
4 Oscillators with Elastic Contact and Friction 

To verify the developed point contact model with friction, a comparison of meas-
urements and calculations with respect to the normal and tangential contact behav-
ior is carried out. The experimental setup, shown in Fig. 3.6-1, is used for the in-
vestigations in the normal and tangential directions, see also (Hinrichs et al. 
1997b, 1998). On the one hand, an oscillator with an elastic normal contact and on 
the other hand a self-excited oscillator with friction is analyzed. The theoretical 
foundation for both investigated systems is derived in a more general sense within 
the next Chapter. Due to the strong non-linearity of the normal and tangential con-
tact, the systems are analyzed in the time domain. 

4.1 System Description 

In Fig. 4.1-1, the investigated system model with n possible contact points at the 
surface of an elastic body is depicted. The body is assumed linear elastic, as de-
scribed in Chapter 2. The surface of the elastic body, where contact can occur, is 
discretized and for each possible contact node, the contact and friction laws have 
to be formulated. The ground is moving with the constant velocity V. The normal 
force FNj and the tangential force FRj act at the node j. 

The vibration amplitudes of the elastic body, the external forces and the contact 
forces are described in the initial I-coordinate-system. With respect to the elastic 
body, the excitation point B is introduced, where two external loads and one ex-
ternal moment are applied. A constant force FN0 like the gravity force is applied at 
the node C parallel to the Iy-axis. The surface at the node j is defined by the height 
yRj. As derived in Chapter 2.4, the dynamics are given by the equation of motion 
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The transformation into the state space requires the definition of the state vector, 
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with the number m of modes. Hence, differential equation of second order defined 
in Eq.(4.1-1) can be transferred to a set of differential equation of first order 
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Fig. 4.1-1 Elastic body with friction contacts 

Here, the external force vector of the elastic body is defined by 
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with the generalized forces 

 [ ]TBByBxB MFF −−−=F ,    (4.1-5) 

 [ ]T
0NC 0F0 −=F      (4.1-6) 

and the generalized contact forces at the node j 

 [ ]TNjRjj 0FF−=F .     (4.1-7) 

The points B and 0 are connected by springs in the x- and y-direction, which are 
not shown in Fig. 4.1-1. Furthermore, absolute viscous damping with respect to 
the point B is assumed. Then, the external forces of the elastic body are given by 
 Bxx0BxBx xbuxcF +−= )( ,    (4.1-8) 

 Byy0ByBy ybuycF +−= )(     (4.1-9) 

and MB=0, where the point 0 is harmonically excited with 
 )sin()( txtu E0x0 ω=      (4.1-10) 

and 
 )sin()( tytu E0y0 ω= .     (4.1-11) 

Using the modal description of the linear elastic body, the generalized displace-
ment vector of the elastic body is given by 
 Tqw =        (4.1-12) 

with 

 [ ]T
111CCCBBB yxyxyx …ϕϕϕ=w  (4.1-13) 

and the generalized velocity vector 
 qTv =        (4.1-14) 

with 

 [ ]T111CCCBBB yxyxyx …ϕϕϕ=v . (4.1-15) 
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The normal contact force with respect to the node j is given by Eq.(3.2-24) 

 0vuhcufRcF NjNjj0NjNjZjj0NNj ≥+= )()( **** β .  (4.1-16) 

The relative normal penetration is given by 

 jRjNj yyu −= ,      (4.1-17) 

where yRj denotes the macroscopic displacement of the moving ground like the 
waviness. Then, the corresponding velocity in the Iy-direction normal to the 
ground velocity V is given by 

 jRjNjNj yyuv −== .     (4.1-18) 

The relative tangential displacement and velocity of each contact element is given 
by 
 Vtxu jrj −=       (4.1-19) 

and 
 Vxuv jrjrj −== ,     (4.1-20) 

respectively. 
To reduce the degrees of freedom of the investigated system and, hence, to re-

duce the computation time, the tangential contact elasticity is modeled as a part of 
the elastic body. The contact stiffness due to the contact model, described in Chap. 
3.3 is then assumed to be infinite. 

Assuming dry friction the friction force at the node j is given by 
 )()( rjNjrjRj vsFvF µ=      (4.1-21) 

with the friction coefficient µ, which is assumed to be nonlinearly dependent on 
the relative velocity vrj with 
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with a decreasing characteristic for λe>0 and the smoothing function 

 )arctan()( rjSrj vk2vs
π

= ,     (4.1-23) 

with the slope parameter kS, which defines the slope at zero relative velocity vrj=0. 
For large slope parameters kS, the non-smooth system dynamics can be approxi-
mated. A disadvantage due to large values of this slope parameter is the occur-
rence of stiff differential equations. But there exist numerical integration methods 
with variable step size, which calculate the numerical or, if available, use the ana-
lytical Jacobian matrix of the investigated system, see for example (NAG 1986) 
and (SIMULINK 1999). Both improvements speed up the solution procedure and 
solve the system equations for relatively large values of the slope parameter in a 
reasonable time and an acceptable accuracy. Due to the investigations with respect 
to the relative error, see Chapter 3.7 and Fig. 3.7-3, the slope parameter is set to be 
kS=106 [s/m] in the following. 
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4.2 Oscillator with Elastic Contact 

The experimental setup is shown in Fig. 3.6-1, where a pendulum supported by 
springs represents the linear oscillator. The rotational degree of freedom of the 
pendulum and its degree of freedom normal to the plane of rotation have been re-
alized by air bearings providing small damping. A magnetic excitation force real-
izes the harmonic excitation, see (Popp et al. 1996). For the experimental investi-
gation of the impact oscillator, the pendulum hits a stop. A more detailed 
description of the test stand is given in (Hinrichs et al. 1997b). The reduced sys-
tem parameters of the oscillator shown in Figure 4.2-1 are given by: m=0.092 
[kg], cy=99.085 [N/m], by=0.02046 [Ns/m], y0=0.00047 [m], yR=0.0. The contact 
law is defined by Eq.(4.1-16), where the following contact parameter have been 
used: cN0=0.3 106 [N/m], RZ=5.2 [µm], βcN0=6.0 [Ns/m]. Additionally, the modal 
parameters of the first bending mode of the pendulum, see Figure 3.6-1, have been  
estimated by the simple beam theory. 

The model investigated is shown in Fig. 4.2-1, which is excited by a harmonic 
displacement of the point 0. The contact parameters and relative displacements 
and velocities are assumed to be constant within the contact region. Then, the sys-
tem response to the harmonic excitation is independent on the number n of contact 
elements and, hence, the number of contact points can be reduced to one. Here, the 
error with respect to the discretization of the contact area is identical to zero. 

 
Fig. 4.2-1 Oscillator with elastic contact 

 
In Fig. 4.2-2, the comparison of the measurements and calculation of phase 

diagrams for different excitation angular frequencies ωE are shown. If the dis-
placement y is less than yR=0.0, the elastic body contacts the wall, see Fig. 4.2-2a 
and b. The influence of the higher modes is quite high just after the elastic contact, 
when separation takes place. 

The comparison is good as well for period two oscillations, compare Fig. 4.2-
2c with d, and for higher periodic oscillations, compare Fig. 4.2-2e and f as well 
as for chaotic motions, compare Fig. 4.2-2g with h. Overall, modeling the elastic-
ity of the contact and the higher modes of the elastic body is an extension and an 
improvement compared to a non-smooth description of the contact law combined 
with the rigid body formulation, see (Hinrichs et al. 1998). 
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Fig. 4.2-2 Phase diagrams of measurements (Hinrichs 1997b) and calculations for different 
excitation angular frequencies ωΕ  a) measurement and  b) calculation for ωE=64.32 [rad/s]  
c) measurement and  d) calculation for ωE=30.84 [rad/s]  e) measurement and  f ) calcula-

tion for ωE=37.41 [rad/s]  g) measurement and  h) calculation for ωE=23.63 [rad/s] 
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Fig. 4.2-3 Comparison of measurements (Hinrichs 1997b) and calculations for the excita-
tion angular frequencies ωE=9.845 [rad/s]  a) measurement of displacement and  b) velocity 
c) measured phase plot  d) calculation of displacement and  e) velocity  f ) calculated phase 

plot 

In Fig. 4.2-3, a phenomenon is studied which is called chatter. The rebouncing 
of the oscillator leads to sticking at the stop for an infinite number of elastic con-
tacts. Furthermore, the calculated displacements, velocities and phase plots are 
compared with the corresponding measurements. In this extreme example, the 
agreement of measurements and calculations is also very good. 

4.3 Friction Oscillator 

The experimental setup is shown in Fig. 3.6-1 again and is modified with respect 
to the friction contact. The pendulum is pressed onto the disc driven with constant 
speed. The real rotational system is reduced to the friction oscillator shown in Fig. 
4.3-1, where a belt instead of a disc moves with the velocity V. The system is ex-
cited by a harmonic displacement of the point 0. The normal contact force FN0 is 
assumed to be constant. 
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Fig. 4.3-1 Friction oscillator 

To verify the tangential contact model, the measurements presented in (Hin-
richs et al. 1998), see Fig. 4.3-2a, and the following experimental data are used: 
V=0.001 [m/s], ωE=13.8 [rad/s], FN0=14.0 [N], x0=0.0005 [m], m=5.632 [kg], 
cx=5610.0 [N/m], bx=0.768 [Ns/m]. The material contact partners are steel and 
polyurethane modeled with the following contact parameters: µ0=0.8, µ ∞ =0.55, 
λe=1000.0 [s/m], cN0=10.0 106 [N/m], RZ=10.0 [µm], βcN0=40.0 [Ns/m]. The error 
with respect to the discretization is again zero, because only translations of the 
mass are involved. For a given normal contact force, the static normal displace-
ment has to be calculated iteratively, because the normal force is nonlinearly de-
pendent on the relative normal displacement by Eq.(4.1-16). This iteration can be 
omitted, if the first rigid body mode in the normal direction is included within the 
model of the elastic body. The rigid body mode of the mass in the tangential direc-
tion results in a one-periodic solution shown in Fig. 4.3-2b. Including the elastic-
ity of the higher mode leads to an improvement of the calculations, see Fig. 4.3-
2c, which shows oscillations with higher frequency after the transition from slip to 
stick. The modal parameters for this higher mode have been approximated by the 
data given in (Hinrichs 1997a). However, the calculations do not show the meas-
ured high-periodic oscillations. Hinrichs (1997a) explained this phenomenon with 
a stochastic varying friction coefficient.  

A further reason for this physical effect can be the surface profile. Besides the 
roughness, the waviness of the contact surface can influence the dynamical behav-
ior. Assuming that the waviness of the ground is dominated by a single sine wave, 
the displacement in the y-direction at the node j is given by 
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with the wave amplitude yA, the wave length λ and the relative displacement urj 
given by Eq.(4.1-19). The wave amplitude of yA=200.0 [µm] and the wave length 
of λ=2.5 [mm] results in a higher-periodic solution shown in Fig. 4.3-2d, which 
shows a good qualitative and quantitative agreement with the measurement, 
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shown in Fig. 4.3-2a. A further improvement of the calculation could be to use the 
wave spectrum of the surface and to expand Eq.(4.3-1) in a Fourier series. 

 

 

Fig. 4.3-2 Phase diagrams  a) measurement (Hinrichs 1997a)  b) calculation using two 
modes  c) three modes  d) three modes plus modeling waviness 

The analysis of systems with dry friction shows a rich dynamic behavior from 
equilibrium to chaos. Bifurcation scenarios like period doubling sequences are de-
scribed for example in (Feeny and Moon 1994; Oestreich et al. 1996; Popp et al. 
1995a, 1995b, 1996, 2005, Hoffmann 2006).  

4.4 Bifurcations in Dynamical Systems with Friction 

In (Stelter and Sextro 1991) the bifurcation theory described in (Seydel 1983) has 
been applied to a two degree of freedom system using a smooth friction character-
istic. Period doublings and Hopf-bifurcations as well as turning points have been 
determined. Both, unstable branches and stable coexisting solutions have been 
calculated. Several jumping effects, which are typical for nonlinear systems, have 

equations of motion. Beside of periodic solutions, more complicated motions are 
possible. When these motions are generated by deterministic equations, determi-
nistic chaos may occur. The routes to chaos may be via period doublings, torus-
bifurcations or intermittency, see (Kreuzer 1987) and (Troger 1991). One aim of 
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the investigations is to calculate the bifurcations, where the solution changes dra-
matically. The classification of the bifurcations is possible by the Floquet theory, 
see (Seydel 1988a) and Iooss (1980). Furthermore, the typical bifurcation scenar-
ios are most important for the understanding of self-sustained oscillations. In order 
to show the basic phenomena of dynamic systems with dry friction, a simple 
model of a two mass spring system has been taken in account leading to the fol-
lowing set of equation of motion, see (Stelter 1990) and (Stelter and Sextro 1991) 
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(4.4-1) 
Eq.(4.4-1) represents a two-masses-spring-damper system, which is excited by 
friction forces exerted by a running band. Self-excitation due to dry friction is only 
possible when the friction force has a decreasing characteristic, see (Magnus 
1976). The parameter dependencies of the solution can be calculated with program 
package BIFPACK. Furthermore, the bifurcation behaviour can be investigated 
with the use of the Floquet theory, see (Seydel 1988a), (Hagedorn 1984) and 
(Iooss 1980). With the Floquet theory a unique classification of the global bifurca-
tions is possible. For generalization the following abbreviations have been intro-
duced: the mass ratio 

21 mm /:=γ ,       (4.4-2) 

the damping ratio 

21 dd /:=δ ,      (4.4-3) 

the stiffness ratio 

21 cc /:=κ ,       (4.4-4) 

the normal force ratio 

2N1N FF /:=ρ       (4.4-5) 

and the load parameter 

22N cFB /:= .      (4.4-6) 

The dimensionless damping is given by 

222 mc2dD /:= .     (4.4-7) 

The chosen parameter values are 

020152s01 1
2 .,.,.,. ==== − κδγω and 01.=ρ .  

The nonlinear structure of equation (4.4-1) becomes obvious by the vector nota-
tion 

)(xrAxx +=′       (4.4-8) 

where A is the linear system matrix and r is the vector of the nonlinear friction 
forces. For the use of the program package BIFPACK developed by Seydel 
(1988b), the function of friction force has to be continuously differentiable. Thus, 
for the numerical simulations the following model for the friction characteristic 
was used 
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with the constants  
ms0100bms02b141a140a 2121 /.,/.,.,. ==== , 

where γ denotes the friction coefficient, which depends on the relative velocity vr, 
and FN denotes the normal force. The relative velocities is given by 

0i22ri vxv −′= ω .      (4.4-10) 

To be able to characterize the solution nearby the equilibrium the Jacobian J has 
to be calculated by differentiation of Eq.(4.4-8) with regard to x. 
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)()(      (4.4-11) 

The amplitude x3 has been used to show the bifurcation behaviour. The important 
parameters of the system are the load parameter B, the band velocity v0 and the 
damping D. Within the bifurcation diagrams, Hopf-bifurcations, turning points 
and period doubling occur, while stationary bifurcations do not appear. To deter-
mine the Hopf-bifurcations, one has to calculate the eigenvalues of the Jacobian. 
They occur when a complex pair crosses the imaginary axis. The equilibrium x=0 
is stable, when all eigenvalues are within the left side of the complex plane.  

 

 
Fig. 4.4-1 Bifurcation diagram of the load parameter with phase plane plots 

 
In the bifurcation diagram of the load parameter, see Fig. 4.4-1 a sub-critical 

Hopf-bifurcation (H1) arises at a parameter value of B=1.12 m, while a special 
Hopf-bifurcation (H2) occurs at B=7.09 m. Starting from the equilibrium the am-
plitude is jumping from the sub-critical Hopf-bifurcation (H1) to the stable peri-
odic branch. On the other hand, coming from the periodic branch, the amplitude is 
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jumping from the turning point (T1) to the equilibrium. This jumping phenomenon 
is typical for systems with dry friction. The unstable branch between the turning 
point and the sub-critical Hopf-bifurcation can be understood as a borderline be-
tween the stable attractors. Here, a stable periodic attractor and a stable equilib-
rium coexist within a parameter range of 0.88 m<B<1.12 m. Following the peri-
odic attractors several period doublings occur, which end in a chaotic motion. The 
calculated period doublings are at the load parameters of 8.09 m, 9.26 m, and 9.36 
m. Beside the bifurcation scenario via period doubling a coexisting periodic solu-
tion starts at a load parameter of B=7.25 m.  

 
Fig. 4.4-2 Bifurcation diagram of the band velocity 

 

 
Fig. 4.4-3 Bifurcation diagram of the damping coefficient 
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Furthermore the bifurcation diagrams of the band velocity, see Fig. 4.4-2, and 
the damping ratio D, see Fig. 4.4-3, and have been obtained by means of the pro-
gram package BIFPACK. They also show turning points, Hopf-bifurcations and 
period doublings. The routes to chaos are also via period doublings. Coexisting so-
lutions, which are limited by sub-critical period doublings and turning points, 
could be determined. In Fig. 4.4-2, three stable attractors coexist within the pa-
rameter range of 3.57 m/s < 0v < 4.09 m/s. 




