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Abstract. In this paper we present algorithms for efficient image com-
putation for systems represented as arithmetic constraints. We use au-
tomata as a symbolic representation for such systems. We show that, for
a common class of systems, given a set of states and a transition, the
time required for image computation is bounded by the product of the
sizes of the automata encoding the input set and the transition. We also
show that the size of the result has the same bound. We obtain these
results using a linear time projection operation for automata encoding
linear arithmetic constraints. We also experimentally show the benefits
of using these algorithms by comparing our implementation with LASH
and BRAIN.

1 Introduction

Symbolic representations enable verification of systems with large state spaces
which cannot be analyzed using enumerative approaches [15]. Symbolic model
checking has been applied to verification of infinite-state systems using symbolic
representations that can encode infinite sets [13,8,10]. One class of infinite-state
systems is systems that can be specified using linear arithmetic formulas on
unbounded integer variables. Verification of such systems has many interest-
ing applications such as monitor specifications [20], mutual exclusion protocols
[8,10], parameterized cache coherence protocols [9], and static analysis of access
errors in dynamically allocated memory locations (buffer overflows) [11].

There are two basic approaches to symbolic representation of linear arith-
metic constraints in verification: 1) Polyhedral representation: In this approach
linear arithmetic formulas are represented in a disjunctive form where each dis-
junct corresponds to a convex polyhedron. Each polyhedron corresponds to a
conjunction of linear constraints [12,13,10]. This approach can be extended to
full Presburger arithmetic by including divisibility constraints (which can be rep-
resented as equality constraints with an existentially quantified variable) [8,16].
2) Automata representation: An arithmetic constraint on v integer variables can
be represented by a v-track automaton that accepts a string if it corresponds
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to a v-dimensional integer vector (in binary representation) that satisfies the
corresponding arithmetic constraint [5,18,19]. For both of these symbolic rep-
resentations one can implement algorithms for intersection, union, complement,
existential quantifier elimination operations, and subsumption, emptiness and
equivalence tests, and therefore use them in model checking.

In [17] a third representation was introduced: Hilbert’s basis. A conjunction of
atomic linear constraints C can be represented as a unique pair of sets of vectors
(N, H), such that every solution to C can be represented as the sum of a vector
in N and a linear combination of vectors in H . Efficient algorithms for back-
ward image computation, satisfiability checking and entailment checking on this
representation are discussed in [17]. Based on these results an invariant checker
called BRAIN which uses backward reachability is implemented [17]. The exper-
imental results in [17] show that BRAIN outperforms polyhedral representation
significantly.

In automata based symbolic model checking, the most time consuming op-
eration is the image computation (either forward or backward). This is due to
the fact that image computation involves determinization of automata, an op-
eration with exponential worst case complexity. In this paper we propose new
techniques for image computation that are provably efficient for a restricted but
quite common class of transition systems. We investigate systems where the
transition relation can be characterized as a disjunction of guarded updates of
the form guard ∧ update, where guard is a predicate on current state variables
and update is a formula on current and next state variables. We assume that
the update formula is a conjunction of equality constraints. We show that for
almost all such update formulas, image computation can be performed in time
proportional to the size of the automata encoding the input set times the size of
the automata encoding the guarded update. The size of the result of the image
computation has the same bound. We discuss efficient implementation of the
algorithms presented in this paper using BDD encoding of automata. Further-
more, we present experimental results that demonstrate the usefulness of our
approach and its advantages over methods using other representations.

The rest of the paper is organized as follows. Section 2 gives an overview of
automata encoding of Presburger formulas. Section 3 presents our main results.
We first define four categories of updates. We present bounds for pre and post-
condition computations for each category and we give algorithms that meet the
given bounds. In Section 4 we describe the implementation of the given algo-
rithms and discuss how we can integrate boolean variables to our representation.
In Section 5 we present the experimental results and in Section 6 we give our
conclusions.

2 Finite Automata Representation for Presburger
Formulas

The representation of Presburger formulas by finite automata has been studied in
[5,19,3,2]. Here we briefly describe finite automata that accept the set of natural
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Fig. 1. An automaton for 2x − 3y = 2

number tuples that satisfy a Presburger arithmetic formula on v variables. All
the results we discuss in this paper are also valid for integers. We use natural
numbers to simplify the presentation. Our implementation also handles integers.

We encode numbers using their binary representation. A v-tuple of natural
numbers (n1, n2, ..., nv) is encoded as a word over the alphabet {0, 1}v, where
the ith letter in the word is (bi1, bi2, ..., biv) and bij is the ith least significant bit
of number nj. Given a Presburger formula φ, we construct a finite automaton
FA(φ)=(K, Σ, δ, e, F ) that accepts the language L(φ) over the alphabet Σ =
{0, 1}v, which contains all the encodings of the natural number tuples that satisfy
the formula. K is the set of automaton states, Σ is the input alphabet, δ :
K × Σ → K is the transition function, e ∈ K is the initial state, and F ⊆ K is
the set of final or accepting states.

For equalities, FA(
∑v

i=1 ai·xi = c) = (K, Σ, δ, e, F ), where K = {k |
∑

ai<0
ai ≤

k ≤
∑

ai>0
ai ∨ 0 ≤ k ≤ −c∨−c ≤ k ≤ 0}∪{sink}, Σ = {0, 1}v, e = −c, F = {0},

and the transition function δ is defined as:

δ(k, (b1, ..., bv)) =




(k +
v∑

i=1

ai · bi)/2 if k +
∑v

i=1 ai · bi is even, k �= sink

sink otherwise

For inequalities, FA(
∑v

i=1 ai ·xi < 0) = (K, Σ, δ, e, F ), where K = {k |
∑

ai<0
ai ≤

k ≤
∑

ai>0
ai ∨ 0 ≤ k ≤ −c ∨ −c ≤ k ≤ 0}, Σ = {0, 1}v, e = −c, F = {k | k ∈

K∧k < 0}, and the transition function is δ(k, (b1, ..., bv)) = 	(k+
∑v

i=1 ai ·bi)/2
.
An example automaton for the equation 2x − 3y = 2 is shown in Figure 1.

Conjunction, disjunction and negation of constraints can be implemented
by automata intersection, union and complementation, respectively. Finally, if
some variable is existentially quantified, we can compute a non-deterministic FA
accepting the projection of the initial FA on the remaining variables and then
determinize it. The size of the resulting deterministic FA can be exponential on
the size of the initial FA, i.e. |FA(∃xi.φ)| = 2|FA(φ)| in the worst case. In this
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paper we show that for many interesting cases we can avoid this exponential
blowup. The resulting FA may not accept all satisfying encodings (with any
number of leading zeros). We can overcome this by recursively identifying all
rejecting states k such that δ(k, (0, 0, ..., 0)) ∈ F , and make them accepting.
Universal quantification can be similarly implemented by the use of the FA
complementation.

3 Pre- and Post-condition Computations

Two fundamental operations in symbolic verification algorithms are computing
the pre- or post-conditions of a set of states (configurations) of a system. One
interesting issue is investigating the sizes of the FA that would be generated by
the pre- and post-condition operations.

Given a set of states S ⊆ Z
v of a system as a relation on v integer state vari-

ables x1, . . . , xv and the transition relation R ⊆ Z
2v of the system as a relation on

the current state and next state variables x1, . . . , xv, x′1, . . . , x
′
v, we would like to

compute the pre- and post-condition of S with respect to R, where pre(S, R) ⊆
Z

v and post(S, R) ⊆ Z
v. We consider systems where S and R can be represented

as Presburger arithmetic formulas, i.e., S = {(x1, . . . , xv) | φS(x1, . . . , xv)} and
R = {(x1, . . . , xv, x′1, . . . , x′v) | φR(x1, . . . , xv, x′1, . . . , x′v)}, where φS and φR are
Presburger arithmetic formulas. For example, consider a system with three inte-
ger variables x1, x2 and x3. Let the current set of states be S = {(x1, x2, x3) | x1+
x2 = x3} and the transition relation be R = {(x1, x2, x3, x

′
1, x
′
2, x
′
3) | x1 >

0∧ x′1 = x1 − 1∧ x′2 = x2 ∧ x′3 = x3}. Then the post-condition of S with respect
to R is post(S, R) = {(x1, x2, x3) | x1 > −1∧x1+x2 = x3−1}. The pre-condition
of S with respect to R is pre(S, R) = {(x1, x2, x3) | x1 > 0 ∧ x1 + x2 = x3 + 1}.

One can compute post(S, R) by first conjoining φS and φR, then existentially
eliminating the current state variables, and finally renaming the variables, i.e.,
φpost(S,R) is equivalent to (∃x1 . . . ∃xv.(φS ∧φR))[x′

1←x1,...,x′
v←xv] where ψ[y←z] is

the formula generated by substituting z for y in ψ. On the other hand, pre(S, R)
can be computed by first renaming the variables in φS , then conjoining with
φR, and finally existentially eliminating the next state variables, i.e., φpre(S,R) is
equivalent to ∃x′1 . . .∃x′v.(φS[x1←x′

1,...,xv←x′
v]∧φR). Hence, to compute post(S, R)

and pre(S, R) we need three operations: conjunction, existential variable elimi-
nation and renaming.

As stated earlier, given FA(φ) representing the set of solutions of φ,
FA(∃x1, . . . ,∃xn.φ) can be computed using projection and the size of the re-
sulting FA is at most O(2|FA(φ)|). Note that existential quantification of more
than one variable does not increase the worst case complexity since the de-
terminization can be done once at the end, after all the projections are done.
As discussed earlier, conjunction operation can be computed by generating the
product automaton, and the renaming operation can be implemented as a linear
time transformation of the transition function. Hence, given formulas φS and φR

representing S and R, and corresponding FA, FA(φS) and FA(φR), the size of
FA(φpost(S,R)) and FA(φpre(S,R)) is O(2|FA(φS)|·|FA(φR))|) in the worst case. Be-
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low, we show that under some realistic assumptions, the size of the automaton
resulting from pre- or post-condition computations is much better.

We assume that the formula φR defining the transition relation R is a g
uarded-update of the form guard(R) ∧ update(R), where guard(R) is a Pres-
burger formula on current state variables x1, . . . , xv and update(R) is of the
form x′i = f(x1, . . . , xv) ∧

∧
j �=i

x′j = xj for some 1 ≤ i ≤ v, where f : Zv → Z is

a linear function. This is a realistic assumption, since in asynchronous concur-
rent systems, the transition relation is usually defined as a disjunction of such
guarded-updates. Also, note that, the post-condition of a transition relation
which is a disjunction of guarded-updates is the union of the post-conditions of
individual guarded-updates, and can be computed by computing post-condition
of one guarded-update at a time. The same holds for pre-condition.

We consider four categories of updates:

1. x′i = c
2. x′i = xi + c
3. x′i =

∑v
j=1 aj · xj + c, where ai is odd

4. x′i =
∑v

j=1 aj · xj + c, where ai is even

Note that categories 1 and 2 are subcases of categories 4 and 3 respectively.
We can prove that pre-condition computation can be performed efficiently for
categories 1-4 and post-condition computation can be performed efficiently for
categories 2-3. For each of these cases we give algorithms for computing pre- and
post-conditions, and derive upper bounds for the time complexity of the algo-
rithms and the size of the resulting automata. We define φ′S as φS[x1←x′

1,...,xv←x′
v ].

The following Theorem will be used later for the complexity proofs.

Theorem 1. Given a formula ψ of the form φ(x1, . . . , xv) ∧
∑v

j=1 aj · xj = c,
where ai is odd for some 0 ≤ i ≤ v, the deterministic automaton FA(∃xi.ψ)
can be computed from FA(ψ) in linear time and it will have the same number of
states.

Proof. For all (v − 1)-bit tuples σ ∈ {0, 1}v−1 we define σbi=b to be the v-bit
tuple resulting from σ if we insert the bit b in the ith position of σ. For exam-
ple if σ = (1, 1, 0, 0) then σb3=0 = (1, 1, 0, 0, 0) and σb3=1 = (1, 1, 1, 0, 0). Let
FA(ψ)=(K, {0, 1}v, δ, e, F ). Then the non-deterministic automaton FA(∃xi.ψ)
is (K, {0, 1}v−1, δ′, e, F ), where δ′(k, σ) = {δ(k, σbi=0), δ(k, σbi=1)}. Since ai

is odd, we know that δ(k, σbi=0) or δ(k, σbi=1) is sink. This is because ∀k ∈
K, (b1, . . . , bv) ∈ {0, 1}v either k +

∑
j �=i aj · bj or k +

∑
j �=i aj · bj + ai is odd.

By the definition of automata for equalities in Section 2, one of the two transi-
tions goes to sink state. We also know that transitions that go to the sink state
in non-deterministic automata can be safely removed, since they can never be
part of an accepting path. So in order to determinize FA(∃xi.ψ) we only need
to remove from δ′(k, σ) one of its two members that is sink. Figure 2 shows
the algorithm that computes deterministic FA(∃xi.ψ) from FA(ψ). Clearly, the
complexity of the algorithm is O(|FA(ψ)|).
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Input FA(ψ) = (K, {0, 1}v , δ, e, F ), where ψ = φ ∧
∑v

j=1 aj · xj = c
integer i, 0 ≤ i ≤ v

Output FA(∃xi.ψ) = (K, {0, 1}v−1, δ′, e, F )

FOR ALL k ∈ K, σ ∈ {0, 1}v−1 DO
IF δ(k, σbi=0) = sink THEN

δ′(k, σ) = δ(k, σbi=1)
ELSE

δ′(k, σ) = δ(k, σbi=0)

Fig. 2. Projection algorithm of Theorem 1

3.1 Image Computation for x′
i = c Updates

For each category of updates we discuss both pre-condition and post-condition
computations. For each case we simplify the formulas φpre(S,R) and φpost(S,R)

and discuss the computation of their automata representations.

Pre-condition Computation

φpre(S,R) ⇔ ∃x′1 . . . ∃x′v.(φ′S ∧ φR)
⇔ ∃x′1 . . . ∃x′v.(φ′S ∧ guard(R) ∧ update(R))
⇔ (∃x′1 . . .∃x′v.(φ′S ∧ update(R))) ∧ guard(R)

⇔ (∃x′1 . . .∃x′v.(φ′S ∧ x′i = c ∧
∧
j �=i

x′j = xj)) ∧ guard(R)

⇔ (∃x′i.(φS[xi←x′
i]
∧ x′i = c)) ∧ guard(R)

⇔ (∃xi.(φS ∧ xi = c)) ∧ guard(R).

FA(xi = c) can be constructed in O(log2 c) time and has O(log2 c) states.
Thus, FA(φS ∧xi = c) has O(|FA(φS)| · log2 c) states. By Theorem 1, the size of
FA(∃xi.(φS ∧xi = c)) and the time needed to compute it is O(|FA(φS)| · log2 c).

Post-condition Computation

φpost(S,R) ⇔ (∃x1 . . . ∃xv.(φS ∧ φR))[x′
1←x1,...,x′

v←xv ]

⇔ (∃x1 . . . ∃xv.(φS ∧ guard(R) ∧ update(R)))[x′
1←x1,...,x′

v←xv]

⇔ (∃x1 . . . ∃xv.(φS ∧ guard(R) ∧ x′i = c ∧
∧
j �=i

x′j = xj))[x′
1←x1,...,x′

v←xv ]

⇔ (∃xi.(φS ∧ guard(R))) ∧ xi = c.

Unfortunately, we cannot use Theorem 1 in this case. We can compute
FA(∃xi.(φS ∧ guard(R))) from FA(φS ∧ guard(R)) by projection with a worst
case exponential time and space complexity.
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3.2 Image Computation for x′
i = xi + c Updates

Suppose φS and guard(R) consist of atomic linear constraints of the form φk :∑v
i=1 ai,k · xi ∼ ck, 1 ≤ k ≤ l, where ∼∈ {=, �=, >,≥,≤, <}, and Boolean con-

nectives.

Pre-condition Computation

φpre(S,R) ⇔ (∃x′1 . . . ∃x′v.(φ′S ∧ x′i = xi + c ∧
∧
j �=i

x′j = xj)) ∧ guard(R)

⇔ φS[xi←xi+c] ∧ guard(R) ⇔ φS[ck←ck−ai,k·c] ∧ guard(R).

Post-condition Computation

φpost(S,R) ⇔ (∃x1 . . . ∃xv.(φS ∧ guard(R) ∧ x′i = xi + c ∧∧
j �=i

x′j = xj))[x′
1←x1,...,x′

v←xv]

⇔ (φS ∧ guard(R))[xi←xi−c] ⇔ (φS ∧ guard(R))[ck←ck+ai,k·c].

It is clear that for both pre- and post-condition computation only the con-
stant term changes in each atomic linear constraint. An algorithm that changes
the constant term in an atomic equation is shown in Figure 3. The algorithm
for inequations is similar. Note that the complexity of both algorithms is pro-
portional to the number of new states introduced, which is possibly 0 or at most
|c′|. These algorithms assume that atomic formulas are stored with the corre-
sponding automata. In our implementation this is not the case, and we actually
use the more general approach presented next.

3.3 Image Computation for x′
i =

∑v
j=1 aj · xj + c Updates

Pre-condition Computation

φpre(S,R) ⇔ (∃x′1 . . . ∃x′v.(φ′S ∧ x′i =
v∑

j=1

aj · xj + c ∧
∧
j �=i

x′j = xj)) ∧ guard(R)

⇔ (∃x′i.(φS[xi←x′
i]
∧ x′i =

v∑
j=1

aj · xj + c)) ∧ guard(R).

Again we can use Theorem 1 to prove that existential variable elimination
can be performed in linear time without increasing the automaton size. We use
the algorithm in Figure 2 to compute FA(∃x′i.(φS[xi←x′

i]
∧x′i =

∑v
j=1 aj ·xj +c)).
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Input FA(
∑v

i=1 ai · xi = c) = (K, Σ, δ, e, F )
Output FA(

∑v
i=1 ai · xi = c′) = (K′, Σ′, δ′, e′, F ′)

IF −c′ ∈ K THEN
K′ = K Σ′ = Σ δ′ = δ e′ = −c′ F ′ = F

ELSE
K′ = K ∪ {−c′} Σ′ = Σ δ′ = δ e′ = −c′ F ′ = F
WHILE ∃k ∈ K′, σ ∈ Σ′ s.t. δ′(k, σ) = null DO

FOR ALL σ = (b1, ..., bv) ∈ Σ′ DO
IF l := (

∑v
i=1 ai · bi + k)/2 ∈ Z THEN

K′ := K′ ∪ {l}
δ′(k, σ) := l

ELSE
δ′(k, σ) := sink

Fig. 3. Algorithm for changing the constant term in equations

Post-condition Computation

φpost(S,R) ⇔ (∃x1 . . .∃xv.(φS ∧ guard(R) ∧ x′i =
v∑

j=1

aj · xj + c ∧

∧
j �=i

x′j = xj))[x′
1←x1,...,x′

v←xv]

⇔ (∃xi.(φS ∧ guard(R) ∧ x′i =
v∑

j=1

aj · xj + c))[x′
i←xi].

Note that in this case, Theorem 1 applies only when ai is an odd integer and
in that case we can use the algorithm in Figure 2.

4 Implementation

A problem with the FA representation for arithmetic constraints is the size of
the transition function, since the number of transitions from each state is expo-
nential on v, the number of integer variables. Hence, it is impractical to store the
transition function as a table. Actual implementations use different solutions to
this problem. We have used the approach used in MONA [14]. MONA is an au-
tomata package that uses BDDs [6] to store the transition function. In particular,
for each FA state n, there is a BDD representing the function δ(n, (b1, ..., bv)).
The terminal nodes are also FA states and internal nodes can be shared. To
evaluate δ(n, (b1, ..., bv)) one should start at the root of the BDD for state n and
move from node to node depending on the values of b1, ..., bv until a leaf node is
reached. That leaf node corresponds to the state δ(n, (b1, ..., bv)). Since BDDs are
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a canonical representation for Boolean functions, given a fixed variable ordering,
the size of the transition relation can be kept minimal, e.g., variables with zero
coefficients do not appear in the BDD representing the transition function. We
can also prove that the size of the BDD is linear in the number of variables v
and not exponential [2].

The algorithm of Theorem 1 is linear in the number of transitions. When
the transition function is represented as a BDD we would like the algorithm
to be linear in the number of BDD nodes in the automaton. For the case of
pre-condition computation, this is feasible for a new category of updates: x′i =∑i

j=1 aj · xj + c, i.e. updates where the new value of xi depends on the old
value of itself or variables with smaller indices. This new category includes the
original categories 1 and 2. For a system with v variables, we fix the order
of the variables in the BDDs to be x1, x

′
1, ..., xv, x′v. In FA(φS[xi←x′

i]
∧ x′i =∑i

j=1 aj · xj + c), according to Theorem 1, we know that at least one of the
children of any node for variable x′i points to the sink state. Consequently, we
can compute FA(∃x′i.(φS[xi←x′

i]
∧ x′i =

∑i
j=1 aj · xj + c)) by visiting all nodes

for variable xi and delete one of the children that goes to the sink state. Every
BDD node is visited once, thus the whole operation can be performed in time
linear in the total number of BDD nodes in the automaton.

The BDD representation of the FA transition function also allows efficient
handling of boolean formulas [2]. To accommodate boolean variables, we encode
false with 0(0 ∪ 1)∗ and true with 1(0 ∪ 1)∗. This way, in an automaton that
represents a composite formula with both boolean and integer variables, only the
BDD rooted at the initial state will contain nodes that depend on the boolean
variables. All other BDDs will contain only nodes for the integer variables and
thus their size is independent of the number of boolean variables. In other words,
the BDD rooted at the initial state evaluates the boolean part of the formula
and the rest of the automaton evaluates the integer part.

Given a formula φ containing both boolean and integer variables, we define a
boolean subformula of φ to be either a boolean variable appearing in φ, a negated
boolean variable, a constant true or false, or two boolean subformulas connected
by a logical connective (∧,∨, etc) in φ. A maximal boolean subformula of φ is a
boolean subformula of φ that is not contained in any other boolean subformula
of φ.

Now suppose that φ is a general formula containing distinct maximal boolean
subformulas (B1, ..., Bn) and distinct atomic linear integer arithmetic constraints
(P1, ..., Pm) combined with boolean connectives. We can prove that the total size
of the BDD representing the transition function of FA(φ) is O(

∏n
i=1 |FA(Bi)| +∏m

i=1(|FA(Pi)|+ 1)), where |FA(Bi)| and |FA(Pi)| are the sizes (in BDD nodes)
of the automata representing Bi and Pi respectively [2].

5 Experiments

We integrated the construction algorithms in [3,2] as well as the pre- and post-
condition computation algorithms presented in this paper to an infinite state
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CTL model checker called Action Language Verifier (ALV) [7] built on top of
the Composite Symbolic Library [21]. The Composite Symbolic Library uses an
object-oriented design to combine different symbolic representations [21]. In our
experiments we compare the efficiency of our implementation with BRAIN [17]
that uses Hilbert’s basis as canonical representation for arithmetic constraints,
and LASH [1] that uses the automata representation. To make the comparison
with LASH fair, we integrated the automata construction and manipulation
algorithms used in LASH to the Action Language Verifier.

We experimented with a large set of examples taken from 1) The Action Lan-
guage Verifier distribution at: http://www.cs.ucsb.edu/˜bultan/composite/ and
2) The BRAIN distribution at: http://www.cs.man.ac.uk/˜voronkov/BRAIN/.
All the examples used in our experiments and the executables of the tools are
available at: http://www.cs.ucsb.edu/˜bar/image. We obtained the experimen-
tal results on a SUN ULTRA 10 work station with 768 Mbytes of memory,
running SunOs 5.7. The results are presented in Table 1. Time measurements
appear in seconds. Entries of ↑↑ mean that the computation was aborted be-
cause the memory limit was exceeded. Entries of ↑ mean that the computation
was aborted at 12000 seconds because no significant progress was made. For the
automata representation used in ALV we also recorded the size (i.e., number of
BDD nodes) of the largest automaton computed.

The experimental results show that the automata representation used in
LASH is not efficient. There are two main reasons for this inefficiency. First,
LASH stores the transition function of automata explicitly as opposed to the
multi-terminal BDD representation used in MONA. Second, LASH implements
the image computation using a standard automata projection algorithm which
has a worst case exponential complexity, as opposed to the polynomial time
image computations proposed here.

Problem instances can be categorized in three groups:

1. Pure integer problems (CSM, incdec, bigjava, consistencyprot and consprod)
2. Integer problems with invariants (those with the suffix inv)
3. Problems with both boolean and integer variables (bakery and barber)

Except for the consistency protocol problem instance, it is clear that ALV is
faster than BRAIN for groups 2 and 3 and BRAIN is faster only for problems in
group 1. The problems with invariants are obtained from the original problems
by adding invariants. A typical invariant has the form x1 + ... + xk < m, where
m is a natural number. Such invariants essentially bound the variables x1, ..., xk

to a finite region. The presence of finite domain variables causes a problem
for BRAIN, because the size of the Basis (the canonical representation used in
BRAIN) can grow exponentially. On the other hand, systems with finite domain
variables can be efficiently encoded by automata with transition functions stored
as BDDs.

There are several advantages of the automata representation of arithmetic
formulas over the Hilbert’s basis representation used in BRAIN:
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Table 1. Experimental results. Time measurements appear in seconds. Max size is the
number of BDD nodes of the largest automaton computed for each problem instance

Problem Instance BRAIN ALV LASH
time time max size time

CSM4 3.76 99.35 25910 ↑
CSM6 25.01 540.88 110796 ↑
CSM8 128.54 1772.85 238739 ↑
CSM10 494.03 4809.13 484249 ↑
CSM12 1644.33 9676.81 839870 ↑
CSMinv10 0.93 0.58 485 217.76
CSMinv20 3.57 0.90 606 282.49
CSMinv30 9.59 1.09 727 416.46
CSMinv40 20.71 1.20 727 458.48
CSMinv50 38.58 1.45 910 601.21

incdec 195.48 2792.54 258945 ↑
incdecinv 24.79 4.67 1194 ↑
bakery3 0.35 0.38 509 10.65
bakery4 14.82 9.83 8762 244.67
bakery5 1107.75 577.45 230906 ↑
barber4 0.74 0.25 76 11.79
barber8 52.05 0.78 136 27.01
barber12 14669.80 1.81 212 53.41

bigjava 11244.60 ↑↑ ↑↑ ↑
bigjavainv 2641.05 82.33 6157 ↑
bigjavainv1 30615.20 1160.09 45114 ↑
consistencyprot 1.09 24.28 15049 ↑
consistencyprotinv 7.75 59.38 31453 ↑
consistencyprotinv1 0.05 0.16 212 182.84

consprod 11346.40 ↑↑ ↑↑ ↑
consprodinv 1.27 0.66 253 ↑

1. Automata can handle a larger class of systems, namely all transition sys-
tems representable by Presburger arithmetic formulas. BRAIN cannot han-
dle quantified formulas or divisibility constraints.

2. For the class of systems for which BRAIN provides polynomial time image
computation we prove polynomial bounds for the automata representation
and give the algorithms. Even for problems in group 1 for which BRAIN
is faster than ALV, the speedup achieved by BRAIN seems to be constant,
which is what we would expect given that both techniques have equally
efficient image computations. In particular, for problem CSM, ALV scales
better even though BRAIN is faster.

3. The automata representation can handle forward image computation and
solve problems for which the backward fixpoint computation does not con-
verge, but the forward computation does. Such problems are not solvable
using BRAIN. For example, we can verify mutual exclusion and starvation
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freedom properties for the ticket mutual exclusion protocol [8] using forward
fixpoint computations, whereas this is not possible for BRAIN.

4. The automata representation can be combined with an efficient encoding of
boolean and enumerated variables, however it is not clear if this could be
done efficiently with the Hilbert’s basis technique. In BRAIN specification
of the problems in group 3, boolean and enumerated variables have been
mapped to integers. The experimental results indicate the inefficiency of this
mapping, which becomes more apparent when the problem size increases.

5. Using the automata representation we can perform full CTL verification,
whereas BRAIN can only verify invariants. For example, for the bakery pro-
tocol we can verify liveness properties of the form: AG(pc = try ⇒ AF (pc =
cs)), while BRAIN cannot.

However, on pure integer problems with large number of variables, BRAIN
outperforms ALV. We plan to investigate if this is due to the efficiency of the
Hilbert’s Basis representation or due to the fixpoint computation algorithm used
in BRAIN.

6 Conclusion

In this paper we show that for a common class of infinite state systems repre-
sented by linear arithmetic constraints, image computations can be done effi-
ciently without an exponential blow up. We give algorithms for efficient image
computations for updates that are expressed as linear equalities based on an au-
tomata encoding of the states of the system. We implemented these algorithms
and experiments show that they improve the efficiency of automata based rep-
resentations significantly. Experiments also indicate that, in a lot of cases, au-
tomata encoding with the proposed image computations is as efficient as other
more restrictive canonical representations.

The results in this paper can also be used to show that image computation on
bounded arithmetic constraints represented by BDDs can be done in polynomial
time for a class of arithmetic constraints. We plan to develop algorithms for the
bounded case based on the BDD encodings of arithmetic constraints presented
in [4].
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