two parts such that each part contains one vertex of e1

and one vertex of e2. Denote by σ1 the spine move along G. Then σ1 induces
an admissible graph move along e1 and e2. Since such a move is unique (see
Remark 8.2.18), it coincides with γ.

Recall that if a closed 3-manifold M is irreducible, then any compressible
torus or Klein bottle in M bounds a solid torus or Klein bottle, respectively.
There exist no compressible projective planes at all. It follows that if an irre-
ducible M contains no closed incompressible surfaces with nonnegative Euler
characteristic, then the following holds:

(1) Every surface F ⊂ M with χ(F ) ≥ 0 separates M .
(2) Every manifold move on M produces a homeomorphic manifold, see

Remark 8.2.5.

Proposition 8.2.22. Let M1 and M2 be similar closed 3-manifolds. Suppose
M1 is irreducible and does not contain closed incompressible surfaces with
nonnegative Euler characteristic. Then there exist special spines Pi of Mi

(i = 1, 2) and a homeomorphism ψ : N1 ∪ SP1 → N2 ∪ SP2 such that ψ|N1 :
N1 → N2 is a similarity homeomorphism, where Ni = N(V (Pi), Pi).

Proof. Let ϕ : N1 → N2 be a similarity homeomorphism, where P1 and P2

are special spines of M1 and M2, respectively. We imagine the 2-cells of P1

and P2 as being painted in different colors such that ϕ preserves the colors of
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wings. As above, we paint also each edge in the corresponding tricolor. Then
ϕ induces a similarity homeomorphism between SP1 and SP2. If all edges of
SP1 are correct, then ϕ can be extended to a homeomorphism ψ satisfying the
conclusion of the proposition. If not, we use Lemma 8.2.19 to correct them by
a sequence of graph moves. By Lemma 8.2.21 this sequence can be realized by
a sequence of spine moves. It remains to note that each move on a spine of M1

produces a spine of the same manifold, so we do not violate the assumption
on M .

Let P1 and P2 be special spines of M1 and M2, and let a homeomorphism
ψ : N1 ∪ SP1 → N2 ∪ SP2 induce a similarity homeomorphism ψ′ between
N1 = N(V (P1), P1) and N2 = N(V (P2), P2). Identify N1 ∪SP1 and N2 ∪SP2

via ψ. We obtain two special spines P1 and P2 such that their singular graphs
and wings coincide.

Let e be an edge of P1. It contains two thorns t1, t2. Let ω
(i)
1 , ω

(i)
2 , ω

(i)
3 be

the wings adjacent to ti, i = 1, 2. A regular neighborhood N(e\Int (t1∪t2), P1)
of a middle part of e in P1 is homeomorphic to Y × I, where Y is a wedge of
three segments. Hence, we have a natural bijection a1e : {ω(1)

1 , ω
(1)
2 , ω

(1)
3 } →

{ω(2)
1 , ω

(2)
2 , ω

(2)
3 }. In the same way a direct product structure on N(e \

Int (t1 ∪ t2), P2) determines a natural bijection a2e : {ω(1)
1 , ω

(1)
2 , ω

(1)
3 } →

{ω(2)
1 , ω

(2)
2 , ω

(2)
3 }. Denote by βe the permutation a−1

2e a1e.

Definition 8.2.23. An edge e is called even (odd) if βe is an even (odd)
permutation.

Let C be a 2-cell of P1. Denote by EC the collection of edges incident to
C. We allow multiplicity, so if the boundary curve of C passes along an edge
e two (three) times, then e is included in EC two (three) times. Note that EC

coincides with the set of edges incident to the 2-cell of P2 having the same
color.

Lemma 8.2.24. For any 2-cell C of P1 the collection EC contains an even
number of odd edges.

Proof. Regular neighborhoods N(V (Pi),Mi) (i = 1, 2) consist of 3-balls.
Choose orientations of the 3-balls such that the similarity homeomorphism
ψ′ : N(V (P1), P1) → N(V (P2), P2) is extendible to an orientation preserv-
ing homeomorphism between N(V (P1),M1) and N(V (P2),M2). The orienta-
tions induce a cyclic order on the set {ω(j)

1 , ω
(j)
2 , ω

(j)
3 } of wings adjacent to

each thorn of P1 or P2. We shall say that an edge e is orientation reversing
with respect to Pi, if the corresponding bijection aie : {ω(1)

1 , ω
(1)
2 , ω

(1)
3 } →

{ω(2)
1 , ω

(2)
2 , ω

(2)
3 } preserves the cyclic order, i = 1, 2. Since the boundary curve

of each 2-cell in a 3-manifold is orientation preserving, EC contains an even
number of orientation reversing edges with respect to P1 and an even number
of orientation reversing edges with respect to P2. It remains to note that e is
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odd if and only if e is orientation reversing with respect to one of spines P1,
P2, and orientation preserving with respect to the other.

Theorem 8.2.25. Let M1 and M2 be similar closed 3-manifolds. Suppose M1

is irreducible and does not contain closed incompressible surfaces with non-
negative Euler characteristics. Then M1 and M2 are homeomorphic.

Proof. According to Proposition 8.2.22, there exist special spines Pi of Mi

(i = 1, 2) and a homeomorphism ψ : N1 ∪ SP1 → N2 ∪ SP2 such that ψ
∣
∣
N1

:
N1 → N2 is a similarity homeomorphism, where Ni = N(V (Pi), Pi). As above,
identify N1∪SP1 with N2∪SP2 via ψ. We define an edge e of P1 to be strongly
correct (SC) if the corresponding permutation βe is trivial. In other words, e is
SC if and only if the identification ψ can be extended to a neighborhood of e in
P1. Note that if all edges are SC, then ψ can be extended to a homeomorphism
between P1 and P2 and to a homeomorphism between M1 and M2. We claim
that one can perform spine moves on P1 until all edges become SC. This will
prove Theorem 8.2.25, because each spine move can be extended to a manifold
move on M1 that does not change its homeomorphism type.

As above, we paint the 2-cells of P1 and P2 in different colors and the edges
in tricolors. Note that if the tricolor of an edge e consists of three different
colors, then e is obviously SC. Assume that the tricolor of e is bichromatic
(i.e., it has the form (x, y, y), x = y), and that e is not SC. Then e is odd.
It follows from Lemma 8.2.24 that there is another non-SC edge e′ of tricolor
(x, z, z) (possibly z = x or z = y). Assuming first that z = y, we construct a
proper eyeglass curve G with the vertices on e and e′ (this is also possible when
z = x). By Lemma 8.2.20, G is two-sided, and the spine move σ2 along G can
be performed. The edge e will now be SC. If z = y, there are two possibilities
for the relative displacement of e and e′ along the boundary curve of y-colored
2-cell: the displacement (e, e, e′, e′) and the displacement (e, e′, e, e′). In the
first case we can still construct an eyeglass curve with vertices on e and e′ and
perform σ2. In the second case we construct a proper theta-curve G with the
vertices on e and e′. The move σ3 along G makes e strongly correct.

Assume now e is a monochromatic non-SC edge of tricolor (x, x, x), and
assume that there is another edge e′ with the same tricolor. Denote by Cx the
x-colored 2-cell of P1. We shall say that e and e′ are linked if the boundary
curve of Cx cannot be decomposed into two arcs d and d′, such that d passes
three times along l and d′ passes three times along l′. Suppose that l and l′

are linked. In order to make l strongly correct, we use spine moves σ3 along
theta-curves with vertices on l and l′. Each such move changes βe by some
permutation. It is sufficient to show that each transposition τ of wings can be
achieved. In essence, there are two possibilities for the relative displacement
of e and e′ on the boundary curve of Cx. It is clear that in both cases τ can
be realized by a move σ3 along the theta-curve G = l1 ∪ l2 ∪ l3, see Fig. 8.15.

Suppose now that each two non-SC edges of tricolor (x, x, x) are unlinked.
If e is an odd edge with tricolor (x, x, x), then there is another odd edge e′



8.2 Manifolds Having the Same Invariants 419

Fig. 8.15. Two linked and one unlinked positions of edges e, e′ in the boundary of
a 2-cell

Fig. 8.16. Decomposition of wings into pairs

with the same tricolor. We use the manifold move along G = l1 ∪ l2 ∪ l3 (see
Fig. 8.15) to make e and e′ even.

It remains to consider the following situation: all non-SC edges are mono-
chromatic and even, and there are no linked edges among them. Let e be a
non-SC edge with tricolor (x, x, x). Denote by P3 the spine obtained from P1

by the spine move across e, see Definition 8.2.10. Let t1 and t2 be the thorns
in e and let w

(i)
1 , w

(i)
2 , w

(i)
3 be the wings adjacent to ti, i = 1, 2. The direct

product structures on regular neighborhoods of e\Int (t1∪t2) in Pi determine
natural bijections aie : {w(1)

1 , w
(1)
2 , w

(1)
3 } → {w(2)

1 , w
(2)
2 , w

(2)
3 }, i = 1, 2, 3. It is

sufficient to prove that a2e coincides with a3e, because this means that the
spine move across e makes e strongly correct.

Consider a regular neighborhood N of SP1\e in P1. The difference N \SP1

consists of some number of half-open annuli and precisely three x-colored half-
open discs. Each of the discs contains two wings from the set W = {w(i)

j , 1 ≤
j ≤ 3, i = 1, 2}. Thus, we have a decomposition of the set W into three
pairs. In Fig. 8.16 the wings forming each pair are marked with similar signs.
Taking P2 or P3 instead of P1, we obtain two other decompositions. A very
important observation: since all non-monochromatic edges are SC and e is not
linked with any other edge, these three decompositions coincide.



420 8 The Turaev–Viro Invariants

At least one pair of the decomposition contains a wing adjacent to the pair,
1 ≤ j, k ≤ 3. Since each of the spines P1, P2, P3 contains only one x-colored
2-cell, we have aie(w

(1)
j ) = w

(2)
k , 1 ≤ i ≤ 3. Hence, among a1e(w

(1)
j ), a2e(w

(1)
j ),

a3e(w
(1)
j ) at least two wings coincide. Taking into account that any two dif-

ferent bijections a1e, a2e, a3e differ on an even permutation, we can conclude
that at least two of them do coincide. Since e is not SC and since the spine
move across e changes the corresponding bijection, we have a1e ≡ a2e and
a1e ≡ a3e. It follows that a2e ≡ a3e.
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Appendix

A.1 Manifolds of Complexity ≤ 6

By means of an arbitrary ordering we order closed orientable irreducible
3-manifolds of each complexity k ≤ 6 (Tables A.1–A.7) and write ki for the
manifold number i among those of complexity k. This method of notation is
borrowed from knot theory (for example, see [109]).

We present 3-manifolds as follows.

I. Lp,q is the lens space with parameters p, q.
II. S3/G is the quotient space of S3 by a free linear action of a nonabelian

finite group G. All such groups are known, see [94]. They are:
(a) Finite cyclic groups
(b) Groups Q4n, n ≥ 2
(c) Groups D2k(2n+1), k ≥ 3, n ≥ 1
(d) Groups P24, P48, P120, and P ′

8(3k), k ≥ 2
(e) Direct products of any of these groups with a cyclic group of coprime

order

The subscripts show the orders of the groups. Presentations by generators
and relations, and abelian quotients of the groups (coinciding with the first
homology groups of the corresponding 3-manifolds) are the following:

1. Q4n = 〈x, y|x2 = (xy)2 = yn〉;H1 = Z2 ⊕ Z2 if n is even, and Z4 if n is
odd.

2. D2k(2n+1) = 〈x, y|x2k

= 1, y2n+1 = 1, xyx−1 = y−1〉;H1 = Z2k .
3. P24 = 〈x, y|x2 = (xy)3 = y3, x4 = 1〉;H1 = Z3.
4. P48 = 〈x, y|x2 = (xy)3 = y4, x4 = 1〉;H1 = Z2.
5. P120 = 〈x, y|x2 = (xy)3 = y5, x4 = 1〉;H1 = 0.
6. P ′

8(3k) = 〈x, y, z|x2 = (xy)2 = y2, zxz−1 = y, zyz−1 = xy, z3k

= 1〉;H1 =
Z3k .
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III. Let hA:T → T be a self-homeomorphism of the torus T = S1 × S1

corresponding to an unimodular integer matrix A = (aij) of order 2. This
means that hA takes any curve of the type (m,n) to a curve of the type
(a11m + a12n, a21m + a22n. Then T × I/A is the Stalling manifold with fiber
T and monodromy map hA. In other words, T × I/A is obtained from T × I
by identifying its boundary tori via hA.

IV. Recall that the boundary of the orientable I-bundle K×̃I over the
Klein bottle K is a torus. Choose on it a coordinate system (m, l) such that
m projects onto a meridian (i.e., a nonseparating orientation-preserving circle)
of K and l double covers a longitude (an orientation-reversing circle) of K. Let
A be an integer matrix of order 2 with determinant (-1). Then K×̃I∪K×̃I/A
denotes the manifold obtained by pasting together two copies of K×̃I via hA.

Finally, (F, (p1, q1), . . . , (pk, qk)) is the orientable Seifert manifold with the
base surface F and k fibers with non-normalized parameters (pi, qi), 1 ≤ i ≤ k.
We do not write Seifert structures and homology groups of lens spaces, since
they are well known: Lp,q = (S2, (q, p)) and H1(Lp,q;Z) = Zp.

Remark A.1.1. For reader’s convenience, we recall the definition of the
Seifert manifold M = (F, (p1, q1), . . . , (pk, qk)), k ≥ 1, where F is a com-
pact surface and (pi, qi) are pairs of coprime integers. Consider a surface F1

obtained from F by removing the interiors of k disjoint discs. The bound-
ary circles of these discs are denoted by c1, . . . , ck. Let ck+1, . . . , cn be all the
remaining circles of ∂F . If F is closed, then this set is empty.

Consider an orientable S1-bundle M1 over F1. In other words, M1 = F1 ×
S1 or M1 = F1×̃S1, depending on whether or not F1 is orientable. We choose
an orientation of M1 and a section s:F1 → M1 of the projection map p:M1 →
F1. On each torus Ti = p−1(ci), 1 ≤ i ≤ n, we choose a coordinate system
(µi, λi) taking s(ci) as µi and a fiber p−1({∗}) as λi. The orientations of the
coordinate curves must satisfy the following conditions:

1. In case M1 = F1 × S1 the orientations of λi must be induced by a fixed
orientation of S1. If M1 = F1×̃S1, then the orientations of λi can be
chosen arbitrarily.

2. The intersection number of µi with λi must be 1.

Now, let us attach solid tori Vi = D2
i ×S1, 1 ≤ i ≤ k, to M1 via homeomor-

phisms hi: ∂Vi → Ti such that each hi takes the meridian ∂D2
i ×{∗} of Vi into

a curve of the type (pi, qi). The resulting manifold is M . We emphasize that
the remaining boundary tori Ti, k + 1 ≤ i ≤ n, of M still possess coordinate
systems (µi, λi).
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Table A.1. Complexity 0

ci M

01 S3

02 RP 3

03 L3,1

Table A.2. Complexity 1

ci M

11 L4,1

12 L5,2

Table A.3. Complexity 2

ci M

21 L5,1

22 L7,2

23 L8,3

ci M Seifert structure H1(M ; Z)

24 S3/Q8 (S2, (2, 1), (2, 1)(2,−1)) Z2 ⊕ Z2

Table A.4. Complexity 3

ci M

31 L6,1

32 L9,2

33 L10,3

ci M

34 L11,3

35 L12,5

36 L13,5

ci M Seifert structure H1(M ; Z)

37 S3/Q12 (S2, (2, 1), (2, 1), (3,−2)) Z4

Table A.5. Complexity 4

ci M

41 L7,1

42 L11,2

43 L13,3

44 L14,3

45 L15,4

ci M

46 L16,7

47 L17,5

48 L18,5

49 L19,7

410 L21,8

ci M Seifert structure H1(M ; Z)

411 S3/Q8 × Z3 (S2, (2, 1), (2, 1), (2, 1)) Z2 ⊕ Z6

412 S3/Q16 (S2, (2, 1), (2, 1), (4,−3)) Z2 ⊕ Z2

413 S3/D24 (S2, (2, 1), (2, 1), (3,−1)) Z8

414 S3/P24 (S2, (2, 1), (3, 1), (3,−2)) Z3
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Table A.6. Complexity 5

ci M

51 L8,1

52 L13,2

53 L16,3

54 L17,3

55 L17,4

56 L19,4

57 L20,9

58 L22,5

59 L23,5

510 L23,7

ci M

511 L24,7

512 L25,7

513 L25,9

514 L26,7

515 L27,8

516 L29,8

517 L29,12

518 L30,11

519 L31,12

520 L34,13

ci M Seifert structure H1(M ; Z)

521 S3/Q8 × Z5 (S2, (2, 1), (2, 1), (2, 3)) Z2 ⊕ Z10

522 S3/Q12 × Z5 (S2, (2, 1), (2, 1), (3, 2)) Z20

523 S3/Q16 × Z3 (S2, (2, 1), (2, 1), (4,−1)) Z2 ⊕ Z6

524 S3/Q20 (S2, (2, 1), (2, 1), (5,−4)) Z4

525 S3/Q20 × Z3 (S2, (2, 1), (2, 1), (5,−2)) Z12

526 S3/D40 (S2, (2, 1), (2, 1), (5,−3)) Z8

527 S3/D48 (S2, (2, 1), (2, 1), (3, 1)) Z16

528 S3/P24 × Z5 (S2, (2, 1), (3, 2), (3,−1)) Z15

529 S3/P48 (S2, (2, 1), (3, 1), (4,−3)) Z2

530 S3/P ′
72 (S2, (2, 1), (3, 2), (3,−2)) Z9

531 S3/P120 (S2, (2, 1), (3, 1), (5,−4)) 0

Table A.7. Complexity 6

ci M

61 L9,1

62 L15,2

63 L19,3

64 L20,3

65 L21,4

66 L23,4

67 L24,5

68 L24,11

69 L27,5

ci M

610 L28,5

611 L29,9

612 L30,7

613 L31,7

614 L31,11

615 L32,7

616 L33,7

617 L33,10

618 L34,9

ci M

619 L35,8

620 L36,11

621 L37,8

622 L37,10

623 L39,14

624 L39,16

625 L40,11

626 L41,11

627 L41,12

ci M

628 L41,16

629 L43,12

630 L44,13

631 L45,19

632 L46,17

633 L47,13

634 L49,18

635 L50,19

636 L55,21

ci M Seifert structure H1(M ; Z)

637 S3/Q8 × Z7 (S2, (2, 1), (2, 1), (2, 5)) Z2 ⊕ Z14

638 S3/Q12 × Z7 (S2, (2, 1), (2, 1), (3, 4)) Z28

639 S3/Q16 × Z5 (S2, (2, 1), (2, 1), (4, 1)) Z2 ⊕ Z10

640 S3/Q16 × Z7 (S2, (2, 1), (2, 1), (4, 3)) Z2 ⊕ Z14

641 S3/Q20 × Z7 (S2, (2, 1), (2, 1), (5, 2)) Z28

642 S3/Q24 (S2, (2, 1), (2, 1), (6,−5)) Z2 ⊕ Z2

643 S3/Q28 × Z3 (S2, (2, 1), (2, 1), (7,−4)) Z12
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Table A.7. (continued)

644 S3/Q28 × Z5 (S2, (2, 1), (2, 1), (7,−2)) Z20

645 S3/Q32 × Z3 (S2, (2, 1), (2, 1), (8,−5)) Z2 ⊕ Z6

646 S3/Q32 × Z5 (S2, (2, 1), (2, 1), (8,−3)) Z2 ⊕ Z10

647 S3/D56 (S2, (2, 1), (2, 1), (7,−5)) Z8

648 S3/D80 (S2, (2, 1), (2, 1), (5,−1)) Z16

649 S3/D96 (S2, (2, 1), (2, 1), (3, 5)) Z32

650 S3/D112 (S2, (2, 1), (2, 1), (7,−3)) Z16

651 S3/D160 (S2, (2, 1), (2, 1), (5, 3)) Z32

652 S3/P24 × Z7 (S2, (2, 1), (3, 1), (3, 1)) Z21

653 S3/P24 × Z11 (S2, (2, 1), (3, 2), (3, 2)) Z33

654 S3/P48 × Z5 (S2, (2, 1), (3, 2), (4,−3)) Z10

655 S3/P48 × Z7 (S2, (2, 1), (3, 1), (4,−1)) Z14

656 S3/P48 × Z11 (S2, (2, 1), (3, 2), (4,−1)) Z22

657 S3/P120 × Z7 (S2, (2, 1), (3, 1), (5,−3)) Z7

658 S3/P120 × Z13 (S2, (2, 1), (3, 1), (5,−2)) Z13

659 S3/P120 × Z17 (S2, (2, 1), (3, 2), (5,−3)) Z17

660 S3/P120 × Z23 (S2, (2, 1), (3, 2), (5,−2)) Z23

661 S3/P ′
216 (S2, (2, 1), (3, 1), (3, 2)) Z27

662 (S2, (3, 1), (3, 1), (3,−1)) Z3 ⊕ Z3

663 (S2, (3, 2), (3, 2), (3,−2)) Z3 ⊕ Z6

664 (S2, (3, 2), (3, 2), (3,−1)) Z3 ⊕ Z9

ci M Seifert structure H1(M ; Z)

665 T × I/

(
1 − 1
1 0

)

(S2, (2,−1), (3, 1), (6, 1)) Z

666 T × I/

(
0 1

−1 0

)

(S2, (2,−1), (4, 1), (4, 1)) Z2 ⊕ Z

667 T × I/

(
0 1

−1 − 1

)

(S2, (3, 1), (3, 1), (3,−2)) Z3 ⊕ Z

668 T × I/

(
−1 0
−1 − 1

)

(K, (1, 1)) Z4 ⊕ Z

669 T × I/

(
1 0
1 1

)

(T, (1, 1)) Z ⊕ Z

670 T × I/

(
−1 0

0 − 1

)
(S2, (2, 1), (2,−1), (2, 1),
(2,−1)) = K×̃S1 Z2 ⊕ Z2 ⊕ Z

671 T × I/

(
1 0
0 1

)

T × S1 Z ⊕ Z ⊕ Z

672 K×̃I ∪ K×̃I/

(
−1 0
−1 1

)
(S2, (2, 1), (2, 1), (2, 1),
(2,−1))

Z2 ⊕ Z2 ⊕ Z4

673 K×̃I ∪ K×̃I/

(
0 1
1 0

)

(RP 2, (2, 1), (2,−1)) Z4 ⊕ Z4

674 K×̃I ∪ K×̃I/

(
1 1
1 0

)

(RP 2, (2, 1), (2, 1)) Z4 ⊕ Z4
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A.2 Minimal Spines of Manifolds up to Complexity 6

For any manifold ki, k ≤ k ≤ 6, we present all its minimal special spines.
Manifolds 01–03 of complexity 0 are presented by their minimal almost simple
spines. The spines are given by regular neighborhoods of their singular graphs.
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A.3 Minimal Spines of Some Manifolds of Complexity 7

Looking at the earlier table of manifolds of complexity ≤ 6, one can see
that the great majority of them have minimal spines modeled on nonclosed
chains and triangles with tails. The same tendency holds for manifolds of
complexity 7. In order to save space, we reproduce only a part of Ovchinnikov’s
table [102,103] of all closed orientable irreducible 3-manifolds of complexity 7.
Namely, we list below only those manifolds of complexity 7 that do not admit
minimal spines of the two aforementioned types. Each manifold is represented
by only one minimal spine chosen arbitrarily. We number the manifold in
the same order as they appear in [102, 103]. The presence of an asterisk as
in 7∗k tells us that the numbering differs from the original one (for example,
manifold 7∗1 coincides with the manifold 788 from [102,103]). A list of all closed
orientable irreducible 3-manifolds up to complexity 9 was obtained by Martelli
and Petronio, see [74]. Nonorientable manifolds are considered in [2, 3].

Let us introduce additional notation needed to describe manifolds of com-
plexity 7 (Table A.8). Let Dm = (D2, (2,−1), (3,m)), where m is not divisible
by 3, be the Seifert manifold fibered over the disc with two exceptional fibers.
Recall that the boundary torus of Dm possesses a coordinate system (µ, λ),
see Remark A.1.1. Let A be an integer matrix of order 2 with determinant
(-1). Then Dm ∪ K×̃I/A denotes the manifold obtained by attaching Dm to
K×̃I/A via a homeomorphism hA: ∂Dm → ∂(K×̃I) corresponding to A.

Table A.8. Some manifolds of complexity 7

ci M Seifert structure H1(M ; Z)

7∗
1 S3/Q28 (S2, (2,−1), (2, 1), (7, 1)) Z4

7∗
2 (S2, (2,−1), (3, 1), (7, 1)) 0

7∗
3 (S2, (2,−1), (4, 1), (5, 1)) Z2

7∗
4 T × I/

(
1 0
2 1

)

(T 2, (1, 2)) Z ⊕ Z ⊕ Z2

7∗
5 T × I/

(
−1 0
−2 − 1

)

(K2, (1, 2)) Z2 ⊕ Z2 ⊕ Z

7∗
6 T × I/

(
−2 − 1
−1 − 1

)

− Z ⊕ Z5

7∗
7 T × I/

(
2 1
1 1

)

− Z

7∗
8 K×̃I ∪ K×̃I/

(
1 0

−2 − 1

)

(S2, (2, 1), (2, 1), (2, 1), (2, 1)) Z2 ⊕ Z2 ⊕ Z8

7∗
9 K×̃I ∪ K×̃I/

(
−1 − 1

1 2

)

− Z4 ⊕ Z4

7∗
10 K×̃I ∪ K×̃I/

(
1 − 1

−2 1

)

− Z4 ⊕ Z8
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Table A.8. (continued)

7∗
11 K×̃I ∪ K×̃I/

(
0 1
1 − 2

)

(RP 2, (2, 1), (2, 3)) Z4 ⊕ Z4

7∗
12 K×̃I ∪ K×̃I/

(
1 − 2

−1 1

)

− Z2 ⊕ Z2 ⊕ Z4

7∗
13 D2 ∪ K×̃I/

(
0 1
1 0

)

(RP 2, (2, 1), (3,−1)) Z24

7∗
14 D2 ∪ K×̃I/

(
1 0

−1 − 1

)

(S2, (2, 1), (2, 1), (2, 1)(3,−1)) Z2 ⊕ Z14

7∗
15 D1 ∪ K×̃I/

(
1 0

−1 − 1

)

(S2, (2, 1), (2, 1), (2, 1)(3,−2)) Z2 ⊕ Z10

7∗
16 D2 ∪ K×̃I/

(
−1 − 1

0 1

)

− Z4

7∗
17 D1 ∪ K×̃I/

(
−1 − 1

0 1

)

− Z4

7∗
18 D2 ∪ K×̃I/

(
−1 0

0 1

)

(S2, (2, 1), (2, 1), (2, 1)(3,−4)) Z2 ⊕ Z2

7∗
19 D2 ∪ K×̃I/

(
0 1
1 − 1

)

(RP 2, (2, 1), (3, 2)) Z24

7∗
20 D1 ∪ K×̃I/

(
0 1
1 − 1

)

(RP 2, (2, 1), (3, 1)) Z24

7∗
21 D2 ∪ K×̃I/

(
1 − 1

−1 0

)

− Z28

7∗
22 D1 ∪ K×̃I/

(
1 − 1

−1 0

)

− Z20
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A.4 Tables of Turaev–Viro Invariants

Tables A.9–A.13 were composed by my former student Sokolov. They contain
the values of Turaev–Viro invariants of order ≤ 7 and their summands for all
closed orientable irreducible 3-manifolds up to complexity 6. The invariants
are presented by polynomials of q, where q is a primitive root of unity of
degree 2r. For the sake of compactness of notation, we write σk instead of
qk + q−k.

Table A.9. TV-invariants for manifolds of complexity 0–2

ci M ν 3 4 5 6 7
0 1 1 1 1 1

01 S3 1 0 0 0 0 0
2 0 0 0 0 0
Σ 1 1 1 1 1
0 1 2 σ2 + 2 4 −σ3 + 2σ2 + 3

02 RP 3 1 -1 −σ1 −σ2 − 2 −2σ1 σ3 − 2σ2 − 3
2 0 0 0 0 0
Σ 0 −σ1 + 2 0 −2σ1 + 4 0
0 1 1 σ2 + 2 3 σ2 + 2

03 L3,1 1 0 0 0 0 0
2 0 0 0 0 0
Σ 1 1 σ2 + 2 3 σ2 + 2

0 1 2 1 4 σ2 + 2
11 L4,1 1 0 0 0 0 0

2 1 0 1 0 σ2 + 2
Σ 2 2 2 4 2σ2 + 4
0 1 1 0 1 −σ3 + 2σ2 + 3

12 L5,2 1 0 0 0 0 0
2 0 0 0 0 0
Σ 1 1 0 1 −σ3 + 2σ2 + 3

0 1 1 σ2 + 3 1 −σ3 + 2σ2 + 3
21 L5,1 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 3 1 −σ3 + 2σ2 + 3
0 1 1 σ2 + 2 1 0

22 L7,2 1 0 0 0 0 0
2 0 0 0 0 0
Σ 1 1 σ2 + 2 1 0
0 1 2 σ2 + 2 4 1

23 L8,3 1 0 0 0 0 0
2 1 2 σ2 + 2 0 1
Σ 2 4 2σ2 + 4 4 2
0 1 4 σ2 + 4 10 2σ2 + 7

24 Q8 1 0 0 0 0 0
2 3 6 3σ2 + 12 18 6σ2 + 21
Σ 4 10 4σ2 + 16 28 8σ2 + 28
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Table A.10. TV-invariants for manifolds of complexity 3

ci M ν 3 4 5 6 7

0 1 2 1 6 1
31 L6,1 1 -1 σ1 -1 0 -1

2 0 0 0 0 0
Σ 0 σ1 + 2 0 6 0

0 1 1 1 3 −σ3 + 2σ2 + 3
32 L9,2 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 3 −σ3 + 2σ2 + 3

0 1 2 0 4 σ2 + 2
33 L10,3 1 -1 σ1 0 2σ1 −σ2 − 2

2 0 0 0 0 0
Σ 0 σ1 + 2 0 2σ1 + 4 0

0 1 1 1 1 σ2 + 2
34 L11,3 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 1 σ2 + 2

0 1 2 σ2 + 2 6 −σ3 + 2σ2 + 3
35 L12,5 1 0 0 0 0 0

2 1 0 σ2 + 2 6 −σ3 + 2σ2 + 3
Σ 2 2 2σ2 + 4 12 −2σ3 + 4σ2 + 6

0 1 1 σ2 + 2 1 1
36 L13,5 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 2 1 1

0 1 2 σ2 + 4 10 −σ3 + 2σ2 + 5
37 Q12 1 0 0 0 0 0

2 1 0 σ2 + 4 6 −σ3 + 2σ2 + 5
Σ 2 2 2σ2 + 8 16 −2σ3 + 4σ2 + 10

0 1 1 σ2 + 2 1 −σ3 + 3σ2 + 6
41 L7,1 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 2 1 −σ3 + 3σ2 + 6

0 1 1 1 1 σ2 + 2
42 L11,2 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 1 σ2 + 2
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Table A.11. TV-invariants for manifolds of complexity 4

ci M ν 3 4 5 6 7

0 1 1 σ2 + 2 1 1
43 L13,3 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 2 1 1

0 1 2 1 4 0
44 L14,3 1 -1 −σ1 -1 2σ1 0

2 0 0 0 0 0
Σ 0 −σ1 + 2 0 2σ1 + 4 0

0 1 1 σ2 + 3 3 1
45 L15,4 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 3 3 1

0 1 2 1 4 −σ3 + 2σ2 + 3
46 L16,7 1 0 0 0 0 0

2 1 2 1 0 −σ3 + 2σ2 + 3
Σ 2 4 2 4 −2σ3 + 4σ2 + 6

0 1 1 σ2 + 2 1 σ2 + 2
47 L17,5 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 2 1 σ2 + 2

0 1 2 σ2 + 2 6 σ2 + 2
48 L18,5 1 -1 −σ1 −σ2 − 2 0 −σ2 − 2

2 0 0 0 0 0
Σ 0 −σ1 + 2 0 6 0

0 1 1 1 1 −σ3 + 2σ2 + 3
49 L19,7 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 1 −σ3 + 2σ2 + 3

0 1 1 1 3 −σ3 + 3σ2 + 6
410 L21,8 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 3 −σ3 + 3σ2 + 6

0 1 4 2σ2 + 5 12 −2σ3 + 7σ2 + 12
411 Q8 × Z3 1 0 0 0 0 0

2 3 6 6σ2 + 15 36 −6σ3 + 21σ2 + 36
Σ 4 10 8σ2 + 20 48 −8σ3 + 28σ2 + 48

0 1 4 1 10 −σ3 + 2σ2 + 5
412 Q16 1 -2 0 -2 4σ1 2σ3 − 4σ2 − 10

2 1 2 1 6 −σ3 + 2σ2 + 5
Σ 0 6 0 4σ1 + 16 0
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Table A.12. TV-invariants for manifolds of complexity 4, 5

ci M ν 3 4 5 6 7

0 1 2 2σ2 + 5 10 −2σ3 + 5σ2 + 8
413 D24 1 0 0 0 0 0

2 1 2 2σ2 + 5 6 −2σ3 + 5σ2 + 8
Σ 2 4 4σ2 + 10 16 −4σ3 + 10σ2 + 16

0 1 1 2σ2 + 5 3 −2σ3 + 4σ2 + 6
414 P24 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 2σ2 + 5 3 −2σ3 + 4σ2 + 6

0 1 2 σ2 + 2 4 1
51 L8,1 1 0 0 0 0 0

2 1 -2 σ2 + 2 0 1
Σ 2 0 2σ2 + 4 4 2

0 1 1 σ2 + 2 1 1
52 L13,2 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 2 1 1

0 1 2 1 4 −σ3 + 2σ2 + 3
53 L16,3 1 0 0 0 0 0

2 1 -2 1 0 −σ3 + 2σ2 + 3
Σ 2 0 2 4 −2σ3 + 4σ2 + 6

0 1 1 σ2 + 2 1 σ2 + 2
54 L17,3 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 2 1 σ2 + 2

0 1 1 σ2 + 2 1 σ2 + 2
55 L17,4 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 2 1 σ2 + 2

0 1 1 1 1 −σ3 + 2σ2 + 3
56 L19,4 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 1 −σ3 + 2σ2 + 3

0 1 2 σ2 + 3 4 1
57 L20,9 1 0 0 0 0 0

2 1 0 σ2 + 3 0 1
Σ 2 2 2σ2 + 6 4 2
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Table A.12. (continued)

ci M ν 3 4 5 6 7

0 1 2 σ2 + 2 4 1
58 L22,5 1 -1 σ1 −σ2 − 2 −2σ1 -1

2 0 0 0 0 0
Σ 0 σ1 + 2 0 −2σ2 + 4 0

0 1 1 σ2 + 2 1 −σ3 + 2σ2 + 3
59 L23,5 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 2 1 −σ3 + 2σ2 + 3

0 1 1 σ2 + 2 1 −σ3 + 2σ2 + 3
510 L23,7 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 2 1 −σ3 + 2σ2 + 3

0 1 2 1 6 σ2 + 2
511 L24,7 1 0 0 0 0 0

2 1 -2 1 -6 σ2 + 2
Σ 2 0 2 0 2σ2 + 4

0 1 1 0 1 σ2 + 2
512 L25,7 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 0 1 σ2 + 2

0 1 1 σ2 + 3 1 σ2 + 2
513 L25,9 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 3 1 σ2 + 2

0 1 2 1 4 −σ3 + 2σ2 + 3
514 L26,7 1 -1 σ1 -1 −2σ1 σ3 − 2σ2 − 3

2 0 0 0 0 0
Σ 0 σ1 + 2 0 −2σ1 + 4 0

0 1 1 σ2 + 2 3 1
515 L27,8 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 2 3 1

0 1 1 1 1 1
516 L29,8 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 1 1



466 A Appendix

Table A.12. TV-invariants for manifolds of complexity 5 (continued)

ci M ν 3 4 5 6 7

0 1 1 1 1 1
517 L29,12 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 1 1

0 1 2 σ2 + 3 6 −σ3 + 2σ2 + 3
518 L30,11 1 -1 −σ1 −σ2 − 3 0 σ3 − 2σ2 − 3

2 0 0 0 0 0
Σ 0 −σ1 + 2 0 6 0

0 1 1 1 1 σ2 + 2
519 L31,12 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 1 σ2 + 2

0 1 2 1 4 1
520 L34,13 1 -1 −σ1 -1 2σ1 -1

2 0 0 0 0 0
Σ 0 −σ1 + 2 0 2σ1 + 4 0

521 Q8 × Z5

0 1 4 σ2 + 3 10 −3σ3 + 6σ2 + 11
1 0 0 0 0 0
2 3 6 3σ2 + 9 18 −9σ3 + 18σ2 + 33
Σ 4 10 4σ2 + 12 28 −12σ3 + 24σ2 + 44

522 Q12 × Z5

0 1 2 σ2 + 3 10 −2σ3 + 5σ2 + 8
1 0 0 0 0 0
2 1 0 σ2 + 3 6 −2σ3 + 5σ2 + 8
Σ 2 2 2σ2 + 6 16 −4σ3 + 10σ2 + 16

523 Q16 × Z3

0 1 4 σ2 + 2 12 2σ2 + 5
1 -2 0 −2σ2 − 4 0 −4σ2 − 10
2 1 2 σ2 + 2 12 2σ2 + 5
Σ 0 6 0 24 0
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Table A.12. (continued)

ci M ν 3 4 5 6 7

0 1 2 3σ2 + 5 4 2σ2 + 7
524 Q20 1 0 0 0 0 0

2 1 0 3σ2 + 5 0 2σ2 + 7
Σ 2 2 6σ2 + 10 4 4σ2 + 14

0 1 2 −σ2 + 1 6 −2σ3 + 7σ2 + 12
525 Q20 × Z3 1 0 0 0 0 0

2 1 0 −σ2 + 1 6 −2σ3 + 7σ2 + 12
Σ 2 2 −2σ2 + 2 12 −4σ3 + 14σ2 + 24

0 1 2 −σ2 + 1 4 −3σ3 + 6σ2 + 11
526 D40 1 0 0 0 0 0

2 1 2 −σ2 + 1 0 −3σ3 + 6σ2 + 11
Σ 2 4 −2σ2 + 2 4 −6σ3 + 12σ2 + 22

0 1 2 σ2 + 4 10 2σ2 + 5
527 D48 1 0 0 0 0 0

2 1 2 σ2 + 4 6 2σ2 + 5
Σ 2 4 2σ2 + 8 16 4σ2 + 10

0 1 1 σ2 + 3 3 2σ2 + 4
528 P24 × Z5 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 3 3 2σ2 + 4

0 1 2 σ2 + 2 10 2
529 P48 1 -1 σ1 −σ2 − 2 0 -2

2 0 0 0 0 0
Σ 0 σ1 + 2 0 10 0

0 1 1 σ2 + 4 3 2
530 P ′

72 1 0 0 0 0 0
2 0 0 0 0 0
Σ 1 1 σ2 + 4 3 2

0 1 1 3σ2 + 5 1 −2σ3 + 5σ2 + 8
531 P120 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 3σ2 + 5 1 −2σ3 + 5σ2 + 8
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Table A.13. TV-invariants for manifolds of complexity 6

ci M ν 3 4 5 6 7

0 1 1 1 3 −σ3 + 2σ2 + 3
61 L9,1 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 3 −σ3 + 2σ2 + 3

0 1 1 0 3 1
62 L15,2 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 0 3 1

0 1 1 1 1 −σ3 + 2σ2 + 3
63 L19,3 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 1 −σ3 + 2σ2 + 3

0 1 2 0 4 1
64 L20,3 1 0 0 0 0 0

2 1 0 0 0 1
Σ 2 2 0 4 2

0 1 1 1 3 0
65 L21,4 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 3 0

0 1 1 σ2 + 2 1 −σ3 + 2σ2 + 3
66 L23,4 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 2 1 −σ3 + 2σ2 + 3

0 1 2 1 6 σ2 + 2
67 L24,5 1 0 0 0 0 0

2 1 2 1 -6 σ2 + 2
Σ 2 4 2 0 2σ2 + 4

0 1 2 1 6 σ2 + 2
68 L24,11 1 0 0 0 0 0

2 1 2 1 6 σ2 + 2
Σ 2 4 2 12 2σ2 + 4

0 1 1 σ2 + 2 3 1
69 L27,5 2 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 2 3 1
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Table A.13. (continued)

ci M ν 3 4 5 6 7

0 1 2 σ2 + 2 4 0
610 L28,5 1 0 0 0 0 0

2 1 0 σ2 + 2 0 0
Σ 2 2 2σ2 + 4 4 0

0 1 1 1 1 1
611 L29,9 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 1 1

0 1 2 0 6 −σ3 + 2σ2 + 3
612 L30,7 1 -1 −σ1 0 0 σ3 − 2σ2 − 3

2 0 0 0 0 0
Σ 0 −σ1 + 2 0 6 0

0 1 1 1 1 σ2 + 2
613 L31,7 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 1 σ2 + 2

0 1 1 1 1 σ2 + 2
614 L31,11 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 1 σ2 + 2

0 1 2 σ2 + 2 4 σ2 + 2
615 L32,7 1 0 0 0 0 0

2 1 2 σ2 + 2 0 σ2 + 2
Σ 2 4 2σ2 + 4 4 2σ2 + 4

0 1 1 σ2 + 2 3 −σ3 + 2σ2 + 3
616 L33,7 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 2 3 −σ3 + 2σ2 + 3

0 1 1 σ2 + 2 3 −σ3 + 2σ2 + 3
617 L33,10 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 2 3 −σ3 + 2σ2 + 3
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Table A.13. TV-invariants for manifolds of complexity 6 (continued)

ci M ν 3 4 5 6 7

0 1 2 1 4 1
618 L34,9 1 -1 −σ1 -1 2σ2 -1

2 0 0 0 0 0
Σ 0 −σ1 + 2 0 2σ1 + 4 0

0 1 1 0 1 −σ3 + 3σ2 + 6
619 L35,8 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 0 1 −σ3 + 3σ2 + 6

0 1 2 1 6 1
620 L36,11 1 0 0 0 0 0

2 1 0 1 -6 1
Σ 2 2 2 0 2

0 1 1 σ2 + 2 1 −σ3 + 2σ2 + 3
621 L37,8 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 2 1 −σ3 + 2σ2 + 3

0 1 1 σ2 + 2 1 −σ3 + 2σ2 + 3
622 L37,10 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 2 1 −σ3 + 2σ2 + 3

0 1 1 1 3 σ2 + 2
623 L39,14 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 3 σ2 + 2

0 1 1 1 3 σ2 + 2
624 L39,16 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 3 σ2 + 2

0 1 2 σ2 + 3 4 −σ3 + 2σ2 + 3
625 L40,11 1 0 0 0 0 0

2 1 2 σ2 + 3 0 −σ3 + 2σ2 + 3
Σ 2 4 2σ2 + 6 4 −2σ3 + 4σ2 + 6

0 1 1 1 1 1
626 L41,11 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 1 1
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Table A.13. (continued)

ci M ν 3 4 5 6 7

0 1 1 1 1 1
627 L41,12 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 1 1

0 1 1 1 1 1
628 L41,16 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 1 1

0 1 1 σ2 + 2 1 1
629 L43,12 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 2 1 1

0 1 2 1 4 −σ3 + 2σ2 + 3
630 L44,13 1 0 0 0 0 0

2 1 0 1 0 −σ3 + 2σ2 + 3
Σ 2 2 2 4 −2σ3 + 4σ2 + 6

0 1 1 σ2 + 3 3 σ2 + 2
631 L45,19 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 3 3 σ2 + 2

0 1 2 1 4 σ2 + 2
632 L46,17 1 -1 −σ1 -1 −2σ1 −σ2 − 2

2 0 0 0 0 0
Σ 0 −σ1 + 2 0 −2σ1 + 4 0

0 1 1 σ2 + 2 1 −σ3 + 2σ2 + 3
633 L47,13 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 2 1 −σ3 + 2σ2 + 3

0 1 1 1 1 0
634 L49,18 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 1 1 0

0 1 2 σ2 + 3 4 1
635 L50,19 1 -1 −σ1 −σ2 − 3 −2σ1 -1

2 0 0 0 0 0
Σ 0 −σ1 + 2 0 −2σ1 + 4 0
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Table A.13. TV-invariants for manifolds of complexity 6 (continued)

ci M ν 3 4 5 6 7

0 1 1 σ2 + 3 1 1
636 L55,21 1 0 0 0 0 0

2 0 0 0 0 0
Σ 1 1 σ2 + 3 1 1

637 Q8 × Z7

0 1 4 2σ2 + 5 10 −σ3 + 3σ2 + 6
1 0 0 0 0 0
2 3 6 6σ2 + 15 18 −3σ3 + 9σ2 + 18
Σ 4 10 8σ2 + 20 28 −4σ3 + 12σ2 + 24

638 Q12 × Z7

0 1 2 2σ2 + 5 10 −σ3 + 3σ2 + 6
1 0 0 0 0 0
2 1 0 2σ2 + 5 6 −σ3 + 3σ2 + 6
Σ 2 2 4σ2 + 10 16 −2σ3 + 6σ2 + 12

639 Q16 × Z5

0 1 4 σ2 + 3 10 −2σ3 + 5σ2 + 8
1 -2 0 −2σ2 − 6 −4σ1 4σ3 − 10σ2 − 16
2 1 2 σ2 + 3 6 −2σ3 + 5σ2 + 8
Σ 0 6 0 −4σ1 + 16 0

640 Q16 × Z7

0 1 4 σ2 + 2 10 −σ3 + 3σ2 + 6
1 -2 0 −2σ2 − 4 −4σ1 2σ3 − 6σ2 − 12
2 1 2 σ2 + 2 6 −σ3 + 3σ2 + 6
Σ 0 6 0 −4σ1 + 16 0

641 Q20 × Z7

0 1 2 −σ2 + 1 4 −σ3 + 3σ2 + 6
1 0 0 0 0 0
2 1 0 −σ2 + 1 0 −σ3 + 3σ2 + 6
Σ 2 2 −2σ2 + 2 4 −2σ3 + 6σ2 + 12
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Table A.13. (continued)

ci M ν 3 4 5 6 7

0 1 4 1 16 σ2 + 2
642 Q24 1 0 0 0 0 0

2 3 -2 3 12 3σ+6
Σ 4 2 4 28 4σ2 + 8

643 Q28 × Z3

0 1 2 2σ2 + 5 6 −σ3 − σ2 + 2
1 0 0 0 0 0
2 1 0 2σ2 + 5 6 −σ3 − σ2 + 2
Σ 2 2 4σ2 + 10 12 −2σ3 − 2σ2 + 4

644 Q28 × Z5

0 1 2 σ2 + 3 4 3σ3 − σ2 + 2
1 0 0 0 0 0
2 1 0 σ2 + 3 0 3σ3 − σ2 + 2
Σ 2 2 2σ2 + 6 4 6σ3 − 2σ2 + 4

645 Q32 × Z3

0 1 4 2σ2 + 5 12 −σ3 + 2σ2 + 3
1 -2 −4σ1 −4σ2 − 10 0 2σ3 − 4σ2 − 6
2 1 2 2σ2 + 5 12 −σ3 + 2σ2 + 3
Σ 0 −4σ1 + 6 0 24 0

646 Q32 × Z5

0 1 4 σ2 + 3 10 1
1 -2 −4σ1 −2σ2 − 6 4σ1 -2
2 1 2 σ2 + 3 6 1
Σ 0 −4σ1 + 6 0 4σ1 + 16 0

0 1 2 2σ2 + 5 4 3σ3 − σ2 + 2
647 D56 1 0 0 0 0 0

2 1 2 2σ2 + 5 0 3σ3 − σ2 + 2
Σ 2 4 4σ2 + 10 4 6σ3 − 2σ2 + 4
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Table A.13. TV-invariants for manifolds of complexity 6 (continued)

ci M ν 3 4 5 6 7

0 1 2 3σ2 + 5 4 −2σ3 + 7σ2 + 12
648 D80 1 0 0 0 0 0

2 1 2 3σ2 + 5 0 −2σ3 + 7σ2 + 12
Σ 2 4 6σ2 + 10 4 −4σ3 + 14σ2 + 24

0 1 2 2σ2 + 5 10 −σ3 + 2σ2 + 5
649 D96 1 0 0 0 0 0

2 1 2 2σ2 + 5 6 −σ3 + 2σ2 + 5
Σ 2 4 4σ2 + 10 16 −2σ3 + 4σ2 + 10

0 1 2 σ2 + 4 4 −σ3 − σ2 + 2
650 D112 1 0 0 0 0 0

2 1 2 σ2 + 4 0 −σ3 − σ2 + 2
Σ 2 4 2σ2 + 8 4 −2σ3 − 2σ2 + 4

0 1 2 −σ2 + 1 4 2σ2 + 7
651 D160 1 0 0 0 0 0

2 1 2 −σ2 + 1 0 2σ2 + 7
Σ 2 4 −2σ1 + 2 4 4σ2 + 14

652 P24 × Z7

0 1 1 σ2 + 4 3 −σ3 + 3σ2 + 6
1 0 0 0 0 0
2 0 0 0 0 0
Σ 1 1 σ2 + 4 3 −σ3 + 3σ2 + 6

653 P24 × Z11

0 1 1 2σ2 + 5 3 2
1 0 0 0 0 0
2 0 0 0 0 0
Σ 1 1 2σ2 + 5 3 2

654 P48 × Z5

0 1 2 σ2 + 3 10 −2σ3 + 4σ2 + 6
1 -1 −σ1 −σ2 − 3 0 2σ3 − 4σ2 − 6
2 0 0 0 0 0
Σ 0 −σ1 + 2 0 10 0
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Table A.13. (continued)

ci M ν 3 4 5 6 7

655 P48 × Z7

0 1 2 1 10 −σ3 + 3σ2 + 6
1 -1 σ1 -1 0 σ3 − 3σ2 − 6
2 0 0 0 0 0
Σ 0 σ1 + 2 0 10 0

656 P48 × Z11

0 1 2 σ2 + 2 10 2σ2 + 4
1 -1 −σ1 −σ2 − 2 0 −2σ2 − 4
2 0 0 0 0 0
Σ 0 −σ1 + 2 0 10 0

657 P120 × Z7

0 1 1 −σ2 + 1 1 −σ3 + 3σ2 + 6
1 0 0 0 0 0
2 0 0 0 0 0
Σ 1 1 −σ2 + 1 1 −σ3 + 3σ2 + 6

658 P120 × Z13

0 1 1 −σ2 + 1 1 −2σ3 + 5σ2 + 8
1 0 0 0 0 0
2 0 0 0 0 0
Σ 1 1 −σ2 + 1 1 −2σ3 + 5σ2 + 8

659 P120 × Z17

0 1 1 −σ2 + 1 1 −σ3 + 2σ2 + 5
1 0 0 0 0 0
2 0 0 0 0 0
Σ 1 1 −σ2 + 1 1 −σ3 + 2σ2 + 5

660 P120 × Z23

0 1 1 −σ2 + 1 1 2σ2 + 5
1 0 0 0 0 0
2 0 0 0 0 0
Σ 1 1 −σ2 + 1 1 2σ2 + 5
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Table A.13. TV-invariants for manifolds of complexity 6 (continued)

ci M ν 3 4 5 6 7

0 1 1 2σ2 + 5 3 2σ2 + 4
661 P ′

216 1 0 0 0 0 0
2 0 0 0 0 0
Σ 1 1 2σ2 + 5 3 2σ2 + 4

662 M(S2, (3, 2), (3, 1), (3,−2))

0 1 2 2σ2 + 5 12 −2σ3 + 6σ2 + 9
1 -1 −σ1 −2σ2 − 5 −6σ1 2σ3 − 6σ2 − 9
2 0 0 0 0 0
Σ 0 −σ1 + 2 0 −6σ1 + 12 0

663 M(S2, (3, 2), (3, 2), (3,−2))

0 1 1 σ2 + 4 9 −2σ3 + 3σ2 + 6
1 0 0 0 0 0
2 0 0 0 0 0
Σ 1 1 σ2 + 4 9 −2σ3 + 3σ2 + 6

664 M(S2, (3, 2), (3, 2), (3,−1))

0 1 1 2σ2 + 5 9 σ3 + 3
1 0 0 0 0 0
2 0 0 0 0 0
Σ 1 1 2σ2 + 5 9 σ3 + 3

665 T × I/

(
1 − 1
1 0

)

0 1 2 σ2 + 3 12 0
1 0 0 0 0 0
2 1 -2 σ2 + 3 0 0
Σ 2 0 2σ2 + 6 12 0
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Table A.13. (continued)

ci M ν 3 4 5 6 7

666 T × I/

(
0 1

−1 0

)

0 1 4 0 12 −σ3 + 3σ2 + 6
1 -2 0 0 0 2σ3 − 6σ2 − 12
2 1 0 0 0 −σ3 + 3σ2 + 6
Σ 0 4 0 12 0

667 T × I/

(
0 1

−1 − 1

)

0 1 2 σ2 + 3 12 0
1 0 0 0 0 0
2 1 -2 σ2 + 3 0 0
Σ 2 0 2σ2 + 6 12 0

668 T × I/

(
−1 0
−1 − 1

)

0 1 4 −σ2 + 2 18 −2σ3 + 6σ2 + 12
1 0 0 0 0 0
2 3 0 −3σ2 + 6 18 −6σ3 + 18σ2 + 36
Σ 4 4 −4σ2 + 8 36 −8σ3 + 24σ2 + 48

669 T × I/

(
1 0
1 1

)

0 1 4 −σ2 + 2 18 −2σ3 + 6σ2 + 12
1 0 0 0 0 0
2 3 0 −3σ2 + 6 18 −6σ3 + 18σ2 + 36
Σ 4 4 −4σ2 + 8 36 −8σ3 + 24σ2 + 48
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Table A.13. TV-invariants for manifolds of complexity 6 (continued)

ci M ν 3 4 5 6 7

670 T × I/

(
−1 0

0 − 1

)

0 1 8 4σ2 + 12 48 −9σ3 + 27σ2 + 54
1 0 0 0 0 0
2 7 28 28σ2 + 84 252 −63σ3 + 189σ2 + 378
Σ 8 36 32σ2 + 96 300 −72σ3 + 216σ2 + 432

671 T × I/

(
1 0
0 1

)

0 1 8 4σ2 + 12 48 −9σ3 + 27σ2 + 54
1 0 0 0 0 0
2 7 28 28σ2 + 84 252 −63σ3 + 189σ2 + 378
Σ 8 36 32σ2 + 96 300 −72σ3 + 216σ2 + 432

672 K×̃I ∪ K×̃I/

(
−1 0
−1 1

)

0 1 4 4σ2 + 8 28 −9σ3 + 19σ2 + 30
1 0 0 0 0 0
2 3 12 12σ2 + 24 72 −27σ3 + 57σ2 + 90
Σ 4 16 16σ2 + 32 100 −36σ3 + 76σ2 + 120
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Table A.13. (continued)

ci M ν 3 4 5 6 7

673 K×̃I ∪ K×̃I/

(
0 1
1 0

)

0 1 8 3σ2 + 10 46 −6σ3 + 22σ2 + 44
1 0 0 0 0 0
2 7 24 21σ2 + 70 198 −42σ3 + 154σ2 + 308
Σ 8 32 24σ2 + 80 244 −48σ3 + 176σ2 + 352

674 K×̃I ∪ K×̃I/

(
1 1
1 0

)

0 1 4 σ2 + 4 22 −4σ3 + 10σ2 + 16
1 0 0 0 0 0
2 3 4 3σ2 + 12 30 −12σ3 + 30σ2 + 48
Σ 4 8 4σ2 + 16 52 −16σ3 + 40σ2 + 64
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Mathématique de France, Paris (2001)

102. Ovchinnikov, M. A.: The table of 3-manifolds of complexity 7. Preprint,
Chelyabinsk State University (1997)

103. Ovchinnikov, M. A: Construction of special spines for 3-manifolds of
Waldhausen. PhD Thesis, Chelyabinsk State University, Chelyabinsk (2000)

104. Pachner, U.: Bistellare Equivalenz kombinatorischer Mannigfaltigkeiten.
(German) Arch. Math. (Basel), 30, no. 1, 89–98 (1978)

105. Pachner, U.: P. L. homeomorphic manifolds are equivalent by elementary
shellings. European J. Combin., 12, no. 2, 129–145 (1991)

106. Papakyriakopoulos, C. D.: On Dehn’s lemma and the asphericity of knots. Ann.
of Math. (2), 66, 1–26 (1957)

107. Piergallini, R.: Standard moves for standard polyhedra and spines. Third
National Conference on Topology (Italian) (Trieste, 1986). Rend. Circ. Mat.
Palermo (2) Suppl. No. 18, 391–414 (1988)

108. Roberts, J.: Skein theory and Turaev–Viro invariants. Topology, 34, no. 4,
771–787 (1995)

109. Rolfsen, D.: Knots and links. Mathematics Lecture Series, No. 7. Publish or
Perish, Inc., Berkeley, Calif. (1976)

110. Rourke, C. P., Sanderson, B. J.: Introduction to piecewise-linear topology.
Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69. Springer-Verlag,
New York-Heidelberg (1972)

111. Scott, P.: The geometries of 3-manifolds. Bull. London Math. Soc., 15, no. 5,
401–487 (1983)

112. Seifert, H.: Topologie dreidimensionaler gefaserter Räume. Acts math., 60,
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I-bundle chamber, 282
T -move, 15
U -move, 35
θ-curve, 97
m-move, 25
p-complexity, 228
2-component, 5, 62
3-manifold

boundary irreducible, 68
core of, 167
Haken, 169, 215
irreducible, 68
quasi-Stallings, 283
simple, 232
singular, 10
Stallings, 252
sufficiently large, 166
with boundary pattern, 126

admissible
butterfly, 397
coloring, 395
disc replacement, 344
graph move, 414
hierarchy, 226
homeomorphism, 126
identification scheme, 11
isotopy, 126
subpolyhedron, 226
triple, 395

Andrews–Curtis conjecture, 35
annulus

almost clean, 232
essential, 68, 232

longitudinal, 248
perturbed, 286
rough, 248
transverse, 248

arch construction, 7, 27
assembling, 378, 379

balanced Andrews–Curtis conjecture,
34

band shift, 242
beam, 6
beam degree, 142
Bing membrane, 40
boundary

annulus shift, 242
base, 282
compressing disc, 125
curve, 9
equivalence of homeomorphisms, 306
exterior, 265
interior, 252, 265
lateral, 282
pattern, 126
return, 110

boundary compressing disc, 126
bubble move, 23
butterfly, 4, 383

cellular
map, 177
spine, 176

chain
direct, 284
quasi-Stallings, 284
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Stallings, 284
twisted, 284

chamber, 222, 224
chamber complexity, 277
clean

edge, 333
isotopy, 126
subset, 126

collapse
elementary, 1
polyhedral, 1

completion move, 267, 270
complexity

extended, 184
of a 3-manifold, 62
of a 3-manifold with boundary

pattern, 373
of an almost simple polyhedron, 62

composite manifold, 357
compressing disc, 123, 170

strict, 192
core of a 3-manifold, 167
correct

edge, 415
thorn, 415

counterpass, 74
crown, 193

one-legged, 193
crystallization, 366

of genus 2, 367
curve

essential, 298
fundamental, 118
normal, 110
short, 74
singular, 298

disc
compressing, 123, 170
essential, 125
semi-clean, 130

disc replacement, 343
horizontal, 344
monotone, 344

disc shift, 241
domination of polyhedra, 48
DS-diagram, 331
dual link, 203

edge degree, 128
elementary piece, 107
equivalence

(T, L, B), 23
(T, L, m), 25
(T, U), 36
3d, 34
bubble, 24
T, 23

equivalent
extensions, 227
knots, 213
sections, 318
subpolyhedra, 230
surfaces, 230

essential
annulus, 68, 232
arc, 264
circle, 264
compressing disc, 125
singular annulus, 298
singular torus, 298
torus, 232

Euler number, 300
extended complexity, 184
extended Heegaard diagram, 367
extension move, 227

general, 273
special, 286

eyeglass curve, 410

face identification scheme, 11
faithful

fibration, 265, 314
isotopy, 314
subpolyhedron, 313

free
boundary, 19
edge, 331
face, 1

fundamental
curve, 118
region, 304
solution, 109
surface, 109

gem, 365
Generalized Andrews–Curtis

Conjecture, 34
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graph manifold, 84
graph move, 414

half-disc shift, 241
Heegaard

diagram, 362
Heegard

complexity, 362
hierarchy, 216, 222

admissible, 226
homeomorphism

admissible, 126
conugating, 303
fiber-preserving, 304, 308

inessential annulus, 68
interior return, 110
interior annulus shift, 241
inverse leg, 195
irreducible 3-manifold, 68
isotopy

admissible, 126
clean, 126

JSJ-chamber, 83, 263
JSJ-system, 261

knot, 213

labeled molecule, 332
lower

arc, 192
compressing disc, 192
return, 205

lune move, 17

manifold move, 410
mapping cylinder, 3
marked polyhedron, 25
matching system, 108
minimal normal surface, 156
Möbius triplet, 99

necklace, 313
needle, 334
normal

curve, 110
isotopy, 107
surface, 127

parallel surfaces, 229
partition wall, 226
patch

bad, 229
good, 229

pattern
complexity, 228
strip, 268

pattern strip, 276
plate, 6
plate degree, 142
Poincaré Conjecture, 47
polyhedra

(T, L)-equivalent, 24
T -equivalent, 24
bubble equivalent, 24

polyhedron
1-collapsible, 46
almost simple, 61
contractible, 46
simple, 4
special, 5
unthickenable, 9, 43

presentation complexity, 103
proper

ball, 19
subpolyhedron, 14
surface, 68

quasi-Stallings manifold, 283

recognition problem, 213
reduced form, 156
regular neighborhood, 3

in a manifold, 3
in a polyhedron, 54

regular switch, 116
relative spine, 373
return, 236
rough

annulus, 248
torus, 248

saturated subset, 265
Seifert manifold, 422
self-assembling, 378
semi-clean

band, 256
disc, 130



492 Index

separating move, 241
short curve, 74
similar

3-manifolds, 409
graphs, 414
spines, 409

similarity homeomorphism, 409, 414
simple

3-manifold, 232
polyhedron, 4
relative spine, 373
skeleton, 224, 295
spine, 5

simple polyhedron
with boundary, 14

singular
graph, 4, 62
manifold, 10
simplex, 11
triangulation, 12

size of a homeomorphism, 304
skeleton, 222

simple, 224, 295
vertical, 295

special
polyhedron, 5
spine, 5

spine, 1, 2
almost simple, 61
cellular, 176
pseudominimal, 78
relative, 373
simple, 5
special, 5

spine move, 411, 412
Stallings

chain, 284
manifold, 252

stretching factor, 310
strongly equivalent

curves, 271
subpolyhedra, 230
surfaces, 230

surface
p-minimal, 229

boundary incompressible, 125, 127
fundamental, 109
incompressible, 124
injective, 124
minimal, 156
normal, 127, 138
proper, 126
strongly minimal, 240
vertical, 288

thin position, 196
thorn, 414
torus

essential, 232
perturbed, 286, 288
rough, 248

transient move, 36
triangulation

ideal, 13
tricolor, 416
triple

hat, 402
point, 4

true vertex, 4, 62
tunnel, 125
twin manifolds, 405
twist along a surface, 273

upper
arc, 192
compressing disc, 192
return, 205

vertex move, 16
vertical

skeleton, 295
special polyhedron, 296
surface, 288

week Poincaré Conjecture, 56
weight of a curve, 343
width of a link, 195
wing, 383

Zeeman Conjecture, 46




