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Abstract. Current approaches to activity coordination in multi-agent
systems (teams) range from strictly top down (plan-based coordination)
to purely emergent (reactive coordination), with many hybrid variants,
each having its specific advantages and disadvantages. It appears to
be extremely difficult to rigorously compare various hybrid approaches
to multi-agent coordination (and communication), given the lack of a
generic semantics or some guidelines. In this paper, we studied some
intuitive inter-agent communication policies and characterised them in
terms of generic information-theoretic properties. In particular, the rela-
tive entropy of joint beliefs was suggested as an indicator of teams coor-
dination potential. Our novel behaviour-based agent architecture (based
on the Deep Behaviour Projection framework) enabled consistent rea-
soning about belief change, including beliefs about other agents. This
allowed us to examine some of the identified communication policies em-
pirically. The obtained results confirmed that there are certain interest-
ing invariants – in particular, a change in team coordination (and overall
performance) was shown to be within the boundaries indicated by the
relative information entropy.

1 On Entropy and Multi-agent Agreements

The primary objective of this work is a formal characterisation of certain classes
of multi-agent agreements. In achieving this goal, we tried to make as few as-
sumptions as possible about the choice of inter-agent communication variables
and periods of team synchronisation (extensively analysed by Stone and Veloso
[8]). In particular, we studied selfish agreements covering “selfish” agents that
communicate data about themselves only, transitively-selfish agreements ensur-
ing that each “cooperative” agent always communicates the data about some
other agent, and mixed agreements, where a team composition parameter deter-
mines the precise split between selfish and cooperative agents.

In order to capture the agreements in a formal information-theoretic setting
we analysed the joint “output” of inter-agent communication after each period
of team synchronisation. Then we estimated the relative entropy as a precise
measure of the amount of freedom of choice (the degree of randomness) [7]
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contained in the resultant joint beliefs. Our intention was to use the relative
entropy of joint beliefs in multi-agent teams as a generic indicator of the team
coordination potential. Clearly, the team following an agreement with near-zero
entropy (almost no “misunderstanding” in joint beliefs) has a higher coordination
potential than the team adherent to an agreement with near-maximal entropy
(joint beliefs are almost random).

We start our analysis with a simple protocol P1 that allows an agent to com-
municate data about only one agent precisely. In other words, each agent is able
to encode either the data about itself or about the other agent. Without loss of
generality, we may assume that the protocol P1 has enough symbols to encode
n distinguishable objects and a single-object capacity for each communication
message. We introduce a binary relation S(ai, aj) to denote that the agent ai

sends a message containing the object aj . Let S∗ denote the transitive closure
of the relation S. Arguably, on of the most intuitive agreements is an agree-
ment among selfish agents – since the data about themselves is, arguably, more
readily available, the selfish agents choose this data as their content. In fact, we
may assume for our analysis that each agent is always “self-aware”. Formally,
K(ai, ai) = true for a Boolean (belief-)function K defined for each agent pair.
Generally, we propose the following definition.

Definition 1. A locker-room agreement is called selfish if and only if S(ai, ai)
for all agents ai, 1 ≤ i ≤ n.

A locker-room agreement is called transitively-selfish if and only if S∗(ai, ai)
for all agents ai, 1 ≤ i ≤ n.

A non transitively-selfish agreement is called mixed.

One might argue that the transitively-selfish agreement is an agreement among
more “cooperative” agents choosing to communicate the data about the other
agent (when available). Notice, however, that (given a successful team synchro-
nisation) everyone is in the “loop”. Of course, by definition, a selfish locker-room
agreement is always transitively-selfish. In a mixed agreement, there are (αn)
agents such that S(ai, ai), and (1 − α)n agents such that S(ai, aj) where i �= j.
Basically, the value of α determines the team composition (and we sometimes
refer to α as the team composition parameter).

In order to formally capture the distinction among selfish, transitively-selfish
and mixed agreements, we consider the joint “output” of inter-agent communi-
cation at the end of each period of team synchronisation. More precisely, we
analyse joint beliefs represented by the sequence of individual beliefs Kt =
K(a1, a1), . . . , K(ai, aj), . . . , K(an, an), where 1 ≤ i ≤ n and 1 ≤ j ≤ n, at
the time t. In other words, rather than compute the amount of information
contained in each message we attempt to estimate how much information is
contained in the whole team after a period of team synchronisation.

In the simplest cases, the amount of information can be measured by the
logarithm (to the base 2) of the number of available choices. The entropy is a
precise measure of the amount of freedom of choice (or of the degree of random-
ness) contained in the object – an object with many possible states has high
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entropy. Formally, the entropy of a probability distribution P = {p1; p2; . . . ; pm}
is defined by

H(P ) =
m∑

i=1

pi ∗ log (1/pi).

Having calculated the entropy H(P ) of a certain information source (such as
a joint result of inter-agent communication) with the probability distribution
P , one can compare this to the maximum value Hmax this entropy could have,
assuming that the source employs the same symbols. The ratio of the actual to
the maximum entropy is called the relative entropy of the source [7]. Therefore,
if we calculate the relative entropy Hr of Kt+p we can characterise the multi-
agent agreement employed between t and t + p. The following representation
results were obtained1.

Theorem 1. Selfish agreements attain minimal entropy.
Transitively-selfish agreements without the selfish agents attain maximal en-

tropy asymptotically when the number of agents n → ∞.
The trajectory of the relative entropy in multi-agent teams (n > 2) following

mixed agreements does not have a fixed-point as a function Hr(α) of the team
composition parameter: Hr(α) �= α.

This theorem basically states that whenever team agents agree to communicate
the data about themselves only, they eventually leave nothing to choice. In other
words, they always maximise their joint beliefs upon successful synchronisations.
The obvious drawback is that while using single channels this saturation of joint
beliefs requires that every agent takes turns in communication according to some
schedule, and hence, large teams may take a while to minimise the entropy.
The clear benefit, on the other hand, is that this minimisation is shown to be
theoretically possible.

On the other hand, the “organisation” or “order” brought about by the
transitively-selfish agreements is not sufficient to combat the entropy. Intuitively,
the pair-wise “ignorance” of agents grows faster than the transitively-selfish
agreement can cope with. Clearly, with the number of agents approaching infinity
(and the entropy reaching its maximum asymptotically) the time to synchronise
the team becomes infinite as well.

Obviously, the entropy of joint beliefs in multi-agent systems following mixed
agreements exhibits some properties of both selfish and transitively-selfish con-
figurations. We might expect that the selfish agents will bring in some order
(as the compensation for potentially redundant information about themselves),
while the cooperative (transitively-selfish) agents will lead to a higher degree
of randomness (providing sometimes potentially non-trivial information about
other agents). Formally, the relative entropy produced by mixed agreements
asymptotically approaches 1 with growth in the number of agents. In other
words, the selfish agents “loose” the battle for order (asymptotically) when the
number of agents is infinitely large. Interestingly, however, the lower limit is not
1 The proofs are omitted due to the lack of space.
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zero, meaning that absolute order is never achievable regardless of the team split
or the number of agents. In fact, our results showed that the joint beliefs obtain-
able in multi-agent teams with mixed agreements exhibit information-theoretic
complexity in terms of the team composition. It has been recently pointed out in
the literature (eg., by Suzudo [9]) that the entropy trajectory is a useful descrip-
tor for a variety of self-organised patterns: eg., non-complex cellular automata
(CA) have a fixed-point entropy trajectory and converge quickly to either very
low or very high values. It should be noted that Suzudo considered the entropy
of CA associated with the temporal pattern, while our analysis is focused on
entropy of joint beliefs associated with the team composition parameter.

Our analysis was carried out for the protocol P1. However, it can be easily
shown that protocols with higher capacities can be analysed in already presented
terms. For example, consider the protocol P2 allowing an agent to communicate
data about precisely two agents (including the data about itself). In other words,
in the case of n agents the protocol P2 has enough symbols to encode n agents
and two-objects capacity for each communication message. It is, nevertheless,
possible to consider every message S(ai, aj + ak), where + denotes the concate-
nation of the symbols corresponding to two objects, as two consecutive separate
messages S(ai, aj) and S(ai, ak). This decomposition can be applied if i = j
or i = k as well. Therefore, in order to analyse resultant joint beliefs one can
double the synchronisation period in length and consider as a result the union
of two sets of joint beliefs – the first set obtained after all messages with the first
object are communicated, and the second set obtained after all messages with
the second object are communicated. In other words, the decomposition allows
to reduce the analysis of the protocol P2 (or any k-object capacity protocol Pk)
to that of the protocol P1 – simply because each divided message conforms to
P1. That is, the resultant joint beliefs will be a combination of beliefs obtained
by some selfish, transitively-selfish or mixed agreement in P1.

Another interesting reduction can be obtained in cases when agents intend
to communicate the data about other objects in the environments (eg., the ball
vectors in the RoboCup environment). In this case we just consider the ball to
be a silent agent in the (n+1)-agent team. More precisely, denoting by b the ball
object, the messages S(ai, aj + . . . + b) would be possible while S(b, aj + . . . + b)
would be ruled out, again reducing the consideration to the protocol P1.

In summary, the advantage of higher-capacity protocols is in the shorter
periods of required synchronisation but not in some exceptional information-
theoretic properties of resultant joint beliefs.

2 Agents Situated in Time and Relativity of Behaviours

The strength of the presented analysis, we believe, is in its generic nature. The
results lay down some general guidelines in terms of team composition and sug-
gest definite boundaries on the team coordination potential.

In this section we focus on the agents ability to dynamically change their be-
liefs under different scenaria. We assumed previously that (during any synchroni-
sation period) joint and individual beliefs can only expand, while obviously some
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of them should be discarded with time and some should be reconciled with new
observations. At this stage, we shall describe some design and implementation
details required to verify maximal and minimal limits of the entropy contained
in the agents’ dynamic beliefs.

In general, the agent’s capability to maintain dynamic beliefs is based on
another very important cognitive skill – the ability to remove itself from the
current context. This ability is sometimes informally referred to as “possession
of a reality simulator” [2]. Running a reality simulator or “imagining” allows the
agent to reflect on past behaviour and project the outcome of future behaviour.
For example, Joordens [2] makes a conjecture that higher mental states emerge as
a result of a reality simulator: “an animal with no reality simulator basically lives
in the present tense, and sees the world through only its eyes, at all times”, while
“the possession of a reality simulator may also allow an organism to experience
many of the high-level cognitive processes that we identify with being human”.
Moreover, there is a possibility that an organism with a reality simulator is more
likely to engage in cooperative behaviour because of its ability to conceptualise
rewards to others, and long-term rewards to itself.

We maintain that “world model” should appear in the architecture incremen-
tally. In our previous work [4,5,6] we described the Deep Behaviour Projection
(DBP) hierarchical framework. The DBP framework formally represents increas-
ing levels of agent reasoning abilities, where every new level can be projected onto
a deeper (more basic) behaviour. Put simply, a DBP behaviour can be present
in the architecture in two forms: implicit (emergent) and explicit (embedded).

It is interesting at this stage to compare such behaviour duplication in DBP
with the distinction between automatic processes and controlled processes in
cognitive psychology. It is well-known that certain processes become highly au-
tomatic through repetition and are unconsciously triggered in the presence of
certain stimuli, while controlled processes are mostly goal-oriented rather than
reactive. With time and/or practice newly learned behaviours often shift from
being controlled to automatic.

What the DBP approach suggests in addition, is that the reactive/cognitive
distinction is always relative in a hierarchical architecture. The behaviour pro-
duced by the level lk may appear reactive with respect to the level lk+1 but,
at the same time, may look deliberate with respect to the level lk−1. Let us
exemplify this with the following three levels of the DBP agents:

– tropistic behaviour: Sensors → Effectors
– hysteretic behaviour: Sensors & Memory → Effectors
– tactical behaviour: Sensors & Memory & Task → Effectors.

The hysteretic behaviour is definitely more reactive when compared with the
tactical behaviour, because the latter uses the task states in choosing the effec-
tors. However, contrasted with a very basic tropistic behaviour, the hysteresis
provided by (internal) memory states ensures a degree of cognition. More pre-
cisely, the hysteretic behaviour addresses some lagging of an effect behind its
cause, providing a (temporary) resistance to change that occurred previously.



372 Mikhail Prokopenko and Peter Wang

For instance, in order to intercept a fast moving ball the agent needs to ob-
serve the shift in the ball positions and estimate its velocity before activating
the effectors. Thus, the hysteretic behaviour is slightly more deliberate than the
tropistic one (exemplified by a simple chase after the ball) – it better situates
the agent in time (not only in space) and allows it to better respond to changes.
Continuing with the example we re-iterate that the hysteretic intercept is a be-
haviour embedded explicitly, while the tropistic intercept is only possible as an
emergent result of the recurring chase.

Thus, a reality simulator appears incrementally – starting from a basic ability
to detect a change (eg., in direction) and moving towards a more and more
comprehensive incorporation of the temporal asymmetry or “time’s arrow” (eg.,
from direction-sensitive cells to a measurement of a shift in observed positions, to
the notion of velocity emerging after a series of measurements, etc.). This means
that an emergence of essentially new behavioural patterns always indicates a
need for new elements in the agent architecture. At some stage, increasing levels
of reasoning about change require an ability to consistently maintain the agent’s
beliefs – expand, contract or revise them according to some rational principles,
such as the principle of minimal change (information economy) [1].

In order to address this requirement, we explicitly introduced a domain model
into the DBP architecture, resulting in the following hierarchy (a refinement of
the architecture reported in [6]):

〈S ,E , tropistic behaviour : S → E ,

I , hysteretic behaviour : I × S → E , update : I × S → I ,

T , tactical behaviour : I × S × T → E ,

tactics : I × S × T → 2T , decision : I × S × T → T ,

D , domain update : I × S × D → D ,

domain revision : I × S × D → D ,

domain projection : I × S × D → S 〉
where S is a set of agent sensory states, E is a set of agent effectors, I is a set
of internal agent states, T is a set of agent task states, and D is a set of domain
model states. The DBP agents extrapolate their domain model each simulation
cycle with the domain update function, and revise it with the domain revise
function whenever new information becomes available. The partition between
update and revision corresponds to the well-known distinction between belief
update and belief revision [3]. In particular, the belief update is appropriate when
the world has changed and the agents need to accommodate this change into the
previously correct beliefs. The belief revision should be used to incorporate new
information about the same state of the world, in order to correct potential
inconsistencies.

In the absence of new observations, the updated domain model d∗ = do-
main update (i, s, d) is the best approximation of the domain. In these cases,
the domain model d∗ is transformed by the domain projection function into the
agent’s sensory state s∗ = domain projection(i, s, d∗). Very importantly, all the
choices made by the agent based on s∗ are not distinguishable from the choices
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it could have made if the same sensory state s∗ was a result of the direct sen-
sory input. Intuitively, the domain projection function projects the results of the
reality simulator and the agent imagines that these results have been observed
directly. The projection function is needed only in the absence of new observa-
tions, and should not be invoked at other times – the imaginative side of the
agent is not needed when “live” information is available anyway.

3 Experimental Results and Conclusion

In order to support our analysis of boundaries on the team coordination poten-
tial, we varied communication policies while leaving all other factors (agents skills
and tactics) unchanged. The factors beyond our control (eg., a possible change
in the opponent strategy) were minimised by repeated runs. This focused the
experiment on the dependency (if any) between communication policies (and
therefore, resultant joint beliefs) and the team coordination potential.

Our benchmark opponent was selected from the top five teams of the
RoboCup-2001 championship. The baseline test team (“Full Communications”)
was our team running with standard communication messages (512 symbols
≈ 100-objects capacity) – we used the protocol of the Soccer Server 7.10. This
enabled the full use of the benchmark as well. Then we investigated three com-
munication policies with the protocol P1. The first policy (“Ball”) was to com-
municate only the ball object, if the data were accurate enough. This mixed
variant is quite similar to the transitively-selfish agreement, with high relative
entropy and very local coordination, enabling a pressing aggressive game (simply
because the players close to the ball might be unaware of each other). The second
policy (“Ball | Self”) allowed, in addition, each agent to communicate the data
about itself according to a schedule, but possibly at times when some other agent
communicated the ball object. This mix is much closer to the selfish agreement,
with low relative entropy and very global coordination, enabling a passing non-
aggressive game (now the players within the ball neighbourhood are often aware
of each other, and in addition more team-mates can be considered for a pass).
The third policy (“Ball | Self | Wait”) prevented self-messages when a team-mate
was likely to say ball. This implicit synchronisation is aimed at some mixture of
local and global coordination, balancing predominantly pressing game with some
passing chances – truly a mixed agreement with (anticipated) bounded relative
entropy. The results are presented in the table below.

Table 1. Results against the benchmark after 100 games for each test.

Team Goals For Goals Against Wins Draws Losses Points
Full Communications 111 101 38 29 33 143
Ball 123 125 34 31 35 133
Ball | Self 102 124 26 27 47 105
Ball | Self | Wait 114 112 35 27 38 132

All the tests have performed, as expected, worse than the baseline. The “Ball”
policy achieved almost a parity with the benchmark, while the “Ball | Self”
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policy was clearly worse. Obviously, this just indicates that the pressing game
(emerging as a result of the high entropy of joint beliefs and the ensuing local
coordination) is more suitable against this particular benchmark. This conjecture
was supported by performance of the “Ball | Self | Wait” policy, achieving an
equality against the benchmark as well. Apparently, the information contained in
the self-messages and communicated fairly infrequently was not enough to create
statistically significant passing chances, and therefore, the emergent coordination
was more local than global. Importantly, the third (mixed) policy was within the
boundaries marked by the first two variants (and closer to the first one), as
suggested by the relative entropy of joint beliefs. Similar encouraging results
were obtained for extensions of all three policies to the protocol P2.

These empirical results illustrate the dependency between communication
policies, the information entropy of joint beliefs and the team coordination po-
tential. Identification of this relation is a main contribution of the presented
analysis, opening a new general perspective on reasoning about belief dynamics
in multi-agent scenaria.
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