Impact of Job Allocation Strategies on
Communication-Driven Coscheduling in
Clusters*

Gyu Sang Choi!, Saurabh Agarwal?, Jin-Ha Kim!, Anydy B. Yoo®, and
Chita R. Das!

! Department of Computer Science and Engineering
{gchoi,sagarwal, jikim,das}@cse.psu.edu
2 IBM India Research Labs
New Delhi — 110016, India
{saurabh.agarwal}@in.ibm.com
3 Lawrence Livermore National Laboratory
Livermore, CA 94551
{yoo2}0@1llnl.gov

Abstract. In this paper, we investigate the impact of three job alloca-
tion strategies on the performance of four coscheduling algorithms (SB,
DCS, PB and CC) in a 16-node Linux cluster. The job allocation factors
include Multi Programming Level (MPL), job placement, and communi-
cation intensity. The experimental results show that the blocking based
coscheduling schemes (SB and CC) have better tolerance to different
job allocation techniques compared to the spin based schemes (DCS and
PB), and the local scheduling. The results strengthen the case for using
blocking based coscheduling schemes in a cluster.

1 Introduction

Recently, several dynamic coscheduling algorithms have been proposed for im-
proving the performance of parallel jobs on cluster platforms, which have
gained wide acceptance from cost and performance standpoints [1][2][3]. These
coscheduling algorithms rely on the communication behavior of the applications
to schedule the communicating processes of a job simultaneously. Using efficient
user-level communication mechanisms such as U-Net [], Fast messages [5], and
Virtual Interface Architecture (VIA) [6], these techniques are shown to be quite
efficient. All prior coscheduling studies have primarily focuses on the schedul-
ing of parallel processes assigned to a processor. They do not address the job
allocation issue, i.e., the mechanism to assign jobs to the required nodes of a
cluster. Allocation is an integral part of a processor management technique and
can have a significant impact on the overall system performance. In view of this,

* This research has been supported by NSF grants CCR-9900701, CCR-0098149, CCR-
0208734, and EIA-0202007.

H. Kosch, L. Bészérményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 160-[168] 2003.
© Springer-Verlag Berlin Heidelberg 2003

Impact of Job Allocation Strategies on Communication-Driven Coscheduling 161

several job allocation strategies have been proposed for batch and gang schedul-
ing techniques to improve system performance [7]. In this paper, we investigate
the impact of several job allocation strategies on the relative performance of four
coscheduling techniques and native local scheduling using a Linux cluster. The
allocation factors that may affect the performance include Multi Programming
Level (MPL), communication intensity and job placement. We have developed
a generic, scalable and re-usable framework for implementing the coscheduling
techniques on a cluster platform. Three prior coscheduling algorithms, Spin-
Block (SB)[][2], Dynamic Coscheduling (DCS)[3] and Periodic Boost (PB)[2],
and a newly proposed coscheduling algorithm, called Co-ordinated Coscheduling
(CC)[R] are implemented using this framework on a Myrinet connected 16-node
Linux cluster. We use four NAS parallel benchmarks to analyze the impact of
job allocation strategies. Our experimental results reveal that the blocking based
schemes CC and SB consistently show tolerance to most allocation metrics and
provide the best performance for all workloads. The local scheduling, and the
two spin based techniques (DCS and PB) are more vulnerable to various job
allocation strategies. Further, node sharing due to various job placement tech-
niques seems a viable option for the CC and SB algorithms as the application
execution times are little affected by such sharing.

The rest of this paper is organized as follows. Section 2 describes the im-
plementation of three prior coscheduling techniques along with our proposed
coscheduling algorithm using a generic framework. The job allocation metrics
and performance results are presented in Section 3 followed by the concluding
remarks in the last section.

2 A Generic Framework for Implementing Coscheduling
Algorithms

In this section, first a brief description of the four coscheduling algorithms is
given followed by our generic framework for their implementation. All coschedul-
ing algorithms rely primarily on one of two local events (arrival of a message
and waiting for a message) to determine when and which process to schedule.
For example, in the SB algorithm, a process waiting for a message spins for a
fixed amount of time before blocking itself, hoping that the corresponding pro-
cess is coscheduled at the remote node [T][2]. Dynamic coscheduling algorithm
(DCS) uses incoming messages to schedule the process for which the messages
are destined [3]. The underlying idea is that there is a high probability that
the corresponding sender is scheduled at the remote node and thus, both pro-
cesses can be scheduled simultaneously. In the PB scheme, a periodic mechanism
checks the endpoints of the parallel processes in a round-robin fashion and boosts
the priority of one of the processes with un-consumed messages based on some
selection criteria [2].

Our new Co-ordinated Coscheduling (CC) scheme [§] is different in that it
optimizes both sender and receiver side spinning to improve performance. With
this scheme, the sender spins for a pre-determined amount of time waiting for an

162 @G.S. Choi et al.

acknowledge from Network Interface Card (NIC). The NIC sends the acknowl-
edge after pushing the message to the wire. If a send is completed within the
spin time, the sender remains scheduled hoping that its receiver will be cosched-
uled and a response can be received soon. If the sender does not receive the
acknowledge from the NIC within the spin time, it is blocked and the scheduler
chooses another process from its runqueue. As soon as the NIC completes the
corresponding send, it wakes up the original sender process, and makes it ready
to be coscheduled before the reply comes from the other end. On the receiver
side, a process waits for a message arrival within the spin time. If a message does
not arrive within this time, the process is blocked and registered for an interrupt
from the NIC. The NIC firmware maintains per process message arrival informa-
tion in a table and continuously updates the table by recording the cumulative
number of incoming messages for the corresponding process. Every 10ms, the
table information in the NIC is retrieved to find the process, which has the
largest number of un-consumed incoming message, and the process is returned
to the local scheduler to be run next. The send_spin_time and recv_spin_time are
carefully calculated for maximal performance benefits.

Parallel Applications (NAS) Parallel Applications (NAS)
g MPI 3 MPI
3 4
H VIPL H VIPL
gl Cosched Library
S | Co-scheduling
. VIA Device Driver 3 Module
) (coscheduling enabled) 3 VIA
$ R Alternative Device|
g 3 Scheduling Patch Driver
[lnuxscheduler }—p || LI
y.> Linux Scheduler
5 ! x
2 I LANAI Firmware (coscheduling enablel:i 3 [LANAI Firmware ﬂ
E
(a) Traditional Approach (b) A Generic Framework

Fig. 1. Two Coscheduling Implementation Alternatives

Implementation of these schemes on a cluster needs significant modifications
in the user-level communication layer such as VIA, NIC firmware and the device
driver as shown in Figure [l (a). Changing from one platform to another needs
rework of the entire effort for each algorithm. In view of this, we present a
generic, reusable framework that can be used to implement any coscheduling
algorithm across various platforms, using well defined interfaces for the NIC,
kernel and user layers [§]. This framework has been implemented on a Myrinet
connected 16-node Linux cluster that uses industry standard VIA [6] as the
user-level communication abstraction. In our framework (see Figure [(b)), an
alternative scheduling patch, integrated in the local Linux scheduler, invokes the
coscheduling module in which all the coscheduling algorithms used in this paper

Impact of Job Allocation Strategies on Communication-Driven Coscheduling 163

are implemented. The coscheduling module chooses the next possible running
process based on the underlying coscheduling algorithm and provides appropriate
interfaces to the VIA device driver and NIC firmware. The selected process is
returned to the Linux native scheduler and the native scheduler intelligently
decides whether to execute or ignore the new process, based on the overall system
load. Otherwise, the Linux native scheduler selects on other process from its run-
queue. Further details of CC scheme and the framework are also described in

&].

Table 1. Workload mixes used in this study.

Category |Workload |Applications | Communication
Intensity
Wil (1,2,4,6)EPs low
Parallel, Wi2 (1,2,4,6)LUs Medium
Homogeneous Wi3 (1,2,4,6) MGs High
Wi4 (1,2,4,6)CGs Very high
Parallel, Wi5 EPs + MGs Low + High
Heterogeneous Wi6 LUs + CGs |Medium + Very High

3 Job Allocation Strategies

This section explores three strategies that affect the way parallel jobs are allo-
cated on a cluster. Their relative impacts are explained in detail through a series
of experiments in subsequent sub-sectiondl]. Before discussing the strategies, we
explain the experimental testbed and the workload used in this study.

3.1 Experimental Platform and Workload

Our experimental testbed is a 16-node Linux (2.4.7-10) cluster, connected
through a 16-port Myrinet [9] switch. Each node is an Athlon 1.76 GHZ uni-
processor machine, with 1 GB memory and a PCI based on-board intelligent
NIC [9], with 8 MB of on-chip RAM and a 133 MHZ Lanai 9.2 RISC processor.
We have significantly enhanced and used the Berkeley’s VIA implementation
(version 3.0) over Myrinet as our user-level communication layer and NERSC’s
MVICH (MPI-over-VIA) implementation [I0] as our parallel programming li-
brary.

For our parallel workload, we consider 4 applications from the NAS parallel
benchmark suite [I1] : EP, LU, MG and CG; with lowest to highest communi-
cation intensities, respectively. Using combinations of these 4 applications, we
designed a set of 6 parallel workloads as shown in Table[ll. W1 through W4 ex-
hibit uniform, homogeneous characteristics with low, medium, high and very high

! In addition, we have analyzed the impact of CPU and I/O intensive several jobs on
the performance of parallel jobs. The results are omitted here due to space limitation,
but can be found in [§]

164 @G.S. Choi et al.

communication intensities respectively. W5 and W6 exhibit non-uniform, het-
erogeneous characteristics with mixed communication intensities. The numbers
in the bracket represent the multi programming level of different applications.
Total size of all applications, when run together, fits well within the memory
(1GB), and hence, we incur no swapping overheads. Now, we examine various
metrics that potentially influence the job-allocation decision using 4 coscheduling
algorithms (DCS, PB, SB and CC).

 aaes N raaen S aaes Noasas
PNPNPNPN PPN PNPNPNPNPN PPN PPN PPN
DECEEEEE NECOEEED NEDEEEEE
RS EEEEEEEE Sclcclelelsle
PEEEEEEE DEEEEEEE FEEEREERE
SEEEEEEE EEEEEEEE EEEEEEEE
DEEEELEEE NECEGEEEE SEEECEES

(a) Unbalanced (b) Partially Balanced (¢) Fully Balanced

Fig. 2. Sharing Strategies for allocating multiple jobs: (a) allocates to use all 15 nodes,
overloading just 1 node, (b) overloads 4 nodes and frees up 3 nodes and (c) overloads
8 nodes to free up 7 extra nodes.

@
g
=4
o«
@
Se-
e

<40
o
o
U
£ .00l T PB
=
c
S
H
X
o

A\ o

Average Execution Time (sec)
&

Average Execution Time (sec)
®
£

Average Execution Time (sec)

o)
4

Tnode 4nodes 8nodes 1node 4 nodes 8nodes 1node 4 nodes 8nodes 1node 4 nodes 8 nodes

(a) Wil (b) Wi2 (c) Wi3 (d) Wi4

Fig. 3. Performance Analysis of sharing the number of nodes.

3.2 Effect of Job Placement

Typically, prior implementations of coscheduling algorithms have assumed the
worst case scenario, where all parallel applications require maximum number of
available nodes (16, in our case). Let us consider a more realistic case, where jobs
have differing node requirements and not enough nodes are available to allocate
all jobs independently. In such cases, we would like to see how sharing of multiple
jobs can impact the overall performance. There are two basic issues to consider:
(1) How many nodes are overloaded and (2) How many jobs are affected due to
arrival of a new job?

For the first issue, considering the best, average and worst case of node shar-
ing, we examine three job allocation techniques as shown in Figures2l(a) through
(¢), respectively. We consider 6 class-A MG applications (each requires 8 nodes),
and allocate them using three patterns (on available 15 nodes) as shown in Figure
Analyzing the results of these schemes under various workloads as shown in

Impact of Job Allocation Strategies on Communication-Driven Coscheduling 165

Figures Bl (a) through (d), we find that only in the presence of a good coschedul-
ing mechanism like CC [8] or SB [I][2], there is no difference on the average
execution time of the 6 applications. Note that Wil is a very low communi-
cation workload, hence all coscheduling schemes perform almost the same. We
expect that with a good coscheduling algorithm, we can choose any of the three
allocation schemes and still achieve the best results. This conclusion is impor-
tant because it can help optimize upon total number of nodes to be shared, and
hence, can directly increase the overall throughput.

For the second issue, we consider three important cases: (1) Incoming job
affects only 1 job of its own size (best case) (2) Incoming job affects 1 job, but of
larger size (Intermediate case) and (3) Incoming job affects multiple (atleast two)
jobs (Worst case). The three allocations are shown in Figures[d (a) through (c),
respectively, when A and B are resident jobs and C is the incoming job. Results
of these allocation techniques are quite as expected : Figure Hl (a) is the best
strategy in all cases, irrespective of any coscheduling algorithm used, followed
by (b) and (c) respectively. We do not show these results for space limitations.

A|A|A|A|/A|A|/A|/AB|B|B|B| A|A|/A|/A/A|A|/A|A|/B|B(B|B| |A/A/A|/A|A/A/A|A|B|BB|B

(a) Share 1 job, same size (b) Share 1 job, larger size (c) Share Multiple jobs

Fig. 4. Allocating a new job on nodes of a fully loaded machine

3.3 Effect of Multi-programming Level (MPL)

When coscheduling multiple jobs on cluster nodes, it is important to dynamically
determine the maximum threshold number of parallel processes (thN) that can
be successfully multi-tasked at a time. By successfully, we mean that the time
taken by the thIV processes when executed together should be less than or equal
to the sum of the times they took, when executed in isolation. This metric is
important from the allocation view-point because, if the allocator is aware of
such a threshold, it can choose the nodes intelligently and avoid overloading on
a node. Depending on the workload type of coscheduling scheme we use, such a
threshold can vary. This is evidently seen in Figures[(a) through (d), where we
plot the average execution time per-application of workloads Wil through Wi4,
respectively, as we increase the MPL. We see that blocking based schemes like
CC [8] and SB [T][2] are most tolerant to increase in the MPL, as the execution
time per-application remains nearly constant. On the other hand, spin-based
schemes suffer (sometimes drastically), especially in communication intensive
workloads like W12, W3 and Wi4. This can be explained by the fact that as
we increase the MPL, the likelihood of processes remaining coscheduled for a
longer time gets lesser. This makes blocking and wakeup on demand a better
option than spinning. We conclude from this result that in the presence of a
good coscheduling algorithm (like CC or SB), we can allocate reasonably higher

166 @G.S. Choi et al.

number of jobs (tested upto MPL 6) without performance penalty. Such schemes
not only reduce the response time per-job, but also increase the overall system
throughput, because multi-programming frees up other nodes.

'S
S
o
@

ion Time Per Application (sec)
& »
%, 4

tion Time Per Application (sec)

w

I
g @ o ;Y : :
;I1JI$L1 MPL2 MPL4 MPL6 <MP PL6 < MPL1 MPL2 MPL4 MPL6 <MPL1 MPL2 MPL4 MPL6

(a) Wil (b) Wi2 (c) Wi3 (d) Wi4

Fig. 5. Effect of MPL on the average execution time per application.

3.4 Effect of Variance in Communication Intensity

Another factor often neglected during job allocation is the communication in-
tensity of the jobs. To see how it affects job allocation, we consider 2 types of
workloads (W15 and W16), each mixed with jobs of varying communication in-
tensities, and allocate them in two different ways: homogeneous and mixed, as
shown in Figures @ (a) and (b), respectively. Figures [l (¢) and (d) show the
impact of various coscheduling algorithms on these job allocation strategies for
workloads W15 and W6, respectively. We observe that for W15, mixed alloca-
tion is better, while for W16, homogeneous allocation is better. However, striking
observation from both these results is that in the presence of a good coschedul-
ing algorithm like CC and SB, both allocation schemes perform nearly the same.
This leads us to the conclusion that with CC or SB, job allocator design gets
simpler, as communication intensities have little impact on average job execution
time.

N
=
g
k=

16 nodes —te—16 nodes—| j¢—16 nodes—le—16 nodes—}

3EPS3LUs | IMGS3CGs| | 3EPSBLUs | IMGSCGs

Il Homo
] Mixed

o

S
'S
8
S

)
8
S

~
S
S

a
S

5
8

Average Execution Time (sec)
3
8

Average Execution Time (sec)

JERYSLUS | MGy3CGs| | MGyICGs| SERYSLUs | < | LA LD 15[L DD g

(a) Homogeneous (b) Mixed (c) WI5 (d) Wi6

Fig. 6. Allocation strategies [(a),(b)] and their effect on various job mixes [(c),(d)].

Impact of Job Allocation Strategies on Communication-Driven Coscheduling 167

4 Conclusion and Future Work

Although several communication-driven coscheduling algorithms have been pro-
posed for improving the performance of parallel jobs in a cluster environment,
the allocation techniques that impact the relative merits of these algorithms have
barely been studied. In this experimental work on a Myrinet connected 16-node
Linux cluster and real workloads, we have analyzed several critical factors that
can influence job-allocation decisions, and hence affect the overall performance.
These factors include MPL, job placement strategies and communication inten-
sity of parallel jobs. Several important conclusions about coscheduling algorithms
can be derived from our experimental results. First, when not enough nodes are
available to execute jobs independently, node-sharing becomes critical for per-
formance. We find that in the presence of coscheduling mechanisms like CC and
SB, maximizing node-sharing is a good option as the per-application execution
time remains nearly constant. However, with other mechanisms (Local, DCS,
PB) the execution time increases with sharing, hurting the overall performance.
Moreover, sharing should be done intelligently not to affect more than a single
parallel job. The node sharing was tested upto a relatively high MPL of six, and
with CC and SB, there was no adverse impact on the performance of any parallel
job. Second, we find that mixing jobs of differing communication intensities does
not hurt performance in the presence of blocking-based coscheduling algorithms
like CC and SB. This strengthens the case for using blocking-based coscheduling
algorithms even further.

References

1. A. C. Arpaci-Dusseau, D. E. Culler, and A. M. Mainwaring, “Scheduling with
Implicit Information in Distributed Systems,” in Proceedings of the ACM SIG-
METRICS Conference on Measurement and Modeling of Computer Systems, 1998.

2. S. Nagar, A. Banerjee, A. Sivasubramaniam, and C. R. Das, “A Closer Look
at Coscheduling Approaches for a Network of Workstations,” in Proceedings of
the Eleventh Annual ACM Symposium on Parallel Algorithms and Architectures,
pp. 96-105, June 1999.

3. P. G. Sobalvarro, S. Pakin, W. E. Weihl, and A. A. Chien, “Dynamic Coscheduling
on Workstation Clusters,” in Proceedings of the IPPS Workshop on Job Scheduling
Strategies for Parallel Processing, pp. 231-256, March 1998. LNCS 1459.

4. T. von Eicken, A. Basu, V. Buch, and W. Vogels, “U-Net: A User-Level Network
Interface for Parallel and Distributed Computing,” in Proceedings of the 15th ACM
Symposium on Operating System Principles, December 1995.

5. S. Pakin, V. Karamcheti, and A. A. Chien, “Fast Messages: Efficient, Portable
Communication for Workstation Clusters and MPPs.,” IEEE Concurrency, vol. 5,
pp- 60-72, April-June 1997.

6. Compagq, Intel and Microsoft Corporations, “Virtual Interface Architecture Speci-
fication. Version 1.0,” Dec 1997. Available from http://www.vidf.org.

7. Dror G. Feitelson, Larry Rudolph, “Mapping and scheduling in a shared parallel
environment using distributed hierarchical control,” in International Conference
on Parallel Processing, vol. 1, pp. 1-8, 1990.

168

8.

10.

11.

@G.S. Choi et al.

S. Agarwal, “A Generic Infrastructure for Coscheduling Mechanisms on Clusters,”
Dec 2002. M.S. Thesis. Available from http://www.cse.psu.edu/ sagarwal/saga
rwalMSThesis.pdf.

N. J. Boden et al., “Myrinet: A Gigabit-per-second Local Area Network,” IEEE
Micro, vol. 15, pp. 29-36, February 1995.

National Energy Research Scientific Computing Center, “M-VIA: A High Perfor-
mance Modular VIA for Linux,” 2001. Available from
http://www.nersc.gov/research/FTG/via/.

N. A. S. division., “The nas parallel benchmarks (tech report and source code).”
Available from http://http://www.nas.nasa.gov/Software/NPB/.

	Introduction
	A Generic Framework for Implementing Coscheduling Algorithms
	Job Allocation Strategies
	Experimental Platform and Workload
	Effect of Job Placement
	Effect of Multi-programming Level (MPL)
	Effect of Variance in Communication Intensity

	Conclusion and Future Work

