
Bridging the Gap between Fair Simulation and
Trace Inclusion�

Yonit Kesten1, Nir Piterman2, and Amir Pnueli2

1 Ben Gurion University, Beer-Sheva, Israel. ykesten@bgumail.bgu.ac.il
2 Weizmann Institute, Rehovot, Israel. (nirp,amir)@wisdom.weizmann.ac.il

Abstract. The paper considers the problem of checking abstraction between two
finite-state fair discrete systems. In automata-theoretic terms this is trace inclusion
between two Streett automata. We propose to reduce this problem to an algorithm
for checking fair simulation between two generalized Büchi automata. For solving
this question we present a new triply nested µ-calculus formula which can be
implemented by symbolic methods.
We then show that every trace inclusion of this type can be solved by fair sim-
ulation, provided we augment the concrete system (the contained automaton)
by appropriate auxiliary variables. This establishes that fair simulation offers a
complete method for checking trace inclusion. We illustrate the feasibility of the
approach by algorithmically checking abstraction between finite state systems
whose abstraction could only be verified by deductive methods up to now.

1 Introduction

A frequently occurring problem in verification of reactive systems is the problem of
abstraction (symmetrically refinement) in which we are given a concrete reactive system
C and an abstract reactive system A and are asked to check whether A abstracts C,
denoted C � A. In the linear-semantics framework this question calls for checking
whether any observation of C is also an observation of A. For the case that both C and
A are finite-state systems with weak and strong fairness this problem can be reduced to
the problem of language inclusion between two Streett automata (e.g., [Var91]).

In theory, this problem has an exponential-time algorithmic solution based on the
complementation of the automaton representing the abstract system A [Saf92]. How-
ever, the complexity of this algorithm makes its application prohibitively expensive. For
example, our own interest in the finite-state abstraction problem stems from applications
of the verification method of network invariants [KP00a,KPSZ02,WL89]. In a typical
application of this method, we are asked to verify the abstraction P1 ‖P2 ‖P3 ‖P4 �
P5 ‖P6 ‖P7, claiming that 3 parallel copies of the dining philosophers process abstract
4 parallel copies of the same process. The system on the right has about 1800 states.
Obviously, to complement a Streett automaton of 1800 states is hopelessly expensive.

A partial but more effective solution to the problem of checking abstraction between
systems (trace inclusion between automata) is provided by the notion of simulation.

� This research was supported in part by THE ISRAEL SCIENCE FOUNDATION (grant
no.106/02-1) and the John von-Neumann Minerva center for Verification of Reactive Systems.

W.A. Hunt, Jr. and F. Somenzi (Eds.): CAV 2003, LNCS 2725, pp. 381–393, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

382 Yonit Kesten, Nir Piterman, and Amir Pnueli

Introduced first by Milner [Mil71], we say that system A simulates system C, denoted
C � A, if there exists a simulation relation R between the states of C and the states
of A. It is required that if (sC , sA) ∈ R and system C can move from state sC to state
s′

C
, then system A can move from s

A
to some s′

A
such that (s′

C
, s′

A
) ∈ R. Additional

requirements on R are that if (s
C
, s

A
) ∈ R then s

C
and s

A
agree on the values of

their observables, and for every s
C

initial in C there exists s
A

initial in A such that
(s

C
, s

A
) ∈ R. It is obvious that C � A is a sufficient condition for C � A. For

finite-state systems, we can check C � A in time proportional to (|Σ
C
| · |Σ

A
|)2 where

Σ
C

and Σ
A

are the sets of states of A and C respectively [BR96,HHK95].
While being a sufficient condition, simulation is definitely not a necessary condition

for abstraction. This is illustrated by the two systems presented in Fig. 1

a, 0

c, 1

b, 1

e, 3

d, 2

A, 0

E, 3

D, 2

B, 1

EARLY LATE

Fig. 1. Systems EARLY and LATE

The labels in these two systems consist of a local state name (a–e, A–E) and an observable
value. Clearly these two systems are (observation)-equivalent because they each have
the two possible observations 012ω + 013ω. Thus, each of them abstracts the other.
However, when we examine their simulation relation, we find that EARLY � LATE but
LATE �� EARLY. This example illustrates that, in some cases we can use simulation in
order to establish abstraction (trace inclusion) but this method is not complete.

The above discussion only covered the case that C and A did not have any fairness
constraints. There were many suggestions about how to enhance the notion of simulation
in order to account for fairness [GL94,LT87,HKR97,HR00]. The one we found most
useful for our purposes is the definition of fair simulation from [HKR97]. Henzinger
et al. proposed a game-based view of simulation. As in the unfair case, the definition
assumes an underlying simulation relation R which implies equality of the observables.
However, in the presence of fairness, it is not sufficient to guarantee that every step of
the concrete system can be matched by an abstract step with corresponding observables.
Here we require that the abstract system has a strategy such that any joint run of the
two systems, where the abstract player follows this strategy either satisfies the fairness
requirements of the abstract system or fails to satisfy the fairness requirements of the
concrete system. This guarantees that every concrete observation has a corresponding
abstract observation with matching values of the observables.
Algorithmic Considerations. In order to determine whether one system fairly simulates
another (solve fair simulation) we have to solve games [HKR97]. When the two systems
in question are reactive systems with strong fairness (Streett), the winning condition
of the resulting game is an implication between two Streett conditions (fsim-games).
In [HKR97] the solution of fsim-games is reduced to the solution of Streett games. In
[KV98] an algorithm for solving Streett games is presented. The time complexity of this

Bridging the Gap between Fair Simulation and Trace Inclusion 383

approach is (|Σ
A
| · |Σ

C
| · (3k

A + k
C
))2k

A
+k

C · (2k
A

+ k
C
)! where k

C
and k

A
denote

the number of Streett pairs of C and A. Clearly, this complexity is too high. It is also
not clear whether this algorithm can be implemented symbolically.

In the context of fair simulation, Streett systems cannot be reduced to simpler systems
[KPV00]. That is, in order to solve the question of fair simulation between Streett systems
we have to solve fsim-games in their full generality. However, we are only interested
in fair simulation as a precondition for trace inclusion. In the context of trace inclusion
we can reduce the problem of two reactive systems with strong fairness to an equivalent
problem with weak fairness. Formally, for the reactive systems C and A with Streett
fairness requirements, we construct C

B

and A
B

with generalized Büchi requirements,
such that C � A iff C

B � A
B

. Solving fair simulation between C
B

and A
B

is simpler.
The winning condition of the resulting game is an implication between two generalized
Büchi conditions (denoted generalized Streett[1]).

In [dAHM01], a solution for games with winning condition expressed as a general
LTL formula is presented. The algorithm in [dAHM01] constructs a deterministic parity
word automaton for the winning condition. The automaton is then converted into a
µ-calculus formula that evaluates the set of winning states for the relevant player.

In [EL86], Emerson and Lei show that a µ-calculus formula is in fact a recipe for
symbolic model checking 1. The main factor in the complexity of µ-calculus model
checking is the alternation depth of the formula. The symbolic algorithm for model
checking a µ-calculus formula of alternation depth k takes time proportional to (mn)k

where m is the size of the formula and n is the size of the model [EL86].
In fsim-games the winning condition is an implication between two Streett con-

ditions. A deterministic Streett automaton for this winning condition has 3k
A · k

C

states and 2k
A

+ k
C

pairs. A deterministic parity automaton for the same condition
has 3k

A · kC · (2kA + kC)! states and index 4kA + 2kC . The µ-calculus formula con-
structed by [dAHM01] is of alternation depth 4k

A
+ 2k

C
and proportional in size to

3k
A · k

C
· (2k

A
+ k

C
)!. Hence, in this case, there is no advantage in using [dAHM01].

In the case of generalized Streett[1] games, a deterministic parity automaton for the
winning condition has |J

C
| · |J

A
| states and index 3, where |J

C
| and |J

A
| denote the

number of Büchi sets in the fairness of C
B

and A
B

respectively. The µ-calculus formula
of [dAHM01] is proportional to 3|J

C
| · |J

A
| and has alternation depth 3.

We give an alternative µ-calculus formula that solves generalized Streett[1] games.
Our formula is also of alternation depth 3 but its length is proportional to 2|J

C
| · |J

A
|

and it is simpler than that of [dAHM01]. Obviously, our algorithm is tailored for the case
of generalized-Streett[1] games while [dAHM01] give a generic solution for any LTL

game 2. The time complexity of solving fair simulation between two reactive systems
after converting them to systems with generalized Büchi fairness requirements is (|ΣA |
· |Σ

C
| · 2k

A
+k

C · (|J
A
| + |J

C
| + k

A
+ k

C
))3.

1 There are more efficient algorithms for µ-calculus model checking [Jur00]. However, Jurdzin-
ski’s algorithm cannot be implemented symbolically.

2 One may ask why not take one step further and convert the original reactive systems to Büchi
systems. In this case, the induced game is a parity[3] game and there is a simple algorithm for
solving it. Although both algorithms work in cubic time, the latter performed much worse than
the one described above.

384 Yonit Kesten, Nir Piterman, and Amir Pnueli

Making the Method Complete. Even if we succeed to present a complexity-acceptable
algorithm for checking fair simulation between generalized-Büchi systems, there is still
a major drawback to this approach which is its incompleteness. As shown by the ex-
ample of Fig. 1, there are (trivially simple) systems C and A such that C � A but this
abstraction cannot be proven using fair simulation. Fortunately, we are not the first to be
concerned by the incompleteness of simulation as a method for proving abstraction. In
the context of infinite-state system verification, Abadi and Lamport studied the method
of simulation using an abstraction mapping [AL91]. It is not difficult to see that this
notion of simulation is the infinite-state counterpart of the fair simulation as defined in
[HKR97] but restricted to the use of memory-less strategies. However, [AL91] did not
stop there but proceeded to show that if we are allowed to add to the concrete system
auxiliary history and prophecy variables, then the simulation method becomes com-
plete. That is, with appropriate augmentation by auxiliary variables, every abstraction
relation can be proven using fair simulation. History variables remove the restriction to
memory-less strategies, while prophecy variables allow to predict the future and use fair
simulation to establish, for example, the abstraction LATE � EARLY.

The application of Abadi-Lamport, being deductive in nature, requires the users to
decide on the appropriate history and prophecy variables, and then design their abstrac-
tion mapping which makes use of these auxiliary variables. Implementing these ideas in
the finite-state (and therefore algorithmic) world, we expect the strategy (corresponding
to the abstraction mapping) to be computed fully automatically. Thus, in our implemen-
tation, the user is still expected to identify the necessary auxiliary history or prophecy
variables, but following that, the rest of the process is automatic. For example, wishing
to apply our algorithm in order to check the abstraction LATE � EARLY, the user has
to specify the augmentation of the concrete system by a temporal tester for the LTL

formula � (x = 2). Using this augmentation, the algorithm manages to prove that the
augmented system (LATE +tester) is fairly simulated (hence abstracted) by EARLY.

In summary, the contributions of this paper are:

1. Suggesting the usage of fair simulation as a precondition for abstraction between
two reactive systems (Streett automata).

2. Observing that in the context of fair simulation for checking abstraction we can
simplify the game acceptance condition from implication between two Streett con-
ditions to implication between two generalized Büchi conditions.

3. Providing a more efficient µ-calculus formula and its implementation by symbolic
model-checking tools for solving the fair simulation between two generalized Büchi
systems.

4. Claiming and demonstrating the completeness of the fair-simulation method for
proving abstraction between two systems, at the price of augmenting the concrete
system by appropriately chosen “observers” and “testers”.

2 The Computational Model

As a computational model, we take the model of fair discrete system (FDS) [KP00b].
An FDS D : 〈V , O, Θ, ρ, J , C〉 consists of the following components.

Bridging the Gap between Fair Simulation and Trace Inclusion 385

• V = {u1, ..., un} : A finite set of typed state variables over finite domains. A state
s is a type-consistent interpretation of V . We denote by Σ the set of all states.

• O ⊆ V : A subset of externally observable variables.
• Θ : The initial condition. An assertion characterizing all the initial states.
• ρ : A transition relation. This is an assertion ρ(V, V ′), relating a state s ∈ Σ to its
D-successor s′ ∈ Σ by referring to both unprimed and primed versions of the state
variables. State s′ is a D-successor of s if 〈s, s′〉 |= ρ(V, V ′), where 〈s, s′〉 is the
joint interpretation which interprets x ∈ V as s[x], and x′ as s′[x].

• J = {J1, . . . , Jk} : Assertions expressing the justice (weak fairness) requirements.
• C = {〈p1, q1〉, . . . 〈pn, qn〉} : Assertions expressing the compassion (strong fair-

ness) requirements .

We require that every state s ∈ Σ has at least one D-successor. This is ensured by
including in ρ the idling disjunct V ′ = V . Let σ : s0, s1, ..., be a sequence of states, ϕ
be an assertion, and j ≥ 0 be a natural number. We say that j is a ϕ-position of σ if sj

is a ϕ-state. Let D be an FDS for which the above components have been identified. A
run of D is an infinite sequence of states σ : s0, s1, ..., satisfying following:

• Initiality: s0 is initial, i.e., s0 |= Θ.
• Consecution: For j = 0, 1, ..., the state sj+1 is a D-successor of the state sj .

A run of D is called a computation if it satisfies the following:

• Justice: For each J ∈ J , σ contains infinitely many J-positions
• Compassion: For each 〈p, q〉 ∈ C, if σ contains infinitely many p-positions,

it must also contain infinitely many q-positions.

Let runs(D) denote the set of runs of D and Comp(D) the set of computations of D.
Systems D1 andD2 are compatible if the intersection of their variables is observable

in both systems. For compatible systemsD1 andD2, we define their asynchronous paral-
lel composition, denoted byD1 ‖D2, and the synchronous parallel composition, denoted
by D1 ||| D2, in the usual way [KP00a]. The primary use of synchronous composition is
for combining a system with a tester Tϕ for an LTL formula ϕ.

The observations of D are the projection D ⇓O of D-computations onto O. We
denote by Obs(D) the set of all observations of D. Systems DC and DA are said to be
comparable if there is a one to one correspondence between their observable variables.
SystemDA is said to be an abstraction of the comparable systemDC, denotedDC � DA,
if Obs(DC) ⊆ Obs(DA). The abstraction relation is reflexive and transitive. It is also
property restricting. That is, if DC � DA then DA |= p implies that DC |= p for an
LTL property p. We say that two comparable FDS’s D1 and D2 are equivalent, denoted
D1 ∼ D2 if Obs(D1) = Obs(D2). For compatibility with automata terminology, we
refer to the observations of D also as the traces of D.

All our concrete examples are given in SPL, which is used to represent concurrent
programs (e.g., [MP95,MAB+94]). Every SPL program can be compiled into an FDS in
a straightforward manner.
From FDS to JDS. An FDS with no compassion requirements is called a just discrete sys-
tem (JDS). Let D : 〈V,O, Θ, ρ,J , C〉 be an FDS such that C = {(p1, q1), . . . , (pm, qm)}
and m > 0. We define a JDS DB

: 〈V B

,OB

, Θ
B

, ρ
B

,J B

, ∅〉 equivalent to D, as
follows:

386 Yonit Kesten, Nir Piterman, and Amir Pnueli

• V
B

= V ∪ {n pi : Boolean | (pi, qi) ∈ C} ∪ {xc}.
• OB

= O.
• Θ

B

= Θ ∧ xc = 0 ∧
∧

(pi,qi)∈C n pi = 0.

• ρ
B

= ρ ∧ ρn p ∧ ρc, where

ρn p :
∧

(pi,qi)∈C
(n pi → n p′i) ρc : x′

c = (xc ∨
∨

(pi,qi)∈C
(pi ∧ n pi))

• J B

= J ∪ {¬xc} ∪ {n pi ∨ qi | (pi, qi) ∈ C}.

The transformation of an FDS to a JDS follows the transformation of Streett automata
to generalized Büchi Automata (see [Cho74] for finite state automata and [Var91] for
infinite state automata). We add one Boolean variable n pi per compassion requirement.
This variable is initialized to 0, it can be set nondeterministically to 1 and is never reset.
The nondeterministic setting is in fact a guess that no more pi states are encountered.
Accordingly, we add the justice n pi ∨ qi so either n pi is set (and pi is false from that
point) or qi is visited infinitely often. We add one additional variable xc initialized to 0,
set to 1 at a point satisfying

∨m
i=1(pi ∧n pi) and never reset. Once xc is set it indicates a

mis-prediction. We guessed wrong that some pi never holds anymore. We add the justice
requirement ¬xc to ensure that a run in which xc is set, is not a computation.

3 Simulation Games

Let D
C

: 〈V
C
,O

C
, Θ

C
, ρ

C
,J

C
, C

C
〉 andD

A
: 〈V

A
,O

A
, Θ

A
, ρ

A
,J

A
, C

A
〉 be two compa-

rable FDS’s. We denote by ΣC and ΣA the sets of states of DC and DA respectively.
We define the simulation game structure (SGS) associated with D

C
and D

A
to be the

tuple G : 〈D
C
,D

A
〉. A state of G is a type-consistent interpretation of the variables

in VC ∪ VA . We denote by ΣG the set of states of G. We say that a state s ∈ ΣG is
correlated, if s[O

C
] = s[O

A
]. We denote by Σcor ⊂ ΣG the subset of correlated states.

For two states s and t of G, t is an A-successor of s if (s, t) |= ρ
A

and s[V
C
] = t[V

C
].

Similarly, t is a C-successor of s if (s, t) |= ρ
C

and s[V
A
] = t[V

A
]. A run of G is a

maximal sequence of states σ : s0, s1, . . . satisfying the following:
• Consecution: For each j = 0, ..., s2j+1 is a C-successor of s2j .

s2j+2 is a A-successor of s2j+1.
• Correlation: For each j = 0, ..., s2j ∈ Σcor

We say that a run is initialized if it satisfies
• Initiality: s0 |= Θ

A
∧ Θ

C

Let G be an SGS and σ be a run of G. The run σ can be viewed as a two player game.
Player C, represented byD

C
, taking ρ

C
transitions from even numbered states and player

A, represented byDA , taking ρA transitions from odd numbered states. The observations
of the two players are correlated on all even numbered states of a run.

A run σ is winning for player A if it is infinite and either σ ⇓V
C

is not a computation
of D

C
or σ ⇓V

A
is a computation of D

A
, i.e. if σ |= F

C
→F

A
, where for η ∈ {A, C},

Fη :
∧

J∈Jη

� � J ∧
∧

(p,q)∈Cη

(� � p→ � � q).

Bridging the Gap between Fair Simulation and Trace Inclusion 387

Otherwise, σ is winning for player C.
Let D

A
and D

C
be some finite domains, intended to record facts about the past

history of a computation (serve as a memory). A strategy for player A is a partial function
f

A
: D

A
×ΣG �→ D

A
×Σcor such that if f

A
(d, s) = (d′, s′) then s′ is an A-successor

of s′. A strategy for player C is a partial function f
C

: D
C
× Σcor �→ D

C
× ΣG such

that if f
C
(d, s) = (d′, s′) then s′ is a C-successor of s. Let f

A
be a strategy for player A,

and s0 ∈ Σcor. A run s0, s1, . . . is said to be compliant with strategy f
A

if there exists a
sequence of D

A
-values d0, d2, . . . , d2j , . . . such that (d2j+2, s2j+2) = f

A
(d2j , s2j+1)

for every j ≥ 0. Strategy fA is winning for player A from state s ∈ Σcor if all s-runs
(runs departing from s) which are compliant with f

A
are winning for A. A winning

strategy for player C is defined similarly. We denote by W
A

the set of states from which
there exists a winning strategy for player A. The set W

C
is defined similarly.

An SGS G is called determinate if the sets W
A

and W
C

define a partition on Σcor.
It is well known that every SGS is determinate [GH82].

3.1 µ-Calculus

We define µ-calculus [Koz83] over game structures. Consider two FDS’s D
C

: 〈V
C

, O
C

,
Θ

C
, ρ

C
, J

C
,C

C
〉, D

A
: 〈V

A
, O

A
, Θ

A
, ρ

A
, J

A
, C

A
〉 and the SGS G : 〈D

C
,D

A
〉. For every

variable v ∈ V
C
∪ V

A
the formula v = i where i is a constant that is type consistent

with v is an atomic formula (p). Let V = {X, Y, . . .} be a set of relational variables.
Each relational variable can be assigned a subset of Σcor. The µ-calculus formulas are
constructed as follows.

f ::= p | ¬p | X | f ∨ f | f ∧ f | � f | � f | µXf | νXf

A formula f is interpreted as the set of states in Σcor in which f is true. We write such
set of states as [[f]]eG where G is the SGS and e : V → 2Σcor is an environment. The set
[[f]]eG is defined for the operators � and � as follows.

– [[� f]]eG = {s ∈ Σcor | ∀t, (s, t) |= ρ
C
→ ∃s′, (t, s′) |= ρ

A
and s′ ∈ [[f]]eG}.

– [[� f]]eG = {s ∈ Σcor | ∃t, (s, t) |= ρ
C

and ∀s′, (t, s′) |= ρ
A
→ s′ ∈ [[f]]eG}.

For the rest of the operators the semantics is as in the usual definition [Eme97]. The
alternation depth of a formula is the number of alternations in the nesting of least and
greatest fixpoints. A µ-calculus formula defines a symbolic algorithm for computing [[f]]
[EL86]. For a µ-calculus formula of alternation depth k, the run time of this algorithm
is |Σcor|k. For a full exposition of µ-calculus we refer the reader to [Eme97].

4 Trace Inclusion and Fair Simulation

In the following, we summarize our solution to verifying abstraction between two FDS’s
systems, or equivalently, trace inclusion between two Streett automata.

Let D
C

: 〈V
C

,O
C

, Θ
C

, ρ
C

, J
C

, C
C
〉 and D

A
: 〈V

A
, O

A
, Θ

A
, ρ

A
, J

A
, C

A
〉 be two

comparable FDS’s. We want to verify that D
C

� D
A

. The best algorithm for solv-
ing abstraction is exponential [Saf92]. We therefore advocate to verify fair simulation

388 Yonit Kesten, Nir Piterman, and Amir Pnueli

[HKR97] as a precondition for abstraction. We adopt the definition of fair simulation
presented in [HKR97]. Given D

C
and D

A
, we form the SGS G : 〈D

C
,D

A
〉. We say that

S ⊆ Σcor is a fair-simulation between DA and DC if there exists a strategy fA such that
every f

A
-compliant run σ from a state s ∈ S is winning for player A and every even

state in σ is in S. We say that D
A

fairly-simulates D
C

, denoted D
C

�f D
A

, if there
exists a fair-simulation S such that for every state s

C
∈ Σ

C
satisfying s

C
|= Θ

C
there

exists a state t ∈ S such that t ⇓V
C

= s
C

and t |= Θ
A

.

Claim. [HKR97] If DC �f DA then DC � DA . The reverse implication does not hold.

It is shown in [HKR97] that we can determine whetherD
C
�f D

A
by computing the set

W
A
⊆ Σcor of states which are winning for A in the SGS G. If for every state s

C
∈ Σc

satisfying s
C
|= Θ

C
there exists some state t ∈ W

A
such that t ⇓V

C
= s

C
and t |= Θ

A
,

then D
C
�f D

A
.

Let kC = |CC | (number of compassion requirements of DC), kA = |CA |, n =
|Σ

C
| · |Σ

A
| · (3k

C + k
A
), and f = 2k

C
+ k

A
.

Theorem 1. [HKR97,KV98] We can solve fair simulation for D
C

and D
A

in time
O(n2f+1 · f !).

As we are interested in fair simulation as a precondition for trace inclusion, we take a
more economic approach. Given two FDS’s, we first convert the two to JDS’s using the
construction in Section 2. We then solve the simulation game for the two JDS’s.

Consider the FDS’s D
C

and D
A

. Let DB

C
: 〈V B

C
,OB

C
,Θ

B

C
, ρ

B

C
, J B

C
, ∅〉 and DB

A
:

〈V B

A
,OB

A
,Θ

B

A
, ρ

B

A
, J B

A
, ∅〉 be the JDS’s equivalent to D

C
and D

A
. Consider the game

G : 〈DB

C
,DB

A
〉. The winning condition for this game is:

∧
J

C
∈JB

C

JC →
∧

J
A
∈JB

A

JA .

We call such games generalized Streett[1] games. We claim that the formula in Equa-
tion (1) evaluates the set W

A
of states winning for player A. Intuitively, the greatest

fixpoint νX evaluates the set of states from which player A can control the run to re-
main in ¬J

C

k states. The least fixpoint µY then evaluates the states from which player
A in a finite number of steps controls the run to avoid one of the justice conditions J

C

k .
This represents the set H of all states from which player A wins as a result of the run of
DB

C
violating justice. Finally, the outermost greatest fixpoint νZj adds to H the states

from which player A can force the run to satisfy the fairness requirement of DB

A
.

ϕ = ν




Z1

Z2

...
Zn







µY
(
∨m

k=1νX(J
A

1 ∧ � Z2 ∨ � Y ∨ ¬J
C

k ∧ � X)
)

µY
(
∨m

k=1νX(J
A

2 ∧ � Z3 ∨ � Y ∨ ¬J
C

k ∧ � X)
)

...

µY
(
∨m

k=1νX(J
A

n ∧ � Z1 ∨ � Y ∨ ¬J
C

k ∧ � X)
)




(1)

Claim. W
A

= [[ϕ]]

The proof of the claim will appear in the full version.
Using the algorithm in [EL86] the set [[ϕ]] can be evaluated symbolically.

Bridging the Gap between Fair Simulation and Trace Inclusion 389

Theorem 2. The SGS G can be solved in time O((|ΣB

C
| · |ΣB

A
| · |J B

C
| · |J B

A
)3).

To summarize, in order to use fair simulation as a precondition for trace inclusion we
propose to convert the FDS’s into JDS’s and use the formula in Equation (1) to evaluate
symbolically the winning set for player A.

Corollary 1. Given D
C

and D
A

, we can determine whether DB

C
�f DB

A
in time pro-

portional to O((|ΣC | · 2k
C · |ΣA | · 2k

A · (kC + |JC | + kA + |JA |))3).

5 Closing the Gap

As discussed in the introduction, fair simulation implies trace inclusion but not the
other way around. In [AL91], fair simulation is considered in the context of infinite-
state systems. It is easy to see that the definition of fair simulation given in [AL91], is
the infinite-state counterpart of fair simulation as defined in [HKR97], but restricted to
memory-less strategies. As shown in [AL91], if we are allowed to add to the concrete
system auxiliary history and prophecy variables, then the fair simulation method becomes
complete for verifying trace inclusion.

Following [AL91], we allow the concrete system D
C

to be augmented with a set
V

H
of history variables and a set V

P
of prophecy variables. We assume that the three

sets, VC , VH , and VP , are pairwise disjoint. The result is an augmented concrete system
D∗

C
: 〈V ∗

C
, Θ∗

C
, ρ∗

C
,J

C
, C

C
〉, where

V ∗
C

= VC ∪ VH ∪ VP Θ∗
C

= ΘC ∧
∧

x∈V
H

(x = fx(VC , VP))
ρ∗

C
= ρC ∧

∧
x∈V

H
x′ = gx(V ∗

C
, V ′

C
, V ′

P
) ∧

∧
y∈V

P
y = ϕy(VC)

In these definitions, fx and gx are state functions, while each ϕy(V
C
) is a future

temporal formula referring only to the variables in VC . Thus, unlike [AL91], we use
transition relations to define the values of history variables, and future LTL formulas to
define the values of prophecy variables. The clause y = ϕy(V

C
) added to the transition

relation implies that at any position j ≥ 0, the value of the boolean variable y is 1 iff
the formula ϕy(V

C
) holds at this position.

The augmentation scheme proposed above is non-constraining. Namely, for every
computation σ of the original concrete system D

C
there exists a computation σ∗ of D∗

C

such that σ and σ∗ agree on the values of the variables in V
C

.
Handling of the prophecy variables definitions is performed by constructing an ap-

propriate temporal tester [KP00b] for each of the future temporal formulas appearing
in the prophecy schemes, and composing it with the concrete system.

A similar augmentation of the concrete system has been used in [KPSZ02] in a
deductive proof of abstraction, based on [AL91] abstraction mapping.

Although fair simulation is verified algorithmically, user intervention is still needed
for choosing the appropriate temporal properties to be observed in order to ensure com-
pleteness with respect to trace inclusion.

We currently conjecture that we do not really need history variables, and we hope to
prove this conjecture in a fuller version of this paper.

390 Yonit Kesten, Nir Piterman, and Amir Pnueli

6 Examples

Late and Early. Consider, for example, the programs EARLY and LATE in Fig. 2 (graphic
representation in Fig. 1). The observable variables are y and z. Wlog, assume that the
initial values of all variables are 0. This is a well known example showing the difference
between trace inclusion and simulation. Indeed, the two systems have the same set of
traces. Either y assumes 1 or y assumes 2. On the other hand, EARLY does not simulate
LATE. This is because we do not know whether state 〈�1, x:0, z:1〉 of system LATE

should be mapped to state 〈�1, x:1, z:1〉 or state 〈�1, x:2, z:1〉 of system EARLY. Our
algorithm shows that indeed EARLY does not simulate LATE.

EARLY ::


 �0 : x, z := {1, 2}, 1

�1 : z := 2
�2 : y, z := x, 3


 LATE ::


 �0 : z := 1

�1 : x, z := {1, 2}, 2
�2 : y, z := x, 3




Fig. 2. Programs EARLY and LATE.

Since EARLY and LATE have the same set of traces, we should be able to augment
LATE with prophecy variables that tell EARLY how to simulate it. In this case, we add
a tester Tϕ for the property ϕ : � (y = 1). The tester introduces a new boolean
variable xϕ which is true at a state s iff s |= ϕ. Whenever Tϕ indicates that LATE will
eventually choose x = 1, EARLY can safely choose x = 1 in the first step. Whenever
the tester for � (y = 1) indicates that LATE will never choose x = 1, EARLY can
safely choose x = 2 in the first step. Denote by LATE+ the combination of LATE with
the tester � (y = 1). Applying our algorithm to LATE+ and EARLY, indicates that
LATE+ �f EARLY implying Obs(LATE) ⊆ Obs(EARLY).
Fair Discrete Modules and Open Computations. For the main application of our
technique, we need the notions of an open system and open computations.

We define a fair discrete module (FDM) to be a system M : 〈V,O, W, Θ, ρ,J , C〉
consisting of the same components as an FDS plus the additional component:

• W ⊆ V : A set of owned variables. Only the system can modify these variables. All
other variables can also be modified by steps of the environment.

An (open) computation of an FDM M is an infinite sequence σ : s0, s1, . . . of V -states
which satisfies the requirements of initiality, justice, and compassion as any other FDS,
and the requirement of consecution, reformulated as follows:

• Consecution: For each j = 0, 1, ...,
s2j+1[W] = s2j [W]. That is, s2j+1 and s2j agree on the interpretation of
the owned variables W .
s2j+2 is a ρ-successor of s2j+1.

Thus, an (open) computation of an FDM consists of a strict interleaving of system with
environment actions, where the system action has to satisfy ρ, while the environment
step is only required to preserve the values of the owned variables.

Bridging the Gap between Fair Simulation and Trace Inclusion 391

Two FDM’s D1 and D2 are compatible if W1∩W2 = ∅ and V1∩V2 = O1∩O2. The
asynchronous parallel composition of two compatible FDM’s M = M1 ‖M2 is defined
similarly to the case of composition of two FDS’s where, in addition, the owned variables
of the newly formed module is obtained as the union of WM1 and WM2 . Module M2 is
said to be a modular abstraction of a comparable module M1, denoted M1 �

M
M2, if

Obs(M1) ⊆ Obs(M2). A unique feature of the modular abstraction relation is that it is
compositional, i.e. M1 �

M
M2 implies M1 ‖M �

M
M2 ‖M . This compositionality

allows us to replace a module M1 in any context of parallel composition by another
module M2 which forms a modular abstraction of M1 and obtain an abstraction of the
complete system, as needed in the network invariants method.

It is straightforward to reduce the problem of checking modular abstraction be-
tween modules to checking abstraction between FDS’s using the methods presented
in this paper. This reduction is based on a transformation which, for a given FDM

M : 〈V,O, W, Θ, ρ,J , C〉, constructs an FDS D
M

: 〈Ṽ ,O, Θ̃, ρ̃,J , C〉, such that the set
of observations of M is equal to the set of observations of DM . The new components of
D

M
are given by:

Ṽ : V ∪ {t : boolean} Θ̃ : Θ ∧ t
ρ̃ : ρ ∧ ¬t ∧ t′ ∨ pres(W) ∧ t ∧ ¬t′

Thus, system DM uses a fresh boolean variable t to encode the turn taking between
system and environment transitions.
The Dining Philosophers. As a second example, we consider a solution to the dining
philosophers problem.As originally described by Dijkstra, n philosophers are seated
around a table, with a fork between each two neighbors. In order to eat a philosopher
needs to acquire the forks on both its sides. A solution to the problem consists of protocols
to the philosophers (and, possibly, forks) that guarantee that no two adjacent philosophers
eat at the same time and that every hungry philosopher eventually eats.

A solution to the dining philosophers is presented in [KPSZ02], in terms of binary
processes. A binary process Q(x; y) is an FDM with two observable variables x and y.
Two binary processes Q and R can be composed to yield another binary process, using
the modular composition operator ◦ defined by

(Q ◦R)(x; z) = [restrict y in Q(x; y) ‖ R(y; z)]

where restrict y is an operator that removes variable y from the set of observable vari-
ables and places it in the set of owned variables.

In Fig. 3a we present a chain of n deterministic philosophers, each represented by a
binary process Q(left; right). This solution is studied in [KPSZ02] as an example of para-
metric systems, for which we seek a uniform verification (i.e. a single verification valid
for any n). The uniform verification is presented using the network invariant method,
which calls for the identification of a network invariant I which can safely replace the
chain Qn. The adequacy of the network invariant is verified using an inductive argument
which calls for the verification of abstractions. In [KPSZ02] we present a deductive
proof to the dining philosophers, based on [AL91] abstraction mapping method, using
two different network invariants.

392 Yonit Kesten, Nir Piterman, and Amir Pnueli

(Qn) where
Q(left; right) ::


loop forever do


�0 : NonCritical
�1 : request left
�2 : request right
�3 : Critical
�4 : release left
�5 : release right







I(left; right) ::
loop forever do[

�0 : request left
�1 : release left

]
 ‖


 loop forever do[

m0 : request right
m1 : release right

] 


J : ¬at−m1 C : (right,¬at−�1)

Fig. 3. (a) Program DINE. (b) the two halves abstraction.

Here, we consider the same invariants, and verify all the necessary abstractions using
our algorithm for fair simulation. In both cases, no auxiliary variables are needed.

The “Two-Halves” Abstraction. The first network invariant I(left; right) is presented
in Fig. 3b and can be viewed as the parallel composition of two “one-sided” philosophers.
The compassion requirement reflects the fact that I can deadlock at location �1 only if,
from some point on, the fork on the right (right) is continuously unavailable.

To establish that I is a network invariant, we verify the abstractions (Q ◦Q) �
M

I and
(Q ◦ I) �

M
I using the fair simulation algorithm.

The “Four-by-Three” Abstraction. An alternative network invariant is obtained by
taking I = Q3, i.e. a chain of 3 philosophers. To prove that this is an invariant, it is
sufficient to establish the abstraction Q4 �

M
Q3, that is, to prove that 3 philosophers

can faithfully emulate 4 philosophers.

Experimental Results. We include in our implementation the following steps:

– Removal of all unfeasible states from both systems. Thus, the first step evaluates
the set of feasible states for each system [KPR98].

– Recall that fair simulation implies simulation [HKR97]. Let S ⊆ Σcor denote the
maximal simulation relation. To optimize the algorithm we further restrict player
A’s moves to S instead of Σcor.

The following summarizes the running time for some of our experiments.

(Q ◦Q) �
M

I 44 secs. (Q ◦ I) �
M

I 6 secs. Q4 �
M

Q3 178 secs.

7 Acknowledgments

We thank Orna Kupferman for suggesting using fair simulation for algorithmically verifying
abstraction of reactive systems.

Bridging the Gap between Fair Simulation and Trace Inclusion 393

References

[AL91] M. Abadi and L. Lamport. The existence of refinement mappings. TCS, 82, 1991.
[BR96] B. Bloom and R.Paige. Transformational design and implementation of a new efficient

solution to the ready simulation problem. SCP, 24:189–220, 1996.
[Cho74] Y. Choueka. Theories of automata on ω-tapes: A simplified approach. JCSS, 1974.
[dAHM01] L. de Alfaro, T.A. Henzinger, and R. Majumdar. From verification to control: dynamic

programs for omega-regular objectives. In 16th LICS, 2001.
[EL86] E. A. Emerson and C. L. Lei. Efficient model-checking in fragments of the proposi-

tional modal µ-calculus. In 1st LICS, 267–278, 1986.
[Eme97] E.A. Emerson. Model checking and the µ-calculus. In Descriptive Complexity and

Finite Models, pages 185–214. AMS, 1997.
[GH82] Y. Gurevich and L.A. Harrington. Automata, trees and games. In 14th STOC, 1982.
[GL94] O. Grumberg and D.E. Long. Model checking and modular verification. TOPLAS,

16(3):843–871, 1994.
[HHK95] M.R. Henzinger, T.A. Henzinger, and P.W. Kopke. Computing simulations on finite

and infinite graphs. In 36th FOCS, 453–462, 1995.
[HKR97] T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. In 8th CONCUR,

LNCS 1243, 273–287, 1997.
[HR00] T. Henzinger and S. Rajamani. Fair bisimulation. In 6th TACAS LNCS 1785, 2000.
[Jur00] M. Jurdzinski. Small progress measures for solving parity games. In 17th STACS,

LNCS 1770, 290–301, 2000.
[Koz83] D. Kozen. Results on the propositional µ-calculus. TCS, 27:333–354, 1983.
[KP00a] Y. Kesten and A. Pnueli. Control and data abstractions: The cornerstones of practical

formal verification. STTT, 2(1):328–342, 2000.
[KP00b] Y. Kesten and A. Pnueli. Verification by finitary abstraction. IC, 163:203–243, 2000.
[KPR98] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear temporal logic

specifications. In 25th ICALP, LNCS 1443, 1–16. 1998.
[KPSZ02] Y. Kesten, A. Pnueli, E. Shahar, and L. Zuck. Network invariants in action. In 13th

CONCUR, LNCS 2421, 101–105, 2002.
[KPV00] O. Kupferman, N. Piterman, and M.Y. Vardi. Fair equivalence relations. In 20th

FSTTCS, LNCS 1974, 151–163. 2000.
[KV98] O. Kupferman and M.Y. Vardi. Weak alternating automata and tree automata empti-

ness. In 30th STOC, 224–233, 1998.
[LT87] K. Lodaya and P.S. Thiagarajan. A modal logic for a subclass of events structures. In

14th ICALP, LNCS 267, 290–303, 1987.
[MAB+94] Z. Manna, A. Anuchitanukul, N. Bjørner, A. Browne, E. Chang, M. Colón, L. De

Alfaro, H. Devarajan, H. Sipma, and T.E. Uribe. STeP. Tech. Report, Stanford 1994.
[Mil71] R. Milner. An algebraic definition of simulation between programs. IJCAI, 1971.
[MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-

Verlag, New York, 1995.
[Saf92] S. Safra. Exponential determinization for ω-automata with strong-fairness acceptance

condition. In 24th STOC, 1992.
[Var91] M. Y. Vardi. Verification of concurrent programs – the automata-theoretic framework.

APAL, 51:79–98, 1991.
[WL89] P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with

network invariants. In AVMFS, LNCS 407, 68–80. 1989.

	1 Introduction
	2 The Computational Model
	3 Simulation Games
	3.1 µ-Calculus

	4 Trace Inclusion and Fair Simulation
	5 ClosingtheGap
	6 Examples
	7 Acknowledgments
	References

