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Abstract. Public Key Cryptography Standards (PKCS) #11 has
gained wide acceptance within the cryptographic security device com-
munity and has become the interface of choice for many applications.
The high esteem in which PKCS #11 is held is evidenced by the fact
that it has been selected by a large number of companies as the API for
their own devices. In this paper we analyse the security of the PKCS
#11 standard as an interface (e.g. an application-programming interface
(API)) for a security device. We show that PKCS #11 is vulnerable to a
number of known and new API attacks and exhibits a number of design
weaknesses that raise questions as to its suitability for this role. Finally
we present some design solutions.

1 An Introduction to PKCS #11

The Public Key Cryptography Standards (PKCS) were developed by RSA Se-
curity Inc. “in cooperation with representatives of industry, academia and gov-
ernment to provide a standard to allow interoperability and compatibility be-
tween vendor devices and implementations.” 1 A significant factor in the success
of these standards can be attributed to this co-operative approach. The stan-
dards cover a variety of aspects of Public Key cryptography including PKCS #1:
RSA Encryption Standard, PKCS #11: Cryptographic Token Interface Standard
[18] and PKCS #8: Private-Key Information Syntax Standard. Many significant
APIs and protocols have been built upon PKCS #11 (e.g. SSL). Notable prod-
ucts with PKCS #11 support include Mozilla (the open source browser upon
which the Netscape browser is based) and SSL hardware accelerators from com-
panies such as nCipher, IBM, Thales, Rainbow and AEP amongst others. Indeed,
this research was prompted by the question of the suitability of the PKCS #11
API as an interface to a hardware security module (or crypto coprocessor).

The designers of PKCS #11 described the design goals as follows: to “provide
a standard interface between applications and (portable) cryptographic devices”
and at the same time to “allow resource sharing” (a many-to-many relationship
between applications and devices). It was not intended to be a general interface
to cryptographic operations or security services. Rather it could be used to build
such services, operations or suitable APIs.
1 Unless indicated otherwise, all quotations and figures are reproduced with permission

from [18].
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In PKCS #11 terminology, a token is a device that stores objects (e.g. Keys,
Data and Certificates) and performs cryptographic operations. This is a logi-
cal rather than a physical characterization; where one device may have several,
distinct logical tokens (e.g. akin to the concept of distinct domains). When in-
tending to make use of a token (or to communicate with it), one must first
establish a session with the token, which requires the user to ‘login’ and to be
authenticated to the device. Thereafter, the user may make use of the functional-
ity provided by the token by making calls through the interface or API. Objects
are characterized as either token objects or session objects. Token objects are
non-volatile in nature and exist (i.e., are stored) on a token. In addition, they
possess the property that they are visible to all applications connected to the
token. In contrast, session objects are volatile, existing only for the duration of
the session between an application and a token. They only have scope within
that session (i.e., are only visible to the application which created them).

Each object has a set of properties that describes the object and controls its
use. For example, every key possesses the Key Type property which identifies it
either as a public, private or secret key. Private and secret keys are recognised by
the standard for the requirement to protect the secrecy thereof, and possess the
properties sensitive, extractable, always sensitive and never extractable. “Sensi-
tive keys cannot be revealed in plaintext off the token, and unextractable keys
cannot be revealed off the token even when encrypted (though they can still be
used as keys).”

PKCS #11 describes two types of users: security officers (SO) and normal
users (users). The security officer is responsible for administering the users and
for performing such operations as initially setting and changing passwords. Un-
like normal users they cannot perform cryptographic operations. All users must
‘login’ (i.e., be authenticated to the token) before they can access the objects or
capabilities of a token. This is achieved through the use of a personal identifica-
tion number (PIN), which acts essentially as a password. The standard allows
for this mechanism to be augmented with or replaced by an alternative, custom
mechanisms in any given implementation (e.g. PIN entry via PINpad or the use
of smarts cards). This does not, however, prevent access to other users’ token
objects although this could be made another implementation feature.

The Security of PKCS #11

The standard has the following stated security targets.

1. “Access to private objects on the token, . . . , requires a PIN. Thus, possessing
the cryptographic device that implements the token may not be sufficient to
use it; the PIN may also be needed.”

2. “Additional protection can be given to private keys and secret keys by mark-
ing them as ’sensitive’ or ’unextractable’. Sensitive keys cannot be revealed
in plaintext off the token, and unextractable keys cannot be revealed off the
token even when encrypted (though they can still be used as keys).”
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Implied within these statements is the intention that by marking objects as
’sensitive’ and ’unextractable’, another user is prevented from recovering the
secret values thereof. It does not appear to be the intention to prevent one user
from using another user’s private objects.

The designers discuss several areas of concern including operating system
security, the actions of rogue applications and the threat posed by Trojan linked
libraries or device drivers that may subvert security, perhaps by stealing the
password. Similar concerns related to the ’sniffing’ of communication lines to
the cryptographic device exist(eavesdropping). This leads to several possible
compromises such as PIN recovery, unauthorized access to a session (and the
ability to insert, modify or delete commands) and the impersonation of a token or
device. However, the standard claims that “. . . none of the attacks just described
can compromise keys marked ‘sensitive,’ since a key that is sensitive will always
remain sensitive. Similarly, a key that is ‘unextractable’ cannot be modified to
be extractable.” Thus, in addition to examining the API for vulnerabilities, we
are particularly interested in this claimed property.

A cryptographic device that supports a PKCS #11 faces the following po-
tential threat models:

– a malicious security officer who abuses the authority of his position and his
access to the device and user management functions,

– a cheating or malicious user who exploits his authorized access to the token,
and

– a malicious third party who gains access to the token through some means.

Essentially, these threats resolve into either gaining access to a session, or gaining
access to a device during a session (e.g. by injecting messages into communica-
tions lines) or having knowledge of a password.

There exist some obvious, well-known attacks that are, generally speaking,
implementation dependant as opposed to weaknesses in the API itself. We briefly
describe them for completeness. The C_Login function is potentially vulnerable
to an exhaustive PIN (password) search since a user can try all possible pass-
words. One typical defence is to keep a count of the number of failed login
attempts and ’lock’ the card after a certain threshold of fails has been reached.
Ideally, the counter should be incremented prior to testing the PIN and decre-
mented thereafter only if successful. This can lead to a denial of service attack
where a malicious party tries to prevent a valid user from being able to use the
token. The attacker repeatedly and intentionally masquerades as the user and
attempts to login with an incorrect PIN. An alternative approach is to make use
of time delays during start up and between login attempts.
CK_DEFINE_FUNCTION(CK_RV, C_Login)
(

CK_SESSION_HANDLE hSession,
CK_USER_TYPE userType,
CK_CHAR_PTR pPin,
CK_ULONG ulPinLen

);
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A malicious security officer could use the C_InitPIN function to change a
given user’s PIN to a known value, hence gaining security access to the token.
Since all users have access to all objects on the token, another less detectable
approach would be to make a new user with a known PIN. This new user would
be able to gain access to the token objects. While the power inherently held by
a security officer in a given system is understood, PKCS #11 fails to specify di-
rectly the use of dual control mechanisms, which would defeat a single malicious
security officer, although not a conspiracy of security officers.

CK_DEFINE_FUNCTION(CK_RV, C_InitPIN)
(

CK_SESSION_HANDLE hSession,
CK_CHAR_PTR pPin,
CK_ULONG ulPinLen

);

Key Management Functions

PKCS #11 provides a typical set of key management functionality including:

– C_GenerateKey that generates a secret key,
– C_GenerateKeyPair that generates a public/private key pair,
– C_WrapKey that wraps (i.e., encrypts) a private or secret key,
– C_UnwrapKey that unwraps (i.e. decrypts) a wrapped key, and
– C_DeriveKey that derives a key from a base key.

Let us consider the C_WrapKey function further. It has the following proto-
type:

CK_DEFINE_FUNCTION(CK_RV, C_WrapKey)
(

CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hWrappingKey,
CK_OBJECT_HANDLE hKey,
CK_BYTE_PTR pWrappedKey,
CK_ULONG_PTR pulWrappedKeyLen

);

hSession is the session’s handle; pMechanism points to the wrapping mech-
anism; hWrappingKey is the handle of the wrapping key; hKey is the handle of
the key to be wrapped; pWrappedKey points to the location that receives the
wrapped key; and pulWrappedKeyLen points to the location that receives the
length of the wrapped key.

C_WrapKey can be used in the following situations:

– To wrap any secret key with an RSA public key.
– To wrap any secret key with any other secret key.
– To wrap an RSA, Diffie-Hellman, or DSA private key with any secret key.
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2 Symmetric Key API Attacks

A wrapped key or external encrypted key is commonly referred to as an en-
crypted key token (T ). Keys are typically wrapped (or encrypted) under a key
encrypting key (KEK) for exchange or under a master key (MK) for storage
external to the device. Initially we shall consider the wrapping of a secret key
with another secret key. The mechanism describes the method of the wrapping
operation and follows a naming convention of the form CKM_<NAME>_<MODE>.
For example, CKM_DES_ECB, CKM_DES_CBC, CKM_DES_CBC_PAD, CKM_DES3_ECB,
CKM_DES3_CBC and CKM_DES3_CBC_PAD are the mechanisms that make use of
either single DES or triple DES. Other ciphers are possible including RC2, RC4,
RC5, CAST, IDEA, etc.

2.1 Key Conjuring

Key conjuring is any technique that leads to the unauthorized generation of
keys in the device. It is so named owing to the fact that the keys are ’conjured’
(magically created or appearing seemingly out of nowhere). Bond in [6] first
identified key conjuring as a security risk. This is for two reasons. First, it defeats
any access control that was placed on the official key generation function by
providing an alternative and unauthorized mechanism to perform effectively the
same operation. Secondly, a key conjuring mechanism can be exploited to build
a large set of keys, which can then be attacked by a parallel search, as described
in Section 2.6.

Bond observed that crypto coprocessor designs, which stored keys outside
the tamper-proof device, were vulnerable to unauthorized key generation. For
instance, a random 8 bytes submitted as an external encrypted DES key will be
decrypted and used as key. For example, using random data (R), a user creates
a token Trandom = R which is then supplied to the C_UnWrapKey function call to
the device. The device decrypts Trandom as dMK(Trandom), yielding a new key
krandom = dMK(Trandom). If parity checking is enforced, then there is a 1 in 28

chance that this new ’key’ will have the correct parity. By repeating this process
on average 28 times, an attacker can expect to conjure successfully a new key
into the system in this manner. In fact this method is available in some older
devices as a key generation function. Instead of merely testing for parity, the
function will correctly set the parity in the process.

Key conjuring can be defeated through the associated use of a MAC or hash.
This has the property of authenticating the clear value of the key as valid.

2.2 Key Binding (Integrity)

We observe that the choice of mode for the C_WrapKey is left to the caller (the
user). In addition, there is no enforced use of a MAC or other technique to ensure
data authenticity. There is also no restriction on the use of keys with repeated
halves. As a result of the lack of cryptographic binding, one can attack each half
of a key independently in the following way:
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1. Export the target double length key (under any key encrypting key and
in any mode). We denote the double length key as the ordered pair K =
〈K1, K2〉 and note that each half is encrypted independently to form the
encrypted key token (T );

T = eKEK(〈K1, K2〉)
= 〈eKEK(K1), eKEK(K2)〉
= 〈T1, T2〉 .

2. Re-import the first half of the exported key as a single length key en-
crypted in ECB mode (using the same key encrypting key); dKEK(T1) =
dKEK(eKEK(K1)) = K1.

3. Re-import the second half as a single length key encrypted in ECB mode
(using the same key encrypting key); dKEK(T2) = dKEK(eKEK(K2)) = K2.

4. Perform a key search attack against each single length key (K1, K2) indi-
vidually.

Algorithm 1: Typical Key Binding Attack

The key binding issue for double (and triple) length DES keys is well known,
having been documented in [6] and exploited by [7], [9] and [11]. Indeed, this
flaw has prompted a warning from the ANSI X9 Financial Services Committee
[3] and is the subject of several revised proposals [1] and [2].

The API should not allow an exported key to be modified (especially the ’cut
and paste’ action on key components). Ideally, it should prevent the importation
of such a modified or ’Trojan’ key by employing some technique to verify that
it is a genuine and authentic key. A typical solution is the use of a MAC on the
exported key.

2.3 Key Separation

The secret key objects of PKCS #11 do allow for the specification of the use of
the key for the operations of encrypting, decrypting, signing (MAC generation),
verifying (MAC verification), key wrapping and key unwrapping. This is done
through the use of the following attributes:

Attribute Value Meaning
CKA_ENCRYPT CK_BBOOL TRUE if key supports encryption
CKA_DECRYPT CK_BBOOL TRUE if key supports decryption
CKA_SIGN CK_BBOOL TRUE if key supports signatures (i.e.,authentication codes)
CKA_VERIFY CK_BBOOL TRUE if key supports verification (i.e., of authentication codes)
CKA_WRAP CK_BBOOL TRUE if key supports wrapping
CKA_UNWRAP CK_BBOOL TRUE if key supports unwrapping

Unfortunately, the API allows the specification of conflicting properties in
that these attributes can be independently specified. This leads to a typical
separation attack:

1. Start with the key (K ) having the ability to wrap keys (i.e., act as a key
encrypting key) and decrypt data.
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2. Export the target key (Ktarget) under any key encrypting key (K) using the
C_WrapKey function yielding the token T = eK(Ktarget).

3. Decrypt the resultant token using the C_Decrypt function with K (the
key wrapping key) as a data decryption key. This returns dK(T ) =
dK(eK(Ktarget)) = Ktarget (i.e., the clear value of the target key).

Algorithm 2: Typical Key Separation Attack

Since the values of the attributes may be modified using the
C_SetAttributeValue call or in the process of copying an object using the
C_CopyObject function, it is possible for an adversary to manipulate existing
keys. The PKCS #11 documentation does note that a particular implementa-
tion or token may choose to “ . . . permit modification of the attribute, or may
not permit modification of the attribute during the course of a C_CopyObject
call”.

The problem is exacerbated in the key export/import process since an ex-
ported (or wrapped) key contains no such separation information bound to the
token. As a result, any given exported key could be imported twice with different
attributes. For example, the key could be imported as a key wrapping key the
first time, and then as a data decrypting key the second time, thus facilitating
the attack.

Clearly, greater consideration must be paid to key separation issues in the
API. Ideally, the choice of attribute combination must be restrictive in order to
prevent such attacks. Furthermore, such information must be cryptographically
bound to the wrapped key as in [1].

2.4 Weaker Key/Algorithm

The PKCS #11 specification allows for the wrapping of a key by a second key
of shorter length. Thus one need only attack the weaker key in order to recover
the original key.

1. Export the target double length DES key (Ktarget = 〈K1, K2〉) under a
single length key (KEK) as

T = eKEK(Ktarget)
= eKEK(〈K1, K2〉)
= 〈eKEK(K1), eKEK(K2)〉
= 〈T1, T2〉 .

2. Export the single length key (KEK) under itself yielding TKEK =
eKEK(KEK).

3. Attack the single length key by performing an exhaustive search.
4. Once the single length key has been recovered, one can trivially recover the

original double length key.

Algorithm 3: Example Weaker Key Attack
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PKCS #11 supports keys with particularly small key sizes (e.g. RC2), mak-
ing the search feasible. It should not be possible to downgrade the security, by
protecting a longer key with a shorter key. Similarly, it should not be possible
to use a weaker algorithm when exporting keys.

We note that the previous attacks do not contradict the security claim that
’sensitive’ and ’unextractable’ keys cannot be compromised, since they require
that the target key be exportable. What about other attacks? We focus our
attention on the C_DeriveKey function, which has the following prototype:

CK_DEFINE_FUNCTION(CK_RV, C_DeriveKey)
(

CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hBaseKey,
CK_ATTRIBUTE_PTR pTemplate,
CK_ULONG ulAttributeCount,
CK_OBJECT_HANDLE_PTR phKey

);

The C_DeriveKey supports the following mechanisms:

– CKM_CONCATENATE_BASE_AND_KEY, which derives a secret key from the con-
catenation of two existing secret keys,

– CKM_CONCATENATE_BASE_AND_DATA, which derives a secret key by concate-
nating data onto the end of a specified secret key,

– CKM_CONCATENATE_DATA_AND_BASE, which derives a secret key by prepending
data to the start of a specified secret key,

– CKM_XOR_BASE_AND_DATA, which is a mechanism that provides the capability
for deriving a secret key by performing the exclusive-oring of a key pointed
to by a base key handle and some data, and finally

– CKM_EXTRACT_KEY_FROM_KEY that provides the capability of creating one
secret key from the bits of another secret key.

2.5 Reduced Key Space

Using the CKM_EXTRACT_KEY_FROM_KEY mechanism, one can extract a subset of
the bits from a given key to create a shorter key. The can be used to reduce the
key space required to be searched. For example, one could extract 40 bits from a
DES key to create a 40-bit RC2 key, which can then be searched by exhaustive
means. The actual key space may be smaller owing to the existence of parity bits
in the DES key. The remaining 24 bits (less 3 parity bits) of the original DES key
can then be searched for independently. This potentially dangerous mechanism
relies on the ’unextractable’ flag in the key token to prevent misuse. It does not
prevent an attacker from using this method to obtain a known key in the system
or from compromising extractable keys.
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2.6 Parallel Search

The CKM_XOR_BASE_AND_DATA provides an easy method with which to exclusive-
or known patterns onto a key. This can be used to reduce the key space required
to be searched by generating a large number of (known) related keys as per the
method suggested by [12] and [19] and exploited by [9].

1. Generate a set of 216 known related keys of original target key {Ki|Ki =
Ktarget

⊕
∆i, i = 1, ..., 216} where ∆i �= ∆j for i, j ≤ 216, i �= j and ∆i is a

non-zero known value.
2. Using each key, encrypt a known pattern (P ) and store the result in search-

able database {Ci|Ci = eKi(P ), i = 1, ..., 216} .
3. Search for a key by iteratively performing trial encryptions of the known

pattern (P ) and compare result to entries in database.
4. After 239 trial encryptions on average, we expect to find a match (i.e., we

find a key Ki which produces an encrypted output in the database).
5. Recover the original target key Ktarget as Ktarget = Ki

⊕
∆i.

Algorithm 4 : Parallel Key Search Using Related Keys

Since we know how this key is related to all the others, we known all the 216

keys including the original one. This clearly demonstrates the danger of being
able to modify a key as well as the true threat posed by the seemingly benign key
conjuring vulnerability. Knowledge of the modification makes the attack easier
but is not a requisite for the attack.

2.7 Related Key Attack

Using the CKM_XOR_BASE_AND_DATA mechanism, one can create a set of related
keys with which to perform a related key attack [5], [14], [15]. This can be
used to reduce 3-key 3DES to only slightly stronger than single DES (reducing
the key space search to 256 operations to isolate a key component). The attack
is elegantly simple and easily explained. Using the related key pair K1 =<
k1, k2, k3 >, K2 =< k1

⊕
∆, k2, k3 >, encrypt a plaintext P with K1, and then

decrypt the ciphertext with K2 yielding P ′. Then C = eK1(P ), P ′ = dK2(C),
and hence P ′ = dK2(eK1(P )). Using 3DES in EDE mode (the mode itself doesn’t
matter):

P ′ = dk1
⊕

∆(ek2(dk3(ek3(dk2(ek1(P ))

= dk1
⊕

∆(ek1(P )) .

Thus, k1 has been successfully isolated and can be recovered independently
of k2 and k3, typically by exhaustive key search. The work required on aver-
age to effect the search is 256 single DES operations. Hence the cipher in triple
mode has been reduced to only slightly greater than the strength of the ci-
pher in single mode. This attack can be further enhanced by combining it with
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parallel key search techniques. For example, using a set of related key pairs
{(< k1

⊕
∆i, k2, k3 >, < k1

⊕
∆i∆, k2, k3 > |i = 1, . . . , 216} would reduce the

average search effort to 240 DES operations.
The 2-key 3DES version of the attack described in [11] is not practi-

cally feasible. However, there exists a more efficient attack by first ’con-
verting’ a double length DES key into a triple length DES key using the
CKM_CONCATENATE_BASE_AND_DATA mechanism. Following this, the three-key re-
lated key attack can be used as is.

Analysis and Implications

We return to the security claim made by the designers. Both the parallel search
attack and the related key attack contradict the claims of the API designers.
This has several implications for individual users who are reliant on the security
of a PKCS #11 token. Any user with read and write access to the token has
the ability to recover all token key objects. In addition, an adversary with the
ability to gain access to a session (perhaps by injecting raw messages into the
physical communications lines) likewise has the ability to recover keys from the
token. To thwart the attack, one must prevent all unauthorized access to token
objects. This intensifies the security concerns already listed by the designers and
previously referred to.

We now consider a means to expand the scope of the attack to include sessions
with read only access to token objects. The C_CopyObject provides a method
to copy a read only token object and to produce as output a session object.
However, since all session objects have read/write access to that session, the
attacker successfully obtains a duplicate of the key object with write access.
He can thus attack the session object using the methods previously described,
despite only having read access to the original target object. Therefore, it is
advisable to reconsider the functionality of the C_CopyObject call particularly
with respect to the preservation of properties such as write access.

Finally, it is worth noting the work done in [9] as it directly reflects on the
feasibility and speed of performing these attacks in practice. Bond and Clayton
devised a parallel exhaustive key search machine using an ’off the shelf’ FPGA
evaluation card costing approximately $1000, which was capable of performing
a 239 search in 22 hours.

3 Public Key API Attacks

We now extend our focus to consider attacks involving the use of (or against)
Public Key API functionality. We start by revisiting the C_WrapKey function
and consider first the wrapping of private RSA keys by symmetric keys.

Wrapping/Unwrapping of Private Keys Using Symmetric Keys

In PKCS #11, a private key can only be exported (and imported) if it contains
not only the private exponent and modulus, but also the public exponent and
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CRT info. This information is BER-encoded according to PKCS #1’s RSAPri-
vateKey ASN.1 type. The resulting string of bytes is encrypted with a secret key
in CBC mode and with PKCS padding.

Attribute Data Type Meaning
CKA_MODULUS Big integer Modulus n
CKA_PUBLIC_EXPONENT Big integer Public exponent e
CKA_PRIVATE_EXPONENT Big integer Private exponent d
CKA_PRIME_1 Big integer Prime p
CKA_PRIME_2 Big integer Prime q
CKA_EXPONENT_1 Big integer Private exponent d modulo p − 1
CKA_EXPONENT_2 Big integer Private exponent d modulo q − 1
CKA_COEFFICIENT Big integer CRT coefficient q − 1 mod p

The CBC-encrypted ciphertext is decrypted, and the PKCS padding is re-
moved. The data thereby obtained are parsed as a PrivateKeyInfo type, and the
wrapped key is produced. An error will result if the original wrapped key does
not decrypt properly, or if the decrypted unpadded data does not parse properly,
or its type does not match the key type specified in the template for the new
key. The unwrapping mechanism contributes only those attributes specified in
the PrivateKeyInfo type to the newly-unwrapped key; other attributes must be
specified in the template, or will take their default values.

3.1 Weaker Key/Algorithm

Following this description we are immediately concerned with the choice of sym-
metric key algorithm (and key length) used to protect the RSA private key
leading to equivalent attacks described in Section 2.4.

3.2 Private Key Modification

Consider the effect of replacing one block of the ciphertext (i.e., the wrapped
key) with a different value. When the key is unwrapped, this will cause the
corresponding block of plaintext as well as the following block to have different
values. The rest of the key remains intact. The length of the BER encoded big
number data types depends upon the size of the big numbers (typically 512,
1024 or 2048 bit numbers). In any event, they consist of at least a number of
blocks. Thus an attacker can modify one of the big numbers independently of
the other data in the wrapped private key (including the padding at the end).
If the various key components (e.g. n, p, q, e, d, d mod p − 1, d mod q − 1 and
q − 1 mod p) are not explicitly tested for consistency, the attacker gains access
to a modified ’Trojan’ key in the system. This can be used to effect the Fault
Analysis attacks of [8], [4] and [13]. A similar attack against PGP private keys
is described in [16] and, more generally, against public key APIs in [17] and [10].

A possible solution is that encrypted private keys have a strong cryptographic
method to ensure integrity of the key (e.g. MAC, hash or signature). In addition,
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the integrity of the key must be confirmed using simple arithmetic checks (for
example, is dp ≡ d mod p and n = p · q).

Wrapping/Unwrapping of Symmetric Keys Using Public Keys
Techniques

PKCS #11 supports two mechanisms for wrapping symmetric keys using Public
Key techniques, namely:

– CKM_RSA_PKCS (PKCS #1 RSA), and
– CKM_RSA_X_509 (X.509 Raw RSA).

The CKM_RSA_X_509 mechanism performs no padding or manipulation of data
prior to encryption. It merely “. . . encrypts a byte string by converting it to
an integer, most-significant byte first, applying ‘raw’ RSA exponentiation, and
converting the result to a byte string, most significant byte first.” The encrypted
token is T = ke mod n where e is public exponent, k the key being exported and
n the modulus. This simple method results in exported keys being vulnerable
when encrypted under small public exponents.

3.3 Small Public Exponent with No Padding

The clear key is right justified in the field provided, and the field padded to the
left with zeroes up to the size of the RSA encryption block (e.g. for 128-bit key
k = k1k2 . . . k128 is prepended with zero bits 0102 . . . 0l−128k1k2 . . . k128 , where
l is the length of the modulus). The resultant field is encrypted yielding T = ke

mod n. If ke < n (i.e., e < log2(n)
log2(k) ≤ log2(n)

128 ), then T = ke. Thus k can be

recovered as k = T
1
e .

Due to the speed advantages of having a small exponent with low Hamming
weight, it is common for public keys to have exponents of 3 and 216 + 1. It
is not uncommon to be able to specify this as an option in many APIs when
generating a public key. It is thus possible that a suitable public key will exist
in the system. In any event, the public keys in PKCS #11 are clear tokens and
thus one can easily ’conjure’ or create a public key with an exponent of 3. This
weakness exists in a number of APIs [10].

3.4 Trojan Public Key

As previously mentioned, the public keys in the PKCS #11 API are clear tokens
with no additional authentication checks. Thus it is possible to use any clear
public key as input to the C_WrapKey function. This allows an attacker to use a
’Trojan’ public key for which he knows the corresponding private key (typically
the attacker will probably generate the key pair himself). He requests the PKCS
#11 token exports the target key k under his supplied public key obtaining the
response T = ke mod n. Since the attacker knows the corresponding private
exponent d, he can easily recover the key as T d mod n = (ke)d = k. This simple
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method can be used to recover all exportable keys regardless of whether they
are symmetric or private keys. It is thus clear that a public key needs to be
authenticated before use to verify that it indeed has the authority to export a
given key.

3.5 Trojan Wrapped Key

Similarly to the unauthenticated use of public keys, there is no method to verify
that a wrapped key token is indeed authentic. Thus given a PKCS #11 device
containing a private key (< d, n >), and knowledge of the value of the public
key (< e, n >), the attacker proceeds as follows. He chooses an arbitrary key
k, which he then ’wraps’ under the known public key obtaining T = ke mod n
. He then calls the C_UnWrapKey function supplying this ’Trojan’ wrapped key
T and referencing the handle of the private key inside the device. The PKCS
#11 token calculates T d mod n = (ke)d = k and imports the known k as a new
key into the system. The attacker can then use k to export other keys from the
device, which he can then decrypt and recover. Thus there exists a requirement
to provide a means to verify the authenticity and origin of the wrapped key.

3.6 Key Separation

A symmetric key wrapped by a public key contains no separation information
and can be exploited as described previously in Section 2.3.

4 Solutions

Some of these security issues can be easily addressed in the implementation of
a PKCS #11 API. The more concerning issues unfortunately require a design
change to the PKCS #11 standard. With the latter come the dual concerns
of backwards compatibility and interoperability with other systems. A lack of
backwards compatibility may be the price for a previously flawed design and a
commitment to security.

The Key Conjuring and Key Binding attacks are perhaps best addressed
through a change in the external key token format, particularly for wrapped
keys. There exist proposals such as [1] and [2] and one can expect a decision
and guidance from such influential bodies as ANSI Financial Services Commit-
tee, which will largely address the interoperability issues. Key Separation can
be partially addressed by a given implementation that does not permit the con-
flicting use of key attributes (e.g. CKA_WRAP and CKA_DECRYPT). However, the
fact that the wrapped key contains no separation information is a fundamental
design flaw and like the Key Conjuring and Key Binding attacks must be ad-
dressed through a new external key token format. The Weaker Key/Algorithm
attack can be prevented by a given implementation by understanding and obey-
ing the principle that a key should not be protected by a weaker key or algorithm.
The ’unextractable’ and ’never extractable’ flags do offer protection against the
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Reduced Key Search attack. Regardless, the author is not convinced that the
CKM_EXTRACT_KEY_FROM_KEY mechanism deserves consideration in the API. Sim-
ilarly, the CKM_XOR_BASE_AND_DATA mechanism creates the opportunity for both
the Parallel Search and Related Key attacks. Again one may question the need
for such a function, particularly in its present form.

Prevention of the Private Key Modification attack requires either the use of a
consistency check to confirm the integrity of the key components, which could be
implementation specific, or else a revision of the encrypted RSA key token that
ensures integrity through some cryptographic means, such as an encrypted hash
or MAC over the token. The Small Public Exponent with No Padding attack
highlights the dangers of providing raw RSA functionality. The most sensible
solution is to enforce the use of a recognised padding scheme. The only concern
here would be backwards compatibility. Interoperability should not be an issue
since any device that uses this method to export a key is obviously vulnerable
to the attack. The Trojan Public Key and Trojan Wrapped Key attacks exploit
a lack of authentication of public keys used for export and wrapped keys being
imported. This requires a significant change to the standard to achieve these
goals.

5 Conclusions

This paper has shown the susceptibility of PKCS #11 used as an API to a
number of attacks. The attacks are efficient, computationally trivial and easy to
implement. Some possible solutions are presented to defend against the attacks.
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