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Epistemic Logics, Probability, and the Calculus
of Evidence

Enrique H. Ruspini

Abstract. This paper, presents results of the application to epistemic logic
structures of the method proposed by Carnap for the development of logical foun-
dations of probability theory. These results, which provide firm conceptual bases
for the Dempster-Shafer calculus of evidence, are derived by exclusively using basic
concepts from probability and modal logic theories, without resorting to any other
theoretical notions or structures.

A form of epistemic logic (equivalent in power to the modal system S5), is
used to define a space of possible worlds or states of affairs. This space, called the
epistemic universe, consists of all possible combined descriptions of the state of the
real world and of the state of knowledge that certain rational agents have about
it. These representations generalize those derived by Carnap, which were confined
exclusively to descriptions of possible states of the real world.

Probabilities defined on certain classes of sets of this universe, representing differ-
ent states of knowledge about the world, have the properties of the major functions
of the Dempster-Shafer calculus of evidence: belief functions and mass assignments.
The importance of these epistemic probabilities lies in their ability to represent the
effect of uncertain evidence in the states of knowledge of rational agents. Further-
more, if an epistemic probability is extended to a probability function defined over
subsets of the epistemic universe that represent true states of the real world, then
any such extension must satisfy the well-known interval bounds derived from the
Dempster-Shafer theory.

Application of this logic-based approach to problems of knowledge integration
results in a general expression, called the additive combination formula, which can
be applied to a wide variety of problems of integration of dependent and indepen-
dent knowledge. Under assumptions of probabilistic independence this formula is
equivalent to Dempster’s rule of combination.

1 Introduction

The research work presented here was motivated by the need to improve the
understanding of issues in the analysis and interpretation of evidence. In the
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context of this paper, the term evidence is used to describe the informa-
tion usually imprecise and uncertain, that is conveyed by observations and
measurements of real-world systems. We have sought to gain such an under-
standing by examining the basic concepts, structures, and ideas relevant to
the characterization of imprecise and uncertain knowledge.

Our approach is strongly based on Carnap’s methodology [1, 2] for the
development of logical foundations of probability theory. In his formulation,
Carnap developed an universe of possible worlds that encompasses all possible
valid states of a real-world system. Information about that system, if precise
and certain, identifies its actual state (e.g., a detailed diagnosis of a disease).
If imprecise but certain, this information identifies a subset of possible system
states (e.g., a number of possible diagnoses). If uncertain, then the information
induces a probability distribution over system states (e.g., probability values
for specific diagnoses).

It is important to note, however, that in Carnap’s characterization no
distinction is drawn between degrees of precision or detail when the infor-
mation is uncertain. This representational shortcoming renders impossible
the modeling of information that only assigns degrees of likelihood values
to some subsets of possible states (i.e., instead of prescribing those val-
ues over all such subsets that are of relevance to the modeler). This type
of information, providing some knowledge about the underlying probability
distributions but not all the distribution values, is quite common in prac-
tical applications (e.g., in a medical diagnosis problem, tests and existing
medical knowledge indicate that there is a 60% chance of liver disease but
fail to provide any information about the likelihood of individual instances
thereof).

Seeking to generalize Carnap’s approach to allow for the treatment of this
type of uncertain information, we directed our attention to epistemic logics–a
form of modal logics developed to deal with problems of representation and
manipulation of the states of knowledge of rational agents. Originally studied
by Hintikka [6], their use in artificial intelligence problems was proposed by
Moore [8]. Recently epistemic logics have also been applied to the design of
intelligent robots [11].

In our extension of the Carnapian ideas the starting point is a general-
ization of Carnap’s space of possible worlds, or universe. This generalization,
obtained by considering representations of both the state of the world and
the knowledge of rational agents, is called the epistemic universe. Described
in the next section, the epistemic universe contains several interesting and
important subset families. Two of these collections have as members truth
sets and support sets, which are related, respectively, to different ontological
and epistemological properties of possible worlds. Furthermore, these families
have the properties of sigma algebras, i.e. the basic domain of definition of
probability functions.

Again followingCarnap’s leadwedefineprobabilities on these sigmaalgebras
and consider their relationships.Wediffer fromCarnap, however, in thatweview
evidence as generallyproviding informationabout the truthof somepropositions
while failing to give any indication about the truth of others. Evidence is further
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regarded as a potential modifier of our state of knowledge; accordingly, uncer-
tain evidence is represented as a conventional probability functiondefined on the
algebra of epistemic sets. This probability is then shown to have the structure
of the basic functions of the Dempster-Shafer calculus of evidence [3, 14]. Fur-
thermore, if such an epistemic probability is extended to the sigma algebra of the
truth sets (representing probabilities of the truth of propositions that describe
the world), then the extension must satisfy the bounds of the Dempster-Shafer
theory. These bounds correspond to the well-known concepts of lower and upper
probability functions and, in this particular regard, our results are in agreement
withthecharacterizationmadebySuppes [15]of theroleofuncertain information
in determining the probability distribution values that underlie rational choices
in decision problems.

Our approach is also related in several ways to the probabilistic logic
approach of Nilsson [10]–the major differences being in the use of epistemic
concepts and the derivation of global conditions for probability extension,
in contrast to formulas derived from interval probability theory or from
approximate-estimation techniques.

In addition, this work has similarities with that of Halpern and McAllester
[5]–the dissimilarities in this case being in the methods used to model uncer-
tainty. It is important to note, however, that Halpern and McAllester repre-
sent likelihood formally as the probability of knowledge (in the epistemic-logic
sense) of propositional truth, using an interpretation that is similar to ours in
several significant respects.

Section 4 deals with the problems associated with the combination of the
knowledge of several mutually trusting agents. Under assumptions that guar-
antee that the integrated knowledge is solely the logical consequence of the
states of knowledge of the agents, several results are presented, including a
general formula for knowledge combination. This additive combination for-
mula may be applied to several knowledge integration problems involving
either dependent or independent evidential bodies. For the latter case, the
corresponding result generalizes the Dempster’s rule of combination.

It is important to emphasize that the results of Sects. 3 and 4, identi-
fying the Dempster-Shafer calculus of evidence with the probability calculus
in the epistemic universe, were derived by the direct application of conven-
tional probability theory concepts without having to introduce other mul-
tivalued logic notions. The insight gained by using an epistemic model as
the basic foundation of the Dempster-Shafer calculus of evidence has made
possible the extension of this evidential formalism by the incorporation of
new formulas for combining dependent evidence and for utilizing conditional
knowledge.

In the exposition that follows, we have not included the proofs of any of the
theoretical results obtained in the research being discussed, as such extensive
discussion is well outside the scope of this paper. The reader interested in the
actual details will find them discussed in a related work [13].
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2 The Epistemic Universe

2.1 The Carnapian Universe

Carnap’s logical approach to probability starts with the construction of a
space of possible worlds that encompasses all valid states of a system of inter-
est. First, all propositions (actually instantiated first-order-Iogic predicates in
Carnap’s formulation) of relevance to the system p, q, r, s, ..., are considered.
All possible conjunctions of the type p∧¬q∧¬r∧s∧ ..., where every proposi-
tion appears only once either as itself or as its negation, are then considered.
After discarding logical impossibilities, the resulting set of logical expressions
includes all possible system states that may be represented using the propo-
sitions p, q, ....

Each such state corresponds to the truth of an atomic proposition about
the system in question. These atomic propositions are equivalent to the ele-
mentary events introduced in most treatments of basic probability theory.
Obviously, by construction, only one such proposition can truly describe the
state of the world. The space of atomic propositions, or universe, is therefore
a collection of all possible alternative states of the system.

Possible worlds can also be regarded as functions that map each relevant
proposition into its truth-value (i.e. true or false) or, alternatively, as subsets
of true propositions (i.e., those mapped into the true truth-value). If a possible
world is viewed through a “conceptual microscope” as illustrated in Fig. 1, it

W

p q -r s -t

Fig. 1. The carnapian universe under the microscope
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can be seen to contain all true propositions in that world, including the nega-
tions of those that are false; Two possible worlds will always be different since
at least one proposition which is true in one of them will be false in the other.

The space of possible worlds (considered as a probabilistic space) is the
basic structure used by Carnap to relate the values of probability functions
of subsets associated with relevant propositions on the basis of the logical
relationships between those propositions.

2.2 Epistemic Considerations

Carnap’s logical approach, while enabling a clearer understanding of the
relations between logical and probabilistic concepts, suffers from a major
handicap: it assumes that observations of the real world always determine
unambiguously probability values for every subset in the universe. This
assumption leads inevitably to problems associated with the need to define
probability values when the underlying information is not rich enough to fur-
nish them.

If, for example, we have certain (i.e., sure) information that a guest to a
party we are hosting is fond of French wine, we would ordinarily consider, in
a nonprobabilistic setting, that this information constrains our spectrum of
beverage choices (assuming, of course, that we aim to please our guest and are
able to do so) without identifying what particular label or vintage he is likely
to prefer. If, instead of being sure, our informant is uncertain and believes
there is an 80% chance that our caller will like French wine and a 20% chance
that he will opt for beer, it is unreasonable (simply because uncertainty has
now entered the picture) to assume that this information can be used to assign
probabilities for particular choices of wine or beer when before, in a world of
certainty, we regarded similar information as being only capable of identifying
a subset of possibilities.

These considerations have led to the development of schemes to represent
uncertain information as constraints on the values of valid probability dis-
tributions. Interval probability theories [16], of which the Dempster-Shafer
calculus is a particular case, are important examples of this technique.

The approach we have followed here, however, proceeds from a different
logical foundation. Starting from the notion that certain information improves
our knowledge by reducing the scope of possible valid states, it considers that
uncertain information is associated with a probability function defined on
some subsets (actually, a sigma algebra) of the universe, rather than on every
subset of the universe. While in the case of certain information we say that
we know that the system state is in a subset of possible states, in the case
of uncertain information we similarly affirm, with some degree of likelihood,
that state is in certain region of the universe. The corresponding probability
values constrain the values of other probability functions defined over richer
subset collections (i.e., probability extensions).
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To identify a model that constitutes the basis for defining probabilities that
take values over epistemic structure, we must look at abstract formalisms
that allow proper differentiation between states of the world and states of
knowledge. This framework is provided by epistemic logics.

2.3 Epistemic Logics and Epistemic Universes

The starting point for our generalization of the Carnapian universe is
again a collection of propositions about the real world, denoted by p, q, r, s,...
We consider, in addition, more complex propositions obtained therefrom by
negation, conjunction, and disjunction. The resulting set of propositions is
called a frame of discernment. Each of its members, describing a state of the
world, is called an objective proposition or objective sentence.

In addition to objective sentences, we shall also deal with propositions that
represent states of knowledge about the real world. When only one rational
agent is concerned, the simplest of these epistemic propositions are denoted
by Kp,Kq,Kr, ..., representing knowledge of their corresponding objective
counterparts. We shall also consider expressions formed by combination of
epistemic and objective propositions through disjunction, conjunction, impli-
cation, and negation, as in the examples ¬Kr, or p∨K(q∨Ks). The set of all
such propositions, which encompasses the frame of discernment as a subset,
is called the sentence space, denoted by S. .

The next step in constructing an extension of the Carnapian universe
is the generation of all possible states by the assignment of truth-values to
propositions in the sentence space. In addition to compliance with the axioms
of ordinary propositional logic, we shall also need the following axioms, which
supply the unary operator K with the required epistemilogical semantics:

E1 If Kp is true, then p is true.
E2 If Kp is true, then KKp is true (positive introspection).
E3 If K(p− > q) is true, then Kp→ Kq is also true.
E4 If ¬Kp is true, then K¬Kp is true (negative introspection).
E5 If p is an axiom, then Kp is an axiom.

This system is equivalent to the modal logic system S5 [7].
The space of possible worlds generated on the basis of the above schemata

is called the epistemic universe and is denoted by U(S). When seen through
our imaginary conceptual microscope, as shown in Fig. 2, each possible world
includes, as before, all objective propositions that are true in that world. Each
possible world, however, includes also all true epistemic propositions repre-
senting knowledge of the truth (e.g., Kp) or falsehood (K¬p) of propositions
and, in addition, propositions describing ignorance regarding the truth or
falsehood of certain propositions (e.g., ¬Kp ∧ ¬K¬p).

It is important to note that, in the epistemic universe, possible worlds may
share the same set of true objective propositions, even though the states of
knowledge (i.e., true epistemic propositions) will be different in each case.
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Fig. 2. The epistemic universe under the microscope

In the remainder of this work we will require to employ two important
relations.

The first, called logical implication and denoted by =⇒, holds between
propositions in sentence space. This relation, well known in modal logic, is
used to indicate the fact that in any possible world the truth of some propo-
sition implies that of another. In other words, if p =⇒ q, then it is logically
impossible for q to be false if p is true.

The second relation, called the accessibility relation and denoted by ∼,
holds between possible worlds in the epistemic universe. Two possible worlds
are related through the accessibility relation if the same epistemic proposi-
tions are true in both worlds. Clearly, such world pairs cannot be discrim-
inated on the basis of the information (i.e. knowledge) available in each of
them.

2.4 Special Sets in the Epistemic Universe

Several subsets of the epistemic universe are of importance in the definition
of probability functions that adequately represent the effects of uncertain
evidence in knowledge states.

The subset of all possible worlds where an objective proposition p is known
to be true, i.e. in which the epistemic sentence Kp is true, is called the support
set of p and is denoted by k(p).
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The epistemic set for an objective proposition p is the set of all possible
worlds in which p is the most specific proposition that is known to be true
(i.e., p is the conjunction of all objective propositions q such that Kq is true).
The epistemic set e(p) consists of possible worlds where Kq is true if and only
if q is logically implied by p, i.e., p =⇒ q. Pairs of possible worlds in the same
epistemic set are always related by the accessibility relation ∼.

Epistemic sets and support sets are related by the set equation

k(p) = ∪
q=⇒p

e(q) (1)

which is of essential importance to establish the relationship between epistemic
constructs and the Dempster-Shafer calculus. Epistemic sets corresponding to
different propositions (i.e., those that are not logically equivalent, denoted sim-
ply by 	= in this work) are disjoint. The above expression, therefore, represents
the disjoint partition of support sets in terms of epistemic sets. Furthermore
it can be proved that

e(p) = k(p) ∩
⋃

q=⇒p
q �=p

[k(q)] (2)

Finally, truth sets are important subsets of the epistemic universe that are
directly related to the truth of objective, rather than epistemic, propositions.
The truth set t(p) for an objective proposition p is the collection of all possible
worlds where the proposition p is true.

Since p is true in a possible world W whenever Kp is true in W , then it
follows that the support set k(p) is a subset of the truth set t(p). It is also
true that k(p) is the largest support set contained in t(p).

The inclusion relations between truth, support and epistemic sets are
graphically illustrated in Fig. 3. This figure shows the truth set t(p) for a
proposition p; its corresponding support set k(p); and the epistemic sets for
several propositions which imply p (including the epistemic set for p itself).
As noted before, epistemic sets e(q) for propositions q that do not imply p are
disjoint from the support set k(p) and intersect the complement t(p) of the
truth-set t(p).

t (p)

e (p)

e (r)

e (s)

e (q)

k (p)

Fig. 3. Relations between epistemic, support, and truth sets
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3 Epistemic Probabilities

3.1 Sigma Algebras

The collections of subsets defined in the previous section are of particular
importance in a number of respects.

First, epistemic and support sets have a clear epistemological interpre-
tation as representations of similar states of certain (i.e., sure) knowledge.
Furthermore, the effect of uncertain information on states of knowledge can
be represented by probability values assigned to these sets.

Truth sets, on the other hand, represent states of the world that share
some ontological property. Probability values assigned to these sets represent
the likelihood of certain events in the real world, namely, the truth of the
proposition associated with the truth set. Because of the relations between
knowledge and truth embodied in the axiom schema (E), these probability
values can be expected to bear some relation, however, to probability values
over support and epistemic sets. This relationship is discussed below.

Truth sets, on one hand, and epistemic and support sets, on the other,
generate (by union, intersection, and complementation) sigma algebras of the
epistemic universe, called the truth algebra and the epistemic algebra, respec-
tively. Sigma algebras are the proper domain of definition for probability func-
tions. This fact has often been ignored in the past when, usually for the sake
of simplicity, probabilities have been assumed to be defined on every subset of
some space. Consideration of the proper domain of definition for probabilities
is, however, a most important issue in probability theory (e.g., when relating
joint and marginal distributions).

3.2 Probabilities, Supports and Masses

A probability function defined over the sigma algebra of support and epistemic
sets is called an epistemic probability. Epistemic probabilities represent the
effect of uncertain evidence on a rational agent’s state of knowledge. This
effect can always be represented without ambiguity as the result of either
previous experience or rational considerations. Under conditions of perfect
probabilistic information (in conventional approaches this is assumed to be
always available) the corresponding probability is defined for each atomic
proposition. At the opposite end, the vacuous epistemic probability function
assigns a probability of 1 to the epistemic set e(U) and a probability of 0 to
every other subset (i.e., the evidence does not convey any information).

Two functions, both defined in the frame of discernment, can be associated
in a natural manner with an epistemic probability.

The first of these, called a mass function and denoted by m, is defined by
the expression

m(p) = P (e(p)), (3)
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i.e., as the probability of the epistemic set associated with the objective propo-
sition p.

The second function is called the support function and is denoted by S. It
is defined by the expression

S(p) = P (k(p)). (4)

Support functions and mass functions are related by the equation

S(p) =
∑
q=⇒p

m(q), (5)

which is valid for every objective proposition p in the frame of discernment.
From this basic equation, by using results from combinatorial theory [4], it is
possible to show that S and m are belief and mass functions, respectively, in
the sense of Shafer [14].

In particular, it may be seen that m is expressed in terms of values of the
support function S by the equation

m(p) =
∑
q=⇒p

(−1)|p−q|S(q), (6)

where |p− q| is the number of different (i.e., not logically equivalent) propo-
sitions r such that q =⇒ r =⇒ p, and where the sum is over all propositions
q that imply p.

Furthermore, the following inequality, utilized by Shafer as an axiom for
belief functions, can be derived as a necessary and sufficient condition char-
acterizing support functions:

S(p1 ∨ ... ∨ pn) ≥
∑

I⊆{1,...,n}
I �=φ

(−1)|I|+1S(
∧
i∈I

pi) (7)

where |I| is the cardinality of the index subset I.
It is important to emphasize that the epistemic probability P associated

with mass and support functions is a conventional probability defined on the
epistemic algebra of the epistemic universe.

3.3 Lower and Upper Probabilities

Since both truth sets and epistemic sets are subsets of the epistemic universe,
it is reasonable to ask what kind of relations exists between the probabil-
ity values of members of either class. Answers to this question are obtained
by considering the problems associated with the extension of an epistemic
probability to a probability function defined over the truth algebra.

The problem of probability extension has received a great deal of attention
in probability theory (see, for example, [9]). The standard procedure for its
solution is to define lower and upper probabilities for sets not included in the
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domain of definition (i.e., sigma algebra) of the probability function being
extended.

The lower probability of a set X is the probability of the largest subset of
the sigma algebra (i.e., where the probability is actually defined) contained
in X . Similarly, the upper probability of X is the probability of the smallest
measurable subset that contains X .

If P∗ and P ∗ denote the lower and upper probability functions, respec-
tively, then well-known results of probability theory state that probability
extensions P always exist and that the value P (X) satisfies the inequality
constraints

P∗(X) ≤ P (X) ≤ P ∗(X) (8)

In addition, the bounds provided by P∗ and P ∗ may always be attained
by some extension and are therefore the best possible.

If these basic theoretical results are applied to the epistemic universe, it
can be seen that the value P (t(p)) of any epistemic probability extension P
on the truth set t(p) must satisfy the inequality

S(p) ≤ P (t(p)) ≤ Pl(p) (9)

where Pl is the plausibility function of Shafer, defined by

Pl(p) = 1− S(¬p) = P (k(¬p)) (10)

These basic results confirms the validity of the welI-known interval bounds
of the Dempster-Shafer calculus.

Furthermore, lower and upper probabilities provide a general methodol-
ogy to assess the impact of evidence upon understanding of the real-world
state. The basic approach, according to these results, consists of representing
knowledge as probabilities in an appropriate epistemic algebra, followed by
estimation of the values of the lower and upper probabilities of truth sets.

4 Combination of Knowledge

This section briefly describes the results of investigations concerning the com-
bination of the uncertain knowledge of several rational agents. For the sake
of simplicity the results presented here are confined to problems involving
the combination of the knowledge of two agents (Extensions to an arbitrary
number of agents being straightforward).

Each of these two agents is assumed to have obtained information about
the state of the world through observation devices that may possibly be depen-
dent or correlated to some degree.

Construction of the epistemic universe that includes both the possible
states of knowledge of the two agents, as well as the results of their integration
requires the introduction of three unary operators:K1 andK2 representing the
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knowledge of each agent, and the unsubscripted operatorK, describing results
of knowledge combination. It is assumed that neither agent has information
about the extent or nature of the information available to the other (i.e.,
propositions such as K1K2p are always false), and that each agent’s domain
of knowledge (i.e., the sentence spaces S1 and S2 and their related frames of
discernment) may be different.

Since the operator K describes the results of integrating the knowledge
of two agents, it is necessary to introduce an axiom that assures that the
combined knowledge is solely a function of the states of knowledge being
fused:

CK1 The proposition Kp is true if and only if there exist propositions p1 and
p2 such that K1p1 and K2p2 are true and p1 ∧ p2 =⇒ p

The epistemic universe constructed with this augmented framework is
called a logical product universe. In this universe it is possible, as before,
to define epistemic, support, and truth sets. However, since three epistemic
operators are involved, these sets must be distinguished by subscripts that
identify the respective knowledge sources.

If e(p), e1(p), e2(p), denote the epistemic sets for the proposition p that
are associated with the epistemic operators K, K1 and K2, respectively, then
the basic set equation that relates these sets is

e(p) =
⋃

p1∧p2=p
[e1(p1) ∩ e2(p2)] (11)

where the union is over propositions p1 and p2 (in the respective domains
of knowledge of K1 and K2) such that the conjunction p1 ∧ p2 is logically
equivalent to p.

If P is an epistemic probability in the logical universe, the above set equa-
tion may be combined with basic probability results relating marginal and
joint probability distributions to derive the following general expression for
knowledge combination, called the additive combination formula:

m(p) = k
∑

p1∧p2=p
P (e1(p1) ∩ e2(p2)) (12)

where k is a constant that makes
∑

m(p) = 1.
Under assumptions of independence of the (marginal) epistemic algebras

for K1 and K2, the above formula becomes a generalization of the Dempster’s
rule of combination:

m(p) = k
∑

p1∧p2
m1(p1)m2(p2). (13)

Simple cases of combination of dependent evidence, such as those governed
by compatibility relations, may also be derived directly from the additive
combination formula, as we have discussed elsewhere [13].
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In more general cases, the corresponding expressions must combine the
knowledge of the two agents (expressed by the additive combination formula)
with knowledge about the dependence relations between the two evidential
bodies. The latter information is typically modeled as probabilities defined on
a subalgebra of the epistemic algebra.

5 Conclusion

This paper has presented results that closely relate probability functions in
epistemic universes to the concepts and constructs of the Dempster-Shafer
calculus of evidence. The epistemic structures presented above also furnish
important insight that is very useful to enhance the calculus of evidence by
the development of expressions that allow for different types of dependent
evidence to be combined. These expressions are the current object of our
investigations, which focus particularly on the problems of combining multiple
evidential bodies that share common information.

In addition, we are also concerned with problems related to the use of
conditional evidence (i.e., evidence that is valid only when some proposition
is true). This research expands upon and enhances our previous results in this
area [12].

Our long term objectives include the treatment of problems involving
combination of the knowledge of multiple agents that are aware, to differ-
ent extents, of the information available to one another. The corresponding
issues are of central importance in the design of distributed artificial intelli-
gence systems with planning and counterplanning capabilities.
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