
A Game-Based Framework for CTL Counterexamples
and 3-Valued Abstraction-Refinement�

Sharon Shoham and Orna Grumberg

Computer Science Department, Technion, Haifa, Israel,
{sharonsh,orna}@cs.technion.ac.il

Abstract. This work exploits and extends the game-based framework of CTL
model checking for counterexample and incremental abstraction-refinement. We
define a game-based CTL model checking for abstract models over the 3-valued
semantics, which can be used for verification as well as refutation. The model
checking may end with an indefinite result, in which case we suggest a new no-
tion of refinement, which eliminates indefinite results of the model checking. This
provides an iterative abstraction-refinement framework. It is enhanced by an in-
cremental algorithm, where refinement is applied only where indefinite results
exist and definite results from prior iterations are used within the model checking
algorithm. We also define the notion of annotated counterexamples, which are
sufficient and minimal counterexamples for full CTL. We present an algorithm
that uses the game board of the model checking game to derive an annotated
counterexample in case the examined system model refutes the checked formula.

1 Introduction

This work exploits and extends the game-based framework [31] of CTL model checking
for counterexample and incremental abstraction-refinement.

The first goal of this work is to suggest a game-based new model checking al-
gorithm for the branching-time temporal logic CTL [7] in the context of abstraction.
Model checking is a successful approach for verifying whether a system model M
satisfies a specification ϕ, written as a temporal logic formula. Yet, concrete (regular)
models of realistic systems tend to be very large, resulting in the state explosion prob-
lem. This raises the need for abstraction. Abstraction hides some of the system details,
thus resulting in smaller models.

Two types of semantics are available for interpreting CTL formulae over abstract
models. The 2-valued semantics defines a formula ϕ to be either true or false in an
abstract model. True is guaranteed to hold for the concrete model as well, whereas false
may be spurious. The 3-valued semantics [14] introduces a new truth value: the value
of a formula on an abstract model may be indefinite, which gives no information on its
value on the concrete model. On the other hand, both satisfaction and falsification w.r.t
the 3-valued semantics hold for the concrete model as well. That is, abstractions over
3-valued semantics are conservative w.r.t. both positive and negative results. They thus
give precise results more often both for verification and falsification.

� A fuller version appears in http://www.cs.technion.ac.il/users/orna/publications.html

W.A. Hunt, Jr. and F. Somenzi (Eds.): CAV 2003, LNCS 2725, pp. 275–287, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



276 Sharon Shoham and Orna Grumberg

Following the above observation, we define a game-based model checking algo-
rithm for abstract models w.r.t. the 3-valued semantics, where the abstract model can be
used for both verification and falsification. However, a third case is now possible: model
checking may end with an indefinite answer. This is an indication that our abstraction
cannot determine the value of the checked property in the concrete model and therefore
needs to be refined. The traditional abstraction-refinement framework [19,6] is designed
for 2-valued abstractions, where false may be a false-alarm, thus refinement is aimed
at eliminating false results. As such, it is usually based on a counterexample analysis.
Unlike this approach, the goal of our refinement is to eliminate indefinite results and
turn them into either definite true or definite false.

An advantage of this work lies in the fact that the refinement is then applied only
to the indefinite part of the model. Thus, the refined abstract model does not grow un-
necessarily. In addition, model checking of the refined model uses definite results from
previous runs, resulting in an incremental model checking. Our abstraction-refinement
process is complete in the sense that for a finite concrete model it will always terminate
with a definite “yes” or “no” answer.

The next goal of our work is to use the game-based framework in order to pro-
vide counterexamples for full CTL. When model checking a model M with respect to
a property ϕ, if M does not satisfy ϕ then the model checker tries to return a coun-
terexample. Typically, a counterexample is a part of the model that demonstrates the
reason for the refutation of ϕ on M . Providing counterexamples is an important feature
of model checking which helps tremendously in the debugging of the verified system.

Most existing model checking tools return as a counterexample either a finite path
(for refuting formulae of the form AGp) or a finite path followed by a cycle (for refuting
formulae of the form AFp1) [5,7]. Recently, this approach has been extended to pro-
vide counterexamples for all formulae of the universal branching-time temporal logic
ACTL [9]. In this case the part of the model given as the counterexample has the form
of a tree. Other works also extract information from model checking [29,12,25,32]. Yet,
it is presented in the form of a temporal proof, rather than a part of the model.

In this work we provide counterexamples for full CTL. As for ACTL, counterex-
amples are part of the model. However, when CTL is considered, we face existential
properties as well. To prove refutation of an existential formula Eψ, one needs to show
an initial state from which all paths do not satisfy ψ. Thus, the structure of the coun-
terexample becomes more complex. Having such a complex counterexample, it might
not be easy for the user to analyze it by looking at the subgraph of M alone. We there-
fore annotate each state on the counterexample with a subformula of ϕ that is false in
that state. The annotating subformulae being false in the respective states, provide the
reason for ϕ to be false in the initial state. Thus, the annotated counterexample gives a
convenient tool for debugging. We propose an algorithm that constructs an annotated
counterexample and prove that it is sufficient and minimal.

To conclude, the main contributions of this work are:

– A game-based CTL model checking for abstract models over the 3-valued seman-
tics, which can be used for verification as well as refutation.

1 AGp means “for every path, in every state on the path, p holds”, whereas AFp means “along
every path there is a state which satisfies p”.



Framework for CTL Counterexamples and 3-Valued Abstraction-Refinement 277

– A new notion of refinement, that eliminates indefinite results of the model checking.
– An incremental model checking within the framework of abstraction-refinement.
– A sufficient and minimal counterexample for full CTL.

Related Work. Other researchers have suggested abstraction-refinement mechanisms
for various branching time temporal logics. In [21] the tearing paradigm is presented
as a way to obtain lower and upper approximations of the system . Yet, their technique
is restricted to ACTL or ECTL. In [27,28] the full propositional mu-calculus is consid-
ered. In their abstraction, the concrete and abstract systems share the same state space.
The simplification is based on taking supersets and subsets of a given set with a more
compact BDD representation. In [23] full CTL is handled. However, the verified system
has to be described as a cartesian product of machines. The initial abstraction considers
only machines that directly influence the formula and in each iteration the cone of in-
fluence is extended in a BFS manner. [1] handles ACTL and full CTL. Their abstraction
collapses all states that satisfy the same subformulae of ϕ into an abstract state. Thus,
computing the abstract model is at least as hard as model checking. Instead, they use
partial knowledge on the abstraction function and gain information in each refinement.

Other researchers [14] have suggested to evaluate a property w.r.t the 3-valued se-
mantics by reducing the problem to two 2-valued model checking problems: one for
satisfaction and one for refutation. Such a reduction results in the same answer as our
algorithm. Yet, it is then not clear how to guide the refinement, in case it is needed.

The game-based approach to model checking, used in this work, is closely related
to the Automata-theoretic approach [18], as described in [22]. Thus, our work can also
be described in this framework, using alternating automata.

Organization. The rest of the paper is organized as follows. In Section 2 we give some
background for game-based CTL model checking, abstractions and the 3-valued se-
mantics. Due to technical reasons, we then start with annotated counterexamples. In
Section 3 we describe how to construct an annotated counterexample for full CTL and
show that it is sufficient and minimal. In Section 4 we extend the game-based model
checking to abstract models using the 3-valued semantics. In Section 5 we present our
refinement technique, as well as an incremental abstraction-refinement framework.

2 Preliminaries

Let AP be a finite set of atomic propositions. We define the set Lit of literals over AP
to be the set AP ∪ {¬p : p ∈ AP}. We identify ¬¬p with p. In this paper we consider
the logic CTL in negation normal form, defined as follows: ϕ ::= tt | ff | l | ϕ∧ϕ | ϕ∨
ϕ | Aψ | Eψ where l ranges over Lit, and ψ is defined by ψ ::= Xϕ | ϕUϕ | ϕV ϕ.

The (concrete) semantics of CTL formulae is defined with respect to a Kripke struc-
ture (KS) M = (S, S0,→, L), where S is a finite set of states, S0 ⊆ S is a set of initial
states, →⊆ S × S is a transition relation, which must be total and L : S → 2Lit is a
labeling function, such that for every state s and every p ∈ AP , p ∈ L(s) iff ¬p �∈ L(s).

[(M, s) |= ϕ] = tt (= ff) means that the CTL formula ϕ is true (false) in state s of a
KS M . The formal definition can be found in [7]. M satisfies ϕ, denoted [M |= ϕ] = tt,
if ∀s0 ∈ S0 : [(M, s0) |= ϕ] = tt. Otherwise, M refutes ϕ, denoted [M |= ϕ] = ff.



278 Sharon Shoham and Orna Grumberg

Definition 1. Given a CTL formula ϕ of the form Q(ϕ1Uϕ2) or Q(ϕ1V ϕ2), where
Q ∈ {A, E}, its expansion is defined by:
if ϕ = Q(ϕ1Uϕ2) then exp(ϕ) = {ϕ, ϕ2 ∨ (ϕ1 ∧ QXϕ), ϕ1 ∧ QXϕ, QXϕ}
if ϕ = Q(ϕ1V ϕ2) then exp(ϕ) = {ϕ, ϕ2 ∧ (ϕ1 ∨ QXϕ), ϕ1 ∨ QXϕ, QXϕ}

2.1 Game-Based Model Checking Algorithm

Given a (concrete) KS M = (S, S0,→, L) and a CTL formula ϕ, the model check-
ing game [31,22] of M and ϕ is defined as follows. Its board is S × sub(ϕ), where
sub(ϕ) is the set of subformulae of ϕ, defined as usual, except that if ϕ = A(ϕ1Uϕ2),
E(ϕ1Uϕ2), A(ϕ1V ϕ2) or E(ϕ1V ϕ2) then sub(ϕ) = exp(ϕ) ∪ sub(ϕ1) ∪ sub(ϕ2) .

The model checking game is played by two players, ∀belard, the refuter, and ∃loise,
the prover. A play is a (possibly infinite) sequence C0 →p0 C1 →p1 C2 →p2 . . .
of configurations, where C0 ∈ S0 × {ϕ}, Ci ∈ S × sub(ϕ) and pi ∈ {∀, ∃}. The
subformula in Ci determines which player pi makes the next move.

Possible Moves at Each Step

1. Ci = (s, ff), Ci = (s, tt), or Ci = (s, l) where l ∈ Lit: the play is finished. Such
configurations are called terminal configurations.

2. Ci = (s, AXϕ): ∀belard chooses a transition s → s′ and Ci+1 = (s′, ϕ).
3. Ci = (s, EXϕ): ∃loise chooses a transition s → s′ and Ci+1 = (s′, ϕ).
4. Ci = (s, ϕ1 ∧ ϕ2): ∀belard chooses j ∈ {1, 2} and Ci+1 = (s, ϕj).
5. Ci = (s, ϕ1 ∨ ϕ2): ∃loise chooses j ∈ {1, 2} and Ci+1 = (s, ϕj).
6. Ci = (s, Q(ϕ1Uϕ2)), Q ∈ {A, E}: Ci+1 = (s, ϕ2 ∨ (ϕ1 ∧ QXQ(ϕ1Uϕ2))).
7. Ci = (s, Q(ϕ1V ϕ2)), Q ∈ {A, E}: Ci+1 = (s, ϕ2 ∧ (ϕ1 ∨ QXQ(ϕ1V ϕ2))).

In configurations 6-7 the move is deterministic, thus any player can make the move.
A play is maximal iff it is infinite or ends in a terminal configuration. In [31] it is shown
that a play is infinite iff exactly one subformula of the form AU , EU , AV or EV occurs
in it infinitely often. Such a subformula is called a witness.

Winning Criteria. ∀belard wins the play iff (1) the play is finite and ends in a terminal
configuration of the form Ci = (s, ff), or Ci = (s, l), where l �∈ L(s), or (2) the play is
infinite and the witness is AU or EU . ∃loise wins otherwise.

The model checking game consists of all the possible plays. A winning strategy is
a set of rules for a player, telling him how to move in the current configuration and
allowing him to win every play if he plays by the rules. All possible plays of a game
are captured in the game-graph. It is the graph whose nodes are the elements (configu-
rations) of the game board and whose edges are the possible moves of the players.

The model checking algorithm for the evaluation of [M |= ϕ] consists of two parts.
First, it constructs (part of) the game-graph. The evaluation of the truth value of ϕ in
M is then done by coloring the game-graph.

Game-Graph Construction and Its Properties. The subgraph of the game-graph that
is reachable from the initial configurations S0 × {ϕ} is constructed in a BFS or DFS
manner. It is denoted GM×ϕ = (N, E), where N ⊆ S × sub(ϕ). The nodes (configu-
rations) of GM×ϕ can be classified into three types. Terminal configurations are leaves



Framework for CTL Counterexamples and 3-Valued Abstraction-Refinement 279

in the game-graph. Nodes whose subformulae are of the form ϕ1 ∧ ϕ2 or AXϕ1 are
∧-nodes. Nodes whose subformulae are of the form ϕ1 ∨ ϕ2 or EXϕ1 are ∨-nodes.
Nodes whose subformulae are AU, EU, AV, EV can be considered either ∨-nodes or
∧-nodes. Sometimes we further distinguish between nodes whose subformulae are of
the form AXϕ (EXϕ) and other ∧-nodes (∨-nodes), by referring to them as AX-nodes
(EX-nodes). The edges in GM×ϕ are divided to progress edges, that originate in AX-
nodes or EX-nodes and reflect transitions of the KS, and auxiliary edges, which are the
rest. Each non-trivial strongly connected component (SCC) in GM×ϕ, i.e. an SCC with
one edge at least, contains exactly one witness and is classified as an AU , AV , EU , or
EV SCC, based on its witness.

Coloring Algorithm. The following Coloring Algorithm [3] labels each node in GM×ϕ

by T or F , depending on whether ∃loise or ∀belard has a winning strategy. GM×ϕ is
partitioned into its Maximal Strongly Connected Components (MSCCs), denoted Qi’s,
and an order ≤ is determined on them, such that an edge (n, n′), where n ∈ Qi and
n′ ∈ Qj , exists in GM×ϕ only if Qj ≤ Qi. Such an order exists because the MSCCs
form a directed acyclic graph (DAG). It can be extended to a total order ≤ arbitrarily.

The coloring algorithm processes the Qi’s according to ≤, bottom-up. Let Qi be the
smallest MSCC w.r.t ≤ that is not yet fully colored. Every outgoing edge of Qi leads to
a colored node or remains in the same set, Qi. The nodes of Qi are colored as follows.

1. Terminal nodes are colored by T if ∃loise wins in them, and by F otherwise.
2. An ∨-node (∧-node) is colored by T (F ) if it has a son that is colored by T (F ),

and by F (T ) if all its sons are colored by F (T ).
3. All the nodes in Qi that remain uncolored, after the propagation of these rules, are

colored according to the witness in Qi. They are colored by F if the witness is of
the form AU or EU , and are colored by T if the witness is of the form AV or EV .

The result of the coloring algorithm is a coloring function χ : N → {T, F}.

Theorem 1. [31] Let M be a KS, ϕ a CTL formula and (s, ϕ1) ∈ GM×ϕ. Then:
[(M, s) |= ϕ1] = tt (ff) ⇔ ∃loise (∀belard) has a winning strategy for the game
starting at (s, ϕ1) ⇔ (s, ϕ1) is colored by T (F ).

2.2 Abstraction

Abstract models preserving CTL need to have two transition relations [20,11]. This is
achieved by using Kripke Modal Transition Systems [17,13].

Definition 2. A Kripke Modal Transition System (KMTS) is a tuple M = (S, S0,
must−→,

may−→, L), where S is a finite set of states, S0 ⊆ S is a set of initial states,
must−→⊆ S × S

and
may−→⊆ S × S are transition relations such that

must−→⊆ may−→, and L : S → 2Lit is a
labeling function, s.t. for each state s and p ∈ AP , at most one of p and ¬p is in L(s).

We consider abstractions that collapse sets of concrete states into single abstract
states. Such abstractions can be described in the framework of Abstract Interpreta-
tion [24,11]. Let MC = (SC , S0C ,→, LC) be a (concrete) KS. Let (SA,�) be a poset
of abstract states and (γ : SA → 2SC , α : 2SC → SA) a Galois connection [10,24]



280 Sharon Shoham and Orna Grumberg

from (2SC ,⊆) to (SA,�). γ is the concretization function that maps each abstract state
to the set of concrete states that it represents. α is the abstraction function that maps
each set of concrete states to the abstract state that represents it.

An abstract model MA can then be defined as follows. The set of initial abstract
states S0A is defined such that s0a ∈ S0A iff there exists s0c ∈ S0C for which s0c ∈
γ(s0a). An abstract state sa is labeled by l ∈ Lit only if all the concrete states that
it represents are labeled by l. Thus, it is possible that neither p nor ¬p are in LA(sa).
The may-transitions are computed s.t. they represent (at least) every concrete transition:
if ∃sc ∈ γ(sa) and ∃s′c ∈ γ(s′a) s.t. sc → s′c, then sa

may−→ s′a. The must-transitions
represent concrete transitions that are common to all the concrete states represented by
the origin abstract state: sa

must−→ s′a only if ∀sc ∈ γ(sa) ∃s′c ∈ γ(s′a) s.t. sc → s′c. Other
constructions of abstract models, based on Galois connections, can be found in [11,15].

The relation H ∈ SC × SA, which is defined by (sc, sa) ∈ H iff sc ∈ γ(sa), then
forms a mixed simulation [11,13] from MC to the resulting abstract model MA.

[17] defines the 3-valued semantics of CTL over KMTSs, denoted [(M, s) |=3= ϕ],
preserving both satisfaction (tt) and refutation (ff) from the abstract model to the con-
crete one. However, a new truth value, ⊥, is introduced, meaning that the truth value
over the concrete model is not known and can be either tt or ff.

Theorem 2. [13] Let H ⊆ SC × SA be a mixed simulation relation from a KS MC to
a KMTS MA. Then for every (sc, sa) ∈ H and every CTL formula ϕ:

[(MA, sa) |=3= ϕ] = tt (ff) ⇒ [(MC , sc) |= ϕ] = tt (ff)

3 Using Games to Produce Annotated Counterexamples

In this section we describe how to construct an annotated counterexample from the
coloring of a game-graph for M and ϕ in case M does not satisfy ϕ.

First, the coloring algorithm is changed to identify and remember the cause of the
coloring of an ∧-node n that is colored by F . If n was colored by its sons, then cause(n)
is the son that was the first to be colored by F . If n was colored due to a witness, then
cause(n) is chosen to be one of its sons which resides on the same SCC and was colored
by witness as well. There must exist such a son, otherwise n would be colored by its
sons. Note that cause(n) depends on the execution of the coloring algorithm.

Given a game-graph GM×ϕ, for a KS M and a CTL formula ϕ, and given its color-
ing χ and an initial node n0 = (s0, ϕ) s.t. χ(n0) = F , the following algorithm finds an
annotated counterexample, denoted C, which is a subgraph of GM×ϕ colored by F .
Algorithm ComputeCounter
Initially: new = {(s0, ϕ)}, C = ∅.
while new �= ∅

n = remove (new)
- if n was already handled or if n is a terminal node - continue.
- if n is an ∨-node, then for each son n′ of n add n′ to new and (n, n′) to C.
- if n is an ∧-node, then add cause(n) to new and (n, cause(n)) to C.

Complexity. Algorithm ComputeCounter has a linear running time (in the worst
case) w.r.t the size of the game-graph GM×ϕ. The latter is bounded by O(|M | · |ϕ|).



Framework for CTL Counterexamples and 3-Valued Abstraction-Refinement 281

Note, that for the correctness of C it is mandatory to choose for an ∧-node the son
that caused the coloring of the node, and not any son that was colored by F .

Properties of the Computed Annotated Counterexample. C is a subgraph of GM×ϕ

s.t. for each node n ∈ C, χ(n) = F . It can be viewed as the part of the winning
strategy of the refuter that is sufficient to guarantee his victory. We formalize and prove
this notion in the next section. Intuitively, it is indeed a counterexample in the sense that
it points out the reasons for ϕ’s refutation on the model. Each node in C is marked by a
state s and a subformula ϕ1, s.t. χ((s, ϕ1)) = F , thus by Theorem 1, [s |= ϕ1] = ff. The
edges point out the reason (cause) for the refutation of a certain subformula in a certain
state: the refutation in an ∧-node is shown by refutation in one of its sons, whereas the
refutation in an ∨-node is shown by all its sons. Another important property is:

Lemma 1. C contains non-trivial SCCs iff at least one of the nodes in the SCC was
colored due to a witness. We conclude that non-trivial SCCs in C are AU - or EU -SCCs.

The property of C described in Lemma 1 implies that any non-trivial SCC that appears
in the annotated counterexample indicates a refutation of the U operator, which results,
at least partly, from an infinite path, where weak until is satisfied, but not strong until.

3.1 The Annotated Counterexample Is Sufficient and Minimal

In this section we first informally describe our requirements of a counterexample. We
then formalize them for annotated counterexamples and show that they are fullfilled by
the result of ComputeCounter. Generally speaking, for a sub-model to be a coun-
terexample, it is expected to: (1) falsify the given formula; (2) hold “enough” infor-
mation to explain why the model refutes the formula; and (3) be minimal in the sense
that removing any state or transition will not maintain 1 and 2. To formalize the second
requirement w.r.t an annotated counterexample, we need the following definitions.

Definition 3. Let G = (N, E) be a game-graph and let A be a subgraph of G. The
partial coloring algorithm of G w.r.t A works as follows. It is given an initial coloring
function χI : N \A → {T, F} and computes a coloring function for G. The algorithm
is identical to the (original) coloring algorithm, except for the addition of a new rule:

- A node n ∈ N \ A is colored by χI(n) and its color is not changed.
Any result of the partial coloring algorithm of G with respect to A is called a partial
coloring function of G with respect to A, denoted χ : N → {T, F}.

As opposed to the usual coloring algorithm that has only one possible result, the partial
coloring algorithm has several possible results, depending on the initial coloring func-
tion χI . Each one of them is considered a partial coloring function of G w.r.t A. By
definition, the usual coloring algorithm is a partial coloring algorithm of G w.r.t G.

Definition 4. Let G be a game-graph and let χ be the result of the coloring algorithm
on G. A subgraph A of G is independent of G if for each χ that is a partial coloring
function of G with respect to A, and for each n ∈ A, we have that χ(n) = χ(n).

Basically, a subgraph A is independent of G if its coloring is absolute in the sense that
all of its completions to the full game-graph do not change the color of any node in A.

We can now formalize the notion of an annotated counterexample.



282 Sharon Shoham and Orna Grumberg

Definition 5. Let G be a game-graph, and let χ be its coloring function, such that
χ(n0) = F for some initial node n0. A subgraph C̃ of G containing n0 is an annotated
counterexample if it satisfies the following conditions. (1) For each node n ∈ C̃, χ(n) =
F ; (2) C̃ is independent of G; and (3) C̃ is minimal.

The first two requirements in Definition 5 imply that C̃ is sufficient for explaining
why n0 is colored F : First it guarantees that all the nodes in C̃ are colored F . In addi-
tion, since C̃ is independent of G, we can conclude that regardless of the other nodes in
G, all the nodes in C̃ , and in particular n0, will be colored F . Thus, it also explains why
the model falsifies the formula. The third condition shows that C̃ is also “necessary”.

We now show that the result of ComputeCounter, denoted C, is indeed an anno-
tated counterexample. The first requirement is obviously fulfilled, as described earlier.
The following theorem states that C satisfies the other two conditions as well.

Theorem 3. C is independent of G. Moreover, C is minimal in the sense that removing
a node or an edge will result in a subgraph that is not independent of G.

The correctness of the first part of Theorem 3 strongly depends on the choice of
cause(n) as the son of an ∧-node in the algorithm ComputeCounter.

4 Game-Based Model Checking on Abstract Models

In this section we suggest a generalization of the game-based model checking algorithm
for evaluating a CTL formula ϕ over a KMTS M w.r.t the 3-valued semantics.

We start with the description of the 3-valued game. The main difference arises from
the fact that KMTSs have two types of transitions. Since the transitions of the model
are considered only in configurations with subformulae of the form AXϕ1 or EXϕ1,
these are the only cases where the rules of the play need to be changed. Intuitively, in
order to be able to both prove and refute each subformula, the game needs to allow the
players to use both may and must transitions in such configurations. The reason is that
for example, truth of a formula AXϕ1 should be checked upon may-transitions, but its
falseness should be checked upon must-transitions.

New Moves of the Game

2. if Ci = (s, AXϕ), then ∀belard chooses a transition s
must−→ s′ (for refutation) or

s
may−→ s′ (for satisfaction), and Ci+1 = (s′, ϕ).

3. if Ci = (s, EXϕ), then ∃loise chooses a transition s
must−→ s′ (for satisfaction) or

s
may−→ s′ (for refutation), and Ci+1 = (s′, ϕ).

Intuitively, the players use must-transitions in order to win, while they use may transi-
tions in order to prevent the other player from winning. As a result it is possible that
none of the players wins the play, i.e. the play ends with a tie. As before, a maxi-
mal play is infinite if and only if exactly one witness, which is either an AU ,EU ,AV
or EV -formula, appears in it infinitely often. However, the winning rules become more
complicated. A player can only win the play if he or she are “consistent” in their moves:



Framework for CTL Counterexamples and 3-Valued Abstraction-Refinement 283

Definition 6. A player is said to play consistently if in each configuration where he
proceeds over the transitions of the model, his move is based on a

must−→ transition.

New Winning Criteria

– ∀belard wins a play iff he plays consistently and in addition one of the following
holds: (1) The play is finite and ends in a configuration Ci = (s, ff) or (s, l), where
¬l ∈ L(s); or (2) The play is infinite and the witness is of the form AU or EU .

– ∃loise wins a play iff she plays consistently and in addition one of the following
holds: (1) the play is finite and ends in configuration Ci = (s, tt) or (s, l), where
l ∈ L(s); or (2) the play is infinite and the witness is of the form AV or EV .

– Otherwise, the play ends with a tie.

Theorem 4. Let M be a KMTS and ϕ a CTL formula. Then, for each s ∈ S:

1. [(M, s) |=3= ϕ] = tt iff ∃loise has a winning strategy for the game starting at (s, ϕ).
2. [(M, s) |=3= ϕ] = ff iff ∀belard has a winning strategy for the game starting at (s, ϕ).
3. [(M, s) |=3= ϕ] =⊥ iff none of them has a winning strategy for the game from (s, ϕ).

In order to use this correspondence for model checking, we generalize the game-
based model checking algorithm. The (3-valued) game-graph, denoted GM×ϕ, is con-
structed as in the “concrete” case. Its nodes, denoted N , are again classified as ∧-nodes,
∨-nodes, AX-nodes or EX-nodes. Similarly, the edges are classified as progress edges
or auxiliary edges. But now, we distinguish between two types of progress edges: Edges
that are based on must-transitions are referred to as must-edges. Edges that are based on
may-transitions are referred to as may-edges. A node n′ is a may-son (must-son) of the
node n if there exists a may-edge (must-edge) from n to n′. An SCC in the game-graph
is a may-SCC (must-SCC) if all its progress edges are may-edges (must-edges).

The coloring algorithm of the 3-valued game-graph needs to be adapted as well.
First, a new color, denoted ?, is introduced for configurations in which none of the
players has a winning strategy. Second, the partition to Qi’s that is based on MSCCs is
now based on may-MSCCs (note that

must−→⊆ may−→).

The (3-Valued) Coloring Algorithm

Partition and Order. GM×ϕ is partitioned into its may-MSCCs, denoted Q′
is. A (total)

order ≤ is determined on them in the same way as for the concrete case.

Coloring. As before, the coloring algorithm processes the Qi’s bottom-up. Let Qi be
the smallest set w.r.t ≤ that is not yet fully colored. Its nodes are colored in two phases.

1. Sons-coloring phase. Apply the following rules to Qi until none is applicable.
– A terminal node is colored by T if ∃loise wins in it, by F if ∀belard wins in it,

and by ? otherwise.
– An AX-node (EX-node) is colored by:

• T (F ) if all its may-sons are colored T (F ).
• F (T ) if it has a must-son that is colored F (T ).
• ? if all its must sons are colored T (F ) or ? and it has a may-son that is

colored F (T ) or ?.



284 Sharon Shoham and Orna Grumberg

– An ∧-node (∨-node), other than AX-node (EX-node), is colored by:
• T (F ) if both its sons are colored T (F ).
• F (T ) if it has a son that is colored F (T ).
• ? if it has a son that is colored ? and the other is colored ? or T (F ).

2. Witness-coloring phase. If after the propagation of the rules of phase 1 there are still
uncolored nodes in Qi, then Qi must be a non-trivial may-MSCC that has exactly
one witness. Its uncolored nodes are colored according to the witness, as follows.

– The witness is of the form A(ϕ1Uϕ2) or E(ϕ1Uϕ2):
(a) Repeatedly color ? each node in Qi satisfying one of the following.

• An ∧-node (AX-node) that all its (must) sons are colored T or ?.
• An ∨-node (EX-node) that has a (may) son that is colored T or ?.

(b) Color the remaining nodes in Qi by F .
– The witness is of the form A(ϕ1V ϕ2) or E(ϕ1V ϕ2):

(a) Repeatedly color ? each node in Qi satisfying one of the following.
• An ∧-node (AX-node) that has a (may) son that is colored F or ?.
• An ∨-node (EX-node) that all its (must) sons are colored F or ?.

(b) Color the remaining nodes in Qi by T .

The result of the coloring algorithm is a 3-valued coloring function χ : N → {T, F, ?}.
Note that a node is colored ? only if there is evidence that it cannot be colored otherwise.

Theorem 5. Let GM×ϕ be a 3-valued game-graph, then for each n ∈ GM×ϕ:

1. χ(n) = T iff ∃loise has a winning strategy for the game starting at n.
2. χ(n) = F iff ∀belard has a winning strategy for the game starting at n.
3. χ(n) =? iff none of the players has a winning strategy for the game starting at n.

The correctness of the coloring algorithm is strongly based on the property that when
phase 2b is applied, the uncolored nodes that are colored in it form non-trivial SCCs. In
case of an AU -witness, these are must-SCCs, and indeed in this case loops can only be
used for refutation, thus to identify “real” loops, must-edges are needed. On the other
hand, in case of an AV -witness, loops can contribute to satisfaction, and satisfaction of
universal properties should be examined upon may-transitions, and indeed for such a
witness, we get uncolored may-SCCs. Similarly, for an EU witness, we get may-SCCs,
whereas for an EV witness, must-SCCs are formed.

Implementation Issues and Complexity. The coloring algorithm can be implemented
in linear running time w.r.t the size of GM×ϕ, using a variation of an AND/OR graph,
similarly to the algorithm described in [18] for checking nonemptiness of the language
of a simple weak alternating word automaton. Thus, its running time is O(|M | · |ϕ|).
As a conclusion of Theorem 4 and Theorem 5, we get the following theorem.

Theorem 6. Let M be a KMTS, ϕ a CTL formula and (s, ϕ1) ∈ GM×ϕ. Then:

[(M, s) |=3= ϕ1] = tt, ff or ⊥ ⇔ (s, ϕ1) is colored by T , F or ? respectively.

Given the colored game-graph, if all the initial nodes are colored T , or if at least
one of them is colored F , then by Theorem 6 and Theorem 2, there is a definite an-
swer as for the satisfaction of ϕ in the concrete model. This is because there exists
a mixed simulation from the concrete to the abstract model. Furthermore, if the re-
sult is ff, a concrete annotated counterexample can be produced, using an extension of
ComputeCounter.



Framework for CTL Counterexamples and 3-Valued Abstraction-Refinement 285

5 Refinement

In this section we show how to exploit the abstract game-graph in order to refine the
abstract model in case model checking resulted in an indefinite answer. When the result
is ⊥, there is no reason to assume either one of the definite answers tt or ff. Thus, we
would like to base the refinement not on a counterexample as in [19,6,2,8,4], but on the
point(s) that are responsible for the uncertainty. The goal of the refinement is to discard
these points, in the hope of getting a definite result on the refined abstraction.

Let MC = (SC , S0C ,→, LC) be a concrete KS and let MA = (SA, S0A,
must−→,

may−→,
LA) be an abstract KMTS. Let γ : SA → 2SC be the concretization function. Given
the abstract 3-valued game-graph G, based on MA, and its coloring function χ : N →
{T, F, ?}, such that χ(n0) =? for some initial node n0, we use the information gained
by the coloring algorithm of G in order to refine the abstraction.

Refinement is done by splitting abstract states according to criteria obtained from
failure nodes. A node is a failure node if it is colored by ?, whereas none of its sons
was colored by ? at the time it got colored by the algorithm. Such a node is a failure
node in the sense that it can be seen as the point where the loss of information occurred.
Note, that a terminal node that is colored by ? is also considered a failure node. The
coloring algorithm is adapted to remember failure nodes. In addition, for each node n
that is colored by ?, but is not a failure node, the coloring algorithm remembers a son
that was already colored ? by the time n was colored, denoted cont(n).
Searching for a Failure Node. A failure node is found by a DFS-like greedy algorithm,
starting from n0: As long as the current node, n, is not a failure node, the algorithm
proceeds to cont(n). It ends and returns n when a failure node n is reached.

Lemma 2. A failure node is either (1) a terminal node; (2) an AX-node (EX-node)
that has a may-son colored by F (T ); or (3) an AX-node (EX-node) that was colored
during phase 2a based on an AU (EV ) witness, and has a may-son colored by ?.

Failure Analysis. Based on the failure node n, the refinement is reduced to the problem
of separating sets of (concrete) states, which can be solved by known techniques, de-
pending on the abstraction used (e.g. [8,6]). n provides the criterion for the separation:

1. n = (sa, l) is a terminal node. The reason for its indefinite color is that sa represents
both concrete states that are labeled by l and by ¬l. This is avoided by separating
γ(sa) to two sets {sc ∈ γ(sa) : l ∈ LC(sc)} and {sc ∈ γ(sa) : ¬l ∈ LC(sc)}.

2. n = (sa, AXϕ1) or (sa, EXϕ1) with a may-son colored F or T resp. Let K stand
for F or T . We define sonsK =

⋃
{γ(s′a) : (s′a, ϕ1) is a may son of n colored K}

and concK = γ(sa) ∩ {sc ∈ SC : ∃s′c ∈ sonsK , sc → s′c}. For the AXϕ1

case, K = F and concK is the set of all concrete states, represented by sa, that
definitely refute AXϕ1. For the EXϕ1 case, K = T and concK is the set of all
concrete states, represented by sa, that definitely satisfy EXϕ1. In both cases, our
goal is to separate the sets concK and γ(sa) \ concK .

3. n = (sa, AXϕ1) or (sa, EXϕ1) was colored during phase 2a based on an AU or
an EV witness resp., and has a may-son n′ = (s′a, ϕ1) colored by ?. Let conc? =
γ(sa) ∩ {sc ∈ SC : ∃s′c ∈ γ(s′a), sc → s′c} be the set of all concrete states,
represented by sa, that have a son represented by s′a. Our goal is to separate the
sets conc? and γ(sa) \ conc?.



286 Sharon Shoham and Orna Grumberg

It is possible that one of the sets obtained during the failure analysis is empty and
provides no criterion for the split. Yet, this is informative as well. As an example, con-
sider case 2, where the failure node n is an AX-node. If concF = γ(sa), then every
state represented by sa has a refuting son. Thus, n can be colored F instead of ?. If
concF = ∅, then none of the concrete states in γ(sa) has a transition to a concrete state
represented by the F -colored may-sons of n. Thus, the may-edges from n to such sons
can be removed. Either way, G can be recolored starting from the Qi containing n.

The purpose of the split derived from cases 1-2 is to conclude definite results about
(at least part) of the new abstract states obtained by the split of the failure node. These
results can be used by the incremental algorithm, suggested below. As for case 3, we
know that by the time the failure node n got colored, its may-son n′ that is colored by ?
was not yet colored (otherwise n would not be a failure node). By the description of the
algorithm, if n′ was a must-son of n, then as long as it was uncolored, n would remain
uncolored too and would eventually be colored in phase 2b by a definite color. Thus,
our goal in this case is to obtain a must edge between (parts of) n and n′.

Theorem 7. For finite concrete models, iterating the abstraction-refinement process is
guaranteed to terminate with a definite answer.

5.1 Incremental Abstraction-Refinement Framework

We refine abstract models by splitting their states. The criterion for the refinement is
decided locally, based on one node, but has a global effect. Yet, there is no reason to
split states for which the model checking results are definite. The game-based model
checking provides a convenient framework to use previous results, leading to an incre-
mental model checking based on iterative abstraction-refinement, where each iteration
consists of abstraction, model checking and refinement. After each iteration, we now
remember the (abstract) nodes colored by definite colors, as well as nodes for which
a definite color was discovered during failure analysis. When a refined game-graph is
constructed, it is pruned in nodes that are sub-nodes of nodes remembered from previ-
ous iterations. A node (sa, ϕ) is a sub-node of (s′a, ϕ′) if ϕ = ϕ′ and the concrete states
represented by sa are a subset of those represented by s′a. Thus, only the reachable
subgraph that was previously colored ? is refined. The coloring algorithm considers the
nodes where the game-graph was pruned as leaves and colors them by their previous
colors.

Note that for many abstractions, checking if a node is a sub-node of another is sim-
ple. For example, in the framework of predicate abstraction [16,30,26,15], this means
that the abstract states “agree” on all the predicates that exist before the refinement.

References

1. A. Asteroth, C. Baier, and U. Assmann. Model checking with formula-dependent abstract
models. In Computer Aided Verification, volume 2102 of LNCS, pages 155–168, 2001.

2. Sharon Barner, Daniel Geist, and Anna Gringauze. Symbolic localization reduction with
reconstruction layering and backtracking. In Computer Aided Verification, 2002.



Framework for CTL Counterexamples and 3-Valued Abstraction-Refinement 287

3. Benedikt Bollig, Martin Leucker, and Michael Weber. Local parallel model checking for the
alternation-free mu-calculus. In SPIN’02. Springer-Verlag Inc., 2002.

4. P. Chauhan, E.M. Clarke, J. Kukula, S. Sapra, H. Veith, and D.Wang. Automated abstrac-
tion refinement for model checking large state spaces using SAT based conflict analysis. In
Formal Methods in Computer Aided Design (FMCAD), November 2002.

5. E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Efficient generation of counterexamples
and witnesses in symbolic model checking. In DAC’95. IEEE Computer Society Press, 1995.

6. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement. In Computer Aided Verification, LNCS, Chicago, USA, July 2000.

7. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT press, December 1999.
8. E.M. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT based abstraction-refinement

using ILP and machine learning techniques. In Computer-Aided Verification, July 2002.
9. E.M. Clarke, S. Jha, Y. Lu, and H. Veith. Tree-like counterexamples in model checking. In

Seventeenth Annual IEEE Symposium on Logic In Computer Science (LICS), July 2002.
10. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In popl4, pages 238–252, 1977.
11. Dennis Dams, Rob Gerth, and Orna Grumberg. Abstract interpretation of reactive systems.

ACM Transactions on Programming Languages and Systems (TOPLAS), 19(2), March 1997.
12. D.Peled, A.Pnueli, and L.Zuck. From falsification to verification. In FSTTCS, 2001.
13. P. Godefroid and R. Jagadeesan. Automatic abstraction using generalized model checking.

In Computer-Aided Verification, volume 2404 of LNCS, pages 137–150, July 2002.
14. P. Godefroid and R. Jagadeesan. On the expressiveness of 3-valued models. In Proc. of

VMCAI, volume 2575 of LNCS, pages 206–222. Springer-Verlag, January 2003.
15. Patrice Godefroid, Michael Huth, and Radha Jagadeesan. Abstraction-based model checking

using modal transition systems. In Proceedings of CONCUR’01, 2001.
16. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In CAV, 1997.
17. Michael Huth, Radha Jagadeesan, and David Schmidt. Modal transition systems: A founda-

tion for three-valued program analysis. LNCS, 2028:155–169, 2001.
18. Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic approach to

branching-time model checking. Journal of the ACM (JACM), 47(2):312–360, 2000.
19. R.P. Kurshan. Computer-Aided-Verification of Coordinating Processes. Princeton University

Press, 1994.
20. K.G. Larsen and B. Thomsen. A modal process logic. In LICS, pages 203–210, 1988.
21. Woohyuk Lee, Abelardo Pardo, Jae-Young Jang, Gary D. Hachtel, and Fabio Somenzi. Tear-

ing based automatic abstraction for CTL model checking. In ICCAD, pages 76–81, 1996.
22. Martin Leucker. Model checking games for the alternation free mu-calculus and alternating

automata. In Conf. on Logic for Programming and Automated Reasoning (LPAR), 1999.
23. Jorn Lind-Nielsen and Henrik Reif Andersen. Stepwise CTL model checking of state/event

systems. In Computer Aided Verification, pages 316–327, 1999.
24. C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserving abstrac-

tions for the verification of concurrent systems. Formal Methods in System Design, 1995.
25. Kedar S. Namjoshi. Certifying model checkers. In CAV, volume 2102 of LNCS, 2001.
26. Kedar S. Namjoshi and Robert P. Kurshan. Syntactic program transformations for automatic

abstraction. In CAV, volume 1855 of LNCS, pages 435–449. Springer, 2000.
27. Abelardo Pardo and Gary D. Hachtel. Automatic abstraction techniques for propositional

mu-calculus model checking. In Computer Aided Verification, pages 12–23, 1997.
28. Abelardo Pardo and Gary D. Hachtel. Incremental CTL model checking using BDD subset-

ting. In Design Automation Conference (DAC), pages 457–462, 1998.
29. Doron Peled and Lenore Zuck. From model checking to a temporal proof. In SPIN, 2001.
30. H. Saidi and N. Shankar. Abstract and model check while you prove. In CAV, 1999.
31. Colin Stirling. Modal and Temporal Properties of Processes. Springer, 2001.
32. Li Tan and Rance Cleaveland. Evidence-based model checking. In CAV, 2002.


	Introduction
	Preliminaries
	Game-Based Model Checking Algorithm
	Abstraction

	Using Games to Produce Annotated Counterexamples
	The Annotated Counterexample Is Sufficient and Minimal

	Game-Based Model Checking on Abstract Models
	Refinement
	Incremental Abstraction-Refinement Framework




