
H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 1091–1098, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Benefits and Requirements of Using Multi-agent Systems
on Smart Devices

Cosmin Carabelea¹, Olivier Boissier¹, and Fano Ramparany²

¹ SMA/SIMMO/ENS Mines de Saint-Etienne, France
{cosmin.carabelea, olivier.boissier}@emse.fr

² DIH/OCF/France Télécom R&D
Fano.Ramparany@rd.francetelecom.com

Abstract. Due to the emergence of Internet and embedded computing, humans
will be more and more faced to an increasing intrusion of computing in their
day-to-day life by what it is called now smart devices. Agent characteristics like
pro-activeness, autonomy and sociability and the inherent distributed nature of
multi-agent systems make them a promising tool to use in the smart devices
applications. This paper tries to illustrate the benefits of using multi-agent
systems on smart communicating objects and discusses the need of using multi-
agent platforms. We then present an overview of multi-agent platforms created
for use on small devices (i.e. devices with limited computing power) and for
each reviewed multi-agent platform we try to identify what are its main
characteristics and architectural concepts.

1   Introduction

In the near future it is to be expected that humans will be more and more faced to an
increasing intrusion of computing (in the form of smart devices) in their day-to-day
life. The term smart device designates any physical object associated with computing
resources and able to communicate with other similar objects via any physical
transmission medium, and logical protocol, or with humans via standard user
interface. The scale spans from big smart devices such as PDAs, to small ones such as
RFID Tags.

We are mainly interested in devices that share the following characteristics: tight
memory constraints, limited computing power (due to low power consumption),
limited user interface peripheral, embedded in the physical world and exhibiting real
time constraints. The increasing number of such devices makes us envision a myriad
of applications in which users will shortly need to be intelligently assisted in their
interactions with these computing entities. The evolution surely will produce several
users in interaction with several devices, so we need to introduce in these intelligent
objects some cooperating and social reasoning capabilities.

For many years, multi-agent systems have proposed a new paradigm of
computation based on cooperation and autonomy. An intelligent agent is "a computer



1092         C. Carabelea, O. Boissier, and F. Ramparany

system, situated in some environment, that is capable of flexible and autonomous
action in order to meet its design objectives" [8]. A multi-agent system is a federation
of software agents interacting in a shared environment, that cooperate and coordinate
their actions given their own goals and plans. Many properties of this metaphor of
computing make them attractive for tackling with the requirements presented above:
• Pro-activity: agents can pro-actively assist their users and try to achieve goals given

the evolution of the environment; they can help them in discovering information, in
interacting.

•  (Adjustable) autonomy: agents are able to try to achieve their own goals, but are
also able to take into-account and adapt their autonomy according to their users’
constraints.

• Self-awareness: agents are conscious of themselves in the sense that they have a
model of their goals, of their own competences, of their state.
Although the multi-agent approach may seem suitable for the smart communicating

objects, one has to solve the problems of the actual deployment of agents on those
small devices. This paper tries to identify the requirements for executing agents on
such devices (operating system, communication facilities, computational power, etc.)
and, in the meantime, we try to identify the constraints that the use of small devices is
imposing to the multi-agent architectures and services.

The remainder of the paper is structured as follows. In the next section we will
present our arguments on why the utilization of multi-agent systems on smart devices
is benefical. Section 3 describes what a multi-agent platform is and what are the FIPA
standards for those platforms; we then present some of the main characteristics of
several multi-agent platforms for small devices. Finally, in Section 5 the utility of
using multi-agent systems and platforms on small devices is discussed and we are
drawing some conclusions and tracing directions for future work.

2   Why Use Multi-agent Systems on Smart Devices?

Pervasive and ubiquitous computing will involve more and more objects endowed
with computing and communication ressources, called smart devices. These smart
devices should be able to sense their environment and react to changes in it. In order to
alleviate the user information overload, it will be necessary to enable these objects to
communicate directly with one another, while in the same time they should be able to
communicate with the user.

Due to the high number of these devices, we will have to reduce the number of
objects needing explicit control from the user, thus making these devices autonomous.
Another way of simplifying the human – smart device interaction is to provide smart
devices with knowledge and reasoning capabilities, so that most of the repetitive tasks
involved in the interaction could be automated.

An intelligent agent is "a computer system, situated in some environment, that is
capable of flexible and autonomous action in order to meet its design objectives" [8].
Beside the (adjustable) autonomy, an agent has other properties. It should be able to



Benefits and Requirements of Using Multi-agent Systems on Smart Devices         1093

detect and react to changes in its environment. Agents can pro-actively assist their
users and try to achieve goals given the evolution of the environment; they can help
them in discovering information, in interacting. We can have several agents acting in a
common environment, thus obtaining what is called a multi-agent system. From the
multi-agent point of view, an agent should be able to interact with other agents, i.e.,
communicate, cooperate or negotiate with them. Also, an agent should be able to
reason about the existing organizational structures in the system.

It is no surprise that the multi-agent applications try to solve the same problems as
the applications on smart devices. Some of these problems are concerned on how to
realize the interaction between the diverse entities in the system, while others on how
the agents or the smart devices should adapt themselves to new situations. The smart
devices environment is a very dynamic and open one, devices can enter or leave it at
any time. Multi-agent systems research is also interested in the modelization of open
systems: what check-in/check-out procedures are needed, how to ensure the service
discovery in an open system and so on. The problem of trust and reputation is also
tackled in both domains.

It is clear for us that intelligent agents have characteristics desirable for smart
devices. Moreover, the multi-agent systems already solve or try to solve similar
problems with those of smart devices, so one can beneficiate from these solutions. Of
course, an application for smart devices can be created without the multi-agent
technology, but by using it, one can take advantage of the methodologies and solutions
provided by the multi-agent paradigm. And we should not forgot the reusability: a
multi-agent system created for a specific problem can be very easily used to solve
another one. In other words, using agents on smart devices is not the the only
perspective of solving the problem, but it might prove better than others.

3   How to Use Multi-agent Systems on Small Devices?

A multi-agent platform is a software infrastructure used as an environment for agents’
deployment and execution. It should provide comfortable ways for agent programmers
to create and test agents and it can be viewed as a collection of services offered to
developers, but also to agents at runtime.

As depicted in the previous characterization, the platform is an execution
environment for the agents in the sense that it should allow one to create, execute and
delete agents. Secondly, the platform should act as a middleware between the
operating system and the applications (agents) running on it, as depicted in Fig.1. The
developer will then be able to create agents for a platform and use them on all the
systems that support the platform without changing the code.

More than that, a platform should hide from the developer the communication
details between the agents. If, for example, there are several communication protocols
available on the device (e.g. HTTP, RMI, Bluetooth, etc.), the platform should choose
the appropriate protocol for each situation and use it. This will allow one to create
agents that are independent of the communication protocols available on the machine,
leaving the actual sending of the information as a task for the platform.



1094         C. Carabelea, O. Boissier, and F. Ramparany

Hardware 

OS TCP/IP, Bluetooth, etc. 

Multi-agent platform 

Multi-agents application 

Fig. 1. Coarse-grained view of a device executing an agent platform and an agent application

Because the choice of an agent platform has a great influence on the way the agents
are designed and implemented, FIPA1 has produced standards that concern how an
agent platform should be structured [6], i.e. what are the basic services it should offer
(e.g. a message transport service, an agent management service, a directory service).
These standards exist to ensure a uniform design of the agents, independent of the
multi-agent platform. Thanks to it, for instance, at the moment several agent platforms
are deployed in several cities of the world on which agents can go and execute and
cooperate with other agents [1].

In the next chapter we will give a brief description of several agent platforms
designed for small (and wireless) devices, on which the limitations of computing
resources have a great influence on the complexity of the applications. For each
platform we will try to put in evidence the targeted devices and the wireless
technologies it works with, as well as if it is FIPA-compliant or not and what are its
most relevant characteristics. All the platforms we have investigated are Java-based,
so we will try to specify for each one what is the Java Virtual Machine (VM) it needs.

4   Multi-agent Platforms for Small Devices

Due to the limited resources available, the agent platforms for the small devices need
to have a light architecture. Most of these platforms are designed to run completely
(i.e. with all the services they provide) on the small device, while others are keeping
some of the services (or sometimes all) on a server and they are downloaded on the
device only when needed. From this point of view, we can classify existing platforms
in three categories replicating the conceptual classification presented in [14]:
� Portal platforms that don’t execute the agents on the small devices, but on other

hosts. The small device is used only as an interface with the user.
� Embedded platforms are executed entirely on the small device(s), together with

one or several agents.
� Surrogate platforms that are executing only partially on the small device, while

some part of them is executed on other hosts.

                                                          
1 Non-profit organization aimed at producing standards for the interoperation of heterogeneous

software agents. http://www.fipa.org



Benefits and Requirements of Using Multi-agent Systems on Smart Devices         1095

In what follows, we will present the basic characteristics of several platforms from
all categories.

4.1   Portal Platforms – MobiAgent

The MobiAgent [13] system architecture consists of three main components: a
handheld mobile wireless device, an Agent Gateway and the network resources. The
Agent Gateway is executing an agent platform and the agents for that platform. When
the user wants to delegate a task to an agent, the mobile device connects to the
gateway and downloads an interface that will configure the agent for her. The agent
will perform its task and it will later report the results via the same mechanism.

Note that neither the platform, neither the agents are running on the device, the only
application running there is a MIDlet that configures the agent. This approach does not
impose anything to the platform or to the agents running on the Agent Gateway; the
platform running there may be FIPA-compliant, but this is not mandatory. This
infrastructure is available on any device supporting J2ME/CLDC/MIDP, including
mobile phones. The connection between the device and the gateway is done via HTTP
over a wireless network. Unfortunately, no links for downloading the platform are
currently available.

4.2   Surrogate Platforms – kSaci

kSACI [9] is a smaller version of the SACI platform [15] suited to the kVM. SACI is
an infrastructure for creating agents that are able to communicate using KQML [10]
messages. Each SACI agent has a mailbox to exchange messages with the others. Its
architecture also contains a special agent, called the facilitator, offering the white- and
yellow-pages services of the system. The architecture of the platform is not FIPA-
compliant.

The kSACI platform is usable on small devices running the kVM, but the platform
is not entirely situated on the small device. In fact, the facilitator is on a server and on
every small device there is only one agent running. This agent should contain a
mailbox used to exchange messages, but it doesn’t know how to pass messages to the
others; it communicates via HTTP with a proxy running on a desktop machine that
further passes the messages to and from other agents. This solution makes the agent
lighter, so this platform can be used with devices as small as a mobile phone or a two-
way pager.

4.3   Embedded Platforms

Several multi-agent platforms exist. Among them few are suited to be embedded on
small devices. We have investigated four of them, but, due to space limitations, only
two are presented here. The interested reader is invited to [4] for more information
about the two other platforms, MAE and microFIPA-OS.



1096         C. Carabelea, O. Boissier, and F. Ramparany

4.3.1   AgentLight
AgentLight [2] is an agent platform with the objectives of being capable of
deployment on fixed and mobile devices with various operating systems and that can
operate over both a fixed and a wireless network. Its authors are using a set of profiles
that allows one to configure the platform for several devices and/or operating systems.
Also, this platform aims to be FIPA-compliant and operating system agnostic.

The architecture of AgentLight is called “half-daisy” and consists of an agent
container running on each device on which several agents can be placed. If the two
agents on the same device communicate with each other, the agent container does the
communication internally, but if the agents are on separate devices, the agent
container acts as a proxy.

Each agent is seen as a set of rules and it is using for execution an inference engine
provided by the agent container. This architecture is not entirely FIPA-compliant (e.g.
the directory service is missing) and it is still work in progress. It can be run on
devices with J2ME/CLDC/MIPD and with the kVM and the smallest device targeted
is a mobile phone, although for the moment there are not any tests to prove a mobile
phone can support the platform, especially the inference engine that can be quite
heavy at the execution time.

4.3.2   LEAP
The Lightweight Extensible Agent Platform (LEAP 3.0) is probably the most known
agent platform for small devices. It is the result of the LEAP project [12] that had the
objective of creating a entirely FIPA compliant platform with similar objectives to the
AgentLight Platform: be capable of deployment on fixed and mobile devices with
various operating systems and deployed in wired or wireless networks. Since the last
version, 3.0, LEAP is an add-on of the JADE platform [7] and it uses a set of profiles
that allows one to configure it for execution on various machines, OS and Java VM.

The architecture of the platform is modular and is organized in terms of modules
among which some can be mandatory, requested by FIPA specifications, while other
are optional. The mandatory ones are the kernel module that manages the platform and
the lifecycle of agents and the communication module, which handles the
heterogeneity of communication protocols.

Some of the modules are device-dependent (e.g. the communication module), while
others are independent of the characteristics of the device (e.g. a security plug-in for
the communication module). The platform is operating system agnostic and it can run
on devices ranging from mobile phones and PDAs to workstations. It can work over
wireless networks that support TCP/IP, like WLAN or GPRS.

As in AgentLight, the architecture of LEAP splits the platform in several
containers, one for every device/workstation used, with one or several agents in each
container. These containers are responsible for passing the messages between agents
by choosing the appropriate communication protocol available. One of these
containers has a special role and it is called main-container; it contains two special
agents that implement the FIPA specifications to provide the white and yellow pages
services. This main-container cannot be executed on a small device, but only on a PC.
In order to allow the execution of containers even on very limited devices, LEAP has



Benefits and Requirements of Using Multi-agent Systems on Smart Devices         1097

two execution modes: stand-alone and split. In the former, the container is completely
embedded on the small device, while in the former, a part of the container is executed
on a PC.

Table 1. Characteristics of multi-agent platforms for small devices

Platform MobiAgent kSACI AgentLigh
t

LEAP MAE micro
FIPA-OS

Connection
to SD portal surrogate embedded

surrogate /
embedded embedd

ed
embedded

Smallest
targeted
device

mobile
phone

mobile
phone

mobile
phone

mobile
phone

PDA PocketPC

FIPA-
compliant it can be no yes (?) yes no yes

No. of
agents on

device

0 1 several
several

(pref. 1) several
several

(pref. 1)

Available
for

download

no yes yes yes no yes

JavaVM kVM kVM kVM various various PersonalJa-
va

5   Discussion and Conclusions

In this article we have presented some benefits of using multi-agent systems with the
smart devices. But this usage of multi-agent systems on small devices has its
drawbacks, i.e. the need for an existing infrastructure that will allow the creation and
execution of agents and the communications between them: a multi-agent platform.
We have presented a set of multi-agent platforms for small devices, underlining some
of their major characteristics and architectural concepts. We have used the three main
directions proposed in [14] to bind smart devices and multi-agent platforms: portal,
surrogate and embedded. It was beyond the scope of this paper to identify one of these
platforms as being the best. We believe there doesn’t exist such a platform, but each
one of them is suited for different applications. Table 1 summarizes the most
important characteristics we have identified for each platform.

As future work we intend to set up a benchmark to evaluate these platforms within
several scenarios; the results obtained will then allow us to analyse the platforms’
performances in different situations and what is the real amount of computational
resources (processing power, memory size) needed by each one. We have begun these
practical tests by deploying LEAP on a Siemens S55 mobile phone. So far, the results
are encouraging: the phone supports the execution of the platform and of an agent,
although with a low execution speed.

When using a multi-agent platform on a small device, there is a high risk that the
device resources will not be enough for both the platform and the agent(s) running on



1098         C. Carabelea, O. Boissier, and F. Ramparany

it. Although the use of a platform can greatly reduce the developing cost and increase
portability, it is clear that a trade-off should be found between the services the
platform offers and its size. One might eventually arrive in the situation of using a
small device like a mobile phone and a platform designed to work on it (like LEAP)
and to discover that the platform is too big for the device’s capabilities or there is no
room left for any agents [3].

As for the FIPA-compliancy, some projects such as Extrovert-Gadgets [5] for
instance, question its utility for multi-agent applications on small devices. The
advantage of compelling to some standards is clear, but these standards have not been
designed for the particular characteristics of the small and wireless devices. A good
example is presented in [11] where the LEAP platform is used, but some of its
mandatory modules, which make it FIPA-compliant, are useless for some applications
(e.g. ad-hoc networks).

References

1. AgentCities: http://www.agentcities.org
2. AgentLight – Platform for Lightweight Agents: http://www.agentlight.org
3. Berger, M. et al.: Porting Distributed Agent-Middleware to Small Mobile Devices. In

Proc. of the Ubiquitous Computing Workshop, Bologna, Italy (2002)
4. Carabelea, C., Boissier, B.: Multi-agent platforms for smart devices: dream or reality?. In

Proc. of the Smart Objects Conference (SOC'03), Grenoble, France (2003), p. 126-129.
5. E-Gadgets: http://www.extrovert-gadgets.net
6. FIPA Abstract Architecture Spec.: http://www.fipa.org/repository/architecturespecs.html
7. JADE – Java Agents DEvelopment Framework: http://jade.cselt.it
8. Jennings, N.R., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and

Development. Int. J. of Autonomous Agents and Multi-Agent Systems 1 (1) (1998), p. 7–
38

9. kSACI: http://www.cesar.org.br/~rla2/ksaci/
10. Labrou, Y., Finin, T.: A Semantics approach for KQML – A General Purpose

Communication Language for Software Agents. In Proc. of Int. Conf. on Information and
Knowledge Management (1994)

11. Lawrence, J.: LEAP into Ad-Hoc Networks. In Proc. of the Ubiquitous Computing
Workshop, Bologna, Italy (2002)

12. LEAP – the Lightweight Extensible Agent Platform: http://leap.crm-paris.com
13. Mahmoud, Q.H.: MobiAgent: An Agent-based Approach to Wireless Information Systems.

In Proc. of the 3rd Int. Bi-Conference Workshop on Agent-Oriented Information Systems,
Montreal,Canada (2001)

14. Ramparano, F., Boissier, O.: Smart Devices Embedding Multi-agent Technologies for a
Pro-active World. In Proc. of the Ubiquitous Computing Workshop, Bologna, Italy (2002)

15. SACI – Simple Agent Communication Infrastructure: http://www.lti.pcs.usp.br/saci/


	1   Introduction
	2   Why Use Multi-agent Systems on Smart Devices?
	3   How to Use Multi-agent Systems on Small Devices?
	4   Multi-agent Platforms for Small Devices
	4.1   Portal Platforms Œ MobiAgent
	4.2   Surrogate Platforms Œ kSaci
	4.3   Embedded Platforms
	4.3.1   AgentLight
	4.3.2   LEAP


	5   Discussion and Conclusions
	References



