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Abstract. Representing finite field elements with respect to the
polynomial (or standard) basis, we consider a bit parallel multiplier
architecture for the finite field GF (2m). Time and space complexities
of such a multiplier heavily depend on the field defining irreducible
polynomials. Based on a number of important classes of irreducible
polynomials, we give exact complexity analyses of the multiplier gate
count and time delay. In general, our results match or outperform
the previously known best results in similar classes. We also present
exact formulations for the coordinates of the multiplier output. Such
formulations are expected to be useful to efficiently implement the
multiplier using hardware description languages, such as VHDL and
Verilog, without having much knowledge of finite field arithmetic.

Keywords: Finite or Galois field, Mastrovito multiplier, pentanomial,
polynomial basis, trinomial and equally-spaced polynomial.

1 Introduction

With the rapid expansion of the Internet and wireless communications, more and
more digital systems are becoming increasingly equipped with some form of cryp-
tosystems to provide various kinds of data security. Many such cryptosystems
rely on computations in very large finite fields and require fast computations in
the fields [5,1]. Among the basic arithmetic operations over finite field GF (2m),
addition is easily realized using m two-input XOR gates while multiplication is
costly in terms of gate count and time delay.

In the past, many bit parallel multipliers were proposed (see for example [3,
9,2,11,6,10]). In [4,3], Mastrovito proposed an algorithm along with its hardware
architecture for polynomial (PB) basis multiplication. In his scheme, first a bi-
nary matrix is formed which is then multiplied with a binary vector to obtain the
required result. Halbutogullari and Koc have given a method for constructing
the Mastrovito multiplier for arbitrary irreducible polynomials [2]. This method
considers general as well as special classes of irreducible polynomials such as
trinomials, all-one polynomials (AOPs) and equally-spaced polynomials (ESPs).
So far, for these special polynomials, the XOR gate count and time delay of
the Halbutogullari-Koc algorithm appear to be the lowest. In [11], Zhang and
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Parhi give a systematic method to design the Mastrovito multiplier. Moreover,
in [11], the method is extended to design the modified Mastrovito multiplication
scheme proposed in [8]. They also present new results on the complexities of
the Mastrovito multiplier for two classes of irreducible pentanomials. Recently,
Rodriguez-Henriquez and Koc in [7] have proposed a PB multiplier for special
case of pentanomials and have given its time and gate complexities.

In this article, first we review the multiplication scheme and its bit-parallel
architecture presented in [6]. Then, using the reduction matrix Q, the complexi-
ties of the multiplier based on a number of irreducible polynomials are obtained.
We also present explicit formulations for the output coordinates of the multiplier
in terms of its inputs. Such formulations can be directly coded using VHDL or
Verilog languages to implement an efficient multiplier by someone who is not
that familiar with finite field arithmetic. It is shown that for general irreducible
polynomials, the space and time complexities of the proposed structure are lower
than those available in the literature in terms of combined gate count and time
delay. Furthermore, this architecture has fewer signals to be routed which is
advantageous for VLSI implementation.

2 Polynomial Basis Multiplications over GF (2m)

Let P (x) = xm +
∑m−1

i=0 pix
i be a monic irreducible polynomial over GF (2)

of degree m, where pi∈GF (2) for i = 0, 1, · · · , m − 1. Let α ∈ GF (2m) be
a root of P (x), i.e., P (α) = 0. Then the set {1, α, α2, · · · , αm−1} is referred
to as the polynomial or standard basis and each element of GF (2m) can be
written with respect to (w.r.t.) the polynomial basis (PB). Let A be an element
in GF (2m), then the representation of A w.r.t. the PB is A =

∑m−1
i=0 aiα

i, ai ∈
{0, 1}, where ai’s are the coordinates. For convenience, these coordinates will be
denoted in vector notation1 as a = [ a0, a1, a2, · · · , am−1 ]T , where T denotes the
transposition. Using this vector notation, the representation of A can be written
as A = αT a, where α = [1, α, α2, · · · , αm−1]T . Let S be the binary polynomial
of degree not more than 2m − 2 obtained by the direct multiplication of the PB
representations of any two elements A and B of GF (2m), i.e.,

S =

(
m−1∑

i=0

aiα
i

)

·



m−1∑

j=0

bjα
j



 =
m−1∑

k=0

dkαk +
m−2∑

k=0

ekαm+k, (1)

where

d = [d0, d1, · · · , dm−1 ]T = Lb, (2)
e = [e0, e1, · · · , em−1 ]T = Ub, (3)

1 In this paper, vectors and matrices are shown with small and capital bold faces,
respectively.
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


a0 0 0 0 · · · 0
a1 a0 0 0 · · · 0
a2 a1 a0 0 · · · 0
...

...
. . .

. . .
. . .

...
am−2 am−3 · · · a1 a0 0
am−1 am−2 · · · a2 a1 a0




, U �




0 am−1 am−2 · · · a2 a1

0 0 am−1 · · · a3 a2

...
...

. . .
. . .

...
...

0 0 · · · 0 am−1 am−2

0 0 · · · 0 0 am−1




. (4)

Then, the product C = A ·B can be obtained by the following modulo reduction.

C �
m−1∑

i=0

ciα
i ≡ S mod P (α). (5)

Definition 1. [3] The reduction matrix Q is an m − 1 by m binary matrix
which is obtained from

α↑ ≡ Qα (mod P (α)), (6)

where α↑ = [αm, αm+1, · · · , α2m−2]T .

Theorem 1. [6] Let C be the product of A and B ∈ GF (2m). Then,

c = [c0, c1, · · · , cm−1]T = d + QT e, (7)

where d, e and Q are defined in (2), (3), and (6) respectively.

The corresponding architecture for polynomial basis multiplication over
GF (2m) is shown in Figure1. This structure is divided into two parts: IP-network
and Q-network. The IP-network has m blocks (denoted as I0, I1, · · · , Im−1) which
generates vectors d and e in accordance with (2) and (3), using m2 AND gates
and (m − 1)2 XOR gates. Using (2) and (3), the delay for dj , 0 ≤ j ≤ m − 1,
and ei, 0 ≤ i ≤ m − 2, can be calculated from

T (dj) = TA + �log2(j + 1)� TX , 0 ≤ j ≤ m − 1, (8)
T (ei) = TA + �log2(m − i − 1)� TX , 0 ≤ i ≤ m − 2. (9)

In Figure 1, the Q-network takes d and e as inputs and generates c. It is
noted that the number of lines on the interconnection bus IB is fixed and is equal
to the number of ej ’s, i.e., m − 1. In Figure 1, there are three buses, A, B and
IB, and the number of lines on the buses is 3m − 1.

In the following sections, we attempt to minimise the number of XOR gates of
the Q-network for special irreducible polynomials, namely equally-spaced poly-
nomials, trinomials, and pentanomials. We start with equally-spaced polynomials
which are very structured and will help us present the remaining special cases
with less difficulties.

3 Multipliers Using Equally-Spaced Polynomials

Definition 2. A polynomial P (x) = xns + x(n−1)s + · · · + xs + 1, over GF (2),
with ns = m and 1 ≤ s ≤ ⌊

m
2

⌋
, is called an equally-spaced polynomial (denoted

as s-ESP) of degree m.
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Fig. 1. Architecture of the multiplier over GF (2m), where CSi represents an i- fold
cyclic shift.

When s = 1, we have 1-ESP which is the same as the all-one polynomial
(AOP) which has the highest Hamming weight among all polynomials of degree
m. On the other hand, s =

⌊
m
2

⌋
results in the least Hamming weight irreducible

polynomial (i.e., trinomial) of degree m. It is easy to check that for an equally
spaced trinomial m is even and s = m

2 .

Theorem 2. For an s-ESP based multiplier over GF (2m), the number of AND
gates (NA), the number of XOR gates (NX) and time delay (TC) are NA = m2,
NX = m2 − s, and TC = TA + (1 + �log2 m�) TX , respectively.

Proof. When α is a root of the s-ESP of degree m as defined above, we have

αm+i =
{

αi + αs+i + · · · + α(n−1)s+i, 0 ≤ i < s,
αi−s, s ≤ i ≤ m − 2.

(10)

Using (10), the reduction matrix Q is obtained as

Q =
[

Is Is · · · Is
Im−s−1 0s+1

]

, (11)

where Ij is the j × j unity matrix and 0s+1 is a zero matrix which has m− s−1
rows and s + 1 columns. The graphical representations of Q in (11) for different
values of s are shown in Figure 2. In this figure, non-zero entries of Q are shown
with the small squares.

In order to obtain exact expressions for NX and TC , first we obtain the
coordinates of C. To this end, from Theorem 1 and (11), one can write

cj = d′
j + ej mod s, 0 ≤ j ≤ m − 1, (12)
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Fig. 2. Graphical representations of the locations of non-zeros entries of Q for s-ESP
P (x) = xns + x(n−1)s + · · · + xs + 1, m = ns. (a) s = 1 (AOP), (b) 1 < s < m

2 , (c)
s = m

2 (trinomial).

where

d′
j =

{
dj + ej+s 0 ≤ j ≤ m − s − 2,
dj m − s − 1 ≤ j ≤ m − 1.

(13)

Thus, using (12) and (13), the exact XOR gate count for an s-ESP based
multiplier is NX = m2−s. Also, by using (8) and (9), d′

j
of (13) can be generated

with a maximum gate delay of TA + (1 + �log2 m�) TX .

It is worth mentioning that the resultant number of signal lines on IB reduces
from m − 1 to s, which is considerably lower than the s-ESP based Mastrovito
multiplier which has m(m−s)

2s +m signal lines [4]. Thus, the total number of lines
on the buses of the multiplier is 2m + s.

4 Extension to More Generic Polynomials

Here we consider irreducible polynomials of the form P (x) = xm + xkt + · · · +
xk2 + xk1 + 1, where 1 ≤ k1 < k2 < · · · < kt ≤ m

2 . The Hamming weight of P (x)
is t + 2 and the degree of the second leading term is less than or equal to m

2 .
All five binary fields recommended by NIST for ECDSA can be constructed by
such irreducible polynomials.

In order to apply the general formulation stated in Section 2 to these poly-
nomials, first we obtain the corresponding Q matrix. Note that all the rows of
the Q matrix are the PB representations of αm+i, 0 ≤ i ≤ m − 2, where α is a
root of P (x). Since P (α) = 0, then αm = 1 + αk1 + αk2 + · · · + αkt . Thus, the
0-th row, i.e., i = 0, has only ones in these t + 1 columns of Q: 0, k1, k2, · · · , kt.
The consecutive rows of this matrix can be obtained by using a linear feedback
shift register (LFSR). As a result, the rows with i = 0 to m − kt − 1 of Q have
t + 1 ones.

The Q matrix for t = 1 and t = 3 (i.e., trinomials and pentanomials, respec-
tively) are shown in Figure 3. As shown in this figure, row i, 0 ≤ i ≤ m − kt − 1
of Q has t + 1 ones corresponding to the t + 1 segmented lines. When the last
column of Q contains one which takes place in row i = m−kj −1, j = t, · · · , 2, 1,
the next row originates new t + 1 lines in columns: 0, k1, k2, up to kt provided
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Fig. 3. Graphical representations of the reduction matrix Q for trinomials: (a) k =
k1 = 1 (b) 1 < k < m

2 (see Figure 2(c) for k1 = m
2 ); and for pentanomials: (c) k1 = 1

(d) 1 < k1 ≤ m
2 .

that there is no previous lines that pass these columns. If there exists a previous
line that passes the column kj , 1 ≤ j ≤ t, then the previous line terminates in
column kj − 1 and no new line originates from column kj due to XORing of two
lines. This happens in row m

2 and column m
2 in Figure 2(c) for trinomials when

k1 = m
2 . This is also the case for pentanomials where t = 3 and it is shown in

Figures 3(c) and 3(d) for k1 = 1 and 1 < k1 ≤ m
2 , respectively.

We divide the lines of Q into t + 1 sets (see Figure 4 for t = 3) such that
Q = Q0 +Q1 +Q2 + · · ·+Qt where non-zero entries of Qi, 0 ≤ i ≤ t start from
the column ki (assume that k0 = 0). It is noted that the last non-zero entry of
sub-matrix Qi, 1 ≤ i ≤ t is in column m−1, whereas the one in Q0 is in column
m − 2. Moreover, the number of ones in each column of Qi, 0 ≤ i ≤ t is at most
t + 1 if k1 > 1, and t if k1 = 1.
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Fig. 4. Graphical representations of submatrices of Q = Q0 + Q1 + Q2 + Q3 for
pentanomials P (x) = xm + xk3 + xk2 + xk1 + 1, where 1 < k1 < k2 < k3 ≤ m

2 , (see
Figure 3(d) for Q). (a) Q0, (b) Q1, (c) Q2, (d) Q3.

Theorem 3. The number of XOR gates and the time delay of the multiplier
based on the irreducible polynomial P (x) = xm + xkt + · · · + xk2 + xk1 + 1,
1 ≤ k1 < k2 < · · · < kt ≤ m

2 are

NX = (m + t)(m − 1)

and
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TC = TA +
(

�log2(t + 1)� +
⌈

log2(
⌈

t

2

⌉

+ 1)
⌉

+ �log2(m − 1)�
)

TX .

Proof. Let us denote e(i) = [e(i)
0 , e

(i)
1 , · · · , e

(i)
m−1]

T = QT
i e, 0 ≤ i ≤ t, then using

Theorem 1, we can obtain the coordinates of the pentanomial based multiplica-
tion as

c = d + e(0) + e(1) + e(2) + · · · + e(t). (14)

First, let us assume k1 �= 1. Using Q0 (see Figure 4(a) for t = 3), the elements
of e(0) are as follows:

e
(0)
j =






ej + ej+m−kt
+ · · · + ej+m−k2 + ej+m−k1 , if 0 ≤ j ≤ k1 − 2

ej + ej+m−kt
+ · · · + ej+m−k2 if k1 − 1 ≤ j ≤ k2 − 2

...
...

ej + ej+m−kt
if kt−1 − 1 ≤ j ≤ kt − 2

ej if kt − 1 ≤ j ≤ m − 2
0 if j = m − 1.

(15)
The total number of XOR gates to form e

(0)
j ’s, 0 ≤ j ≤ kt − 2, is N1 =

t(k1 −1)+(t−1)(k2 −k1)+ · · ·+kt −kt−1 =
∑t

i=1 ki − t. Let T (e(0)
j ) denote the

time delay due to gates to find e
(0)
j . As seen in (15), the longest path delay is to

obtain e
(0)
0 = e0 + em−kt + · · · + em−k2 + em−k1 , i.e., T (e(0)

j ) ≤ T (e(0)
0 ). In order

to reduce this delay, we first add any two terms except c0, e.g., em−kj + em−ki ,
1 ≤ i, j ≤ t, i �= j. Then add these

⌈
t
2

⌉
signals to c0 using a binary tree of

XOR gates. Since T (ej) = TA +�log2(m − j − 1)� TX , then T (em−kj +em−ki) ≤
TX + T (em−kt) = TA + (1 + �log2(kt − 1)�)TX ≤ TA + �log2(m − 1)� TX , where
the last inequality is due to kt ≤ m

2 . Thus, we have

T (e(0)
j ) ≤

{
TA +

(⌈
log2(

⌈
t
2

⌉
+ 1)

⌉
+ �log2(m − 1)�)TX , if 0 ≤ j ≤ kt − 2

TA + �log2(m − 1)� TX if kt − 1 ≤ j ≤ m − 2.
(16)

By reusing the signals of e
(0)
j ’s, the coordinates of e(i), for 1 ≤ i ≤ t, can be

obtained as

e
(i)
j =

{
0, if 0 ≤ j ≤ ki − 1
e
(0)
j−ki

otherwise.
(17)

This results in the coordinates of C = AB as

cj = dj +






e
(0)
j if 0 ≤ j ≤ k1 − 1

e
(0)
j + e

(1)
j if k1 ≤ j ≤ k2 − 1

...
...

e
(0)
j + e

(1)
j + · · · + e

(t−1)
j if kt−1 ≤ j ≤ kt − 1

e
(0)
j + e

(1)
j + · · · + e

(t)
j if kt ≤ j ≤ m − 2

e
(1)
j + e

(2)
j + · · · + e

(t)
j if j = m − 1

(18)
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by using (14). To realize (18) in hardware, one requires N2 = m + (k2 − k1) +
2(k3−k2)+· · ·+(t−1)(kt−kt−1)+t(m−k3−1)+t−1 = (t+1)m−∑t

i=1 ki−1 XOR
gates. Thus, the total XOR gates needed for the multiplier is (m−1)2+N1+N2 =
(m + t)(m − 1).

To obtain the time delay of the proposed multiplier, we use a binary tree
for each coordinate in (18). For j /∈ [kt, m − 2], it is seen in (18) that TC ≤
�log2(t + 1)� TX +T (e(0)

0 ) and the proof is complete by using (16). Now, we need
only to obtain the time delay of c′

js for kt ≤ j ≤ m − 2. For j ∈ [kt, m − 2], if

we form cj = (dj + e
(0)
j ) + e

(1)
j + e

(2)
j + · · · + e

(t)
j such that dj + e

(0)
j is calculated

first, then

T (dj + e
(0)
j ) ≤ TA + (1 + �log2(m − 1)�)TX

≤ TA +
(⌈

log2(
⌈

t

2

⌉

+ 1)
⌉

+ �log2(m − 1)�
)

TX .

Also, using (17) and (16), one can see

T (e(t)
j ) ≤ TA +

(⌈

log2(
⌈

t

2

⌉

+ 1)
⌉

+ �log2(m − 1)�
)

TX

which implies that

TC ≤ TA +
(

�log2(t + 1)� +
⌈

log2(
⌈

t

2

⌉

+ 1)
⌉

+ �log2(m − 1)�
)

TX

and the proof is complete.

In addition to the three buses shown in Figure 1 now, there will be another
bus in the middle of the Q-network for signals e

(0)
j for 0 ≤ j ≤ kt − 2. Thus, the

total number of lines on the buses is 3m + kt − 2.

Corollary 1. For k1 = 1 and t > 1, the time delay would reduce to

TA +
(

�log2(t + 1)� +
⌈

log2

⌈
t

2

⌉⌉

+ �log2(m − 1)�
)

TX .

Based on the above results, one can obtain the time delay and the number of
XOR gates for the trinomial based multiplier by substituting t = 1 in Theorem
3, for k1 �= m

2 and s = m
2 in Theorem 2 for k1 = m

2 . Note that the results for
k1 = m

2 are obtained using the implementation of the m
2 -ESP based multiplier.

5 Special Classes of Pentanomials

A polynomial with five non-zero coefficients, i.e., P (x) = xm+xk3 +xk2 +xk1 +1,
where 1 ≤ k1 < k2 < k3 ≤ m − 1, is called a pentanomial of degree m. The
non-zero constant term is due to the irreducibility properly needed to define
the field. In terms of the values of kis, the pentanomials can be divided into a
number of different classes. Below we consider two special classes of irreducible
pentanomials as proposed in [11].
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5.1 Class 1: k3 ≤ m
2

For this class of irreducible pentanomial where k3 ≤ m
2 , one can apply t = 3 to

the complexity results we have presented in Section 4. This yields the following.

Corollary 2. The gate counts and time delay of the multiplier for the the pen-
tanomial P (x) = xm + xk3 + xk2 + xk1 + 1, where 1 ≤ k1 < k2 < k3 ≤ m

2 ,
are

NA = m2,

NX = m2 + 2m − 3,

TC =
{

TA + (3 + �log2(m − 1)�) TX , if k1 = 1
TA + (4 + �log2(m − 1)�) TX , otherwise,

and the number of lines on the buses is 3m + k3 − 2.

The number of XOR gates can be reduced if we choose a pentanomial such
that k1 = k3 − k2. Towards this, let us introduce the following set of new signals

e′
j = ej+m−k3 + ej+m−k2 , 0 ≤ j ≤ k2 − 2. (19)

Equation (19) can be used to generate e
(0)
j , 0 ≤ j ≤ k2 −2, by substituting t = 3

in (15) as follows

e
(0)
j =






ej + e′
j + ej+m−k1 , if 0 ≤ j ≤ k1 − 2

ej + e′
j if k1 − 1 ≤ j ≤ k2 − 2

ej + ej+m−k3 if k2 − 1 ≤ j ≤ k3 − 2
ej if k3 − 1 ≤ j ≤ m − 2
0 if j = m − 1.

(20)

The total number of XOR gates needed to generate e
(0)
j ’s (see (20)) is N1 =

k1 + k2 + k3 − 3 where k2 − 1 of which is due to (19). Also, the maximum delay
due to gates in (20) is

T (e(0)
j ) ≤






TA + (2 + �log2(m − 1)�) TX if 0 ≤ j ≤ k1 − 2
TA + (1 + �log2(m − 1)�) TX if k1 − 1 ≤ j ≤ k3 − 2
TA + �log2(m − 1)� TX if k3 − 1 ≤ j ≤ m − 1.

(21)

Lemma 1. With symbols defined as above, one has

e
(0)
j + e

(1)
j = e′

j+k2−m, for m − k2 ≤ j ≤ m − 2,

e
(2)
j + e

(3)
j = e

(0)
j−k2

+ e
(1)
j−k2

, for k3 ≤ j ≤ m − 1.

Let us represent e
(01)
j , 0 ≤ j ≤ m − 1, as the elements of (Q0 + Q1)T e,

where Q0 and Q1 are shown in Figure 4(a) and Figure 4(b), respectively. Then,
substituting t = 3 in the general case given in (18) and using the above lemma,
we can obtain the coordinates of C = AB as follows:

cj = dj + e
(01)
j + e

(01)
j−k2

, 0 ≤ j ≤ m − 1, (22)

where e
(01)
j−k2

= 0 for j < k2, and
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e
(01)
j =






e
(0)
j if 0 ≤ j ≤ k1 − 1

e
(0)
j + e

(1)
j if k1 ≤ j ≤ m − k2 − 1

e′
j+k2−m if m − k2 ≤ j ≤ m − 2

e
(1)
j if j = m − 1.

(23)

As seen in (23), one has to realize e
(0)
j + e

(1)
j for all k1 ≤ j ≤ m − k2 − 1 which

requires m − k2 − k1 XOR gates. Once e
(01)
j ’s are obtained, then equation (22)

requires 2m−k2 XOR gates. Thus, the total number of XOR gates needed for the
multiplier is (m−1)2+N1+m−k2−k1+2m−k2 = m2+m+k1−2. Due to the reuse
of terms e′

j , 0 ≤ j ≤ k2 − 1, and e
(0)
j + e

(1)
j , k1 ≤ j ≤ m− k2 − 1, additional lines

needed on the bus in the Q-network are (k2 −1) and (m−k1 −k2), respectively.
Thus, the total number of lines on the buses is increased to 4m + k2 − 3.

To obtain the time delay of the proposed multiplier, we use Table 1 which
shows the maximum delay of the used signals in (22) for the given ranges of
j in each row. In this figure i, 0 ≤ i ≤ 4, represents the time delay of TA +
(i + �log2(m − 1)�) TX , and the numbers inside brackets are for k1 = 1. Also,
x determines either e

(01)
j or e

(01)
j−k2

to be added with dj first to obtain cj . In
each row of this table, the delays are obtained for the first digit of the given
range. This is because as j increases, the time delays of the used signals in each
row of this table decreases. As seen in this table, the maximum delay of the
multiplier is TA + (4 + �log2(m − 1)�) TX . For k1 = 1, only one signal, i.e., ck3 ,
has the delay of TA +(4 + �log2(m − 1)�) TX . One can reduce this delay to TA +
(3 + �log2(m − 1)�) TX if only ck3 is realized as ck3 = ((dk3 +e

(0)
j )+e

(1)
j )+e

(01)
k3−k2

by using one extra XOR gate.

Table 1. Maximum time delays of the signals, where i, 0 ≤ i ≤ 4, represents the time
delay of TA + (i + �log2(m − 1)�) TX , numbers inside brackets are for k1 = 1, and x

determines either e
(01)
j or e

(01)
j−k2

to be added first with dj .

j e
(0)
j e

(1)
j e

(01)
j e

(01)
j−k2

dj + x cj

0 ≤ j ≤ k1 − 1 2(1) - 2(1), x - 3 3
k1 ≤ j ≤ k2 − 1 1 2(1) 3(2), x - 4(3) 4(3)
k2 ≤ j ≤ k3 − 1 1 2(1) 3(2) 2(1), x 3(2) 4(3)

k3 ≤ j ≤ k3 + k1 − 1 0 1 2, x 3(2) 3 4
k3 + k1 ≤ j ≤ m − k2 − 1 0 0 1, x 3(2) 2 4(3)

m − k2 ≤ j ≤ m − 1 0 0 1, x 3(2) 2 4(3)
j = m − 1 - 0 1, x 1 2 3

Based on the above results, we can state the following.

Theorem 4. The gate counts and time delay of the multiplier based on the
pentanomial P (x) = xm + xk3 + xk2 + xk1 + 1, where 1 ≤ k1 < k2 < k3 ≤ m

2 ,
and k3 − k2 = k1are

NA = m2,



On Low Complexity Bit Parallel Polynomial Basis Multipliers 199

NX =
{

m2 + m if k1 = 1
m2 + m + k1 − 2 otherwise,

TC =
{

TA + (3 + �log2(m − 1)�) TX , if k1 = 1
TA + (4 + �log2(m − 1)�) TX , otherwise,

and the number of lines on the buses is 4m + k2 − 3.

Remark 1. To verify that class 1 irreducible pentanomials exist, we have used a
MapleTM program for m ∈ [160, 600] and have found that at least one irreducible
pentanomial exists for each m in the range of 160 to 600. This is of interest to
elliptic curve cryptosystem designers. In order to minimise the number of XOR
gates of the multiplier, we have obtained irreducible pentanomials such that k1
is minimum. We have also observed that, k1 is less than or equal six for all m in
the above mentioned range.

It is noted that the pentanomial presented in [7] is a special case when k1 = 1.

5.2 Class 2: m − k3 = k3 − k2 = k2 − k1 = s, m−1
8 ≤ s ≤ m−1

3

We refer to polynomials P (x) = xm + xk3 + xk2 + xk1 + 1, where 1 ≤ k1 < k2 <
k3 ≤ m − 1, and m − k3 = k3 − k2 = k2 − k1 = s as class 2 type. Similar to
the other special irreducible polynomials, here we first obtain the corresponding
reduction matrix. Then the coordinates and complexities of the multiplier can be
obtained. Based on the values of s (or k1 = m−3s), we can divide the reduction
matrix into different forms. Because of lack of space, only three of them are
presented here. These Q matrices for m−1

8 ≤ s ≤ m−1
3 (or 1 ≤ k1 ≤ 5s + 1) are

shown in Figure 5. Based on this figure, we can state the following theorem.
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Fig. 5. Graphical representations of the reduction matrix Q for class 2 pentanomials
P (x) = xm + xk3 + xk2 + xk1 + 1, where m − k3 = k3 − k2 = k2 − k1 = s. (a)
m−1

4 ≤ s ≤ m−1
3 or 1 ≤ k1 ≤ s + 1 (see Figure 2(a) for k1 = s), (b) m−1

5 ≤ s < m−1
4

or s + 1 < k1 ≤ 2s + 1, (c) m−1
8 ≤ s < m−1

5 or 2s + 1 < k1 ≤ 5s + 1.
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Theorem 5. The gate counts and the time delay of the multiplier for the pen-
tanomial P (x) = xm + xm−s + xm−2s + xm−3s + 1, for m−1

8 ≤ s ≤ m−1
3 are

NA = m2,

NX =






m2 + m − s − 1, if m−1
4 ≤ s ≤ m−1

3
m2 + 2m − 5s − 2 if m−1

5 ≤ s < m−1
4

m2 + m − 2 if m−1
8 ≤ s < m−1

5

TC =
{

TA + (3 + �log2(m − 1)�) TX , if m−1
5 ≤ s ≤ m−1

3
TA + (4 + �log2(m − 1)�) TX , otherwise.

Remark 2. Using MapleTM, we have found that there exists 147 values of m,
where m ∈ [160, 600] such that polynomial P (x) = xm+xm−s+xm−2s+xm−3s+
1, 1 ≤ s ≤ m−1

3 is irreducible. Among them only 23 have 1 ≤ s < m−1
8 .

Table 2. Comparison of related polynomial basis multipliers.

Reference Special Case #XOR Time delay

P (x) = xns + x(n−1)s + · · · + xs + 1, m = ns

This paper,[2,11] - m2 − s TA + (1 + �log2 m�) TX

P (x) = xm + xk + 1
[9,2,11] k = 1 m2 − 1 TA + (1 + �log2 m�) TX

[9,2,11] 1 < k ≤ m
2 m2 − 1 TA + (2 + �log2 m�) TX

This paper,[10] 1 ≤ k ≤ m
2 m2 − 1 TA + (2 + �log2(m − 1)�) TX

P (x) = xm + xkt + · · · + xk2 + xk1 + 1, 1 ≤ k1 < k2 < · · · < kt ≤ m
2

[11] t > 1 (m + t)(m − 1) TA + (2t + �log2 m�) TX

This paper t > 1 (m + t)(m − 1)
TA + (

⌈
log2(

⌈
t
2

⌉
+ 1)

⌉
+

�log2(t + 1)� + �log2(m − 1)�)TX

P (x) = xm + xk3 + xk2 + xk1 + 1, 1 < k1 < k2 < k3 ≤ m
2

[11] k1 ≥ 1 m2 + 2m − 3 TA + (6 + �log2 m�) TX

This paper k1 > 1 m2 + 2m − 3 TA + (4 + �log2(m − 1)�) TX

This paper k1 = 1 m2 + 2m − 3 TA + (3 + �log2(m − 1)�) TX

This paper k3 − k2 = k1 m2 + m + k1 − 2 TA + (4 + �log2(m − 1)�) TX

[7] k3 − k2 = k1 = 1 m2 + m + 2k2 TA + (3 + �log2(m − 1)�) TX

This paper k3 − k2 = k1 = 1 m2 + m TA + (3 + �log2(m − 1)�) TX

This paper,[7] ki = i m2 + m TA + (3 + �log2(m − 1)�) TX

P (x) = xm + xm−s + xm−2s + xm−3s + 1
[11] 1 ≤ s ≤ m−1

3 m2 + 4m − 5s − 5 TA +
(⌊

d
4

⌋
+ 4 + �log2(m − 1)�) TX

[11] s ≤ m−1
3 ≥ m2 + 2.33m − 7 ≥ TA + (4 + �log2(m − 1)�) TX

This paper m−1
8 ≤ s ≤ m−1

3 ≤ m2 + m ≤ TA + (4 + �log2(m − 1)�) TX

6 Complexity Results and Concluding Remarks

In this article, time and space complexities of bit parallel multipliers for GF (2m)
have been considered. A comparison of our newly derived gate counts and delays
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Table 3. Comparison of the structure of Figure 1 with the Mastrovito multiplier in
terms of number of number of lines on the buses.

Multipliers # Lines on the buses
trinomial s-ESP pentanomial generic

Mastrovito [4] 3m − 1 m(m−s)
2s

+ 2m 5m − 3 (t + 2)(m − 1) + 2
This paper 3m − 1 2m + s ≤ 4m + k2 3m + kt − 2

with those of existing ones is shown in Table 2. As seen in this table, for trinomial
xm+x+1, the multiplier of Figure 1 has one additional XOR gate delay compared
to the best one available in the literature, i.e., [2,11]. However, our results for the
ESPs and trinomials (k �= 1) match the corresponding best results available ([2,
11] and [9]). Also, the resultant gate and time complexities for trinomials match
those presented in [10].

For a more generic irreducible polynomial as discussed in Section 4, the
multiplier in Figure 1 has the same gate count but a shorter time delay compared
to [11]. For class 1 pentanomials, this multiplier is faster than [11] and has fewer
XOR gates if the special case of k3 − k2 = k1 is used. This proposed special
case of class 1 covers the case of pentanomials reported in [7], where k1 = 1.
Compared to the multiplier proposed in [7], the multiplier discussed in this paper
for the special case of k1 = k3 − k2 = 1 has 2k2 fewer XOR gates and match the
ones proposed in [7] for k1 = 1 and k2 = 2. Also, for class 2 pentanomials, our
multiplier is either faster or has the same gate delay and has at least 1.33m − 7
fewer XOR gates than the multiplier reported in [11].

In VLSI implementation, in addition to the gate counts, the number of lines
on the buses is also an important parameter which determines the space com-
plexity and consequently its actual time delay. Table 3 compares this metric of
the proposed architecture with that of Mastrovito multiplier [4]. As shown in
this table, the architectures discussed here have a fewer number of lines on the
buses compared to the well known Mastrovito multiplier.
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