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Allocations of Probability1

Glenn Shafer

Abstract. This paper studies belief functions, set functions which are normalized
and monotone of order ∞. The concepts of continuity and condensability are defined
for belief functions, and it is shown how to extend continuous or condensable belief
functions from an algebra of subsets to the corresponding power set. The main tool
used in this extension is the theorem that every belief function can be represented
by an allocation of probability—i.e., by a ∩-homomorphism into a positive and com-
pletely additive probability algebra. This representation can be deduced either from
an integral representation due to Choquet or from more elementary work by Revuz
and Honeycutt.
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1 Belief Functions

In his pathbreaking “Theory of capacities,” Gustave Choquet (1953) estab-
lished the following definitions: a class E of subsets of a set Ω is a multiplicative
subclass of P(Ω) if A ∩ B is in E whenever A and B are in E , an additive
subclass of P(Ω) if A ∪ B is in E whenever A and B are in E . A real-valued
function g on a multiplicative subclass E is monotone of order n if

g(A) �
∑{

(−1)|I|+1
g (∩i∈IAi) |∅ 	= I ⊂ {I, · · · , n}

}

for every collection A,A1, · · · , An of elements of E such that A ⊃ Ai for all i,
monotone of order ∞ if it is monotone of order n for all n � 1. A real-valued
function g on an additive subclass E is alternating of order n if

g(A) �
∑{

(−1)|I|+1
g (∪i∈IAi) |∅ 	= I ⊂ {I, · · · , n}

}
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for every collection A,A1, · · · , An of elements of E such that A ⊂ Ai for all i;
alternating of order ∞ if it is alternating of order n for all n � 1.

We call a function f on a multiplicative subclass E of P(Ω) a belief function
if ∅ and Ω are in E , f(∅) = 0, f(Ω) = 1, and f is monotone of order ∞.
The condition that f be monotone of order ∞ implies in particular that f is
increasing; hence a belief function always takes values in the interval [0, 1]. The
name “belief function” derives from the thought that these functions might
be used to represent partial belief: if Ω is interpreted as a set of “possibilities”
and A is a subset of Ω, then f(A) might express one’s degree of belief that the
truth lies in A. In a recent monograph (1976a), I argue at length that belief
functions are useful and appropriate for the representation of partial belief,
and I study these functions in detail in the case where Ω is finite. This paper
develops tools for extending that study to the case where Ω is infinite.

We call a function f∗ on an additive subclass E∗ of P(Ω) an upper proba-
bility function if ∅ and Ω are in E , f∗(∅) = 0, f∗(Ω) = 1, and f∗ is alternating
of order ∞. Notice that if f is a belief function on E , then the function f∗

defined on the additive subclass E∗ = {A|A ∈ E} by f∗(A) = 1 − f(A) is an
upper probability function.

It will be shown in Sect. 5 below that a belief function f on a multiplicative
subclass E of P(Ω) can always be extended to a belief function on P(Ω). In
fact, it always has a canonical extension to P(Ω): namely, the belief function
f̄ on P(Ω) given by

f̄(A) = supΣ
{
(−1)|I|+1

f(∩i∈IAi)|∅ 	= I ⊂ {1, · · · , n}
}
,

where the supremum is taken over all n � 1 and all collections A1, · · · , An of
elements of E that are subsets of A. We call this extension canonical because
it is minimal; i.e., f̄ � g for any other belief function g on P(Ω) that extends
f . (In fact, f̄ � g for any other belief function g on P(Ω) such that f � g|E .)
This can also be expressed by saying that f̄ ’s upper probability function (f̄)∗

is the maximal extension of f∗; i.e., (f̄)∗ � g for any other upper probability
function g on P(Ω) that extends f∗.

In this paper we consider two regularity conditions for a belief function
over an infinite set Ω: continuity and condensability. We call a belief function
f on P(Ω) continuous if it satisfies

f(∩ iAi) = limi→∞ f(Ai) (1)

for every decreasing sequence A1 ⊃ A2 ⊃ · · · of subsets of Ω, and we call a
belief function on a proper multiplicative subclass of P(Ω) continuous if it can
be extended to a continuous belief function on P(Ω). We call a belief function
f on P(Ω) condensable if

f(∩Q) = infA∈Qf(A) (2)

for every downward net Q in P(Ω), and we call a belief function on a proper
multiplicative subclass of P(Ω) condensable if it can be extended to a con-
densable belief function on P(Ω). (A subset Q of P(Ω) is called a downward
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net if for every pair A1, A2 of elements of Q there exists an element A of Q
such that A ⊂ A1 ∩A2.)

Though condensability is a rather restrictive condition it is intimately
related to the idea of “weights of evidence” (see Shafer (1976a)) and to Demp-
ster’s rule for combining belief functions (see Shafer (1978)), and hence it
seems intuitively appropriate for belief functions that purport to represent
empirical knowledge. The weaker condition of continuity seems appropriate
in the case of partial beliefs arising from theoretical knowledge; it applies in
particular to the partial beliefs arising from knowledge of chances or “objective
probabilities.”

The conditions of continuity and condensability can also be stated in terms
of the upper probability function. A belief function f on P(Ω) is continuous if

f∗(∩iAi) = limi→∞ f∗(Ai)

for every increasing sequence A1 ⊂ A2 ⊂ · · · of subsets of Ω; it is condens-
able if

f∗(∪Q) = supA∈Qf
∗(A)

for every upward net Q ⊂ P(Ω), or equivalently, if

f∗(A) = sup {f∗(B)|B ⊂ A;B is finite} (3)

for all A ⊂ Ω. This last expression shows how strong a condition condensability
is; a condensable belief function on a power set is completely determined by
its upper probabilities for finite subsets.

Suppose f is a belief function on an algebra E of subsets of Ω or, more
generally, on a subset E of P(Ω) that is both a multiplicative and an additive
subclass. Then, as we see in Sect. 5 below, f is continuous if and only if it
satisfies (1) for every decreasing sequence A1 ⊃ A2 ⊃ · · · of elements of E such
that ∩iAi is in E . And f is condensable if and only if for every A ∈ E and
every ε > 0 there exists a cofinite subset B of Ω such that A ⊂ B and f(C)−
f(A) < ε for all C ∈ E such that A ⊂ C ⊂ B. These theorems are proven by
showing how to extend a belief function satisfying one of these conditions to a
continuous (or condensable) belief function on P(Ω); the extensions exhibited
are canonical in the sense that they award each subset of Ω the minimal degree
of belief that is compelled by the adoption of f on E and by the hypothesis
of continuity (or condensability).

The most important tool we use in our study of the extension of belief
functions is the representation theorem presented in Sect. 3. This theorem
is a direct consequence of an integral representation due to Choquet (1953),
and it can also be deduced from more elementary work by Revuz (1955) and
Honeycutt (1971). (These scholars’ results are reviewed in Sect. 2.) The the-
orem says that every belief function can be represented by an allocation of
probability: i.e., that for every belief function f : E → [0, 1] there exists a
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complete Boolean algebra M, a positive and completely additive measure μ
on M, and a mapping ρ : E → M that preserves finite meets and satisfies
f = μ ◦ ρ. Notice the intuitive interpretation of this representation: the ele-
ments of M are portions of one’s belief or “probability,” and ρ(A) is the
portion of one’s probability that is “allocated” or committed to A.

In addition to helping us extend belief functions, the representation of
belief functions by allocations of probability also helps give intuitive content
to the idea of condensability. It is also useful in the study of Dempster’s rule
of combination and in the study of particular belief functions that arise in
connection with statistical inference.

2 ∩-homomorphisms

Suppose E is a multiplicative subclass of P(Ω) containing both ∅ and Ω,
and suppose F is a multiplicative subclass of P(X ) containing both ∅ and
X . We call r : E → F a ∩-homomorphism if r(∅) = ∅, r(Ω) = X , and
r(A ∩ B) = r(A) ∩ r(B) for all A,B ∈ E . (Cf. Choquet (1953), p. 197.) It is
easily seen that if f is a belief function and r is a ∩-homomorphism, then f ◦r
is also a belief function.

Since a finitely additive probability measure qualifies as a belief function,
this implies in particular that μ ◦ r is a belief function whenever r : E → F is
a ∩-homomorphism, F is an algebra, and μ is a finitely additive probability
measure on F . Probability measures being abundant and ∩-homomorphisms
being easy to construct, this fact enables us to construct an abundance of
belief functions. In fact, all belief functions can be obtained in this way:

Theorem 1. Suppose E is a multiplicative subclass of P(Ω) and f is a belief
function on E. Then there exists a set X , an algebra F of subsets of X , a
finitely additive probability measure μ on F , and a ∩-homomorphism r: E → F
such that f = μ ◦ r.

This theorem is due to Choquet; it is a direct consequence of his integral
representation theorem. It is also a direct consequence of a construction due
to Revuz (1955) and Honeycutt (1971).

In its simplest version Choquet’s integral representation theorem is merely
a sharpening of the Krein-Milman theorem (see Choquet (1969), Vol. II,
p. 117). It states that if L is a locally convex Hausdorff topological vector
space, U is a compact convex subset of L, and f ∈ U , then there exists a
Radon probability measure μ on U such that the support of U is contained in
the closure X of the extreme points of U and f is the resultant of μ. (In other
words, α(f) =

∫
X α(g)dμ(g) for every continuous linear function α : U → R.)

If we take L to be the vector space of all real-valued functions on E , endowed
with the topology of simple convergence, and let U ⊂ L be the set of all belief
functions on E , then the set of extreme points of U consists of the two-valued
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belief functions—those that take only the values zero and one. (See Choquet
(1953), pp. 260–261. Notice that the two-valued belief functions on E are in a
one-to-one correspondence with the filters in E ; a filter F ⊂ E corresponds to
the belief function which assigns degree of belief one to all elements of F and
degree of belief zero to all elements of E−F .) And this set is compact and hence
equal to its closure X . For each A ∈ E , the mapping αA : L → R : g → g(A)
is continuous and linear, and hence

f(A) = αA(f) =
∫

X
g(A) dμ(g)

= μ ({g ∈ X |g(A) = 1|}) .

That is to say, f = μ ◦ r, where r is the ∩-homomorphism given by r(A) =
{g ∈ X|g(A) = 1}.

In order to relate Theorem 1 to Revuz’ construction, set X = P(E) − ∅,
define r : E → P(X ) by r(A) = {B ∈ E|∅ 	= B ⊂ A}, and let F be the
algebra of subsets of X generated by the image r(E). Revuz’ work, as emended
by Honeycutt, shows how to construct, for a given belief function f on E , a
unique finitely additive probability measure μ on F such that f = μ ◦ r.

The measure μ obtained in Choquet’s proof is countably additive (in fact,
it is a Radon measure), but the ∩-homomorphism r obtained in this proof
need not preserve infinite intersections. In the Revuz-Honeycutt construction,
on the other hand, the ∩-homomorphism r preserves arbitrary intersections
(provided these intersections are in E), but the measure μ need not be count-
ably additive.

3 Allocations of Probability

As it turns out, it is both useful and intuitively appealing to replace the mea-
sure space (X ,F , μ) of the preceding representation by a probability algebra:
i.e., a complete Boolean algebra that has associated with it a positive and
completely additive probability measure. In this section we show that every
belief function can be represented by a ∩-homomorphism into a probability
algebra. We call such ∩-homomorphisms allocations of probability.

Some notation and nomenclature: we denote a probability algebra M’s
zero by Λ, its unit by V. We use the symbols ∧,∨ and � to denote meet,
join and majorization in M, reserving the analogous symbols ∩,∪ and ⊂
for their set-theoretic roles. To say that the measure μ on M is positive is
to say that μ(M) > 0 for every nonzero element M of M. To say that it
is completely additive is to say that μ(∨B) = ΣM∈Bμ(M) whenever B is a
collection of pairwise disjoint elements of M. And when we say ρ : E → M
is a ∩-homomorphism, we mean, of course, that ρ(ϕ) = Λ, ρ(Ω) = V, and
ρ(A ∩B) = ρ(A) ∧ ρ(B).

The condition that the measure μ on a probability algebra M be both
positive and completely additive implies in particular that M must satisfy
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the countable chain condition: every collection of pairwise disjoint elements
of M is countable. And using this statement one can further deduce that
every subset B of M must have a countable subset C such that ∨B = ∨C,
that μ(∨B) = supM∈B μ(M) for every upward net B in M, and that
μ(∧B) = infM∈B μ(M) for every downward net B in M. (See pp. 61–69 of
Halmos (1963).)

Theorem 2. Suppose f is a belief function on a multiplicative subclass E.
Then there exists an allocation of probability ρ : E →M such that f = μ ◦ ρ,
where μ is the measure associated with the probability algebra M.

Proof. Recall that if M0 is a σ-algebra of subsets and μ0 is a countably addi-
tive probability measure onM0, then a probability algebra can be constructed
by taking the quotient of M0 by the σ-ideal I consisting of all sets in M0

of μ0-measure zero; this quotient M = M0/I is a complete Boolean algebra
and the measure μ that μ0 induces on M is positive and completely additive.
The projection π : M0 → M satisfies μ0 = μ ◦ π; and since it is a Boolean
homomorphism, it is in particular a ∩-homomorphism. (For details, again see
Halmos (1963).)

Since f is a belief function, Choquet’s integral representation supplies us
a σ-algebra M0, a countably additive probability measure μ0 on M0, and a
∩-homomorphism r : E →M0 satisfying f = μ0 ◦ r. Let M and π be defined
as in the preceding paragraph, and set ρ = π ◦ r. Then f = μ◦ρ, and ρ, being
the composition of two ∩-homomorphisms, is itself a ∩-homomorphism and
hence an allocation of probability.

(Notice that the appeal to Choquet’s integral representation could be
replaced by a more elementary approach based on Revuz’ construction. That
construction yields a ∩-homomorphism r : E → M1, where M1 is merely an
algebra with a finitely additive probability measure μ1. But the Stone repre-
sentation theorem could be used to construct a σ-algebra M0, a countably
additive measure μ0, and a Boolean homomorphism g :M1 →M0 such that
μ1 = μ0 ◦ g.)

The representation of a belief function f by an allocation ρ can be
much more useful in theoretical discussions than the representation by a ∩-
homomorphism into the algebra of a measure space, particularly if one is
concerned with the conditions of continuity and condensability. For example:

Theorem 3. Suppose ρ : P(Ω) → M is an allocation for the belief function
f. Then f is continuous if and only if

ρ(∩iAi) = ∧iρ(Ai) (4)

for every sequence A1, A2, · · · of subsets of Ω. And f is condensable if and
only if

ρ(∩Q) = ∧A∈Qρ(A) (5)

for every nonempty subset Q of P(Ω).
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The proof of this theorem is straightforward and directly yields a gener-
alization to the case of an allocation ρ for a belief function on an arbitrary
multiplicative subclass E of P(Ω): in this case we may say that (1) holds for
every decreasing sequence A1 ⊃ A2 ⊃ · · · of elements of E whose intersection
is in E if and only if (4) holds for every sequence A1, A2, · · · of elements of E
whose intersection is in E ; and that (2) holds for every downward net Q ⊂ E
whose intersection is in E if and only if (5) holds for every subset Q of E whose
intersection is in E .

The representation of a belief function by an allocation of probability ρ into
a probability algebra M is intuitively meaningful because nonzero elements
of M can be thought of as “probability masses” or “portions of belief,” and
ρ(A) can be thought of as the (total) portion of belief one commits to A. The
defining characteristics of an allocation of probability suit this interpretation;
it seems reasonable to require that the measure of a portion of belief should
always be positive, that the measures of disjoint portions should add, and
that the portion committed to A∩B should include all of what is committed
both to A and to B.

The notion of an allocation also lends itself to a geometric intuition. Sup-
pose, for example, that ρ is an allocation from a power set P(Ω) into a prob-
ability algebra M. Then think of the probability represented by M as spread
over the set Ω. But instead of distributing this probability in a fixed way, allow
it a limited freedom of movement: require that a probability mass M ∈M be
constrained to remain inside a set A ⊂ Ω if and only if M � ρ(A). This makes
geometric sense: if we write “M ct A” to indicate that M is constrained to A,
then we find that M ct A and M ct B imply M ct A ∩B, that M ct A and
N ct A imply M ∨N ct A, etc.

Occasionally, it is convenient to shift our attention from an allocation
ρ : E → M to the mapping ζ : E∗ → M defined by ζ(A) = ρ(A). We call ζ
an allowment of probability for f = μ ◦ ρ; it is dual to ρ in that it satisfies
f∗ = μ ◦ ζ and preserves joins rather than meets. Notice that in terms of the
geometric intuition associated with an allocation, ζ(A) = ρ(Ā) is the total
probability mass that is not constrained to Ā; i.e., the total probability mass
that is allowed to move into A.

4 Condensability

The intuition associated with an allocation of probability on a power set P(Ω)
acquires its full force only when that allocation is condensable, for it is only
in that case that a probability mass committed to each of a collection B of
subsets of Ω is necessarily committed to the intersection ∩ B. Indeed, if f is
a belief function on P(Ω) with allocation ρ : P(Ω) → M and allowment ζ :
P(Ω) →M, then the following conditions are all equivalent to the statement
that f is condensable:

(1) ρ(∩B) = ∧B∈B(B) for all B ⊂ P(Ω).
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(2) If B ⊂ P(Ω),M ∈M, and M ct B for each B ∈ B, then M ct ∩ B.
(3) ζ(∪B) = ∨B∈Bζ(B) for all B ⊂ P(Ω).
(4) If ∅ 	= A ⊂ Ω, then there exists a sequence ω1, ω2, · · · of elements of A and

a countable disjoint partition M1,M2, · · · of ζ(A) such that Mi � ζ({ωi})
for each i.

(5) There exists a mapping λ : M → P(Ω) such that an element M of M
and a subset A of Ω satisfy M ct A if and only if λ(M) ⊂ A.

Notice the geometric interpretation of (4) and (5). For each M ∈ M, λ(M)
is the smallest subset of Ω to which all of M is constrained. And (4) demands
sufficient freedom of movement for the probability mass ζ(A) to allow any
diffusion, or “continuous” distribution, to be reversed: it must be possible for
ζ(A) to “condense” into a countable number of discrete probability masses,
each still located within A.

5 The Canonical Extension of Belief Functions

Given a belief function f on a multiplicative subclass E of P(Ω), we define f̄
on P(Ω) by setting

f̄(A) = sup
{
Σ(−1)|I|+1f(∩i∈IAi)|∅ 	= I ⊂ {1, · · · , n}

}
, (6)

where the supremum is taken over all n � 1 and all collections A1, A2, · · ·An
of elements of E that are subsets of A.

Notice that if E is an additive as well as a multiplicative subclass, then (6)
reduces to

f̄(A) = sup {f(B)|B ∈ E ;B ⊂ A} . (7)

In this case we define f̃ and f̂ on P(Ω) by

f̃(A) = sup {limi→∞ f(Ai)|A1 ⊃ A2 ⊃ · · · ∈ E ;∩ Ai ⊂ A} (8)

and
f̂(A) = inf

{
f̄(B)|B ⊂ Ω is cofinite; A ⊂ B

}
. (9)

Theorem 4. Suppose f is a belief function on a multiplicative subclass E of
P(Ω).

(1) f̄ is a belief function, and f = f̄ |E. Furthermore,

f̄ = inf{g|g is a belief function on P(Ω) and g|E = f}.

(2) Suppose E is an additive as well as a multiplicative subclass. Then f is
continuous if and only if

f (∩iAi) = limi→∞ f(Ai) (10)
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for every decreasing sequence A1 ⊃ A2 ⊃ · · · of elements of E such
that ∩iAi ∈ E. If f is continuous, then f̃ is a continuous belief function,
f = f̃ |E, and

f̃ = inf {g|g is a continuous belief function on P(Ω) and g|E = f} .

If f is continuous and E is closed under countable intersections, then
f̃ = f̄ .

(3) Suppose E is an additive as well as a multiplicative subclass. Then f is
condensable if and only if for every A ∈ E and every ε > 0 there exists a
cofinite subset B of Ω such that A ⊂ B and f(C)−f(A) < ε for all C ∈ E
such that A ⊂ C ⊂ B. If f is condensable, then f̂ is a condensable belief
function, f = f̂ |E, and

f̂ = inf {g|g is a condensable belief function on P(Ω) and g|E = f} .

If f is condensable and E is closed under arbitrary unions and intersec-
tions, then f̂ = f̄ .

Proof. Let ρ : E →M be an allocation of probability for f , and let μ denote
the measure on M.

(1) Define ρ̄ : P(Ω) → M by ρ̄(A) = ∨{ρ(B)|B ∈ E ;B ⊂ A}. It is easily
verified that ρ̄ is an allocation and that f̄ = μ ◦ ρ̄; hence f̄ is a belief
function. The other assertions in (1) are then obvious.

(2) It is clear that if f is continuous, then (10) holds. Suppose, on the other
hand, that (10) holds.

For each A ⊂ Ω, define D(A) ⊂M by

D(A) = {∧B∈Bρ (B) |B is a countable subset of E ;∩ B ⊂ A} .

Notice that D(A) is an upward net in M. (If M1 and M2 are the elements
of D(A) corresponding to subsets B1 and B2 of E , then B ≡ {B1 ∪ B2|B1 ∈
B1;B2 ∈ B2} will also be countable subset of E with ∩ B ⊂ A, and the
element of D(A) corresponding to B will majorize both M1 and M2.) Define
ρ̃ : P(Ω) → M by ρ̃(A) = ∨D(A). We will show that ρ̃ is a continuous
allocation, that f̃ = μ ◦ ρ̃, and that ρ̃|E = ρ; the assertions of (2) will then be
obvious.

The relation ρ̃|E = ρ follows from the fact that

ρ (∩B) = ∧B∈Bρ (B)

whenever B ∈ E is countable and ∩ B ∈ E . (See the comment following
Theorem 3.2.) For in the case where B ⊂ E and ∩ B ⊂ A ∈ E , we there-
fore have

∧B∈Bρ (B) � ∧B∈Bρ (A ∪B) = ρ (∩B∈B (A ∪B)) = ρ(A).
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To verify that f̃ = μ ◦ ρ̃, we must notice that for any sequence A1, A2, · · ·
in E there is a decreasing sequence B1, B2, · · · , defined by

Bi = A1 ∩ · · · ∩Ai,

which satisfies both ∩iBi = ∩iAi and ∧iρ(Bi) = ∧ iρ(Ai). Hence

D(A) = {∧iρ (Ai) |A1, A2, · · · ∈ E ;A1 ⊃ A2 ⊃ · · · ;∩iAi ⊂ A} .

And since D(A) is an upward net, it follows that

μ (ρ̃(A))) = μ(∨D(A))
= supM∈D(A) μ(M)

= sup {μ (∧iρ (Ai)) |A1, A2, · · · ∈ E ;A1 ⊃ A2 ⊃ · · · ;∩iAi ⊂ A}
= sup {limi→∞ f(Ai)|A1, A2, · · · ∈ E ;A1 ⊃ A2 ⊃ · · · ;∩iAi ⊂ A}
= f̃(A).

The fact that ρ̃|E = ρ means in particular that ρ̃(∅) = Λ and ρ̃(Ω) = V.
So in order to show that ρ̃ is a continuous allocation, we need only show that
it preserves countable meets; i.e., that

ρ̃ (∩iAi) = ∧iρ̃(Ai),

or

∨D (∩iAi) = ∧ ∨ D (Ai)

for any sequence A1, A2, · · · of subsets of Ω. To this end, we fix the sequence
A1, A2, · · · and simplify our notation by setting D ≡ D(∩iAi),Di ≡ D(Ai)
and M ≡ ∧i ∨Di. Our task is then to show that ∨D = M . And since D ⊂ Di
for each i, the relation ∨D � ∧i ∨ Di = M is immediate, and it remains only
to show that ∨D � M .

Since Di is an upward net, it will include an element that arbitrarily nearly
covers its meet ∨Di. In particular, if ε > 0 then we can choose Mi ∈ Di
such that

μ (∨Di −Mi) � ε

2i
.

(proof. By the countable chain condition, Di has a countable subset Ei such
that ∨Ei = ∨Di. Since Di is an upward net, Ei may be taken as an increasing
sequence, and then the continuity of μ assures that an element sufficiently far
along in this sequence will have measure within ε/2i of the measure of ∨Di.)
Since M � ∨Di, we also have

μ (M −Mi) � ε

2i
.
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Fix ε > 0 and choose such an Mi ∈ Di for each i. And let Bi be a countable
subset of E such that ∩ Bi ⊂ Ai and Mi = ∧B∈Biρ(B). Set Bε = ∪iBi and
Mε = ∧iMi. Then ∩ Bε ⊂ ∩iAi, and

Mε = ∧i(∧B∈Biρ(B)) = ∧B∈Bερ(B);

thus Mε ∈ D, so that Mε � ∨D. Since

μ (M −Mε) = μ (∨i(M −Mi)) � ε

it follows that ∨D includes all but at most ε of M . And since ε is arbitrary,
this yields the conclusion that ∨D � M .

(3) Suppose f is condensable. Then there exists a condensable belief function
g on P(Ω) such that f = g|E . Since g is condensable,

g(A) = inf {g(B)|B ⊂ Ω is cofinite; A ⊂ B} . (11)

(Cf. (3).) It follows that for all A ∈ E and all ε > 0, there exists a cofinite
subset B of Ω such that A ⊂ B and f(C) − f(A) < ε for all C ∈ E such
that A ⊂ C ⊂ B.

Suppose, on the other hand, that the condition of the preceding sentence
is met. Then we define ρ̂ : P(Ω)→ μ by

ρ̂(A) = ∧{ρ̄(B)|B ⊂ Ω in confinite;A ⊂ B} .

It is clear that f̂ = μ◦ρ̂. We will show that ρ̂|E = ρ and that ρ̂ is a condensable
allocation.

Suppose A ∈ E . Clearly ρ̂(A) � ρ(A). In order to show that ρ̂(A) = ρ(A),
we fix ε > 0 and choose a cofinite subset Bε of Ω such that A ⊂ Bε and
f(C)− f(A) < ε/2 for all C ∈ E such that A ⊂ C ⊂ Bε. Then

ρ(A) = ∧{∨{ρ(C)|C ∈ E ;C ⊂ B} |B ⊂ Ω is confinite; A ⊂ B}
= ∧{∨{ρ(C)|C ∈ E ; A ⊂ C ⊂ B} |B ⊂ Ω is confinite; A ⊂ B}
� ∨{ρ(C)|C ∈ E ; A ⊂ C ⊂ Bε} .

Denote this last element of M by Mε. Since {ρ(C)|C ∈ E ;A ⊂ C ⊂ Bε} is
an upward net, we may choose Cε ∈ E such that A ⊂ C ⊂ Bε and μ(Mε) −
f(Cε) = μ(Mε − ρ(Cε)) < ε/2. Since Mε � ρ̂(A) � ρ(A), we have

μ(ρ̂(A))− ρ(A)) � μ(Mε − ρ(A)) = |μ(Mε)− f(A)|
= |μ (Mε)− f (Cε) + f (Cε)− f (A)|

<
ε

2
+
ε

2
= ε.

And since ε may be chosen arbitrarily small, this means μ(ρ̂(A)− ρ(A)) = 0,
or ρ̂(A) = ρ(A). So ρ̂|E = ρ.



194 G. Shafer

The fact that ρ̂|E = ρ means in particular that ρ̂(∅) = Λ and ρ̂(Ω) = V .
So in order to show that ρ̂ is a condensable allocation, we need only show
that it preserves arbitrary meets. Fix a subset B of E . A cofinite subset of Ω
contains ∩ B if and only if it contains some finite intersection of elements of
B, and it does this if and only if it itself is the intersection of a finite number
of cofinite subsets of Ω, each of which contains some element of B. Hence

ρ̂(∩B) = ∧{ρ̄(C)|C ⊂ Ω is cofinite;∩ B ⊂ C}
= ∧{ρ̄(C1 ∩ · · · ∩ Cn)|n � 1;C1, · · · , Cn are

confinite subsets of Ω, each containing some
element of B}

= ∧{ρ̄(C1) ∧ · · · ∧ ρ̄(Cn)|n � 1;C1, · · · , Cn
are confinite subsets of Ω, each containing
some element of B}

= ∧{ρ̄(C)|C ⊂ Ω is confinite; C containing some
element of B}

= ∧B∈Bρ̂(B).

So ρ̂ is a condensable allocation.
Suppose g is a condensable belief function on P(Ω) and g|E = f . Then

g � f̄ by (1), and comparison of (9) and (11) shows that g � f̂ .
Finally, suppose E is closed under arbitrary unions and intersections. Then

a mapping θ : P(Ω) → E may be defined by θ(A) = ∪{B|B ∈ E , B ⊂ A}.
This mapping satisfies f̄ = f ◦ θ and preserves arbitrary intersections. So if B
is a downward net in P(Ω), then {θ(B)|B ∈ B} is a downward net in E . Using
all these facts, together with the condensability of f , we obtain

f̄(∩ B) = f(θ(∩ B)) = f(∩B∈Bθ(B))
= infB∈Bf(θ(B)) = infB∈Bf̄(B)

for any downward net B in P(Ω). Thus f̄ is condensable. It follows that f̄ = f̂ .
The belief function f̄ assigns to each subset of Ω only the degree of belief

that f forces it to assign, and it is therefore the belief function on P(Ω) that
we will adopt if our knowledge about Ω is limited to what f says about E .
(See Chap. 6 of Shafer (1976a) for further discussion.) Hence we may call f̄
the canonical extension of f to P(Ω).

Similarly, let us call a continuous belief function h on P(Ω) the canonical
continuous extension of f to P(Ω) in the case where f is continuous and

h = inf {g|g is a continuous belief function on P(Ω) and g|E = f} .

And let us call a condensable belief function h on P(Ω) the canonical con-
densable extension of f to P(Ω) in the case where f is condensable and
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h = inf {g|g is a condensable belief function on P(Ω) and g|E = f} .

Theorem 4 tells us that canonical continuous and condensable extensions
always exist when E is an additive as well as a multiplicative subclass; it
is an interesting open question whether they always exist when E is merely a
multiplicative subclass.

The notion of canonical extension generalizes to the case of larger multi-
plicative subclasses that fall short of the whole power set; if E1 ⊂ E2 are both
multiplicative subclasses of P(Ω) and f is a belief function on E1, then it is
evident that

f̄ |E2 = inf {g|g is a belief function on E2 and g|E1 = f} ,

and hence we may call f̄ |E2 the canonical extension of f to E2.
Notice that this process of canonical extension is consistent: if E2 ⊂ E3, then

the canonical extension to E3 of f is the canonical extension to E3 of the canonical
extension to E2 of f . If E1 ⊂ E2 and a belief function f on E2 is the canonical
extension to E2 of its restriction f |E1, we say that f is discerned by E1.

It should be pointed out that the “possibilities” in a set Ω can always be
split into more fully described possibilities, so that P(Ω) is rendered merely
a complete subalgebra of a larger power set. (See Chap. 6 of Shafer (1976a).)
Thus power sets must share with all complete algebras any special status
they can claim as domains for belief functions. It is reassuring, therefore,
that the canonical extension of a belief function f from a complete algebra
coincides with the canonical continuous extension if f is continuous and with
the canonical condensable extension if f is condensable.

As the reader may have noticed, the formula for f̃ in Theorem 4 gives the
usual inner measure when applied to a continuous (i.e., countably additive)
probability measure f on an algebra E , and in particular gives the unique
extension of f to a continuous probability measure on the σ-algebra Ẽ gen-
erated by E . But the canonical continuous extension of a continuous belief
function on an algebra E is not in general its only continuous extension, even
to Ẽ . To see that this is true, choose an algebra E ⊂ P(Ω) that contains no
singletons, but such that Ẽ contains all the singletons in P(Ω). (For example,
set Ω = [0, 1) and let E consist of all finite unions of left-closed, right-open
subintervals on Ω.) And let f be the vacuous belief function on E ; i.e., the
belief function that assigns degree of belief zero to every proper subset of Ω
in E . Then the canonical continuous extension of E to Ẽ is simply the vacuous
belief function on Ẽ . But for every ω ∈ Ω, the two-valued belief function on
Ẽ corresponding to the principal filter (Ω,Ω − {ω}) ⊂ Ẽ is also a continuous
extension of f .

The method of defining f̂ will appear familiar to some readers; it is anal-
ogous to Choquet’s method of extending a capacity. It does not appear, how-
ever, that (3) of Theorem 4 can be cast as a special case of Choquet’s results
on the extension of capacities. (See pp. 158–164 of Choquet (1969).)
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If the multiplicative subclass E is not closed under countable intersections,
then we can easily construct a continuous two-valued belief function f on E
such that f̃ 	= f̄ . We simply choose a sequence A1, A2, · · · in E such that
∩iAi 	∈ E and let f be the two-valued belief function corresponding to the
principal filter {A ∈ E|∩iAi ⊂ A}, so that f̄(∩iAi) = 0 but f̃(∩iAi) = 1. If E
is not closed under arbitrary intersections, then one can similarly construct a
condensable two-valued belief function f such that f̂ 	= f̄ .
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