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Computational Methods for A Mathematical
Theory of Evidence ∗†

Jeffrey A. Barnett

Abstract. Many knowledge-based expert systems employ numerical schemes to
represent evidence, rate competing hypotheses, and guide search through the
domain’s problem space. This paper has two objectives: first, to introduce one such
scheme, developed by Arthur Dempster and Glen Shafer, to a wider audience; sec-
ond, to present results that can reduce the computation-time complexity from expo-
nential to linear, allowing this scheme to be implemented in many more systems.
In order to enjoy this reduction, some assumptions about the structure of the type
of evidence represented and combined must be made. The assumption made here is
that each piece of the evidence either confirms or denies a single proposition rather
than a disjunction. For any domain in which the assumption is justified, the savings
are available.

1 Introduction

How should knowledge-based expert systems reason? Clearly, when domain-
specific idiosyncratic knowledge is available, it should be formalized and used
to guide the inference process. Problems occur either when the supply of easy-
to-formalize knowledge is exhausted before our systems pass the “sufficiency”
test or when the complexity of representing and applying the knowledge is
beyond the state of our system building technology. Unfortunately, with the
current state of expert-system technology, this is the normal, not the excep-
tional case.

At this point, a fallback position must be selected, and if our luck holds, the
resulting system exhibits behavior interesting enough to qualify as a success.
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Typically, a fallback position takes the form of a uniformity assumption allow-
ing the utilization of a non-domain-specific reasoning mechanism: for example,
the numerical evaluation procedures employed in mycin [17] and internist [14],
the simplified statistical approach described in [10], and a multivalued logic
in [18]. The hearsay-ii speech understanding system [13] provides another
example of a numerical evaluation and control mechanism—however, it is
highly domain-specific.

Section 2 describes another scheme of plausible inference, one that
addresses both the problem of representing numerical weights of evidence and
the problem of combining evidence. The scheme was developed by Arthur
Dempster [3, 4, 5, 6, 7, 8, 9], then formulated by his student, Glen Shafer
[15, 16], in a form that is more amenable to reasoning in finite discrete domains
such as those encountered by knowledge-based systems. The theory reduces
to standard Bayesian reasoning when our knowledge is accurate but is more
flexible in representing and dealing with ignorance and uncertainty. Section 2
is a review and introduction. Other work in this area is described in [12].

Section 3 notes that direct translation of this theory into an implemen-
tation is not feasible because the time complexity is exponential. However, if
the type of evidence gathered has a useful structure, then the time complexity
issue disappears. Section 4 proposes a particular structure that yields linear
time complexity. In this structure, the problem space is partitioned in several
independent ways and the evidence is gathered within the partitions. The
methodology also applies to any domain in which the individual experiments
(separate components of the evidence) support either a single proposition or
its negation.

Section 5 and 6 develop the necessary machinery to realize linear time
computations. It is also shown that the results of experiments may vary over
time, therefore the evidence need not be monotonic. Section 7 summarizes the
results and notes directions for future work in this area.

2 The Dempster-shafer Theory

A theory of evidence and plausible reasoning is described in this section. It is
a theory of evidence because it deals with weights of evidence and numerical
degrees of support based upon evidence. Further, it contains a viewpoint on
the representation of uncertainty and ignorance. It is also a theory of plausible
reasoning because it focuses on the fundamental operation of plausible rea-
soning, namely the combination of evidence. The presentation and notation
used here closely parallels that found in [16].

After the formal description of how the theory represents evidence is pre-
sented in Sect. 2.1, an intuitive interpretation is given in Sect. 2.2, then a
comparison is made, in Sect. 2.3, to the standard Bayesian model and sim-
ilarities and differences noted. The rule for combining evidence, Dempster’s
orthogonal sum, is introduced in Sect. 2.4 and compared to the Bayesians’
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method of conditioning in Sect. 2.5. Finally, Sect. 2.6 defines the simple and
separable support functions. These functions are the theory’s natural repre-
sentation of actual evidence.

2.1 Formulation of the Representation of Evidence

Let Θ be a set of propositions about the exclusive and exhaustive possibilities
in a domain. For example, if we are rolling a die, Θ contains the six proposi-
tions of the form ‘the number showing is i’ where 1 ≤ i ≤ 6. Θ is called the
frame of discernment and 2Θ is the set of all subsets of Θ. Elements of 2Θ, i.e.,
subsets of Θ, are the class of general propositions in the domain; for example,
the proposition ‘the number showing is even’ corresponds to the set of the
three elements of Θ that assert the die shows either a 2, 4, or 6.

The theory deals with refinings, coarsenings, and enlargements of frames
as well as families of compatible frames. However, these topics are not pursued
here—the interested reader should see [16] where they are developed.

A function Bel : 2Θ → [0, 1], is a belief function if it satisfies Bel(∅) = 0,
and for any collection, A1, . . . , An, of subsets of Θ,

Bel(A1 ∪ · · · ∪An) ≥
∑

I⊆{1...n}
I �=∅

(−1)|I|+1Bel(
⋂

i∈I
Ai).

A belief function assigns to each subset of Θ a measure of our total belief in
the proposition represented by the subset. The notation, |I|, is the cardinality
of the set I.

A function m : 2Θ → [0, 1] is called a basic probability assignment if it
satisfies m(φ) = 0 and

∑

A⊆Θ
m(A) = 1.

The quantity, m(A), is called A’s basic probability number ; it represents our
exact belief in the proposition represented by A. The relation between these
concepts and probabilities are discussed in Sect. 2.3. If m is a basic probability
assignment, then the function defined by

Bel(A) =
∑

B⊆A
m(B), for all A ⊆ Θ (1)

is a belief function. Further, if Bel is a belief function, then the function defined
by

m(A) =
∑

B⊆A
(−1)|A−B|Bel(B) (2)
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is a basic probability assignment. If equations (1) and (2) are composed in
either order, the result is the identity-transformation. Therefore, there cor-
responds to each belief function one and only one basic probability assign-
ment. Conversely, there corresponds to each basic probability assignment one
and only one belief function. Hence, a belief function and a basic probability
assignment convey exactly the same information.

Other measures are useful in dealing with belief functions in this theory. A
functionQ : 2Θ → [0, 1] is a commonality function if there is a basic probability
assignment, m, such that

Q(A) =
∑

A⊆B
m(B) (3)

for all A ⊆ Θ. Further, if Q is a commonality function, then the function
defined by

Bel(A) =
∑

B⊆¬A
(−1)|B|Q(B)

is a belief function. From this belief function, the underlying basic probability
assignment can be recovered using (2); if this is substituted into (3), the
original Q results. Therefore, the sets of belief functions, basic probability
assignments, and commonality functions are in one-to-one correspondence and
each representation conveys the same information as any of the others.

Corresponding to each belief function are two other commonly used quan-
tities that also carry the same information. Given a belief function Bel, the
function Dou(A) = Bel(¬A), is called the doubt function and the function
P�(A) = 1−Dou(A) = 1− Bel(¬A), is called the upper probability function.

For notational convenience, it is assumed that the functions Bel, m, Q,
Dou, and P� are each derived from one another. If one is subscripted, then
all others with the same subscript are assumed to be derived from the same
underlying information.

2.2 An Interpretation

It is useful to think of the basic probability number, m(A), as the measure of
a probability mass constrained to stay in A but otherwise free to move. This
freedom is a way of imagining the noncommittal nature of our belief, i.e.,
it represents our ignorance because we can not further subdivide our belief
and restrict the movement. Using this allusion, it is possible to give intuitive
interpretations to the other measures appearing in the theory.

The quantity Bel(A) =
∑

[B⊆A]m(B) is the measure of the total proba-
bility mass constrained to stay somewhere in A. On the other hand, Q(A) =∑

[A⊆B]m(B) is the measure of the total probability mass that can move
freely to any point in A. It is now possible to understand the connotation
intended in calling m the measure of our exact belief and Bel the measure of
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our total belief. If A ⊆ B ⊆ Θ, then this is equivalent to the logical state-
ment that A implies B. Since m(A) is part of the measure Bel(B), but not
conversely, it follows that the total belief in B is the sum of the exact belief
in all propositions that imply B plus the exact belief in B itself.

With this interpretation of Bel, it is easy to see that Dou(A) = Bel(¬A) is
the measure of the probability mass constrained to stay out of A. Therefore,
P�(A) = 1 − Dou(A) is the measure of the total probability mass that can
move into A, though it is not necessary that it can all move to a single point,
hence P�(A) =

∑
[A∩B �=∅]m(B) is immediate. It follows that P�(A) ≥ Bel(A)

because the total mass that can move into A is a superset of the mass con-
strained to stay in A.

2.3 Comparison with Bayesian Statistics

It is interesting to compare this and the Bayesian model. In the latter, a
function p : Θ → [0, 1] is a chance density function if

∑
[a∈Θ] p(a) = 1; and

the function Ch: 2Θ → [0, 1] is a chance function if Ch(∅) = 0, Ch(Θ) = 1,
and Ch(A∪B) = Ch(A) + Ch(B) when A∩B = ∅. Chance density functions
and chance functions are in one-to-one correspondence and carry the same
information. If Ch is a chance function, then p(a) = Ch({a}) is a chance
density function; conversely, if p is a chance density function, then Ch(A) =∑

[a∈A] p(a) is a chance function.
If p is a chance density function and we define m({a}) = p(a) for all a ∈ Θ

and make m(A) = 0 elsewhere, then m is a basic probability assignment and
Bel(A) = Ch(A) for all A ∈ 2Θ. Therefore, the class of Bayesian belief func-
tions is a subset of the class of belief functions. Basic probability assignments
are a generalization of chance density functions while belief functions assume
the role of generalized chance functions.

The crucial observation is that a Bayesian belief function ties all of its
probability masses to single points in Θ, hence there is no freedom of motion.
This follows immediately from the definition of a chance density function and
its correspondence to a basic probability assignment. In this case, P� = Bel
because, with no freedom of motion, the total probability mass that can move
into a set is the mass constrained to stay there.

What this means in practical terms is that the user of a Bayesian belief
function must somehow divide his belief among the singleton propositions.
In some instances, this is easy. It we believe that a fair die shows an even
number, then it seems natural to divide that belief evenly into three parts. If
we don’t know or don’t believe the die is fair, then we are stuck.

In other words, there is trouble representing what we actually know with-
out being forced to overcommit when we are ignorant. With the theory
described here there is no problem—just let m(even) measure the belief and
the knowledge that is available. This is not to say that one should not use
Bayesian statistics. In fact, if one has the necessary information, I know of
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no other proposed methodology that works as well. Nor are there any serious
philosophical arguments against the use of Bayesian statistics. However, when
our knowledge is not complete, as is often the case, the theory of Dempster
and Shafer is an alternative to be considered.

2.4 The Combination of Evidence

The previous sections describe belief functions, the technique for representing
evidence. Here, the theory’s method of combining evidence is introduced. Let
m1 and m2 be basic probability assignments on the same frame, Θ, and define
m = m1 ⊕m2, their orthogonal sum, to be m(∅) = 0 and

m(A) = K
∑

X∩Y=A

m1(X) ·m2(Y )

K−1 = 1−
∑

X∩Y=∅
m1(X) ·m2(Y ) =

∑

X∩Y �=∅
m1(X) ·m2(Y ),

when A 	= ∅. The function m is a basic probability assignment if K−1 	= 0; if
K−1 = 0, then m1⊕m2 does not exist and m1 and m2 are said to be totally or
flatly contradictory. The quantity logK = Con(Bel1,Bel2) is called the weight
of conflict between Bel1 and Bel2. This formulation is called Dempster’s rule
of combination.

It is easy to show that if m1, m2, and m3 are combinable, then m1⊕m2 =
m2⊕m1 and (m1⊕m2)⊕m3 = m1⊕ (m2⊕m3). If v is the basic probability
assignment such that v(Θ) = 1 and v(A) = 0 when A 	= Θ, then v is called
the vacuous belief function and is the representation of total ignorance. The
function, v, is the identity element for ⊕, i.e., v ⊕m1 = m1.

Figure 1 is a graphical interpretation of Dempster’s rule of combination.
Assume m1(A),m1(B) 	= 0 and m2(X),m2(Y ),m2(Z) 	= 0 and that m1

and m2 are 0 elsewhere. Then m1(A) + m1(B) = 1 and m2(X) + m2(Y ) +
m2(Z) = 1. Therefore, the square in the figure has unit area since each side
has unit length. The shaded rectangle has area m1(B) · m2(Y ) and belief
proportional to this measure is committed to B ∩ Y . Thus, the probability
number m(B∩Y ) is proportional to the sum of the areas of all such rectangles
committed to B∩Y . The constant of proportionality,K, normalizes the result
to compensate for the measure of belief committed to ∅. Thus, K−1 = 0 if
and only if the combined belief functions invest no belief in intersecting sets;
this is what is meant when we say belief functions are totally contradictory.

Using the graphical interpretation, it is straightforward to write down
the formula for the orthogonal sum of more than two belief functions. Let
m = m1 ⊕ · · · ⊕mn, then m(∅) = 0 and

m(A) = K
∑

∩Ai=A

∏

1≤i≤n
mi(Ai) (4)

K−1 = 1−
∑

∩Ai=∅

∏

1≤i≤n
mi(Ai) =

∑

∩Ai �=∅

∏

1≤i≤n
mi(Ai)
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UNIT SQUARE
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1

Shaded area =
m1(B) · m2(Y )
dedicated to

B ∩ Y

· · · · · · · · · · · · · · ·· · · · · · · · · · · · · · ·· · · · · · · · · · · · · · ·· · · · · · · · · · · · · · ·· · · · · · · · · · · · · · ·· · · · · · · · · · · · · · ·

· · · ·· · · ·· · · ·
· · · ·· · · ·· · · ·

· · · · · · · · · · · · · · ·· · · · · · · · · · · · · · ·· · · · · · · · · · · · · · ·· · · · · · · · · · · · · · ·· · · · · · · · · · · · · · ·· · · · · · · · · · · · · · ·· · · · · · · · · · · · · · ·

Fig. 1. Graphical representation of an orthogonal sum

when A 	= ∅. As above, the orthogonal sum is defined only if K−1 	= 0 and
the weight of conflict is logK.

Since Bel, m, Q, Dou, and P� are in one-to-one correspondence, the nota-
tion Bel = Bel1 ⊕ Bel2, etc., is used in the obvious way. It is interesting to
note that if Q = Q1 ⊕Q2, then Q(A) = KQ1(A)Q2(A) for all A ⊆ Θ where
A 	= ∅.

2.5 Comparison with Conditional Probabilities

In the Bayesian theory, the function Ch(·|B) is the conditional chance func-
tion, i.e., Ch(A|B) = Ch(A ∩ B)/Ch(B), is the chance that A is true given
that B is true. Ch(·|B) is a chance function. A similar measure is available
using Dempster’s rule of combination.

Let mB(B) = 1 and let mB be 0 elsewhere. Then BelB, is a belief
function that focuses all of our belief on B. Define Bel(·|B) = Bel ⊕ BelB.
Then [16] shows that P�(A|B) = P�(A ∩ B)/P�(B); this has the same
form as the Bayesians’ rule of conditioning, but in general, Bel(A|B) =
(Bel(A∪¬B)−Bel(¬B))/(1−Bel(¬B)). On the other hand, if Bel is a Bayesian
belief function, then Bel(A|B) = Bel(A ∩B)/Bel(B).

Thus, Dempster’s rule of combination mimics the Bayesians’ rule of condi-
tioning when applied to Bayesian belief functions. It should be noted, however,
that the function BelB is not a Bayesian belief function unless |B| = 1.
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2.6 Simple and Separable Support Functions

Certain kinds of belief functions are particularly well suited for the represen-
tation of actual evidence, among them are the classes of simple and separable
support functions. If there exists an F ⊆ Θ such that Bel(A) = s 	= 0 when
F ⊆ A and A 	= Θ, Bel(Θ) = 1, and Bel(A) = 0 when F 	⊆ A, then Bel is
a simple support function, F is called the focus of Bel, and s is called Bel’s
degree of support.

The vacuous belief function is a simple support function with focus Θ. If
Bel is a simple support function with focus F 	= Θ, then m(F ) = s, m(Θ) =
1− s, and m is 0 elsewhere. Thus, a simple support function invests all of our
committed belief on the disjunction represented by its focus, F , and all our
uncommitted belief on Θ.

A separable support function is either a simple support function or the
orthogonal sum of two or more simple support functions that can be combined.
If it is assumed that simple support functions are used to represent the results
of experiments, then the separable support functions are the possible results
when the evidence from the several experiments is pooled together.

A particular case has occurred frequently. Let Bel1 and Bel2 be simple
support functions with respective degrees of support s1 and s2, and the com-
mon focus, F . Let Bel = Bel1 ⊕ Bel2. Then m(F ) = 1 − (1 − s1)(1 − s2) =
s1 + s2(1− s1) = s2 + s1(1− s2) = s1 + s2− s1s2 and m(Θ) = (1− s1)(1− s2);
m is 0 elsewhere.

The point of interest is that this formula appears as the rule of combination
in mycin [17] and [11] as well as many other places. In fact, the earliest known
development appears in the works of Jacob [2] circa 1713. For more than
two and a half centuries, this formulation has had intuitive appeal to workers
in a variety of fields trying to combine bodies of evidence pointing in the
same direction. Why not use ordinary statistical methods? Because the simple
support functions are not Bayesian belief functions unless |F | = 1.

We now turn to the problem of computational complexity.

3 The Computational Problem

Assume the result of an experiment—represented as the basic probability
assignment, m—is available. Then, in general, the computation of Bel(A),
Q(A), P�(A), or Dou(A) requires time exponential in |Θ|. The reason1 is
the need to enumerate all subsets or supersets of A. Further, given any one
of the functions, Bel, m, Q, P�, or Dou, computation of values of at least
two of the others requires exponential time. If something is known about the
structure of the belief function, then things may not be so bad. For example,
with a simple support function, the computation time is no worse than o(|Θ|).
1 I have not proved this. However, if the formulae introduced in Sect. 2 are directly

implemented, then the statement stands.
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The complexity problem is exaggerated when belief functions are com-
bined. Assume Bel = Bel1 ⊕ · · · ⊕ Beln, and the Beli are represented by
the basic probability assignments, mi. Then in general, the computations of
K, Bel(A), m(A), Q(A), P�(A), and Dou(A) require exponential time. Once
again, knowledge of the structure of the mi may overcome the dilemma. For
example, if a Bayesian belief function is combined with a simple support func-
tion, then the computation requires only linear time.

The next section describes a particularly useful structuring of the mi. Fol-
lowing sections show that all the basic quantities of interest can be calculated
in o(|Θ|) time when this structure is used.

4 Structuring the Problem

Tonight you expect a special guest for dinner. You know it is important
to play exactly the right music for her. How shall you choose from your
large record and tape collection? It is impractical to go through all the
albums one by one because time is short. First you try to remember
what style she likes—was it jazz, classical, or pop? Recalling past con-
versations you find some evidence for and against each. Did she like
vocals or was it instrumentals? Also, what are her preferences among
strings, reeds, horns, and percussion instruments?

4.1 The Strategy

The problem solving strategy exemplified here is the well known technique of
partitioning a large problem space in several independent ways, e.g., music
style, vocalization, and instrumentation. Each partitioning is considered sep-
arately, then the evidence from each partitioning is combined to constrain the
final decision. The strategy is powerful because each partitioning represents a
smaller, more tractable problem.

There is a natural way to apply the plausible reasoning methodology intro-
duced in Sect. 2 to the partitioning strategy. When this is done, an efficient
computation is achieved. There are two computational components necessary
to the strategy: the first collects and combines evidence within each parti-
tioned space, while the second pools the evidence from among the several
independent partitions.

In [16], the necessary theory for pooling evidence from the several parti-
tions is developed using Dempster’s rule of combination and the concept of
refinings of compatible frames; in [1], computational methods are being devel-
oped for this activity. Below, a formulation for the representation of evidence
within a single partitioning is described, then efficient methods are developed
for combining this evidence.
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4.2 Simple Evidence Functions

Let Θ be a partitioning comprised of n elements, i.e., |Θ| = n; for example,
if Θ is the set of possibilities that the dinner guest prefers jazz, classical,
or pop music, then n = 3. Θ is a frame of discernment and, with no loss
of generality, let Θ = {i|1 ≤ i ≤ n}. For each i ∈ Θ, there is a collection
of basic probability assignments μij that represents evidence in favor of the
proposition i, and a collection, νij that represents the evidence against i.
The natural embodiment of this evidence is as simple support functions with
the respective foci {i} and ¬{i}.

Define μi({i}) = 1 −
∏

(1 − μij({i})) and μi(Θ) = 1 − μi({i}). Then μi
is a basic probability assignment and the orthogonal sum of the μij . Thus,
μi is the totality of the evidence in favor of i, and fi = μ({i}) is the degree
of support from this simple support function. Similarly, define νi(¬{i}) =
1−

∏
(1−νij(¬{i})) and νi(Θ) = 1−νi(¬{i}). Then ai = νi(¬{i}) is the total

weight of support against i. Note, ¬{i} = Θ − {i}, i.e., set complementation
is always relative to the fixed frame, Θ. Note also that j, in μij , and νij ,
runs through respectively the sets of experiments that confirm or deny the
proposition i.

The combination of all the evidence directly for and against i is the sep-
arable support function, ei = μi ⊕ νi. The ei formed in this manner are
called the simple evidence functions and there are n of them, one for each
i ∈ Θ. The only basic probability numbers for ei that are not identically zero
are pi = ei({i}) = Ki · fi · (1 − ai), ci = ei(¬{i}) = Ki · ai · (1 − fi), and
ri = ei(Θ) = Ki · (1 − fi) · (1 − ai), where Ki = (1 − aifi)−1. Thus, pi is
the measure of support pro i, ci is the measure of support con i, and ri is
the measure of the residue, uncommitted belief given the body of evidence
comprising μij and νij . Clearly, pi + ci + ri = 1.

The goal of the rest of this paper is to find efficient methods to compute
the quantities associated with the orthogonal sum of the n simple evidence
functions. Though the simple evidence functions arise in a natural way when
dealing with partitions, the results are not limited to this usage—whenever
the evidence in our domain consists of simple support functions focused on
singleton propositions and their negations, the methodology is applicable.

4.3 Some Simple Observations

In the development of computational methods below, several simple observa-
tions are used repeatedly and the quantity di = 1− pi = ci + ri appears. The
first thing to note is K−1

i = 0 iff ai = fi = 1. Further, if K−1 	= 0 and v is
the vacuous belief function, then

pi = 1 iff fi = 1 ci = 1 iff ai = 1
pi = 1⇒ ci = ri = 0 ci = 1⇒ pi = ri = 0
fi = 1 iff ∃j μij({i}) = 1 a1 = 1 iff ∃j νij(¬{i}) = 1



8 Computational Methods for A Mathematical Theory of Evidence 207

pi = 0 iff fi = 0 ∨ ai = 1 ci = 0 iff ai = 0 ∨ fi = 1
fi = 0 iff ∀j μij = v ai = 0 iff ∀j νij = v
ri = 1 iff pi = ci = 0 ri = 0 iff fi = 1 ∨ ai = 1

5 Algorithms and Computations

The goal is to calculate quantities associated with m = e1 ⊕ · · · ⊕ en, where
n = |Θ| and the ei are the simple evidence functions defined in the previous
section. All computations are achieved in o(n) time measured in arithmetic
operations.

Figure 2 is a schematic of information flow in a mythical system. The μij
and νij may be viewed as sensors, where a sensor is an instance of a knowledge
source that transforms observations into internally represented evidence, i.e.,
belief functions. Each is initially v, the vacuous belief function. As time passes
and events occur in the observed world, these sensors can update their state by
increasing or decreasing their degree of support. The simple evidence function,
ei, recomputes its state, ai and fi, and changes the stored values of pi, di, ci,
and ri each time one of its sensors reports a change. From the definitions of
μij , νij , and ei it is evident that the effect of an update can be recorded in
constant time. That is to say, the time is independent of both the ranges of j
in μij and νij and of n.

A user asks questions about the current state of the evidence. One set of
questions concerns the values of various measures associated with arbitrary

STORE

ALGORITHMS

Decisions

Conflict

λ(A)

USER

Queries

pi ci ri di

ei

fi ai

μij

νij

... ...

...

...

......
...

...

Fig. 2. Data flow model
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A ⊆ Θ. These questions take the form ‘what is the value of λ(A)?’, where
λ is one of the functions Bel, m, Q, P�, or Dou. The other possible queries
concern the general state of the inference process. Two examples are ‘what is
the weight of conflict in the evidence?’ and ‘is there an A such that m(A) = 1;
if so, what is A?’. The o(n) time computations described in this section and
in Sect. 6 answer all these questions.

One more tiny detour is necessary before getting on with the business
at hand: it is assumed that subsets of Θ are represented by a form with
the computational nicety of bit-vectors as opposed to, say, unordered lists
of elements. The computational aspects of this assumption are: (1) the set
membership test takes constant time independent of n and the cardinality of
the set; (2) the operators ⊆, ∩, ∪, =, complementation with respect to Θ,
null, and cardinality compute in o(n) time.

5.1 The Computation of K

From equation (4), K−1 =
∑

[∩Ai �=∅]
∏

[1≤i≤n] ei(Ai) and the weight of inter-
nal conflict among the ei is logK by definition. Note that there may be conflict
between the pairs of μi and νi that is not expressed because K is calculated
from the point of view of the given ei. Fortunately, the total weight of con-
flict is simply log[K ·

∏
Ki]; this quantity can be computed in o(n) time if K

can be.
In order to calculate K, it is necessary to find the collections of Ai that

satisfy ∩Ai 	= ∅ and ei(Ai) 	= 0, i.e., those collections that contribute to
the summation. If Ai is not {i}, ¬{i}, or Θ, then ei = 0 identically from
the definition of the simple evidence functions. Therefore, assume throughout
that Ai ∈ {{i}¬{i}Θ}.

There are exactly two ways to select the Ai such that ∩Ai 	= ∅.

1. If Aj = {j} for some j, and Ai = ¬{i} or Ai = Θ for i 	= j, then
∩Ai = {j} 	= ∅. However, if two or more Ai are singletons, then the
intersection is empty.

2. If none of the Ai are singletons, then the situation is as follows. Select
any S ⊆ Θ and let Ai = Θ when i ∈ S and Ai = ¬{i} when i 	∈ S. Then
∩Ai = S. Therefore, when no Ai is a singleton, ∩Ai 	= ∅ unless Ai = ¬{i}
for all i.

Let J , K, L be predicates respectively asserting that exactly one Ai is a
singleton, no Ai is a singleton, i.e., all Ai ∈ {¬{i}Θ}, and all Ai = ¬{i}.
Then equation (4) can be written as

K−1 =
∑

∩Ai �=∅

∏

1≤i≤n
ei(Ai)

=
∑

J

∏

1≤i≤n
ei(Ai) +

∑

K

∏

1≤i≤n
ei(Ai)−

∑

L

∏

1≤i≤n
ei(Ai).
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Now the transformation, below called transformation T,
∑

xj∈Sj

∏

1≤i≤n
fi(xi) =

∏

1≤i≤n

∑

x∈Si

fi(x) (T)

can be applied to each of the three terms on the right; after some algebra, it
follows that

K−1 =
∑

1≤q≤n
pq

∏

i�=q
di +

∏

1≤i≤n
di −

∏

1≤i≤n
ci, (5)

where pi = ei({i}), ci = ei(¬{i}), and di = ei(¬{i}) + ei(Θ) have been
substituted. If pq = 1 for some q, then dq = cq = 0 and K−1 =

∏
[i�=q] di. On

the other hand, if pi 	= 1 for all i, then di 	= 0 for all i and equation (5) can
be rewritten as

K−1 =
[ ∏

1≤i≤n
di

][
1 +

∑

1≤i≤n
pi/di

]
−

∏

1≤i≤n
ci. (6)

In either case, it is easy to see that the computation is achieved in o(n) time,
as is the check for pi = 1.

5.2 The Computation of m(A)

From equation (4), the basic probability numbers, m(A) for the orthogonal
sum of the simple evidence functions are

m(A) = K
∑

∩Ai=A

∏

1≤i≤n
ei(Ai),

for A 	= ∅ and by definition, m(∅) = 0. Also, m can be expressed by

m(∅) = 0

m({q}) = K
[
pq

∏

i�=q
di + rq

∏

i�=q
ci

]
(7)

M(A) = K
[∏

i∈A
ri

][∏

i�∈A
ci

]
, when |A| ≥ 2.

It is easy to see that the calculation is achieved in o(n) time since |A|+ |¬A| = n.
Derivation of these formulae is straightforward. If A = ∩Ai, then A ⊆ Ai

for 1 ≤ i ≤ n and for all j 	∈ A, there is an Ai such that j 	∈ Ai. Consider
the case in which A is a nonsingleton nonempty set; If i ∈ A, then Ai = Θ—
the only other possibilities are {i} or ¬{i}, but neither contains A. If i 	∈ A,
then both Ai = ¬{i} and Ai = Θ are consistent with A ⊆ Ai. However, if
Ai = Θ for some i 	∈ A, then ∩Ai ⊇ A ∪ {i} 	= A. Therefore, the only choice
is Ai = ¬{i} when i 	∈ A and Ai = Θ when i ∈ A. When it is noted that
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ei(Θ) = ri and ei(¬{i}) = ci and, transformation T is applied, the formula
for the nonsingleton case in equation (7) follows.

When A = {q}, there are two possibilities: Aq = Θ or Aq = {q}. If Aq = Θ,
then the previous argument for nonsingletons can be applied to justify the
appearance of the term rq

∏
[i�=q] ci. If Aq = {q}, then for each i 	= q it

is proper to select either Ai = Θ or Ai = ¬{i} because, for both choices,
A ⊆ Ai; actually, ∩Ai = {q} = A because Aq = A. Using transformation T
and noting that eq({q}) = pq and di = ci + ri gives the term pq

∏
[i�=q] di in

the above and completes the derivation of equation (7).

5.3 The Computations of Bel(A), P�(A), and Dou(A)

Since Dou(A) = Bel(¬A) and P�(A) = 1 − Dou(A), the computation of P�

and Dou is o(n) if Bel can be computed in o(n) because complementation is
an o(n) operation. Let Bel be the orthogonal sum of the n simple evidence
functions. Then Bel(∅) = 0 by definition and for A 	= ∅,

Bel(A) =
∑

B⊆A
m(B) =

∑

∅�=B⊆A
K

∑

∩Bi=B

∏

1≤i≤n
ei(Bi)

= K
∑

∅�=∩Ai⊆A

∏

1≤i≤n
ei(Ai).

Bel is also expressed by

Bel(A) = K
[[ ∏

1≤i≤n
di

][∑

i∈A
pi/di

]
+

[∏

i�∈A
ci

][∏

i∈A
di

]
−

∏

1≤i≤n
ci

]
(8)

when di 	= 0 for all i. If dq = 0, then pq = 1. Therefore,m({q}) = Bel({q}) = 1.
In all variations, Bel(A) can be calculated in o(n) time. Since the formula
evaluates Bel(∅) to 0, only the case of nonempty A needs to be argued.

The tactic is to find the collections of Ai satisfying ∅ 	= ∩Ai ⊆ A then
apply transformation T. Recall that the only collections of Ai that satisfy
∅ 	= ∩Ai are those in which (1) exactly one Ai is a singleton or (2) no Ai is a
singleton and at least one Ai = Θ. To satisfy the current constraint, we must
find the subcollections of these two that also satisfy ∩Ai ⊆ A.

If exactly one Ai is a singleton, say Aq = {q}, then ∩Ai = {q}. In order
that ∩Ai ⊆ A it is necessary and sufficient that q ∈ A. Thus, the contri-
bution to Bel(A), when exactly one singleton Ai is permitted, is the sum
of the contributions for all i ∈ A. A brief computation shows this to be
[
∏

[1≤i≤n] di][
∑

[i∈A] pi/di].
When no Ai is a singleton, it is clear that Ai = ¬{i} for i 	∈ A; oth-

erwise, i ∈ A and ∩Ai 	⊆ A. For i ∈ A, either Ai = ¬{i} or Ai = Θ is
permissible. The value of the contribution to Bel from this case is given by
the term [

∏
[i�∈A] ci][

∏
[i∈A] di]. Since at least one of the Ai = Θ is required,

we must deduct for the case in which Ai = ¬{i} for all i, and this explains
the appearance of the term −

∏
[1≤i≤n] ci.
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5.4 The Computation of Q(A)

The definition of the commonality function shows that Q(∅) = 1 identically.
For A 	= ∅

Q(A) =
∑

A⊆B
m(B) =

∑

A⊆B
K

∑

∩Ai=B

∏

1≤i≤n
ei(Ai) = K

∑

A⊆∩Ai

∏

1≤i≤n
ei(Ai).

Q can be expressed also by

Q(∅) = 1

Q({q}) = K(pq + rq)
∏

i�=q
di

Q(A) = K
[∏

i∈A
ri

][∏

i�∈A
di

]
, when |A| ≥ 2.

In order that a collection, Ai, satisfy A ⊆ ∩Ai, it is necessary and sufficient
that A ⊆ Ai for all i. If i 	∈ A, then both Ai = ¬{i} and Ai = Θ fill this
requirement but Ai = {i} fails. If i ∈ A, then clearly Ai = ¬{i} fails and
Ai = Θ works. Further, Ai = {i} works iff A = {i}. It is now a simple matter
to apply transformation T and generate the above result. It is evident that
Q(A) can be calculated in o(n) time.

6 Conflict and Decisiveness

In the previous section, a mythical system was introduced that gathered and
pooled evidence from a collection of sensors. It was shown how queries such
as ‘what is the value of λ(A)?’ could be answered efficiently, where A is an
arbitrary subset of Θ and λ is one of Bel, m, Q, P�, or Dou. It is interesting
to note that a sensor may change its value over time. The queries report
values for the current state of the evidence. Thus, it is easy to imagine an
implementation performing a monitoring task, for which better and more
decisive data become available, as time passes, and decisions are reevaluated
and updated on the bases of the most current evidence.

In this section, we examine more general queries about the combined evi-
dence. These queries seek the subsets of Θ that optimize one of the measures.
The sharpest question seeks the A ⊆ Θ, if any, such that m(A) = 1. If such
an A exists, it is said to be the decision. Vaguer notions of decision in terms
of the other measures are examined too.

The first result is the necessary and sufficient conditions that the evidence
be totally contradictory. Since the orthogonal sum of the evidence does not
exist in this case, it is necessary to factor this out before the analysis of deci-
siveness can be realized. All queries discussed in this section can be answered
in o(n) time.
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6.1 Totally Contradictory Evidence

Assume there are two or more pi = 1, say pa = pb = 1, where a 	= b. Then
dj = cj = rj = 0, for both j = a and j = b. The formula for K is

K−1 =
∑

1≤q≤n
pq

∏

i�=q
di +

∏

1≤i≤n
di −

∏

1≤i≤n
ci,

and it is easy to see that K−1 = 0 under this assumption. Therefore, the
evidence is in total conflict by definition.

Let pa = 1 and pi 	= 1 for i 	= a. Then da = ca = 0, and di 	= 0 for
i 	= a. Therefore. the above formula reduces to K−1 =

∏
[i�=a] di 	= 0 and the

evidence is not totally contradictory.
Now assume pi 	= 1, hence di 	= 0, for all i. CanK−1 = 0? Since di = ci+ri,

it follows that
∏
di −

∏
ci ≥ 0. If K−1 = 0, this difference must vanish. This

can happen only if ri = 0 for all i. Since pi 	= 0, this entails ci = 1 for all i. In
this event the pi = 0 and K−1 = 0.

Summary: The evidence is in total conflict iff either (1) there exists an
a 	= b such that both pa = pb = 1 or (2) ci = 1 for all i ∈ Θ.

6.2 Decisiveness in m

The evidence is decisive when m(A) = 1 for some A ⊆ Θ and A is called the
decision. If the evidence is decisive and A is the decision, then m(B) = 0 when
B 	= A because the measure of m is 1. The evidence cannot be decisive if it
is totally contradictory because the orthogonal sum does not exist, hence m
is not defined. The determination of necessary and sufficient conditions that
the evidence is decisive and the search for the decision is argued by cases.

If pq = 1 for some q ∈ Θ, then the evidence is totally contradictory if pi = 1
for some i 	= q. Therefore, assume that pi 	= 1 for i 	= q. From equation (7)
it is easy to see m({q}) = K

∏
[i�=q] di because rq = 0. Further, it was shown

directly above that K−1 =
∏

[i�=q] di under the same set of assumptions. Thus,
m({q}) = 1.

The other possibility is that pi 	= 1, hence di 	= 0, for all i ∈ Θ. Define
C = {i|ci = 1}, and note that if |C| = n, the evidence is totally contradictory.
For i ∈ C, pi = ri = 0 and di = 1. If |C| = n − 1, then there is a w such
that {w} = Θ − C. Now pw 	= 1 and cw 	= 1 entails rw 	= 0; therefore, from
equation (7)

m({w}) = K
[
pw

∏

i�=w
di + rw

∏

i�=w
ci

]
= K[pw + rw] 	= 0.

If there is a decision in this case, it must be {w}. Direct substitution into equa-
tion (5) shows that, in this case, K−1 = pw + rw and therefore, m({w}) = 1.

Next, we consider the cases where 0 ≤ |C| ≤ n−2 and therefore, |¬C| ≥ 2.
Then, from equation (7)



8 Computational Methods for A Mathematical Theory of Evidence 213

m(¬C) = K
[∏

i�∈C
ri

][∏

i∈C
ci

]
= K

∏

i�∈C
ri 	= 0 (9)

because i 	∈ C iff ci 	= 1 (and pi 	= 1 for all i ∈ Θ) has been assumed: hence,
ri 	= 0 for all i ∈ ¬C. Therefore, if the evidence is decisive, m(¬C) = 1 is the
only nonzero basic probability number. Can there be a pq 	= 0? Obviously,
q 	∈ C. The answer is no since di 	= 0, hence, m({q}) = K[pq

∏
[i�=q] di +

rq
∏

[i�=q] ci] 	= 0, a contradiction. Thus, pi = 0 for all i ∈ Θ. From equation (5)
it now follows that K−1 =

∏
[1≤i≤n] di −

∏
[1≤i≤n] ci. Therefore, from (9),∏

[i�∈C] ri =
∏

[1≤i≤n] di −
∏

[1≤i≤n] ci if m(¬C) = 1. Since di = ci = 1 when
i ∈ C, this can be rewritten as

∏
[i�∈C] ri =

∏
[i�∈C] di −

∏
[i�∈C] ci. But di =

ci + ri. Therefore, this is possible exactly where ci = 0 when i 	∈ C.
Summary: Assuming the evidence is not in total conflict, it is decisive iff

either (1) exactly one pi = 1; the decision is {i}. (2) There exists a w such
that cw 	= 1 and ci = 1 when i 	= w; the decision is {w}. Or (3) there exists
a W 	= ∅ such that ri = 1 when i ∈ W and ci = 1 when i 	∈ W ; the decision
is W .

6.3 Decisiveness in Bel, P�, and Dou

If Bel(A) = Bel(B) = 1, then Bel(A ∩ B) = 1 and it is always true that
Bel(Θ) = 1. The minimal A such that Bel(A) = 1 is called the core of Bel.
If the evidence is decisive, i.e., m(A) = 1 for some A ⊆ Θ, then clearly A is
the core of Bel. Assume the evidence is not decisive, not totally contradictory,
and Bel(A) = 1, then equations (8) and (6) can be smashed together and
rearranged to show that

∑

q �∈A
pq

∏

i�=q
di +

∏

i∈A
di

[∏

i�∈A
di −

∏

i�∈A
ci

]
= 0.

Since the evidence is not decisive, di 	= 0. Further, di = ci + ri so that
ri = 0 when i 	∈ A; otherwise, the expression

∏
di −

∏
ci makes a nonzero

contribution to the above. Similarly, pi = 0 when i 	∈ A; hence ci = 1 is
necessary. Let A = {i|ci 	= 1}, then substitution shows Bel(A) = 1 and A is
clearly minimal.

Summary: The decision is the core when the evidence is decisive, other-
wise {i|ci 	= 1} is the core.

P� and Dou do not give us interesting concepts of decisiveness because
Dou(A) = Bel(¬A) = 0 would be the natural criterion. However this test is
passed by any set in the complement of the core as well as others. Therefore, in
general, no unique decision is found. A similar difficulty occurs in an attempt
to form a concept of decisiveness in P� because P�(A) = 1−Dou(A).

6.4 Decisiveness in Q

Since Q(∅) = 1 and Q(A) ≤ Q(B) when B ⊆ A, it is reasonable to ask for the
maximal N such that Q(N) = 1. This set, N , is called the nucleus of Bel. If
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m(A) = 1, then the decision, A, is clearly the nucleus. If i ∈ N , then i ∈ A
for all m(A) 	= 0. Further, Q({i}) = 1 iff i is an element of the nucleus.

Assume that the simple evidence functions are not totally contradictory
and there is no decision. Then di 	= 0 and there is no w such that ci = 1 when-
ever i 	= w. The necessary and sufficient conditions, then, that Q({z}) = 1,
and hence z ∈ N are (1) pi = 0 if i 	= z and (2) cz = 0. To wit,

Q({z}) = 1

K(pz + rz)
∏

i�=z
di = 1

(pz + rz)
∏

i�=z
di = K−1

(pz + rz)
∏

i�=z
di =

∑

1≤q≤n
pq

∏

i�=q
di +

∏

1≤i≤n
di−

∏

1≤i≤n
ci

∑

q �=z
pq

∏

i�=q
di + (dz − rz)

∏

i�=z
di −

∏

1≤i≤n
ci = 0

∑

q �=z
pq

∏

i�=q
di + cz

∏

i�=z
di −

∏

1≤i≤n
ci = 0

∑

q �=z
pq

∏

i�=q
di + cz

(∏

i�=z
di −

∏

i�=z
ci

)
= 0

Since di 	= 0, it follows that pq = 0 for q 	= z, else the first term makes a
nonzero contribution. Since di = ci+ ri, the quantity,

∏
di−

∏
ci, can vanish

only if ri = 0 when i 	= z. However, this and pi 	= 1 because there is no
decision, entails ci = 1 when i 	= z. Therefore, either {z} is the decision or
the evidence is contradictory. Thus, cz = 0 so that the second term of the last
equation vanishes. Since the steps above are reversible, these are sufficient
conditions too.

Summary: If A is the decision, then A is the nucleus. If two or more
pi 	= 0, then the nucleus is ∅. If pz 	= 0, cz = 0, and pi = 0 when i 	= z, then
{z} is the nucleus. If pi = 0 for all i, then {i|ci = 0} is the nucleus. Clearly,
this construction can be carried out in o(n) time.

6.5 Discussion

It has been noted that pi = 1 or ci = 1 if and only it there is a j such that
respectively μij({i}) = 1 or νij(¬{i}) = 1, i.e., if and only if the result of
some experiment is decisive within its scope. The above analyses show the
effects occurring when pi = 1 or ci = 1; subsets of possibilities are irrevocably
lost—most or all the nondecisive evidence is completely suppressed—or the
evidence becomes totally contradictory.

Any implementation of this theory should keep careful tabs on those con-
ditions leading to conflict and/or decisiveness. In fact, any decisive experiment
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(a degree of support of 1) should be viewed as based upon evidence so con-
clusive that no further information can change one’s view. A value of 1 in this
theory is indeed a strong statement.

7 Conclusion

Dempster and Shafer’s theory of plausible inference provides a natural and
powerful methodology for the representation and combination of evidence. I
think it has a proper home in knowledge-based expert systems because of
the need for a technique to represent weights of evidence and the need for a
uniform method with which to reason. This theory provides both. Standard
statistical methods do not perform as well in domains where prior probabilities
of the necessary exactness are hard to come by, or where ignorance of the
domain model itself is the case. One should not minimize these problems even
with the proposed methodology. It is hoped that with the ability to directly
express ignorance and uncertainty, the resulting model will not be so brittle.

However, more work needs to be done with this theory before it is on a solid
foundation. Several problems remain as obvious topics for future research.
Perhaps the most pressing is that no effective decision making procedure is
available. The Bayesian approach masks the problem when priors are selected.
Mechanical operations are employed from gathering evidence through the cus-
tomary expected-value analysis. But our ignorance remains hidden in the
priors.

The Dempster-Shafer theory goes about things differently—ignorance and
uncertainty are directly represented in belief functions and remain through the
combination process. When it is time to make a decision, should the estimate
provided by Bel or the one provided by P� be used? Perhaps something in
between. But what? No one has a good answer to this question.

Thus, the difference between the theories is that the Bayesian approach
suppresses ignorance up front while the other must deal with it after the
evidence is in. This suggests one benefit of the Dempster-Shafer approach:
surely, it must be right to let the evidence narrow down the possibilities, first,
then apply some ad hoc method afterward.

Another problem, not peculiar to this theory, is the issue of indepen-
dence. The mathematical model assumes that belief functions combined by
Dempster’s rule are based upon independent evidence, hence the name orthog-
onal sum. When this is not so, the method loses its feeling of inevitability.
Also, the elements of the frame of discernment, Θ, are assumed to be exclusive
propositions. However, this is not always an easy constraint to obey. For exam-
ple, in the MYCIN application, it seems natural to make the frame the set
of possible infections but the patient can have multiple infections. Enlarging
the frame to handle all subsets of the set of infections increases the difficulty
in obtaining rules and in their application; the cardinality of the frame grows
from |Θ| to 2|Θ|.
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One more problem that deserves attention is computational efficiency.
Above it is shown that, with a certain set of assumptions, it is possible to cal-
culate efficiently. However, these assumptions are not valid in all or even most
domains. A thorough investigation into more generous assumptions seems
indicated so that more systems can employ a principled reasoning mechanism.

The computational theory as presented here has been implemented in SIM-
ULA. Listings are available by writing directly to the author.
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