Hardware to Solve Sparse Systems of
Linear Equations over GF(2)

Willi Geiselmann and Rainer Steinwandt

TAKS, Arbeitsgruppe Systemsicherheit, Prof. Dr. Th. Beth,
Fakultat fir Informatik, Universitdt Karlsruhe, Am Fasanengarten 5,
76 131 Karlsruhe, Germany

Abstract. Bernstein [1] and Lenstra et al. [5] have proposed specialized
hardware devices for speeding up the linear algebra step of the number
field sieve. A key issue in the design of these devices is the question
whether the required hardware fits onto a single wafer when dealing
with cryprographically relevant parameters.

We describe a modification of these devices which distributes the tech-
nologically challenging single wafer design onto separate parts (chips)
where the inter-chip wiring is comparatively simple. A preliminary
analysis of a ‘distributed variant of the proposal in [5]’ suggests that
the linear algebra step for 1024-bit numbers could be doable on a
23 x 23-network with special purpose processors in less than 19 hours at
a clocking rate of 200 MHz, where each processor has about the size of
a Pentium Northwood. Allowing for a 16 x 16 mesh of processing units
with 36 mm X 36 mm, the linear algebra step might take less than 3
hours.

Keywords: Factorization, number field sieve, linear algebra, RSA

1 Introduction

Nowadays, the most common algorithm for factoring large integers is the so-
called number field sieve (NFS). The NFS involves two computationally par-
ticularly expensive steps — the relation collection step and the task of solving
a large sparse system of linear equations over GF(2) resp. of finding a linear
dependence among binary vectors. In this contribution we deal only with the
latter step. Based on the block Wiedemann algorithm [l[7], Bernstein [I] and
Lenstra et al. [5] recently proposed specialized hardware devices for speeding up
this part of the NFS.

In the present form, a major problem of these proposals is the size of the
circuits and thereby the question of scalability: for larger parameter values, the
proposed circuits do not fit onto a single wafer of diameter 300 mm any more,
and high-speed communication between wafers is quite difficult to realize. But
having in mind imperfections in actual manufacturing processes, already a single
wafer design as proposed in [5] is rather non-trivial to realize. For circumventing
this problem, in this paper we propose a technique for distributing the algorithms

C.D. Walter et al. (Eds.): CHES 2003, LNCS 2779, pp. 5161}, 2003.
© Springer-Verlag Berlin Heidelberg 2003

52 W. Geiselmann and R. Steinwandt

in [1l5] in such a way onto several wafers, that—at least for the case of 1024~
bit numbers—both the performance of the algorithms does not decrease and
the inter-wafer communication can be kept rather simple. It is appropriate to
mention here that the idea of distributing the linear algebra step onto several
‘smaller computers’ is not new; e.g., in [2] ideas for implementing the linear
algebra step ‘in parallel on a network of relatively small machines’ are described.

In Section B] we shortly recall the essential hardware requirements of the
two specialized architectures due to Bernstein and Lenstra et al., and thereafter
we describe a method for overcoming the hardware limits of these approaches
to a certain extent. To get a better idea of the possible use of our approach,
Sections B2 and [B:3] analyze a ‘multi-wafer’ variant of the proposals in for
512-bit and 1024-bit numbers in more detail. It turns out that even for 1024-bit
numbers the linear algebra step seems to be doable within a few hours by means
of a distributed hardware that can be manufactured with currently available
technology.

2 Two Architectures for the Linear Algebra Step

Within the relation collection step of the NFS a (w.1. 0. g. square) sparse matrix
A € GF(2)™*™ is constructed. For 1024-bit numbers, the estimations in [5]
Section 5.1] suggest values of m ~ 4-107 or m ~ 10'°, where on average a column
contains about 100 non-zero entries. For representing the matrix A throughout
the computations, only the coordinates of its non-zero entries are stored.

To find the linear dependency among the columns of A needed in the NFS,
the proposals in [Il5] make use of the block Wiedemann algorithm. Basically,
this algorithm reduces the problem of finding a linear dependency among the
columns of A to the problem of computing efficiently (long) sequences of the
form

A-v, A% v, AR

where v is a—not necessarily sparse—binary vector v € GF(2)™. A typical value
is k ~ 2m/K with a blocking factor K = 1 or K > 32 (for a blocking factor
K > 1 several different values of the vector v are handled simultaneously).

Accordingly, for reducing the cost of the matrix step in the NFS, the devices
proposed by Bernstein and Lenstra et al. aim at reducing the time required for
computing such iterated (left-)multiplications with A. While the construction in
uses a parallel sorting algorithm for this purpose, the proposal in [5] relies on
the use of a parallel routing algorithm. In the next two sections we shortly recall
the respective hardware requirements of these devices; for an explanation of the
algorithmic details we refer to the original papers.

2.1 Bernstein’s Device for the Matrix Step

Concerning hardware requirements, the essential algorithmic tool in the proposal
of [I] is Schimmler’s sorting algorithm [IJ6]: assume we are given a mesh of

Hardware to Solve Sparse Systems of Linear Equations over GF(2) 53

M x M processing units (Q;,j)1<i,j<m where M := 2" and each processing unit
Q;,; stores an integer value g; ;. Then Schimmler’s sorting algorithm allows for
sorting these M? numbers in 8M — 8 ‘steps’ according to any of the following
orders on the indices (4, j) of the processing units @ ;:

left-to-right: (1,1) < (1,2) <...< (1, M) <(2,1)<... < (M, M)
right-to-left: (1, M) < (1 M — 1) <0< (1,1) < (2 M) . < (M 1)
snakelike: (1,1) < (1,2) < ... < (l,M) <(2,M)<(2,M — 1) <...<(M,1)

An ‘elementary step’ of the algorithm looks as follows: analogously as in the
odd-even transposition sorting, in a single step each processing unit ¢); ; com-
municates with exactly one of its horizontal or vertical neighbours. So let Q. Q
be two communicating processing units, and denote by ¢, ¢ the integers stored
in Q, Q, respectively. At the end of one ‘elementary step’ one of the two pro-
cessing units, say Q, must hold the value min(¢g, §) while the other one has to
store max(g,). For achieving this one can proceed as follows:

1. Q sends ¢ to @, and Q sends § to Q E. g., if the stored integers represent
natural numbers < 226, this operation can be completed in one clock cycle
via a unidirectional 26-bit bus in each direction.

2. Both Q and Q compute the boolean value exchange := (¢ < ¢). E.g., if ¢
and ¢ are 26-bit numbers, this comparison can be done in one clock cycle.

3. If exchange evaluates to true, then Q stores ¢ and deletes . Analogously, Q
keeps ¢ and deletes ¢, in this case. If exchange evaluates to false, then both
Q and @ keep their old values and delete the values received in the first
step. Again, for 26-bit integers this operation does not require more than
one clock cycle. In fact it is feasible to integrate this step into the previous
one without requiring an additional clock cycle.

In summary, when dealing with natural numbers < 226, Schimmler’s sorting
algorithm enables us to sort M? numbers in less than 8M steps where each
step takes 2 clock cycles. Assuming that each column of A contains d non-zero
entries, one matrix-vector multiplication requires m - d processing units to store
the matrix A and m processing units to store the entries of the vector v. Using
Bernstein’s approach, a matrix-vector multiplication can thus be realized on a
mesh of size M x M, provided that M? > d-m-+m. For one multiplication three
sorting steps with ~ 8 - M exchange operations, requiring 2 clock cycles each,
are necessary. Consequently, one matrix-vector multiplication can be performed
in approximately 3-2-8- M =48 - M clock cycles.

For the factorization of 1024-bit numbers (using the ‘small matrix’ with m ~
4-107), in [5] the average number of transistors per processing unit is estimated
to be around 2000. Assuming that a standard 0.13 pm manufacturing process is
used, with [Bl Table 2] we thus conclude, that one processing unit requires an area
of ~4760 pm? resp. a square of about 0.07x0.07 mm?. Analogously, assuming
a processing unit for the case of 512-bit numbers to require 1800 transistors,
we obtain an estimated area of ~4280 um? per processing unit in this case.
Here, the estimation for the number of transistors is based on a matrix of size

54 W. Geiselmann and R. Steinwandt

6.7 - 105 x 6.7 - 105 where each column contains 63 non-zero entries (cf. [3]); for
this matrix size 23 bits are sufficient to represent a column or row index.

2.2 Lenstra et al.’s Device for the Matrix Step

Similarly as Bernstein’s proposal, the architecture put forward by Lenstra et al.
is based on a mesh of simple processing units. But as opposed to [1], the mesh
is used for routing rather than sorting. Concerning the factorization of 1024-
bit numbers, Lenstra et al. discuss two possible matrix sizes (m = 4 - 107 resp.
m ~ 1019). For describing the device that is to fit onto a single wafer of diameter
300 mm, the ‘small matrix’ is used, and we restrict our discussion to this case.

Depending on the precise choice of parameters, the mesh [5] uses one or two
types of processing units. For the single wafer device just mentioned, only one
type is used, and each node is a so-called target node. Basically, this means that
each node stores all row coordinates of p > 1 non-zero entries of A as well as
p entries of v. After having performed a complete matrix-vector multiplication
A-v, the entries storing v are replaced by the entries of the vector A-v. Denoting
again by d the number of non-zero entries per column, the non-zero entries of
A can be distributed onto m/p processors where each processor has sufficient
DRAM for storing p - d matrix entries.

The main tool utilized for the actual computation of a matrix-vector mul-
tiplication is so-called clockwise transposition routing which relies on the iter-
ated application of (parallelly executed) exchange operations. Routing a single
value takes about 2 - /m/p clock cycles, and the processing of the individ-
ual matrix entries and matrix columns can overlap. As a worst-case bound we
can assume a complete matrix-vector multiplication to require no more than
p-d-2-\/m/p=2-d-\/m-p clock cycles.

So far, our discussion ignored the blocking factor K: as pointed out in [3],
for a given blocking factor K, Wiedemann’s algorithm requires the computation
of K multiplication chains

A'Ui,A2~’l}i,...,Ak~Ui

with different vectors v; (1 < i < K). Using a slightly more complicated hard-
ware (see [5] for details), these K chains can be computed in parallel with the
same routing circuit. Basically, for blocking factor K each processing unit needs
2 - p - K bit of memory to store the vectors v;. In particular, the value of K
is relevant when estimating the space requirement for the target units; here we
assume K = 208 (the value chosen in [5] for the single wafer device for 1024-bit
numbers).

With m ~ 4 - 107 the average number of transistors necessary for one target
unit—excluding DRAM-—can be estimated to be around 2040 + 60 - K (cf. Sec-
tion). The area needed for a single DRAM bit is ~ 0.7 ym? resp. 0.2 pm?
with a specialized DRAM process. Thus, for the ‘small matrix case’ of 1024-bit
numbers, the DRAM of a complete target cell occupies about 88700 um? resp.
25300 pm? with a specialized DRAM process. The space requirement for the

Hardware to Solve Sparse Systems of Linear Equations over GF(2) 55

2040 4 60 - 208 transistors computes to 34600 pm? and 40700 pm?, respectively.
In total, for one target cell 123300 pm? with a standard process resp. 66000 pm?
with a specialized DRAM process are needed in the 1024-bit case. When dealing
with 512-bit numbers—and a matrix of size 6.7 - 10% x 6.7 - 10° with 63 non-zero
entries per column—the DRAM per target cell occupies only 54800 pm? resp.
15700 pm? with a specialized DRAM process. Adding the space for 1920-+60-208
transistors, we obtain a total space requirement of 89100 pm? resp. 56100 pum?
per target cell.

2.3 Estimated Mesh Size and Performance for 512 Bit and 1024 Bit

With a standard 0.13 pm process, there fit ~ 2.915 - 10'° transistors on a single
wafer of diameter 300 mm (cf. [5]). Using the above figures, a straightforward
computation now yields the following estimation for the wafer area and time
needed by Bernstein’s approach, when dealing with log,(n)-bit numbers:

logy(n) ‘ m ‘ d ‘ # proc ‘ M ‘ area in wafers ‘ clock cycles ‘ LA
5126.7-10° | 63| 4.3-10%]2 74 (26.6) 1.6-10° | 18 h
1024 | 4-107 | 100 | 4.04-10° | 216 295 (277.2) 3.1-10° | 207 h

The area in brackets indicates the area required to store the matrix and the
vector; the difference to the real area required comes from choosing M as a
power of 2 with M? > m - (d + 1). The last column (labeled with LA) is the
estimated total time of the linear algebra step; more precisely, the value given is
the time for performing 3-m matrix-vector multiplications (see [B]) at a clocking
rate of 500 MHz.

A 512-bit device with these parameters has a size of 2.14 mx2.14 m; for the
1024-bit case we obtain a (wafer) area of 4.5 mx4.5 m. Thus, realizing such a
device seems quite hypothetical.

For the device described by Lenstra et al. [b] we assume p = 42, i.e., each
target unit takes care of 42 matrix columns (cf. [5l, Table 3]). For 512-bit numbers,
then 4022 target units including DRAM fit on an area of 95 mmx95 mm; and
for 1024-bit numbers 10262 target units including DRAM fit on the area of a
single wafer. This results in the following estimated space and time requirements
for performing the linear algebra step:

logy(n) | m | d |# targets| M |arca (wafers) | clk cycles | LA
512 [6.7-10° | 63| 1.6-10°| 400 0.13] 2.1-10° [17 min
1024 | 4-107 {100 | 9.5-10° | 1024 1| 8.2-108 6.5h

Here the estimatated total time of the linear algebra step is the time for per-
forming 3 - m/K = 3 -m/208 matrix-vector multiplications at a clocking rate of
200 MHz (cf. [B]).

3 Distributing the Computation

In several of the above mentioned sizes and in several other parameter choices
described in [B], the specialized hardware for the linear algebra step does no

56 W. Geiselmann and R. Steinwandt

longer fit on a single wafer. But due to the practical limitations of manufactur-
ing processes, already realizing the single wafer devices is quite challenging. In
this section we want to discuss an approach for circumventing the problem of
handling sophisticated, highly parallel I/O hardware for fast inter-wafer com-
munication; at least for 1024-bit numbers this approach seems to improve the
situation significantly.

3.1 Using Block Matrix Multiplication

For our discussion we adopt the assumption from [5] that the non-zero entries
in the matrix A € GF(2)™*™ are uniformly distributed. It should be empha-
sized, that the original matrix A cannot be expected to have such a uniform
distribution, and here we do not discuss the problem of how a preprocessing for
achieving this could look like. The ‘rectangular matrix blocks’ we will use should
allow for some leeway here, and subsequently we make the assumption that a
suitable preprocessing has been done already, e.g., by having applied suitable
row and column permutations to the original A.

We start by splitting the matrix A into s - s submatrices A4;;,1 < 4,5 <'s
of approximately the same size of m/s x m/s. It is not mandatory that all A, ;
are square matrices, but we insist that for fixed iy € {1,..., s} all matrices A4, ;
(1 < j <'s) have the same number of rows:

A171 |A172| |A1,s
Ag’l |A2’2 ‘ | AQ’S
Aox | Aua o [Ass

)

The size of the hardware devices in depends on the number of non-zero
entries in the processed matrix, and the aim of the separation just mentioned is
to split the matrix into s? submatrices with approximately the same number of
non-zero elements. After splitting the vector v into appropriately sized parts

V1,1 Us,1

U1,s Vs, s

(where the number of rows of v; ; is equal to the number of columns of A4, ;),
the multiplication A - v can be realized as

S
Do Ay
A-v= :
S
2 =1 Asj s

This can be performed with s? multiplication circuits (preloaded with the ma-
trices A; ;) in the following way:

@«

Hardware to Solve Sparse Systems of Linear Equations over GF(2) 57

. Load v; ; into the circuit corresponding to A; ; through a pipeline of length

s and a bus of width b (if A; ; is not a square matrix, we can think of the
missing column/row entries as being 0).

Perform the s matrix-vector multiplications A; ; - v; ; in parallel.

Output the resulting vectors A; ; - v; ; through a bus of width b.

Perform the summations w; := ;=1 Aij vy (for i = 1,...,s) with s
XOR-pipelines of length s. Each of these s XOR-circuits is adjacent to one
multiplication circuit and adds the output of this circuit to the output of the
previous stage of the pipeline. Each of these XOR-circuits has two inputs
and one output of width b and works during the output of the multiplication
circuits in a pipeline architecture.

These XOR-circuits are extremely simple, but have to be built up out of
several chips due to the width of the bus. A different approach is to include
these XORs into the adjacent multiplication circuit; then the saved hardware
has to be paid for by a doubling of the I/O time. This part of the hardware
should not cause a major problem and is neglected here.

Analogously as the vector v before, now the vector w := (wq,...,ws) is
split into s* parts w; ;. These w; ; are now ready to be loaded into the s?
multiplication circuits to perform the multiplication A - w if required.

At this stage we can also easily perform a vector-vector multiplication of the
form u- Av = u-w as needed in the block Wiedemann algorithm. The vectors
u are usually chosen to be of very low Hamming weight, and we thus ignore
the (marginal) computational effort of these multiplications.

The loading of A - v is performed through a pipeline structure, similar to
the XOR-pipeline for the outputs. If the XOR-circuits are extended with an
additional register and a multiplexer (to switch between the ‘horizontal” and
‘vertical’ bus), the same chips can be used for both pipelines.

3.2 Performance of the Distributed Device

Let us now look at the space and time requirements of the distributed architec-
ture just described; for sake of simplicity, we assume all submatrices A; ; to be
(m/s) x (m/s) square matrices. We also consider the choice of a blocking factor
K > 1; for K > 1 several vectors are handled in parallel, and of course we have

to take into account the additional bandwidth required here.

Step Ol Loading the K vectors v; ; into the multiplication circuits requires ap-

proximately 4 - m - K/(s-b) 4+ 4 - s clock cycles, where the time for loading
one bit is estimated to be 4 clock cycles, and 4 - s clock cycles are needed to
empty the pipeline. All but the last b input bits can be distributed to the
processing units (or target cells) while the following input bits arrive. The
extra time required to distribute the last b bits is neglected here.

Step Each of the multiplication circuits has to perform a multiplication of a

matrix with about m-d/s? entries with a binary vector of size approximately
m/s. With Bernstein’s approach, this can be done in 48 - M clock cycles on

an M x M mesh where M > \/m -d/s?>+ m/s is a power of 2.

58

W. Geiselmann and R. Steinwandt

With the design from [5], this matrix-vector multiplication requires M? tar-
get cells for p columns each, where M? > m/(s- p). At this, each target cell
is equipped with DRAM for p - d/s matrix entries, and we can estimate the
number of clock cycles required for the matrix-vector multiplication to be
no larger than 2-p-d - M/s.

Step Transfering the vector w; to the output buffer requires one sorting step

in Bernstein’s architecture (= 2 -8 - M clock cycles). In the architecture
of Lenstra et al. the computational effort of this step is negligible (due to
the known addresses of the bits of w;, and thus the possibility to use a

pipeline procedure during the output); we estimate the output to require
~4-m-K/(s-b) clock cycles.

Step Ml The summation of the subvectors is performed with a pipeline structure

while the outputs of the multiplication units arrive. Additional ~ 4 - s clock
cycles are needed to empty the pipeline.

Summarizing our discussion, we have the following characterizing figures:

— With Bernstein’s architecture M? processing units for each of the s? parts

are required, where M is a power of 2 and M? > m - d/s* + m/s. Taking
into account the registers (2- 8- [log,(m/s)] transistors), multiplexers (34 -
[log,(m/s)] tansistors), a subtraction unit (5 - 8- [logy(m/s)]), and control
logic (300 transistors) needed, we estimate that one processing unit consists
of ~ 68 - [log,(m/s)] + 300 transistors]

The number of clock cycles for a complete matrix-vector multiplication is
approximately 8 - [m/(s-b)] +48- M + 8 - s.

— With the architecture of Lenstra et al. M? > m/(s- p) processing units resp.

In

target cells are used on each of the s? parts, if one target cell takes care
of p matrix columns. Taking into account the required DRAM for repre-
senting the non-zero matrix entries (p - d - [logy(m/s)]/s bit), the DRAM
bits for storing the K processed vectors (2 - p - K bit) along with an access
logic (40 - K transistors), a register for a received ‘package’ from the mesh
(8 - ([logy(m/s)] + K) bit), three multiplexers (3 -4 - ([logy(m/s)] + K)
transistors), a subtraction unit ((8 -5 - [logy(m/s)])/2 transistors), and ad-
ditional logic (1000 transistors) we estimate one processing unit to require
~ 40 [logy(m/s)]+60- K +1000 transistors and p-(d- [logy(m/s)]/s+2- K)
bit of DRAM. The number of clock cycles for a complete matrix-vector mul-
tiplication is ~ 8- [m - K/(s-b)| +2-p-d-M/s+ 8- s.

the next section we examine in more detail the performance of this distributed

approach when dealing with 512-bit and 1024-bit numbers. For doing so, we
consider various choices of the bus width b, the blocking factor K, the number

of

1

Note that for storing a row or column index of a submatrix A;; € GF(2)

columns p handled per target cell, and the ‘degree of parallelism’ s.

m/sxm/s

only [log,(m/s)] bits are needed.

Hardware to Solve Sparse Systems of Linear Equations over GF(2) 59

3.3 Application to 512-Bit and 1024-Bit Numbers

Having in mind a practical manufacturing process, it is desirable that the indi-
vidual parts of the distributed circuit are significantly smaller than (the inner
square of) a complete 300 mm wafer. For the distributed circuit derived from the
architecture in [B], we choose the size of the individual parts to be comparable
to the size of an ‘ordinary’ Pentium Northwood processor. To avoid problems
with the available number of pins connected to the bus b, we use somewhat
conservative estimations for the bus width.

For Bernstein’s circuit such small processing units are not really sensible, and
we choose the individual parts to be larger. For these larger parts (or in other
words chips), it is sensible to allow for a larger bus width b, as more pins can be
located on the chip here.

The bus width b also limits the possible choices of the blocking factor K: be-
fore performing the (next) matrix-vector multiplication by means of a (routing or
sorting) mesh, we have to load the respective parts of the vector to be processed
next into the processing units via the bus. However, with a simple trick we can
gain some parallelism ‘almost for free’: assume that each part of the distributed
device—in other words each chip—handles K vectors in parallel (for Bernstein’s
approach we have K = 1). Then while these K vectors are processed, we can
load another K-tuple of vectors into a separate buffer on that chip. So once the
result of the previous multiplication is output, we can immediately load the new
vectors into the mesh. If the I/O time is about the same as the computation
time, then by interleaving the processing of two ‘tuples of vectors’ in this way,
we can in the ideal case almost halve the time needed for loading vectors onto
and from the chips (of course, the cells to store these additional vectors require
additional place on the chip, which has to be taken into account then).

Table [and B show the performance of the distributed device for various
parameter choices; at this, a potential optimization by ‘interleaving tuples of
vectors’ is not taken into account. As in Section [Z3] for estimating the total
time of the linear algebra step, the number of multiplications is assumed to be
3-m in the design derived from Bernstein’s proposal, and 3-m/K in the design
derived from the proposal of Lenstra et al.

Table 1. Time for the LA step with a ‘distributed Bernstein design’ at a clocking rate
of 500 MHz.

log, (n) | b | #proc/chip | s* | chip size | LA time
512 | (single unit) 237682 1 214 m x 2.14 m 17.6 h
512 2048 20482 112144 mm x 144 mm | 1.1h
512 1024 10242 247 [72 mm x 72 mm 0.6 h
512 1024 5122 552 | 36 mm x 36 mm 0.3 h
1024 | (single unit) 655367 1 45m x 4.5 m 210 h
1024 2048 20482 377144 mm x 144 mm | 6.8 h
1024 1024 10242 842 | 72 mm X 72 mm 34h

60 W. Geiselmann and R. Steinwandt

Table 2. Time for the LA step with a ‘distributed Lenstra et al. design’ at a clocking
rate of 200 MHz.

log, (n)‘ b ‘ K ‘ p ‘ #proc/chip ‘ 52 ‘ chip size ‘ LA time
512 128 65 | 116 762 102 [11.4 mm X 11.4 mm | 73 min
512 128 53 | 51 912 167 [11.4 mm x 11.4 mm | 45 min
512 512 63 | 29 1522 102 | 20 mm x 20 mm 19 min
512 1280 49 8 2902 102 | 34 mm x 34 mm 8 min
512 1024 40 6 2652 162 | 29 mm x 29 mm 6 min
1024 [(single unit)] 208 | 42 9752 1 [265 mm x 265 mm 6.1 h
1024 |(single unit)| 42 | 216 4302 1 162 mm x 162 mm 94.7 h
1024 128 30 | 1086 482 162 [11.4 mm x 11.4 mm | 29.7h
1024 128 70 | 669 512 237114 mm x 114 mm | 188 h
1024 512 100 | 250 1002 162 | 20 mm x 20 mm 7.0h
1024 1024 160 | 278 1202 10° | 30 mm x 30 mm 59h
1024 1280 135| 66 1952 162 | 36 mm x 36 mm 2.8 h

For Bernstein’s approach we recognize that the distributed variant looks
much more practical than the original design. Also it is worth noting, that the
communication cost—i. e., the time for loading vectors onto/from the chips—is
less than 5% of the overall computation time, and thus is not really relevant. For
the design of Lenstra et al. the situation is quite complementary: more than 90%
of the time is spent for the I/O operations. However, the obtained circuitry is
much smaller and thus more realistic than the sorting based approach. In partic-
ular, with a mesh of 232 = 529 Pentium Northwood sized processing units, the
linear algebra step for a 1024-bit number should be doable in less than 19 hours.
Note here that the overall wafer area of this distributed device is the same as
for the original single wafer design of Lenstra et al. Concerning speed the distri-
bution has to be paid for with a slow-down of more than a factor 3. However,
manufacturing the small processing units is significantly simpler. Further on,
already with slightly larger processing units—which allow for a broader bus—,
the overall computation time can be reduced to less than 3 hours. As most of the
time is spent for the I/O, the bus width should be chosen as large as possible;
in our estimations we tried to be conservative here.

4 Conclusion

The above discussion suggests that for 1024-bit numbers, a ‘distributed variant of
the design of Lenstra et al.” could be realizable by means of current technology.
Besides circumventing a technologically challenging wafer-sized circuit, also a
speed-up seems to be possible, if one allows for processing units of up to, say,
36 mm x 36 mm. But already with a mesh of 232 processing units, where each
processing unit has approximately the size of a Pentium Northwood, the linear
algebra step for 1024-bit numbers seems to be doable in less than a day.

Hardware to Solve Sparse Systems of Linear Equations over GF(2) 61

Acknowledgement. We thank Eran Tromer for valuable discussions and re-
marks.

References

1. Daniel J. Bernstein. Circuits for Integer Factorization: a Proposal. At the time of
writing available electronically at http://cr.yp.to/papers/nfscircuit.pdf, 2001.

2. Richard P. Brent. Recent Progress and Prospects for Integer Factorisation Algo-
rithms. In Ding-Zhu Du, Peter Eades, Vladimir Estivill-Castro, Xuemin Lin, and
Arun Sharma, editors, Computing and Combinatorics; 6th Annual International
Conference, COCOON 2000, volume 1858 of Lecture Notes in Computer Science,
pages 3—22. Springer, 2000.

3. Stefania Cavallar, Bruce Dodson, Arjen K. Lenstra, Walter Lioen, Peter L. Mont-
gomery, Brian Murphy, Herman te Riele, Karen Aardal, Jeff Gilchrist, Gérard
Guillerm, Paul Leyland, Joél Marchand, Frangois Morain, Alec Muffet, Chris Put-
nam, Craig Putnam, and Paul Zimmermann. Factorization of a 512-bit RSA Modu-
lus. In Bart Preneel, editor, Advances in Cryptology — EUROCRYPT 2000, volume
1807 of Lecture Notes in Computer Science, pages 1-18. Springer, 2000.

4. Don Coppersmith. Solving Homogeneous Linear Equations over GF(2) via Block
Wiedemann Algorithm. Mathematics of Computation, 62(205):333-350, 1994.

5. Arjen K. Lenstra, Adi Shamir, Jim Tomlinson, and Eran Tromer. Analysis of Bern-
stein’s Factorization Circuit. In Yuliang Zheng, editor, Advances in Cryptology —
ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science, pages 1-26.
Springer, 2002.

6. Manfred Schimmler. Fast sorting on the instruction systolic array. Technical Report
8709, Christian Albrecht Universitat Kiel, Germany, 1987.

7. Douglas H. Wiedemann. Solving Sparse Linear Equations Over Finite Fields. IEEE
Transactions on Information Theory, 32(1):54-62, 1986.

	Introduction
	Two Architectures for the Linear Algebra Step
	Bernstein's Device for the Matrix Step
	Lenstra et al.'s Device for the Matrix Step
	Estimated Mesh Size and Performance for 512 Bit and 1024 Bit

	Distributing the Computation
	Using Block Matrix Multiplication
	Performance of the Distributed Device
	Application to 512-Bit and 1024-Bit Numbers

	Conclusion

