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Abstract. We proposed the first threshold GQ signature scheme. The
scheme is unforgeable and robust against any adaptive adversary if the
base GQ signature scheme is unforgeable under the chosen message
attack and computing the discrete logarithm modulo a safe prime is
hard. Furthermore, our scheme can achieve optimal resilience by some
modification.
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1 Introduction

A threshold cryptographic protocol involves a set of players together, who each
possesses a secret share, to accomplish a cryptographic task via exchange of
messages. Threshold cryptographic protocols provide strong security assurance
and robustness against a number of malicious attackers under a threshold. For
example, in a (t,n)-threshold signature scheme, as long as ¢ + 1 servers agree,
they can jointly produce a signature for a given message even some other servers
intend to spoil such process. Also, as long as the adversary corrupts less than
t 4+ 1 servers, it cannot forge any valid signature.

The signature scheme proposed by Guillou and Quisquater [GQ8g], called the
GQ signature scheme here, are used in many cryptographic protocols, such as
forward-secure signature scheme [[R01], identity-based signature scheme [DQ94],
etc. To our best knowledge, there are no threshold versions of this important
signature scheme in the open literature. Therefore, in this paper we study the
threshold signature protocol based on the GQ signature scheme. Our scheme is
secure in the adaptive adversary model and can achieve optimal resilience, that
is, the adversary can corrupt up to a half of the players. We also extend our
work to the forward signature paradigm in the complete version of this paper.

Related work. Threshold schemes can be generally applied by the secure
multi-party computation, introduced by [YaoR2/GMWRST]. However, since these
solutions based on the protocol that compute a single arithmetic or Boolean
gate, the schemes are inefficient. The first general notion of efficient threshold
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cryptography was introduced by Desmedt [Des87]. It started many studies on
threshold computation models and concrete threshold schemes based on specific
cryptosystems such as DSS, RSA, etc.

For the DSS scheme, the first solution was proposed by Cerecedo et al.
[CMI93] under a non-standard assumption. Then Gennaro et al. [GJKRI6D]
provided another solution with security relying only on the regular DSS signa-
ture scheme. Canetti et al. [CGJT99] and Frankel et al. [EMY99a] improved
the security against the adaptive adversary. Jarecki and Lysyanskaya [JLO0] fur-
thermore removed the need of reliable erasures from adaptively. Jarecki [Jar01]
summarized these techniques.

On the other hand, threshold RSA problem is more interesting. Since the
share holders do not know the order of the arithmetic group, the polynomial
interpolation is not as trivial as those of discrete-log based threshold cryptosys-
tems. Desmedt and Frankel provided the first heuristic threshold RSA
scheme without security analysis. Later, they extended their work with a secu-
rity proof [FD92]. Santis et al. also proposed another provably secure
threshold RSA scheme. Both [FD92| and [SDEY94] tried to avoid the poly-
nomial interpolation. However, these schemes are complicated and need either
interaction or large share sizes. Besides, they do not consider the robustness
property. The robust threshold RSA schemes were then proposed by Gennaro et
al. [GJKRI96a] and Frankel et al. [FGY96]. Subsequently, some more efficient and
simpler schemes for threshold RSA in the static adversary model were presented
[EGMY97][Rab98]. These schemes take an extra layer of secret sharing so that
much interaction are needed. Shoup [Sho00] provided a much simpler scheme
without any interaction in partial signature generation. For adaptively-secure
threshold RSA, there exist some solutions by [CGJT99][FMY99al [FMY99b] as
well. These protocols developed many techniques for designing secure threshold
protocols.

2 Preliminaries

Guillou and Quisquater [GQ88] proposed an identification scheme. Then the GQ
signature scheme is obtained by the standard Fiat-Shamir transformation [FS86].
The security of GQ signature scheme is based on the assumption that computing
e-th root modulo a composite is infeasible without knowing the factors. The
scheme is as follows (security parameter: k1, k2).

1. Key generation: let n = pg be a ky-bit product of two safe primes and e
be a (ko+1)-bit random value. The private key of a player is (n, e, s), where
s €r Z} and the corresponding public key is (n, e, v), where v = 1/s° mod n.
Note that the user need not know p and ¢ and thus n can be used by all
users.

2. Signing: let h be a publicly defined cryptographic strong hash function, such
as SHA-1. Given a message M, the signer computes the signature (o, z) as
follows:
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— Randomly select a number r € Z* and compute y = r® mod n and
o = h(y||M).
— Compute z = 7 - s7 mod n.
3. Verification: the verifier checks whether h(M||z°v” mod n) = o.

A threshold signature scheme consists of the following three components:

1. Key generation: there are two categories in generating the keys and dis-
tributing shares of them to the participated players. In the dealer model, a
dealer chooses the keys and distributes the shares to the players. In the dis-
tributed key generation model, all players together compute their key shares
together.

2. Distributed signing: there are two phases: partial signature generation and
signature construction. In the partial signature generation phase, the players
communicate with each other and each produces a partial signature for the
given message M. Then, in the signature construction, any one who has
a number of valid partial signatures over a threshold can compute a valid
signature for M.

3. Verification: any one can verify the validity of a signature for a message
given the public key.

The security of threshold signature scheme includes both unforgeability and
robustness as defined below.

Definition 1 (Unforgeability). A (¢,1)-threshold signature scheme is unfoge-
able in certain adversarial model if, except a negligible probability, no adversary
i that model corrupts up to t players can produce a valid signature on a message
that was not signed by any uncorrupted player.

Another important property of threshold schemes is robustness. It ensures that
the protocol can output a correct result as long as the adversary controls at most
t players.

Definition 2 (Robustness). A (t,1)-threshold signature scheme is t-robust in
certain adversarial model if even the adversary in that model controls up to t
players, the signature scheme is guaranteed to complete successfully.

A threshold signature scheme is called t-secure if the two above properties are
satisfied.

Definition 3 (Security of threshold signature). A (t,1)-threshold signature
scheme is t-secure in certain adversarial model if it is both unforgeable and t-
robust in that model.

An adaptive adversary is a probabilistic polynomial time Turing machine
which can corrupt players dynamically, that is, it can corrupt a player at any
time during execution of the protocol. Nevertheless, the total number of players
it can corrupt is under the threshold.

Two distribution ensembles {X,,} and {Y},} are (computationally) indistin-
guishable if for any probabilistic polynomial-time distinguisher D and any poly-
nomial p(n), there is an integer ng such that for any n > no,

|Pr[D(X,) = 1] — Pr[D(Y,) = 1]| < 1/p(n).



140 L.-S. Liu, C.-K. Chu, and W.-G. Tzeng

Input: security parameters ki, k2.
The dealer generates and distributes keys as follows:

1. Choose two [k1/2]-bit random primes p,q such that p = 2p’ + 1,q = 2¢' + 1,
where p’, ¢’ are also primes. Let n = pg,m = p'q’, and g a generator of G,,.

2. Choose a random polynomial f(z) = ao + a1z + ...+ arxt over Z,, of degree t.
Let s = ¢g*° mod n be the main secret and hand s; = gf(i> mod n to player P;
secretly.

3. Randomly choose a (k2 + 1)-bit value e, such that ged(e,¢(n)) = 1 and
ged(e, L?) = 1, where L = I!. Compute v = 1/s° mod n.

4. Let SK; = (n,e,g,s:) be the secret key of player P;, and broadcast the public
key PK = (n,e, g,v).

Fig. 1. TH-GQ-KeyGen: Generating keys

The discrete logarithm over a safe prime problem is to solve DLoggiL mod p

from given (p‘,g,l}), where p = 2p/ + 1 is prime, p’ is also prime, and § is a
generator of the quadratic subgroup G of Z3. We assume that no probabilistic
polynomial-time Turing machine can solve a significant portion of the input. Let
I,, be the (uniform) distribution of the size-n input. Then, for any probabilistic
polynomial-time Turing A and polynomial p(n), there is ng such that for any
n 2 no,

A(p,§,h) = DLogzh mod p] < 1/p(n).

3 Threshold GQ Signature Scheme

In our threshold GQ signature scheme, the dealer generates a public/secret key
pair and distributes the shares of the secret key to the players. To sign a message
distributively, each player produces a partial signature. If there are more than
t+1 valid partial signatures, we can construct the signature of the message from
the valid partial signatures.

3.1 Generating Keys

The key generation process is shown in Figure[dl. Let {P;} be the set of [ par-
ticipating players and L = [!. There are two security parameters ki and kso.
The dealer chooses two safe primes p = 2p’ + 1 and ¢ = 2¢’ + 1, each of length
[k1/2] bits, where p’ and ¢ are also primes. Let n = pg, m = p'q’, Q,, the set
of all quadratic residues modulo n, and g a generator of @,,. The order of @,
is m. Hereafter, all group computations are done in @Q,, and the corresponding
exponent arithmetic is done in Z,,.

The dealer then chooses a random degree-t polynomial f(z) over Z,, and
gives the share s; = ¢/ to the player P;. Note that the share given to player P;
is g/ instead of f(i). The shared secret key is thus s = g/(°). The dealer then
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Signing message
Input: message M;

Distributed Signing:

1. All players perform INT-JOINT-EXP-RVSS to generate y = ¢/*(¥° mod n such
that each player P; gets his share f,(i) and computes r; = ¢'*™ mod n.

2. All players compute o = H (y, M).

3. All players perform INT-JOINT-ZVSS such that each player P; gets a share f.(7)
and computes ¢; = gLf < mod n. All secret information, except ¢, generated in
this step is erased.

4. Each player P; computes his partial signature z; = (r;57)%¢; mod n.

Signature construction:

5. Compute
t4+1
/ )\ij
z = z;.” modn,
J
Jj=1
where z;,, Zig, - . - ) Zigy, are t+1 valid signatures and )\ij ’s are the corresponding

interpolation coefficients.
6. Find integers a, b for L?a + eb = 1, and compute z = z'® - (y/v?)® mod n.
7. The signature of message M is (z,0).

Verifying signature
Input: (PK, M, SIG) where PK = (n,e, g,v),SIG = (z,0).

1. Compute 3 = 2°v” mod n.
2. Accept the signature if o = H(y', M).

Fig. 2. TH-GQ-Sig & TH-GQ-Ver: Signing and verifying message

chooses a random (kg + 1)-bit value e with ged(e, ¢(n)) = 1 and ged(e, L?) = 1
and computes v = 1/s° mod n. In summary, the public key PK of the scheme
is (n,e, g,v) and the secret share of player P; is SK; = (n,e, g, s;).

3.2 Signing Messages

The message signing protocol consists of two phases: distributed signing and
signature construction, shown in Figure 2.

Distributed signing. To sign a message M, players jointly compute y =
r® mod n first, where r is a random secret value. However, for the simplicity
of partial signature construction, we use g/(*) instead of f,(z) to share the
value 7. That is, each player P; gets a share r; = ¢/*() mod n and r is defined
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as g/7(9) Therefore, we provide a protocol INT-JOINT-EXP-RVSS, shown in Fig-
ure [ letting all players jointly compute y = ¢/7(9¢ and each player P; get
his own share ¢/~(*). Thus o = H(y, M) can be easily computed by all players,
where H is the chosen one-way hash function.

Then All players jointly execute INT-JOINT-ZVSS]] protocol to share a
zero-constant t-degree polynomial f.(z), and each player P; holds a share
¢; = g%« mod n. This randomized polynomial is generated for the security
proof, described in Section B4l All other secret information generated in INT-
JOINT-ZVSS are then erased (the erasing technique [CFGNIGICGJT99]). Fi-

nally, each player P; computes his partial signature z; = (r;s¢)%¢; mod n.

Signature construction. To compute the signature for M, we choose t + 1
valid partial signatures z;,, 2i,, ..., 2;,,, and compute the interpolation

AL
2= H z;/ modn
Jj=1

= (g * mod n

2
= (rs°)% mod n,

S (Fr(ig)+of(ig)+Felis)) L

where );; is the jth interpolation coefficient for the set {i1,42,... ,44+1}. Since
Ai; L is an integer, we can compute 2’ without knowing the factorization of n
(and thus m). Moreover, because that ged(L?, e) = 1, we can find integers a, b
such that L%a + eb = 1 and compute the signature z for M as:

z=2 (y/v°) = (TS”)L2“(Ts”)eb =rs” mod n

Remark. Since the sharing polynomials f(x), f.(z), and f.(z) are over the
exponents, the partial signature z; = (r;57)%¢c; is a share of a degree-t polynomial
in the exponent. Thus, we need only ¢ + 1 shares to interpolate z’. This helps us
to modify the protocol to achieve optimal resilience. The detail is described in
Section B.5.

3.3 Verifying Signatures
The verification procedure is straightforward, as defined by the GQ signature
scheme, shown in Figure 2

3.4 Security Analysis

Our threshold GQ signature scheme is secure against the chosen message at-
tack in the adaptive adversary model. That is, as long as the adaptive adversary

LINT-JOINT-ZVSS is just like INT-JOINT-RVSS in Figure @] except that each player
sets his secret aqo, bio to be zero.
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Input: message M and the corresponding signature (o, 2)
Let B be the set of corrupted players and G the set of honest players at that time.
Randomly choose s; € Q,, for P;, 1 <1 <.

1. Let y = z°v° mod n.

2. Execute SIMiNT—joINT—EXP—RVSS On input y.

3. Execute INT-JOINT-ZVSS and assign each corrupted player P; a share ¢; =
g7 mod n.

4. Randomly select a set A" D B of t players and for each P; ¢ A’, compute

Xj.oL k)\Aj kL
2y =20k H (rksZgh( )) i+E mod n,
keA!
set

¢ =z} /(r;s])" mod n,

and erase c;.
5. Broadcast all partial signatures z; for ¢ € G. (Note that 2] = z; for P, € A’ — B.)

Fig. 3. SIMtH_cq—sig: Simulator of TH-GQ-Sig

controls less than ¢+ 1 players, it cannot forge a valid signature without interact-
ing with un-corrupted players. The adversary cannot interrupt the un-corrupted
players to cooperatively obtain a valid signature for a message, either.

We need a simulator SIMty_gq—sig to simulate the view of execution of the
TH-GQ-Sig scheme producing a signature (o, z) for a message M. The simulator
is shown in Figure

Lemma 1. If the adaptive adversary corrupts at most t players, its view of an
execution of TH-GQ-Sig on input message M and output signature (o, z) is the
same as the view of an execution of SIMTH_cq—sig on input M and signature

(0,2).

Proof. Assume that B is the set of corrupted players and G is the set of un-
corrupted (honest) players up to now. In the beginning (the key generation
stage), the simulator emulates the dealer to randomly assign s; € @, to player P,
1 < i <. These s;’s remain fixed for many rounds of simulation of TH-GQ-Sig.
Let y = z%v? mod n, which is the correct ¢ mod n. Since y is distributively com-
puted by all players in TH-GQ-Sig, the simulator runs SIM|NT_j0INT—EXP_RVSS
(Figure [d) on input y to simulate the execution of INT-JOINT-EXP-RVSS pro-
tocol. In Step 3, the simulator runs INT-JOIN-ZVSS on behalf of honest players
and assigns each corrupted player P; a share ¢; = ¢7*(V) mod n, where fe(z) has
a zero constant. Now, the corrupted players P; get s;, r; and ¢;. Their partial sig-
natures z; = (risf)Lci mod n need be fixed since the adversary corrupts them.
Let A” O B be a set of t players. We fix the partial signatures of the players
in A’. For un-corrupted players P; ¢ A’, we set their partial signatures to be
compatible with those in A’, that is, the shares of any ¢ + 1 players result in the
same signature. This is done by setting their partial signatures as
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z = ol H rks”gf‘(k) Aj kL mod n,
keA!

where );1’s are the interpolation coefficients for computing the jth share from
the set of shares {0} U {k|P;, € A’}. The simulator also sets the new shares
¢; = z7/(rjs7)" to the players P; ¢ A’ and erases the old shares ¢;. These ¢
make the un-corrupted players have the consistent relation for r;, s;, ¢j and z7.

We see how the simulator produces an indistinguishable distribution for the

adversary:

1. The simulator runs SIM|NT_joINT—EXP_Rvss Which generates ¥ in the proper
distribution.

2. The simulator performs INT-JOINT-ZVSS on behalf of honest players. This
is the same as what TH-GQ-Sig does in Step 3. Thus, the distribution for
¢;’s is the same.

3. The partial signatures z;’s of all players are consistent since the shares of any
t+1 players produces the right signature (o, z) (by adjusting ¢;’s). Therefore,
they have the right distribution.

4. The erasing technique (for ¢;’s) is employed. As long as the simulated distri-
bution is indistinguishable for the adversary after it corrupts a new player,
the entire distribution is indistinguishable for the adversary after it corrupts
up to t players. There is no inconsistency problem between corruptions of
players.

5. The shares c;’s are adjusted to cj’s for the un-corrupted players (up to
now) so that even the adversary corrupts it later, the partial signature ziis

consistent with the possible check of equation 27 = (r;s{ )Lc;k

In conclusion, the simulator SIMTH_gq—sig produces an indistinguishable distri-
bution for the adversary, who corrupts up to ¢ players in an adaptive way.
O

We now show that our threshold GQ signature scheme is secure against the
adaptive adversary under the chosen message attack.

For unforgeability, let O, be the signing oracle that a forger (in the cen-
tralized version) queries for signatures of messages. When O, returns (o, 2) for
a message M, the simulator, on input M and (o, z), outputs a transcript with
an indistinguishable distribution for the adaptive adversary (in the distributed
version). Thus, the adversary, who engaged several executions of the TH-GQ-Sig
protocol, cannot produce an additional valid signature without cooperation of
un-corrupted players.

Theorem 1. If the underlying GQ signature scheme is unforgeable under the
adaptive chosen message attack, the threshold GQ signature scheme in Figures [
and @ is unforgeable against the adaptive adversary who corrupts up to t players.

Proof. Assume that the adversary A, who controls up to ¢ players during ex-
ecution of the TH-GQ-Sig scheme and thus obtains signatures for My, M, ...,
produces a valid signature for M, M # M; for i > 1. We construct a forger F
to forge a signature of the underlying GQ signature scheme for an un-queried
message using the procedure A and the signing oracle O, for the underlying
GQ signature scheme.
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Let (n, e, g,v) be the public key of the underlying GQ signature scheme. This
is used in the (simulated) threshold GQ signature scheme also. First, since F
does not know the corresponding secret key, in the key generation stage F assigns
each player P; a random secret share s; € @Q,,. Then, it simulates all players and
the adversary A. When the adversary A intend to execute TH-GQ-Sig to produce
a valid signature for M;, F queries O, to obtain a signature (o;, z;) and runs
the simulator SIMty_gq—sig, on input M; and (o;, 2;), to produce a transcript T;
with right distribution (by Lemma [I)) for A. Therefore, F simulates A, on input
of these transcripts T;’s, to produce a valid signature (o, z) for a new message
M, M # M;,i > 1. Thus, the underlying GQ signature is not unforgeable under
the chosen message attack, which is a contradiction.
O

Theorem 2. If computing the discrete logarithm modulo a safe prime is hard,
the TH-GQ-Sig scheme in Figure[d is t-robust against the adaptive adversary.

Proof. 1If there is an adversary A’ who participates TH-GQ-Sig on the input
messages that it selected such that the honest players fail to generate a valid
signature for a given message, then we can construct an extractor £ to solve
the discrete-log problem modulo a safe prime. That is, on input (p, g, h), £ can
compute DLoggh mod p as follows, where p = 2’ +1, §, h are generators of Gy

First, £ lets the dealer generate the related keys as usual (Figure [T]) except
that the dealer chooses (1) p = p (and thus p’ = ') (2) g = §% mod n. Without
loss of generality, we assume that g #Z 1(modq). Since g is the generator of both
G, and Gy, g is a generator of (),,. For another generator h, £ simulates h-
generation protocol with A" and outputs h = h. Using the instance (g, h),
& performs TH-GQ-Sig with A’ on behalf of the honest players. Now, we show
that if A" hinders the signing protocol from producing a valid signature, £ can
compute D=DLog,h mod n, and then outputs DLogzh = 2D mod p.

Let us consider where the protocol may fail to produce the valid signature.
First, in executing the INT-JOINT-RVSS scheme (or INT-JOINT-ZVSS, see Fig-
ure@) if a corrupted player P; distributes his shares (f;(j), f/(4)), 1 < j < n,
that pass the verification equation (), but do not lie on a t-degree polynomial,
the extractor £ can solve the system of ¢t + 2 linearly independent equations of
the form co+c1j+coj?+...+cijt = fi(j) +DfI(j) with ¢+ 2 unknown variables
Co,C1,... ¢y and D. Then7 the extractor outputs D.

Another situation that A" may cheat is on the zero-knowledge proof in exe-
cuting INT-JOINT-EXP-RVSS (Figure [)). If the corrupted player P; broadcasts
(Af,BF) # ( aie pbioe) in Step B, € extracts D =DLog,h as follows. Assume
that AY = ¢g° "mod n and B = hb mod n. After executing Steps-- E gets
R; =r;+dd’e and R, = r} + db’e. Then & rewinds A’ to run Steps Rhli2d again.
This gives £ another two equations R} = r;+d*a’e and R;" =] +d*b'e. As long
as d # d* (the probability of equality is negligible), £ can solve the equations
and get the four unknown variables r;, 7, a/,b’. Since £ knows the value m, the
extractor computes D from a;q + Db;g = a’ + Db’ mod m.

O
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Input: (n,g,h), where n is the product of two large primes and g, h are generators
of Z).

1. Each player P; chooses two random polynomials of degree t:
fi(z) = a0 + annz + ...+ agz’, fi(x) = bio + bz +...+ iz’

where
a) aio = L?38,5 €r {0,...,|n/4] — 1}.
b) bio = L?§,§ €r {0,... ,n*(|n/4] — 1)}.
) ain,bir €r {0,L,2L,...  L*n?*}, k=1,... L.
2. Each player P; broadcasts Ci, = g%* h%* mod n, 1 < k < t, and hands f;(5), f/(j)
to player P;, j € {1,...,l}.
3. Each player P; verifies his shares received from each other P; by checking:

t
. ros ik
gfi(.])hf'i(]) = I I Czjk mod n (1)

k=0

If the check fails for an index i, P; broadcasts a complaint message against P;.
4. Each player P; who received a complaint from player P; broadcasts the corre-
sponding shares fi(j), fi(5)-
5. Each player marks as disqualified any player that
— received more than ¢ complaints, or
— answered to a complaint with values that falsify Eq. [[l
6. Each player then builds a common set of non-disqualified players QUAL. The
secret x is now defined as x = ZieQU Az @io, and each player P; holds a share

Ti = ZjeQUAL fi().

Fig. 4. INT-JOINT-RVSS

3.5 Achieving Optimal Resilience

The protocols presented up to now have not yet achieved optimal resilience since
in Step 5 of TH-GQ-Sig we need find t 4+ 1 valid partial signatures. Also, Step
2(b) of INT-JOINT-EXP-RVSS need reconstruct the challenge d. With the simple
majority vote, the threshold ¢ is n/3 at most. For better efficiency, we can use
the the Berlekamp-Welch algorithm [WBS86| to reconstruct the value in O(tn).
We describe how to modify them to achieve optimal resilience (n > 2t + 1).
The main difference is that each player proves correctness of its partial signature
when it is issued. For this proof, in the key generation stage the dealer directly
shares f(i) (instead of g7() to player P;. In addition, the dealer shares another
random polynomial f’(x) and broadcasts the coefficient references of f(x) and
f/(z) in the unconditionally-secure form, that is, A; = gf(i)th/(i)L where h
is another generator of G,. The share of P; is still set to s; = ¢/, and all
other operations are the same. Now, each P; has f(i), f(i) and f.(¢), and the
corresponding public information exist. When signing a partial signature, each
player presents a non-interactive zero-knowledge proof of knowledge of f (i), f-(4)
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and f.(i). Therefore, in signature construction one can verify the validity of
partial signatures.

To resolve the case for Step 2(b) of INT-JOINT-EXP-RVSS, we use the non-
interactive zero-knowledge proof technique similarly. We can also replace the
INT-JOINT-RVSS of jointly generating the challenge d with a coin-flip protocol
(e.g. in additive form).
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A INT-JOINT-RVSS Protocol

The INT-JOINT-RVSS protocol is similar to the JOINT-RVSS protocol, ex-
cept that we use unconditionally-secure VSS over integers

[FMY99h] instead.

B INT-JOINT-EXP-RVSS Protocol

Our INT-JOINT-EXP-RVSS (Figure |§|) is based on an adaptively-secure dis-
tributed key generation protocol except for the composite modulus
and an additional constant exponent. In the protocol, players first jointly per-
form INT-JOINT-RVSS to share a random secret x. To compute y = ¢g*¢ mod n,
each player P; broadcasts A; = g*°¢, B; = ¢%°¢ where ZieQUAL a;0 = x, and
proves the knowledge of a;pe, bjpe by simultaneous proof technique
Taz01].

We also provide a simulation for INT-JOINT-EXP-RVSS in Figure[d. On input
y = ¢”¢ mod n, the simulator constructs the same adversarial view as in the real
protocol running.

Input: (n,e, g, h), where n is the product of two large primes and g, h are generators
of Z).

1. Each player P; performs INT-JOINT-RVSS and gets the following secret outputs:
— Polynomials fi(z) = aio + ai1x + ... + aux’, fi(x) = bjo +bjz + ... + bz’
he generated randomly.
— The shares f;(i), f;(i) sent from player j, where j =1,... 1.
— The share f(i) = > ,cquar fi(i) of the secret z.
The public outputs are Cip = ¢g%*h¥* mod n where i = 1,...,l, k = 0,... 1,
and the set QUAL of non-disqualified players.
2. Each player P;,i € QUAL broadcasts A; = ¢%°° mod n and B; = h°°¢ mod n
such that A; B; = Cf,, and prove the knowledge of aioe, bioe:
a) P; chooses r;,7; €r {0,...,|n/4] — 1} and broadcasts T; = ¢"* mod n, T} =
A" mod n.
b) All players jointly execute INT-JOINT-RVSS and then publicly reconstruct
the random secret d.
c) Each player P; broadcasts R; = r; + d - a;oe and R; = r; + d - bype.
d) Each player P; checks that g™ = T; - A mod n and hB =T/ B mod n for
i =1,...,1. If the check fails for some index 4, P; complains against P;.
3. For each player P; receives more than ¢ complaints, P; broadcasts f;(j). All
players reconstruct a;o and compute A; = g**°° mod n.
4. All players then compute y =[],y 47 A5 mod n

Fig. 5. INT-JOINT-EXP-RVSS
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Input: the result value y and parameters (n, e, g, h)

@

Perform INT-JOINT-RVSS on behalf of honest players.
Choose an uncorrupted player P,, and do the following computation:

— Compute 4; = g%°° mod n and B; = h%°° mod n for i € QUAL\{u}.

— Set A}, =y~ HiEQUAL\{u} A7 mod n and B}, = C¢ /A mod n.

— Choose d*, Ry, R, €r {0,...,|n/4] —1} and set T; = g%+ - (AZ)fd* mod n,

T = gBu - (B:)™% mod n

Broadcast A; for player P;,i € QUAL\{u} and A;, for player P,.
Perform Step [Zalin the protocol on behalf of each player P;,i € QUAL\{u}, and
broadcast T;; and T.* for player P,.
Perform INT-JOINT-RVSS on behalf of honest players as Step 2B in the protocol,
and each P; gets a share d;. Pick a random ¢-degree polynomial fj (z) over integers
such that f7(0) = d*, fi(i) = d; for i € B. Erase all other secret information
generated in INT-JOINT-RVSS.
Broadcast f;(i) for each honest player P;.
Broadcast R;, R; computed as Step Rdfor player P;, i € G\{u}. Broadcast R}, Ry
for player P,.
Verify the proof as in the protocol. If players in B receive more than ¢t complaints,
all other players reconstruct their secrets.
Erase all secret information except f(i).

Fig. 6. SIMiNT— joINT—EXP—RVSS
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