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Abstract. We consider a generalized adaptive and active adversary
model for unconditionally secure Multi-Party Computation (MPC) in
the zero error case.
Cramer et al. proposed a generic approach to build a multiplicative Mono-
tone Span Programs (MSP) – the special property of a Linear Secret
Sharing Schemes (LSSS) that is needed to perform a multiplication of
shared values. They give an efficient generic construction to build veri-
fiability into every LSSS and to obtain from any LSSS a multiplicative
LSSS for the same access structure. But the multiplicative property guar-
antees security against passive adversary only. For an active adversary
a strong multiplicative property is required. Unfortunately there is no
known efficient construction to obtain a strongly multiplicative LSSS
yet.
Recently Nikov et al. have expanded the construction of Cramer et al.
using a different approach. Multiplying two different MSP M1 and M2

computing the access structures Γ1 and Γ2 a new MSP M called “result-
ing” is obtained. M computes a new access structure Γ ⊂ Γ1 (orΓ2).
The goal of this construction is to enable the investigation of how the
properties that Γ should fulfil are linked to the initial access structures
Γ1 and Γ2. It is proved that Γ2 should be a dual access structure of
Γ1 in order to have a multiplicative resulting MSP. But there are still
not known requirements for initial access structures in order to obtain
strongly multiplicative resulting MSP. Nikov et al. proved that to have
unconditionally secure MPC the following minimal conditions for the
resulting access structure should be satisfied (ΓA � ΓA)⊥ ⊆ Γ .
In this paper we assume that the resulting MSP could be constructed
such that the corresponding access structure Γ satisfies the required
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properties. Our goal is to study the requirements that Γ should fulfil
in order to have an MPC unconditionally secure against adaptive
and active adversary in the zero error case. First, we prove that Γ
could satisfy weaker conditions than those in Nikov et al., namely
Γ ⊥

A ⊆ Γ . Second, we propose a commitment “degree reduction”
protocol which allows the players to “reduce” one access structure,
e.g. Γ , to another access structure Γ3. This reduction protocol appears
to be a generalization of the reduction protocol of Cramer et al.
in the sense that we can choose to reduce Γ to the initial access
structures Γ1 or Γ2, or to a new one Γ3. This protocol is also more ef-
ficient, since it requires less Verifiable Secret Sharing Schemes to be used.

Keywords: general secure multi-party computation, verifiable secret
sharing, linear secret sharing, monotone span programs, general adver-
saries, information theoretic security.

1 Introduction

Secure multi-party computation (MPC) can be defined as follows: n players com-
pute an agreed function of their inputs in a “secure” way, where “secure” means
guaranteeing the correctness of the output as well as the privacy of the players’
inputs, even when some players cheat. A key tool for secure MPC, is the verifi-
able secret sharing (VSS) [6,1]. In VSS a dealer distributes a secret value among
the players, where the dealer and/or some of the players may be cheating. It
is guaranteed that if the dealer is honest, then the cheaters obtain no informa-
tion about the secret, and all honest players will later be able to reconstruct it,
without the help of the dealer. Even if the dealer cheats, a unique value will be
determined and is reconstructible without the cheaters’ help.
In [18] Shamir introduced the concept of secret sharing as a tool to protect a
secret simultaneously from exposure and from being lost. It allows a so called
dealer to share the secret among a set of entities, usually called players, in such a
way that only certain specified subsets of the players are able to reconstruct the
secret while smaller subsets have no information about it. The groups who are
allowed to reconstruct the secret are called qualified, and the groups who should
not be able to obtain any information about the secret are called forbidden.
The collection of all qualified groups is denoted by Γ , and the collection of all
forbidden groups is denoted by ∆. The tuple (Γ,∆) is called an access structure
if Γ ∩∆ = ∅. Denote by P = {P1, . . . , Pn} the set of participants in the scheme
and by P(P ) the set of all subsets of P . If Γ ∪ ∆ = P(P ), i.e., Γ = ∆c is the
complement of ∆, then (Γ,∆) is complete and it is denoted simply by Γ . When
Γ is complete the SSS is called perfect.
Usually the cheating is represented as an adversary who may corrupt some sub-
set of the players. One can distinguish between passive and active corruption,
see Fehr and Maurer, [8] for recent results. Passive corruption means that the
adversary obtains the complete information held by the corrupt players, but the
players execute the protocol correctly. Active corruption means that the adver-
sary takes full control of the corrupt players. Active corruption is strictly stronger
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than passive corruption. The adversary is characterized by a privacy structure ∆
and an adversary structure ∆A ⊆ ∆. Denote the complement ΓA = ∆c

A and call
its dual access structure Γ⊥

A the honest (or good) players structure. Both passive
and active adversaries may be static, meaning that the set of corrupt players is
chosen once and for all before the protocol starts, or adaptive meaning that the
adversary can at any time during the protocol choose to corrupt a new player
based on all the information he has at the time, as long as the total set is in ∆A.
Most proposed Secret Sharing Schemes (SSS) are linear, but the concept of a
Linear Secret Sharing Scheme (LSSS) was first considered in its full generality
by Karchmer and Wigderson in [13], who introduced the equivalent notion of
Monotone Span Program (MSP), which we describe later. Each linear SSS can be
viewed as derived from a monotone span program M computing its access struc-
ture. On the other hand, each monotone span program gives rise to an LSSS.
Hence, one can identify an LSSS with its underlying monotone span program.
Such an MSP always exists, because MSPs can compute any monotone func-
tion. Since an LSSS neither guarantees reconstructability when some shares are
incorrect, nor verifiability of a shared value the stronger primitive – Verifiable
Secret Sharing has been introduced.
We will consider any complete general monotone access structure Γ , which de-
scribes subsets of participants that are qualified to recover the secret s ∈ F (F
here is a finite field) in the set of possible secret values, as long as it admits
a linear secret sharing scheme. We will consider also the standard synchronous
model with a broadcast channel.

1.1 Related Work

This subsection contains some basic definitions, notations and results. For an
arbitrary matrix M over F, with m rows labelled by 1, . . . ,m let MA denote the
matrix obtained by keeping only those rows i with i ∈ A, where A is an arbitrary
non-empty subset of {1, . . . ,m}. If {i} = A we write Mi. Let MT

A denote the
transpose of MA, and let Im(MT

A ) denote the F-linear span of the rows of MA.
We use Ker(MA) to denote the kernel of MA, i.e., all linear combinations of the
columns of MA, leading to 0.
Let v = (v1, . . . , vt1) ∈ F

t1 and w = (w1, . . . , wt2) ∈ F
t2 be two vectors. The ten-

sor vector product v⊗w is defined as a vector in F
t1t2 such that the j-coordinate

in v (denoted by vj) is replaced by vjw, i.e., v ⊗ w = (v1w, . . . , vt1w) ∈ F
t1t2 .

The Kronecker product of matrices is defined as tensor vector multiplication of
each row from the first matrix to each row from the second matrix.

Definition 1. [5] The dual Γ⊥ of a monotone access structure Γ defined on P
is the collection of sets A ⊆ P such that Ac /∈ Γ .

The following operation (called element-wise union) for monotone decreasing
(increasing) sets was introduced in [15,8].
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Definition 2. For monotone decreasing sets ∆1, ∆2 and for monotone increas-
ing sets Γ1, Γ2, all defined for the same set of participants, the element-wise
union operation ∗ is defined by:

∆1 ∗∆2 = {A1 ∪A2;A1 ∈ ∆1, A2 ∈ ∆2},
resp. Γ1 ∗ Γ2 = {A1 ∪A2;A1 /∈ Γ1, A2 /∈ Γ2}c.

Throughout the paper we will consider presence of adaptive adversary. Let Q2,
resp. Q3 be the conditions on an adversary structure that no two, resp. no three
of the sets in the structure cover the full players set P . The adversary that we
tolerate is at least a Q2 (resp. Q3) adversary in the passive (resp. active) scenario
(see [12,4]). Since the condition Q2 is equivalent to ∆A∩Γ⊥

A = ∅ (i.e., Γ⊥
A ⊆ ΓA),

the honest players structure has no intersection with the adversary structure.
Recently Maurer [14] proved that general perfect information-theoretically secure
MPC secure against a (∆1, ∆A)-adversary is possible if and only if P /∈ ∆1 �
∆1 �∆A or equivalently, if and only if Γ⊥

A ⊆ Γ1 � Γ1. Maurer consider the case,
when the secrets are shared using only one MSP. Notice that thanks to the local
computation model for MPC the interaction between players is reduced, and in
this way we may think of the MPC as a kind of VSS.
A recent result, which gives necessary and sufficient conditions for the existence
of information-theoretically secure VSS has been presented by Fehr and Maurer
in [8]. They prove that the robustness conditions for VSS are fulfilled if and only
if P /∈ ∆ �∆A �∆A or equivalently, if and only if (ΓA � ΓA)⊥ ⊆ Γ .
As mentioned earlier, MSPs are essentially equivalent to LSSS’s (see e.g. [13]).
It turns out to be convenient to describe our protocols in terms of MSPs as we
will do for the rest of the paper. A formal definition for an MSP follows.

Definition 3. [3,4] A Monotone Span Program (MSP) M is a quadruple
(F,M, ε, ψ), where F is a finite field, M is a matrix (with m rows and d ≤ m
columns) over F, ψ : {1, . . . ,m} → {1, . . . , n} is a surjective function and ε is
a fixed vector, called target vector, e.g. column vector (1, 0, ..., 0) ∈ F

d. The size
of M is the number m of rows.

As ψ labels each row with a number from [1, . . . ,m] corresponding to a fixed
player, we can think of each player as being the “owner” of one or more rows.
For every player we consider a function ϕ which gives the set of rows owned by
the player, i.e., ϕ is (in some sense) inverse of ψ.
An MSP is said to compute a (complete) access structure Γ when ε ∈ Im(MT

ϕ(G))
if and only if G is a member of Γ . Hence, the players can reconstruct the secret
precisely if the rows they own contain in their linear span the target vector of
M, and otherwise they get no information about the secret, i.e., there exists a
so called recombination vector r such that 〈r,Mϕ(G)(s, ρ)〉 = s and MT

ϕ(G)r = ε

for any secret s and any ρ. It is well known that the vector ε /∈ Im(MT
N ) if and

only if there exists a k ∈ F
d such that MNk = 0 and k1 = 1.

The main goal of our paper is to study the properties of a construction which
builds MPCs from any LSSS. It is well known that because of the linearity the
LSSS provides it is easy to add secrets securely. Therefore to achieve general
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MPC, it suffices to implement multiplication of shared secrets. That is, we need
a protocol where each player initially holds shared secrets s and s′, and ends
up holding a share of the product ss′. Several such protocols are known for the
threshold case [1,2,10,11] and for general access structure [3,4,17].
We follow the approach proposed by Cramer et al. in [3,4] to build an MPC from
any LSSS, provided that the LSSS is what is called (strongly) multiplicative.
Loosely speaking, an LSSS is (strongly) multiplicative if each player Pi can
compute from his shares (of secrets s and s′) a value ci, such that the product
ss′ can be obtained using all values (only values from honest players).
In a recent paper by Nikov et al. [17] the 
 construction for multiplying two
MSPs has been proposed. Let Γ1 and Γ2 be access structures, computed by
MSPs M1 = (F,M1, ε1, ψ1) and M2 = (F,M2, ε2, ψ2). Let alsoM1 be anm1×d1
matrix, M2 be an m2 × d2 matrix and ϕ1, ϕ2 be the “inverse” functions of ψ1
and ψ2. Consider the vector x. The coordinates in x, which belong to the player
t are collected in a sub-vector xt or x = (x̄1, . . . , x̄n). First the operation 
 for
vectors is defined as follows:

x 
 y = (x̄1 ⊗ ȳ1, . . . , x̄n ⊗ ȳn).

Denote by (M1)t the matrix formed by rows of M1 owned by the player t and
correspondingly by (M2)t the matrix formed by rows of M2 owned by the same
player. Hence M1 can be presented as a concatenation of the matrices (M1)t for
t = 1, . . . , n. Then the operation 
 for matrices is defined as the concatenation
of matrices (M1)t ⊗ (M2)t for t = 1, . . . , n, i.e.,

M = M1 
M2 =




(M1)1 ⊗ (M2)1
. . .

(M1)n ⊗ (M2)n


 .

Finally, the operation 
 for two MSP could be defined as:

Definition 4. [17] Define MSP M to be (F,M = M1 
 M2, ε = ε1 
 ε2, ψ),
where ψ(i, j) = r if and only if ψ1(i) = ψ2(j) = r and the size of M is m =∑

i |ϕ1(i)||ϕ2(i)| =
∑

i |ϕ(i)|. Given two MSPs M1 and M2, the MSP M is
called their multiplicative resulting MSP and denoted by M = M1 
 M2 if
there exists an m-vector r called a recombination vector, such that for any two
secrets s′ and s′′ and any ρ′ and ρ′′, it holds that

s′s′′ = 〈r,M1(s′, ρ′) 
M2(s′′, ρ′′)〉 = 〈r,M((s′, ρ′) ⊗ (s′′, ρ′′))〉 .
The MSP M is called their strongly multiplicative resulting MSP if the
access structure Γ computed by M is such that for any players’ subset A ∈ Γ ,
MA is the multiplicative resulting MSP of (M1)A and (M2)A.

The last definition means that one can construct a strongly multiplicative re-
sulting MSP, computing the product of the secrets shared by MSPs M1 and
M2, with some access structure Γ . The difference between the multiplicative
resulting MSP and the strongly multiplicative resulting MSP is that in the first
case Γ = {P}.
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It has been proved in [17] that Γ ⊆ Γ1 � Γ2. In the model of MPC proposed
in [17] the secrets are shared using VSS and two MSP M1 and M2. Hence
the adaptive adversary has two privacy structures ∆1, ∆2 and one adversary
structure ∆A ⊆ ∆1, ∆A ⊆ ∆2. Such an adversary is denoted by (∆1, ∆2, ∆A)-
adversary.
In the computational model for MPC the authors in [17] propose the so called
“algebraic simplification for multiplication” protocol which uses homomorphic
commitments in the strongly multiplicative case of general MPC. In fact, the “al-
gebraic simplification for multiplication” protocol allows the players to “reduce”
one access structure Γ to another access structure Γ3, provided that the VSS
conditions for Γ3 hold. As it is proved in [17] to build a MPC protocol secure
against an adaptive adversary in the computational model it is sufficient the
MSPs M1, M2, M3 to satisfy the VSS conditions, i.e., Γ⊥

A ⊆ Γi for i = 1, 2, 3;
M to be resulting MSP of M1 and M2, i.e., Γ ⊆ Γ1 � Γ2 and Γ to satisfy the
strong multiplicative property, i.e., Γ⊥

A ⊆ Γ. On the other hand the lack of “al-
gebraic simplification for multiplication” protocol in the information-theoretic
scenario impose stronger conditions for the strongly multiplicative case of gen-
eral MPC. It is proved in [17] that it is sufficient for the MSPs M1 and M2 to
satisfy the VSS conditions from [8], i.e., (ΓA �ΓA)⊥ ⊆ Γi for i = 1, 2; M to be
resulting MSP of M1 and M2, i.e., Γ ⊆ Γ1 � Γ2 and Γ to satisfy the following
property,

(ΓA � ΓA)⊥ ⊆ Γ. (1)

1.2 Results of This Paper

The condition (1) is sufficient to multiply securely two secrets, but it is insuffi-
cient to perform general MPC, since with each multiplication the access structure
Γ becomes “smaller” and “smaller”. Hence besides multiplying securely we need
a “degree reduction” protocol to “reduce” the access structure Γ to another ac-
cess structure e.g. Γ3. The solution that we propose is parallel to the one in the
threshold case, where after multiplication we have threshold 2t and reduce it to
threshold t as Ben-Or et al. show in [1].
In this paper we build an information-theoretically secure simplification protocol
for multiplication, which is an important step in order to be achieved general
secure MPC. The main hurdle to overcome in the “degree reduction” protocol
is the additional check which ensures the commitment to the re-shared shares.
The clue in this additional check is the change of the basis (see Section 3.3).
Our main result follows:

Theorem 1. Suppose that for the MSPs M1 and M2 there exist MSPs M3
and M4 such that M1 
M2 = M = M3 
M4. Then the sufficient condition for
existence of general perfect information-theoretically secure MPC secure against
(∆1, ∆2, ∆A)-adversary is

Γ⊥
A ⊆ Γ ⊆ Γ1 � Γ2, (ΓA � ΓA)⊥ ⊆ Γi for i = 1, 2, 3,



Multi-party Computation from Any Linear Secret Sharing Scheme 7

where Γ is the access structure computed by the strongly multiplicative resulting
MSP M from MSPs M1 and M2 and/or from MSPs M3 and M4.

We will call the access structure Γ3 (the MSP M3, resp.) “reduced”. It is easy to
see that such MSPs M3 and M4 always exist, e.g. M1 = M3 and M2 = M4. In
the threshold case there exist several pairs of MSPs that satisfy the assumption
of Theorem 1.
Note also that the Maurer’s [14] necessary and sufficient condition P /∈ ∆1 �
∆1 � ∆A is satisfied (in case Γ1 = Γ2), on the other hand this conditions does
not guarantee that Γ⊥

A ⊆ Γ , when Γ �= Γ1 � Γ2, i.e., Γ ⊂ Γ1 � Γ2.
The picture in the general access structure appears to be analogous to this in
the threshold case [7,9]. Remarkably the conditions in the information-theoretic
settings are “similar” to the conditions in the cryptographic settings (see the
result of Nikov et al. for the computational model). Note that it is not required
anymore Γ to satisfy the VSS conditions.
If we compare with the protocol in [4] we can see that now the player who re-
shares his share do not need to commit to every single entry in the used vector.
Hence the number of the used VSS is reduced. Also note that this protocol does
not depend on the model considered here (Nikov et al.), it could be applied also
for the model of Cramer et al.
The paper is organized as follows: In Section 2 the information-theoretically
secure VSS, randomization and re-sharing protocols are presented. In Section 3
we introduce some terminology and concepts, we state the results and explain
the role they play in comparison with earlier results.

2 Background

2.1 VSS – Share Phase

Let the dealer D shares the secret s to the players Pi using the VSS protocol, as
described by Cramer et al. in [4], and let M be an MSP with matrix M (m×d).

1. The Dealer D chooses a symmetric d× d matrix R subject to s (the secret)
in its upper left corner.

2. The Dealer D gives to the participant Pi shares vϕ(i) = Mϕ(i)R (vϕ(i) is
|ϕ(i)| × d matrix), where the “true part” (which will be used in the recon-
struction) of the shares is vϕ(i)ε.

3. The players Pi and Pj perform a pairwise-check as follows:

Mϕ(j)v
T
ϕ(i) = Mϕ(j)RM

T
ϕ(i) = vϕ(j)M

T
ϕ(i).

2.2 VSS – Reconstruction Phase

For any group of players G ∈ Γ there exists a recombination vector λϕ(G), such
that they can reconstruct together the secret s as follows:

(vϕ(G)ε)λT
ϕ(G) = 〈λϕ(G), vϕ(G)ε〉 =

∑
i∈G

λϕ(i)(vϕ(i)ε) = s.
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2.3 Information-Theoretic Homomorphic Commitments and
Re-share Phase

In the re-share phase each player Pi plays the role of the dealer sharing the true
part of his shares among the participants using VSS with the same MSP M.

1. Any player Pi re-shares his true part of the share vϕ(i)ε , i.e., for any i1 ∈ ϕ(i)
he chooses a symmetric d × d matrix R(i1) such that its first row (column)
is vi1 and the value in its upper left corner is vi1ε.

2. Pi sends to Pj temporary shares yi1,ϕ(j) = Mϕ(j)R
(i1), whose true part is

yi1,ϕ(j)ε.

3. The players Pk and Pj perform the usual commitment verification (VSS
pairwise-check):

Mϕ(j)y
T
i1,ϕ(k) = Mϕ(j)R

(i1)MT
ϕ(k) = yi1,ϕ(j)M

T
ϕ(k).

4. In addition Pj checks his true part of the share

yi1,ϕ(j)ε = Mϕ(j)R
(i1)ε = Mϕ(j)v

T
i1 = vϕ(j)M

T
i1 .

The last equality is the pair-wise check in VSS (step 3 in the Share phase).
Note that this additional check ensures that the player Pi really re-shares
his share, i.e., he is honest.

5. As usual for any group of players G̃ ∈ Γ there exists a recombination vector
λ̃ϕ(G̃) such that they can together reconstruct the true part of the initial
share – vi1ε.

(yi1,ϕ(G̃)ε)λ̃
T
ϕ(G̃)

= 〈λ̃ϕ(G̃), yi1,ϕ(G̃)ε〉 =
∑

j∈G̃

λ̃ϕ(j)(yi1,ϕ(j)ε) = vi1ε.

6. Denote the list of good players by L ∈ Γ . Then Pj , using the corresponding
recombination vector λϕ(L), computes

zϕ(j) =
∑
i∈L

λϕ(i)yϕ(i),ϕ(j).

The new shares (of the same secret s) are zϕ(j) and they satisfy all the necessary
properties as follows:

• The pair-wise check holds:

Mϕ(k)z
T
ϕ(j) =

∑
i∈L

λϕ(i)Mϕ(k)y
T
ϕ(i),ϕ(j)

= (
∑
i∈L

λϕ(i)yϕ(i),ϕ(k))MT
ϕ(j) = zϕ(k)M

T
ϕ(j).
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• The players in any group G̃ ∈ Γ can reconstruct the secret s together.

(zϕ(G̃)ε)λ̃
T
ϕ(G̃)

= 〈λ̃ϕ(G̃), zϕ(G̃)ε〉 =
∑

j∈G̃

λ̃ϕ(j)(zϕ(j)ε)

=
∑

j∈G̃

λ̃ϕ(j)(
∑
i∈L

λϕ(i)(yϕ(i),ϕ(j)ε))

=
∑
i∈L

λϕ(i)(
∑

j∈G̃

λ̃ϕ(j)(yϕ(i),ϕ(j)ε)) =
∑
i∈L

λϕ(i)(vϕ(i)ε) = s.

2.4 The Randomization Phase

We can use the Renewal phase from [16] as a randomization protocol.

3 Reduction Protocol

3.1 The Set-up

Let Γ1 and Γ2 be access structures, computed by MSPs M1 = (F,M1, ε1, ψ1)
and M2 = (F,M2, ε2, ψ2), respectively. Let also M1 be m1 × d1 matrix, M2 be
m2 × d2 matrix and ϕ1, ϕ2 be the “inverse” functions of ψ1 and ψ2.
Let M = M1 
 M2 be the multiplicative resulting MSP, i.e., M = (F,M =
M1 
 M2, ε = ε1 
 ε2, ψ), where ψ(i, j) = r if and only if ψ1(i) = ψ2(j) = r.
Hence M is m × d1d2 matrix, where m =

∑
i |ϕ1(i)||ϕ2(i)| =

∑
i |ϕ(i)|. Let us

consider the access structure Γ computed by the MSP M.

Let the first secret s1 is shared using VSS by MSP M1 with symmetric d1 × d1
matrix R(1), i.e., vϕ1(i) = (M1)ϕ1(i)R

(1) be the shares of Pi (vϕ1(i) is |ϕ1(i)| × d1
matrix). The “true part” of the shares are the first coordinates of each share,
i.e., vϕ1(i)ε1.

Analogously, let the second secret s2 is shared by MSP M2 with symmetric
d2 × d2 matrix R(2), i.e., wϕ2(i) = (M2)ϕ2(i)R

(2) be the shares of Pi. (wϕ2(i) is
|ϕ2(i)| × d2 matrix). The “true part” of the shares are the first coordinates of
each share, i.e., wϕ2(i)ε2.

3.2 Local Computation Phase

Denote by R = R(1) ⊗ R(2) a d1d2 × d1d2 symmetric matrix. Note that the
value in the upper left corner of R is the product s1s2. Let us choose the indices
i1 ∈ ϕ1(i), i2 ∈ ϕ2(i), j1 ∈ ϕ1(j) and j2 ∈ ϕ2(j).
If the player Pi locally computes ⊗ product of his shares he obtains his new
shares vϕ1(i) ⊗ wϕ2(i) (which are an |ϕ(i)| × d1d2 matrix).
This shares correspond to an MSP M and the random matrix R as defined
above, i.e., ((M1)i1 ⊗ (M2)i2)R = vi1 ⊗ wi2 .
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The pair-wise check for the new shares also holds:

((M1)i1 ⊗ (M2)i2)(vj1 ⊗ wj2)
T = ((M1)i1v

T
j1)((M2)i2w

T
j2) =

(vi1(M1)T
j1)(wi2(M2)T

j2) = (vi1 ⊗ wi2)((M1)j1 ⊗ (M2)j2)
T .

Note that the new “true part” of the shares is the product

(vϕ1(i) ⊗ wϕ2(i))ε = (vϕ1(i)ε1) ⊗ (wϕ2(i)ε2).

In the new MSP M for any group of players G ∈ Γ there exists a recombination
vector λϕ(G) such that they can reconstruct together the product of the secrets
– s1s2.

((vϕ1(G) ⊗ wϕ2(G))ε)λT
ϕ(G) = 〈λϕ(G), (vϕ1(G) ⊗ wϕ2(G))ε〉

=
∑
j∈G

λϕ(j)((vϕ1(j) ⊗ wϕ2(j))ε) = s1s2.

3.3 Decomposition – Change of the Basis

Let d3 and d4 are integers such that d1d2 = d3d4 and, as usual, ε3 ∈ F
d3 be

the unit column vector. Denote by ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ F
d4 the unit row

vectors, for i = 1, . . . , d4.
It is easy to see that there exist uniquely defined vectors x(i)

j1,j2
, x̃

(i)
j1,j2

∈ F
d3 for

i = 1, . . . , d4, such that the following equalities hold

vj1 ⊗ wj2 =
d4∑

i=1

x
(i)
j1,j2

⊗ ei; vj1 ⊗ wj2 =
d4∑

i=1

ei ⊗ x̃
(i)
j1,j2

. (2)

Note that (vj1 ⊗ wj2)ε = x
(1)
j1,j2

ε3 = x̃
(1)
j1,j2

ε3.

3.4 Degree Reduction Phase

Let Γ3 be an access structure, computed by the MSP M3 = (F,M3, ε3, ψ3). Let
also M3 be m3 × d3 matrix and ϕ3 be the “inverse” functions of ψ3.
Any player Pj re-shares the first coordinate of the vector x(i)

j1,j2
, i.e., x(i)

j1,j2
ε3

for i = 1, . . . , d4 using VSS Share protocol. Let us denote the different copies
of VSSs by V SS(i). For each VSS the player uses a symmetric d3 × d3 matrix
R

(i)
j1,j2

, such that its first row (column) is x(i)
j1,j2

. So, the player Pk receives from
Pj the following temporary shares:

y
(i)
j1,j2,ϕ3(k) = (M3)ϕ3(k)R

(i)
j1,j2

As in Subsection 2.3 the player Pk verifies the commitments of Pj using usual
pair-wise check for each V SS(i).
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3.5 Additional Check on the Degree Reduction Phase

Now we need to ensure that the player Pj re-shares the correct vectors x(i)
j1,j2

and in particular their true part. Unfortunately we can not apply directly the
additional check procedure from step 4. in the re-share protocol, because in the
degree reduction phase we use two different access structures.
Let us choose the indices j1 ∈ ϕ1(j), j2 ∈ ϕ2(j), k1 ∈ ϕ1(k), k2 ∈ ϕ2(k),
k3 ∈ ϕ3(k) and k4 ∈ ϕ4(k). In order to perform this additional check we assume
that there exist matrices M3 and M4, such that M1 
M2 = M = M3 
M4. This
assumption means that we have (M3)k3 ⊗ (M4)k4 = (M1)k1 ⊗ (M2)k2 for some
rows k1, k2, k3, k4 of the corresponding matrices.
We first prove the following three equalities.

〈y(i)
j1,j2,k3

, εT
3 〉 = 〈(M3)k3R

(i)
j1,j2

, εT
3 〉 (3)

= 〈(M3)k3 , (R
(i)
j1,j2

)1〉 = 〈(M3)k3 , x
(i)
j1,j2

〉,

〈(M3)k3 ⊗ (M4)k4 , x
(i)
j1,j2

⊗ ei〉 = 〈(M3)k3 , x
(i)
j1,j2

〉〈(M4)k4 , ei〉, (4)

〈(M1)k1 ⊗ (M2)k2 , vj1 ⊗ wj2〉 = 〈(M1)k1 , vj1〉〈(M2)k2 , wj2〉 (5)
= ((M1)k1v

T
j1)((M2)k2w

T
j2) = (vk1(M1)T

j1)(wk2(M2)T
j2)

= 〈(M1)j1 , vk1〉〈(M2)j2 , wk2〉.

Now using (2) together with (3),(4), and (5) we are ready to prove that the player
Pk can make an additional check whether Pj re-shared correctly the shares in
the degree reduction phase. To perform this check Pk uses his old shares vk1 and
wk2 together with the newly received shares y(i)

j1,j2,k3
from Pj and some public

information.

〈(M1)j1 , vk1〉〈(M2)j2 , wk2〉 =
d4∑

i=1

〈(M4)k4 , ei〉〈y(i)
j1,j2,k3

, εT
3 〉.

Note that we can simply choose M3 = M1 and M4 = M2, in this case we have
Γ1 = Γ3.

3.6 The New Shares

Finally, in order to complete the protocol we need to define the new shares.
Recall that j1 ∈ ϕ1(j) and j2 ∈ ϕ2(j) if and only if {j1, j2} ∈ ϕ(j). That is way
we will denote x(i)

j1,j2
and y

(i)
j1,j2,ϕ3(k) for j1 ∈ ϕ1(j) and j2 ∈ ϕ2(j) also by x(i)

ϕ(j)

and by y(i)
ϕ(j),ϕ3(k).

As we mentioned earlier in Section 3.4 for any group of players G̃ ∈ Γ3 there
exists a recombination vector λ̃ϕ3(G̃) such that they can reconstruct together the
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first coordinate of the vector x(i)
ϕ(j), i.e., x(i)

ϕ(j)ε3, for i = 1, . . . , d4 (reconstruction
phase of V SS(i)) as follows:

(y(i)
ϕ(j),ϕ3(G̃)

ε3)λ̃T
ϕ3(G̃)

= 〈λ̃ϕ3(G̃), y
(i)
ϕ(j),ϕ3(G̃)

ε3〉 (6)

=
∑

k∈G̃

λ̃ϕ3(k)(y
(i)
ϕ(j),ϕ3(k)ε3) = x

(i)
ϕ(j)ε3,

Note also that for any group of players G ∈ Γ there exists a recombination vector
λϕ(G) such that they can reconstruct together the product of the secrets s1s2.

(x(1)
ϕ(G)ε3)λ

T
ϕ(G) = 〈λϕ(G), x

(1)
ϕ(G)ε3〉 (7)

= 〈λϕ(G), (vϕ1(G) ⊗ wϕ2(G))ε〉 = s1s2.

(Here the last equality from Subsection 3.2 and the note from Subsection 3.3 are
used.)
Now we are ready to define the new shares. Denote the list of good players by
L ∈ Γ , then Pk computes his new shares as follows:

zϕ3(k) =
∑
j∈L

λϕ(j)y
(1)
ϕ(j),ϕ3(k).

For the new shares zϕ3(k) the pair-wise check holds:

(M3)ϕ3(i)z
T
ϕ3(k) =

∑
j∈L

λϕ(j)(M3)ϕ3(i)(y
(1)
ϕ(j),ϕ3(k))

T

= (
∑
i∈L

λϕ(j)y
(1)
ϕ(j),ϕ3(i)

)(M3)T
ϕ3(k) = zϕ3(i)(M3)T

ϕ3(k).

For any G̃ ∈ Γ3 the players can reconstruct together the product s1s2 using (6)
and (7) as follows:

(zϕ3(G̃)ε3)λ̃
T
ϕ3(G̃)

= 〈λ̃ϕ3(G̃), zϕ3(G̃)ε3〉 =
∑

k∈G̃

λ̃ϕ3(k)(zϕ3(k)ε3)

=
∑

k∈G̃

λ̃ϕ3(k)(
∑
j∈L

λϕ(j)(y
(1)
ϕ(j),ϕ3(k)ε3))

=
∑
j∈L

λϕ(j)(
∑

k∈G̃

λ̃ϕ3(k)(y
(1)
ϕ(j),ϕ3(k)ε3))

=
∑
j∈L

λϕ(j)(x
(1)
ϕ(j)ε3) = s1s2

At the end of the protocol each player Pk possesses new shares zϕ3(k) of MSP
M3 (computing the access structure Γ3) of the product s1s2.
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Lemma 1. Suppose that for the MSPs M1 and M2 there exist MSPs M3 and
M4 such that

M1 
 M2 = M = M3 
 M4.

Let Γ be the access structure computed by the strongly multiplicative resulting
MSP M from MSPs M1 and M2 and/or from MSPs M3 and M4 and let also
the access structures Γ and Γi for i = 1, 2, 3 satisfy the conditions

Γ⊥
A ⊆ Γ ⊆ Γ1 � Γ2, (ΓA � ΓA)⊥ ⊆ Γi for i = 1, 2, 3.

Then the “degree reduction” protocol is information-theoretically secure against
(∆1, ∆2, ∆A)-adversary.

Due to lack of space we will not give a formal security proof for our protocol.
However, to have a feeling why it is secure, note first that in the re-sharing
phase every player could verify whether the “true” part of his share is correct
or not. Then, as in the protocol from [4], the shares of the players (in our case
the “true” part of the shares) have to satisfy a fixed linear relation, which allow
every player to complain against incorrect re-sharing.

3.7 Complexity Issues

In this subsection we will follow [4]. Define mspF(f) to be the size of the smallest
MSP over F computing a monotone boolean function f . Next define µF(f) to be
the size of the smallest multiplicative MSP over F computing f . Similarly, µ∗

F
(f)

to be the size of the smallest strongly multiplicative MSP. In other words for a
given adversary A with adversary structure ∆A we require for every set B ∈ ∆A

to have B /∈ Γ , but Bc ∈ Γ . By definition, we have mspF(f) ≤ µF(f) ≤ µ∗
F
(f). In

[4] Cramer et al. characterized the functions that (strongly) multiplicative MSP’s
can compute, and proved that the multiplication property for an MSP can be
assumed without loss of efficiency. In particular, for the passive (multiplicative)
case they proved that µF(f) ≤ 2 mspF(f) provided that f is Q2 function. Un-
fortunately there is no similar result for the strongly multiplicative case. Instead
the authors in [4] proved that for an active adversary µ∗

F
(f) is bounded by the

so-called “formula complexity”.
In the recent paper of Nikov et al. [17] a different approach is considered. Recall
that in that model given an Q3 adversary A we are looking for two access struc-
tures (resp. monotone boolean functions) Γ1 and Γ2 (resp. f1 and f2) such that
their strongly multiplicative resulting MSP computes Γ (resp. f). Or in other
words for a given adversary A with adversary structure ∆A we require that for
every set B ∈ ∆A to have B /∈ Γ1, B /∈ Γ2 but Bc ∈ Γ . Let us define νF(f) to be
the size of the smallest strongly multiplicative resulting MSP over F computing
f . How these two measures µ∗

F
(f) and νF(f) are related as well as whether this

new notion give us better measure for the complexity of an MPC is subject of
ongoing research.
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