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Preface 

Friction contacts are used to transmit forces or to dissipate energy. A better under-
standing of friction phenomena can result in improvements like the reduction of 
noise and maintenance costs, increased life time of machines and improved energy 
efficiency. There exists a rich literature on friction. Depending on the features of 
the friction contact, different contact models are applied and dependent on the 
contact model, different solution methods are preferred. The aim of this book is to 
describe an efficient procedure to model dynamical contact problems with friction. 
This procedure is applied to different practical problems and verified by experi-
ments. 

The dynamics of the elastic bodies in contact are described by a reduced order 
model through the so called modal description, to speed up calculations. This de-
scription is presented in Chap. 2. In Chap. 3 the generalized contact model is de-
veloped, which includes the main physical effects like contact elasticity, rough-
ness, friction characteristics etc.. The contact planes are discretized and a point 
contact model is applied to each area element. The thermomechanics of the con-
tact is investigated, as well as the calculation of wear. The application of the com-
bined procedure of the point contact model and the modal description of the elas-
tic components are illustrated by three different examples. An impact and friction 
oscillator, see Chap. 4, is investigated in the time domain, while the friction damp-
ing of elastic structures with expanded friction contacts is analyzed within the fre-
quency domain, see Chap. 5. The stationary rolling contact is presumed to calcu-
late the wear of wheel-rail-systems, see Chap. 6. 

This work arose during my research at the Institute of Mechanics of the Univer-
sity of Hannover in Germany. Part of the work was supported by the “For-
schungsvereinigung Verbrennungskraftmaschinen e.V. (FVV, Frankfurt)” and was 
sponsored by the “Bundesministerium für Wirtschaft” through the “Arbeitsge-
meinschaft industrieller Forschungsvereinigungen e.V. (AiF, Köln), (AiF Nr. 
10684)”, a federal collaboration of the turbomachinery-industry and the “Deutsche 
Forschungsgemeinschaft (Projekt Nr. SE 895/3-1)”. 

This book is based on the script that leads to my “Habilitation” in Mechanics. 
The “Habilitation” marks the end of the education as lecturer. In this context I 
would like to thank Prof. Dr.-Ing. habil. K. Popp, Prof. Dr.-Ing. habil. P. Wriggers 
and Prof. Dr.-Ing. habil. G.-P. Ostermeyer for carefully reading the script and for 
their support. 

Furthermore, I would like to thank all of my colleagues at the Institute of Me-
chanics for the open discussion of any problems and the successful cooperation. I 
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at the institute, he always supported me and therefore most of my thanks belong to 
him. 
 
Hannover, 2002  

would especially like to emphasize Prof. Dr.-Ing. habil. K. Popp. During my time 

           Walter Sextro 



 

Preface to the Second Edition 

Therefore several new results have been added like the wear calculation of a 
wheel-rail system as well as the efficient calculation of multi-coupled bladed disc 
assemblies with friction contacts.  

This book can be seen as the result of more than ten years research at the Insti-
tute of Mechanics (now Institute of Dynamics and Vibration) at the University of 

in April 2005 and therefore I would like to dedicate this book to him. 
Furthermore I would like to thank the “Deutsche Forschungsgemeinschaft 

(DFG)” for the financial support of the project of the “Forschergruppe: Dyna-
mische Kontaktprobleme mit Reibung bei Elastomeren”. Regarding Chapter 3.6 I 
have to acknowledge Dr.-Ing. Markus Lindner, Dipl.-Ing. Patrick Moldenhauer 
and Dipl.-Ing. M. Wangenheimof of the Institute of Dynamics and Vibration, 
Leibnitz University Hannover, for their work done with regard to the friction 

ing with the instationary rolling contact I have to thank Dipl.-Ing. Florian Gutzeit. 
Furthermore I have to thank Dr. Jaroslaw Szwedowicz, ABB Turbo Systems, 

Baden, Switzerland, who carried out spin pit tests with regard of bladed disc as-
semblies with shrouds to validate the developed method as presented in Chapter 5.  

The numerical investigations in chapter 5.4 due to the multi-coupling of bladed 
disc was supported by the “Forschungsvereinigung Verbrennungskraftmaschinen 
e.V. (FVV, Frankfurt)” and was sponsored by the “Bundesministerium für 
Wirtschaft (BMWi)” through the “Arbeitsgemeinschaft industrieller Forschungs-
vereinigungen e.V. (AiF, Köln), (AiF Nr. 12565)”. Here, I have to thank the corre-
sponding working group and the chairman Dr.-Ing. Karl Urlichs, Siemens Power 
Generation AG, Nürnberg for the good collaboration. 

The application of the theory to a system with extended friction contacts was 
carried out by Dipl.-Ing. Alexander Genzo, Volkswagen, Wolfsburg. I have to 
thank him for this investigation presented in Chapter 5.5 and Volkswagen for their 
support. 

Furthermore I would like to thank Dipl.-Ing. Ingo Kaiser, German Aerospace 
Center (DLR), Wesseling for his support in the application of the developed mod-
ule to calculate the wear of railway wheels as presented in Chapter 6.9. 

 
 

Since the last edition of this book the knowledge about friction has increased. 

Dr.-Ing. habil. Karl Popp for the good collaboration and his support. He passed away 

characteristics of rubber. With regard to the results presented in Chapter 6.10 deal-

Hannover (now Leibnitz University Hannover). Again I have to thank Prof.



Last but not least I would like to thank my wife Ursula and my children Marvin 
and Rocco for their moral support in writing this book. 
 
Graz, 2006      
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1 Introduction 

1.1 Problem Description 

Friction is the resistance against sliding and, therefore, friction plays an important 
role in dynamical engineering systems. In (Moore 1975) the mechanisms of fric-
tion are reviewed in a rich literature and the components of dry friction are sum-
marized in (Seireg 1998) as follows: 

� Mechanical interlocking due to the surface roughness, which leads to a higher 
static friction coefficient, compared to the sliding friction coefficient and ex-
plains the dynamic friction force as the force to lift off the contacts of the upper 
surface over the contacts of the lower surface. 

� If the developed pressure at discrete contacts results in local welding. Due to 
relative motion, the welded surfaces are sheared. Ploughing of the harder mate-
rial through the softer material contributes to the friction forces as well. 

� Molecular attraction, which attributes to frictional forces and to energy dissipa-
tion, if atoms are plucked out of the attraction range, 

� and for completeness, the electrostatic forces between the surfaces. 

On the one hand, there exist dynamic systems, where friction has to be mini-
mized, so that wear is reduced and the lifetime as well as the efficiency of a dy-
namic system is increased. Due to friction and wear the economic loss is estimated 
by five percent of the gross national product, see (Persson 1994). Hence, reducing 
friction and wear saves money. On the other hand, friction is used to transmit 
forces or to reduce vibration amplitudes, see (Popp 1994). A possibility to reduce 
the vibration of a machine is to use friction contacts to dissipate energy. The re-
duction of vibration amplitudes results in a reduction of alternating stresses and 
furthermore in an increase of lifetime and safety. The main part of the dissipated 
energy is transferred to heat. Dependent on the vibration frequencies the noise de-
velopment can be reduced as well. From here, there is a need for efficient calcula-
tion procedures to optimize the dynamics of systems with friction contacts (Wrig-
gers and Nackenhorst 2006). Before summarizing the main features of an elastic 
contact with friction, some important machines and machine components are pre-
sented, where friction plays an important role. 
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Fig. 1.1-1 Brake system (Lucas, Germany) 

Brakes 
Brakes are used to transmit forces to reduce the velocity of a vehicle, see Fig. 1.1-1. 
Dependent on the friction characteristic stick-slip vibration and, in extreme, a 
squealing noise can occur. One reason for the squealing noise is that, if the friction 
coefficient reaches a certain value, the brake system will become unstable, see 
also (Ibrahim 1994; Wallaschek et al. 1999; Allgaier et al. 1999). With respect to 
brakes, the manufacturing industry is not only interested in reducing the squealing 
noise, but also in reducing the temperature development within brakes. Otherwise, 
cooling devices would have to be installed. In general, the friction and therefore 
the dynamical behavior of brakes is very sensitive on the presence of moisture. 
 
Machine Tools 
A machine tool with friction is, for example a grinding machine, shown in Fig. 
1.1-2, where friction plays an important role to develop smooth surfaces. The 
worn particles have high temperatures since they are red-hot. During grinding, it is 
common to use cooling fluid to remove worn material from the grinding disc, to 
reduce the temperature of the workpiece and the possibility of surface-burn and, 
hence, to increase the surface quality. Dependent on the system parameters ma-
chine chattering can occur. In this case, so-called chatter marks on the workpiece 
are found. Up to now, the occurrence of chatter vibrations as well as surface-burn 
is not understood in full detail. But there are hints, that chatter vibrations belong to 
friction-induced vibrations, see (Schütte and Heimann 1998). 
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Fig. 1.1-2 Grinding machine 

Motors 
On the one hand, friction and wear problems between piston and cylinder of a mo-
tor are still a dynamic contact problem, see Fig. 1.1-3. The oil acts as a lubricant 
within the contact regions and reduces friction and wear. On the other hand, the 
calculation of the dynamics of chains is a typical problem of solving a multibody 
and multicontact system. Since many components are connected to each other in a 
motor, friction damping could be used to reduce the noise as well as the alternat-
ing stresses. Looking at the motor in full detail, there exist a huge potential to in-
crease the lifetime of motor components, if the corresponding calculation methods 
are available, to optimize the system behavior. 
 

 

Fig. 1.1-3 Motor (BMW, Germany, http://www.bmw.com/) 
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Fig. 1.1-4 Turbine (Rolls Royce, England, http://www.rolls-royce.com/) 

Turbines 
Turbine blades, see Fig. 1.1-4, are excited by fluctuating gas forces. To increase 
the lifetime of the turbine blades, friction is introduced to dissipate the vibration 
energy. Additionally, friction contacts are designed between adjacent blades or be-
tween the disc and the blades. The relative displacement of the contacting compo-
nents and dry friction is used to dissipate energy and, hence, to reduce the vibra-
tions amplitudes, noise and alternating stresses. Since a bladed disc assembly is a 
very large dynamical system, efficient contact models have to be developed for 
optimizing theses structures. 
 
Bearings 
To increase the efficiency of slide and ball bearings, see Fig. 1.1-5, the bearing 
friction has to be lowered and, therefore, lubrication is used. For example, the oil 
film on the ball bearings reduces friction forces because a part of the normal force 
is carried by the hydrodynamic forces developed by the oil film. Therefore, the 
hydrodynamic forces in the contact will decrease the friction and, hence, the wear. 
Again, for this multibody and multicontact problem with friction, there is a need 
for fast calculation algorithms to determine, for example, the longtime behavior of 
ball bearings in connection within the surroundings. 
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Fig. 1.1-5 Ball bearing (SKF, Germany) 

Wheel-Rail Systems 
The wheel-rail contact is a typical example for friction used to transmit forces, see 
Fig. 1.1-6. The contact behavior depends on the material properties of the contact-
ing bodies. Also, the macroscopic geometry and the roughness of the surfaces in-
fluence the dynamical behavior of the system. The development of heat within the 
rolling contact influences the tangential contact forces as well. Here, the develop-
ment of wear can lead to unround wheels, which increases the cost of maintenance 
and the generation of noise. Since wear is a longtime phenomenon, fast calculation 
procedures have to be developed to solve this problem. 
 
 

 
 

Fig. 1.1-6 Wheel-rail contact (ISB, University of Hannover, Germany) 
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Fig. 1.1-7 Elastic contact with friction 
 

All friction problems described above can be summarized as shown in the flow 

ferent materials, are in contact with each other. In general, both bodies can vibrate 
and move spatially, which is described by displacements and velocities of both 
elastic bodies in the so-called state space. Friction is always correlated with the 
development of wear and heat. The development of wear influences the surfaces 
profiles. The modified surfaces have an effect on the normal pressure distribution 
within the contact and therefore onto the dynamical behavior. 

The heat generated and the temperature distribution within the bodies affects 
the material parameters and thus the contact forces, which can change the dynam-
ics of the whole system. If the temperature is high enough, material transformation 
like oxidation can occur at the surfaces, which results again in different contact 
parameters and hence, will influence the contact and friction forces. Besides the 
contact forces, the worn material can act as a lubricant on both structures, which 
can reduce the friction forces. The lubricant and the worn material are defined to 
be the so-called third body. The output of the contact with friction is the worn ma-
terial, lubricant, heat and noise. 

1.2 Review 

Friction contacts can be distinguished with respect to the following properties, see 
(Popp 1994): 

� size of the contact area relative to the structure: local or expanded, 
� type of normal contact force: static or dynamic, 
� condition in normal direction: Hertzian or non-Hertzian, 
� motion in tangential direction: micro- or macroslip. 

Therefore, within the literature there exist a large number of different friction con-
tact models. 

Body 1

Body 2

Contact with
friction

Contact forces
Heat source

Contact forces
Heat source

State Space
Surface profile

State Space
Surface profile

Lubricant

Lubricant
Worn material

Heat
Noise

chart of Fig. 1.1-7. Two bodies, which can have different surface profiles and dif-
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Fig. 1.2-1 Friction coefficient characteristics (Hinrichs 1997a)  I) Coulomb friction charac-
teristic  II) Coulomb-Amontons friction characteristic  III) Identified friction characteristic  

IV) Smoothened friction characteristic 

Dependent on the above described properties of the friction contact, different 
friction contact models and solution methods are used, see for example (Johnson 
1989), (Aliabadi 1993, 1995, 1997), (Gaul and Brebbia 1999) and (Gaul and 
Nitsche 2000). Detailed historical reviews are presented in several publications, 
see (Hinrichs 1997a), (Feeny et al. 1998) and (Seireg 1998). In the following, we 
will focus on dynamical contact problems with friction in the fields of: 

� Multibody Systems, 
� Continuum Mechanics and 
� Finite Element Methods. 

A Multibody Systems is built-up by springs, dampers and rigid bodies, see 
(Schiehlen 1990; Schwertassek and Wallrapp 1999; Shabana 2005). Within these 
systems, dynamic contact problems with friction are modeled by using non-
smooth functions, see (Hinrichs 1997a), (Pfeiffer and Glocker 1996, 1999), 
(Wösle 1997), (Oestreich et al. 1996, 1998), (Brogliato 1999) and (Fidlin 2006). 
An overview on non-smooth systems with friction is given in (Popp 1998). To de-
scribe the dynamical behavior in the normal direction with respect to the contact 
surface, for example Newton’s classical non-smooth impact law is used. This con-
tact law combines the velocities before and after the impact in normal direction 
using a kinematic condition. 
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Fig. 1.2-2 Elastic Multibody System (ADAMS User Manual) 

To describe the tangential contact problem the well-known, non-smooth fric-
tion characteristic developed by Coulomb in 1785 is used very often, see Fig. 1.2-
1 I. With respect to the kinematics one distinguishes between sticking, which cor-
responds to zero relative velocity, vr=0, and sliding, vr>0. The friction coefficient 
μ is assumed independent on the contact area and the friction force acts opposite 
to the relative velocity. The normal contact and friction forces are applied in a sin-
gle point. In case of sliding, the friction force is proportional to the normal contact 
force. Multibody systems including non-smooth friction and impact laws lead to 
structural variant equations of motion, which means, that the degrees of freedom 
of the investigated system change with time. Pfeiffer and Glocker (1996) devel-
oped a theory, using complementary equations, to handle this kind of problems, 
where many rigid bodies are involved.  

In Fig. 1.2-1 II, the non-smooth so-called Coulomb-Amonton friction charac-
teristic is shown, where the friction coefficient due to sticking, is larger than for 
sliding. In (Hinrichs 1997a) and (Kammerer 1998), the expanded friction contact 
is reduced to a point contact, where the normal force is assumed to be static.  

In (Stelter 1992), the used friction law is nonlinear dependent on the relative 
velocity and is approximated by spline functions based on identified values of the 
friction coefficient, see Fig. 1.2-1 III. This functional behavior of the friction co-
efficient with respect to the relative velocity is often called Stribeck-characteristic. 
Further characteristics and their physical motivation can be found in (Kragelski 
et al. 1982). 

Rigid bodyRigid body

Elastic contact

Elastic structure

P

p

r

y

x
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Fig. 1.2-3 Elastic foundation model (Johnson 1989) 

By using smoothing function, for example the arctan-function, see (Popp et al. 
1995), the slope at zero relative velocity has a finite value, see Fig. 1.2-1 IV, 
whereby the friction characteristic is now differentiable. Then, the non-smooth 
system equations can be transferred to structural invariant ones, which can be 
solved by standard numerical integration methods or special solvers for stiff dif-
ferential equation, see for example (SIMULINK 1999). 

The assumption of a rigid body corresponds to a simplified model of the real 
system, which is in general elastic. In extreme, the rigid body assumption and a 
non-smooth description of the contact can lead to a non-existent solution of the 
system equations, see (Glocker 1995). The non-existence of a solution is a hint, 
that the system is not modeled in a sufficient way. This problem can be overcome, 
if elastic deformations are modeled within the contact regions. In Fig. 1.2-2, a so-
called Elastic Multibody System with one elastic contact is depicted. Applying for 
example the elastic foundation model developed by Winkler in 1867, see Fig. 1.2-3, 
a more detailed description of the reality is possible, since the contact time is fi-
nite. This simple elastic contact layer allows local deformations. Due to a cylindri-
cal rigid body, the normal pressure distribution p is parabolic because of the linear 
springs of length h, see (Johnson 1989). 

Within elastic multibody systems continuous structures can be approximated by 
so-called superelements, see (Dragos 2000), built-up by rigid bodies, springs and 
dampers. An alternative method to reduce the number of degrees of freedom of the 
continuous structures is the modal description, see for example (Hurty 1960, 
1965) and (Schwertassek and Wallrapp 1999). Here, the spatial dynamical behav-
ior of the elastic structures can be considered and described by the eigenvectors, 
eigenfrequencies and modal damping. These modal parameters can be for example 
identified by an experimental modal analysis, see (Ewins 1986). 

The basis for the contact model used in Continuum Mechanics is the so-called 
elastic half-space assumption. In many cases, the contacting bodies are large com-
pared to the contact area. Then, it can be assumed, that the contacting bodies are 
infinitely large, which corresponds to the elastic half-space assumption.  
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Fig. 1.2-4  a) Hertzian normal contact of an elastic ball contacting an elastic half-space     
b) Normal pressure �NN and tangential traction �NT due to an infinite friction coefficient    
c) Normal pressure distribution and tangential traction due to a finite friction coefficient 

 

a)

b)

c)

FT

FN



1.2 Review      11 

 

Fig. 1.2-5 Discretized Hertzian normal contact of a cylinder contacting a plate            
(Wriggers 1995) 

Hooke’s law is used to describe the elastic material behavior. Applying this lin-
ear law to a half-space, Boussinesq calculated the deformations due to a single 
point normal contact force, see (Johnson 1989) and (Hill et al. 1993). Superposing 
the deformations due to single point contact forces, the distributed contact forces 
can be applied to the half-space. Then, the corresponding displacements, strain 
and stress distributions can be determined. If two parabolic curved structures con-
tact each other, using the half-space assumption for both structures and neglecting 
friction within the contact interface, this leads to the Hertzian theory, assuming 
that the outer contact radius ra is small compared to the ball radius R, see Fig. 1.2-
4a. The Hertzian theory is well known to solve normal contact problems as well as 
elastic impact problems based on the quasi-static analysis, see (Oestreich 1998). In 
Fig. 1.2-4a, the Hertzian normal contact of a ball with the radius R contacting the 
elastic half-space is shown. The corresponding deflection of both is due to a nor-
mal contact load FN. Here, the normal pressure distribution �NN is elliptical within 
the contact region, see Fig. 1.2-4b. 

In (Cattaneo 1938), (Mindlin 1949) and (Mindlin et al. 1952) the tangential 
force-displacement relationship is derived for the Hertzian contact. The assump-
tion for the calculation of the force-displacement relationship is again the elastic 
half-space. 

FN
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Fig. 1.2-6 FEM contact element (ANSYS User Manual) 

Fig. 1.2-7 Force-displacement relationship (ANSYS User Manual)  a) in normal direction 
and  b) in tangential direction 

 
Assuming an infinite friction coefficient and a constant tangential load, the 

shear traction within the contact regime is singular at the edges of the contact ar-
eas, see Fig. 1.2-4b. Assuming Coulomb friction, the shear traction is limited to 
the Hertzian normal pressure times the friction coefficient. Within the contact 
area, sticking occurs up to the radius rc, while sliding occurs in the outer ring, see 
Fig. 1.2-4c. If stick and slip regions occur within one contact region, this phe-
nomenon is called microslip. Menq et al. (1986a, 1986b) found that microslip does 
affect the system vibrations, which was verified by experiments. 
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Fig. 1.2-8 Motion of an elastic ring touching a rough ground (Vu Van 1990) 
 

The application of discrete calculation methods, such as the Finite Element 
Method (FEM) is very common, because of the general application to geometric 
complex structures and for quasi-static contact problems, see example (Wriggers 
1995, 1996) and (Graeff-Weinberg and Berger 1996). In Fig. 1.2-5, the discretized 
Hertzian normal contact is modeled. For solving such contact problems the Pen-
alty Method or the Lagrangian Multiplier Method is applied or a combination of 
both methods, the so-called Argumented Lagrangian Method. The basic idea of 
these methods is, to change a problem with boundary conditions to a problem 
without boundary conditions. The description of statics and dynamics of geomet-
ric complex structures is possible, including the effects of temperature, centrifugal 
forces and external forces applied to the elastic components. Also, the dynamic 
contact problem with dry friction can be modeled. Different contact elements can 
be used: point to point, point to surface, surface to surface, to solve the contact 
problem. For spatial dynamical contact problems with friction, three-dimensional 
point contact models for each discretized contact are applied, see Fig. 1.2-6 and 
Fig. 1.2-7. 

The contact laws including the roughness of the contact surfaces can be mod-
eled by theoretical or empirical derived nonlinear equations, which are dependent 
on the normal penetration, see (Bhushan 1996; Greenwood 1966–1992; Hess 
1991–1995; Kragelski et al. 1982; Vu Van 1990; Willner 1995a; Woo 1980). For 
example, in Fig. 1.2-8, the dynamical motion of a ring dicretized by 16 beam ele-
ments using FEM, is shown, see (Vu Van 1990). The Coulomb friction was used 
to describe the tangential contact forces. The normal contact force is approximated 
by an empirical identified potential law, which dependents on the normal penetra-
tion. After touching the ground, the resulting motion of the ring corresponds ap-
proximately to the first bending mode. The angle changes from 45° to 35° because 
dry friction reduces the velocity parallel to the ground. 
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In (Greenwood and Williamson 1966) and (Willner 1995a), contact models in-
cluding the effect of rough surfaces are derived assuming a Gaussian distribution 
for the heights of the asperities and the Hertzian theory for each contact. These 
approaches need the value of the mean curvature of the asperities to be able to cal-
culate the contact forces and are very sensitive with respect to the resolution of the 
profile measurement. In (Zavarise et al. 1992–1995; Willner 1995b), penalty ap-
proaches for the contact behavior of rough surfaces based on FEM are realized. 

The developed heat source within the contact will increase the temperature dis-
tribution of the contacting bodies. For geometrically complex structures, the FEM 
can be used to calculate the thermo-mechanic contact behavior, see for example 
(Du et al. 1997) and (Willner 1999). This is important, because the temperature 
can change the corresponding material parameters and, hence, the deformations 
and stresses of the contacting bodies change, which in extreme can lead to thermo-
elastic instabilities, see (Johnson 1989; Willner 1999). 

Investigating the spatial nonlinear forced vibrations of elastic structures with 
friction contacts leads to an enormous increase in computation time using FEM, 
which is caused by the number of degrees of freedom, the possibility of separation 
of the contacts, the strong non-linearity of dry friction and the transient solution 
procedure to calculate the stationary vibrations. To reduce the degrees of freedom 
of the elastic bodies, for example Bohlen (1987) used the modal description. The 
modal condensation turns out to be an efficient tool to overcome numerical prob-
lems. 

1.3 Aim of this Work 

The aim of this work is to develop an alternative method to investigate dynamical 
contact problems with friction applicable to elastic bodies. Since continuous bod-
ies have an infinite number of degrees of freedom, the modal description is used to 
reduce the number of degrees of freedom and, hence, the system complexity. 
Thus, the dynamics of the elastic components is described by modal parameter us-
ing the eigenfrequencies, eigenvectors and modal damping. The minimum number 
of modes corresponds to the number of rigid body modes. 

The contact forces are dependent on many parameters, such as contact stiff-
nesses, friction characteristic, surface profiles, material parameters, temperature 
distribution, relative motion and normal pressure distribution. These parameters 
can change within the contact area and due to the in general spatial motion of the 
contacting bodies, it is impossible to derive a general contact force law. The only 
possibility to overcome this problem is to discretize the contact areas, since in 
general the relative motion and the contact parameters are not constantly distrib-
uted within the contact surface. This leads to a point contact model, which has to 
include all main physical effects as described above, which are important when 
simulating dynamical contact problems with friction. A multi-scaling technique is 
used to develop the point contact model. After the dynamical description of an 
elastic body, this point contact model will be developed first. 
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The nonlinear contact forces for rough surfaces have to be verified by experi-
ments for the normal and tangential direction with respect to the contact area. The 
characteristic of the friction coefficient with respect to the relative velocity and the 
normal force has to be modeled in a sufficient way. For the investigation of the 
temperature distribution, the energy balance will give an answer on the developed 
heat source, while the mass balance will give an insight on the wear behavior of 
the contacting bodies. The temperature distribution in the contact area influences 
the force-displacement relationship and has to be modeled and investigated. The 
question, how wear and the temperature distribution influence the system parame-
ters will be investigated. Due to the dissipation of energy, the hysteresis behavior 
has to be investigated with respect to the normal and tangential direction. The pos-
sibility of separation of the contact has to be included and furthermore stick-slip 
phenomena have to be investigated. Limits with respect to the application of the 
point contact model have to be discussed. 

The point contact model will be applied to real contact problems. Experimental 
investigations will be used to verify the assumptions made. The general applica-
tion of the point contact model is documented by three examples: 

� impact and friction oscillators, 
� friction damping and 
� rolling contact. 

All investigated problems will include the application of the generalized point 
contact model, the solution methods and the comparison of measurements with the 
calculations as well as parameter studies. For the impact and friction oscillator a 
single point contact model is used while for the friction damping and rolling con-
tact a further multi-scaling technique is developed. 

In the first set of examples, a simple impact oscillator with an elastic contact is 
used to check the overall modeling with respect to the elastic normal contact. 
Then, a self-excited friction oscillator is investigated with respect to the tangential 
vibrations. 

Friction damping can be used to reduce the vibration amplitudes. This will be 
demonstrated by friction damping of turbine blades with respect to non-Hertzian 
contact conditions. One part of the investigations is the modeling of microslip ef-
fects and the influence onto the system behavior. Efficient solution methods for 
calculating the spatial forced response of elastic structures, including microslip ef-
fects are not available up to now, and are being developed. A bladed disc assem-
bly coupled by means of non-Hertzian contacts is optimized with respect to the 
spatial vibration of the blades, which is optimized with regard to minimal alternat-
ing stresses. 

In the case of rolling contact, the general friction contact model will be applied 
to Hertzian contact conditions. Due to this dynamical contact problem, fast calcu-
lation methods are developed to calculate the normal and tangential contact prob-
lem, the temperature as well as the wear distribution. 

 
 
 



 

2 Dynamical Descriptions of Elastic Bodies 

2.1 Kinematics of Elastic Bodies 

For the kinematical description of an elastic body two coordinate systems are in-
troduced, see Fig. 2.1-1. On the one hand, the inertia I-coordinate system is fixed 
in space and on the other hand, the R-coordinate system is fixed to the elastic body 
at the point R. In the limiting case these two coordinate systems can be used to de-
scribe the rigid body dynamics. Here, the elastic deformations are introduced addi-
tionally to describe the kinematics of an elastic body. Both coordinate systems are 
related by 

eAe
��

R
IR

I �       (2.1-1) 
with the orthogonal transformation matrix IRA with the properties 

EAA �IRRI       (2.1-2) 
and 

AA RITIR � .      (2.1-3) 

 

Fig. 2.1-1 Bases and vectors for the description of a deformed body 
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The vector x
�

defines the observed point P' of the undeformed body and the vector 
u
�

 the displacement due to the deformation with respect to the R-coordinate sys-
tem. The coordinates of the point P of the center of a mass element with the vol-
ume dV is described by 

uxrr RRRRPR ��� ,     (2.1-4) 
where RrR describes the distance between the origins of the I- and R-coordinate 
system in R-coordinates. The index in the left lower corner of a vector defines the 
used coordinate system. At the left upper corner, the coordinate system is cited, 
where the differentiation with respect to time is carried out. Noting that the dis-
tance Rx is constant with respect to time the velocity of the point P with respect to 
the R-coordinate system is given by 

urv �� R
R

R
RP

R
R ��       (2.1-5) 

and the acceleration is given by 
ura ���� R

R
R
RP

R
R �� .      (2.1-6) 

In the following, the absolute velocity of the point P with respect to the R-
coordinate system is derived. The absolute displacement of the point P with re-
spect to the I-coordinate system is given by 

PR
IR

PI rAr � .      (2.1-7) 
With respect to the I-coordinate system the absolute velocity is given by differen-

P
R
R

IR
PR

IRP
I

P
I
I dt

d rArArv �� ��� .    (2.1-8) 

Back transformation of the absolute velocity in Eq.(2.1-8) in the R-coordinate sys-
tem gives 

P
I
I

RI
P

I
R vAv � .      (2.1-9) 

Inserting Eq.(2.1-8) in Eq.(2.1-9) and using Eq.(2.1-2) gives the velocity of the 
point P with respect to the R-coordinate system 

PR
IRRI

P
R
RP

I
R rAArv �� ��      (2.1-10) 

or 

PR
IR

P
R
RP

I
R r�vv ~��      (2.1-11) 

with the tilde matrix of the angular velocity 
AA� �IRTIRIR �:~ .      (2.1-12) 

Then, corresponding to the calculation of the velocity, the absolute acceleration of 
the point P can be derived by Eq.(2.1-11) and is given by 

)~(~~~
PR

IR
P

R
R

IR
P

R
R

IR
PR

IR
P

R
RP

I
R r�v�r�r�va ����� ���   (2.1-13) 

or 

PR
IRIRIR

P
R
R

IR
P

R
RP

I
R 2 r���v�aa )~~~(~ ���� � .   (2.1-14) 

An alternative description of the absolute velocity of the point P is given by insert-
ing Eq.(2.1-4) and Eq.(2.1-5) in Eq.(2.1-11). This leads to 

uux�vv �RIR
R

I
RP

I
R ���� )(~     (2.1-15) 

tiation of Eq.(2.1-7) using the product rule 
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with the absolute velocity of the point R 

RR
IR

R
R
RR

I
R r�vv ~�� .     (2.1-16) 

The absolute acceleration of the point P is given by inserting Eq.(2.1-4), Eq.(2.1-
5) and Eq.(2.1-6) in Eq.(2.1-14), which gives 

uu�ux���aa ���� RRIRIRIRIR
R

I
RP

I
R 2 ������ ~))(~~~( .  (2.1-17) 

with the absolute acceleration of the point R 

RR
IRIRIR

R
R
R

IR
R

R
RR

I
R 2 r���v�aa )~~~(~ ���� � .   (2.1-18) 

With the relation 
abba ~~ ��       (2.1-19) 

Eq.(2.1-15) can be rearranged by 
u�uxvv �RIR

R
I

RP
I

R ���� )~~(     (2.1-20) 
and Eq.(2.1-17) by 

)(~~~)~~( ux��u�u�uxaa ������� IRIRRIRRIR
R

I
RP

I
R 2 ���� , (2.1-21) 

which is used in the next chapter. 

2.2 Governing Equations for Linear Elasticity 

In a first step, the equations of motion with respect to a volume element dV in the 
current configuration are developed with respect to cartesian coordinates. Con-
sider a volume element with the side lengths dx, dy and dz, see Fig. 2.2-1. The 
stresses shown are only those acting in the x-direction. Note, that on one plane the 
stress �xx is acting while on the opposite side it has changed by the rate of change 
of �xx with respect to the coordinate x, times the distance dx. The partial derivative 
is used, as �xx may vary with respect to the coordinates y and z as well. The body 
force in x-direction is denoted by bx to describe for example gravity forces. Apply-

dydxdz
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dzdxdy
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dzdydx
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bdmadm
zxyxxx

xx
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with the absolute acceleration Iax of the center P of the mass element in the x-
direction as defined in Eq.(2.1-21). The mass of the volume element in the current 
configuration is given by 

dzdydxdVdm �� ��      (2.2-2) 
with the density �. Dividing Eq.(2.2-1) by the element volume gives 

x
I

x
zxyxxx ab
zyx
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     (2.2-3) 

and similar in the y-direction 
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y
zyyyxy ab
zyx
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    (2.2-4) 

ing Newton’s law to the x-direction leads to 
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Fig. 2.2-1 Stress distribution in x-direction 
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Summarizing Eq.(2.2-3), Eq.(2.2-4) and Eq.(2.2-5) gives the equation of motion 
ab� Idiv �� �� ,     (2.2-6) 

where � denotes the Cauchy stress tensor, 
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�

�

�

�

zzzyzx

yzyyyx

xzxyxx

���
���
���

� ,     (2.2-7) 

�b the volume or body force vector and Ia the absolute acceleration of the center P 
with 

� � � �T
zyx

IIT
zyx aaabbb �� ab , ,    (2.2-8) 

respectively. The Boltzmann axiom or the principle of angular momentum with 
respect to the point P leads to 

zxxzzyyzyxxy ������ ��� ,, .   (2.2-9) 
Hence, the Cauchy stress tensor is symmetric with 

T�� � .      (2.2-10) 
The mass of the initial configuration is given by 

00 dVdm �� .      (2.2-11) 
From the mass balance, the mass is constant for the current and initial configura-
tion with 

00 dVdVdm �� �� .     (2.2-12) 
For small deformations of the volume element of the current configuration with 
respect to the reference configuration, it is assumed that the element volume is ap-
proximately constant 

0dVdV �       (2.2-13) 
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and hence from Eq.(2.2-12) the density is assumed to be approximately constant 
with time 

0�� � .       (2.2-14) 
Then, the linear equation of motion of the current configuration are described by 
parameters of the initial configuration by 

ab� I
00div �� �� .     (2.2-15) 

For small strains the stresses are modeled by Hooke’s law, see (Schwertassek and 
Wallrapp 1999), which considers a linear relation between stresses and strains for 
homogeneous and isotropic material behavior. The Hooke's law can be summa-
rized by 

H�� �        (2.2-16) 
with the stress vector 

� �T
xzyzxyzzyyxx �������� ,    (2.2-17) 

the matrix of elasticity 
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and the strain vector 
� �T

xzyzxyzzyyxx 222 ��������     (2.2-19) 
with 

zxxzzyyzyxxy ������ ��� ,, .    (2.2-20) 
The linear strain-displacement relationship is given by 

Bu� �        (2.2-21) 
with the operator-matrix 
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      (2.2-22) 

and the relative displacement vector 
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� �T
zyx uuu�u .   (2.2-23) 

In (Schwertassek and Wallrapp 1999) the theory of nonlinear elasticity is ex-
plained in full detail. For small deformations, these constitutive equations reduce 
to Hooke's classical law again. If non-linear constitutive laws have to be used to 
describe the structure, then for further information see (Ogden 1984). 

2.3 Equation of Motion of an Elastic Body 

The equations of motion of an elastic body can be derived using the principle of 
d'Alembert, Jourdain or Hamilton. Here the principle of Jourdain is used to de-
velop the basic equation, see also (Schwertassek and Wallrapp 1999). Note that all 
variables are described with respect to the R-coordinate system. With Eq.(2.2-10) 
the external distributed pressure which has to be equal to the surface stresses is 
given by the Cauchy theorem  

00 �np � , (2.3-1) 
where n0 denotes the normal vector of the surface A0 , see Fig. 2.1-1. The virtual 
power of the applied forces are given by the forces acting on one volume element 
multiplied by the virtual velocity and integrated with respect to the body volume, 

0dAdVdiv
0 0V A

000
TI

0
I

00
TI ������ � )()( �nprr�br ���� ���� . (2.3-2) 

Since the terms within the brackets are identical to zero, as derived in chapter 2.2, 
the integral are identical to zero. In the following Eq.(2.3-2) is rearranged to de-
rive the equation of motion of the elastic body. Using the product rule, the follow-
ing relation holds, 
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(2.3-3) 
with 

.z,y,x��  
Using the divergence theorem the second integral in Eq.(2.3-3) can be described 
by 
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From Eq.(2.1-20) it follows, that the virtual velocity of the point P is given by 
u�uxru�xrr ����� R

R
II

R
II ������� ������� )~~(~ .  (2.3-5) 

Differentiating with regard to the coordinate � and shifting the linear operator � in 
front of the brackets gives 
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Note that this differentiation is done with respect to the coordinate system, which 
is shifted corresponding to the virtual displacement. After some mathematical op-
erations using the definition of the strain and stress vector in Eq.(2.2-17) and 
Eq.(2.2-19), the third integral of Eq.(2.3-3) leads to 
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Inserting Eq.(2.3-4) and Eq.(2.3-7) in Eq.(2.3-3) gives 

0
V
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A
00

TI
0

V

TI dVdAdVdiv
000

���nr�r ��� �� ��� ���   (2.3-8) 

and finally inserting Eq.(2.3-8) in Eq.(2.3-2) leads to 
�  0dAdV

0 0V A
00

TI
0

TI
0

TI ����� � pr��rbr ����� ���� )( .  (2.3-9) 

The elastic displacements can be described by the Ritz-Ansatz 
)()(),( tt zxNxu � ,     (2.3-10) 

where the matrix N(x) includes the global Ansatzfunctions defined in the R-
coordinates, which have to be linear independent, differentiable and must satisfy 
the geometric boundary conditions, see (Schiehlen 1986). They are dependent on 
the coordinates x, while the functions z(t) are time dependent. Note, with respect 
to the Finite Element Method local Ansatzfunctions are used to describe the de-
formations. Then the vector z(t) defines the vector of nodal displacements. Insert-
ing Eq.(2.3-10) in Eq.(2.2-21) gives the strain 

zB� N�       (2.3-11) 
with 

BNB �N .      (2.3-12) 
Then the variation of the strain rate is given by 

zB� �� �� N� .      (2.3-13) 
Inserting Eq.(2.2-16), Eq.(2.3-5), Eq.(2.3-10), Eq.(2.3-11) and Eq.(2.3-13) in 
Eq.(2.3-9) and noting that the velocity of the reference point R, the angular veloc-
ity and the coordinates z(t) are only dependent on the time, see Eq.(2.3-10), 
Eq.(2.3-9) result in 
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Since the virtual velocities are arbitrary, the terms within the brackets have to be 
zero. Then, the equations of motion are given by 
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and 
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        (2.3-17) 
The first integral in Eq.(2.3-15) up to Eq.(2.3-17) can be rewritten by inserting the 
absolute acceleration derived in Eq.(2.1-21) by 
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        (2.3-20) 
Summarizing Eq.(2.3-15) up to Eq.(2.3-17) and using Eq.(2.3-18) up to Eq.(2.3-
20) gives the equation of motion for the elastic body 
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with the generalized acceleration vector 
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the symmetric mass matrix 
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and the symmetric stiffness matrix 
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the vector of the gyroscopic and centrifugal forces fc, the body forces fb and the 
external forces fp 
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respectively. The stiffness matrix K is symmetric as well since the matrix of elas-
ticity H defined in Eq.(2.2-18) is symmetric. 
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All the components of the systems described in the introduction, where the ma-
terial behavior follows Hooke’s law, can be described dynamically by these equa-
tions of motion. With respect to several applications, where small rotations are in-
volved, the dynamics of the elastic body can be described by linear equations of 
motion. If terms of second and higher order are neglected, this leads to the linear 
equations of motion 

pb ffKwwM �����      (2.3-26) 
with the symmetric mass matrix 
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For the investigation of a rotating brake disc or turbine blade, the absolute ve-
locity of the reference point R is often assumed to be zero and the angular velocity 
of the rotating frame to be constant. Then the dynamics of the rotating elastic 
structure is given by  
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with 

��

��
���

��

00

00

V
0000

T
0zc

V
0000

T
N

V
000

T

V
00

T

dVdV

dV2dV

.~~,~~

,~,

x��NfN��NKK

N�NGNNM

��

��

 (2.3-29) 

Within multibody systems like the chains in motors, elastic deformations are 
often neglected. This assumption leads to the equations of motion of a rigid body 

apabRCR
I mm ffr���a ���� )~~~( � ,   (2.3-30) 
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RCm !! ff�J��Jar ���� )()( ~~ � ,   (2.3-31) 
where the mass is defined by 
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0V
00dVm �: ,      (2.3-32) 

the position of the center of mass is given by 
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m
1 �xr :      (2.3-33) 

and the inertia with respect to the reference point R is defined by 
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2.4 Modal Description of Elastic Bodies 

In general, continuous elastic bodies have an infinite number of degrees of free-
dom. A first step to reduce the dynamical problem is to discretize the continuous 
body and, hence, to reduce the degrees of freedom to a finite number. Using stan-
dard Finite Element Methods, see for example (Bathe 1990; Reddy 1993; Gaul 
2005), the discretization of geometric complex bodies is very comfortable. Based 
on the Eq.(2.3-10) a Ritz-Ansatz with local Ansatz-functions in connection with 
the displacements of the nodes is used to describe the deformations. The dynami-
cal problem can be reduced furthermore, if the modal description of the elastic 
body is applied. Here, the basis for the modal description of an elastic body is the 
linearized equations of motion neglecting gyroscopic effects. Regarding the lin-
earized equations of motion of an elastic body given by Eq.(2.3-28) viscous damp-
ing is assumed, where the damping forces are linear dependent on the velocities. 
Then the dynamics of the linear viscous-elastic body is approximated by the fol-
lowing equation of motion with nF degrees of freedom, 

�  �  texfKwwGDwM ���� ��� ,    (2.4-1) 
see (Magnus and Popp 1997) and (Müller and Schiehlen 1977), where M denotes 
the symmetric mass matrix, D the damping matrix, K the symmetric stiffness ma-
trix, w the generalized displacement vector relative to the position of equilibrium 
and fex the generalized time dependent external force vector. From Eq.(2.3-24), 
Eq.(2.3-27) and Eq.(2.3-29) the mass and stiffness matrix are symmetric and, 
hence, 

TTT ,, GGKKMM ���� .    (2.4-2) 
The damping matrix is approximated by the Rayleigh assumption, where the 
damping matrix is the linear combination of the mass and stiffness matrix, 

KMD "� �� .     (2.4-3) 
Because of Eq.(2.4-2), the damping matrix is symmetric as well, 

TDD � .      (2.4-4) 
For the solution of the homogeneous differential equation of Eq.(2.4-1), one can 
choose the Ansatz 

te#ww ˆ� .      (2.4-5) 
Inserting this function in the homogenous differential equation of Eq.(2.4-1) leads 
to the eigenvalue problem 

� ��  0wKGDM ���� ˆ##2 .    (2.4-6) 
In general, this leads to complex eigenvectors and eigenvalues. If the damping and 
the gyroscopic effects are neglected, the harmonic Ansatz 

ti
0

0e !ww �       (2.4-7) 
leads to the eigenvalue problem 

�  0wKM ��� 0
2
0! .     (2.4-8) 

The eigenvalues in this case are reel as well as the eigenvectors, which can be 
summarized within the so-called modal matrix 
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� �m00201 ... wwwT � .    (2.4-9) 
With an increasing number of modes, the dynamical description of the linear elas-
tic body can be improved, using the modal transformation 

Tqw � ,       (2.4-10) 
where q denotes the vector of modal coordinates. The dimension of this vector is 
equal to the number m of eigenvectors used to describe the displacements of the 
elastic body. Note that gyroscopic effects would lead to complex eigenvectors, 
while damping effects would lead to complex eigenvalues. Multiplying Eq.(2.4-1) 
with the transposed modal matrix from the left side and using Eq.(2.4-10) leads to 

ex
TTTT fTKTqTqDTTqMTT ��� ��� .   (2.4-11) 

If the eigenvectors in Eq.(2.4-9) are mass normalized, which is defined by 
EMTT �T ,      (2.4-12) 

this leads to 
)( jj0

T D2!diagDTT � ,     (2.4-13) 
with the modal damping coefficient Dj and 

m11j2
j0

T )(),( �� !diagKTT ,    (2.4-14) 
with the angular eigenfrequency !0j of the jth mode. Note, that the modal matrix T 
can include rigid body modes of the elastic body. The corresponding angular ei-
genfrequencies of those modes are zero. Inserting Eq.(2.4-12) up to Eq.(2.4-14) in 
Eq.(2.4-11) gives the resulting system equation 

ex
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j
2

j0jjj0j qqD2q fTdiag ��� )( !! ��� ,   (2.4-15) 
where the vibration modes are uncoupled. If the external forces are known, 
Eq.(2.4-15) can be solved by numerical integration. With respect to each normal-
ized eigenvector, the corresponding normalized strain and stress vectors can be 
calculated and can be used to analyze the strain state of the elastic body with 

qT� ��        (2.4-16) 
and the stress state with 

qT� �� .      (2.4-17) 
In (Schwertassek and Wallrapp 1999), an approximation of the deformations of 

an elastic body is given by using the eigenmodes and static modes. Both sets of 
modes have to fulfill the geometric boundary conditions. An alternative and effi-
cient method is described in (Hurty, 1960 and 1965), where main coordinates are 
introduced. Main coordinates are defined by the occurrence of external forces. The 
advantage of this method is the exact description of the dynamics of the main co-
ordinates. 

The accuracy of the modal description increases with an increasing number of 
modes. How many modes have to be used to model the dynamical behavior suffi-
ciently is problem dependent. In general, the number m of the used modes is rela-
tively small compared to the number of degrees of freedom of the finite element 
model. This will reduce the computation time dramatically. 

The modal description of a linear elastic body is exact, if an infinite number of 
eigenvectors is used to describe the dynamics. The advantage of the modal de-
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scription is the dramatic reduction of the number of degrees of freedom only if the 
influence of higher modes can be neglected. For a linear system, the investigated 
frequency spectrum defines the number of eigenmodes. In general, this does not 
hold for nonlinear systems. A first estimation with respect to the minimum num-
ber of modes gives the comparison of the modal stiffness at zero excitation fre-
quency with the static stiffness, see (Stelter 1990). 

Note, if the angular velocity is constant, see Eq.(2.3-28), the centrifugal forces 
can be included in the modal analysis, with the so called pre-stress function within 
finite element programs. In this case, the results of the quasi-static analysis are the 
basis for the modal analysis. The influence of the gyroscopic forces is often ne-
glected within the modal analysis of commercial finite element programs. Never-
theless, they can be calculated, see (Nackenhorst 2000).  



3 Contact Model 

In this Chapter, the components of the point contact model are described and the 
corresponding equations are derived. This includes the contact stiffnesses, the sur-
face roughness and the friction characteristic. Then, the three-dimensional point 
contact model is investigated within the time domain. Finally, temperature effects 
coupled with microslip and the development of wear are investigated using the 
point contact model. 

3.1 Contact Stiffnesses and Microscopic Contact 

The elasticity of the contacting bodies influences the dynamic behavior of the 
whole system. There exist several possibilities to get the normal contact force-
displacement relationship and the tangential contact stiffness: 

� With an experimental setup to identify both, as it is done for example in 
(Treyde 1995; Sextro 1998). 

� With a statical investigation of geometric complex contact designs using the 
Finite Element Method, see (Wriggers 1995). 

� With the assumption of a Hertzian normal contact, the normal contact force-
displacement relationship is described in (Hertz 1882; Hill 1993) and the tan-
gential contact stiffness for elliptical contact areas and for arbitrary axis-
symmetric surfaces is derived in (Deresiewicz 1957; Jäger 1995), respectively. 

� With the assumption of equal-distanced, independent normal and tangential 
springs, the so-called Winkler foundation, elastic foundation, wire-brush model 
or thin elastic contact, see (Winkler 1867; Bental and Johnson 1968; Johnson 
1989; Jäger 1999). 

 
The basic assumption is that the contact elements are only coupled by the con-

tact kinematics. This is a big advantage with respect to the numerical investiga-
tions of dynamic systems with friction contacts. However, this reduced model 
leads of course to a lower accuracy. 

To overcome this problem, the information of the normal and tangential contact 
stiffnesses derived from measurements, Finite Element Method or from calcula-
tion based on the half-space assumption, as described above, can be used and 
therefore can improve the calculations. 
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Fig. 3.1-1  a) Undeformed smooth contact surface  b) deformed surface 

In Fig. 3.1-1a, a plane elastic foundation or a so-called thin elastic contact is 
shown. The contact has to be discretized due to the in general spatial motion and 
the non-linearity of the contact behavior. The contact plane is discretized using 
rectangular area elements with the width �h0 and the depth �b0. The nominal con-
tact area of one area element is given by 
 .000 hbA ��� �       (3.1-1) 

The length �0 describes the length of the undeformed elastic foundation. For the 
derivation of the contact stiffnesses, a constant distribution of the normal pressure 
pN and the shear stresses �y and �z in the y- and z-direction is assumed over the 
contact surface. Then, each contact element will behave in the same manner. The 
elastic foundation deflects due to the constant normal contact pressure pN and the 
constant shear stress �z, see Fig. 3.1-1b, where the relative displacement of the 
surface is defined by the coordinates of the point P relative to N. The classical 
constitutive law of Hooke is used neglecting the influence of the temperature, see 
Chapter 2.2. Due to the assumed constant loading in normal and tangential direc-
tion, the deformed contact surface remains planar. The stresses at the position x=0 
are given by 
 zxzyxyNxx p ����� ������ ,, .   (3.1-2) 

The slope of the contact surface is zero, 

 0
z
u0

y
u

�
�
�

�
�
� , .     (3.1-3) 

From here it follows, that the shear stress is given by 
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Furthermore, because of the constant loading the displacements in the y- and z-
direction are constant, hence 
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and from Hooke’s law it follows 
 0yz �� .      (3.1-6) 

With the length � of the deformed foundation the boundary conditions are 

 ,)(,)( 0xuu0xu P ���� �  

 ,)(,)( 0xvv0xv P ���� �  

 0xww0xw P ���� )(,)( � ,    (3.1-7) 

where the point P lies in the center of one contact area element. Three sets of 
boundary conditions (denoted by i=1,2,3) will be investigated in the following. In 
a first step, it is assumed, that the normal stresses in the y- and z-direction are zero 
 )(, 1i0zzyy �����      (3.1-8) 

and hence 
 xxxx E	� � .      (3.1-9) 

Then the force-displacement relationships for a single elastic element of the con-
tact interface can be calculated 

  ,uE= p PN � Py vG
�

�� , Pz wG
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�� .   (3.1-10) 

For one contact area element, the stresses are assumed to be constant as well, 
hence, 
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Inserting Eq.(3.1-11) in Eq.(3.1-10) gives the force-displacement relationships 

 ,P
0

N uAEF
�
�� � P

0
Ty vAGF

�
�� � , P

0
Tz wAGF

�
�� � . (3.1-12) 

The length � of the deformed elastic foundation is given by 

 P0 u�� �� ,      (3.1-13) 

the corresponding displacement and assuming the displacement of the point P in 
the x-direction is small, 
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,      (3.1-14) 

leads to the nominal normal contact stiffness 
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see Fig. 3.1-1b. Differentiating the forces defined by Eq.(3.1-12) with respect to 
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and the nominal tangential contact stiffness 
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Using the length �0 of the undeformed contact element instead of the length � of 
the deformed element gives the relative error 	rel with respect to the normal and 
tangential forces defined in Eq.(3.1-12) 
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If this relative error is small, say 2% up to 4%, this effect can be neglected. Fur-
ther investigations will follow in Chapter 3.4, where the hyperbolic contact is 
modeled. 

The tangential contact stiffness defined in Eq.(3.1-16) can be derived from the 
theory of thin contacts described in (Bental and Johnson 1968) as well. Due to the 
investigated boundary conditions, the tangential contact behavior is isotropic. That 
means, both tangential contact stiffnesses in the y- and z-direction are identical. 

Different boundary conditions lead to different results for the contact stiff-
nesses. This will be discussed in the following. Assuming instead of Eq.(3.1-8) an 
hydrostatic stress field, see (Jäger 1999) with 
 )(, 2ipNzzyy ���� ��     (3.1-18) 

leads to the normal stresses 
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and the normal contact stiffness 
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Another possibility is to assume zero strains in the y- and z-direction 
 )(, 3i0zzyy ��� 		 .     (3.1-21) 

This boundary condition leads to the following normal stresses 
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and 
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Then, the normal contact stiffness is given by 

 
)(
)(

)( �
�

�
��

�
�

�
�

1
1

21
AEc

0

0
0N �

.    (3.1-24) 

This normal contact stiffness can be derived from the theory of thin contacts de-
scribed in (Bental and Johnson 1968) as well. Summarizing the results gives the 
contact stresses 
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where the contact stiffnesses can vary dependent on the boundary conditions 
(i=1,2,3). 

The limit of the above theory is given by yielding of the material. For mathe-
matical simplicity, the equivalent stress due to the Tresca criterion is used and is 
given by 
  � Y2 S133221Tresca ������ �������� ,,max ,  (3.1-26) 

where ������ are the principal stresses, �S and Y denote the values of the yield stress 
of the material in simple shear and simple tension or compression respectively. In 
the following, only the shear stress in the z-direction is regarded. Summarizing the 
different stresses due to the three different investigated boundary conditions, 
i=1,2,3, as defined in Eq.(3.1-8), Eq.(3.1-18) and Eq.(3.1-23) gives 
 NizzyyNxx psp ����� ��� , , 

 0yzyxzxz ���� ���� , ,    (3.1-27) 

where the parameter si depends on the used boundary condition with 
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From Eq.(3.1-27) it can be derived, that the three principle stresses are given by 
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Then, the maximum equivalent stress by Tresca is given by 
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Hence, the contact behavior is elastic, if 
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If Eq.(3.1-31) does not hold, perfect plasticity is defined by 
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with the yield stress �S, which is dependent on the temperature. The limiting maxi-
�z,max
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mum shear strength  is given by solving Eq.(3.1-31) for the shear stress 
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assuming that 
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If Eq.(3.1-34) does not hold, then in the limit the normal pressure is given by 
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whereby the maximum shear stress is zero, 
 0max,z �� .      (3.1-36) 

In case of the hydrostatic pressure distribution s2=1 the maximum allowable pres-
sure defined by Eq.(3.1-35) is infinite, which means, in this case yielding does not 
occur. 

3.2 Limits of Application of the Contact Model 

The point contact model will be used to model the quasi-static contact behavior, 
while the modal description is used to describe the dynamics of the contacting 
bodies. Hence, the excitation frequency must be very small compared to the eigen-
frequencies of the elastic contact in the normal and tangential direction. For small 
deformations, the eigenfrequencies due to the vibration in the normal direction are 
calculated first. The elastic contact described in Fig. 3.1-1 includes inertia. A mass 
element of the elastic contact is shown in Fig. 2.2-1 with 
 00dVdm ��       (3.2-1) 

and the volume 
 dxdAdV 00 � .      (3.2-2) 

The normal stress in the x-direction is dependent on the applied three boundary 
conditions (i=1,2,3) as discussed in Chapter 3.1. With Eq.(3.1-9), Eq.(3.1-19) and 
Eq.(3.1-22) the result can be summarized with 
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Applying Newton’s law with respect to the x-direction leads to 
 ),( txudmdAd 0xx ���� .     (3.2-5) 

Inserting Eq.(3.2-1) and Eq.(3.2-3) gives the partial differential equation 

 ),(),(~ txutxuE 0i ������ .     (3.2-6) 
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This equation describes waves in the contact. The solution for standing waves is 
given by 
 )sin()(~),( � �� txutxu      (3.2-7) 

with 
 )cos()sin()(~ xaaxaaxu 3231 �� .    (3.2-8) 

Inserting Eq.(3.2-7) leads to the linear differential equation 
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Neglecting the contact surface loads, the boundary conditions at the surface (x=0) 
and at the built-in end (x=�0) are given by 

 0txu0t0x 0xx ���� ),(,),( �� ,   (3.2-10) 

respectively, or with Eq.(3.2-3) and Eq.(3.2-7) 

 0xu00xu 0 ����� )(~,)(~ � .    (3.2-11) 

Applying these boundary conditions to Eq.(3.2-8) lead to the solution 
 0a1 �        (3.2-12) 

and 
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Inserting Eq.(3.2-8) with Eq.(3.2-12) and Eq.(3.2-13) in the Eq.(3.2-9) gives the 
angular eigenfrequencies for the normal vibration modes 
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The eigenfunctions defined in Eq.(3.2-8) can be mass normalized corresponding to 
the procedure described in Chapter 2.4 with 
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Integrating Eq.(3.2-15) with respect to the coordinate x and solving for the mass 
normalized amplitude gives 

 .
000

2 A
2a
�� �

�      (3.2-16) 

Hence, the resulting mass-normalized eigenfunctions are given by 
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For zero angular excitation frequency, the normal modal stiffness is given by 
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see (Stelter 1990). The static stiffness reads 
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where the displacement are linear with respect to the coordinate x. Inserting 
Eq.(3.2-17) and Eq.(3.2-14) leads to 
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An infinite number of modes give the exact value of the stiffness at zero excitation 
frequency. The limiting value of the normalized modal stiffness is one, 
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*lim .      (3.2-21) 

In Fig. 3.2-1 the relative error with respect to the exact stiffness given by Eq.(3.2-
19) is plotted versus the number of modes. Using five modes leads to a relative er-
ror of less than 5%, while using twenty modes leads to a relative error less than 
1%. This figure can be used to estimate the minimum number of modes to simu-
late the dynamical behavior. 

Since the relative error is relatively large for a very small number of modes, in 
case of a quasi-static system behavior it is more practical to use the static stiffness 
for modeling the deformations. Hence, the modal description is not very useful to 
describe the quasi-static contact behavior but is very useful for modeling the dy-
namics of the elastic bodies as discussed in Chapter 2.4. 

 

 

Fig. 3.2-1 Modal stiffness at zero excitation frequency 
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For the tangential vibrations, the procedure is similar to the one described 
above. Applying Newton’s law, see Fig. 2.2-1, with respect to the z-direction 
gives in analogy to Eq.(3.2-5) 
 ),( txwdmdAd 0xz ���� .     (3.2-22) 

With Eq.(3.1-4) and Eq.(3.2-1) this leads to 
 ),(),( txwtxwG 0 ������ .     (3.2-23) 

Neglecting the surface load, the boundary conditions are given by 
 0txw0t0x 0xz ���� ),(,),( �� .   (3.2-24) 

Similar to the procedure described above the angular eigenfrequencies for the tan-
gential vibration modes are given by 
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The analysis with respect to the modal stiffness as described above can be used for 
the tangential direction in the same way, because both investigations are based on 
the same structure of differential equations, compare Eq.(3.2-23) with Eq.(3.2-6). 
With respect to the limits of the application of the point contact model the first ei-
genfrequencies are needed and given by k=1 for the tangential vibrations. Using 
Eq.(3.1-16) gives the first angular eigenfrequency of the elastic contact 
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with Eq.(3.1-16) for the tangential contact stiffness, the reduced mass 
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and the resultant mass of one contact element 
 0000R Am ���� � .     (3.2-28) 

Corresponding to the normal direction the first angular eigenfrequency is given by 
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with 
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The point contact model will be used to model the quasi-static contact behavior. 
Hence, the excitation frequency must be very small compared to the eigenfrequen-
cies of the elastic contact in the normal and tangential direction, hence, the follow-
ing equation must hold, when applying the point contact model 
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Note, that the eigenfrequencies of the elastic contact are not dependent on the con-
tact area. This equation must hold for rough contact surfaces as well. 
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3.3 Mesoscopic Contact Laws for Rough Surfaces 

The surface roughness has an effect on the normal force-displacement relation-
ship, which can not be neglected. In (Greenwood and Williamson 1966; Green-
wood 1984; Johnson 1989; Zavarise et al. 1992-1995; Willner 1995; Wriggers 
1996; Willner 2000), contact models including the effect of rough surfaces are de-
rived using the distribution for the height of the asperities and the Hertzian theory 
for each contact. Based on an exponential distribution, for example, Greenwood 
derived an exponential relationship for the normal force-displacement relationship 
with 
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where FN denotes the compressive contact force, �S denotes the standard deviation 
of the cumulative height distribution and the parameter FNS is defined by the mean 
summit curvature of the asperities, material parameters and the standard deviation 
of the cumulative height distribution, see (Johnson 1989). In Fig. 3.3-1 this rela-
tionship is shown assuming a standard deviation of 
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Fig. 3.3-1 Normal force-displacements relationship for rough surfaces 

The disadvantage using this description of the normal contact force is that separa-
tion of the contact is not defined. Furthermore, these approaches need the informa-
tion about the mean summit curvature of the asperities to be able to calculate the 
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contact forces. It is quite difficult to obtain a good estimation for this value, since 
the topography or at least a surface profile measurement has to be analyzed with 
respect to the curvatures of the asperities. Furthermore, the resolution or sampling 
of the surface roughness measurement does influence the results very strong, see 
(Willner 2000). 

In (Kragelski 1982; Wriggers 1996) a potential law approximates the normal 
force displacement relationship 

k
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�

� �
� ,     (3.3-3) 

3.3-1 these normal force-displacement relationships with k=1, 2 and 3 are com-
pared with the exponential description. The exponential contact law is very close 
to the cubic potential law within the investigated range. Note, the cubic functional 
behavior has also been identified by experiments, see (Kragelski 1982; Kikuchi 
and Oden 1988), and is often used within the FEM to model rough surfaces, see 
(Wriggers 1995). The classical penalty approach is applied, where the compres-
sive contact forces are linear dependent on the penetration, when the exponent k is 
equal to one. With respect to Eq.(3.3-3) the contact parameters are unknown. In 
the following an alternative contact model is developed, which avoids the dis-
cussed difficulties with respect to the usage of Eq.(3.3-1) and Eq.(3.3-3).  

The surface profiles depend on the manufacturing procedure, whether the sur-
face is polished, grinded or has changed due to wear. For example, in Fig. 3.3-2 
the measured profile of a grinded surface is shown. One possibility to describe an 
equivalent surface is to use the so-called cumulative height distribution of the con-
tact surface with respect to the height of the asperities, see also (Greenwood and 
Williamson 1966). The cumulative height distribution, shown in Fig. 3.3-3, corre-
sponds to the measured surface profile, shown in Fig. 3.3-2. 

Fig. 3.3-2 Measured surface profile 
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based on experimental investigations. In principle measured values of the expo-
nent vary in the range of 2.0 . k . 3.3 , see (Kikuchi and Oden 1988). In Fig. 
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Fig. 3.3-3 Measured cumulative height distribution 

Since the measured surface profile is relatively long and no filtering has been 
applied, the cumulative height distribution includes in general the waviness, see 
(Warnecke and Dutschke 1984). The measured cumulative height distribution can 
be approximated by analytical functions and these will be used to develop the con-
tact laws. 

The cumulative height distribution, shown in Fig. 3.3-3, can be approximated 
for example by the following function 
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see Fig. 3.3-4. The parameter R0 can be identified from a surface measurement us-
ing for example the least square method or can be approximated by characteristic 
values of the surface like the peak to valley height Rmax or the average surface 
roughness RZ. With respect to the measured cumulative height distribution, shown 
above, the peak to valley height Rmax of the surface is approximately equal to the 
average surface roughness RZ, because, here the waviness of the surface is very 
small. The approximated cumulative height distribution is zero for x*=0 and one 
(corresponds to 100%) for x�RZ. Differentiating Eq.(3.3-4) with respect to the co-
ordinate x* gives the corresponding normalized probability density function �p*, 
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� ***�  

and 
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see Fig. 3.3-5. 
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Fig. 3.3-4 Cumulative height distribution 

 

 

Fig. 3.3-5 Probability density function 

Alternatively, the Gaussian distribution can be used to approximate the meas-
ured surface data. The difference between the Gaussian distribution and the ap-
proximation is relatively small, see Fig. 3.3-4 and Fig. 3.3-5. The mean value and 
the standard deviation of the Gaussian distribution and the approximation are the 
same with 
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respectively. 
Using the Gaussian distribution the possibility to distinguish between separat-

ing, piecewise contact and full contact is not given, because in any case, there will 
be piecewise contact, which does not correspond to the reality. Therefore, from a 
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practical point of view, the approximation given in Eq.(3.3-4) is used in the fol-
lowing. 

The contact behavior of two elastic and rough structures can be approximated 
by a system, where a smooth rigid wall contacts a rough elastic surface, by adjust-
ing the corresponding parameters, see (Johnson 1989). If two elastic surfaces 1 
and 2 contact each other, the overall normal and tangential contact stiffnesses are 
given by 
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1

c
1

c
1

���
��      (3.3-8) 

and 
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c
1

c
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���
�� ,     (3.3-9) 

respectively. If two different rough surfaces 1 and 2 are contacting, an equivalent 
cumulative height distribution can be approximated using the rules of probability 
by 

)()()( zuzuzu 2
2R

2
1RR �� .    (3.3-10) 

If identical functional descriptions of the cumulative height distributions for both 
surfaces is assumed with 
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and inserting Eq.(3.3-11) in Eq.(3.3-10) gives the equivalent average surface 
roughness, see (Johnson 1989), 

 ,R+R = R 2
2Z

2
1ZZ      (3.3-12) 

to reduce the problem to a smooth rigid surface contacting a rough elastic surface, 
see Fig. 3.3-6.  
 

Fig. 3.3-6 Contact model for rough surfaces 
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The approximation of the cumulative height distribution is placed on top of one 
elastic element of the elastic foundation. The normal force �FN is applied to the 
rigid wall. In the depicted case, contact between the rigid wall and the elastic surface 
exist up to the position z=�h(x=ux), based on the assumption, that the asperities do 
act independently on each other, as assumed by Greenwood and Williamson (1966).  

With respect to the region where separation takes place, �h(x=ux)<z<�h0, the 
lubricant can act onto the wall and the elastic surface and can reduce the normal 
load applied to the elastic contact. In the following, all physical effects due to the 
lubricant are neglected. For further information on lubrication, see for example 
(Bowden and Tabor 1956; Jacobsen 1991; Leudema 1996; Seireg 1996). 

The contact area, see Fig. 3.3-6, is given by 

0x buxhA ��� )( ��      (3.3-13) 

or in dimensionless form 
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Now, one is able to calculate the equivalent normal pressure distribution due to the 
rough elastic surface from Eq.(3.1-25) with 

� �)(zuu
A

cp Rxx
0

0N
N ��

�
�

,    (3.3-15) 

where uRx describes the shape of the undeformed equivalent rough contact surface, 
which has to be calculated iteratively from Eq.(3.3-4). The normalized equivalent 
pressure distribution is given by 
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with the dimensionless parameters 

0NZ

0N*
N

0

*

Z

x*
x cR

Ap
p,

h
zz,

R
u

u
�
�

�
��� .   (3.3-17) 

In Fig. 3.3-7 the normalized equivalent pressure distribution for different normal 
displacements is presented. For example, a normal displacement of ux

*=0.5 leads 
to a contact area of 50% of the nominal area. The maximum normal pressure is 
given from Eq.(3.3-15) at the position z*=0 with 

**
max, xN up � .      (3.3-18) 

The normal contact force for one contact element is given by integration of the 
normal pressure distribution with respect to the coordinate z 
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Inserting Eq.(3.3-15), the relationship 
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and Eq.(3.3-14) give the dimensionless normal contact force 
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Fig. 3.3-7 Equivalent normal pressure distribution 
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with dimensionless parameters 
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Hence, the normal force is proportional to the overlapping volume. Inserting 
Eq.(3.3-4) in Eq.(3.3-21) gives 
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In Fig. 3.3-8, the nonlinear behavior of the dimensionless normal contact force 
with respect to the relative normal displacement is shown. For a relative normal 
displacement of ux

*>1 the behavior is linear, because the complete contact area 
carries the load and for ux

*<0 separation takes place. 
The constitutive contact law described in Eq.(3.3-21) can be used to calculate 

the normal-force-displacement relationship for any rough contact surface. For ex-
ample it is possible to recalculate this relationship if wear leads to a change of the 
cumulative height distribution. Due to different cumulative height distribution the 
normal force-displacement relationship will change. In the following some basic 
cumulative height distributions are investigated and applied to the general calcula-
tion of the normal contact force described in Eq.(3.3-21). 
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Fig. 3.3-8 Normal force-displacement relationship 

For very small relative normal displacements, ux
*<<1, the cumulative height 

distribution defined in Eq.(3.3-4) can be approximated by 
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Comparing Eq.(3.3-26) with Eq.(3.3-3) leads to an exponent of k=3 as described 
in the introduction. Furthermore, the parameter of the contact law can be identified 
to 
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and 
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Hence, the physical interpretation of the empirical contact laws is given. Assum-
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results in a parabolic function for the normalized normal contact force using 
Eq.(3.3-21) 
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see Fig. 3.3-1 with k=2. If the roughness is set to be zero, which corresponds to 
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the penalty approach is modeled by  
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see Fig. 3.3-1 with k=1. If the cumulative height distribution is given by the expo-
nential function 
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the normal force can be calculated with 
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see Fig. 3.3-1. Combining Eq.(3.3-34) and Eq.(3.3-35), here the contact normal 
force is proportional to the contact area and is given by 
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see also (Johnson 1989). Hence, with the described contact model all relevant con-
tact laws can be derived. 

The tangential contact force in the z-direction is calculated by integrating the 
shear stress distribution with 
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Inserting the corresponding shear stress of Eq.(3.1-25) and integrating gives 
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Differentiating Eq.(3.3-39) with respect to the displacement wP gives the tangen-
tial contact stiffness 

)()( *******
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with Eq.(3.3-14) and 
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Hence, the tangential contact stiffness for one area element is proportional to the 
contact area, but is nonlinearly dependent on the relative normal displacement. 
Hence, the tangential stiffness dependent is nonlinear dependent on the normal 
contact force as shown in Fig. 3.3-9. Due to the developed contact model, the con-
tact stiffnesses of a rough surface are identical in the y- and z-direction and, hence, 
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the modeled contact behavior is isotropic. The limiting value of the dimensionless 
contact stiffness of one is reached, if the contact area is identical to the nominal 
contact area.  
 

 

Fig. 3.3-9 Tangential contact stiffnesses 

3.4 Hyperbolic Contact Laws for Rough Surfaces 

The above-described analysis holds only, if the relative normal displacements are 
small. If the normal deformations are relative large, then the length of one de-
formed strip has to be used for the calculation of the contact forces as described in 
Chapter 3.1, see Eq.(3.1-12). The deformed length of a contact element is given by 
 x0 u� �� ,      (3.4-1) 

see Fig. 3.1-1. If the average roughness is identical to zero, the normal force-
displacement relationship is given by 
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using Eq.(3.1-15). The deformed length can be normalized 
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As described in Chapter 3.3 the recalculation of the normal contact force for large 
deformations including the effect of roughness gives the constitutive law 
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using of Eq.(3.3-24). 
In Fig. 3.4-1, the influence of the normalized roughness RZ

* onto the normal 
contact force-displacement relationship is depicted. For RZ

*<<1, the normal force-
displacement relationship is identical to the relationship shown in Fig. 3.3-8. In 
the limit, the nominal length �0 is identical to the roughness RZ, which corresponds 
to RZ

*=1. Then, the normal contact force is identical to infinite, if the relative dis-
placement ux is equal to the value of RZ or ux

*=1. This normal force-displacement 
relationship would have been used, if an infinite number of modes is used to de-
scribe the elasticity of the contacting bodies completely. 

 

 

Fig. 3.4-1 Normal force-displacement relationship for large displacements 

The recalculation of the tangential contact stiffness for large deformations gives 
the constitutive law 
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with Eq.(3.3-40). In Fig. 3.4-2, the corresponding tangential stiffness for large de-
formations versus the normal contact force is shown. If the normalized roughness 
is increased, then the tangential contact stiffness increases as well. If the deforma-
tion are relative large, the developed constitutive contact laws in Eq.(3.4-5) and 
Eq.(3.4-6) can be applied. The physical validation of these contact laws is verified 
in the next Chapter, where it is assumed that the deformations are relative small 
and that the roughness compared to the undeformed length is very small. 
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Fig. 3.4-2 Tangential contact stiffnesses for large displacements 

3.5 Experimental Validation of the Contact Laws 

In (Treyde 1995), two beams contacting each other at the tip are used to identify 
the normal force-displacement relationship and the tangential contact stiffness. 
The corresponding experimental setup is shown in Fig. 3.5-1, where an electro-
magnetic shaker has been used to excite the first and second vibration mode to 
identify the bending and the tangential contact stiffnesses, respectively. The nor-
mal force-displacement relationship was identified by applying a static normal 
load using weights and measuring the relative normal displacement with a laser 
vibrometer, which is not shown in the figure. 

Fig. 3.5-2 shows the comparison of measured, see (Treyde 1995), and calcu-
lated normal contact forces versus the normal displacements using the cumulative 
height distribution defined by Eq.(3.3-4). Due to the experimental setup the fol-
lowing data for the normal contact stiffness and the average surface roughness are 
used cN0=240.0 106 [N/m] and RZ=12.0 [μm]. 
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Fig. 3.5-1 Experimental setup with two beams 

 

 

Fig. 3.5-2 Comparison of measurement and calculation due to the normal force-
displacement relationship 
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Fig. 3.5-3 Comparison of measurement and calculation due to the tangential contact stiff-
ness 

In Fig. 3.5-3, the calculated tangential stiffness is compared with identified 
values, see (Treyde 1995). The contact parameters used for the calculation are 
cN0=82.5 106 [N/m], RZ=12.0 [μm] and cR0=31.7 106 [N/m]. One reason for the dif-
ferences between the measurements and the calculations is due to the used theo-
retical cumulative height distribution, which reflects the reality only approxi-
mately. Nevertheless, both comparisons between measurement and calculation 
show a relative good agreement. 

3.6 Friction Characteristics 

The friction coefficient can depend on system parameters like the relative velocity 
and the normal force; this is called the friction characteristic. Different friction 
characteristics used in the literature are summarized in (Kragelski et al. 1982; Stel-
ter 1990; Hinrichs 1997a), see also Fig. 1.2-1.  

In (Hinrichs 1997a), a test stand for the identification of friction characteristics 
is used, see Fig. 3.6-1. For the identification of the friction characteristic, the work 
piece is pressed onto the disc by dead weights, which are not shown in the Figure. 
The friction and normal forces are measured directly by a three-component force 
transducer. The displacement and the velocity are measured by a laser vibrometer. 
The friction force and the normal contact force can be measured simultaneously 
very close to the contact area. From here, it is possible to calculate the friction co-
efficient for different constant relative velocities and normal loads. A more de-
tailed explanation of the test stand is given in Chapter 4 and in (Popp et al. 1996).  
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Fig. 3.6-1 Experimental setup 

In (Lindner et al. 2004), (Moldenhauer et al. 2005) and (Sextro et al. 2006) a 
friction model for rubber is developed, where the calculated friction coefficients 
are compared by the identified friction coefficients. Within the theory, hysteretic 
and adhesive contact forces are modeled including the influence of temperature. 
The hysteretic friction of rubber originates from internal material damping caused 
by the deformation during sliding across the rough surface. The temperature influ-
ences the dynamic properties of the material significantly as it is formulated in the 
well-known WLF-equation (Williams et al. 1955). A modified theory of Achen-
bach is used to model adhesion friction, see (Achenbach et al. 2001 and 2003), 
which are based on molecular binding forces. Fig. 3.6-2 depicts the measured fric-
tion coefficient, the hysteresis and adhesion simulation and the corresponding su-
perposition. The measurements show an explicit maximum at a relative velocity of 
about v = 200 mm/s. In a higher velocity range the friction coefficient falls due to 
the hysteretic friction. Up to a velocity of 20 mm/s the friction coefficient de-
creases which can result from adhesion friction. The comparison of the simula-
tions with the experiments is very good. These results from local rubber friction 
investigations can be used as an input for larger systems like tread blocks as a part 
of tyres. 

 
Fig. 3.6-2 Friction characteristic rubber-grinding paper 
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It appears that the friction coefficient is not stationary and depends on time 
even for stationary experimental conditions. This physical effect is explained in 
(Hinrichs 1997a) by the brush model, where for a constant relative velocity two 
asperities lose contact and both will find new contacts and then will lose contact 
again and so on. Using the Gaussian distribution the mean value and the standard 
deviation of the friction coefficient are calculated from measured normal and tan-
gential contact forces. These values are shown in Fig. 3.6-3 for the contact: steel-
brass. It was observed that the identified friction coefficient has a negative slope 
with respect to the relative velocity vr. In the following, the phenomenon of a de-
creasing characteristic with respect to the relative velocity will be analyzed from a 
theoretical point of view. 

 

Fig. 3.6-3 Friction coefficient versus relative velocity 
 

In case of the hydrostatic pressure distribution (i=2), see Chapter 3.1, assuming 
Coulomb friction, constant pressure distribution and solving Eq.(3.1-31) with 
Eq.(3.1-28) for the friction coefficient gives 
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see also (Holland and Rick 1997). Assuming a linear temperature dependency of 
the shear strength of steel with 
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where �T denotes the temperature relative to the room temperature, �TE defines 
the slope of the temperature dependency and �S0 the shear strength at room tem-
perature. Inserting Eq.(3.6-2) in Eq.(3.6-1), then the friction coefficient is given by 
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with 

N

0S
0 p

0T ���� ��� )( .     (3.6-4) 

In the following, the effect of temperature within the contact region and its influ-
ence onto the friction coefficient characteristic is investigated. In general, the heat 
transfer equation has to be used to calculate the temperature distribution. Here, the 
average temperature within the contact area is approximated to be proportional to 
the distributed heat source, see (Johnson 1989), 

HT0m qkTTT ��� ,     (3.6-5) 

with the heat source qH per unit area. To derive the distributed heat source, it is 
necessary to investigate the energy balance for a stationary process assuming a 
constant relative velocity. In this case, the deformation energy does not influence 
the energy balance. 
 

 

Fig. 3.6-4 Energy balance for one mass element 

The work done to a mass element sliding on a smooth rigid plane, see Fig. 3.6-4, 
which moves with the constant velocity vz, is equal to heat 

QWW zx ��� ��      (3.6-6) 

with the work done of both external forces 

zzzxxx uFWuFW ���� �� ,     (3.6-7) 

and the heat �Q. All other energy sources are neglected and likewise the influence 
of the worn material is neglected. Equilibrium for the mass element and assuming 
Coulomb friction yields 

.., constFFconstFF NzNx ���� �����   (3.6-8) 

For a stationary process, the velocities are assumed constant, 
constvvuconstvu rzzxx ����� �� ., .   (3.6-9) 

with the relative velocity vr. Using Eq.(3.6-7), Eq.(3.6-8) and Eq.(3.6-9) and dif-
ferentiating Eq.(3.6-6) with respect to time gives 

rNxN vFvFQ ���� ��� .     (3.6-10) 
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The heat source is identical to the distributed heat flow, hence, 
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    (3.6-11) 

with the normal pressure 
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Assuming that the velocity in the x-direction is relatively small 
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which corresponds to a small wear rate. Then, the average heat source can be ap-
proximated by the distributed frictional power 

rN
0

R
H vp

A
Pq �

�
�

�� .     (3.6-14) 

Inserting Eq.(3.6-14) in Eq.(3.6-5) and Eq.(3.6-5) in Eq.(3.6-3) and solving for the 
friction coefficient gives 
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with the normalized pressure parameter 
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� .      (3.6-16) 

Fig. 3.6-3 shows additionally the comparison of Eq.(3.6-15) with a friction coeffi-
cient at zero relative velocity of μ0=0.28, the parameter 1/pv=0.22 m/s and assum-
ing the hydrostatic pressure distribution with si=s2=1. This comparison shows a 
good agreement. From Eq.(3.6-15) the dependency of the friction coefficient with 
respect to the load, kinematics, material and geometry parameters of the contact 
bodies are described. If the contact is complex with regard to these parameters, a 
common method is to identify the friction coefficient within a stationary process 
by an experimental setup with respect to the normal load and the relative velocity, 
see again (Hinrichs 1997a). 

The influence of a viscous fluid can be approximated by Newtons law for lami-
nar flow. The shear stress is given by 

dx
dv

F �� �       (3.6-17) 

with the viscosity �, which is dependent on temperature. Applying this rule to the 
developed contact model gives 
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with the relative velocity vr, which is assumed to be constant. The additional shear 
force due to the fluid is given by 



58      3 Contact Model 

� �
�
�

�
0

x

h

uxh
F0F dzbF

�

�

��� .     (3.6-19) 

The tangential force due to friction is given by 
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Again, it is assumed that the friction coefficient decreases linear with the tempera-
ture independently from the normal pressure, see Eq.(3.6-3). Using the Eq.(3.3-6), 
Eq.(3.3-24), Eq.(3.6-5) and  Eq.(3.6-14) the equivalent friction coefficient can be 
calculated by 
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In Fig. 3.6-5, the equivalent friction coefficient is shown versus the relative veloc-
ity varying the normal displacement which corresponds to a normal force. If the 
rough surface is compressed (u*=1) no tangential forces due to the fluid act onto 
the body. In this case, the equivalent friction characteristic decreases with respect 
to the relative velocity. Reducing the normal displacement, the friction coefficient 
increases with increasing velocity. 

 
 

Fig. 3.6-5 Equivalent friction coefficient 
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3.7 Three-dimensional Point Contact Element 

Within this Chapter, the results of the previous investigations are summarized to a 
single point contact element. One contact element is shown in Fig. 3.7-1. The con-
tact element can be reduced to a simplified point contact model shown in Fig. 3.7-
2, where a) shows the normal and b) the tangential point contact model. The elas-
ticity of the point contact is modeled by springs with the tangential stiffness �cR 
the normal stiffness �cN. The point P is the position of the point mass �mD. Dry 
friction occurs at the point P with the friction coefficient �(vr), which is dependent 
on the relative velocity vr=vP. The normal contact force �FN acts perpendicular to 
the y,z-contact plane. The friction force �FR acts opposite to the velocity of the 
point P. For a given motion of the point M in the y,z-contact plane and the dis-
placement of the point N in x-direction, the corresponding motion of the point P 
and the friction forces can be calculated. Here, the equivalent pressure distribution 
is approximated by an average contact pressure, which means microslip effects are 
not included in this investigation. In the following, the equation of motion of the 
point mass will be derived and the point contact element will be investigated by 
parameter studies.  
 

 
Fig. 3.7-1 Contact element 

The displacements of the points M, N and P are: 
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with 
 PNPNPM zzyyxx ��� ,, .    (3.7-2) 
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Fig. 3.7-2 Point contact model  a) normal and  b) tangential contact model 
 

The displacements xN, yM and zM are assumed to be given depending on the time. 
The three coordinates of the point P and the corresponding velocities are calcu-
lated by Newton’s law. The equation of motion is given by 
 DSCPDm FFFr ���� ����� ,    (3.7-3) 

where �mD denotes the reduced point mass, �FC the contact force, �FS the spring 
force and �FSD additionally damping forces. 

Using Eq.(3.3-14) for calculating the contact area, the resultant mass �mR in-
volved is given by 
 00xxR uAum ���� )()( � ,     (3.7-4) 

where �0 denotes the density and �0 the depth of the undeformed elastic founda-
tion. Inserting Eq.(3.3-14) in Eq.(3.7-4) gives 

 000xR Ahum ���� *)( �      (3.7-5) 

with the abbreviation 

 )( ***
xuhh �� .      (3.7-6) 

The reduced point mass �mD is assumed to be proportional to the resultant mass 
by 
 RD mm ��� �       (3.7-7) 

with the proportionality factor � as defined in Eq.(3.2-27). Inserting Eq.(3.7-5) in 
Eq.(3.7-7) gives 

 *hmm 0RD ��� �       (3.7-8) 
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 with 

 0000R Am ���� � .     (3.7-9) 

The approximation of the reduced point mass holds only if the excitation angular 
frequency � 0 of the system is relatively low, compared to the eigenfrequencies of 
the contact for the normal and tangential direction 
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see Chapter 3.2. In Eq.(3.7-3) the contact force �FC is defined by 

 � �T
RzRyNC FFF ���� ,,�F     (3.7-11) 

with the normal contact force �FN and the friction forces �FRy and �FRz in the y- 
and z-direction, respectively. Assuming dry friction, the friction forces are given 
by 

 
P

P
NPRy v

yFvF
�

��� )(�� ,     (3.7-12) 

 
P

P
NPRz v

zFvF
�

��� )(��      (3.7-13) 

with the relative velocity 

 2
P

2
PP zyv �� 	� .      (3.7-14) 

Due to the anisotropic rolling contact, the tangential contact stiffnesses in the y- 
and z-direction have to be introduced. Using the following abbreviation 

 )( ***
xN uFf �� ,      (3.7-15) 

the spring force is given by 

 � �T
zz0Ryy0RZ0NS uhcuhcfRc *** ,, �����F ,  (3.7-16) 

see Eq.(3.3-24) and Eq.(3.3-40), assuming non-isotropic contact behavior in y- 
and z-direction with respect to the nominal tangential contact stiffnesses. The rela-
tive displacements in the normal and tangential directions are given by 

 � � � �T
PMPMNP

T
zyxS zzyyxxuuu ����� ,,,,u . (3.7-17) 

The internal damping force is approximated by 

 � �T
zz0Ryy0Rx0NSD ucucuch ���� ���

 ,,* ��� FF , (3.7-18) 

where second and higher order terms have been neglected, see also (Hunt and 
Crossley 1975). Inserting Eq.(3.7-11), Eq.(3.7-16) and Eq.(3.7-18) in Eq.(3.7-3) 
leads to the nonlinear coupled differential equations of motion: 
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with the viscous elastic force in normal direction 

 x0NZ0NFx uhcfRcF �** �
�� ���     (3.7-20) 

and the viscous elastic tangential forces 

 yy0Ryy0RFy uhcuhcF �** �
�� 	�     (3.7-21) 

and 

 zz0Rzz0RFz uhcuhcF �** �
�� 	� .    (3.7-22) 

If the point mass gets in contact with a rigid surface, the position of the point P in 
normal direction is given and the normal force is larger than zero 
 0F0x NP �� , .     (3.7-23) 

Then, from Eq.(3.7-19) the normal force can be calculated with 
 FxN FF �� �� .      (3.7-24) 

If separation takes place, the equation of motion is fulfilled, since f*=h*=0 and 
therefore the normal contact force vanishes, hence 
 0F0x NP �� �, .     (3.7-25) 

Combining Eq.(3.7-23) and Eq.(3.7-25) leads to the so-called complementary 
equation 
 0xF PN �� ,       (3.7-26) 

see (Pfeiffer and Glocker 1996). In case of separation the equation of motion is 
fulfilled in any case, since f*=h*=0. Therefore, in this case it is assumed that the 
velocity of the point P is identical to the point M and, hence, the accelerations of 
both points are identical 
 MP rr ���� � .      (3.7-27) 

In case of contact, the equation of motion can be transformed to 
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with the dimensionless time 

 tt 0��* ,      (3.7-29) 

the dimensionless normal contact force 
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to ensure positive normal contact forces and the dimensionless tangential forces 

 ********
yy0Ryy0RFy uhcuhcF �	� �
��     (3.7-31) 

and 
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�� ,    (3.7-32) 

the differentiation with regard to the dimensionless time 
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the normalized displacement 
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and the following normalized parameter 
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and 

 
�
 0�* .      (3.7-41) 

The formulation of a non-smooth multi-contact problem leads to a combinatorial 
problem, which has to be solved to determine the status of each single contact, 
whether it separates, sticks or slides, see (Glocker 1995; Pfeiffer and Glocker 
1996). In case of a multi-contact problem, an alternative method is to smooth the 
friction law by an arctan-function for example. Including the normal contact elas-
ticity with Eq.(3.7-30), the system equations are invariant, that means that the 
number of degrees of freedom do not change with time. From a numerical point of 
view, this is an advantage and is used in the following. The friction characteristic 
defined in Eq.(3.6-15) can be normalized with 
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�� ,     (3.7-42) 

where the following smoothing function is used 
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 )arctan()( ****
PSP vk2vs

�
� .     (3.7-43) 

The parameter kS define the slope at zero relative velocity. The dimensionless pa-
rameter used are given by 

 Z0vvZ0SS RppRkk �� �� ** , .    (3.7-44) 

Due to the definition of a smoothing function exact sticking of the point P will not 
occur. However, the velocities are relatively small, so that the case of sticking is 
only approximated. Nevertheless, in the following sticking means the velocity of 
the point P is very small. 

With respect to limits of this point contact model, it was shown in Chapter 3.2 
that the lowest eigenfrequency of the contact occurs in the tangential direction. 
Using the dimensionless parameter defined in Eq.(3.7-35) and Eq.(3.7-40), 
Eq.(3.7-10) can be written in dimensionless form with 

 *
,

*
zy0R0D cm �� �� ,     (3.7-45) 

which must hold true, if applying this point contact model. For a better under-
standing of the three-dimensional point contact model, different motions of the 
point M will be investigated. Within the following parameter studies, the parame-
ters are given by: cR0y

*=cR0z
*=1.0, FN

*=1.0, �mD0
*=10-3 and 
*=0.2, if not defined 

else. In a first step the slope parameter kS has to be adjusted. To find a reasonable 
value, a parameter study is carried out with a constant velocity v0y of the point M 
in the y-direction. Then the displacement of the point M is given by 
 tvy y0M �       (3.7-46) 

or in dimensionless notation 

 *** tvy y0M �       (3.7-47) 

with 
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Because of a decreasing friction characteristic with pv
*=100.0, see Eq.(3.7-42), 

stick-slip motion occur. In Fig. 3.7-3 the phase plots of the corresponding limit 
cycle are investigated varying the slope of the smoothing function for a velocity of 
v0y

*=1.0. The results are relatively sensitive to the slope parameter. Hence, there is 
a need for high values of the slope, which leads to a stiff set of differential equa-
tions. The increase of computation time can be reduced, if special solver are used, 
which are designed for those cases, see (SIMULINK 1999) and make use of the 
numerical and if known of the analytical Jacobian to speed up the solution proce-
dure. These solvers in combination with a variable step size lead to reasonable 
computation times. Within the following parameter studies, the normalized slope 
is set to be kS=106, which lead to a relatively small error, see Fig. 3.7-3.  

In Fig. 3.7-4a corresponding to the above investigation presented in Fig. 3.7-3, 
the displacement of the point M, which moves with the velocity v0y, and the dis-
placement of the point P are shown. The point P is sticking where the displace-
ment yP is constant with respect to time and else sliding. The slip time compared 
to the stick time is relatively small. The stick-slip motion can be seen by observing 
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the velocity of the point P, see Fig. 3.7-4b. The point P sticks if the velocity vPy is 
zero. The difference of the friction force FRy, see Fig. 3.7-4c, and spring force FFy, 
see Fig. 3.7-4d, belongs to the inertia forces. Within the stick region, the spring 
force increases linearly with time due to the constant velocity v0y and is approxi-
mately equal to the friction force because the inertia forces are relatively small. If 
the reduced mass tends to zero, than the spring force will be identical to the fric-
tion force in the stick and slip region. 

 
Fig. 3.7-3 Phase plots for different slope parameters 

The energy dissipation for one period can be investigated assuming harmonic 
relative displacements. Knowing the normal displacement of the point N, the nor-
mal force can be calculated by Eq.(3.7-30). In Fig. 3.7-5, the normalized normal 
contact force is calculated versus the normalized relative normal displacement 
with 

 00z00yt3030u MMx .,.,sin.. **** ��	� , 

varying the damping factor 
*. The area of the hysteresis corresponds to the dissi-
pated energy per period with respect to the rough elastic contact. For 
*=0 the 
same functional behavior appears as shown in Fig. 3.3-8. 
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Fig. 3.7-4 Time histories of the  a) displacements  b) velocity  c) friction force  d) and 
spring force in the y-direction 

For the investigation on the tangential contact model, in the following Coulomb 
friction is assumed with pv

*=0.0, see Eq.(3.7-42). Applying the relative harmonic 
displacements in the y- and z-direction with 
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the corresponding tangential forces can be calculated with respect to the relative 
displacement in y- and z-directions and are shown in Fig. 3.7-6. Here, the dissi-
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pated energy is the sum of both hysteresis areas. The tangential force is limited by 
the Coulomb friction. This investigated example corresponds to the effect of fric-
tion damping, where friction contacts are used to dissipate energy. For further in-
formation on this topic, see Chapter 5. 
 

 

Fig. 3.7-5 Hysteresis behavior in the normal direction for different damping factors 

 

 

Fig. 3.7-6 Hysteresis behavior in tangential direction 
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Fig. 3.7-7 Three-dimensional point contact behavior  a) Orbits of the points M and P         
b) Relative normal displacement and the displacement of the point P in y- and z-direction 
versus time  c) Contact forces versus time  d) Normal contact force versus relative normal 
displacement  e) Tangential contact force versus displacement of the point M in y-direction  

f ) Tangential contact force versus displacement of the point M in z-direction 
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In general, due to three-dimensional motion three contact forces are calculated, 
where stick, slip and separation of the contact point P can occur. In Fig. 3.7-7, the 
results for the displacements in the normal direction and the tangential displace-
ment with 

 ****** sin.,cos.,sin.. t02zt01yt0251u MMx ��	� , 

are shown. In Fig. 3.7-7a, the orbits of the point P and M are shown within the 
contact plane. If the normal contact force is identical to zero, separation takes 
place. As defined above, the velocity and acceleration of the point P are identical 
to those of the point M. In Fig. 3.7-7b, the input value of the relative normal dis-
placement ux

* is shown and the calculated coordinates of the point P with respect 
to the dimensionless time t*. The three-dimensional behavior is investigated in-
cluding separation, where the normal and tangential contact forces are identical to 
zero, see Fig. 3.7-7c. The hysteresis behavior because of the three-dimensional 
motion is investigated in the Figs. 3.7-7d–f. In Fig. 3.7-7 d, the normal contact 
force versus relative normal displacement is shown, while Fig. 3.7-7e and f show 
the friction forces versus displacement of the point M in y- and z-direction, respec-
tively. Again, the dissipated energy is given by the summation of the areas de-
scribed in Fig. 3.7-7d, e and f. 

Now, the three-dimensional point contact model is developed and can be calcu-
lated by standard numerical methods. The analysis of the motion leads to stick, 
slip or separation. Microslip effects cannot be modeled, because with respect to 
the three-dimensional point contact model the three contact forces are applied in a 
single point. To simulate microslip effects within one contact area several point 
contact elements have to be used. If the contact element area is discretized again 
and several point contact model are used to describe the local contact behavior, the 
non-constant pressure distribution, as presented in Fig. 3.3-7 can be included, 
which leads to so-called microslip effects. These microslip effects are investigated 
in the next chapter. 

3.8 Microslip Effects due to Rough Surfaces 

If within one contact area, some contact points stick while others slide, then this 
phenomenon is called microslip. Here, for rough surfaces the effect of microslip 
occurs, because of the non-constant pressure distribution for one area element. In 
Fig. 3.8-1, the nominal contact area �A0 =�h0�b0 is divided into regions, where 
separation, sliding and sticking can take place. The displacement ux denotes the 
position of the rigid wall, see also Fig. 3.3-6. Each contact region is defined by the 
normal and shear stress 
 Separation: 00 xzxx �� �� ,  

 Sliding:  )(),( zpzp NxzNxx ��� ���  

 Sticking: zxzNxx zp ��� ��� ),( , 

with the tangential traction �z.  
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Fig. 3.8-1 Contact model 

If the deformations are elastically, than the traction within the stick region is given 
by 
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�� � .      (3.8-1) 

In the following the hydrostatic pressure distribution is assumed, see Eq.(3.1-32). 
If yielding occurs, than the traction is limited by the shear strength 
 Sz �� � .       (3.8-2) 

The minimum value of the Eq.(3.8-1) and Eq.(3.8-2) defines the traction within 
the stick region 
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and furthermore defines whether the deformations are elastically or plastically. As 
discussed in Chapter 3.6 the shear strength �S is assumed linearly dependent on the 
temperature with 
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��� .     (3.8-4) 

Then, the dimensionless shear traction within the stick region is given by Eq.(3.8-
3) 

 �  )(,min ***** T1wc 0SPz0Rz ���� �� .    (3.8-5) 

with 
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using the unit length a0. Assuming a constant velocity vP of the rigid wall relative 
to the elastic contact in the z-direction, the tangential displacement is determined 
by 
 tvw PP �       (3.8-8) 

or in dimensionless form 

 ** twP �        (3.8-9) 

with 
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P a
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a
ww �� ** , .     (3.8-10) 

From Eq.(3.8-5) the maximum elastic deformation is given by 

 )( *
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*
*

max T1
c

w
z0R

0S
P �

�
�

�� .    (3.8-11) 

The boundary condition between the stick and the slip region is defined by the 
tangential traction at the position x=uS, see Fig. 3.8-1, with 
 NSz pT )(��� � ,      (3.8-12) 

where the friction coefficient is assumed to be linearly dependent on the tempera-
ture, see Eq.(3.6-3). From Eq.(3.1-25) the local normal pressure at the boundary is 
given by 

 ! "Sx
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NS uu
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�
�

�
�

.    (3.8-13) 

Inserting Eq.(3.8-13) in Eq.(3.8-12) and solving for the normal displacement uS 
gives 
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uu ##��
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   (3.8-14) 

with the dimensionless friction coefficient 

 1TforT1T #�� **** )( ����    (3.8-15) 

and the dimensionless parameters 
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The average temperature with respect to the contact area is assumed to be pro-
portional to the average heat source, see also Eq.(3.6-5), 
 HT qkT ��       (3.8-17) 

and can be written in dimensionless form 

 ***
HT qkT ��       (3.8-18) 

with 
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The heat source qH is calculated by the distributed frictional power related to 
the contact area, see also Eq.(3.6-14), while the heat source due to plastic defor-
mations is neglected, hence 

 
A

vFTq PNH
H �

��� )(
�      (3.8-20) 

with the contact area �A and the resultant normal force due to the sliding contact 
region 
 NS0SSNxNNH pbuhuFuFF ����� )()()( ���   (3.8-21) 

or in dimensionless form 
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with 

 )()()()( *********
SxSSNxNNH uuuhuFuFF ���� ���� ,  (3.8-23)  

using the normal pressure defined in Eq.(3.8-13). 
The resultant tangential force is calculated by the integration of the tangential 

traction with respect to the contact area 

 dzbF
xuxh

0
Tz0T $

�

�
)(�

��� ,     (3.8-24) 

which gives 
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  (3.8-25) 

Inserting Eq.(3.8-12) gives the dimensionless tangential contact force 

 ! ")()()( *******
SNxNT uFuFTF ����� ��    (3.8-26) 

with 

 
00N0

T
T

00N

N
N ac

FF
ac

FF
��
��

�
�� �� ** , .   (3.8-27) 

This theory holds for monotonous increasing tangential displacements in one di-
rection, see also (Jäger 1996, 1998). The normal force displacement relationship is 
given by Eq.(3.3-24) using the normalized roughness 
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Z
Z a

RR �* .      (3.8-28) 

In Fig. 3.8-2a, the tangential contact force is shown varying both, the normal-
ized tangential displacement wP

* and the relative normal displacement ux
* with the 

dimensionless parameters: 

 511500u20k1R1c x0STZz0R .).(,,,, ***** ����� �� . 

  
With increasing normal displacement, the maximum possible tangential force, 
which can be transmitted increases as well. In comparison to a single point con-

tial force. 
tact, see Fig. 1.2-7b, the microslip effect leads to a smooth increase of the tangen-
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Fig. 3.8-2 Tangential force versus tangential displacement varying the normal displacement 
for different parameters a) Influence of microslip  b) Influence of the shear strength           

c) Influence of the decreasing friction factor with respect to the temperature                       
d) Influence of both the decreasing friction factor and the shear strength 
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In Fig. 3.8-2b the influence of the maximum shear strength onto the tangential 
contact force is shown with the following parameters 

 511500u10k1R1c x0STZz0R .).(,,,, ***** ����� �� . 

The maximum tangential force is limited by the shear strength. 
In Fig. 3.8-2c, the influence of the temperature, see Eq.(3.8-15), onto the tan-

gential contact force is shown for the following parameters 

 511500u21k1R1c x0STZz0R .).(,,,, ***** ����� �� . 

The decreasing character of the friction factor appears as well with respect to the 
tangential force. 

In Fig. 3.8-2d the influence of both the linear decreasing friction factor with re-
spect to the temperature and the maximum shear strength onto the tangential con-
tact force is shown with the following parameters 

 511500u11k1R1c x0STZz0R .).(,,,, ***** ����� �� . 

In the following, a comparison is done between calculations and the measure-
ments carried out by Musiol (1994). Starting from equilibrium with constant ve-
locity, the normal and tangential forces onto a work peace have been measured 
with time. The normal and the tangential force are used to define an equivalent 
friction coefficient by 

 *

*

N

T
0

N

T

F
F

F
Ff ��� .     (3.8-29) 

In Fig. 3.8-3, the results of five hundred measurements of the equivalent friction 
coefficient versus time are shown. It appears that the results cannot be reproduced, 
because wear does change the contact surfaces and therefore the contact parame-
ters. Nevertheless, these experiments converge to a limiting case, where the con-
tact parameters are approximately constant with time. However, in the beginning 
of all experiments all contact parameter do change with time. It appears that the 
average roughness is the main parameter for this effect. Assuming that the shape 
of the cumulative high distribution is approximately constant with time, the physi-
cal behavior can be modeled. All parameter have been fit to the experimental re-
sults and have been estimated by 

 651451R9170k02F000190c Z0STNz0R .....,.,.,.,. ***** ����� ��  

and using the friction coefficient of μ0=0.75. The contact partners are identical to 
those used in real brake systems. The difference to the procedure described above 
is, here the normal contact force is set to be constant in analogy to experiments de-
scribed in (Musiol 1994). The normal displacement is solved iteratively from 
Eq.(3.3-24). The comparison of the measurements and the calculations is rela-
tively good, compare Fig. 3.8-4 with Fig. 3.8-3. Additionally the decreasing char-
acteristic due to a decreasing equivalent friction factor is recalculated relatively 
well. If the average roughness is very small, from the above theory it follows, that 
for the transition from stick to slip coincides with a jump in the tangential contact 
force, which was measured by Musiol (1994) as well. One reason for the differ-
ences between measurement and calculations belong to the change of the cumula-
tive height distribution due to wear, because wear influences the contact area, con-
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tact stiffnesses and normal pressure distribution. Therefore, in the next Chapter the 
change of the cumulative height distribution due to wear is investigated. 

Fig. 3.8-3 Measurement of the equivalent friction coefficient (Musiol 1994) 
 

 
Fig. 3.8-4 Calculated equivalent friction coefficient varying the normalized roughness 
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3.9 Wear of Rough Surfaces 

As observed in the Chapter before, wear changes the surface profile. Furthermore, 
wear can influence the dynamical behavior of the system i.e. brake systems, see 
(Ostermeyer 2003, Ostermeyer and Müller 2006). In Fig. 3.9-1a a surface profile 
of the grinded surface of the disc used in the experimental setup, see Fig. 3.6-1, 
and the corresponding cumulative height distribution are shown. After one run-
over the peaks are cut off, see Fig. 3.9-1b, and the corresponding cumulative 
height distributions shows the reduced maximum value of the asperities height, 
which is decreased from 29.45 [μm] to 17.44 [μm]. After several run-over the cu-
mulative height, distribution converged to a limiting cumulative height distribu-
tion shown in Fig. 3.9-1c with a maximum value of 9.10 [μm]. One can observe, 
that the curvatures of the summits do increase, while the roughness decreases with 
time. 

 

Fig. 3.9-1 Surface profile measurements and cumulative height distribution  a) starting sur-
face profile  b) after one run-over  c) limiting case (Hinrichs 1997a) 

In the following, a calculation procedure is presented to calculate the wear ef-
fects as described above. Before calculating the wear of the cumulative height dis-
tribution, some basic equations are derived for a contact element shown in Fig. 
3.6-3. The result of the mass balance is given by 

outin mm �� �� �       (3.9-1) 

with 

a)

b)

c)



3.9 Wear of Rough Surfaces      77 

0in Wm %�� �� � ,      (3.9-2) 

where %0 denotes the density and �W the unknown wear volume. To be able to 
calculate the wear volume, several wear hypotheses have been developed. For ex-
ample, the wear of convex problems can be described by the hypothesis of Ar-
chard (1953). This has been modified by Fleischer (1973), who assumed, that the 
volume wear rate is proportional to the frictional power 

RW PIW �� ��       (3.9-3) 

with the proportionality factor IW and the frictional power 

rNR vFP ��� � .      (3.9-4) 

The proportionality factor IW has to be identified by experiments, see (Krause and 
Poll 1986) and is dependent on the frictional power per contact area. The wear rate 
is defined by the velocity in normal direction 

0
x A

Wv
�
� �

� ,      (3.9-5) 

See Fig.3.6-3. Inserting Eq.(3.9-3) and Eq.(3.9-4) and using Eq.(3.6-14) gives 

HWx qIv � .      (3.9-6) 

Then the wear rate in x-direction can be determined. Now, for investigating the 
change of the cumulative height distribution the wear rate is approximated by dis-
crete values 

t
xv W

x �
�

& ,      (3.9-7) 

where �xW denotes the wear depth for one contact element per time step �t. With 
respect to the experiments described above the relative velocity vr and the friction 
coefficient μ=μ0 are assumed to be constant. If the pressure distribution is known, 
then the wear can be calculated with respect to time. From Eq.(3.9-6) and Eq.(3.9-
7) it follows that the depth of the worn material is given by 

tvzpIx rN0WW ��� )(�      (3.9-8) 

or using dimensionless notation 
**** )( tzpx NW �� �      (3.9-9) 

with 
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Here, the worn material is directly proportional to the pressure distribution and the 
time. The general calculation of the normalized equivalent pressure distribution is 
given by Eq.(3.3-15). Because of the non-constant pressure distribution, the mate-
rial is not worn constantly with respect to the contact area. Starting with the cumu-
lative height distribution defined in Eq.(3.3-4) and the relative normal displace-
ment ux

*=0.5 at the time t0
*, which corresponds to a normal force of FN

*=0.09375 
using Eq.(3.3-24). In the following, this value of the normal force is held to be 
constant, while the relative normal displacement ux

* is adjusted. The time differ-
ence is set to be �t*=100.0.  
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In Fig. 3.9-2 and in Fig. 3.9-3 the change of the cumulative height distribution 
and the change of the equivalent pressure distribution is presented, respectively, 
for different time steps. As observed in the experimental results of the surface pro-
file measurements cited in Fig. 3.9-1, the surface profiles are getting smoother 
with time and the average roughness decreases. Due to the effect that the surface 
is getting smoother, the contact area increases and the maximum pressure at z*=0 
decreases with time.  

 
 

Fig. 3.9-2 Change of the cumulative height due to wear 
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Fig. 3.9-3 Change of the normal equivalent pressure distribution due to wear 
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Hence, systems with friction are always time dependent since the contact area 

and the pressure distribution are time dependent. Looking at the long time behav-
ior of dynamical systems with friction, wear analysis has to be included, because 
this will change the dynamical behavior. Nevertheless, in many cases, this time 
dependency is very slow compared to the dynamics and can be neglected consid-
ering the short time dynamics. 

Summarizing Chapter 3.8, where the influence of temperature onto the friction 
characteristic has been investigated and the present Chapter results in the flow 
chart shown in Fig. 3.9-4. One output parameter of the point contact model is the 
frictional power. From here, the temperature and the wear can be determined. The 
loop can be closed from calculating the wear of the contact surface to the meas-
ured cumulative height distribution as described in the present Chapter. The con-
tact stiffness for smooth surfaces is combined with the surface profile measure-
ment using the cumulative height distribution. This information is used to describe 
the normal force-displacement-relationship and the nonlinear tangential contact 
stiffness due to roughness within the point contact model. The contact stiffness for 
smooth surfaces can be determined by the finite element method and modal analy-
sis as described in Chapter 3.1. In general, the static system has to be analyzed be-
fore using the finite element method and the static contact pressure, nominal con-
tact area, the contact stiffnesses have to be determined. Then the point contact 
model can be used in combination with the modal description of the elastic bodies 
to describe the dynamic behavior of the system. This procedure will be applied to 
different systems as described in Chapter 4, 5 and 6. 
 

 

Fig. 3.9-4 Flow chart of the solution procedure 
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4 Oscillators with Elastic Contact and Friction 

To verify the developed point contact model with friction, a comparison of meas-
urements and calculations with respect to the normal and tangential contact behav-
ior is carried out. The experimental setup, shown in Fig. 3.6-1, is used for the in-
vestigations in the normal and tangential directions, see also (Hinrichs et al. 
1997b, 1998). On the one hand, an oscillator with an elastic normal contact and on 
the other hand a self-excited oscillator with friction is analyzed. The theoretical 
foundation for both investigated systems is derived in a more general sense within 
the next Chapter. Due to the strong non-linearity of the normal and tangential con-
tact, the systems are analyzed in the time domain. 

4.1 System Description 

In Fig. 4.1-1, the investigated system model with n possible contact points at the 
surface of an elastic body is depicted. The body is assumed linear elastic, as de-
scribed in Chapter 2. The surface of the elastic body, where contact can occur, is 
discretized and for each possible contact node, the contact and friction laws have 
to be formulated. The ground is moving with the constant velocity V. The normal 
force FNj and the tangential force FRj act at the node j. 

The vibration amplitudes of the elastic body, the external forces and the contact 
forces are described in the initial I-coordinate-system. With respect to the elastic 
body, the excitation point B is introduced, where two external loads and one ex-
ternal moment are applied. A constant force FN0 like the gravity force is applied at 
the node C parallel to the Iy-axis. The surface at the node j is defined by the height 
yRj. As derived in Chapter 2.4, the dynamics are given by the equation of motion 

 RfTdiag ���� ex
T

i
2
i0iii0i qqD2q )( �� ��� .   (4.1-1) 

The transformation into the state space requires the definition of the state vector, 

 � �T
mm2211 qqqqqq �����y ,   (4.1-2) 

with the number m of modes. Hence, differential equation of second order defined 
in Eq.(4.1-1) can be transferred to a set of differential equation of first order 
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Fig. 4.1-1 Elastic body with friction contacts 

Here, the external force vector of the elastic body is defined by 
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with the generalized forces 

 � �TBByBxB MFF ����F ,    (4.1-5) 

 � �T
0NC 0F0 ��F      (4.1-6) 

and the generalized contact forces at the node j 

 � �TNjRjj 0FF��F .     (4.1-7) 

The points B and 0 are connected by springs in the x- and y-direction, which are 
not shown in Fig. 4.1-1. Furthermore, absolute viscous damping with respect to 
the point B is assumed. Then, the external forces of the elastic body are given by 
 Bxx0BxBx xbuxcF ���� )( ,    (4.1-8) 

 Byy0ByBy ybuycF ���� )(     (4.1-9) 

and MB=0, where the point 0 is harmonically excited with 
 )sin()( txtu E0x0 ��      (4.1-10) 

and 
 )sin()( tytu E0y0 �� .     (4.1-11) 

Using the modal description of the linear elastic body, the generalized displace-
ment vector of the elastic body is given by 
 Tqw �        (4.1-12) 

with 

 � �T
111CCCBBB yxyxyx …����w  (4.1-13) 

and the generalized velocity vector 
 qTv ��        (4.1-14) 

with 

 � �T
111CCCBBB yxyxyx …��������� ����v . (4.1-15) 
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The normal contact force with respect to the node j is given by Eq.(3.2-24) 

 0vuhcufRcF NjNjj0NjNjZjj0NNj 	�� )()( **** 
 .  (4.1-16) 

The relative normal penetration is given by 

 jRjNj yyu �� ,      (4.1-17) 

where yRj denotes the macroscopic displacement of the moving ground like the 
waviness. Then, the corresponding velocity in the Iy-direction normal to the 
ground velocity V is given by 

 jRjNjNj yyuv ��� ��� .     (4.1-18) 

The relative tangential displacement and velocity of each contact element is given 
by 
 Vtxu jrj ��       (4.1-19) 

and 
 Vxuv jrjrj ��� �� ,     (4.1-20) 

respectively. 
To reduce the degrees of freedom of the investigated system and, hence, to re-

duce the computation time, the tangential contact elasticity is modeled as a part of 
the elastic body. The contact stiffness due to the contact model, described in Chap. 
3.3 is then assumed to be infinite. 

Assuming dry friction the friction force at the node j is given by 
 )()( rjNjrjRj vsFvF ��      (4.1-21) 

with the friction coefficient μ, which is assumed to be nonlinearly dependent on 
the relative velocity vrj with 

 �
�

� ��� ����  rje v
0rj ev )()( ,    (4.1-22) 

with a decreasing characteristic for e>0 and the smoothing function 

 )arctan()( rjSrj vk2vs
�

� ,     (4.1-23) 

with the slope parameter kS, which defines the slope at zero relative velocity vrj=0. 
For large slope parameters kS, the non-smooth system dynamics can be approxi-
mated. A disadvantage due to large values of this slope parameter is the occur-
rence of stiff differential equations. But there exist numerical integration methods 
with variable step size, which calculate the numerical or, if available, use the ana-
lytical Jacobian matrix of the investigated system, see for example (NAG 1986) 
and (SIMULINK 1999). Both improvements speed up the solution procedure and 
solve the system equations for relatively large values of the slope parameter in a 
reasonable time and an acceptable accuracy. Due to the investigations with respect 
to the relative error, see Chapter 3.7 and Fig. 3.7-3, the slope parameter is set to be 
kS=106 [s/m] in the following. 
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4.2 Oscillator with Elastic Contact 

The experimental setup is shown in Fig. 3.6-1, where a pendulum supported by 
springs represents the linear oscillator. The rotational degree of freedom of the 
pendulum and its degree of freedom normal to the plane of rotation have been re-
alized by air bearings providing small damping. A magnetic excitation force real-
izes the harmonic excitation, see (Popp et al. 1996). For the experimental investi-
gation of the impact oscillator, the pendulum hits a stop. A more detailed 
description of the test stand is given in (Hinrichs et al. 1997b). The reduced sys-
tem parameters of the oscillator shown in Figure 4.2-1 are given by: m=0.092 
[kg], cy=99.085 [N/m], by=0.02046 [Ns/m], y0=0.00047 [m], yR=0.0. The contact 
law is defined by Eq.(4.1-16), where the following contact parameter have been 
used: cN0=0.3 106 [N/m], RZ=5.2 [μm], 
cN0=6.0 [Ns/m]. Additionally, the modal 
parameters of the first bending mode of the pendulum, see Figure 3.6-1, have been  
estimated by the simple beam theory. 

The model investigated is shown in Fig. 4.2-1, which is excited by a harmonic 
displacement of the point 0. The contact parameters and relative displacements 
and velocities are assumed to be constant within the contact region. Then, the sys-
tem response to the harmonic excitation is independent on the number n of contact 
elements and, hence, the number of contact points can be reduced to one. Here, the 
error with respect to the discretization of the contact area is identical to zero. 

 
Fig. 4.2-1 Oscillator with elastic contact 

 
In Fig. 4.2-2, the comparison of the measurements and calculation of phase 

diagrams for different excitation angular frequencies �E are shown. If the dis-
placement y is less than yR=0.0, the elastic body contacts the wall, see Fig. 4.2-2a 
and b. The influence of the higher modes is quite high just after the elastic contact, 
when separation takes place. 

The comparison is good as well for period two oscillations, compare Fig. 4.2-
2c with d, and for higher periodic oscillations, compare Fig. 4.2-2e and f as well 
as for chaotic motions, compare Fig. 4.2-2g with h. Overall, modeling the elastic-
ity of the contact and the higher modes of the elastic body is an extension and an 
improvement compared to a non-smooth description of the contact law combined 
with the rigid body formulation, see (Hinrichs et al. 1998). 
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Fig. 4.2-2 Phase diagrams of measurements (Hinrichs 1997b) and calculations for different 
excitation angular frequencies ��  a) measurement and  b) calculation for �E�64.32 [rad/s]  
c) measurement and  d) calculation for �E���.84 [rad/s]  e) measurement and  f ) calcula-

tion for �E������ [rad/s]  g) measurement and  h) calculation for �E������ [rad/s] 
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Fig. 4.2-3 Comparison of measurements (Hinrichs 1997b) and calculations for the excita-
tion angular frequencies �E������ [rad/s]  a) measurement of displacement and  b) velocity 
c) measured phase plot  d) calculation of displacement and  e) velocity  f ) calculated phase 

plot 

In Fig. 4.2-3, a phenomenon is studied which is called chatter. The rebouncing 
of the oscillator leads to sticking at the stop for an infinite number of elastic con-
tacts. Furthermore, the calculated displacements, velocities and phase plots are 
compared with the corresponding measurements. In this extreme example, the 
agreement of measurements and calculations is also very good. 

4.3 Friction Oscillator 

The experimental setup is shown in Fig. 3.6-1 again and is modified with respect 
to the friction contact. The pendulum is pressed onto the disc driven with constant 
speed. The real rotational system is reduced to the friction oscillator shown in Fig. 
4.3-1, where a belt instead of a disc moves with the velocity V. The system is ex-
cited by a harmonic displacement of the point 0. The normal contact force FN0 is 
assumed to be constant. 
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Fig. 4.3-1 Friction oscillator 

To verify the tangential contact model, the measurements presented in (Hin-
richs et al. 1998), see Fig. 4.3-2a, and the following experimental data are used: 
V=0.001 [m/s], �E=13.8 [rad/s], FN0=14.0 [N], x0=0.0005 [m], m=5.632 [kg], 
cx=5610.0 [N/m], bx=0.768 [Ns/m]. The material contact partners are steel and 
polyurethane modeled with the following contact parameters: μ0=0.8, μ � =0.55, 
e=1000.0 [s/m], cN0=10.0 106 [N/m], RZ=10.0 [μm], 
cN0=40.0 [Ns/m]. The error 
with respect to the discretization is again zero, because only translations of the 
mass are involved. For a given normal contact force, the static normal displace-
ment has to be calculated iteratively, because the normal force is nonlinearly de-
pendent on the relative normal displacement by Eq.(4.1-16). This iteration can be 
omitted, if the first rigid body mode in the normal direction is included within the 
model of the elastic body. The rigid body mode of the mass in the tangential direc-
tion results in a one-periodic solution shown in Fig. 4.3-2b. Including the elastic-
ity of the higher mode leads to an improvement of the calculations, see Fig. 4.3-
2c, which shows oscillations with higher frequency after the transition from slip to 
stick. The modal parameters for this higher mode have been approximated by the 
data given in (Hinrichs 1997a). However, the calculations do not show the meas-
ured high-periodic oscillations. Hinrichs (1997a) explained this phenomenon with 
a stochastic varying friction coefficient.  

A further reason for this physical effect can be the surface profile. Besides the 
roughness, the waviness of the contact surface can influence the dynamical behav-
ior. Assuming that the waviness of the ground is dominated by a single sine wave, 
the displacement in the y-direction at the node j is given by 
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with the wave amplitude yA, the wave length  and the relative displacement urj 
given by Eq.(4.1-19). The wave amplitude of yA=200.0 [μm] and the wave length 
of �2.5 [mm] results in a higher-periodic solution shown in Fig. 4.3-2d, which 
shows a good qualitative and quantitative agreement with the measurement, 
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shown in Fig. 4.3-2a. A further improvement of the calculation could be to use the 
wave spectrum of the surface and to expand Eq.(4.3-1) in a Fourier series. 

 

 

Fig. 4.3-2 Phase diagrams  a) measurement (Hinrichs 1997a)  b) calculation using two 
modes  c) three modes  d) three modes plus modeling waviness 

The analysis of systems with dry friction shows a rich dynamic behavior from 
equilibrium to chaos. Bifurcation scenarios like period doubling sequences are de-
scribed for example in (Feeny and Moon 1994; Oestreich et al. 1996; Popp et al. 
1995a, 1995b, 1996, 2005, Hoffmann 2006).  

4.4 Bifurcations in Dynamical Systems with Friction 

In (Stelter and Sextro 1991) the bifurcation theory described in (Seydel 1983) has 
been applied to a two degree of freedom system using a smooth friction character-
istic. Period doublings and Hopf-bifurcations as well as turning points have been 
determined. Both, unstable branches and stable coexisting solutions have been 
calculated. Several jumping effects, which are typical for nonlinear systems, have 

equations of motion. Beside of periodic solutions, more complicated motions are 
possible. When these motions are generated by deterministic equations, determi-
nistic chaos may occur. The routes to chaos may be via period doublings, torus-
bifurcations or intermittency, see (Kreuzer 1987) and (Troger 1991). One aim of 
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been found. The mathematical modelling of dry friction forces leads to nonlinear 
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the investigations is to calculate the bifurcations, where the solution changes dra-
matically. The classification of the bifurcations is possible by the Floquet theory, 
see (Seydel 1988a) and Iooss (1980). Furthermore, the typical bifurcation scenar-
ios are most important for the understanding of self-sustained oscillations. In order 
to show the basic phenomena of dynamic systems with dry friction, a simple 
model of a two mass spring system has been taken in account leading to the fol-
lowing set of equation of motion, see (Stelter 1990) and (Stelter and Sextro 1991) 

! "� �
! ")()(

)()()()(

2r443214
43

1r243212
21

v0xBDx2xDx2xx
xx

v0xBDx2xx1D2x1x
xx

��

��#$%

�������&
�&

����������&
�&

 

(4.4-1) 
Eq.(4.4-1) represents a two-masses-spring-damper system, which is excited by 
friction forces exerted by a running band. Self-excitation due to dry friction is only 
possible when the friction force has a decreasing characteristic, see (Magnus 
1976). The parameter dependencies of the solution can be calculated with program 
package BIFPACK. Furthermore, the bifurcation behaviour can be investigated 
with the use of the Floquet theory, see (Seydel 1988a), (Hagedorn 1984) and 
(Iooss 1980). With the Floquet theory a unique classification of the global bifurca-
tions is possible. For generalization the following abbreviations have been intro-
duced: the mass ratio 

21 mm /:�' ,       (4.4-2) 

the damping ratio 

21 dd /:�$ ,      (4.4-3) 

the stiffness ratio 

21 cc /:�% ,       (4.4-4) 

the normal force ratio 

2N1N FF /:�#       (4.4-5) 

and the load parameter 

22N cFB /:� .      (4.4-6) 

The dimensionless damping is given by 

222 mc2dD /:� .     (4.4-7) 

The chosen parameter values are 

020152s01 1
2 .,.,.,. ���� � %$'� and 01.�# .  

The nonlinear structure of equation (4.4-1) becomes obvious by the vector nota-
tion 

)(xrAxx ��&       (4.4-8) 

where A is the linear system matrix and r is the vector of the nonlinear friction 
forces. For the use of the program package BIFPACK developed by Seydel 
(1988b), the function of friction force has to be continuously differentiable. Thus, 
for the numerical simulations the following model for the friction characteristic 
was used 
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with the constants  
ms0100bms02b141a140a 2121 /.,/.,.,. ���� , 

where � denotes the friction coefficient, which depends on the relative velocity vr, 
and FN denotes the normal force. The relative velocities is given by 

0i22ri vxv �	� 
 .      (4.4-10) 

To be able to characterize the solution nearby the equilibrium the Jacobian J has 
to be calculated by differentiation of Eq.(4.4-8) with regard to x. 

x
xrAxJ
�
�

��
)()(      (4.4-11) 

The amplitude x3 has been used to show the bifurcation behaviour. The important 
parameters of the system are the load parameter B, the band velocity v0 and the 
damping D. Within the bifurcation diagrams, Hopf-bifurcations, turning points 
and period doubling occur, while stationary bifurcations do not appear. To deter-
mine the Hopf-bifurcations, one has to calculate the eigenvalues of the Jacobian. 
They occur when a complex pair crosses the imaginary axis. The equilibrium x=0 
is stable, when all eigenvalues are within the left side of the complex plane.  

 

 
Fig. 4.4-1 Bifurcation diagram of the load parameter with phase plane plots 

 
In the bifurcation diagram of the load parameter, see Fig. 4.4-1 a sub-critical 

Hopf-bifurcation (H1) arises at a parameter value of B=1.12 m, while a special 
Hopf-bifurcation (H2) occurs at B=7.09 m. Starting from the equilibrium the am-
plitude is jumping from the sub-critical Hopf-bifurcation (H1) to the stable peri-
odic branch. On the other hand, coming from the periodic branch, the amplitude is 



4.4 Bifurcations in Dynamical Systems with Friction      91 

jumping from the turning point (T1) to the equilibrium. This jumping phenomenon 
is typical for systems with dry friction. The unstable branch between the turning 
point and the sub-critical Hopf-bifurcation can be understood as a borderline be-
tween the stable attractors. Here, a stable periodic attractor and a stable equilib-
rium coexist within a parameter range of 0.88 m<B<1.12 m. Following the peri-
odic attractors several period doublings occur, which end in a chaotic motion. The 
calculated period doublings are at the load parameters of 8.09 m, 9.26 m, and 9.36 
m. Beside the bifurcation scenario via period doubling a coexisting periodic solu-
tion starts at a load parameter of B=7.25 m.  

 
Fig. 4.4-2 Bifurcation diagram of the band velocity 

 

 
Fig. 4.4-3 Bifurcation diagram of the damping coefficient 
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Furthermore the bifurcation diagrams of the band velocity, see Fig. 4.4-2, and 
the damping ratio D, see Fig. 4.4-3, and have been obtained by means of the pro-
gram package BIFPACK. They also show turning points, Hopf-bifurcations and 
period doublings. The routes to chaos are also via period doublings. Coexisting so-
lutions, which are limited by sub-critical period doublings and turning points, 
could be determined. In Fig. 4.4-2, three stable attractors coexist within the pa-
rameter range of 3.57 m/s < 0v < 4.09 m/s. 



5 Friction Damping of Elastic Multibody Systems 

Contact interfaces with friction can be used as damping device to reduce the alter-
nating stresses of elastic structures. Besides the increase of lifetime, the generation 
of noise can be reduced as well. A further advantage can be that because of the re-
duced stresses, the construction can be designed lighter and, hence, this saves en-
ergy. Up to now, there exist a rich literature applying different solution methods to 
friction damping of elastic structures, see for example (Goodman and Braun 1962; 
Gaul 1983; Wißbrock 1985; Klamt 1990; Brendel 1990; Blohm 1992; Gaul et al. 
1994; Braun 1996; Sextro 1999a, 1999b; Petrov 2004). Bohlen (1987) used the 
modal description to reduce the dynamical problem of a continuous structure to 
calculate the forced vibration of a system with friction contacts. A detailed over-
view of literature due to this topic is presented in (Popp 1994; Gaul and Nitsche 
2000, Popp et al. 2003). The calculation and the optimization of the spatial dy-
namics of real elastic structures including expanded friction contacts is still a nu-
merical problem. The scope of this Chapter is to present a calculation method to 
be able to analyze the spatial dynamic response of realistic systems. This method 
will be verified by experiments and applied to bladed disc assemblies in Turbo-
machinery. 

5.1 Forced Vibrations of Elastic Structures 

A typical example of elastic structures with friction contacts is a bladed disc as-
sembly with shrouds. To calculate the dynamic response due to the forced excita-
tion of the blades with friction contacts, Treyde (1995) used the modal description 
for the elastic components and the theory of Cattaneo (1938), Mindlin (1949) and 
Mindlin et al. (1951) to describe the contact between adjacent shrouds, see Fig. 
5.1-1, and the Harmonic Balance Method to linearize the contact model. In Fig. 
5.1-1, two different common designs are shown. For the investigations of the 
blade vibrations, coordinate systems have to be introduced. The top view of the 
shroud construction and the used coordinate systems are depicted in Fig. 5.1-2. 
The blade vibrations are described in the A-coordinate-system, which is fixed to 
the root of each blade. The index N denotes the number of blades. The y- and z-
axis of each S-coordinate-system is parallel to the contact interface of the shroud. 
The transformation from the A- to the S-coordinate-system is defined by the 
shroud angle �. The R-coordinate-systems are situated in the contact interfaces 
and have the same orientation as the S-coordinate-systems. 
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Fig. 5.1-1 Two examples of shrouded blades with friction contacts 

The shape of the contact interfaces of shrouds is rectangular in most cases, see 
Fig. 5.1-3, with the width b0 and the height h0. The origin O of the R-coordinate-
system is placed in the center of the contact interface. The point OR denotes the 
center of the right contact surface of the ith blade, while the point OL denotes the 
center of the left contact surface of the (i+1)th blade. 

In praxis, the amplitudes of the excitation forces of the system are approxi-
mated in a common way, using the stationary gas force and introducing the stimu-
lus, which describes the percentage of the dynamical force amplitudes relative to 
the stationary gas force. Furthermore, it is assumed, that the excitation forces are 
monofrequent. In this Chapter, it is assumed that the contact behavior is linear. 
Then, the system response is monofrequent as well. Because of simplicity, the 
complex notation is used to describe the monofrequent forces and displacements. 
Hence, the excitation forces are given by 

 
 

Fig. 5.1-2 Top view and coordinate systems 
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Fig. 5.1-3 Geometry of a contact interface 

 ti
EE et �ff ˆ)( � ,      (5.1-1) 

the modal coordinates by 
tiet �qq ˆ)( �       (5.1-2) 

and the physical displacements by 
tiet �ww ˆ)( � .      (5.1-3) 

In a first step, one elastic structure contacting a rigid wall is modeled. This is 
done, because the extension to a system shown in Fig. 5.1-3, where two elastic 
structures contact each other is relatively easy. Assuming one elastic structure 
with one contact interface and inserting Eq.(5.1-1) and Eq.(5.1-2) in Eq.(2.4-15), 
the equation of motion becomes 

 , ˆ ˆ = ˆˆ
O

TRAT
OE

T
E fATfTq S �     (5.1-4) 

with the system matrix for one elastic structure 
 , )Di2-( = ˆ j

2 ���� j0
2

j0 �diag S     (5.1-5) 
the index j for the jth mode, the excitation angular frequency��, the vector of the 
modal coordinates q, the modal matrix T, the generalized excitation force vector fE 
defined in the A-coordinate system, the transformation matrix ARA, the modal pa-
rameters as described in Chapter 2.4 and the generalized contact force vector fO 
with respect to the point O in R-coordinates 

.ˆˆˆˆˆˆˆ
T

O
O zMyMxMzFyFxF ��

	

�
��f   (5.1-6) 

It is assumed, that the generalized contact forces are related to a contact stiffness 
matrix and the relative motion of both interfaces to each other, which includes six 
degrees of freedom, can be described by three relative translations and three rela-
tive rotations, ujO and jO respectively with j=x,y,z, assuming |jO| «1. This can be 
summarized by 

OOO uKf ˆˆˆ �       (5.1-7) 
with 

� � .ˆˆˆˆˆˆˆˆˆ T
OzyxzyxOROLO uuu ��� uuu   (5.1-8) 

Assuming that the (i+1)-structure does not vibrate, the generalized relative dis-
placement vector in R-coordinates can be determined by 
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qTAu ˆˆ O
RA

O � � ,      (5.1-9) 
Inserting Eq.(5.1-7) and Eq.(5.1-8) in Eq.(5.1-4) gives 

.ˆˆˆ
EfTqA T

E�       (5.1-10) 
with 
 .ˆˆˆ

O
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O
TRAT

O TAKATSA ��  
Solving this set of linear equations with regard to the modal coordinates, finally, 
the complex amplitudes of any node can be determined by 

.ˆˆ qTw �        (5.1-11) 
Modeling elastic structures with friction contacts leads to the same type of equa-
tion as shown in Eq.(5.1-10), where the matrices and vectors have to be adjusted 
corresponding to the investigated system. For example, the system equation of two 
elastic structures contacting each other, see Fig. 5.1-3, the corresponding compo-
nents of Eq.(5.1-10) are given by 
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A system with N elastic structures, where structure i contacts structure i+1 is de-
fined by 
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If this system is cut off at the contact i=N, the corresponding contact stiffness ma-
trix is set to be a zero matrix. Then a system with chain type is modeled, which is 
used with respect to the comparison of measurements and calculations in Chapter 
5.3. If a cyclic system is investigated, cyclic boundary conditions can be used to 
reduce the system equations and therefore the computation time dramatically. In 
Chapter 5.5, this system reduction is used to simulate and to optimize the dynam-
ics of a bladed disc assembly with shrouds. 
 



5.2 Macroscopic Contact Model      97 

Due to the nonlinear behavior of friction contacts the contact stiffness matrix, 
see Eq.(5.1-7), will be nonlinearly dependent on the generalized relative dis-
placement with respect to the points OL and OR. This nonlinear contact behavior 
will be derived using the point contact model from Chapter 3.7 in the following. 

5.2 Macroscopic Contact Model 

Solving an elastic multibody and multicontact problem with friction leads in gen-
eral to an enormous calculation time using for example standard FEMs. In the case 
of monofrequent excitation of the linear elastic structure with friction contacts, the 
Harmonic Balance Method (HBM), see (Magnus and Popp 1997), is used to lin-
earize the nonlinear contact forces and, hence, to reduce the numerical problem, 
see (Sextro et al. 1998a). To apply this method to the contact forces, harmonic 
normal and tangential relative displacements have to be assumed. 

Because of the nonlinear contact forces due to friction and the spatial motion, 
the contact planes have to be discretized, see Fig. 5.2-1. The developed point con-
tact model described in Chapter 3.7 is used to calculate the normal and tangential 
forces for each contact area element. The width and the height of one nominal area 
element are defined by 

 ,,
z

0
0

y

0
0 n

hh
n
bb �� ��      (5.2-1) 

respectively, where ny and nz denote the number of area elements in the y- and z-
direction. 

The displacement with respect to the point M can be approximated by the dis-
placement of the center point OR, assuming, that elastic deformations between the 
points OR and M can be neglected. Then the relative displacement vector with re-
spect to the point M is given by 

OOMM uGu �       (5.2-2) 

 

Fig. 5.2-1 Discretized nominal contact area 
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with 
� �T
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the transformation matrix 
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and Eq.(5.1-8). 
Before analyzing the dynamic contact model, the equilibrium position of both 

contact surfaces relative to each other has to be determined. For calculating the 
equilibrium position, friction is neglected, because if the system is excited monof-
requent, the average values of the friction forces are zero. Then, for calculating the 
equilibrium position the tangential forces and the torsional moment with respect to 
the x-axis are identical to zero, see Fig. 5.2-1. The normal force for each contact 
element can be calculated using Eq.(3.3-24). The resultant normal force and the 
moments with respect to the y- and z-axis are determined by 
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with the dimensionless parameter 
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If instead of the generalized displacement of the reference point O, the generalized 
forces are known, then Eq.(5.2-5) has to be solved iteratively, for example by the 
Newton method. Assuming the kinematics of the center points are given, the di-
mensionless relative normal displacement follows from Eq.(5.2-2) by 

******
z0y0x0x yzuu  ���      (5.2-7) 

with the normalized generalized displacements 

Z

0
z0z0

Z

0
y0y0

Z

x0
x0 R

b
R
h

R
uu  ��� *** ,, .  (5.2-8) 

In Fig. 5.2-2 the normalized normal force and the moment with respect to the y-
axis is calculated varying the relative angle with respect to the y-axis for different 
number ny of discrete contact elements. The relative error between the results of 
ny=8 and ny=1024 is relative small, that means, in this case a small number of 
contact elements results in a good numerical approximation. The presented results 
are independent on the number of elements in the z-direction. If only translations 
are involved, than the error due to the discretization is identical to zero. Further 

(Sextro 1997).  
investigations with respect to the tangential contact problem can be found in
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Fig. 5.2-2 Influence of the discretization onto the normal force and moment varying the 
relative angle with respect to the y-axis 

The displacements of the center points OL and OR are calculated using the mo-
dal description of both elastic structures described in Chapter 5.1. For monofre-
quent motions of the points OL and OR, the kinematics of the relative displace-
ment vector uM of the point M results in an ellipse in space. Starting with the 
normal contact problem, the harmonic normal displacement can be described by 
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with the dimensionless time 

tt 0��* ,      (5.2-10) 
where uG denotes the equilibrium position and uA the amplitude. Now, the har-
monic linearized complex normal stiffness 
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is defined by the real stiffness coefficient 
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and the imaginary stiffness coefficient 
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with the dimensionless parameters 

FN
*

FN
*

u =00x
*

My
* O( )

My
* O( )

j0z
* =0

j0y
*

n =4y

n =4y

n =2y

n =2y

n =8y

n =8y

n =1024y

n =1024y

0 1 2 3 4

0.30

0.25

0.20

0.15

0.10

0.05

0.00



100      5 Friction Damping of Elastic Multibody Systems 

0N0N c
b

b
c
c

c
�
�

�
�
�

� �
�

�
� �� ** , ,    (5.2-14) 

where � corresponds to the x-axis, see Fig. 5.1-3. Here, the normal force is given 
by Eq.(3.7-30) neglecting damping (�=0). Note, that the linearized stiffness coef-
ficients are nonlinear dependent on the equilibrium position uG and the vibration 
amplitude uA. 

To be able to apply the harmonic balance method to the tangential problem, it is 
assumed, that the vibration amplitudes in the normal direction are relative small, 
uA

*<< 1, and hence that the normal force is approximately constant. Then, for 
monofrequent motions, the kinematics of the point M result in an ellipse in the 
contact plane, see Fig. 5.2-3. The principle ���-axes�of the ellipse as well as the 
orientation can be calculated by the relative displacements, see (Sextro 1999b), 
and hence the motion can be described more easily in the main E-coordinate sys-
tem of the ellipse, which corresponds to the ������-coordinate-system described in 
Fig. 5.2-3. The half-axes of the ellipse can be calculated by transforming the rela-
tive displacements into the main E-coordinate system of the ellipse. Then, the 
transformation matrix from the R-coordinate system into the E-coordinate system 
of the ellipse within the contact interface is given by 
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with the transformation angle � given by, see (Sextro 1997a, 1999b) 
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Fig. 5.2-3 Tangential point contact model 
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For the tangential contact problem, it is assumed, that the normal forces are ap-
proximately constant. Then due to the three-dimensional contact model described 
in Chapter 3.7, the tangential contact problem reduces to a two-dimensional point 
contact model based on dry friction, constant tangential stiffnesses and elliptical 
trajectories to calculate the tangential forces, see Fig. 5.2-3. Furthermore, Cou-
lomb friction is assumed and the tangential contact stiffnesses are assumed to be 
isotropic. Then with the abbreviation of the reduced mass 

*hmm 0RR �� �       (5.2-17) 
and the constant tangential stiffness 

** hchcc 0R0RR �� ��� ��     (5.2-18) 
the coupled equation of motion are given by 
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with the new dimensionless parameters 
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The damping coefficient 
*=0 is set to be zero. Then the normalized spring force 
is given by 
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Due the requirements defined in Chapter 3.3, the normalized mass has to be small 
1mD ��

*� ,      (5.2-22) 
say 10-3. Now, assuming an elliptical motion of the point M with the half-axes �A 
and �A, 
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and applying the HBM to the spring forces �FF, these forces can be approximated 
by complex stiffnesses, which are nonlinearly dependent on the half-axes of the 
ellipse. Knowing the tangential stiffness and the average normal force, the har-
monic linearized complex tangential stiffnesses for elliptical trajectories 
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can be calculated by 
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see also (Sextro et al. 1998b). This simplified point contact model is used to calcu-
late the tangential forces for each contact area element. If the mass is set to be 
zero, then the equation of motion has to be differentiated to be able to solve the 
differential equation with standard numerical integration methods. This procedure 
is presented in (Sextro and Popp 1996, 1999c). 

Transforming the contact forces with respect to the point M back into the R-
coordinate-system leads to 
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with the complex stiffness matrix for the point contact 
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where each diagonal component is nonlinearly dependent on the amplitudes. The 
numerical integration can be done beforehand for a range of amplitudes and the 
linearized stiffnesses can be stored in data files. Then, the values of the complex 
stiffnesses can be found by linear interpolation, which saves enormous computa-
tion time. 

Now, the resulting forces as well as the resulting moments with respect to the 
center point O can be determined by summation with respect to all area elements 
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Inserting Eq.(5.2-2) and Eq.(5.2-29) in Eq.(5.2-31) and comparing with Eq.(5.1-7) 
gives the stiffness matrix for one contact interface 
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The stiffness matrix is symmetric and nonlinear dependent on the generalized rela-
tive displacements with respect to the point O. 

To include the influence of the non-constant pressure distribution for one area 
element as discussed in Chapter 3.3 and 3.8, the developed Eq.(5.2-32) can be 
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used to determine the corresponding contact stiffnesses for a point contact, where 
the influence of the rough surface is included. Assuming translation only, where 
the amplitudes of the displacements are held constant and setting the transforma-
tion angle ���to be zero, Eq.(5.2-32) leads to 
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�
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i
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ii0Ni0Ri0NiMnewM ccAp ������ KK ,  (5.2-33) 

where the point contact stiffnesses are dependent on the local contact parameters 
like the normal pressure pNi, the contact area �A0i, the normal and tangential con-
tact stiffnesses �cN0i and �cR0i and the friction coefficient �i. This makes it possi-
ble to include microslip effects for example due to a non-constant equivalent pres-
sure distribution because of roughness as derived in Chapter 3.3. Modeling the 
contact shown in Fig. 5.1-3, the discrete contact parameters can be calculated by 
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with the global normal stiffness cN0, the global tangential stiffness cR0 and the av-
erage normal contact force FN. Note, that the friction coefficient �, the average 
surface roughness RZ and the shape of the cumulative height distribution of the 
contact surfaces are assumed to be constant for all area elements.  

If the inverse of the stiffness matrix needs to be calculated, see (Sextro 1997a), 
the complex stiffness matrix from Eq.(5.2-32) for one contact interface can be re-
duced to a diagonal form. The following calculation procedure reduces the calcu-
lation time of the inverse matrix dramatically. Knowing the relative displacement 
with respect to the point O and the corresponding resulting forces and moments, 
the diagonal stiffness matrix is given by 
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The dimensionless complex stiffnesses and displacements are defined by 
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Fig. 5.2-4 Stiffness and damping versus relative amplitude in the x-direction 

 

Fig. 5.2-5 Stiffness and damping versus relative amplitude in the y,z-direction 
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Fig. 5.2-6 Torsional stiffness and damping versus torsion angle 

Fig. 5.2-7 Bending stiffness and damping versus bending angle with respect to the y,z-axis 
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and 
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In Fig. 5.2-4 to 5.2-7 the dimensionless stiffness (real part) and damping 
(imaginary part) for translation and rotation are shown for an equilibrium position 
uG

*=1. In each Figure, one generalized displacement is varied, while all other dis-
placements are set to zero. On the one hand, in normal direction with respect to 
the contact area, viscous forces have not been modeled and therefore the corre-
sponding damping coefficients are identical to zero, see Fig. 5.2-4 and Fig. 5.2-7. 
On the other hand the surface roughness has been modeled, which leads to micros-
lip effects, which can be seen in the region where the vibration amplitudes are 
small and the corresponding damping coefficients are not identical to zero, see 
Fig. 5.2-5 and Fig. 5.2-6. 

In general, this description of the friction contact includes the coupling between 
six degrees of freedom of the non-Hertzian contact. Inserting Eq.(5.2-32) or 
Eq.(5.2-35) in Eq.(5.1-10) these nonlinear system equations are solved iteratively 
by the damped Newton method and are analyzed in the frequency domain as done 
in the next Chapter. 

5.3 Experimental Validation of the Contact Model 

The geometry of each contact interface is defined by the width b0=72 [mm] and 
the height h0=5 [mm] and the average roughness is approximately RZ=7.5 [��m] 
identified by two profile measurements. The friction coefficient was estimated: 
�=0.2. With the Young’s modulus of E=2.1 1011 [N/m2], the nominal contact area 
A0=b0h0 and the approximated depth with �0=90 [mm], the nominal normal stiff-
ness is given by Eq.(3.1-15) with cN0=840.0 106 [N/m]. An upper value for the tan-
gential contact stiffness can be found from Eq.(3.1-16) with cR0=320.0 106 [N/m] 
with the shear modulus of G=8.1 1010 [N/m2], because here the shroud is elasti-
cally supported by the blade in the z-direction. The corresponding tangential con-
tact stiffness was estimated by cR0=80.0 106 [N/m]. The contact area is discretized 
by ny=72 and nz=5. During the calculations, these parameters are constant. The 

In the following the calculation model will be verified again by using the ex-
perimental setup, shown in Fig. 5.3-1 and 5.3-2 with three elastic bodies is used, 
see also (Sextro 1999b). The average normal contact force FN is simulated by 
gravity forces. There exist two possibilities of arrangement of the blade. The first 
arrangement is constructed close to typical constructions in steam turbines, 
whereas the second arrangement to aircraft gas turbines. The top view of the 
shroud construction of the first arrangement is shown in Fig. 5.3-3. The blade has 
a rectangular cross section and is excited with FE=1.0 [N] eccentrically to cause 
spatial vibrations of the blade and the contact surfaces. The excitation of the blade 
and the accelerometer for measurements of the frequency response function (FRF) 
are mounted at the same height of the blade.  
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excitation frequency has to be small compared to the first eigenfrequencies of the 
contact model, see Chapter 3.7. Here, the maximum excitation frequency is 
fE,max=700.0 [Hz] and the lowest eigenfrequency defined in Eq.(3.2-25) is given by 
fT,k=1=8910.0 [Hz] with respect to the tangential vibration with the density of 
�0=7850 [kg/m3]. Hence, the maximum excitation frequency is relatively small 
compared to the lowest eigenfrequency of the contact model. 
 

 

Fig. 5.3-1 Experimental setup 

 

Fig. 5.3-2 Experimental setup with two contact interfaces 
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Fig. 5.3-3 Top view of the shrouded blade with respect to the first arrangement 

The dynamical behavior of the uncoupled blade is described by the first m=20 
modes calculated by the FEM, where the first bending eigenfrequency of the blade 
is f1=14.1 [Hz]. In Fig. 5.3-4, the first two torsional modes are shown where the 
color code denotes the resultant mass-normalized deflection umax of each node. 
The eigenfrequency of the first torsional mode is 159.55 [Hz] and the second is 
540.61 [Hz]. Both modes play an important role in modeling the torsional vibra-
tion of the coupled structure through the friction contacts. For the finite element 
discretization, volume elements with eight nodes are used, where the rotational 
mass-normalized eigenvectors are calculated additionally within the modal analy-
sis. Furthermore, corresponding to the mass-normalized eigenvector, the mass-
normalized strain and stress vector for each mode are determined as well and are 
used for the stress analysis based on the modal description, see Chapter 5.5. 

In Fig. 5.3-5 and 5.3-6, the frequency response function (FRF) in the x-
direction and the torsional vibration in the �-direction with respect to the center of 
the rectangular cross section of the blade are shown, respectively. Coupled tor-
sional and bending vibrations occur. The first two resonance frequencies at 120 
[Hz] and 320 [Hz] belong to bending and the third resonance frequency at 470 
[Hz] belongs to torsional vibrations of the blade. The measurements of the bend-
ing and torsional vibrations show a good agreement with the corresponding calcu-
lations over a wide range of excitation frequencies. 

For selected values of the normal contact force FN, the corresponding FRFs are 
shown in Fig. 5.3-7 in the frequency range from 100 to 125 [Hz] at the first reso-
nance frequency, to be able to compare the measurements and the calculations in 
more detail. With decreasing normal contact force, the resonance frequency de-
creases as well, because full contact is not reached and the nonlinear contact stiff- 
nesses decrease. Both, the maximum amplitudes and the resonance frequencies 
show a very good agreement, since the first eigenfrequency of the uncoupled 
blade is 14.1 [Hz]. 
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Fig. 5.3-4 The first two torsional modes of the uncoupled blade  a) first and  b) second tor-

sional mode 

 
Fig. 5.3-5 Bending vibration for FN=780 [N] 
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Fig. 5.3-6 Torsional vibration for FN=780 [N] 

 

Fig. 5.3-7 Bending vibration for selected values of FN 

Corresponding to the above-described experimental and theoretical investiga-
tions, a different design, shown in Fig. 5.3-8 close to an aircraft gas turbine de-
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h0=5 [mm] and RZ=7.5 [�m]. The contact area is discretized by ny=20 and nz=5. The 
friction coefficient is approximated by �=0.4. The normal and tangential contact 
stiffnesses are estimated by cN0=7.6 109 [N/m] and cR0=2.9 109 [N/m] respectively. It 
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respect to the investigations described above are on the one hand the smaller con-
tact area of A0=5x20 [mm2] and on the other hand the different vibration direction 
within the contact. Again, the agreement between measurements and calculations 
is good. 

 

 

Fig. 5.3-8 Top view of the shrouded blade of the second arrangement 

 

 

Fig. 5.3-9 Bending vibration for FN=780 [N] 
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Fig. 5.3-10 Torsional vibration for FN=780 [N] 

 

Fig. 5.3-11 Bending vibration for selected values of FN 
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5.4 Spin Pit Tests of Bladed Disc Assemblies  

In the following, two spin pit tests of bladed disc assemblies are used to verify the 
developed calculation method to calculate the vibration of multibody systems with 
friction contacts. On the one hand, a real bladed disc assembly coupled by shrouds 
at ABB, Baden, Szwitzerland, see (Szwedowicz et al. 2003), and on the other hand 
a bladed disc assembly coupled by friction dampers at the Institute of Dynamics 
and Vibration, Leibnitz University Hannover, Germany, see (Götting et al. 2004 
and Götting 2005) are used. 

In a first step, the normal and tangential contact stiffness between the shrouds 
have to be determined as described in Chapter 3.1. The magnitudes of the normal 
and tangential contact stiffnesses can be identified by computing the nodal diame-
ter diagram of the shrouded turbine blades using the FEM and the developed cal-
culation method, see Fig. 5.4-1, see (Szwedowicz et al. 2003). The contact stiff-
nesses can be tuned for the nodal diagram number of interest. If the calculation is 
tuned for the normal and tangential contact stiffness considering only one nodal 
diameter number almost all nodal diameters show a good agreement with the FE 
calculations. 

In this analyzed example, the normal stiffness is twice the tangential stiffness. 
In Fig. 5.4-1, the white symbols represent the eigenfrequencies calculated by the 
FE model, the triangles refer to the spin pit measurements and the contour plot is 
the result from the developed calculation method. 

 

 
Fig 5.4-1 Nodal diameter diagram 

 
In the following, two different experimental resonance peaks of the shrouded 

blade are simulated in the spin pit conditions. All measurements were transient 
spin pit measurements performed with a low rundown speed. In this measurement, 



114      5 Friction Damping of Elastic Multibody Systems 

transient effects can be neglected. The minimal and maximal magnitudes of the 
damping ratio and excitation load of the air jet, which were evaluated from other 
resonance peaks, have been used in the simulations. The considered resonance 
peaks are measured for two different rotational speeds of the turbine.  

 

Fig 5.4-2 Spin pit tests and comparison to the calculation for different rotational speeds     
a) 57.1 rps and  b) 49.0 rps 

 
The first comparison has been carried out for a resonance response curves 

measured at a rotational speed of 57.1 rps, see Fig. 5.4-2a. Furthermore, for a ro-
tational speed of 49.0 rps a resonance response curve, which involves elastic im-
pacts between the shrouds, has been measured in Fig. 5.4-2b. In both cases, the 
simulations show a good agreement with the experimental results.  

Additionally the test stand at the Institute of Dynamics and Vibration, Leibnitz 
University Hannover, see Fig. 5.4-3, is used to verify the developed calculation 
method. The vibration amplitudes of the rotating bladed disc are measured by 
strain gauges, which are mounted above the damper platforms of the blades. The 
assembly consists of 30 blades, which can be coupled by different friction damp-
ers. The excitation force is applied at the tip of the blade by three exciters with 
constant magnetic field. Hence, the engine order equals three and multiples. Due 
to manufacturing tolerances and material deviations there is already mistuning in 
the original system. Therefore, the natural frequencies of each blade can be 
changed individually by different additional masses at the tip of the blades.  

In (Götting 2005) the influence of the damper mass is investigated for cylindri-
cal friction dampers (Z), cottage roof dampers (C) and asymmetric dampers (A). 
The comparison of simulations and experiments shows a good agreement for all 
three friction damper designs. One result is shown in Fig. 5.4-4a, where cottage 
roof dampers have been used. The coupled system is investigated with regard to 
the first bending mode of the blades, where the damper mass has been varied with: 
C1=25.9 g, C2=41.8 g and C3=117.0 g. The measured strain amplitudes corre-
spond qualitative and quantitative to the calculated results. The resonances fre-
quencies as well as the maximum strain amplitudes can be predicted relative good.  
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Fig. 5.4-3 Spin pit test stand with friction dampers 
 

The comparison with respect to the above-mentioned three dampers Z, C and A 
with regard to the measurement and calculation is presented in Fig. 5.4-4b. Vary-
ing the damper mass the comparison of calculated and measured maximum strain 
amplitudes is very good. Hence, the developed calculation method has been veri-
fied for different contacts within the rotating field. Furthermore, this method can 
be used to investigate other contacts and other couplings between the blades. The 
corresponding numerical investigations are presented in the next chapter. 

 

 
Fig 5.4-4 Comparison of measurements and calculations of a bladed disc coupled by cot-
tage roof dampers  a) varying the excitation frequency and damper mass  b) maximum 

strain amplitude versus the damper mass for different damper designs 
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5.5 Optimization of Tuned Bladed Disc Assemblies with 
Friction Contacts 

The bladed disc assembly with 24 blades (from the experiments, see Chapter 5.3) 
which are coupled by means of the first arrangement of the shrouds, is investi-
gated, see also (Sextro 2000). In praxis, the amplitudes of the excitation forces of 
the system are approximated in a common way, using the stationary gas force and 
introducing the stimulus, which describes the percentage of the dynamical force 
amplitudes relative to the stationary gas force. Furthermore, it is assumed, that the 
excitation forces are monofrequent, while the excitation angular frequency is a 
multiple of the angular velocity of the rotor described by the engine order. 

Before analyzing the global behavior of the bladed disc with shrouds the mini-
mum number of modes has to be determined, which have to be used at least with 
respect to a relative small error. This minimum number can be estimated by the 
coupled system, since here all modes of the uncoupled blade are involved to simu-
late the coupled system. In Fig. 5.5-1 the frequency response functions of the cou-
pled system with a normal force of FN=780 [N] are calculated varying the number 
of modes. The relative error between the FRFs with m=15 modes and m=20 
modes is relatively small. Hence, twenty modes are used in the following analysis. 

 

 

Fig. 5.5-1 Variation of the maximal number of modes 

In Fig. 5.5-2, the resonance frequency is calculated for all possible engine or-
ders. The normal contact force is again FN=780 [N]. Here, for high engine orders 
the resonance frequencies decrease slightly. This effect is due to the coupling of 
the shroud by nonlinear contact stiffnesses. 

In Fig. 5.5-3, the response as a function of the excitation frequency is shown 
for different normal contact forces. The engine order is two. Again, with decreas-
ing normal contact force the resonance frequency decreases as well, because the 
tangential and the normal contact stiffnesses decrease. The reduction of ampli-
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tudes is quite impressive. Further theoretical investigation gave an optimal normal 
force of 3.5 [N], where the amplitudes are minimal. 

 

 

Fig. 5.5-2 Resonance frequency versus engine order 

 

Fig. 5.5-3 Amplitude in x-direction versus excitation frequency 

For optimization of the bladed disc assembly the maximum alternating stresses, 
which occur in the blade foot, are calculated for all possible engine orders, varying 
the normal contact force, see Fig. 5.5-4 and Fig. 5.5-5. The friction contacts sepa-
rate for small normal contact forces, which lead to an increase in alternating 
stresses, especially for high engine orders, see Fig. 5.5-5. To make sure that the 
maximum alternating stresses are minimal and no separation takes place, the nor-
mal contact force has to be adjusted to FN=100 [N], see Fig. 5.5-4. For an engine 
order of j=12 the optimal normal force is slightly higher than FN=100 [N]. To be 
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able to evaluate these maximum alternating stresses with respect to the endurance 
limit, the axial stresses due to the centrifugal forces have to be calculated as well. 

 

 

Fig. 5.5-4 Alternating stress versus engine order for selected FN 

 

 

Fig. 5.5-5 Alternating stress versus engine order for selected FN 

 

0 2 4 6 8 10 12
0

10

20

30

40

50

Engine order [-]j

M
ax

.
al

te
rn

at
in

g
st

re
ss

[
]

�
z
z

N
/m

m
2

F 800 NN =

F = 400 NN

F = 200 NN

F = 100 NN

0 2 4 6 8 10 12
0

5

10

15

Engine order [-]j

M
ax

.
al

te
rn

at
in

g
st

re
ss

[
]

�
Z

Z
N

/m
m

2

F = 50 N
N

F = 6.25 N
N

F = 12.5 N
N

F = 25 N
N

Separation



5.5 Optimization of Tuned Bladed Disc Assemblies with Friction Contacts      119 

Coupling by Damping Elements 
 
An alternative coupling of the blades is given by so called damping elements as 
shown in Fig. 5.5-6a, which are placed within a hole at the tip of the blade. The 
pressure distribution can be calculated by the Hertzian theory. Note that here the 
curvature of the contact area has to be modelled additionally. The investigated 
system has 24 blades. The engine order is two and the excitation forces act in the 
z-direction. In Fig. 5.5-6b the bending vibration in the z-direction is shown. Again 
the system response is typical when varying the normal force. Using this coupling 
torsional vibration are initiated because of the eccentric coupling at the blade tip, 
see Fig. 5.5-6c. The local minimum with respect to the bending and torsional vi-
bration occurs approximately at the same normal force. 
 

 

Fig. 5.5-6 a) System description of the damping element, side and top view b) Calculated 
bending vibration and c) torsional vibration 

 
In Fig. 5.5-7a the vibration amplitude versus the excitation frequency under varia-
tion of the engine order is shown, while the normal force with FN=100 N is held 
constant. The resonance frequencies increase with an increasing engine order. The 
construction is optimal for an engine order of three. In Fig. 5.5-7b the resonance 
frequencies are depicted versus the engine order. By increasing the normal force 
the coupling between the blades is increase and hence the resonance frequencies 
increase as well.  
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Fig. 5.5-7 a) Variation of the engine order b) Resonance frequencies vs engine order 

 
Coupling by Damping Wires 
 
Due to the elasticity of damping wires the calculation of the coupling is great be-
cause the damping wire is coupled by several blades, see (Sextro and Popp 2003). 
Furthermore a high number of modes including the rigid body modes of the damp-
ing wire must be used. In Fig. 5.5-8a the investigated system is depicted, where 
seven blades have been coupled by the damping wire. Again the curvature of the 
borehole is modelled with a radius of 6 mm. The investigated system has 28 
blades, while seven blades are coupled in the circumferential direction by the 
damping wire. In Fig. 5.5-8b the system response versus the excitation frequency 
is shown. Again, one is able to calculate an optimal normal contact force for the 
first resonance frequency. 
 
Multicoupling 
 
To increase damping for example additionally friction damper can be used. In Fig. 
5.5-9a on the basis of shroud coupling with a normal force of FN=800 N the nor-
mal force for the friction damper is varied. The amplitudes can be reduced by two 
decades, see Fig. 5.5-9b. In case of spatial motion of blades it is in principle diffi-
cult to optimize the system with respect to the amplitudes. A better possibility is to 
calculate the equivalent stress, see Fig. 5.5-9c. Note that the amplitude of the 
equivalent stress corresponds to the monofrequent amplitude of the stress. 
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Fig. 5.5-8 Calculation of damping wires  a) system description  b) calculated vibration am-

plitudes 
 

 
Fig. 5.5-9 a) Investigated system  b) vibration amplitude vs excitation frequency c) equiva-

lent stress vs excitation frequency 
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5.6 Vibration of Detuned Bladed Disc Assemblies with 
Friction Contacts 
 
Friction damping of elastic multibody systems, where a large number of degrees 
of freedom are involved, are described and analyzed for example in (Sextro 1997a, 
1997b, 1998a, 1998b; Panning et al. 2000; Krzyzynski et al. 2000; Sextro et al. 
2001, Sextro et al. 2002; Panning et al. 2003a and 2003b; Götting et al. 2004). 
With respect to these references, detuned bladed disc assemblies with friction con-
tacts, where the eigenfrequencies of the blades do vary, have been investigated. 
This leads to a large numerical and nonlinear dynamic problem, because the com-
plete bladed disc with up to one hundred blades has to be modeled and solved in-
cluding the friction contact problem.  

For statistical varying eigenfrequencies, Monte Carlo simulations are often 
used to investigate the system response to monofrequent excitation forces. For this 
case an approximated method has been developed, see (Sextro et al. 2001), to 
speed up the calculation of the average and variance of vibration amplitudes and 
the corresponding distribution. This solution procedure is very efficient with re-
spect to the computation time.  

Because of large computation time of Monte-Carlo simulations, an approximate 
method is developed to calculate the system response. In the following, this ap-
proximate method will be derived assuming small standard deviations of the eigen-
frequencies of the blades. Expanding the vibration amplitude in a Taylor series with 
respect to a parameter p yields 
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Differentiating the system equation given by Eq.(5.1-10) yields 
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The mean value pm and the standard deviation 
p of the parameter p are given by 
  p = pE m][    (5.6-5) 

and 
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respectively. If the standard deviation of the parameter p is small, then it can be 
shown that the mean value of the mistuned system response is equal to the response 
of the tuned system 

 .  w= p w=pwE m)( ])([ m    (5.6-7) 
The standard deviation 
w of the system response w can be calculated using the sen-
sitivity S by 

 .  pS = 222
w 

 pm)(    (5.6-8) 

In case of the mistuned bladed disk, all sensitivities due to the eigenfrequencies of 
each blade have to be calculated. It is assumed that the variations of the eigenfre-
quencies are random. Therefore the cross correlation of the eigenfrequencies can be 
neglected. Hence, the resultant standard deviation of the system response is given by 
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   (5.6-9) 

To be able to calculate the envelopes of a mistuned system, the distribution of the 
amplitudes has to be known. Extensive comparisons with Monte Carlo simulations 
leaded to the statement that the assumption of a Weibull-distribution is valid from 
very weak to very strong coupling. The Weibull probability distribution is given by 

 
kw2* e1= wP

*)(ln
p )( ��    (5.6-10) 

with the dimensionless amplitude 

  .
w
w = w*

0
   (5.6-11) 

Both, the exponent k and the parameter w0 are unknown and are calculated in the 
following by means of the mean value wm and the standard deviation �w. The corre-
sponding probability density function is given by differentiating Eq.(5.6-10) to ob-
tain 

 .)(ln)( )(ln
p  e w 2 k = wp w2-1-*k* *k    (5.6-12) 

 

 

Fig. 5.6-1 Probability density function for the distribution of amplitudes 
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Fig. 5.6-1 shows the Weibull probability density function for the distribution of 
amplitudes plotted against the dimensionless amplitude w* for different values of 
the exponent k. For the special exponent k = 2 the Weibull distribution is equiva-
lent to the Rayleigh distribution. The n-th moment of the distribution can be calcu-
lated by 

 . +1  = wE k
nk

n
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�
��

�
�
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�)2(ln][    (5.6-13) 

The standard deviation follows from 
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Inserting Eq.(5.6-13) with n=1 for the first moment and n=2 for the second moment 
in Eq.(5.6-14) and solving for the parameter w0 gives 
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Using Eq. (5.6-13) with n=1 for the mean value and inserting Eq.(5.6-15) results in 
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Rearranging Eq.(5.6-16) gives a formula to determine the exponent k of the Weibull-
distribution, 
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knowing the measure of sensitivity or strength of localization defined by the ratio of 
the standard deviation to the mean value of the vibration amplitudes 

 . 
w
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   (5.6-18) 

For example, if this measure s is equal to one, the exponent k is also equal to one, 
see Fig. 5.6-2. For the Rayleigh distribution with k=2 the measure is s=0.523. There 
are two possibilities to calculate the exponent k. On the one hand, the strength of lo-
calization can be calculated from the mistuned response of the system and on the 
other hand by the approximate method. This numerical comparison is carried out in 
the following. 

The developed approximate analysis of detuned systems can be done with re-
spect to the amplitude variations as shown above as well as for the strain and 
stress variations. Hence, if measured strain amplitudes are available from strain 
gauge tests, then it is possible to calculate the mean value and the standard devia-
tion and the exponent k of the Weibull-distribution using Eq.(5.6-17). From here, 
it is possible to estimate the distribution of the strain amplitudes and to evaluate 
the mistuning effect. 
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Fig. 5.6-2 Weibull exponent k versus measure for sensitivity s 

 

The amplitudes in z-direction of the blades of the mistuned system are shown in 
Fig. 5.6-3. The side peaks correspond to the resonance frequencies of the tuned 
system for different engine orders. Because of the large computation time of the 
simulation for one arrangement of the blades around the disk, the approximate 
method is used to calculate the mean value wm and the standard deviation �w of the 
amplitudes. By means of this method, the upper and lower envelope wu and wl of 
the amplitudes can be calculated as well. With a probability of 95% the amplitudes 
are within these envelopes. Calculating the mean value and the standard deviation 
of the mistuned system response, the exponent k can be calculated as well, using 
Eq.(5.6-17). In Fig. 5.6-4 the exponent k is illustrated for the simulated system re-
sponse and for the approximation. The agreement of both methods is good. 
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For example, a bladed disk with friction dampers is mistuned by the eigenfre-
quencies of the blades. The standard deviation of the eigenfrequencies is 0.325% for 
each of the first ten modes (nM=10) and the mean value for the first bending reso-
nance is fm = 100.2 Hz. The blades are distributed around the disk with the eigenfre-
quencies of the first mode. The mass of the friction elements corresponds to the op-
timal mass mR=23.0 g of the tuned system. 
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Fig. 5.6-3 Response of the mistuned bladed disk (�f / fm = 0.325 %) 

 

 
Fig. 5.6-4 Comparison of the calculated exponents (�f / fm = 0.325 %) 

 
If the related standard deviation of the eigenfrequencies for each mode is 

increased from 0.325 % up to 1.374 %, see Fig. 5.6-5, then the amplitudes in-
crease as well. The exponent k of the approximate method reaches nearly the 
limiting value of k = 1 (ln k = 0), see Fig. 5.6-6. Here the probability, that 
blades vibrate with large amplitude and localization occurs, is very high. 
Hence, the measure for localization or the exponent k of the Weibull-
distribution can be used to find regions where localization occurs with a high 
probability. A big advantage is that the approximate method holds for all ar-
rangements of mistuned blades distributed around the disk. 
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Fig. 5.6-5 Response of the mistuned bladed disk (�f / fm = 1.374 %) 

 

 
Fig. 5.6-6 Comparison of the calculated exponents (�f / fm = 1.374 %) 
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5.7 Elastic Multibody Systems with Extended Friction 
Contacts 
 
Mechanical systems like the housing of combustion engines, gearboxes and ma-
chine tools usually consist of coupled elastic multibody systems, see (Genzo 
2005). The coupling in most cases is carried out through extended contact inter-
faces by means of bolted fastenings. In most cases, the contact interfaces can be 
considered as dry and extended friction contacts. To verify the developed method 
a reduced systems is investigated numerical and experimental. The system con-
sists of a freely supported system based on two half pipes coupled in two extended 
friction contacts through bolt fastenings, see Fig. 5.7-1.  

 
 

Fig. 5.7-1 Two half pipes coupled by two extended friction contacts 
 

The numerical model consists of local contact models as described in Chapter 
5.2, which are applied to each fastening. The corresponding measured and calcu-
lated frequency response functions are presented in Fig. 5.7-2. The measured first 
bending resonance agrees very good with the corresponding calculated one. The 
torsional resonance agrees relative good due to the amplitude. The disagreement 
with regard to the resonance frequency can be explained by different tangential 
contact stiffness which has been identified due to the first bending resonance. The 
coupled bending-torsional resonance is relative good with regard to the compari-
son while the amplitude of the calculation is underestimated. Here, the difficulty 
lies in modelling the bolted fastenings, where conditions with no relative motion 
have to be realized.  

 
 
 
 
 
 
 
 



5.7 Elastic Multibody Systems with Extended Friction Contacts      129 

 
Fig. 5.7-2 Comparison of measurement and calculation 



6 Rolling Contact 

6.1 Motivation 

Railway wheels are getting unround due to wear, see (Knothe 1998; Müller 1998; 
Küsel and Brommundt 1999; Popp and Schiehlen 2003, Knothe 2003). The wear 
is distributed like sine waves around the wheel, see Fig. 6.1-1 and Fig. 6.1-2. The 
unroundness of wheels leads to an increase of noise development, a reduced 
safety, an increase of the normal loads, which can lead to damage of the wheels, 
and an increase in cost of maintenance. In case of the Gotthard train the unround 
wheels are caused by the non-uniform radial elasticity, while in case of the ICE 
train the problem is unsolved. Hence, there is a need for optimization tools to 
avoid these problems. Since wear is a long time phenomenon, there is also a need 
for fast algorithms to calculate the dynamical behavior of wheel-track-systems in-
cluding the calculation of wear. 

 

Fig. 6.1-1 Unround wheel of the Gotthard train (Vohla 1996) 
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Fig. 6.1-2 Wear profile of an ICE wheel (Moyrs 1998) 

To calculate the contact forces for a rolling wheel, Kalker developed the pro-
gram system CONTACT, see (Kalker 1967, 1990). The theory is based on the 
Hertzian assumption, that the contact area is very small compared to the sizes of 
the contacting bodies. Due to the half space assumption, this calculation leads to 
enormous computation time. To overcome this problem, an alternative program 
system FASTSIM was developed by Kalker as well. Further contact models are 
described in (Garg and Dukkipati 1984) and (Ostermeyer 1989). If the half space 
assumption does not hold, the Finite Element Method can be used to solve the 
rolling contact problem efficiently, see (Nackenhorst 2000). In (Gutzeit et al. 
2006) the calculated longitudinal instationary contact forces of a tire-road contact 
agree very well to the corresponding experimental results. However, for the dy-
namical wear problem, the Finite Element Method is limited, because of the large 
numerical problem within the time domain. The program system FASTSIM ne-
glects the temperature distribution, wear calculation and the influence of the tem-
perature onto other parameters such as the friction coefficient. Due to these physi-
cal effects, the developed point contact model can give answers and this will be 
investigated in the following. Here, the influence of the third body like the lubri-
cant and the worn material is neglected. 

6.2 Normal Contact Kinematics 

In a first step, the penetration of the wheel and rail in the absence of deformations 
has to be calculated. In Fig. 6.2-1, the reference A-coordinate-system is shown, to 
describe the position of the contact area, the forces and moments. This coordinate 
system moves with the average velocity V of both wheels in the x-direction. 

The origin 0 of the A-coordinate-system corresponds to the position of first 
contact, whereby the x- and y-axis are tangential to the wheel and rail surfaces 
with respect to the origin 0, see Fig. 6.2-2. The surfaces of the wheel and rail are 
described within the W- and T-coordinate-systems, respectively. In the reference 
state, the coordinate systems and the points R0, S0 and 0 coincide. The surface po-
sition in space can be described by three translations and three rotations with re-
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spect to reference points R0 and S0 of the surfaces of the wheel and rail, respec-
tively. 

 

Fig. 6.2-1 Wheel set and rail 

Fig. 6.2-2 Coordinate systems 
 

The spatial position of the rail surface close to the contact is described by 
 ST

AT
0SASA rAur � ,     (6.2-1) 

with the relative displacement vector AuS0 of the rail reference point S0, the coor-
dinates of a point S on the rail surface within the T-coordinate-system and the 
transformation matrix AT
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 1z,y,x,S ���       (6.2-2) 

gives corresponding to Eq.(6.2-1) 
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or using the dimensionless form 
 *****

STSySTSzSTx0SSA zyxux �� ���    (6.2-4) 

 *****
STSxSTSzSTy0SSA zxyuy �� ���    (6.2-5) 

 *****
STSxSTSySTz0SSA yxzuz �� ���    (6.2-6) 

with 
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0a

* ,      (6.2-7) 

where a0 denotes the unit length or scaling factor. In general, this unit length can 
be arbitrarily chosen. But to reduce possible numerical problems, this value should  
be of the same order as the contact size. For example, following Kalkers theory, 
see (Kalker 1990), this unit length is defined by aba0  ,  where a and b corre-
spond to the half axes of the contact ellipse calculated by the Hertzian theory.  
     Since the T-coordinate-system is tangential to the rail surface at the reference 
point S0 the surface position in the z-direction 
 1z*

ST ��       (6.2-8) 

is assumed to be small. Then the position of the point S lying on the track surface 
within the T-coordinate-system can be calculated 
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which gives 
 )( *****

y0SSASzx0SSAST uyuxx ��� � ,   (6.2-10) 

 )( *****
x0SSASzy0SSAST uxuyy ��� � .   (6.2-11) 

Since the T-coordinate-system is tangential to the rail surface, the surface of the 
rail can be described by a polynomial equation of second and higher order terms. 
Using the mean curvatures RS0x and RS0y with respect to the reference point S0 of 
the rail in the x- and y-direction respectively, the surface can be described by 

 
� � � �

),,(

)()(

STSTSWT

STSy
y0S

2
ST

STSx
x0S

2
ST

ST

yxz

yf1
R2

yxf1
R2

xz �����
 (6.2-12) 

where TzSW denotes the wear of the rail depending on the coordinates within the T-
coordinate system. Using the dimensionless notation the surface can be described 
by 
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with the normalized mean curvatures 
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The higher order terms are defined by 
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which are assumed to be relatively small compared to one. Corresponding to the 
Eq.(6.2-10) and Eq.(6.2-11) for the rail, the position of the point R of the wheel 
within the W-coordinate-system is given by 
 )( *****

y0RRARzx0RRARW uyuxx ��� � ,   (6.2-16) 

 )( *****
x0RRARzy0RRARW uxuyy ��� � .   (6.2-17) 

Corresponding to Eq.(6.2-6) the position of a point R in the z-direction of the 
wheel is calculated by 
 *****

RWRxRWRyRWz0RRA yxzuz �� ���    (6.2-18) 
and corresponding to Eq.(6.2-13), Eq.(6.2-14) and Eq.(6.2-15) 
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where WzRW denotes the wear of the wheel depending on the coordinates of the W-
coordinate system. Using Eq.(6.2-6) and Eq.(6.2-18), the penetration of the solids 
in the absence of deformations is given by 
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with 
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If the surfaces can be described by second order terms, while holding Eq.(6.2-15) 
and Eq.(6.2-21), then for the normal contact problem the Hertzian theory can be 
applied. An improvement of this procedure is described in Chapter 6.4, where av-
erage curvatures are calculated within the overlapping region. 

6.3 Tangential Contact Kinematics 

To be able to calculate the tangential contact forces, the contact region has to be 
described and the kinematics has to be analyzed. In Fig. 6.3-1, a discretized con-
tact area is shown. The corresponding increments are �x and �y, while the A-
coordinate system moves with the constant velocity V in the x-direction. Due to 
the direction of velocity V the boundary of the contact area is divided into the so 
called leading edge where particle are running into the contact and the trailing 
edge where the particles are running out of the contact region. The corresponding 
discretization error is discussed in (Kalker 1990). For example, at least 20x20 area 
elements should be modeled to give a relatively correct answer with respect to a 
circular contact region. 

Within each discretized contact area, the developed point contact model is used 
to calculate the corresponding three contact forces. Here it is assumed that the 
damping coefficient � is identical to zero and the inertia effects are neglected 
(�mD=0), see Chapter 3.7. For calculating the tangential forces, the tangential con-
tact kinematics has to be derived. From Fig. 6.3-1 the displacement of the point M 
is given by 
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Differentiating with respect to time and assuming a stationary rolling process 
gives 
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with the velocity of the reference coordinate system 

dt
dxV  ,      (6.3-3) 

where it is assumed that the velocity in the x-direction is dominant. Rearranging 
Eq.(6.3-2) gives the slippage of the point P in the x- and y-direction 
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6.3 Tangential Contact Kinematics      137 

 

Fig. 6.3-1 Discretized contact area with point contact model 

with 

.

,

,
,

,
,

V
v

s

V
v

s

yMx
yMx

yPx
yPx




      (6.3-5) 

The velocity of the point M is given by 
M0M r�vv ~�       (6.3-6) 

with the velocity v0 of the reference point 0, the angular velocity �  and the posi-
tion vector rM of the point M. Then, the velocity components of the point M in the 
x- and y-direction are given by 
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or in dimensionless form 
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with the so called creep ratios s0x and s0y 
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the spin parameter 

V
a0z��        (6.3-10) 

and the normalized coordinates of the point M 
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The components of the relative velocity vector are defined by 
yx0Syx0Ryx0 vvv ,,, �      (6.3-12) 

and the relative angular velocity by 
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The z-component of the relative velocity vector is not used, since the viscous 
damping is neglected. If the contact point P sticks, the slippage in the x- and y-
direction is identical to zero, 
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Inserting this restriction in Eq.(6.3-4) gives 
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Inserting Eq.(6.3-8) in Eq.(6.3-15) and integrating with respect to x* gives 
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where both integration constants hx and hy are independent on x*. Since the relative 
displacement at the leading edge is zero 
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both integration constants can be determined from Eq.(6.3-16) with 
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Inserting Eq.(6.3-18) in Eq.(6.3-16) leads to the relative displacements in the x- 
and y-direction 
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Within the contact region these relative displacements are limited due to the maxi-
mum friction force, which will be investigated in the Chapter 6.5. 

6.4 Contact Stiffnesses 

If the half space assumption does not hold, the three contact stiffnesses due to the 
rolling contact can be found by the Finite Element Method, see for example 
(Nackenhorst 2000). Fixing the wheel in the center, see Figure 6.2-1, and applying 
a load with respect to the reference point of the wheel gives the corresponding 
point contact stiffness. This can be done for all three directions for the wheel as 
well as for the rail to give three resultant contact stiffnesses. This procedure is 
straight forward, if the elasticity of the wheel and rail is reduced to springs. 

An alternative modeling of the deformations is to describe the wheel by modes, 
and to apply the Hertzian and Kalkers theory to the contact region to describe the 
quasi-static deformations. Then, the contact stiffnesses in normal and tangential 
direction can be derived by the theory of Hertz and Kalker. In general,, the real 
surface curvatures of a worn wheel are not constant within the overlapping region, 
see Fig. 6.1-2. Since both theories require constant curvatures of the contact sur-
faces, average curvatures are calculated to be able to apply these theories. The av-
erage curvatures are calculated using the surface description of the rail and the 
wheel defined in Eq.(6.2-13) and Eq.(6.2-19), respectively. For example, differen-
tiating Eq.(6.2-19) twice with respect to the xR-coordinate gives 
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with Eq.(6.2-21) and the approximation of the curvature of the worn depth calcu-
lated by discrete values of the wheel in x-direction 
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see (Johnson 1989). Then, the average curvature of the wheel in x-direction is 
given by 
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Corresponding to Eq.(6.4-1) up to Eq.(6.4-3) the average curvatures BR in the y-
direction of the wheel and furthermore the average curvatures AS and BS of the rail 
in x- and y-direction, respectively, can be calculated. For the application of the 
Hertzian theory the relationship of the principle curvature needs to be known and 
can be calculated by 
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Neglecting higher order terms with respect to the coordinates of the contact sur-
faces defined in Eq.(6.2-15) and Eq.(6.2-21) 
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and assuming that the curvatures with respect to the worn material are very small 
compared to the mean curvatures, then the principle relative curvatures A and B in 
the x- and y-direction, respectively, are given by the mean curvatures with 
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Hence, the relationship of the principle curvatures is given by 
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with the dimensionless mean curvatures defined in Eq.(6.2-14) and Eq.(6.2-20). 
To be able to calculate the normal and tangential contact stiffnesses, the so 
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with the principle relative curvatures A and B as defined above. The relation of the 
halfaxes of the contact ellipse defines the ellipticity 
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and the integrals, 
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calculated from the complete elliptic integrals of the first and second kind with 

22 g1e � .      (6.4-13) 
For the derivation of the formulas, it is assumed that the half axes b in the y-
direction is smaller than the half axes a in the x-direction of the contact ellipse. 
For the case if b>a, the radius of curvatures and the half axes a and b have only to 
be exchanged. The complete elliptic integrals of the first and second kind, respec-
tively, are given by 

called ellipticity g of the contact area has to be calculated from the Hertzian 
theory, see (Hill 1993), with 
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Since Eq.(6.4-9) has to be solved iteratively, a first good guess is given by 
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see (Greenwood 1985). The results of the iteration are summarized in a table. 
Then, the half axes of the contact ellipse are calculated by 
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With respect to the main coordinate system of the ellipse, the penetration is given 
by Eq.(6.2-22), with 
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with the normalized curvatures 
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defined in Eq.(6.2-14) and Eq.(6.2-20). The half axes of the contact ellipse are 
found by 
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which gives 
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To satisfy Eq.(6.4-17) from the Hertzian theory, with respect to Eq.(6.4-21), the 
curvatures are exchanged by using the following formulas 
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For translations the normal contact force in the z-direction is given by the Hertzian 
theory, see (Hill 1993), 
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and the tangential forces in the x- and y-direction are given by Kalkers theory, see 
(Kalker 1990), with 
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The linear coefficients C11 and C22 are dependent on the ellipticity, see (Kalker 
1990) and can be approximated by polynomials, see (Fingberg 1990). With re-
spect to the wheel-rail contact in the region where the ellipticity is between g=0.1 
and g=10.0 and Poisson's ratio is assumed to be %&0.3 the corresponding poly-
nomial are given by 
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(6.4-26) 
To satisfy Eq.(6.4-24) and Eq.(6.4-25), these three contact forces are used to de-
termine the three contact stiffnesses one in normal and two in tangential direction. 

With respect to the main coordinate system of the ellipse, the normal penetra-
tion due to the normal displacement of the center points is given from Eq.(6.4-18) 
by 
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where the start position xA at the leading edge and end position xE at the trailing 
edge are given by 
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Assuming the elastic foundation model, which corresponds to a constant distribu-
tion of contact stiffnesses, the pressure distribution is given by 
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Inserting Eq.(6.4-27) and Eq.(6.4-24) for the Hertzian normal contact force and 
solving for the discrete normal stiffness gives 
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and the constant contact stiffness distribution in the normal direction 
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The tangential traction in the x- and y-direction is assumed to be proportional to 
the displacement, hence, 
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Inserting Eq.(6.3-19) with zero spin to describe the tangential displacement and 
Eq.(6.4-25) in Eq.(6.4-33) and solving for the discrete tangential contact stiffness 
gives 
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and the constant distribution of contact stiffnesses in the tangential direction 
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Now, we can summarize the results to give the normalized tangential stiffness 
used in the next Chapter 
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and 
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Up to here, we assumed a constant distribution of contact stiffnesses. In the fol-
lowing, we will distribute the contact stiffnesses, so that the elliptical pressure dis-
tribution of Hertz is modeled exactly. The Hertzian pressure distribution is given 
by 
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Again, inserting Eq.(6.4-24) and Eq.(6.4-27) gives 
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and 
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The tangential traction is assumed to be, see (Johnson 1989), 
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Again, inserting Eq.(6.3-19) and Eq.(6.4-25) gives the discrete contact stiffnesses 
in the x- and y-direction given by Eq.(6.4-34) with 
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and the non-constant contact stiffness distribution in the tangential direction 
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Again, we summarize the results to give the normalized tangential stiffness used 
for the non-constant distribution of contact stiffnesses in the next Chapter 
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Using the non-constant distribution, the global stiffnesses are only dependent on 
the relationship of the half axes of the ellipse. Now, all three global contact stiff-
nesses are known, whereby the distribution of discrete contact stiffnesses in the 
normal direction fulfills exactly the Hertzian normal contact and the distribution in 
the tangential direction has been approximated. An analytical description of the 
distribution of tangential contact stiffnesses with respect to Kalkers theory is not 
possible, since the traction within the rolling contact is calculated numerically. 
Further investigation on the distribution of contact stiffnesses are investigated in 
the following Chapter 6.5. 

6.5 Generalized Contact Forces 

Before calculating the generalized contact forces, the discrete contact forces for 
each area element have to be calculated. Due to the point contact model described 
in Chapter 3, the damping influence (�=0) and the inertia forces are neglected 
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(�mD=0). Then, in case of sticking the elastic forces with respect to the point con-
tact model are given corresponding to Eq.(3.7-16) 
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with the normalized parameter 
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and the normalized average roughness 
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Within the x,y-contact plane, the direction of the elastic forces is described by the 
angle ) and can be calculated by 
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In case of sliding, the friction forces act in the opposite direction of the resultant 
elastic force. The equilibrium with respect to the point P is given by 
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with the components of the friction force assuming Coulomb friction 
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with the normalized friction coefficient 
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The direction of the friction force is opposite to the velocity of the point P, where 
the direction of the velocity of the point P is defined by 
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with the resultant velocity of the point P 
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Inserting Eq.(6.5-1) and Eq.(6.5-8) in Eq.(6.5-7) gives 
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and differentiating with respect to x* leads to 
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with the dimensionless parameter 
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Here, the derivations of both parameters px and py with respect to the coordinate x* 
have been neglected, since both parameter do only depend explicit on the normal 
penetration. Inserting Eq.(6.5-14) in Eq.(6.3-4) gives 
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Furthermore, inserting these equations in Eq.(6.5-10) and rearranging gives the 
nonlinear differential equation with respect to the angle � 
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Since the contact is discretized, the angle � can be calculated by Euler’s method 
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with the starting condition at the leading edge x=xA derived from Eq.(6.5-10) by 
using Eq.(6.5-1), Eq.(6.3-19) and Eq.(6.3-8) 
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In case of sliding, the contact forces acting onto the wheel are given by 
 ****** ,, NWzRyWyRxWx FFFFFF ������ ����� .  (6.5-20) 
In case of sticking, the contact forces acting onto the wheel are given by 
 ****** ,, NWzFyWyFxWx FFFFFF ������ ��� .  (6.5-21) 
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Fig. 6.5-1 Tangential traction due to different contact models compared with the developed 
contact model assuming a constant distribution of contact stiffnesses 

In Fig. 6.5-1, the shear traction using different models is shown for the longitu-
dinal force of FWx=0.72μFN. The models are the strip theory developed by Carter, 
the numerical calculation by Kalker, the measurements by Haines & Ollerton and 
the shear traction due to the developed point contact model with a constant distri-
bution of contact stiffnesses. The shear traction and the normal pressure distribu-
tion is given by 
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respectively, or in dimensionless form 
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Within the stick region, the developed model with constant distributed contact 
stiffnesses leads to a linear increase in traction. This principle behavior is modeled 
within the program system FASTSIM of Kalker as well. Therefore, the results are 
the same, but now the physical interpretation is given. Using the non-constant dis-
tribution of contact stiffnesses derived from the Hertzian theory, the limiting value 
of shear traction is given by the friction coefficient multiplied by the Hertzian or 
elliptical pressure distribution, see Fig. 6.5-2. Here, the non-constant distribution 
gives a better approximation of the reality, compared to the usage of constant 
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distributed contact stiffnesses, because the measurements show a slightly curved 
functional behavior within the sticking region as well. 
 

 

Fig. 6.5-2 Tangential traction due to different contact models compared with the developed 
contact model assuming a non-constant distribution of contact stiffnesses 

The resultant contact forces will influence the dynamics of the wheel and rail. 
These forces acting onto the wheel are calculated by the summation of each dis-
crete force 
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In the following, the small rotations of the coordinate systems are neglected. 
Hence, the corresponding moment with respect to the reference 0 point is deter-
mined by 
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The dimensionless contact forces are calculated by the summation 
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and the dimensionless contact moments with respect to the point 0 by 
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with 
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Another possibility to normalize Eq.(6.5-27) and Eq.(6.5-28) is to relate each gen-
eralized force with respect to the normalized normal contact force in Eq.(6.5-27), 
which gives 
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The resulting moment with respect to the reference point R0 of the wheel, see Fig. 
6.2-2, is calculated by 
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with the displacement vector 
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assuming that the displacement in z-direction is very small and, hence, can be ne-
glected. Similar to Eq.(6.5-33), the moment with respect to the reference point S0 
of the rail is given by 
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with 
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The generalized forces acting onto the rail are given by Newton's third law “ac-
tio=reactio” 
 � � � � ., **** 0S

W
0S

TWT MMFF ����     (6.5-37) 

6.6 Validation of the Rolling Contact Model 

For a comparison of the calculation with respect to the developed rolling contact 
model and the results of Kalkers model, the slippage coefficient has to be trans-
formed. The dimensionless formulas for the slippage defined in (Kalker 1990), are 
given by 
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and the dimensionless spin parameter 
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with the unit length of 
 abac 0 ��       (6.6-4) 
and the dimensionless halfaxes of the contact ellipse 
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For the application of the constant distribution of contact stiffnesses the exponent j 
is given by j=2 and for the non-constant distribution of contact stiffnesses the ex-
ponent is given by j=1. 

In Fig. 6.6-1, a theoretical comparison of different calculation methods of the 
normalized resultant tangential force 
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versus the total slippage defined by 
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varying the axial ratio (a/b) is shown. It appears that the results of FASTSIM are 
very good in agreement with the numerical results of the program CONTACT for 
all Poisson’s ratios and axial ratios. Within the stick zone the traction is linear dis-
tributed with respect to the use of constant distribution of contact stiffnesses, here, 
the results are very close to the results of Kalker. The very small differences be-
tween both curves are due to the numeric. Here, the assumption for a non-constant 
distribution of contact stiffnesses does not fit so well. This is surprising, since in 
this case the normal pressure distribution is identical to the Hertzian distribution. 

In Fig. 6.6-2, a comparison of measurement with calculations of the resultant 
tangential contact force versus the total slippage is shown for different axial ratios. 
Up to now, there exits only the numerical solution of the theoretical description of 
the rolling contact by Kalker, see (Kalker 1967), which leads to an enormous 
computation time. In (Vermeulen and Johnson 1964; Shen et al. 1994) approxi-
mated calculation methods are presented to overcome this difficulty. The results of 
Shen-Hedrik-Elkins leads to a better approximation, than the results of Vermeulen 
and Johnson compared to the measurements. Assuming a constant distribution of 
contact stiffnesses leads to a solution, which is very close to the solution of Shen-
Hedrik-Elkins.. The non-constant distribution of contact stiffnesses leads to a 
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Fig. 6.6-1 Comparison of calculated resultant tangential contact forces versus resultant 
slippage 

 

Fig. 6.6-2 Comparison of measurements and calculations of the tangential contact forces 
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Fig. 6.6-3 Comparison of measurements and calculations of lateral contact forces versus 
spin 

In Fig. 6.6-3, measurements and calculations using different models are inves-
tigated due to the lateral force versus the spin parameter. The parameters for this 
investigation are 
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Kalkers numerical method gives the best results with respect to the measurements. 
Using a constant distribution of contact stiffnesses is not so good, because the 
maximum tangential force and the slippage coefficient are overestimated. Using 
the non-constant distribution of contact stiffnesses, the results do fit quite close to 
the measured data and the numerical results of Kalker. 

In Fig. 6.6-4, the normal force-displacement relationship for different distribu-
tion of contact stiffnesses is shown. The relationship between normal force and 
normal displacement using a constant distribution of contact stiffnesses leads to a 
parabolic relationship between force and displacement. The parameter of the non-
constant distribution of contact stiffnesses can be adjusted to fulfill the Hertzian 
theory exactly and can be seen as a further advantage in the use of the non-
constant distribution. 
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Fig. 6.6-4 Normal force-displacement relationship due to different stiffness distributions 

The resultant roughness of both surfaces decreases the contact forces, because 
the contact area is reduced, which leads to a reduction of contact stiffnesses and 
therefore to a reduction of contact forces. This physical effect has been investi-
gated theoretically and is shown in Fig. 6.6-5, where the resultant tangential forces 
are decreasing with respect to the dimensionless roughness RZ

* defined in Eq.(6.5-5) 
and using the non-constant contact stiffness distribution. 

 

 

Fig. 6.6-5 Influence of roughness onto the resultant tangential forces 
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Fig. 6.6-6 Influence of roughness onto the normal contact force 

Additionally, the influence of roughness in the normal direction is investigated 
and is shown in Fig. 6.6-6. In contrast to Chapter 3.3, where a rough flat surface 
has been modeled and experimental verified in Chapter 3.5, here a rough curved 
surface is modeled and investigated. Again, the normal contact forces decrease 
due to roughness and can be explained in the same way as described above. 

6.7 Contact Temperature Distribution 

Since the contact parameters can be dependent on the temperature T, the tempera-
ture distribution within the contact area has to be calculated. For example, as in-
vestigated in Chapter 3.6 the friction coefficient can be dependent on the tempera-
ture. For the analysis of the temperature distribution, the average distributed heat 
source qH needs to be known. This is given by the frictional power 
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related to the contact area �A, with 
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Inserting Eq.(6.7-1) in Eq.(6.7-2) and using dimensionless notations gives 
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Fig. 6.7-1  a) Shear traction and  b) distributed heat source within the contact interface 

V
vs

c
app P

P
0N

0N
N

0
��� ** ,

�
��     (6.7-4) 

and the normalized heat source qH
* 

Vc
aqq

0N0

0H
H �
�* .      (6.7-5) 

In Fig. 6.7-1a and b, numerical results of the shear traction and the distributed 
heat source are presented, varying the longitudinal slippage coefficient s0x=0.0 
(-0.003)-0.06. In regions, where adhesion takes place, the corresponding distributed 
heat source is identical to zero because the relative velocity vP is identical to zero. 
In the region, where sliding takes place the distributed frictional power shows an 
elliptical distribution, since the friction coefficient and the relative velocity are 
constant and the normal pressure distribution is elliptical due to the Hertzian nor-
mal pressure distribution. 

In (Knothe and Liebelt 1990) the three-dimensional heat transfer problem is re-
duced to a two dimensional problem for a strip in x-direction and is approximated 
by the heat transfer equation 
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with the thermal diffusivity defined by 
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where #R denotes the conductivity, "R the density and cR the specific heat capacity 
of the wheel. Eq.(6.7-7) holds, if the speed parameter L or the so called Peclet 
number is larger than L=5, see also (Johnson 1989). The boundary conditions are 
given by 
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where �R denotes the heat partitioning factor. The general solution of Eq.(6.7-7) 
for an arbitrary heat source is derived in (Knothe and Liebelt 1990; Ertz 2003) and 
is given by 
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with the Green’s function 
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In a first step for the solution of the heat transfer equation the heat-partitioning 
factor �R needs to be calculated. The temperature of the wheel and the rail have to 
be the same in the contact region with z=0. Furthermore from Eq.(6.7-12) for the 
wheel and the corresponding equation with respect to the rail, the heat partitioning 
factors can be calculated with 
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where the index S is related to the rail. With the requirement  
1SR ����       (6.7-14) 

and inserting Eq.(6.7-13) in Eq.(6.7-14) and solving for the heat partitioning factor 
of the wheel gives 
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For example, if the velocity VS of the contact with respect to the rail is zero, than 
from Eq.(6.7-15) it follows, that the heat partitioning factor is �R=1 and therefore 
in this case the heat flows into the wheel. In the following, the conductivity, the 
density and the specific heat capacity of the wheel and rail are assumed identical. 
Furthermore, the slippage are relatively small and hence the velocity of the wheel 
is approximately equal to the velocity of the contact with respect to the rail, then 
the heat partitioning factor is given by �R=1/2. 

Assuming a constant heat flow rate qH, the temperature distribution calculated 
by Eq.(6.7-11) can be solved analytically and is given by 

xq
V

2xT
R

HRR

#
�!

'
�)( ,    (6.7-16) 

see (Johnson 1989) and (Knothe and Liebelt 1990), where the reference tempera-
ture is identical to zero at the position x=0. With the normalized temperature 
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Eq.(6.7-16) can be rewritten by 
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Fig. 6.7-2 Temperature distributions for different pressure distributions 
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Squaring Eq.(6.7-18) and noting that due to the discretization of the contact region 
the step size is defined by 
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Then the temperature distribution can be calculated by 
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In Fig. 6.7-2 the temperature distribution is shown for a constant heat source dis-
tribution. Within the contact region Eq.(6.7-20) can be used to recalculate the ex-
act solution numerically. Using these solution method for a non-constant heat 
source distribution defined by 

1Pi
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an approximation can be calculated, which does not lead to an increase in compu-
tation time compared to the procedure described in (Knothe and Liebelt 1995). 

is calculated by the exact calculation procedure defined in Eq.(6.7-11) and the de-
scribed approximated procedure defined in Eq.(6.7-20). The maximum tempera-
ture of the approximated method occurs at the trailing edge and is overestimated 
by approximately 6% compared to the exact solution. The advantage of the ap-
proximated method is that within a reasonable error the calculation of the tempera-
ture distribution leads not to an increase in computation time. 
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In Fig. 6.7-2 the temperature distribution for an elliptical heat source distribution 
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Fig. 6.7-3 Temperature distributions  a) in x-direction and  b) at the trailing edge 

In Fig. 6.7-3a, the temperature distribution within the contact area is shown, 
which is calculated from the distributed heat source shown in Fig. 6.7-1b, assum-
ing in a first step, that the friction coefficient is independent on the temperature. 
The starting temperature at the leading edge is assumed to be T1

*=0. Within the 
contact area, the temperature is identical to zero, where the distributed frictional 
power is identical to zero. Due to sliding and dry friction, the temperature in-
creases up to the trailing edge, where the maximum temperature occurs. The cor-
responding temperature at the trailing edge is shown in Fig. 6.7-3b, which is ap-
proximately parabolic for large slippage values. 

The friction coefficient can be dependent on the local temperature. In Chapter 
3.6 it has been assumed, that the friction coefficient is linearly dependent on the 
temperature with 
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where the slope is defined by 
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to explain the decreasing characteristic of the friction coefficient with respect to 
the relative velocity. In Fig. 6.7-4, this influence onto the shear traction is shown 
using the same contact parameter used for Fig. 6.7-1. Comparing this functional 
behavior with the traction shown in Fig. 6.7-1a, one can observe, that the traction 
due to friction is decreasing in the region, where sliding takes place. Integrating 
the shear traction with respect to the contact area gives a decreasing characteristic 
for the longitudinal force versus the longitudinal slippage as shown in Fig. 6.7-5 
for different slopes defined in Eq.(6.7-22). This physical phenomenon has been 
observed already in experiments, cited in (Garg and Dukkipati 1984) for the lat-
eral force and in (Holland and Rick 1997) for the longitudinal force. 
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Fig. 6.7-4 Tangential traction due to a decreasing friction factor 

 

 

Fig. 6.7-5 Longitudinal contact force with a decreasing characteristic 
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Fig. 6.7-6 Qualitative comparison of measured (Holland and Rick 1997) and calculated 
longitudinal forces 

A qualitative comparison is done with respect to the measurements cited in 
(Holland and Rick 1997), because the experimental data is not available. In Fig. 
6.7-6, the measurement and the calculation with the following data for a circular 
contact area with a friction factor at zero temperature of μ0=0.38 and a slope of 
(�=1400. The qualitative comparison shows a quite good agreement. 

6.8 Wear Calculation 

In the following, an algorithm is developed to calculate the wear of the wheel and 
rail. A common way to approximate the wear is to assume that the volume wear 
rate is proportional to the frictional power, see also Chapter 3.9, 

RRPIW �� ,      (6.8-1) 
with the constant IR, see (Fleischer 1973) and (Strömberg 1996). Experimental 
identified data for the proportionality factor IR are cited in (Krause and Poll 1986). 
Assuming a stationary process, the volume wear rate can be calculated by 
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Fig. 6.8-1  a) Wear depth versus coordinate x*, y*=0 and  b) wear depth versus coordinate 
y*, x*=-1 

where W denotes the wear volume with respect to the wheel. Solving Eq.(6.8-2) 
for the wear depth �z and inserting Eq.(6.8-1), Eq.(6.7-1) and Eq.(6.7-2) gives 

xq
V
Iz H

R �� � .      (6.8-3) 

and in dimensionless form with Eq.(6.4-5) 
**** xqIz HR �� �       (6.8-4) 

with 
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Then, the resultant wear depth for one strip is given by the summation 
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n
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iRW qxIzz ***** ��     (6.8-6) 

assuming that the proportionality factor IR from Eq.(6.8-1) and the discretization 
length �x of the contact area are constant.  

Fig. 6.8-1a shows the development of wear depth within the contact region 
varying the longitudinal slippage s0x=0.0(-0.003)-0.06. In principle, the wear 
depth behaves qualitatively in the same way like the temperature. In Fig. 6.8-1b, 
the resultant wear depth for one run-over is shown varying the longitudinal slip-
page. 

Since the misalignments of the wheel and rail do vary with time, the distribu-
tion of wear varies with time, which contributes to the unroundness of the wheel. 
In Fig. 6.8-2, the variation of the normal displacement with 

*� sin..* 030020u z0 ��  
is investigated due to the resultant wear and the temperature at the trailing edge 
within the reference coordinate system. Full separation is included within the cal-
culation method. The angle *+ stands for the position of the wheel. The wear due 
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to a harmonic lateral motion of the wheel is shown in Fig. 6.8-3. The wear is 
shown within the A-coordinate system and has to be transferred to the wheel W-
coordinate system, using Eq.(6.2-16) and Eq.(6.2-17) to be able to describe the 
change of the wheel geometry. 

 

Fig. 6.8-2 Temperature and wear calculation for harmonic normal displacements 

 

Fig. 6.8-3 Temperature and wear calculation for harmonic varying lateral displacements 
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This resultant wear depth of the wheel has to be calculated continuously to be 
able to analyze the change of the wheel surfaces and to analyze the unroundness of 
the wheel. The stored wear data of the surface is used to modify the profile of the 
wheel to get the actual profile, see Fig. 6.8-4. In analogy, this holds for the rail as 
well. This completes the full calculation of the wheel-rail-system dynamics in-
cluding the wear calculation. 
 

 
Fig. 6.8-4 Procedure to calculate wear 

6.9 Wear of Railway Wheels 

 To be able to calculate the wear distribution of railway wheels the relative kine-
matics between wheel and rail must be known. Here the model described in (Kai-
ser 2005) is used to describe the dynamics. The elasticity of the wheel and the rail 
are included by the modal description. This model of the vehicle corresponds to an 
ICE-wagon. The dynamic behavior is calculated beforehand, so that the relative 
kinematics between wheel and rail is given. Now the wear model described before 
can be applied to the railway wheels. 

One result of this procedure is shown in Fig. 6-9-1. The basis of this calcula-
tion is one unround wheel with three maxima. The calculation of the contact 
forces as described above has been used to verify the procedure. The wear of the 
wheel shows again three maxima, because here the normal forces increases and 
therefore the frictional power and hence the wear increases. However, there exists 
a slightly shift between the maxima on the unround wheel and the maxima corre-
sponding to the wear distribution. Furthermore, three additional maxima occur 
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with respect to an increase of lateral slippage. The question, why the wheels are 
getting unround, can not be explained at this stage, but with this calculation pro-
cedure as specially with the developed wear module this question can be analyzed. 

 

 

Fig. 6.9-1 Wear of an unround railway wheel 

6.10 Instationary Rolling Contact Tyre-Road 

The main function of a tire is the transmission of forces between the car and the 
road. To achieve high acceleration a high friction coefficient is essential. The fric-
tion coefficient of rubber material depends on a variety of parameters like relative 
velocity, normal pressure, contact temperature, surface roughness, wetting and 

mainly based on hysteresis and adhesion effects as described in Chapter 3.6. 
Fast changes of the relative velocity and the normal force occur especially dur-

ing ABS-braking. Therefore, the time dependent behavior of the tangential forces 
during these transient changes is of interest. This behavior can not be described by 
the steady friction characteristic. In Fig. 6.10-1, the procedure to calculate insta-
tionary rolling systems is depicted. This method can be transferred to any rolling 
system like the wheel-rail rolling contact. A detailed description of the method is 
given in (Gutzeit et al. 2006). Here, an overview is given of the calculation proce-
dure.  

 
 

material parameters, see also (Hirschberg et al. 2002). The friction on a dry road is 
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Fig. 6.10-1 Procedure to calculate instationary rolling systems 
 

The deformation of a still-standing wheel under normal load is calculated by 
FEM, where the contact nodes are free within the contact area. The node of the 
wheel center is displaced against the ground by rstat. The contact computation can 
be carried out using the penalty method. Due to the nonlinear behavior of the sys-
tem, a Newton-Raphson procedure is applied for the calculation of the large static 
displacements. Then, the static displacements of the all nodes and the static con-
tact pressure distribution are available.  

In the simulation, the structure dynamics of the wheels is approximated by a 
modal approach. The contact behavior is described by using a simplified point 
contact model. The contact patch is discretized and the local tangential forces for 
passing material points are obtained. Thus, the shear stress distribution acts on the 
wheel in addition to the actuation moment Mact, which is generated by the actuator 
realizing the given reference angular velocity �ref(t). The wheel dynamics consist 
of the rigid body dynamics and the dynamics of the modal condensed structure. 
With the modal condensed structure, the comparatively small dynamic displace-
ments are computed. Here, gyroscopic effects are neglected due to relative small 
angular velocities. 
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In the point contact model, only those material points currently passing the con-
tact patch are observed. The displacements of the material points within the con-
tact plane are gained by superposing of the rigid body motion, the static displace-
ments and the dynamic displacements based on the modal approach. Due to the 
low time constants, only the first mode was used for the approximation of the 
structure dynamics. For the calculation of the shear stress distribution, twenty con-
tact elements were used, arranged in a row in the center of the contact zone.  

The rolling friction is experimentally tested with an autonomous friction robot 
using small rubber wheel, see Fig. 6.10-2. The robot controls the relative velocity 
and the normal force and can realizes fast parameter changes of both. Therefore, it 
is possible to investigate instationary rolling friction contacts. Jumps of the rela-
tive velocity and the normal force are studied.  
 

 
Fig. 6.10-2 Measurement system of rolling contact forces 

 
In a first step, all experiments were accomplished at constant normal force 

FN=40 N on the wheel and constant reference velocity vabs=40 mm/s of the wheel 
center. Fig. 6.10-3 shows the comparison between simulations and experiments 
for steady slippage. The reason for the relative small difference is probably the 
lack of an appropriate local sliding friction characteristic. The qualitative progres-
sion of the simulated characteristically fits relatively well to the experimental re-
sults.  
 

 
Fig. 6.10-3 Normalized tangential forces for stationary rolling 
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In the following, jump excitations of the slippage were chosen to investigate the 
dynamical behavior of the system. For such a slippage jump the normalized tan-
gential force is shown in Fig. 6.10-4. To obtain a reference magnitude for the 
model verification, an exponential characteristic is fitted to both experimental and 
numerical data. The time constant of this exponential approximation represents the 
delay of the dynamic contact behavior.  

 
Fig. 6.10-4 Identification of time constants 

 
The comparison of simulations and experiments for instationary excitations by 

slipping jumps is shown in Fig. 6.10-5. The time constant is plotted versus the val-
ues of the target slippage. For up-jumps, the results of the model fit well to the ex-
perimental data. For down-jumps, the simulation results differ stronger from the 
experimental data. A more detailed description of the local friction characteristic 
as presented in Chapter 3.6 will improve these calculations. Nevertheless, the 
comparison between simulation and measurement is relative good. 
 

 
Fig. 6.10-5 Time constant of the longitudinal forces 



7 Conclusions 

An alternative calculation procedure is developed to handle dynamical contact 
problems with friction. Most of the technical systems with friction contacts can be 
reduced to linear elastic bodies contacting each other, where the contact behavior 
is modeled nonlinear. The modal description of the spatial vibrating elastic bodies 
leads to a reduction of the degrees of freedom of the system and hence to a reduc-
tion of the numerical problem. Due to the non-linearity of the contact behavior and 
the spatial motion, the generally expanded contact area is discretized. For each 
discretized contact area, the developed point contact model is used to describe the 
normal and tangential contact forces. The main assumption with respect to the 
point contact model is that the point contacts are only coupled by the contact 
kinematics. The connection of the modal description of the elastic bodies and the 
point contact model leads to an efficient modeling of dynamical problems with 
friction. 

The point contact model includes the main parameters like the contact stiff-
nesses in normal and tangential direction. A mesoscopic contact model for rough 
surfaces is developed with an extension to a hyperbolic contact law for relative 
large deformations. The measured cumulative height distribution is used to de-
scribe the rough surface. Due to the roughness of the contact surfaces, the normal 
contact force and the tangential contact stiffness are nonlinearly dependent on the 
relative normal displacements. Both nonlinear effects are verified by experiments. 
Commonly used contact laws for modeling roughness are recalculated. The de-
creasing characteristic of the friction coefficient with respect to the relative veloc-
ity is investigated experimentally and is explained theoretically by the dependency 
of the friction coefficient on the temperature. 

Parameter studies are carried out with respect to the developed point contact 
model, which includes all the features described above. Limits of application of 
the point contact model are related to yielding and to the first eigenfrequency of 
the layer. The hysteretic behavior is investigated with respect to normal and tan-
gential displacements. Anisotropy with respect to the contact stiffnesses is mod-
eled and the possibility of separation of the contact is included in the contact 
model and is analyzed. Microslip effects due to roughness lead to a smooth in-
crease of the tangential force relative to the displacement, whereby the tempera-
ture effect leads to a decreasing characteristic with respect to the tangential forces. 

Friction leads always to a time dependent system, which is shown theoretically 
by calculating the wear with respect to rough surfaces. The shape of the contact 
surfaces changes because of wear and therefore the pressure distribution changes 
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as well as the normal force-displacement relationship and the tangential contact 
stiffnesses. 

The developed procedure to model contacts is applied to real contact problems. 
Experimental investigations are used to verify the numerical results. The investi-
gated problems include the application of the generalized point contact model, the 
solution methods, the comparison of the measurements with the calculations and 
parameter studies. 

In a first step, the method is applied to two oscillators with a harmonic excita-
tion. On the one hand, an oscillator with elastic contacts is used to check the nor-
mal contact modeling. Using higher modes lead to an improvement of the calcula-
tion compared to the measurements. Measured multi-periodic and chaotic motions 
are recalculated. For verifying the tangential contact model, the experimental data 
of a self-sustained friction oscillator is used. Within the experiments it is observed, 
that higher periodic motions occur and it is shown that the waviness is one reason 
for this effect. The comparison of measurements and calculations show a good 
agreement with respect to both oscillators. 

Dry friction is a main factor of self-sustained oscillations in dynamic systems.   
The mathematical modelling of dry friction forces result in strong nonlinear equa-
tions of motion. The bifurcation behaviour of a deterministic system has been in-
vestigated by bifurcation theory. The stability of stationary solutions has been ana-
lyzed by the eigenvalues of the Jacobian. Period doublings and Hopf-bifurcations 
as well as turning points could be determined with the program package 
BIFPACK. Phase plane plots of periodic and chaotic motions have been shown for 
a better understanding of the bifurcation diagrams. Both, unstable branches and 
stable coexisting solutions have been calculated. Several jumping effects, which 
are typical for nonlinear systems, have been found. 

Efficient solution methods for calculating the spatial forced vibration of elastic 
structures with friction contacts including microslip effects due to roughness are 
developed and applied to bladed disk assemblies with shrouds. The Harmonic 
Balance Method is used to linearize the normal and tangential contact forces. This 
leads to a complex stiffness matrix, where the components are nonlinearly de-
pendent on the relative displacements of the contact surfaces. An experimental 
setup with three elastic structures and two macroscopic non-Hertzian contacts is 
used to verify the numerical results. The measurements of the spatial motion for 
bending as well as torsional vibration of the elastic structures show a good agree-
ment with the corresponding calculations. Parameter studies of a bladed disk as-
sembly with shrouds are performed with respect to the alternating stresses in the 
blade foot to optimize the spatial dynamic behavior with respect to an increased 
lifetime.  

An approximate method is presented to calculate the envelopes of the fre-
quency response functions for statistically varying natural frequencies of the 
blades. This method is based on a sensitivity analysis and the Weibull-distribution 
of the vibration amplitudes. From here, a measure for the strength of localization 
for mistuned cyclic systems is derived. Regions, where localization can occur with 
a high probability, can be calculated by this method. The mean value and the stan-
dard deviation of the vibration amplitudes are calculated. The comparison between 
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the approximate method and the Monte-Carlo simulations shows a good agree-
ment. Therefore, applying this method leads to remarkable reduction of computa-
tion time and gives a quick insight into the system behavior. The approximate 
method can also be applied to systems, which include the elasticity of the disk 
and/or the coupling by shrouds or other friction devices. 

Furthermore, the general friction contact model is applied to the rolling contact 
problem. The point contact model allows a fast calculation of the generalized con-
tact forces for a spatial motion of the wheel and rail. Therefore, the developed roll-
ing contact model can be used for the determination of the long time behavior of 
wheel-track-systems. The comparison of measurements and calculations of the 
contact forces show a good agreement. Since the temperature distribution affects 
the contact parameters like the friction coefficient, a fast algorithm for calculating 
the temperature distributions within the contact region for steady rolling is devel-
oped. Including the temperature effect, which decreases the friction coefficient 
leads to a decreasing friction characteristic with respect to the slippage, which is 
verified by a measurement. Based on a hypothesis the wear of railway wheels was 
calculated. With the developed calculation procedure, one is able to analyze why 
the railway wheels are getting unround. 

An efficient model for unsteady rolling contact is presented. The model is ex-
perimentally validated by measurements of an autonomous vehicle. For the excita-
tion with slippage jumps, an exponential saturation behavior is approximated to 
both, experimental data and simulation results. The characteristic time constant of 
the system response is used to verify the model. For increasing target values of the 
slippage, the time constant decreases. The time constant characteristics are repro-
duced quiet well by the model.  

Due to the developed multi-scaling technique, it is possible to model friction 
contacts on the micro up to the macro-scale in an efficient way. It could be shown 
that with the modal reduction and the multi-scaling technique an efficient method 
has been developed to be able to analyze the dynamics of large elastic multibody 
systems with friction contacts. 
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Nomenclature 

Rare used parameters are defined within the text. 
 
 
a Halfaxis of the ellipse [m] 
a0 Unit length [m] 
A Contact area [m2] 
A0 Nominal contact area [m2] 
b Halfaxis of the ellipse [m] 
b����� Harmonic linearized  

damping coefficient [N/m]  
b0 Width of nominal contact  

area [m] 
c����� Harmonic linearized  

stiffness coefficient [N/m] 
cN Normal contact stiffness  

[N/m] 
cN0 Nominal normal contact  

stiffness [N/m] 
cR Tangential contact stiffness  

[N/m] 
cR0 Nominal tangential contact  

stiffness [N/m] 
C Linear Kalker coefficient  

[-] 
Dj Modal damping of the jth  

mode [-] 
E Modulus of elasticity  

[N/m2] 
f Frequency [Hz] 
F Force [N] 
FR Friction force [N] 
g Ellipticity [-] 
G Shear modulus [N/m2] 
h Height [m] 
h0 Height of the nominal  

contact area [m] 
i Complex unit [-] 

IR Wear constant of the wheel  
[m2/N] 

j Engine order [-] 
J Inertia [kgm2] 
kS Slope parameter [s/m] 
K Contact coefficient [N/m] 
� Length of the deformed  

layer [m] 
�0 Length of the undeformed  

layer [m] 
L Peclet number or Speed 

parameter [-] 
m Mass [kg] 
mD Reduced point mass [kg] 
M Moment [Nm] 
nx,y,z Number of area elements in  

the x,y,z-direction [-] 
N Number of elastic  

structures [-] 
p Probability density function  

[-] 
pN Normal pressure [N/m2] 
px,y Dimensionless parameter  

[-] 
pv Pressure parameter [s/m] 
PR Frictional power [W] 
qH Distributed heat source  

[W/m2] 
Q Heat [J] 
r Displacement [m] 
R Radius of curvature [m] 
RZ Average surface roughness  

[m] 
s Slip coefficient [-] 
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t Time [s] 
T Temperature [K] 
TE End temperature [K] 
u, v, w Relative displacement in  

x, y, z-direction,  
respectively [m] 

uG Position of equilibrium [m] 
uR Surface height [m] 
vP Absolute velocity of the  

point P [m/s] 
vx,y,z Velocities in x,y,z-direction  

[m/s] 
V  Average velocity [m/s] 
W  Wear volume [m3] 
Wx,z  Work [J] 
x, y, z Coordinates [m] 
Y  Yielding stress [N/m2] 
 
 
 
 
Greek Symbols 
�� Angle [rad] 
�R,S� Heat partitioning factor of  

the wheel, rail [-] 
	 Damping factor [s] 

 Transformation angle [rad] 
� Increment 
�� Strain [-] 
� Angle [rad] 
� Slope parameter [1/K] 
�� Coordinate [m] 
�x,y,z Relative angle [rad] 
� Thermal diffusivity [m2/s] 
� Wave length [m] 
�R Thermal conductivity of the  

wheel [N/(sK)] 
� Friction coefficient [-] 
�� Poisson’s ratio [-] 
� Density [kg/m3] 
�� Stress [N/m2] 
� Shear stress [N/m2]��
�S Shear strength [N/m2] 
� Angular frequency [rad/s] 

�� Angular excitation 
frequency [rad/s] 

�0j Angular eigenfrequency of  
the jth mode [rad/s] 

�� Coordinate [m] 
� � Spin parameter [-] 
� � Torsional angle [rad] 
�� Coordinate [m] 
 
 
 
 
Vectors and Matrices 
a Acceleration vector 
A Transformation matrix 
b Body force vector 
B Operator matrix 
E Unit matrix 
fb Generalized force vector of  

body forces 
fE Generalized force vector of  

excitation 
fO Generalized contact force  

vector 
fp Generalized force vector of  

external forces 
FT,W Contact force vector 
FC Point contact force vector 
FS Elastic force vector 
FSD Damping force vector 
G Transformation matrix 
H Matrix of elasticity 
K Stiffness matrix 
MT,W Contact moment vector 
N Matrix of Ansatzfunctions 
q Vector of modal  

coordinates 
r Vector of displacement 
S System matrix 
T  Modal matrix 
u Vector of generalized  

relative displacements 
w Generalized displacement  

vector 
x Vector of coordinates 
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Indices 
[ˆ] Complex 
[ ]i Imaginary part 
[ ]r Real part 
[ ]T Transposed of [ ] 
[ ]* Dimensionless 
[ ]E Related to points of  

excitation 
[ ]i Related to the ith blade 
[ ]L,R Left, right 
[ ]M Related to the point M 
[ ]N,T Normal, tangential 
[ ]O Related to the point O 
[ ]P Related to the point P 
[ ]R,S Related to the wheel, rail 
[ ]x,y,z In x,y,z-direction 
[ ]0 Related to the point 0 
[ ]1,2 Related to the body 1,2 



Index 

Ansatzfunctions  23 
asperities  40 
average surface roughness  42 
ball bearings  4 
body force  19 
brake  2 
brush model  31 
Cauchy stress tensor  20 
chaotic motion  84 
contact area  45 
contact stiffness  31 
contact force 40 
cumulative height distribution  43 
discretization  99 
divergence theorem  22 
eigenfrequency  28 
eigenvector  28 
elastic body  22 
elastic foundation model  9 
elastic structure  26 
energy balance  56 
energy dissipation  65 
equation of motion  20 
frequency response function  106 
friction characteristic  53 
Gaussian distribution  43 
grinding machine  2 
half-space  9 
Harmonic Balance Method  94 
heat source  72 
heat transfer equation  56 
Hertzian contact  152 
Hooke’s law  21 
hysteresis  67 

large deformations  50 
limit cycle  64 
lubricant  6 
mass balance  20 
mass matrix  24 
mechanical interlocking  1 
microslip  38 
modal description  27 
modal stiffness  45 
molecular attraction  1 
nodal displacement  31 
noise  101 
normal contact stiffness  42 
penalty approach  14 
pressure distribution  45 
principle of Jourdain  30 
principle stresses  43 
rebouncing  94 
rigid body  26 
Ritz Ansatz  23 
roughness  40 
separation  45 
shear strength  63 
shrouded blades  94 
smoothing function  64 
stick-slip motion  72 
stiffness matrix  103 
surface profile  49 
tangential contact stiffness  56 
turbine blades  113 
virtual power  22 
waviness  95 
wear rate  85 
yielding  70


