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Constructive Probability∗

Glenn Shafer

In a series of papers published in the 1960’s, A. P. Dempster developed a
generalization of the Bayesian theory of statistical inference. In A Mathemat-
ical Theory of Evidence, published in 1976, I advocated extending Dempster’s
work to a general theory of probability judgement. The central idea of this new
general theory is that we might decompose our evidence into intuitively inde-
pendent components, make probability judgements based on each component,
and then extend, adapt, and combine these judgements using formal rules. In
this way we might be able to construct numerical degrees of belief based on
total evidence that is too complicated or confusing to deal with holistically.
The systems of numerical degrees of belief that the theory helps us construct
are called belief functions. Belief functions have a certain structure, but they
are not, in general, additive like Bayesian probability distributions: a belief
function Bel may assign a proposition A and its negation A degrees of belief
Bel(A) and Bel(A) that add to less than one.

The theory of belief functions should be sharply distinguished from the
ideas on “upper and lower probabilities” that have been developed by
I. J. Good [11], C. A. B. Smith [28], and, more recently, Peter Williams [30, 31].
It is true that the theory’s degrees of belief Bel(A) have some properties in
common with these authors’ lower probabilities P∗(A). And it is also true that
Dempster, in his writing, used the vocabulary of upper and lower probabil-
ities. But the conceptual structure of the theory of belief functions is quite
different from the structure underlying Good, Smith, and Williams’ work.

Since its publication, A Mathematical Theory of Evidence has been
reviewed or discussed by several authors, including Persi Diaconis [4], Terry
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Fine [5], Isaac Levi [16], Dennis Lindley [17], Teddy Seidenfeld [20], and Peter
Williams [32]. Most of these critics, being themselves dissatisfied with the
Bayesian theory, have welcomed the new theory. But they have been troubled
by the absence of a behavioral interpretation for the theory. The Bayesian
theory can appeal to its “betting interpretation” to explain what its degrees
of belief mean and to justify its rules for these degrees of belief. No such inter-
pretation has been supplied for the theory of belief functions. So what do its
degrees of belief mean? And why should we accept the theory’s rules for these
degrees of belief? Why, in particular, should we prefer these rules to the rules
suggested by Good, Smith, and Williams?

In this paper, I argue that a constructive theory of probability judgment
need not rely for its meaning and justification on any behavioral interpreta-
tion. My argument is based on an understanding of constructive probability
judgment developed in recent unpublished work by Amos Tversky and myself.
According to this understanding, numerical probability judgment amounts to
comparing one’s evidence to a scale of canonical examples, and a construc-
tive theory of probability judgment must supply both the scale of canonical
examples and methods of breaking the task of comparison down into simpler
judgments. As I explain in Sect. 1 below, the Bayesian theory, the theory of
belief functions, and a theory of lower probability functions can all be devel-
oped in this framework. All three of these constructive theories use the idea
of chance in their scale of canonical examples. The theory of belief functions
uses examples where the meaning of a message depends on chance, while the
other two theories use examples where the truth is generated by chance.

In the course of the paper I give particular attention to Peter Williams’
review of A Mathematical Theory of Evidence. Williams’ writing is excep-
tionally lucid, and he is exceptionally explicit in relating his criticisms of the
theory of belief functions to the betting interpretation of probability.

Williams treats both lower probabilities and Bayesian (i.e., additive) prob-
abilities as betting rates. And he hints that his intuitions about lower prob-
abilities are inherent in the very idea of betting. One of the purposes of this
paper is to show that this is not so. The theory of belief functions is as con-
sistent with the use of probability judgments as betting rates as the theory
of lower probabilities Williams favors. It is especially important to recognize
that one cannot choose between the different rules of conditioning used by
belief functions and by Williams’ theory (see Sect. 3 below) on the basis of
the idea of betting alone.

1 The Meaning of Probability

Williams begins his review of A Mathematical Theory of Evidence with two
questions: “(i) What is meant by ‘degree of belief’ and how might an individual
determine his degrees of belief in a particular case? (ii) For what reasons are
degrees of belief required to satisfy the conditions imposed?”
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On a practical level, making a probability judgment means assessing the
strength and significance of one’s evidence by fitting it into a scale of canonical
examples. And the probability judgment or “degree of belief” itself means that
we have made the comparison—perhaps with the aid of some theory—and
found our evidence to match a certain example on the scale best. Thus the
meaning of a degree of belief depends on the scale we use and, more generally,
the theory we use in arriving at it.

To make numerical probability judgments we need, of course, a numerical
scale, and the obvious approach to constructing such a scale is to use examples
involving chance. There is, however, more than one way of using the idea of
chance to construct a scale of examples, and different ways correspond to
different theories of probability judgment. It will be helpful, before going into
Williams’ questions more fully, to compare three such theories—the Bayesian
theory, the theory of belief functions, and a theory of lower probabilities.

1.1 The Bayesian Theory

In the classical picture of chance, we imagine a game that can be played
repeatedly and for which we know the chances. These chances are long-run
frequencies, they can be thought of as propensities, and they also define fair
betting rates—rates at which a bettor would break even in the long run. Since
they are known and there is no other evidence, these chances give a measure
of how much reason we have to believe that one or another of the game’s
outcomes will occur on a particular occasion. So we can call them numerical
degrees of belief. If we imagine a number of different games, with different
chances, then we have a scale of numerical degrees of belief.

The Bayesian theory uses this scale in a straightforward way. The
Bayesian’s task is to compare his problem to a scale of examples in which
the truth is generated according to known chances and to decide which of
these examples is most like his problem. And so when he makes the probabil-
ity judgment P (A) = p, say, he is saying that his evidence provides support
for A comparable to what would be provided by knowledge that the truth
is generated by a chance setup that produces a result in A exactly p of the
time. He is not saying that his evidence is just like such knowledge in all
respects, nor that the truth is in fact a result of chance. But he is measuring
the strength of his evidence by comparing it to a scale of chance setups.

How can the Bayesian accomplish his task? How can he make his scale of
chances and the affinity of his evidence to this scale vivid enough to his imag-
ination that he can meaningfully locate the evidence on the scale? This ques-
tion does not, I believe, have a simple general answer. In any particular case
the Bayesian must struggle to find ways of understanding his evidence that
facilitate its comparison to the scale of chances. Perhaps he can understand
his evidence in terms of a causal model and assess numerically the propensity
of the model to produce various outcomes. Perhaps he can discern relevant
frequencies in his evidence. And perhaps he can make enough well-founded
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judgments of these sorts to enable him to construct an overall probability
distribution that seems well-founded to him. Or perhaps he cannot. There is
nothing in the Bayesian theory that can guarantee its success.

The probability distributions of the Bayesian theory have, of course,
exactly the same structure as chance distributions: a function P defined for
all subsets of a finite set Θ (the frame of discernment) is a Bayesian (or addi-
tive) probability distribution if there exist non-negative numbers p(θ) for the
elements θ of Θ such that

P (A) =
∑

θ∈A
p(θ) (1)

for all A ⊂ Θ. (It is also required that
∑

θ∈Θ p(θ) = 1.) In words: the degree
of belief P (A) that the truth lies in A is the sum over the elements θ of A of
the degrees of belief p(θ) that the truth is θ.

1.2 The Theory of Belief Functions

A function Bel defined for all subsets of a frame Θ is called a belief function
if it is of the form

Bel(A) =
∑

B⊂A
m(B), (2)

where m(B) are non-negative numbers satisfying m(φ) = 0 and
∑

B⊂Θ
m(B) = 1. Every Bayesian probability distribution is a belief function. (The
m-values for a Bayesian probability distribution P are obtained by setting
m({θ}) = p(θ) and m(B) = 0 for all B that contain more than one element.)
But not every belief function is a Bayesian probability distribution.

The theory of belief functions is based on a way of comparing our evidence
to the scale of chances that is quite different from that of the Bayesian theory.
Instead of comparing our evidence to a scale of examples where the truth is
generated according to known chances, we compare it to a scale of examples
where the reliability and meaning of a message depends on known chances.

Here is a way to develop the scale of examples needed for belief functions.
Suppose someone chooses a code at random from a list of codes, uses the
chosen code to encode a message, and then sends us the result. We know
the list of codes and the chance of each code being chosen—say the list is
c1, . . . , cn, and the chance of ci being chosen is pi. We decode the encoded
message using each of the codes and find that this always produces a message
of the form “the truth is in A” for some non-empty subset A of Θ. Let Ai
denote the subset we get when we decode using ci, and set

m(A) =
∑
{pi | 1 ≤ i ≤ n;Ai = A}

for each A ⊂ Θ. Then m(A) is, in a certain sense, the total chance that the
true message was A.1 And Bel(A), given by (2), is the total chance that the
1 This is not to say that we are dealing with a random mechanism that produces

the message A with chance m(A). It is just that m(A) is the sum of the chances
for those codes that decode our encoded message to A.
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true message implies A. If the true message is infallible and the coded message
is our only evidence, then we will want to call Bel(A) our degree of belief that
the truth lies in A.

We can tell this story with whatever values of the m(A) we please, and
so it provides us a canonical example corresponding to every possible belief
function Bel. Of course we will seldom or never encounter in practice a situa-
tion in which our evidence really does consist of a coded message and all the
assumptions of the canonical example are satisfied. But it is also rare that our
evidence amounts to knowledge of a chance distribution according to which
the truth has been or will be generated. In both cases the canonical examples
are meant not as realistic examples but as standards for comparison.

Our task, when we assess evidence using belief functions, is to choose
values of m(A) that make the canonical “coded-message” example most like
that evidence. But how do we do this? In complicated problems it is absurd,
surely, to suppose that we can simply look at our evidence holistically and
write down the best values for the m(A). So we need a theory—a set of tools
for constructing belief functions from simpler, more elementary judgments. A
Mathematical Theory of Evidence suggests a number of such tools: assessment
using simple support functions, assessment using consonance, discounting,
minimal extension, and Dempster’s rule of combination. All these tools are
readily intelligible in terms of the canonical examples.

Dempster’s rule of combination is the most important single tool of
the theory. This rule tells us how to combine a belief function Bel1 (with
m–values m1(A), say) representing one body of evidence with a belief func-
tion Bel2 (with m-values m2(A)) representing an unrelated body of evidence
so as to obtain a belief function Bel (with m-values m(A)) representing the
pooled evidence. The idea underlying the rule is that the unrelatedness of the
two bodies of evidence makes pooling them like combining two stochastically
independent randomly coded messages. We should, that is to say, combine the
canonical examples corresponding to the two bodies of evidence by supposing
that the two random choices of codes are stochastically independent. It is
easy to see how this leads to a rule for obtaining the m(C) from the m1(A)

Let us denote by C the set of codes that decode our encoded message to A. If
we had not yet seen the encoded message, it would certainly be natural to adopt
m(A) as our degree of belief that the code used is in C. The suggestion here is
that it is still natural to do so in the situation where we have seen the encoded
message and thus know that the code used being in C is equivalent to A being
the true message.

A similar tack is often taken by non-Bayesian statisticians when they make
probability judgments based on probability sampling or on randomization. Here,
as in those cases, one might refuse to adopt the suggested degrees of belief and
adopt instead a parametric model. In this case the model would have the true
message as its parameter and the encoded message as its observable given each
value of the parameter. In the absence of other evidence about the true message,
this model does not seem very useful. (Cf. Kempthorne, [15].)



222 G. Shafer

and the m2(B). Denote by c1, . . . , cn and by p1, . . . , pn the codes and their
chances in the case of the first message, and by c′1, . . . , c

′
m and p′1, . . . , p

′
m the

codes and their chances in the case of the second. Then independence means
that there is a chance pip′j that the pair

(
ci, c

′
j

)
of codes will be chosen. But

notice that decoding may now tell us something. If the message Ai we get
by decoding the first message with ci contradicts the message Bj we get by
decoding the second message with c′j (i.e., if Ai ∩Bj = φ), then we know that(
ci, c

′
j

)
could not be the pair of codes actually used. So we must condition

the chance distribution, eliminating such pairs and multiplying the chances
for the others by K, where

K−1 =
∑
{pip′j | 1 ≤ i ≤ n; 1 ≤ j ≤ m;Ai ∩Bj 	= φ}

=
∑
{m1(A)m2(B) | A ⊂ Θ;B ⊂ Θ;A ∩B 	= φ}.

Notice also that if the first message is A and the second message is B, then
the overall message is A ∩ B. Thus the total chance of the overall message
being C is

m (C) = K
∑
{pip′j | 1 ≤ i ≤ n; 1 ≤ j ≤ m;Ai ∩Bj = C} (3)

= K
∑
{m1 (A)m2 (B) | A ⊂ Θ;B ⊂ Θ;A ∩B = C}.

Formula (3) is Dempster’s rule.
The availability of Dempster’s rule opens the possibility that we might

construct a belief function based on complicated evidence by decomposing
the evidence, breaking it down into small unrelated items whose message is
relatively clear. The most convenient case, perhaps, is when each small item
points clearly and unambiguously to a single subset of Θ. In this case the
assessment of each item means the determination of a simple support function.

A simple support function focused on a subset A0 of Θ and awarding it
degree of support s is a belief function with m-valuesm(A0) = S,m(Θ) = 1−s
and m(A) = 0 for all other A ⊂ Θ. This corresponds to a coded message which
means A0 with chance s and means Θ (i.e., means nothing at all) with chance
1− s. The values of the belief function are

Bel(A) =

⎧
⎨

⎩

0 if A0 	⊂ A
s if A0 ⊂ A 	= Θ
1 if A = Θ.

In words: we have no positive beliefs beyond those implied by the degree of
support s for A0. Simple support functions are appropriate when the message
of an argument or an item of evidence is clear and unambiguous, but its
reliability must be assessed. The chance s corresponds, in such a case, to an
assessment of that reliability. It is our assessment, so to speak, of the chance
that the argument is sound.
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The idea of the chance that an argument is sound (as opposed to the
Bayesian idea of the chance that an assertion is true) is illustrated by the
following example, which is essentially due to J. H. Lambert (see Shafer [22])
and which could be used to provide an alternative scale of canonical examples
for simple support functions. Suppose we know all α’s are β’s, and we are
told, by a randomizing device that tells the truth with chance s and lies with
chance 1− s, that γ is an α. If the device told the truth (chance s), then we
have a syllogism:

All α’s are β’s.
γ is an α.

γ is a β.

If the device lied (chance 1 − s), then we have nothing, for when the minor
premise in the syllogism Barbara is negated, there is no conclusion:

All α’s are β’s.
γ is not an α.

Maybe γ is a β; maybe not.

So the argument for the proposition “γ is a β” is sound with chance s and
unsound with chance 1 − s. As evidence, it amounts to the same thing as a
message that asserts this proposition with chance s and says nothing with
chance 1− s.

There is no guarantee that a satisfactory analysis of one’s evidence will
be achieved using belief functions, just as there is no guarantee of success
with the Bayesian theory. I do believe, however, that the greater flexibility of
belief functions will often be valuable. In many cases our deliberation needs to
be directed towards the structure and reliability of the evidence rather than
towards the nature of the process by which the truth is generated, and this
means that a random model for the evidence may fit our needs better than a
random model for the truth.

1.3 Lower Probabilities

Suppose we know a certain process is governed by chance, but instead of
knowing precisely the chance law P governing it, we know only that P is in
a class P of chance laws. Denote by Θ the set of possible outcomes for the
process. Then we might set our degree of belief that the outcome of a given
trial will be in a subset A of Θ equal to

P∗(A) = inf {P (A)|P ∈ P} . (4)

This seems natural because we know the chance of A is at least P∗(A). And
so, in particular, we can expect to at least break even in the long run if we
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offer to bet (with others who have no more knowledge than we) on A at the
odds P∗(A) : 1− P∗(A).

By varying the class P in this story we obtain a scale of examples. Per-
haps we can construct a theory of probability judgment—a “theory of lower
probabilities”—using this scale as the standard to which to compare our evi-
dence. It will rarely if ever happen, of course, that our evidence really consists
of knowledge that the truth is generated by chance and the chance law is in
a class P . But we have said the same thing about the canonical examples
underlying the Bayesian theory and the theory of belief functions.

But what are the elements of this theory of lower probabilities? What tools
do we have for locating our evidence on its scale of canonical examples? How,
that is to say, do we break the task of constructing the class P down into
simple judgments?

Here is an idea. Suppose we assess our evidence by making judgments of
the form “our evidence is like knowing that the truth is generated by chance
and that the chances have such-and-such a property.” Since there are many
properties of chance distributions, this formulation permits a wide variety of
judgments. We may say that our evidence is like knowing that the chance
of A is greater than the chance of B, or like knowing that the conditional
chance of A given C is greater than that of B given C, or like knowing that
the mathematical expectation of some function of the truth is between certain
bounds, etc. Our theory will ask us to make as many of these judgments as
we think necessary to capture the message of the evidence, and P will consist
of all the distributions that have all the properties we have specified.

Notice that this idea does not involve the decomposition of evidence. The
task of constructing P is broken down into simple judgments by distinguishing
different questions, not by distinguishing different items of evidence bearing
on these questions. All the judgments are supposed to be based on the total
evidence.

A class P of chance distributions determines, of course, more than the
lower probabilities (4). It also determines lower conditional probabilities

P∗ (A|B) = inf {P (A|B) |P ∈ P ;P (B) > 0} , (5)

which are defined whenever P (B) > 0 for some P ∈ P ,2 and lower expectations

E∗ (X) = inf {EP (X) |P ∈ P} ,

which are defined (in the case where Θ is finite) for every real-valued function
X on Θ. Since a lower unconditional probability is a special case of a lower
conditional probability (P∗ (A) = P∗ (A|Θ)) and a lower conditional probabil-
ity can be determined from knowledge of lower expectations (P∗ (A|B) = p if
2 De Finetti [8] assumes that P (A|B) is defined for an additive probability distri-

bution even if P (B) = 0, and Williams [30] accordingly supposes that P∗(A|B) is
always defined. But it is not necessary to explore these subtleties in the present
discussion.
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E∗ (X) = 0, where X (θ) = 1−p if θ ∈ A∩B, −p if θ ∈ A∩B, and 0 if θ ∈ B),
we obtain more information about P as we pass from lower probabilities to
lower conditional probabilities to lower expectations.

Example 1. Here are two classes P1 and P2 that have the same lower uncondi-
tional probabilities but can be distinguished by their lower conditional prob-
abilities. Set Θ = {a, b, c}, P1 =

{
P |P ({a, b}) ≥ 1

2

}
, and P2 = {P |P ({b}

| {b, c}) ≥ 1
2 }. Then P∗1(A) = P∗2(A) for all A ⊂ Θ. But P∗1 ({b} | {b, c}) = 0,

while P∗2 ({b} | {b, c}) = 1
2 . (2) Here are two classes that have the same lower

conditional probabilities but can be distinguished by other lower expectations.
Set Θ = {−2,−1, 1, 2}, set P1 = {P |EP ≥ 0}, where EP denotes the mean
of the distribution P , and set P2 = P1 ∪ {P2}, where P2 is the distribution
that puts mass 1

2 on −2, 1
3 on 1, and 1

6 on 2. Then P∗1(A|B) = P∗2(A|B) for
all A and B, but the lower expectations of the identity function X (θ) = θ
are E∗1(X) = 0 and E∗2(X) = − 1

3 . (3) Here are two distinct classes
that cannot be distinguished by their lower expectations. Set Θ = {a, b},
P1 = {P |P ({a}) ≥ .5}, and P2 = {P |.5 ≤ P ({a}) ≤ .6 or P ({a}) ≥ .9}.

Let us call a function P∗, defined for all A ⊂ Θ, a lower probability function
if it is given by (4) for some class P . And let us call a function of two variables
P∗(A|B) a lower conditional probability function if it is given by (5) for some
class P ; such a function is defined for B = Θ and for all other B ⊂ Θ such that
P∗(B|Θ) < 1. In general, as we have seen, there are many classes that yield
the same lower probability function or lower conditional probability function.
But the largest class that yields a given lower probability function P∗ is

P (P∗) = {P |P (A) ≥ P∗ (A) for all A ⊂ Θ} , (6)

and the largest class that yields a given lower conditional probability function
P∗(·|·) is

P (P∗(·|·)) =
{
P | if P∗(B|Θ) < 1, then P (B) > 0 and P (A|B) > P∗ (A|B)

}
.

(7)
Lower probability functions have been characterized axiomatically by Williams
[31], Huber [14], and Wolf [33]. I have not seen simple axioms for lower con-
ditional probability functions, but see Williams [30].

Our “theory of lower probabilities,” as I have described it so far, includes
in its scale of canonical examples every possible class P of chance distributions
over a frame Θ. For the theory allows us to specify an arbitrary property of a
chance distribution and to say that our evidence is like knowing that the truth
is generated according to chances having that property. Perhaps this is too rich
a scale. In practice there will surely be a limit to the complexity and subtlety
of properties that can sensibly be said to correspond to intuitive insights about
our evidence. And it may be desirable, from a psychological point of view, for
the theory to recognize this explicitly by specifying a somewhat sparser scale.
It cannot help us in fitting our evidence to a scale of canonical examples to
have that scale encumbered with confusing and superfluous possibilities.
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Just what classes P should be included in the theory’s scale? I see no
definitive answer to this question, but it does seem that an adequate scale
should include all P that can be defined by the sorts of constraints com-
monly placed on chance distributions—all that can be defined, say, by (1)
bounds on chances, conditional chances, and expectations, (2) comparisons
among chances and conditional chances, and (3) conditions of independence
and conditional independence. This is a rich scale. It includes far more P
than those of the form (6) or (7), and far more, even, that those that can
be defined by bounds on expectations. (As we have already noted, bounds
on chances and conditional chances can be reduced to bounds on expecta-
tions. Moreover, some comparisons can be reduced to bounds: the condition
P (A) > P (B), for example, is equivalent to P

(
A ∩B|A� B

)
≥ 1

2 , or simply
to P (A|A ∪B) ≥ 1

2 if A∩B = ∅. But conditions of independence and compar-
isons of the form P (A|B) ≥ P (A), say, go beyond bounds on expectations.)

Notice that if we were content with a scale consisting of P of the form
(7), then the lower conditional probability function P∗(·|·) would completely
identify P and hence would be a complete report of our assessment of our
evidence. If we agree, as I think we must, that a richer scale is necessary,
then P∗(·|·) cannot be regarded as a complete assessment. But it might be an
adequate summary for some purposes.

1.4 The Literature on Lower Probabilities

The idea of constructing a class of distributions by comparing our evidence
to knowledge that the truth is generated according to chances having certain
properties is an adaptation of an idea developed by I. J. Good [11]. Good
suggests that we pretend we have an additive probability distribution P in
a black box. Initially we know nothing about P , except that it is defined for
subsets of a frame Θ. But we make qualitative probability judgments about Θ,
and we interpret these judgments as constraints on P . For example, we judge
that A is more probable than B, and we interpret this as P (A) > P (B). Or
we judge that we would think A more probable than B if we knew C for
certain, and we interpret this as P (A|C) > P (B|C). If we manage to keep
these constraints from conflicting, then they determine a non-empty set P of
additive probability distributions.

Unfortunately, Good does not say that we are comparing our evidence
with knowledge that the truth is generated by some chance law in P . Instead
he studiously avoids pinning down the nature of the unknown probability
distribution P—he locates P in a “black box” precisely in order to avoid saying
whether it is a chance law, a hidden subjective distribution, or something else.
I believe this deliberate vagueness is untenable in a constructive theory. It
leaves us uncertain about how to make the qualitative probability judgments
and uneasy about whether we really want to interpret these judgments as
constraints on P . We cannot make even qualitative probability judgments
unless we have a definite language in which to work.
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Most other recent literature on lower probabilities seems less relevant to
our constructive view. Smith [28] and Williams [30, 31] study lower probabili-
ties as betting rates, but as I argue in Sect. 2 below, it is difficult to relate talk
about betting to constructive probability judgment. Huber’s work on lower
probabilities [13, 14] is mainly concerned with situations where the truth’s
being generated by chance is a serious hypothesis and not just a metaphor.
For further references, see Shafer [22].

1.5 Belief Functions and Lower Probabilities

Mathematically, every belief function is a lower probability function. Every
function of the form (2), that is to say, is also of the form (4). Here is one way
to see this. Given a belief function Bel on a frame Θ, we can construct an
additive probability distribution P such that P (A) > Bel(A) for all A ⊂ Θ
by choosing an element θB of every non-empty subset B of Θ and setting

p (θ) =
∑

{m (B) |θB = θ} .

Let P denote the class of distributions obtained by varying the choice of the
θB. Then P (A) is smallest for those P in P that choose θB to be outside A
whenever possible—i.e., whenever B 	⊂ A. So

inf {P (A) |P ∈ P} =
∑

{m (B) |B ⊂ A} = Bel (A) .

Not every lower probability function, on the other hand, is a belief function;
Williams exhibits an example of one that is not on page 380 of his review.

Does the fact that every belief function is a lower probability function
mean that our theory of lower probabilities is more general than the theory of
belief functions? Certainly not. For the theory of belief functions uses a belief
function in a different way than our theory of lower probabilities would use
it. The meaning is quite different in the two cases. One theory is comparing
our evidence to knowledge provided by a randomly coded message; the other
is comparing our evidence to knowledge about chances governing the truth. I
will discuss some of the implications of this difference in meaning in Sects. 3
and 5 below.

Since it does retain the Bayesian idea that our evidence is like knowing
that the truth is generated by chance, our theory of lower probabilities is much
closer in spirit to the Bayesian theory than the theory of belief functions is.
And, as we shall see in Sect. 3 below, it does not escape as thoroughly as one
might think from the Bayesian emphasis on prior probabilities.

I will not surprise the reader when I say that I find belief functions more
interesting and promising than lower probabilities. In many cases, I believe,
our evidence is so unlike knowledge that the truth is generated by chance that
it is misleading to liken a conviction that the evidence supports A better than
B to knowledge that the chance of A is greater than the chance of B.
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I hope, on the other hand, that the theory of lower probabilities I have
sketched here is more than a straw man. It is quite possible that judgments
of the kind the theory suggests will sometimes provide the most useful and
insightful way to analyze one’s evidence. And, as I shall try to show in this
paper, the theory provides explicit motivation for assumptions that Good,
Smith, and Williams have taken for granted in their writings on lower proba-
bilities.

1.6 What is a Degree of Belief?

What is meant by “degree of belief,” and how might an individual determine
his degrees of belief in a particular case?

The meaning of an “epistemic probability” or “degree of belief” is very
rich. It depends, I have argued, on the whole theory by which the probability
judgment is made or, as we might put it, on the whole language in which it is
expressed. A degree of belief of .3, say, means one thing in the Bayesian theory
and something different in the theory of belief functions. It also depends on
the canons of judgment that have been established in the particular field of
inquiry. A historian’s valuation of certain kinds of evidence may differ from a
judge’s.

There is room for ambiguity in the question about how an individual
might “determine his degrees of belief.” Some Bayesians give the impression
of thinking that we have numerical probabilities for everything hidden in our
psyche; they would interpret “determine” as a synonym for “elicit.” Others
take a more constructive view; for them probability judgment is a matter of
assessing evidence and constructing reasonable numerical beliefs. As I have
tried to make clear, I subscribe to the constructive view. Probability judgment
is a matter of construction. We may come to the task with some vague beliefs,
but these will not be numerically precise and will usually not even have any
very definite structure. (It would be silly, for example, to argue about whether
our unreflective beliefs have a structure more like belief functions or more like
Bayesian probability distributions. There simply is not that much structure
there.) And the process of construction should ideally be sufficiently fruitful in
new insights and understanding as to render obsolete much of any rudimentary
structure that might be in these initial vague beliefs.

1.7 Why Belief Functions?

For what reasons are degrees of belief required to satisfy the conditions
imposed? Why, that is to say, should “belief functions” be required to be
of the form (2) instead of, say, the more general form (4)?

As I see it, the theory of belief functions is a language in which one can
construct and express probability judgments. Asking why the theory uses
degrees of belief with a given structure is like asking why some aspect of
a language’s grammar is as it is. Explanations can be given, but they are
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inevitably internal explanations—explanations of how that aspect fits in with
other aspects of the language. Challenged to explain why belief functions are
required to be of the form (2), I might point out that only functions of this form
can be combined by Dempster’s rule. Or I might point out that functions of
this form result when evidence is assessed using the scale of canonical examples
involving randomly coded messages. But these are only internal explanations.
They do not rule out the usefulness or even superiority of a different theory
using a different and possibly more general structure for degrees of belief.

As I have tried to make clear, I do not deny the possibility of a theory
superior to the theory of belief functions. I believe, though, that the superi-
ority of one theory of probability judgment to another can be demonstrated
only by a preponderance of examples where the best analysis using the one
theory is more insightful than the best analysis using the other. As Amos
Tversky puts it, the unit of comparison for theories of probability judgment
is the individual analysis.

The individual analyses we compare should be complete analyses—analyses
beginning with an intuitive account of one’s actual evidence and building up
formal judgments step by step. (Examples of such analyses using belief func-
tions are given in Shafer [24] and Shafer and Breipohl [27].) It may be unfair
to ask a theory to deal with a problem which has already been translated from
actual experience into the language of another theory.

It would be unfair, for example, to argue that the very existence of a class
P of chance distributions such that (4) is not a belief function is proof of
the inadequacy of the theory of belief functions. For it is not the case that
we can ever really know, in a concrete problem, that the truth is generated
by chance in accordance with some distribution in a class P . Rather, the
determination of the class P must itself be regarded as the first step in one
particular approach to constructing probability judgments. And so it proves
nothing that the theory of belief functions may be unable to carry on from this
first step. The important questions are: (1) Can a theory of lower probability
functions show us how to carry out this first step insightfully? (2) In real
examples where such a theory succeeds, can the theory of belief functions do
as good or better using some other first step?

2 Betting

Since they use the picture of chance, our three constructive theories inevitably
lead us to think about betting. But what exactly is the significance of betting
for these theories?

Certainly we should not, in a constructive theory, interpret a probability
judgment as an actual commitment to bet. Nor should we interpret it as
a declaration that the person making the judgment has exactly the same
attitude towards a bet in accordance with that judgment as he has towards
a fair bet in a game of chance. Our relative equanimity about fair bets in
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games of chance is based on the assurance that the chances are objective
facts and on the assurance that no possible opponent can gain an advantage
over us through deeper understanding or knowledge of the game, and these
elements are missing when we construct probability judgments on the basis
of ordinary evidence. A probability judgment using the Bayesian theory, for
example, is merely a judgment that our evidence is more similar in strength
and significance to the evidence provided by knowledge of given chances than
to the evidence provided by knowledge of different chances. We will not be
happy unless we feel that the similarity is substantial and instructive and that
our judgment is sound, but we will not pretend that the similarity is complete,
nor that we are certain no one else could make a better judgment.

2.1 Long-Run Policies

So what are we saying about betting when we announce a probability judg-
ment in one of our constructive theories? We are only saying, I think, that
we judge our evidence to be similar to knowledge of a chance model where
certain bets conform to a prudent long-run policy.

It is instructive to spell this out for each of our three theories.

• When we construct a Bayesian probability distribution P , we are judging
our evidence to be like knowledge of a chance model where betting on A
at the rate P (A) conforms to a policy that breaks even in the long run.
(If, for i = 1, 2, . . . , a chance distribution Pi over Θi is used to generate an
independent outcome θi ∈ Θi, and if on each occasion we choose a subset
Ai of Θ and bet on it at rate Pi(Ai), then we break even in the long run.)

• When we construct a belief function Bel, we are judging our evidence
to be like knowledge of a chance model where betting on A at the rate
Bel(A) would conform to a policy that at least breaks even in the long
run. (Consider a sequence of randomly and independently coded messages.
Suppose the ith message bears on Θi. If we choose a subset Ai of each Θi,
and if Beli(Ai) turns out to be the total chance that the ith true message
implies Ai, then we at least break even in the long run by betting on Ai
at the rate Beli(Ai).)

• When we construct a lower probability function P∗, we are judging our
evidence to be like knowledge of a chance model where betting on A at
the rate P∗(A) would conform to a policy that at least breaks even in the
long run. (If, for i = 1, 2, . . . , a chance distribution Pi over Θi is used
to generate an independent outcome θi ∈ Θi, and if on each occasion we
choose a subset Ai of Θi and bet on it at a rate P∗i (Ai) ≤ Pi(Ai), then
we at least break even in the long run.)

Notice that we can make statements for belief functions and lower probabil-
ity functions that are identical on the surface. But in making these statements
we have chance models and long-run policies in mind that are quite different
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in the two cases. A belief function and a lower probability function that are
mathematically equivalent evoke the same bets in our actual problem, but
they refer these bets to different chance models and embed them in different
long-run policies.

Notice also that our statements about the long-run policies breaking even
in the chance models are not quite theorems. They can be turned into theorems
only by giving some mathematical form to the implicit assumption that our
choice of the Ai is independent of the truth and of the random action of the
model.

In formulating the statements about the models, I have been careful to
embed each probability judgment in a sequence of judgments with different
chance models and even different frames. For the chance model and the frame
are constructed to represent the evidence in the problem at hand, and the
next problem, and its evidence, will be different. If we were to allow ourselves
to envision repeated trials using the same model (P,Θ), then we could make
much stronger and more mathematically precise statements for the Bayesian
and lower probability models. We could, for example, say the following:

• If a chance distribution P over Θ is used to generate a sequence θ1, θ2, . . . ,
of independent outcomes, and on each occasion we bet on A ⊂ Θ at the
rate P (A), then we will break even in the long run. In fact, we will break
even even if we offer such bets for all A ⊂ Θ and let our opponents choose,
on each occasion, which bets to accept.

But since P is a product of our particular problem, these strong statements
are utterly irrelevant.

In the case of the chance model for belief functions there is no such temp-
tation to talk about repetitions. For the belief function Bel is determined, in
the model, by the random choice of a code and would vary even if the chance
distribution for the code were kept fixed.

To summarize: Constructive probability judgments can be related to bet-
ting, but the relation is tenuous on two counts. It is tenuous because we are
only comparing our evidence to a chance model. And it is tenuous because
even in the model the bets can be justified only when embedded in a particular
long-run policy involving other models.

2.2 The Dutch-Book Arguments

Williams must have a more intimate relation between probability and betting
in mind when he writes about the “betting interpretation” of Bayesian degrees
of belief and of lower probabilities and pleads for a similar “operational inter-
pretation” for belief functions. But what more intimate relation can there be
if we insist on a constructive understanding of probability judgment?

Williams’ answer, apparently, is that our primary purpose in constructing
probability judgments should be the setting of rates at which we will offer
bets in accordance with some betting scheme.
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There is, Williams reminds us, a betting scheme that seems to force a
Bayesian structure on betting rates and another, looser one that seems to
force the less restrictive structure of lower probability functions on them.

• Suppose we must choose, for each subset A of Θ, a betting rate P (A) and
then offer to take either side of a bet on A at odds P (A) : 1−P (A). Then
an opponent can compile a book of bets from our offers that assures a net
gain from us (a “Dutch book”) if and only if the function P fails to be an
additive probability distribution.

• Suppose we must choose a betting rate p∗ for each A and then offer to
bet on A at the odds p∗ : 1 − p∗, but we are not required to offer to take
the other side of the bet. Let P∗(A) denote the greatest rate at which
we have offered to bet on A—either explicitly or because such a bet can
be compounded from our other offers. Then a Dutch book can be made
against us if and only if P∗ fails to be a lower probability function. (See
Smith [28] or Williams [31]. Williams’ proof of this result is especially
elegant.)

But there does not seem to be a betting scheme in which the avoidance of
Dutch book yields precisely the class of belief functions.

The Dutch-book arguments are interesting, but it is hard to accept the
claim that the setting of betting rates in some particular betting scheme is
the primary purpose of probability judgment.

It is often argued in this connection that every choice or action is like a
bet and that probability judgments ultimately have no purpose other than to
guide future choice and action.

But how well do human choices and actions fit the picture of a bet? How
well, that is to say, do they fit the apparatus of “decision theory,” where
alternatives are weighed by the combination of probabilities and utilities? I
believe that they do not fit very well. One way to understand why they do not
fit is to recognize that utilities, like probabilities, do not simply exist. They
are constructed. And in the case of utilities the construction is accomplished
not so much by reflective thought as by our choices and actions themselves.
It is only after a human being or a society of human beings has established a
self-conception through crucial choices in a given domain that we can speak in
any detail about his or its preferences in that domain. (For a review of some
recent thinking about the inadequacy of decision theory, see March [18].)

Probability judgments should help guide our future choice and action, but
it is also important to remember that the proximate purpose of probability
judgment is always understanding. Human beings often seem to prize under-
standing for its own sake, and it is not easy to argue that this is always mere
appearance. For it is only after we have gained understanding that we can
formulate other goals.

Sometimes we are told that the Bayesian theory is a theory about the
betting behavior of ideal rational agents, and that as such it is “normative”—
it provides us with a definition of rationality that is so inherently attractive
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that we should try to conform to it, even if we cannot fully succeed. But
surely this line of thought begs all the important questions. It is vacuous to
call a mode of thinking or behavior an ideal unless it is appropriate to our
needs and capabilities. And though the Bayesian theory is clearly a norm for
behavior within a particular betting scheme, this does not make it a useful
norm in ordinary thought and action.

I conclude that it is misleading to speak of a “betting interpretation” of
probability. All three of our theories of probability judgment produce degrees
of belief that can be used to set betting rates without fear of Dutch book. But
this is only a minor aspect of their meaning.

2.3 Betting as a Tool in Probability Judgment

Another possible way of relating betting to probability might be to use intro-
spection about betting as a tool in constructing probability judgments.

In the context of our three constructive theories, this would mean using
such introspection to help us compare our evidence to canonical examples
involving chance. We might try to locate the strength of our evidence on
the scale of chances by asking ourselves at what odds our attitude towards a
given bet would be comparable to our attitude towards a fair bet (Bayesian
theory), or perhaps at what odds our attitude would be comparable to our
attitude towards a bet we know to be at least fair (theory of lower probability
functions). This might be more effective psychologically than trying to think
about our evidence in terms of frequencies or propensities. The prospect of
monetary loss or gain might concentrate our minds and thus permit a more
honest and acute assessment of the strength of our evidence than we could
obtain by thinking about it directly.

Here we have a reasonably sharp empirical question. Does it help people
assess their evidence to think about betting? Or is it more helpful to think
about frequencies or propensities? This question has not, perhaps, been inves-
tigated as directly as it might be. But the many empirical studies that have
been made in this area do not seem to indicate that the betting metaphor is
any more useful than the frequency metaphor, say, as a psychological aid in
constructing degrees of belief.

I do not personally find that talk about betting concentrates my mind on
my evidence; instead it tends to divert my mind to extraneous questions: my
attitude towards the monetary and social consequences of winning or losing
the bet, my assessment of the knowledge and astuteness of my opponent, etc.
I find it inherently implausible, moreover, that I could better understand the
strength of my evidence by asking myself about my willingness to bet. In a
situation where I had somehow made a thorough and unimprovable but not
fully conscious analysis of my evidence, it might be sensible for me to forget
about the evidence and concentrate on my own hidden attitudes. But so far
as I know, I do not make such unconscious analyses of evidence.



234 G. Shafer

2.4 Lower Expectations

A function X which assigns a real number X(θ) to every θ ∈ Θ can be thought
of as a gamble: if X(θ) > 0, then X(θ) is the amount we win; if X(θ) < 0,
then −X(θ) is the amount we lose. The idea of buying a gamble generalizes
the idea of betting, for betting the amount p on A at the odds p : 1−p means
paying p to buy the gamble

X(θ) =
{

1 if θ ∈ A
0 if θ /∈ A.

Let us consider how each of our three theories would price a gamble.

• Bayes. If the truth is generated by chance in accordance with the chance
distribution P , then the fair price for the gamble X is, of course, its expec-
tation with respect to P , EP (X). Paying EP (X) for X is a policy that at
least breaks even in the long run.

• Belief Functions. If we receive an infallible message that the truth is in
A ⊂ Θ, then we know the gamble X(θ) is worth at least inf{X(θ)|θ ∈ A}
to us. So if we receive a randomly coded message and the chance of the
message meaning A turns out to be m(A) for each A ⊂ Θ, then it is natural
to price the gamble at the average value

B̂el(X) =
∑

A⊂Θ
m (A)

[
inf
θ∈A

X(θ)
]
. (8)

Let us call B̂el(X) the lower expectation of X . It is a fair price to pay for
X in the sense that we will at least break even if we pay such prices for
gambles in a long run of independent randomly coded messages.

• Lower probabilities. Suppose we know the truth is generated by chance
in accordance with some distribution in a class P . Then we know the
expectation of X is at least

E∗(X) = inf
P∈P

EP (X). (9)

And we will at least break even in the long run if we follow the policy of
paying this price for X .

In Sect. 1 above I called (9) the lower expectation of X . Is it consistent to
call both (8) and (9) by the same name? As it turns out, it is; if

P = {P |P (A) ≥ Bel(A) for all A ⊂ Θ} ,

then (8) and (9) will be equal. (See Huber [13] and Shafer [23].)
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3 Conditioning

The idea of conditioning has its origin in the theory of chance.
Conditioning occurs most naturally, perhaps, in the case of a game of

chance that unfolds step by step. When such a game has been only partly
played out (when only the first die has been thrown, say), chance still has a role
to play. And this role can be described by the conditional chance distribution.
Suppose, indeed, that X denotes the set of complete outcomes for the game,
and that the chance for each outcome x is denoted p(x), so that the chance
law P governing the game is given by

P (A) =
∑
{p(x)|x ∈ A}

for all A ⊂ X . Say the partial playing out of the game determines only that
the eventual outcome will be in the subset X0 of X . Then the conditional
chances p′(x) governing the remainder of play are obtained by reducing the
p(x) for x /∈ X0 to zero and multiplying the p(x) for x ∈ X0 by the factor
P (X0)−1. And the conditional chance distribution P (·|X0)−1 is given by

P (A|X0) =
∑
{p′(x)|x ∈ A} =

P (A ∩X0)
P (X0)

(10)

for all A ⊂ X . We can see that this is the right way to define the conditional
chances by thinking about long-run frequencies: P (A|X0) is simply the pro-
portion of the games that reduce to X0 during the first stage of play that will
go on to have their eventual outcome in A.

Conditioning can, of course, be applied in the case of any subset X0 of X ,
even if X0 does not correspond to a partial completion of the game. There
are several ways of explaining what meaning conditioning might have in this
more general case. One way is to turn our attention from the chances to the
degrees of belief they justify. If we know the chance distribution P and have
therefore adopted its values as our degrees of belief concerning how the game
will turn out, then news that the outcome has fallen in X0 will naturally lead
us to revise our beliefs by (10). Of all the games in which this news is true,
we will tell ourselves, P (A|X0) is the proportion in which the outcome is in
A. And so adopting P (A|X0) as our new degree of belief seems reasonable,
provided there is no trickery involved in our having received the news that
the outcome is in X0—provided, in other words, that our receipt of this news
is not the result of some fiendish scheme to mislead us.

Now suppose we represent ordinary evidence by constructing degrees of
belief over a frame Θ and then obtain new evidence whose direct effect on Θ
is to establish with certainty that the truth is in a subset Θ0. How should we
change our degrees of belief to take this new evidence into account? Each of
our constructive theories of probability has its own way of translating the rule
of conditioning for chance distributions into an answer to this questions.
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• Bayes. In the Bayesian case we have constructed an additive probability
distribution P over Θ, with the understanding that our evidence is com-
parable to knowledge that the truth is generated by P . So we will simply
adopt the conditional distribution P (·|Θ0) as our new additive probability
distribution.

• Belief functions. In the case of belief functions, the chance distribution in
our model is a distribution for the random choice of a code, and when we
take the news that the truth is in Θ0 into account, we have to condition
this distribution on a subset of codes.
Say we have represented our old evidence by a belief function Bel, cor-
responding to a randomly coded message with possible codes c1, . . . , cn,
where code ci was used with chance pi and decoding by code ci produces
the message Ai ⊂ Θ. We can simply incorporate the news that the truth
is in Θ0 into the messages, thus changing Ai to Ai ∩ Θ0. But we must
also notice that the news may tell us something about which code was
used: if Ai ∩ Θ0 = ∅, then code ci cannot be the code that was used. So
in addition to changing Ai to Ai ∩ Θ0 we must also condition the chance
distribution for the codes on the subset {ci|Ai ∩Θ0 	= ∅} of codes. This
means we replace the pi by p′i, where

p′i =
{

0 if Ai ∩Θ0 = ∅
pi∑{pj |Aj∩Θ0 �=∅} if Ai ∩Θ0 	= ∅.

These two changes (replacing pi with p′i and Ai with Ai ∩ Θ0) give us a
new randomly coded message representing the total evidence. The belief
function Bel (·|Θ0) corresponding to this randomly coded message has
m-values

m (A|Θ0) =
∑

{p′i|Ai ∩Θ0 = A} =
∑
{pi|Ai ∩Θ0 = A}∑
{pi|Ai ∩Θ0 	= ∅}

for all A 	= ∅, and so

Bel (A|Θ0) =
∑

{m (B|Θ0) |B ⊂ A}

=
∑
{pi|Ai ∩Θ0 ⊂ A} −

∑
{pi|Ai ∩Θ0 = ∅}

1−
∑
{pi|Ai ∩Θ0 = ∅}

=
Bel

(
A ∪Θ0

)
−Bel

(
Θ0

)

1−Bel
(
Θ0

)

for all A ⊂ Θ. This is the rule of conditioning for belief functions.
• Lower probabilities. Suppose we think the evidence bearing on a frame Θ

is similar in strength to knowledge that the truth is generated by chance
in accordance with some distribution in a class P . Then we can take new
evidence that the truth is in Θ0 into account by saying that our total
evidence is similar in strength to knowledge that the truth is generated
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by chance in accordance with some distribution in the class P ′ obtained
by conditioning on Θ0 each element of P that can be so conditioned. In
particular, we replace our lower probability P∗ by P ′

∗, where

P ′
∗(A) = inf {P (A|Θ0)|P ∈ P ;P (Θ0) > 0} ,

and we replace our lower conditional probability function P∗(·|·) by

P ′
∗ (A|B) = inf {P (A|B ∩Θ0) |P ∈ P ;P (B ∩Θ0) > 0} = P∗ (A|B ∩Θ0) .

Notice that P ′
∗ (A|B) is undefined if P∗(B ∩Θ0) = 1, in which case

P ′
∗
(
B|Θ0

)
= 1.

3.1 The Role of Conditioning

It should be emphasized that the decision to use the rule of conditioning in
one of our constructive theories is itself a constructive judgment. We condition
on B, as I have said, when the direct effect of new evidence on our frame Θ is
to establish that the truth is in B. But whether this is the direct effect of the
new evidence is a matter of judgment, not of fact. “The direct effect of the new
evidence” is an idea that has reality only within our language of probability
judgment. We learn the meaning of this idea by example, just as we learn the
meaning of other elements of a language, and our application of the idea to
particular evidence is, like other probability judgments, a comparison of that
evidence with other examples.

The decision to condition is just one place where the idea of “the direct
effect of given evidence” comes into play in the theory of belief functions.
It also comes into play when we represent an item of evidence by a simple
support function; in this case we must judge that the item’s only direct effect
on Θ is to support a given subset. And, as we shall see in Sect. 4 below, this is
merely a special case of the judgment that the direct effect of given evidence
on Θ is discerned by a given subalgebra.

The theory of belief functions is so concerned to identify the direct effect
of given evidence because it often works with limited items of evidence. As
I pointed out in Sect. 1 above, the fundamental strategy of the theory is to
make judgments based on different items of evidence and then to combine
these judgments. Conditioning is merely one example of such decomposition
and recombination, and it is unusual only in that the message of one of the
items of evidence is conclusive.

Theories which compare evidence to knowledge that the truth is gener-
ated by chance do not depend so extensively on the decomposition of evi-
dence. Our theory of lower probabilities, for example, breaks the overall task
of judgment down by distinguishing different questions, not by distinguishing
different items of evidence bearing on those questions. We construct a lower
probability function from many judgments of the form “our evidence is like
knowing the chance of A to be greater than p,” but it is “A” and “p” that vary
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from judgment to judgment, not the evidence; all the judgments are supposed
to be based on the total evidence. In this theory, as in the Bayesian theory, it
is only in the case of conditioning that we decompose our evidence, and so it
is only in the case of conditioning that we are concerned with identifying the
direct effect of a limited item of evidence.

How important is conditioning? Some Bayesians have given it a central role
in their theory, perhaps because it is the only way their theory decomposes
evidence and is hence the only way they can formally combine “new” evidence
with old. (See, for example, de Finetti [8], p. 141.) But I am inclined to think
of conditioning as a tool we will not use very often in a constructive theory.
It will happen fairly often, no doubt, that we can formulate a frame and
distinguish evidence whose direct effect is to establish that the truth is in a
certain subset. But how often will this frame be the same as the one we have
used or want to use in assessing the balance of our evidence? New evidence
that we actually obtain after constructing numerical probability judgments
over a frame Θ will seldom affect Θ so simply. And I also find it doubtful
whether the assessment of a body of evidence already obtained will very often
be best accomplished by singling out a part that establishes a subset B of a
frame Θ, using the rest to construct degrees of belief over all of Θ, and then
conditioning on B. It will usually, I think, be more sensible and efficient to
treat knowledge of B as just another element of our background knowledge
and to concentrate our probability judgments on matters that we really find
uncertain. For a discussion of this point in the context of a detailed example,
see Shafer [24].

One aspect of a decision to use conditioning in our constructive theories
is the implicit judgment that the news that the truth is in B has not been
selected from the many things we might be told just because it will interact
with other evidence in such a way as to mislead us. This judgment can be
translated into statements about the chance models used by the theories.
In the Bayesian theory and the other theories that think of the truth as
being generated by chance, the judgment comes down to saying that our new
evidence is like learning the truth is in B by means of some mechanism that
selects this message to send us without regard to the chances by which the
truth was generated. In the theory of belief functions, the judgment comes
down to saying that the selection of the message was without regard either
to how the random coding of previous messages was set up or to how that
random coding turned out. Notice that these statements assure, within the
chance models, that betting in accord with the new degrees of belief remains
a policy that at least breaks even in the long run.

3.2 A Comparison of Two Rules

The theory of belief functions and our theory of lower probabilities have very
different rules of conditioning—rules that can give very different results even
when applied to the same degrees of belief. We can gain insight into the
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difference between the two theories by studying a simple example of this
divergence.

Let us first consider how the theory of belief functions conditions a simple
support function. Suppose A1 is a proper non-empty subset of Θ and we
represent strong but inconclusive evidence that the truth is in A1 by the
simple support function

Bel (A) =

⎧
⎨

⎩

0 if A1 	⊂ A
.95 if A1 ⊂ A 	= Θ
1 if A = Θ.

(11)

This belief function has m-values m(A1) = .95, m(Θ) = .05, and m(A) = 0
for all other A. In adopting it we are likening our evidence to a message
that probably means A (chance .95) but might possibly (chance .05) mean
nothing. Now suppose we obtain new evidence whose direct effect on Θ is to
establish that the truth is in A2, where A2 is some other subset of Θ such
that A1 ∩A2 	= ∅. Then we condition Bel on A2, obtaining

Bel (A|A2) =

⎧
⎨

⎩

0 if A1 ∩A2 	⊂ A
.95 if A1 ∩A2 ⊂ A 	⊃ A2

1 if A2 ⊂ A;
(12)

the news that the truth is in A2 changes the message that it is probably in
A1 into the more specific message that it is probably in A1 ∩A2.

Let us make the story more concrete. Suppose a burglar is traced to a
rooming house, in such a way as to make it highly probable that he is actu-
ally one of the roomers, though it is believed that he keeps his tools and loot
elsewhere. A police detective searches the rooming house and interviews the
five roomers, but on this first examination finds nothing that either exonerates
or further incriminates any of them. At this point the detective might formu-
late a frame Θ which includes, for each roomer i, a subset Bi corresponding to
the possibility that roomer i is the burglar. (See Fig. 1.) And he might adopt
(11) as a representation of his evidence, where A1 is the union of the Bi’s.

Suppose now that roomers 4 and 5 produce airtight alibis, conclusively
establishing that neither is the burglar. Such alibis, in order to be convincing,

B1 B5B4B3B2

A1

Fig. 1. Roomer i is the burglar
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would have to involve great detail, and this detail would inevitably provide
less conclusive evidence about other questions. But we may suppose that these
other questions are not germane to the investigation and therefore need not be
introduced into the frame Θ. Thus the detective may judge that the only direct
effect of this new evidence on Θ is to eliminate B4 and B5 from consideration.
In this case he will want to condition (11) on the set A2 = B4 ∪B5, which
corresponds to the burglar being someone other than roomer 4 or roomer 5.
The set A1 ∩ A2 = B1 ∪ B2 ∪ B3 corresponds to the burglar being one of
the first three roomers. And according to the new belief function (12), the
suspicion against the rooming house now points to these three.

Here is another way the story might go. Suppose the new evidence, instead
of consisting of alibis, is evidence from the scene of the crime establishing that
the burglar has blood type O. In this case the detective might introduce the
question of the burglar’s blood type into our frame Θ, so that there is a subset
A2 of Θ corresponding to its being type O. (This set A2 is pictured in Fig. 2;
since we do not yet know the roomers’ blood types, A2 intersects with each
Bi.) And he will then condition (11) on A2. The resulting belief function (12)
awards degree of belief .95 to A1 ∩ A2, which corresponds to the proposition
that the burglar is one of the roomers and has blood type O. Under these
circumstances the detective’s next step will no doubt be to find out the blood
type of each of the roomers and to condition (12) on this further information.
I will refrain from illustrating this further conditioning graphically, because
a very complicated picture arises when we introduce distinctions about each
roomer’s blood type into Θ. But the final result is obvious: if none of the
roomers have type O blood then the suspicion against them is dispelled; oth-
erwise it is focused on those that do.

One might challenge the adequacy of (11) and (12) as an analysis of this
detective story on the grounds that there is probably other evidence that
it does not take into account. Surely the detective acquired some hints and
hunches in the course of interviewing the roomers. And might he not have
some prior inclination to expect type O blood, given its high frequency in the

A1

A2

Fig. 2. The intersection of A1 and A2
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population? The answer to this challenge is that the theory of belief functions
can always accommodate further evidence, provided its relevance is identified
and its value is assessed. The detective can decide he has further evidence
worth introducing into the analysis, or he can decide he does not.

Let us now consider how to analyze the detective story using our theory
of lower probabilities.

The most obvious approach is to liken the initial evidence in favor of A1

to knowledge that the truth is generated by chance and that the chance of
A1 is at least .95. This means representing the evidence by the class P =
{P |P (A1) ≥ .95} or by the lower probability function

P∗ (A) =

⎧
⎨

⎩

0 if A1 	⊂ A
.95 if A1 ⊂ A 	= Θ
1 if A = Θ,

(13)

which is mathematically identical to the belief function (11). But if we con-
dition P on a subset A2 that intersects both A1 and A1, then we will obtain
the new lower probability function

P ′
∗ (A) =

{
0 if A2 	⊂ A
1 if A2 ⊂ A,

(14)

which indicates no particular support at all for A1 ∩ A2. In fact, (14) seems
to ignore the initial evidence. It is presumably the lower probability function
we would adopt if we had only the new evidence establishing A2.

It will be agreed, I think, that (14) is unsatisfactory. How is it to be
avoided?

The natural move is to challenge the adequacy of the class P = {P |P (A1)
≥ .95} as a representation of our initial evidence. There is, one might argue,
more to be said on the basis of the initial evidence than that the chance of
A1 is at least .95. In order to prepare for conditioning on the alibis of the
two roomers for example, we might decide that the five roomers have equal
chances of being the burglar, thus narrowing the class P down to the class

P1 = {P |P (A1) ≥ .95;P (B1) = P (B2) = P (B3) = P (B4) = P (B5)} .

This already awards a lower probability of .57 to B1 ∪B2 ∪B3. And when we
condition P1 on A2 = B4 ∪B5, we obtain

P ′
1 =

{
P |P (A2) = 1, P (A1 ∩A2) ≥

.57

.62
≈ .92;P (B1) = P (B2) = P (B3)

}
,

which awards a lower probability of .92 to A1 ∩ A2 = B1 ∪ B2 ∪ B3. This is
nearly as great as the degree of belief .95 awarded by the belief function (12).
Notice, though, that this analysis is sensitive to the number of roomers and
the proportion with alibis in a way that the analysis using belief functions is
not. If four out of the five roomers have alibis, then the final lower probability
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for the remaining one would be only .19
.24 ≈ .79; if there were 20 and 19 were

similarly exonerated, then the final lower probability for the remaining one
would be .0475

.0975 ≈ .49. And these figures could easily be altered if we claimed
that our initial evidence justified unequal prior chances for the roomers.

The initial class P can also be adapted to give sensible results when condi-
tioned on the burglar’s blood type. In this case the natural move is to narrow
P down to

P2 = {P |P (A1) ≥ .95;P (A1 ∩A2) = P (A1)P (A2)} .

We require, that is to say, that A1 and A2 be independent. This is reasonable;
once we have decided to think of the truth as random, it is natural to think
of the random determination of the burglar’s blood type as stochastically
independent of the random determination of whether he is one of the roomers.
Conditioning P2 on A2 yields

P ′
2 = {P |P (A2) = 1;P (A1 ∩A2) ≥ .95} ,

which gives a lower probability function mathematically identical to the belief
function (12).

This last analysis can be extended to an analysis incorporating further
conditioning on the roomers’ blood types that will continue to agree with the
analysis using belief functions. Here is the set-up. Let T denote the burglar’s
blood type, let Ti denote the ith roomer’s blood type, and set

X =
{

0 if the burglar is not one of the roomers
i if the burglar is the ith roomer.

(Notice that T = Ti when X = i. And “X 	= 0” is equivalent to A1.) Replace
the initial class P by the class P3 consisting of all P such that P (A1) ≥ .95,
(X,T1, .., T5) are jointly independent with respect to P , all the Ti have the
same marginal distribution, and T has this same distribution conditional on
X = 0. We may take the burglar’s and the roomers’ blood types into account
by conditioning P3 on the values of T and the Ti, and if there is a subset of
roomers whose blood type agrees with the burglar’s they will inherit the full
.95 suspicion against the rooming house.

To summarize: A basic idea of the theory of belief functions is the idea
of evidence whose only direct effect on the frame Θ is to support a subset
A1, and an implicit aspect of this idea is that when this evidence is combined
with further evidence whose only direct effect on Θ is to establish a compatible
subset A2, the support for A1 is inherited by A1 ∩ A2. The theory of lower
probabilities does not have a fully equivalent idea. New evidence establishing
A2 may cause prior support for a subset A1 to be inherited by A1 ∩A2 in the
theory of lower probabilities, but whether this happens will depend, as in the
Bayesian theory, on various “prior probabilities.”

Indeed, the similarity between our theory of lower probabilities and the
Bayesian theory in their dependence on prior probabilities is striking. Our
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theory of lower probabilities does not, apparently, always get us away from
the Bayesian bemusement over how to assess prior probabilities when the
evidence is weak. In the case of our five roomers there was a natural symmetry
on which to pin “equal prior probabilities,” but one could easily construct
similar examples where there are no obvious symmetries or else competing
ones, so that the prior probabilities needed in order to get sensible answers
from conditioning seem much more arbitrary. This makes us wonder just how
much is gained in the generalization from the Bayesian theory to the theory
of lower probabilities.

However we answer this question, the drastically different results we get by
conditioning (11) and (13) should bring home to us that a belief function can
have quite a different meaning from a mathematically identical lower proba-
bility function. Saying our evidence is like a message that probably means A1

but might mean nothing is quite different from saying it is like knowing that
the truth is generated by chance and that the chance of A1 is great. So we
must decide when we make a probability judgment, just which formulation
fits the significance of our evidence. We cannot simply make a vague judg-
ment that the evidence supports A1, express it numerically by (11), and then
interpret (11) indifferently either as a belief function or as a lower probability
function.

3.3 Conditional Bets

Consider again two proper subsets A1 and A2 of Θ such that A1 	= A2 and
A1 ∩A2 	= ∅. Following de Finetti, let us call a gamble of the form

X (θ) =

⎧
⎨

⎩

1− p if θ ∈ A1 ∩A2

−p if θ ∈ A1 ∩A2

0 if θ /∈ A2,
(15)

where 0 < p ≤ 1, a “bet on A1 conditional on A2.” The idea behind this name
is that if we agree to this gamble (i.e., buy it for the price zero), then we will
be betting on A1 at odds p : 1 − p and total stakes p+ (1− p) = 1, with the
understanding that the bet will be called off if the truth turns out, when it is
revealed, not to be in A2.

In our constructive theories of probability judgment, our attitude towards
a gamble depends, in the tenuous way discussed in Sect. 2 above, on the
gamble’s expectation or lower expectation. This is true in particular of a
conditional bet. If the expectation or lower expectation of the conditional bet
is nonnegative, then the bet conforms, in the chance model we have used to
represent our evidence, to a policy that at least breaks even in the long run.

Our attitude towards any gamble will, in general, change as we acquire new
evidence. And in the theory of belief functions, our attitude towards a condi-
tional bet can change dramatically when we obtain new evidence establishing
the condition of the bet. Suppose, for example, that we have represented our
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evidence about Θ by the belief function (11). Then our lower expectation for
the conditional bet (15) is

B̂el (X) = .95
[

inf
θ∈A1

X (θ)
]

+ .05
[

inf
θ∈Θ

X (θ)
]

= −.05p.

Since this is negative, the theory gives no sanction to the bet. But if we obtain
new evidence establishing A2 and change our belief function to (12), then the
lower expectation changes to

B̂el (X |A2) = .95
[

inf
θ∈A1∩A2

X (θ)
]

+ .05
[

inf
θ∈A2

X (θ)
]

= .95 (1− p) + .05 (−p) .

If p < .95, then this will be positive and so the theory will sanction the bet as
reasonable policy. It is easy to see intuitively why our attitude towards the bet
changes in this way. The bet is essentially a bet on A1 ∩A2, and the original
evidence, while supporting A1, does not provide any particular support for
A1 ∩A2 until it is conjoined with the evidence establishing A2.

Neither the Bayesian theory nor the theory of lower probabilities, in con-
trast, ever changes its willingness to sanction a conditional bet because of new
evidence whose direct effect is to establish the bet’s condition. Indeed, when
we condition a Bayesian probability distribution P on A2, the expectation of
(15) changes only from EP (X) to

EP (X |A2) =
EP (X)
P (A2)

;

it cannot change in sign. And when we condition a class P of distribution on
A2, the lower expectation of (15) changes only from

E∗ (X) = inf {EP (X)|P ∈ P}

to

E∗ (X |A2) = inf
{
EP (X)
P (A2)

|P ∈ P ;P (A2) > 0
}
,

and while this may be a change from zero to a positive quantity it cannot be
a change from a negative to a non-negative quantity or vice-versa.

This contrast can also be expressed in terms of maximum rates for condi-
tional bets. The maximum rate for betting on A1 conditional on A2 is defined
as follows:

• In the case of a Bayesian probability distribution P such that P (A2) > 0,
it is

sup {p|EP (X) ≥ 0} ,

where X , which depends on p, is the conditional bet (15).
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• In the case of a belief function Bel such that Bel(A2) < 1, it is

sup
{
p|B̂el (X) ≥ 0

}
.

• In the case of a class P of distributions such that p∗(A2) < 1 (i.e., P (A2) >
0 for some P ∈ P), it is

sup {p|E∗ (X) ≥ 0} = sup {p|EP (X) ≥ 0 for all P ∈ P} .

These definitions all say the same thing: the maximum rate is defined
except when we are certain the truth is not in A2 (in which case the conditional
bet is of no interest), and it is defined to be the greatest value p for which
the bet is sanctioned. In general, a bet on A1 conditional on A2 is sanctioned
in one of the constructive theories only if the bet’s value for p is less than or
equal to this maximum rate. Thus the contrast between belief functions and
the other two theories can be expressed by saying that the maximum rate for
betting on A1 conditional on A2 may change when one conditions on A2 in
the theory of belief functions, but not in the other theories.

The picture becomes clearer, perhaps, then we notice that in the Bayesian
theory the maximum rate for betting on A1 conditional on A2 happens to be
equal to the conditional probability P (A1|A2). This is because EP (X) ≥ 0 if
and only if

P (A1 ∩A2) (1− p) + P
(
A1 ∩A2

)
(−p) ≥ 0

or

p ≤ P (A1 ∩A2)
P (A2)

= P (A1|A2).

Bear in mind that though this maximum rate might be called a “conditional
betting rate,” it is the bet that is conditional; the rate itself is “uncondi-
tional” in the sense that it is our rate prior to obtaining new evidence and
“conditioning” on A2. But when we obtain this new evidence the conditional
bet becomes, for practical purposes, unconditional—for we know its condition
is satisfied. Thus our new maximum rate for the conditional bet will be the
same as our new maximum rate for an unconditional bet on A1—i.e., our
new degree of belief in A1. But this new degree of belief is P (A1|A2). This is
how it happens that our maximum rate for this particular conditional bet is
unchanged.

The same thing happens in our theory of lower probabilities: the maximum
rate for betting on A1 conditional on A2 happens to be equal to P∗(A1|A2),
and hence remains unchanged when we condition on A2. But in the theory of
belief functions this does not happen: our “prior” maximum rate for betting
on A1 conditional on A2 is usually not equal to Bel(A1|A2), our “posterior”
maximum rate for betting on A1.
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3.4 The Dynamic Assumption of the Betting Theories

In this essay I have insisted on understanding both the Bayesian theory and
the theory of lower probabilities as constructive theories. I have assumed that
the degrees of belief given by both theories are the result of comparing one’s
evidence to knowledge about chances governing the truth. And I have used
this assumption to derive the theories’ methods for pricing gambles and their
rules of conditioning.

In the literature that treats probability theory as a theory about the gam-
bling behavior of “idealized rational agents,” on the other hand, there is no
possibility of appealing to chance models to derive rules of conditioning. And
thus these rules for changing degrees of belief or betting rates become, to
use Ian Hacking’s eloquent phrase, dynamic assumptions.3 And one faces the
problem of making these assumptions plausible.

Here is how de Finetti tries to make the Bayesian rule of conditioning
plausible. He begins by defining a Bayesian’s “conditional probability of A
given B,” denoted P (A|B), as his rate for betting “on A conditional on B”—
his rate for betting, that is to say, on A with the understanding that the
bet will be called off unless B is true. (See de Finetti [6], p. 109, [7], p. 82,
[8], p. 135.) He then proceeds to interpret P (A|B) as the probability of A
conditional on B in the usual sense—i.e., as the Bayesian’s degree of belief or
betting rate for A after he has obtained new evidence establishing B. (See de
Finetti [6], p. 119, [7], p. 210, [8], p. 141).

What are we to make of this procedure? It obviously takes for granted that
one’s betting rate for a conditional bet should be unchanged when new evidence
is obtained whose direct effect is to establish the truth of the bet’s condition.
Let us call this de Finetti’s principle. I have been unable to find a critical
discussion of this principle in de Finetti’s writing. He seems to consider the
principle too self-evident to require such a discussion.

As one who finds the theory of belief functions, which does not obey
de Finetti’s principle, self-consistent and appealing; I find the idea that de
Finetti’s principle is self-evident baffling. I see the correctness of the principle
when betting rates are based on knowledge of chances governing the truth. I
am willing to accept the principle as part of a theory that compares our evi-
dence to knowledge of chances. But I do not see that it is inherent to the idea
of betting per se. It is clear enough that a bettor should change his betting
rates when he learns that B is true, and that his new rate for an unconditional
bet on A should be the same as his new rate for a bet on A conditional on B.

3 See Hacking [12]. In this paper Hacking complains about the lack of any justifi-
cation for the rule of conditioning in the Bayesian literature. The literature on
lower probabilities is equally lacking. Since Hacking wrote, Teller [29] has given
a Dutch-book argument for the Bayesian rule of conditioning, but this argument
depends on the Bayesian rule of additivity and also on the assumption that we
know before obtaining the new evidence that the subset established by it will be
an element of a certain partition. See also Freedman and Purves [10].
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Moreover, these new rates should be the same as the new rate for a bet on A
conditional on any B′ such that B ⊂ B′ ⊂ Θ. All these bets are equivalent
for someone who knows that the truth is in B. But why should the new rates
for all these bets be the same as the old rate for the bet conditional on B?
Why should this particular rate remain unchanged while the others change?

De Finetti’s principle can similarly serve as the dynamic assumption of a
betting theory of lower probabilities. Smith [28] seems to use it in this way, for
he gives the name “lower conditional probability” to a bettor’s maximum rate
for a bet on A which is to be called off unless B is true (p. 6) and then takes
it for granted that this should become his betting rate for an unconditional
bet on A when he obtains new evidence establishing B. Williams [30] similarly
identifies lower conditional probabilities as betting rates for conditional bets
but does not discuss changes in betting rates resulting from new evidence.

3.5 Williams’ Argument on Conditional Bets

On p. 381 of his review, Williams discusses the pricing of conditional bets in
the theory of belief functions. He casts his argument in terms of a numerical
example, but we can easily recast it in general terms. It begins, essentially,
with the following fact: offers to bet on A2 at rate p and on A1 conditional
on A2 at rate q entail an offer to bet on A1∩A2 at rate pq. (Proof: If the bet
on A2 has total stakes q, then it is the gamble

X1 (θ) =
{

(1− p) q if θ ∈ A2

(−p) q if θ /∈ A2.

If the conditional bet has unit stakes, then it is the gamble

X2 (θ) =

⎧
⎨

⎩

1− q if θ ∈ A1 ∩A2

−q if θ ∈ A1 ∩A2

0 if θ /∈ A2.
(16)

Taking both these gambles means taking the gamble

X1 (θ) +X2 (θ) =
{

1− pq if θ ∈ A1 ∩A2

−pq if θ ∈ A1 ∩A2,

which is merely a bet on A1 ∩A2 at the rate pq.)
Suppose we price gambles using a belief function Bel, so that Bel(A2) and

Bel(A1 ∩A2) are the greatest rates at which we will bet on A2 and A1 ∩A2,
respectively. If q is a rate at which we bet on A1 conditional on A2, then our
willingness to bet on A2 at the rate Bel(A2) implies, by the italicized sentence,
a willingness to bet on A1 ∩ A2 at the rate Bel(A2)q. So the assertion that
Bel(A1∩A2) is the greatest rate at which we will bet on A1∩A2 will be valid
only if

Bel(A1 ∩A2) ≥ Bel(A2)q. (17)
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Williams asks, in effect, whether the pricing of conditional gambles in the
theory of belief functions guarantees that (17) will be true.

In fact, the theory of belief function does guarantee (17). For it sanctions
the conditional bet (16) only if (16) has a non-negative lower expectation—i.e.,
only if

(1− q)
∑

{m (A) |A ⊂ A1 ∩A2} ≥ q
∑{

m (A) |A ∩A1 ∩A2 	= ∅
}
,

which implies

(1− q)
∑

{m (A) |A ⊂ A1 ∩A2} ≥ q
∑

{m (A) |A ⊂ A2;A 	⊂ A1 ∩A2} ,

or
(1− q)Bel(A1 ∩A2) ≥ q (Bel (A2)−Bel (A1 ∩A2)) ,

which is equivalent to (17).
There is, of course, a more general issue here. The question is whether

interpreting Bel(A), for each A ⊂ Θ, as the greatest rate at which a bet on A
is sanctioned is consistent with sanctioning every gamble with non-negative
lower expectation. We easily see that a bet on A at rate p has non-negative
lower expectation if and only if p ≤ Bel(A). But perhaps it is possible, in some
cases, to build up a bet on A at a rate higher than Bel(A) by compounding
other sanctioned gambles. In fact, it is not possible. One way to verify this
is to check directly that the lower expectation B̂el obeys B̂el(X1 + X2) ≥
B̂el(X1) + B̂el(X2) and B̂el(aX) = aB̂el(X) for a ≥ 0. Another way is to
apply the general theory developed by Smith and Williams.

The relation (17) would be a problem for belief functions if we interpreted
the conditional degree of belief Bel(A1|A2) as a sanctioned rate for a bet on
A1 conditional on A2. For then (17) would imply

Bel (A1 ∩A2) ≥ Bel (A2)Bel(A1|A2), (18)

and, as Williams shows using a numerical example, this relation can easily be
violated by belief functions.

Unfortunately, Williams finds the identification of conditional degrees of
belief with betting rates for conditional bets so compelling that he takes the
failure of (18) to be a shortcoming of the theory of belief functions. He concedes
(p. 381) that one might say that “Bel(A|B) as defined by Shafer should be
interpreted as the largest rate at which the subject would be prepared to
bet on A if B were discovered to be true (whatever this means), whereas
the interpretation given is in terms of the subject’s prior readiness to accept
conditional bets.” But he evidently finds this too bizarre to take seriously,
for he concludes (p. 387) that the theory’s rule of conditioning “excludes
the possibility of interpreting degrees of belief in terms of acceptable betting
rates.”

I have, I hope, adequately explained why the theory of belief functions does
not identify conditional degrees of belief with betting rates for conditional
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bets. And I think we may conclude from the example provided by the theory
of belief functions that such an identification is not inherent in the idea of
betting itself. So if we apply to Williams’ ideas on lower probabilities the same
standards of justification that he has applied to the rules for belief functions,
we must ask him to justify this identification. Perhaps the best justification
is the one I have developed in this essay: the identification holds if our model
for evidence is partial knowledge of chances governing the truth.

4 Minimal Extension

A lower probability function defined only on a restricted class of subsets of
a frame Θ can always be extended in a minimal way to a lower probability
function defined on all subsets of Θ. Belief functions can be extended in a
similar way provided that the restricted class is closed under intersections
but not, in general, otherwise. And this, Williams argues, makes it “difficult,
in certain cases, to find a belief function which might adequately express a
subject’s opinions.”

Here, as elsewhere in his review, it is not clear whether Williams is taking
a constructive point of view. His talk about “expressing a subject’s opinion”
could be construed to mean that we are concerned not so much with con-
structive probability judgment as with the task of eliciting opinions already
determined. I shall, however, respond to Williams’ criticism within the con-
structive framework of this essay.

4.1 Minimal Extension for Belief Functions

Consider a detective who is trying to find out who stabbed a man to death.
Many questions will engage his interest: the circumstances of the killing, the
circumstances of the victim, etc. But few of his sources of evidence will bear
directly on more than a few of these questions. A medical specialist might, for
example, give evidence that bears directly only on the time of death and the
nature of the struggle. Evidence that bears on the time of death may, of course,
ultimately point to the killer, but only indirectly, through its interaction with
other evidence.

It may be the case, as I suggested in Sect. 3 above, that the idea of “direct
effect of evidence” cannot be reduced to simpler ideas and so must be learned
by example. Be this as it may, it is a clear and commonplace idea, and one
that is fundamental in the theory of belief functions. The use of the idea is
quite simple. When we judge that given evidence bears directly only on certain
questions, we formulate a frame that deals only with these questions and then
construct a belief function Bel over this frame to represent the evidence. We
then think of this frame as a coarsening of a finer frame Θ that takes into
account the other questions with which we are concerned. (See Chap. 6 of A
Mathematical Theory of Evidence.) Or, to use a more familiar vocabulary, we
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think of the subsets of the first frame as forming a subalgebra B of the algebra
of all subsets of the finer frame Θ. And we adopt the belief function Bel over
Θ, where

Bel (A) = sup {Bel (B) |B ∈ B, B ⊂ A} (19)

for each A ⊂ Θ. The belief function Bel is called the minimal (or vacuous,
or canonical) extension of Bel; it gives each element of B the same degree of
belief as Bel does, and it gives the other subsets the smallest degrees of belief
consistent with these. (See Sect. 7.3 of A Mathematical Theory of Evidence.)

The subalgebra B may be more or less detailed. The detective and med-
ical specialist, for example, may judge that the direct significance of certain
medical evidence is exhausted by saying that it is highly probable that death
took place between 5 and 10 hours ago. Or they may think this evidence also
provides some support for a more exact time of death. Or they may think it
provides both this and also some indication of the nature of the struggle. In
the first case they might set B = {∅, B0, B0, Θ}, where B0 corresponds to the
death taking place between 5 and 10 hours ago, set Bel(∅) = Bel(B0) = 0,
Bel(B0) = .95, and Bel(Θ) = 1, and thus obtain for Bel a simple support
function focused on B0. But in the other cases B will be more detailed and
Bel will be more complicated.

The idea of minimal extension can be generalized to the case where the
initial belief function Bel is defined not on a subalgebra but merely on a
collection E of subsets of Θ that is closed under intersections. (A function
on such a collection is called a belief function if there is at least one way to
extend it to a belief function over Θ.) As it turns out, there always exists
in this general case a belief function Bel over Θ that extends such a belief
function Bel (i.e., agrees with it on E) and gives all subsets of Θ the smallest
degrees of belief given to them by any belief function that extends Bel. To
put it another way, the function Bel defined by

Bel(A) = inf{Bel′(A)|Bel′ is an extension of Bel} (20)

for all A ⊂ Θ is a belief function. If E is not an algebra, then the formula (19)
for Bel may not be valid, but a more complicated formula can be given. (See
Shafer [26].)

The notion of minimal extension breaks down for belief functions if the
collection E on which Bel is initially defined is not even closed under inter-
sections. For in this case there may not be a single extension of Bel which
assigns smallest degree of belief to all subsets of Θ. To put it another way,
the function Bel given by (20) may fail to be a belief function. The practical
implication of this is that probability judgments based on a single item of
evidence should include direct judgments about A∩B whenever they include
direct judgments about A and about B. If, for example, our medical specialist
judges given evidence to indicate both that the death occurred within the last
ten hours and that the victim resisted, then his numerical judgments should
include not only judgments about the support for each of these propositions
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but also a judgment about the support for their conjunction. If the special-
ist judges that the support for the two propositions comes from intuitively
independent items of evidence or aspects of the evidence, then he can use
Dempster’s rule to determine the degree of support for the conjunction, but
otherwise he must make a direct judgment.

In practice, the theory of belief functions applies minimal extension mainly
to the case where initial judgments determine a belief function on a subalge-
bra. For the intuitive judgment that given evidence bears directly only on cer-
tain questions seems to translate naturally into the idea that it bears directly
only on a subalgebra. And most of the theory’s relevant tools (assessment rel-
ative to a single dichotomy, consonant assessment, discounting of frequencies)
are readily understood as tools for constructing belief functions on subalge-
bras. The generalization to the case of a collection of subsets closed only under
intersection seems to be of interest only as a technical tool in a theoretical
context. (See Shafer [23].)

4.2 Minimal Extension for Lower Probabilities

As Williams points out, minimal extension can be applied to lower probabili-
ties defined on an arbitrary collection E . Suppose, indeed, that we make direct
judgments that give us lower probabilities P∗(A) for A in such a collection E
and then make the judgment that those lower probabilities exhaust the impact
of the evidence. If we have arranged the judgments P∗(A) for A ⊂ E so that
there is at least one extension to a lower probability function over Θ (i.e., so
that there is at least one lower probability function P ′

∗ defined for all subsets
of Θ such that P ′∗ (A) = P∗ (A) for all A ⊂ E ; this may be a difficult condition
to check), then there exists a minimal extension—a lower probability function
P ′∗ defined for all A ⊂ E and awarding all subsets the least values awarded by
any P ′

∗ that extends P∗. In other words,

P ′∗ (A) = inf {P ′
∗ (A) |P ′

∗ is an extension of P∗}

defines a lower probability function. This is obviously the same concept of
minimal extension as the one used by the theory of belief functions. The
only difference is that it works for all E , not just for E that are closed under
intersections.

The matter can be put most concisely by saying that there always exists
a minimum element in the class of those lower probability functions assigning
given values to given subsets. Notice, however, that there are many other prop-
erties such that there does not exist a minimum element in the class of lower
probability functions having the property. If, for example,Θ = {−1, 0, 1}, then
there is no minimum element in the class of lower probability functions having
lower expectation zero. Thus even lower probability functions are limited in
this respect. One cannot specify arbitrary properties for a lower probability
function, decide that these specifications exhaust the impact of the evidence,
and then adopt the minimum lower probability function having the properties.
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Williams’ notion of minimal extension finds a place in the general construc-
tive theory of lower probabilities that I developed in Sect. 1 above, but only
as a rather special case. For in that theory we make judgments that impose a
rather wide variety of constraints on a supposed chance distribution P before
judging that we have exhausted the impact of the evidence and proceeding
to derive a lower probability function P∗ from the class P of distributions
satisfying the constraints. And only if the constraints are all of the particular
form “P (A) > c” can we think of each judgment as establishing a particular
value P∗(A).

4.3 Williams’ Example

The tool of minimal extension is more widely available for lower probabilities
than for belief functions. But what significance does this have? It seems to
me that it has little immediate significance, and that its ultimate significance
can only emerge from comparing the two theories as a whole in the context of
actual examples. Discussing the question in isolation is rather like comparing
two tool boxes on the basis of the weight of their hammers without regard for
the different roles the two hammers play.

Williams does give an example to support his belief that minimal extension
for arbitrary E is needed. He writes as follows:

. . . suppose there is evidence relating to the unknown outcomes of two
tosses of a coin giving rise, for each toss, to a belief function

Bel({H}) =
1
2
, Bel({T }) = 0.

The upper and lower probabilities of heads, on either toss are therefore
1
2 and 1, respectively. Now consider which belief function might be
chosen to express the impact of the evidence on the set of possible
joint outcomes {HH,HT, TH, TT }. We must have

Bel({HH,HT }) = Bel({HH,TH}) =
1
2
, (5)

Bel({TH, TT }) = Bel({HT, TT }) = 0 (6)

since the arguments in (5) are respectively the events ‘heads on the
first toss’ and ‘heads on the second toss’, whilst the arguments in (6)
refer correspondingly to tails. Furthermore, one can imagine situations
in which it would seem reasonable to say that no more support accrues
to the remaining sets of possibilities than is required by (5) and (6).
That is to say, we should look for a minimum element in the set of
belief functions satisfying these conditions. . . .

But, as Mr. Williams points out, there is no minimum in the class of belief
functions over the frame Θ = {HH,HT, TH, TT } satisfying (5) and (6). (Here
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we have, in effect, E = {∅, {HH,HT }, {HH,TH}, {TH, TT }, {HT, TT }, ∅},
and this is not closed under intersection. We have made judgments about
the degree of support for {HH,HT } and about the degree of support for
{HH,TH}, but not about the degree of support for {HH} = {HH,HT } ∩
{HH,TH}.)

What are we to make of this example? Does it demonstrate that the wider
availability of minimal extension can enable a theory of lower probabilities to
do better than the theory of belief functions? No. The deficiency of the exam-
ple in this respect is its abstract starting point. To compare theories fairly we
need to compare complete analyses—analyses beginning with a full intuitive
account of one’s evidence and then building up the formal judgments step
by step. Williams begins with the assumption that his evidence is best repre-
sented by the judgments (5) and (6) and the further judgment that E exhausts
the impact of the evidence, and this assumption begs the real questions. If we
do begin with an intuitive account of the evidence, then it may emerge that
these judgments provide one sensible analysis, but it is unlikely that they will
provide the only one. It is quite possible that there will be sensible analyses
using belief functions that take quite different tacks. We might even choose
to make a direct judgment about {HH}.

The only gesture Williams makes towards giving an intuitive basis to his
example is the following:

. . . Suppose the evidence to consist of the outcome of a single toss
of the coin. It is hard to see how this could provide evidence for or
against any particular correlation. . .

And this, to my mind, says nothing about the real evidence. It seems
to indicate that we have dreamed up a statistical model as one approach
to analyzing the evidence. Apparently we are regarding two possible events
(here called coin tosses) as repeatable experiments, with some joint chance
distribution governing the pair of outcomes (X1, X2), say. And apparently
our statistical model consists of those chance laws with identical marginals
for X1 and X2. We are to observe another toss independent of (X1, X2) but
governed by the same marginal and to infer what we can about the joint
distribution and hence about how (X1, X2) will turn out. This is a parametric
statistical problem. But where does it come from? What is the evidence for
the model? A sensible analysis using belief functions would require answers
to these questions.

5 The Independence of Evidence

Both the Bayesian theory and the theory of belief functions have a concept
of independence for evidence. Both recognize different items of evidence as
intuitively independent and model this intuitive independence in terms of
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stochastic independence. But since the two theories use the picture of chance
in different ways, their concepts of independence are different.

In the theory of belief functions we liken evidence to a message whose
meaning is random, or to a randomly valid argument—one whose validity
depends on chance. We call different items of evidence intuitively indepen-
dent when they can be likened to stochastically independent randomly valid
arguments.

In the Bayesian theory, on the other hand, we liken our evidence to knowl-
edge that the truth is generated by certain chances. Thus we do not, in general,
think of the evidence itself as random. If, however, we single out a few items of
our evidence, imagine that we have not yet obtained these items of evidence,
and include the question of whether we will obtain them among the questions
about which we are making probability judgments, then whether or not these
items will occur becomes part of the truth which we are modeling as random,
and so it becomes possible to think of these items of evidence as stochastically
independent.

The two theories’ concepts of independence have much in common. In
many cases, the two theories can agree on calling certain items of evidence
independent. And in both theories independence is relative to a given frame of
discernment. In the theory of belief functions, this is expressed by saying that
different arguments should be treated as independent only relative to a frame
that discerns the interactions of their conclusions, while in the Bayesian theory
it is expressed by saying that different items of evidence may be independent
only conditionally given certain hypotheses.

We should not be misled, however, into thinking that the two concepts of
independence are practically identical—that the two theories will always agree
on whether given items of evidence are independent.4 The fact is that they
will often disagree. As we shall see in this section, the theory of belief functions
may allow us to discern independent items of evidence in situations where the
Bayesian theory suggests dependent items of evidence or even suggests that
we need not distinguish separate items of evidence at all.

Confusion between the two theories’ concepts of independence can be held
responsible for the suggestion, made by Williams in his review, that the theory
of belief functions cannot do as well as the Bayesian theory in taking depen-
dencies in evidence into account. One goal of this section is to understand the
thinking behind this claim and to explain why it is wrong.

5.1 Independence in the Theory of Belief Functions

The concurrence of many independent arguments can justify a high degree
of belief. And it is natural to account for this by reasoning about chances.
There may be a substantial chance, we tell ourselves, for any single one of the
arguments to be invalid, but there is a much smaller chance that they should

4 In Shafer [24] I suggested, wrongly, that there was such a practical identity.
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all be invalid. If pi is the chance that the ith argument is invalid, and the
arguments are independent, then the chance that they are all invalid is the
product of the pi.5

This is a sensible account, but it must be rightly understood. When we
say that the chance of an argument’s validity is pi we do not mean that the
argument is literally a repeatable experiment, sometimes valid, sometimes
not, and that we know the chance pi in the way we might know the chance
of heads when tossing a well-studied coin. We mean rather that we judge
the force of the argument to be comparable to the force of such a randomly
valid argument. And when we say that the arguments are independent, we do
not mean that their validities are literally stochastically independent random
events. We mean rather that we judge the arguments to be independent in an
intuitive sense that is well-represented by stochastic independence6—i.e., that
we judge the uncertainties in the arguments to be sufficiently unrelated that
the combination of the arguments should have the force of the concurrence of
two stochastically independent randomly valid arguments.

Dempster’s rule of combination is merely an extension of this simple idea
of combining the force of independent arguments by multiplication. As I
explained in Sect. 1 above, the rule pools two bodies of evidence by treat-
ing the two randomly coded messages representing them as stochastically
independent. When one uses the rule, one is making a judgment that the two
bodies of evidence are sufficiently unrelated that pooling them is like pooling
stochastically independent randomly coded messages.

Consider a simple example from A Mathematical Theory of Evidence. A
detective investigating a burglary turns up one argument indicating that the
burglar was lefthanded and another argument indicating that the burglary was
an inside job. Suppose these two arguments are intuitively independent, in the
sense that they involve different uncertainties and that the evaluation of each
depends on a different small world of experience. Say the argument for the
burglar being left-handed is based on smudges on the door of the safe, and thus
depends for its evaluation on the detective’s experience and insight into the
question of how safes are forced open, whereas the argument for the burglary
being an inside job is based on the detective’s understanding of the possibilities

5 This rule was discussed by James Bernoulli in his Ars Conjectandi, published
posthumously in 1713. Bernoulli also gave several other rules for combining prob-
abilities based on independent arguments. Since most of these rules are special
cases of Dempster’s rule of combination, Bernoulli can be regarded as the founder
of the theory of belief functions. Though Bernoulli’s account of the combination
of arguments was popular during the 17th century, it was eventually displaced by
the Bayesian account developed by Condorcet and Laplace. See pp. 345–349 of
Shafer [22] and pp. 465–469 of Pearson [19].

6 We should bear in mind that chance is never an objective fact but is always an
abstract picture that we impose on nature to aid our understanding. Stochastic
independence, in particular, is an abstract concept that we use to model situations
where we have first perceived a causal or intuitive independence.
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for entering the building. It might, in such a case, be quite reasonable for the
detective to treat the two arguments as if they were stochastically independent
randomly coded messages. It is not that his train of thought in forming each
argument is an independent chance process and that he knows the chance
that each process has to produce a valid result; it is just that he can evaluate
his confidence in each argument by comparing it with the scale of randomly
coded messages and he can judge that there is no important common element
in the uncertainties in the two arguments.

We might, of course, challenge the detective’s judgment. We might discover
a soft spot which is common to both arguments and which the detective
failed to notice—perhaps he is too readily ruling out some hypothesis that
could explain both the smudge on the safe door and an unnoticed entry into
the building. But the possibility of challenge is not peculiar to judgments of
independence. Every probability judgment is open to challenge.

One point that emerges from this example is that the idea of independence
applies not to isolated facts or propositions but to whole small worlds of
experience and human interaction with experience. When we explain what
arguments we are combining, it is natural to identify each by a proposition:
Argument 1 = “there were smudges on the door of the safe;” Argument 2 =
“the building was being watched.” But these propositions are only tags. We
are really combining whole “bodies of evidence”—whole bodies of concrete
experience and interactive human evaluation of that experience.

It is inherent in the idea of analyzing our evidence into independent argu-
ments that the force of each argument is evaluated in abstraction from the
other arguments. Each argument is evaluated, that is to say, in abstraction
from the other evidence bearing on its conclusions. But when we combine
arguments we must take the interaction of the conclusions into account—we
must take into account whether the arguments concur, what they support
when they are combined, and whether they conflict, either in pairs or in more
complicated interactions. Since conflict modifies our evaluation of the weight
of the arguments (through the renormalizing constant K in (3)) even when
the conflict is not on a point of substantive interest to us, we must take
all conflict in conclusions into account. So we should apply Dempster’s rule
to belief functions representing different arguments only if the frame Θ over
which these belief functions are defined is fine enough to take all conflict and
other relevant interaction into account.

So we have two requirements for the use of Dempster’s rule of combination:
(i) The bodies of evidence must be entirely distinct. The uncertainties in
the arguments being combined, that is to say, must be independent when
the arguments are viewed abstractly—i.e., before the interactions of their
conclusions are taken into account. (ii) The frame Θ must be fine enough to
discern all relevant interaction of the conclusions.
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5.2 Is There an Objective Criterion for Independence?

Peter Williams is not satisfied with the preceding explanation of the conditions
for the legitimate use of Dempster’s rule of combination. It is not clear, he
tells us,

that this formulation is sufficient to distinguish unambiguously
between permissible and impermissible applications of the rule. To
begin with, the identity criteria for bodies of evidence are unclear if
these cannot be expressed as propositions. Indeed, even if they can
be, do two propositions which are not logically equivalent, but are
nonetheless equivalent by virtue of natural laws, express ‘entirely dis-
tinct bodies of evidence’? Or again, suppose that two bodies of evi-
dence are distinct, taken as wholes, but nonetheless partly overlap.
. . . [H]ow is one to extract the common part, given that bodies of
evidence are not necessarily expressible as propositions?

In this passage Williams seems to be demanding some objective criterion
for deciding when two bodies of evidence are independent and, more generally,
some mechanical way of analyzing evidence into distinct or independent items.
Do these demands make sense?

It seems to me that the idea of an objective criterion for the independence
of evidence—the idea of a criterion exterior to the judgment—is a chimera.
The judgment that two bodies of evidence are independent is a probability
judgment, and the appropriateness of probability judgments can never be
justified on the basis of criteria that do not themselves demand the application
of judgment.

The analysis of evidence into distinct and independent arguments is, more-
over, always a constructive act of judgment. Williams is quite right to suggest
that there is no unambiguous formula telling us how to do it. It is usually
the most creative and the most difficult part of our effort to understand a
problem.

There is, in short, no royal road. The analysis of evidence is difficult, and
foolish mistakes are always possible. As James Bernoulli put it, “many things
will happen which can cause one to err frequently and shamefully unless one
proceeds cautiously in discerning arguments. For sometimes arguments can
seem distinct which are in fact one and the same argument. Or, vice versa,
those which are distinct can seem identical. . . ” (See p. 337 of Shafer [22]).

As Williams’ comments indicate, one concomitant of the desire for a
mechanical approach to the analysis of evidence is a desire to express evi-
dence as sentences or as propositions. If we could translate all our evidence
into statements of fact, then we could, it would seem, give rules for mechan-
ically analyzing this evidence using symbolic logic together with background
knowledge encoded as prior probabilities. But we cannot usually translate our
evidence into statements of fact.
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We can always describe our evidence, the reader may protest. This is true.
But the description will usually have to include not only statements of fact but
also statements of probability judgment. How might the detective describe the
evidence that convinces him that a person cannot enter the building without
being seen by the watchman? The evidence consists, in a very real sense,
of mental experiments that the detective carried out on the scene. He tried
everything he could think of, and nothing seemed plausible. Perhaps he can
describe some of this mental experimentation—at least if you allow him to
draw pictures. But how can he reduce his conviction that a certain trick will
not work to statements of fact? How can he formulate statements of fact to
express his degree of conviction that he has tried everything? In the end he will
simply have to supplement his statements of fact with probability judgments.7

5.3 Independence in the Bayesian Theory

The Bayesian theory can combine intuitively independent items of evidence,
but it does not do so, as the theory of belief functions does, by regarding each
as an independent argument. Instead it asks us to think of the occurrence of
each item of evidence as a random event and to assess the probabilities of
these events under various hypotheses. And it asks us to model the intuitive
independence of the different items of evidence by stochastic independence,
conditional on the various hypotheses, of the events that these items of evi-
dence will occur.

The idea is that we should single out certain items of evidence and then
imagine ourselves assessing, before these items of evidence occur, both the
probabilities of the hypotheses on which we want to bring these items of evi-
dence to bear and also the probability that these items of evidence will occur,
given each of the hypotheses. Suppose, for example, that we are considering
an exhaustive list of mutually exclusive hypotheses H1, . . . , Hk and we single
out two items of evidence E1 and E2. Then our task is to use “old evidence”
(evidence other than the occurrence of E1 and E2) to construct Bayesian
probabilities P (Hi) and P (E1 and E2|Hi). And if we judge E1 and E2 to be
like independent random events given Hi—if, that is to say, our old evidence
together with knowledge of Hi can be compared to knowledge that E1 and
E2 are stochastically independent—then we can construct P (E1 and E2|Hi)
by making separate probability judgments P (E1|Hi) and P (E2|Hi) and then
setting

P (E1 and E2|Hi) = P (E1|Hi)P (E2|Hi) . (21)

7 In another passage, Williams coments on my insistence on the “hazy and non-
propositional nature of evidence.” While standing by the claim that evidence
cannot usually be reduced to statements of fact, I would like to withdraw any
suggestion (see, for example, p. 120 of A Mathematical Theory of Evidence) that
evidence is “vague” or “hazy.” These epithets are themselves vague, and no useful
idea is conveyed when they are applied to evidence. (Cf. Austin [1], pp. 125–127.)
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Notice that making all these probability judgments amounts to constructing
a Bayesian probability distribution P over a certain frame of discernment Θ.
We can suppose, indeed that the Hi and Ei are subsets of this frame, and
that the 4k subsets Hi∩E1 ∩E2, Hi∩E1∩E2, Hi∩E1 ∩E2 and Hi∩E1 ∩E2

are disjoint and each contain exactly one element.
The point of constructing this probability distribution P is that we may

then take the “new evidence”

E1 and E2 = E1 ∩ E2

into account by conditioning. We can calculate, in particular, the probability

P (Hi|E1 ∩ E2) =
P (Hi)P (E1|Hi)P (E2|Hi)
k∑
j=1

P (Hj)P (E1|Hj)P (E2|Hj)
, (22)

our probability for Hi based on the total evidence. Formula (22) is known as
Bayes’ Theorem.

Consider, for example, the detective who has evidence that the burglar was
lefthanded and evidence that the burglary was an inside job. Give names to
these two items of evidence—say E1 and E2. The propositions of substantive
interest are

I = an insider was involved in the burglary,

and
L = the safe was opened by a left-hander,

and so the hypotheses are H1 = I ∩ L, H2 = I ∩ L, H3 = I ∩ L, and H4 =
I ∩L. And formula (22) provides a way of constructing probability judgments
concerning the Hi using the total evidence.

We must always ask, of course, whether the independent judgment (21) is
reasonable. Is it reasonable to think of the evidence E1 involving the smudge
on the safe and the evidence E2 involving access to the building as random
events that are stochastically independent given the Hi?

A more fundamental question is whether it is reasonable or helpful to
think of E1 and E2 as random events at all. In our belief-function analysis we
regarded E1 and E2 as arguments involving independent uncertainties. Here
the perspective is different. Here we think of E1 and E2 not as arguments but
as facts. And we transfer all the uncertainties to the hypothetical question of
whether these facts would have occurred, given each of the hypotheses. But
does this make sense? Can we, for example, intelligibly translate the question
of how strongly E2, the detective’s study of access to the building supports
I into the question of how likely his study would have been to turn out as it
did, given that I is true and given that it is false?

In my opinion, we often cannot intelligibly translate our understanding of
the significance of given evidence into answers to the question of how likely
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that evidence would be to occur. And this, I believe, is the fundamental objec-
tion to the version of the Bayesian theory that would have us assess all new
evidence using Bayes’ theorem. For a detailed discussion, see Shafer [24].

It should be noted, in any case, that the Bayesian theory, like the theory of
belief functions, has no objective criterion for independence. In both theories
the judgment that two items of evidence should be treated as independent is
itself a probability judgment.8

5.4 Dependent Evidence?

Bayesian assessment of two items of new evidence does not necessarily require
a judgment that the items are conditionally independent. Even if E1 and
E2 are judged dependent, we can still construct the probability judgment
P (E1 ∩ E2|Hi) through the formula

P (E1 ∩ E2|Hi) = P (E1|Hi)P (E2|E1 ∪Hi) ,

where P (E2|E1 ∩Hi) is a judgment as to how likely E2 would be to occur
based on the old evidence together with knowledge that E1 has occurred and
that Hi is true. And thus we can still use Bayes’ theorem, in the form

P (Hi|E1 ∩ E2) =
P (Hi)P (E1|Hi)P (E2|E1 ∩Hi)
k∑
j=1

P (Hj)P (E1|Hj)P (E2|E1 ∩Hj)
.

So if we do use the Bayesian idea of assessing new evidence in terms of its
likelihood to occur, it is not very important whether two items of evidence
are independent or not.

The independence of different items of evidence is much more important
in the theory of belief functions. For Dempster’s rule of combination can be
used to combine arguments only if those arguments are judged independent.

There seems to be a paradox here. The Bayesian theory can be understood
as a special case of the theory of belief functions, and then Bayesian condi-
tioning is seen as a special case of Dempster’s rule of combination. (See p. 20
of A Mathematical Theory of Evidence.) But how can Bayesian conditioning
be a special case of Dempster’s rule if it can be used with dependent evidence
and Dempster’s rule cannot be?

The paradox is quickly resolved when we remind ourselves that “indepen-
dence” does not have the same meaning in the two theories. The fact is that
two items of evidence that are taken into account by conditioning are neces-
sarily independent in the sense of the theory of belief functions, even though
they may be either independent or dependent in the sense of the Bayesian
theory.
8 Seidenfeld [20] seems to think otherwise. The Bayesian theory, he writes, “provides

the machinery for deciding whether the data are mutually independent.” What
machinery?
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Let us recall the relation between conditioning and Dempster’s rule. We
explained conditioning in Sect. 3 above by saying that we condition a belief
function Bel on a subset E1 of its frame Θ in order to take into account new
evidence whose direct effect on the frame Θ is to establish for certain that
the truth is in E1. But we can also treat such new evidence as an argument
for E1 whose validity is certain and represent it by a belief function Bel1
with m-values m1(E1) = 1 and m1(A) = 0 for all other A ⊂ Θ. And it is
because combining Bel with Bel1 by Dempster’s rule gives the same result
as conditioning Bel on E1 that we say that conditioning is a special case of
Dempster’s rule.

Now consider a second item of new evidence whose direct effect on Θ
is to establish for certain that the truth is in E2 ⊂ Θ. This evidence can
be represented by a belief function Bel2 with m-values m2(E2) = 1 and
m2(A) = 0 for all other A ⊂ Θ. Are the uncertainties in the two new items
of evidence independent? Yes, for there are no uncertainties; we are modeling
each item of evidence as a randomly valid argument in which the chance of
validity is one, and so stochastic independence is automatic and it is legitimate
to combine Bel1 and Bel2 by Dempster’s rule. When we do combine Bel1 and
Bel2, we obtain a belief function Bel1 ⊕Bel2 that gives E1 ∩E2 the m-value
one, and combining Bel with Bel1 ⊕ Bel2 by Dempster’s rule amounts to
conditioning Bel on E1 ∩E2.

One way of putting the matter is to say that the only decompositions of
evidence recognized by the Bayesian theory are decompositions into items of
evidence that are, from the point of view of the theory of belief functions,
independent. The Bayesian theory permits the combination of evidence only
through conditioning, and this means that only one of the bodies of evidence
being combined, the “old evidence,” can involve uncertainties. The other items
of evidence must amount to certainties relative to the frame Θ and hence will
be trivially independent of each other and of the old evidence.

When we assign names (“E1” and “E”) to new items of evidence and incor-
porate them into our frame of discernment, we are, in effect, reducing them
from uncertain arguments to facts. We are stripping them of their uncertain-
ties and putting all these uncertainties into what we call the “old evidence,”
the evidence on which the probability distribution P over the frame Θ must
be based.

From the point of view of the theory of belief functions, the concentration
of all our uncertainties in the “old evidence” does not, of course, solve the
problem of probability judgment. Nor does it necessarily exhaust our interest
in the combination of evidence. For we face a new problem of assessment of
evidence, the problem of constructing a Bayesian probability distribution P
(or, more generally, a belief function Bel) over the frame Θ based on this old
evidence. And one way of doing this may be to decompose the old evidence
into independent items that can be recombined by Dempster’s rule.

It may deepen our understanding of the differences between the Bayesian
and belief-function concepts of independence to recognize that Bayesian
dependence of E1 andE2 may be compatible with belief-function independence



262 G. Shafer

not only of the items of evidence provided by the occurrence of E1 and E2

but also of the components of the old evidence that bear on E1 and E2. It
is possible, that is to say, for the combination of belief functions representing
intuitively independent components of the old evidence to produce a belief
function over Θ which happens to be Bayesian and in terms of which E1 and
E2 are dependent in the Bayesian sense. In fact, any Bayesian probability
distribution P over Θ can, in theory, be produced by such a combination of
belief functions.

5.5 Sorting out the Uncertainties

The preceding comments should not be construed as a denial of the practical
problems that dependent arguments cause in the theory of belief functions.
In many problems it will be easy to analyze the evidence into dependent
arguments and more difficult to analyze it into independent arguments.

How do we go about analyzing our evidence into independent arguments?
How, to put it another way, do we sort our evidence into arguments that
involve distinct uncertainties? Perhaps there is no general answer to this ques-
tion. But we can gain some insight by thinking about examples.

Suppose we are charged with deciding whether an aerial sprayer has
allowed insecticide to drift onto the property of a neighboring landowner. Two
arguments are presented by the prosecution: (1) The homeowner testifies that
spray billowed across the road from the field being sprayed and settled onto
her house and that this drift was significant enough to cause her and her
family to suffer from headaches and burning eyes and lips. (2) A government
bee inspector testifies that he found dead honey bees lying around the home-
owner’s beehive, that in his judgment they were killed by insecticide, and that
the availability of flowering plants indicates that the bees must have been on
the homeowner’s property rather than on the field being sprayed when they
were exposed.

Both items of evidence seem to directly support the charge of negligence.
But one can argue that they involve overlapping uncertainties. The main
uncertainties are distinct. The main uncertainty in the first item of evidence is
how precise and reliable the homeowner is—how well she remembers and how
much she exaggerates. The main uncertainty in the second item of evidence is
the reliability of the bee inspector’s judgment. But suppose the homeowner,
out of pure malice, made up the story about drift and poisoned the bees
herself. This possibility constitutes, it would seem, an uncertainty common to
both items of evidence. And so if we take the possibility seriously we must
count the two items as dependent.

There is, however, an obvious way of getting this common uncertainty out
of the two items of evidence: incorporate it into the frame of discernment.
We might, for example, consider a frame of discernment Θ consisting of three
possibilities:

θ1: The sprayer was not negligent; the homeowner was inaccurate, and the
bee inspector was mistaken.
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θ2: The sprayer was not negligent; the homeowner is lying, and she
poisoned the bees herself.

θ3: The sprayer was negligent.
Relative to this frame of discernment we might describe our two items of
evidence a little differently. The first item is our evidence for the reliability
and probity of the homeowner (we have listened to her testify, etc.), and it
supports θ3 to some extent, and {θ1, θ3} to a stronger extent. The second
item is our evidence from the bee inspector, and it supports {θ2, θ3}. Notice
that though the two items no longer both directly support negligence (θ3),
they still interact to support it. And they can now be regarded as independent
arguments.

This example illustrates a reasonably general idea: often two arguments
which seem dependent because of common uncertainties can be understood as
independent once the common uncertainties are incorporated into the frame
of discernment as explicit possibilities. This idea is the basis for saying that
Dempster’s rule should be used only when the frame “discerns the relevant
interaction” of the different arguments.

The task of sorting our uncertainties into distinct arguments is not always
so easy, of course. But I would argue that a theory that directs us to this task
is grappling with the real problems in the assessment of evidence.

References

[1] J. L. Austin, 1962. Sense and Sensibilia.Oxford.
[2] A. P. Dempster, 1966. New methods for reasoning towards posterior distribu-

tions based on sample data. Annals of Mathematical Statistics, 37:355–374.
[3] A. P. Dempster, 1968. A generalization of Bayesian inference (with discussion).

Journal of the Royal Statistical Society Series B, 30:205–247.
[4] Persi Diaconis, 1978. Review of A Mathematical Theory of Evidence. Journal

of the American Statistical Association, 73:677–678.
[5] Terrence L. Fine, 1977. Review of A Mathematical Theory of Evidence. Bulletin

of the American Mathematical Society, 83:667–672.
[6] Bruno de Finetti, 1964. Foresight: Its logical laws, its subjective sources. In

Kyburg and Smokler, editors, Studies in Subjective Probability, pp. 93–158.
Wiley.

[7] Bruno de Finetti, 1972. Probability, Induction, and Statistics. Wiley.
[8] Bruno de Finetti, 1974. Theory of Probability. Vol. 1, Wiley.
[9] Bruno de Finetti, 1975. Theory of Probability. Vol. 2, Wiley.

[10] D. A. Freedman and R. A. Purves, 1969. Bayes’ methods for bookies. Annals
of Mathematical Statistics, 40:1177–1186.

[11] I. J. Good, 1962. The measure of a non-measurable set. In E. Nagel, P. Sup-
pes, and A. Tarski, editors, Logic, Methodology and Philosophy of Science,
pp. 319–329. Stanford University Press, Stanford.

[12] Ian Hacking, 1967. Slightly more realistic personal probability. Philosophy of
Science, 34:311–325.

[13] Peter Huber, 1973. The use of Choquet capacities in statistics. Bulletin of the
International Statistical Institute, 45, Book 4:181–188.



264 G. Shafer
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