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A Set-Theoretic View of Belief Functions

Logical Operations and Approximations by Fuzzy Sets∗

Didier Dubois and Henri Prade

Abstract. A body of evidence in the sense of Shafer can be viewed as an extension
of a probability measure, but as a generalized set as well. In this paper we adopt the
second point of view and study the algebraic structure of bodies of evidence on a set,
based on extended set union, intersection and complementation. Several notions of
inclusion are exhibited and compared to each other. Inclusion is used to compare a
body of evidence to the product of its projections. Lastly, approximations of a body
of evidence under the form of fuzzy sets are derived, in order to squeeze plausibility
values between two grades of possibility. Through all the paper, it is pointed out that
a body of evidence can account for conjunctive as well as a disjunctive information,
i.e. the focal elements can be viewed either as sets of actual values or as restrictions
on the (unique) value of a variable.

Key words: Theory of evidence, Possibility measure, Fuzzy set, Knowledge
representation

Introduction

The framework of plausibility and credibility (or belief) functions[24] or,
equivalently that of the random sets[19] encompasses both probability the-
ory and possibility theory[7, 38]. It is now acknowledged that fuzzy sets[35]
viewed as possibility distributions, are, using Shafer’s terminology, contour
functions of consonant belief functions[4, 17] or in the terminology of ran-
dom sets, one-point coverages of random sets[13, 22, 28]. In a recent paper[25]
Shafer carefully examines the rules of calculation of fuzzy sets and possibil-
ity measures as opposed to their counterparts for belief functions. It turns
out that the main difference lies in the use of Dempster rule for combining
belief functions versus fuzzy set-intersection for combining possibility mea-
sures. Dempster rule applied to the combination of possibility measures does
∗ This paper is based on a presentation at the 1st IFSA Conference, held in Palma

de Mallorca, Spain, July 1–6, 1985.
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not yield a possibility measure while a fuzzy set-intersection does. This paper
is a contribution to the debate between possibility measures and belief func-
tions. First, combination rules for belief functions in the spirit of Dempster
rule are described; they are counterparts of fuzzy set-theoretic union, comple-
mentation, products and projection. This set-theoretic view of belief functions
points out the fundamental identity of both approaches to combining. Next,
an extensive study of the concept of inclusion of bodies of evidence is carried
out. Four definitions are proposed and compared. The existence of two antag-
onistic points of view on bodies of evidence is stressed and it brings some
light to discriminate between definitions of inclusion. The following section is
devoted to projections and products of belief functions, and the links between
a body of evidence and the product of its projections. Lastly the problem of
approximating belief functions by consonant bodies of evidence is considered,
and best approximations, which squeeze a plausibility measure between two
possibility measures, are calculated.

1 Shafer’s Theory of Evidence Revisited

In this section, basic notions are introduced in a concise manner. It borrows
from several already published works [4, 24, 25, 38] to which the reader is
referred for proofs or detailed explanations. However some new issues are
raised, especially the convexity of the set of belief functions and the difference
between conjunctive and disjunctive items of information. This last point
follows some early remarks by Zadeh[37] and a more elaborated discussion by
Yager[31] in the framework of fuzzy sets and linguistic variables. Moreover,
the allocation of a probability weight on the empty set is no longer forbidden.

1.1 Uncertainty Measures Induced by a Body of Evidence

According to Shafer[24], a body of evidence is modelled by a weighted set of
logical statements, each referring to a subset A of a frame of discernment Ω.
This frame of discernment corresponds to a point of view on a problem, and
contains the possible values of some variable x. A body of evidence supplies
information about the actual value of x (which is some element in Ω), with
the following conventions, given here in a finite setting for simplicity. Let F
be a family of subsets of Ω. A body of evidence is viewed as a pair (F ,m)
where m is a mapping from 2Ω to the unit interval such that m(A) > 0 if and
only if A ∈ F . Any element of A of F is called a focal element, because part
of the available information focuses on A. m(A) is the relative weight of the
statement “x ∈ A”, and is viewed as the share of total belief committed to this
statement exactly, and not to any other statement of the form “x ∈ B ⊂ A”.
m is called a basic assignment and satisfies the following requirement

∑

A⊆Ω

m(A) = 1 (1)
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where 1 stands for the amount of total belief. The set of bodies of evidence
on Ω is denoted as B(Ω). In Shafer’s book a basic assignment satisfies the
additional condition

m(∅) = 0 (2)

which claims that no belief should be committed to the impossible event. (2)
is a normalization condition which looks reasonable if the statement “x ∈ Ω”
is taken for granted. However in some instances one may be uncertain as to
whether Ω is definitely exhaustive, or whether assigning a value to x is ever
meaningful. For instance, if x is the age of cars belonging to some population
where some individuals may have no cars (Zadeh[42]). Such situations can
be conveniently handled by letting m(∅) > 0. See also Dubois and Prade[4],
Yager[29], Zadeh[41, 42] for further discussions. A body of evidence satisfying
(2) is said to be normal.

Viewed as an allocation of probability over subsets of Ω, a body of evidence
is also a random set[19]. However it can be equivalently represented by one of
the following set-functions

∀ A ⊆ Ω, Cr(A) =
∑

∅ �=B⊆A
m(B), (3)

∀ A ⊆ Ω, Pl(A) =
∑

B∩A �=∅

m(B), (4)

∀ A ⊆ Ω, Q(A) =
∑

A⊆B
m(B). (5)

Cr is called a belief function by Shafer[24], but we had rather call it a
credibility measure since Cr(A) gathers the pieces of evidence which support
A. Pl is called a plausibility measure since Pl(A) gathers the pieces of evidence
which make the occurrence of A possible. Pl and Cr are related through the
duality relation

∀ A, Pl (A) + Cr
(
Ā
)

= 1−m (∅) (6)

i.e. Pl(A) accounts for evidence which does not support the opposite event
Ā nor events “outside Ω” (i.e. ∅). Q is called a commonality function by
Shafer[24] and gathers pieces of evidence supported by event A. So far, its
usefulness has been purely technical. Note that

Pl (∅) = Cr (∅) = 0; Q(∅) = 1 (7)
Pl (Ω) = Cr (Ω) = 1−m (∅) ; Q (Ω) = m (Ω) . (8)

When m(∅) = 0, Shafer[24] has proved that Cr is order-n superadditive
∀ n ∈ N. This property still holds when m(∅) > 0, for Cr +m(∅), hence for
Cr too. Then the basic assignment is still expressed in terms of the credibility
measures as

∀ A,m (A) =
∑

B⊆A
(−1)[A−B] (Cr(B) +m(∅)) =

∑

B⊆A
(−1)|A−B|Cr(B) (9)
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where |A−B| is the cardinality of the set-difference A−B. See Shafer[24] for
other inversion formulae (Pl in terms of Q, etc.. . .). Pl and Cr are monotonic
increasing with respect to set-inclusion, while Q is monotonic decreasing. As
a consequence of (6), Pl is subadditive, which reads at order n:

Pl (A1 ∩A2 . . . ∩An) �
∑

I ⊆ {1, . . . , n}
I 	= ∅

(−1)|I|+1 Pl

(
⋃

i∈I
Ai

)
. (10)

The set of plausibility measures on Ω is isomorphic to B(Ω) and has an
interesting structure. Namely it is a convex set since the convex combina-
tion

∑n
i=1 αi · Pli of subadditive functions Pli is subadditive too. The coef-

ficients αi are such that
∑n
i=1 αi = 1, αi � 0, ∀ i. The plausibility measure

Pl =
∑n
i=1 αi · Pli is called a mixture. Let (Fi,m) be the body of evidence

associated with Pli. Then, that associated with Pl is (F ,m) such that

F =
⋃

i=1,n

Fi; ∀ A ⊆ Ω,m (A) =
n∑

i=1

αimi (A) .

The same remark holds for credibility measures. Let B+(Ω) be the set of
normal bodies of evidence. Clearly B+(Ω) is a convex subset of B(Ω).

1.2 Possibility, Necessity, Probability

Two extreme cases of plausibility measures can be obtained by adding con-
straints on the set of focal elements.

a) F contains only singletons, i.e. ∀ A ∈ F , ∃ ω ∈ A, A = {ω}. This occurs
if and only if Cr = Pl and is a probability measure P. m is a probability
assignment in the usual sense (P ({ω}) = m({ω})).
The set functions Pl and Cr can be viewed as upper and lower probabilities

(Dempster[1]) since any probability measure P generated from (F ,m) by the
following allocation procedure

i) ∀ A ∈ F choose ωA ∈ A
ii) set P ({ω}) =

∑
ωA=ω

m(A), ∀ ω ∈ Ω

satisfies the following inequalities:

∀ A,Cr(A) � P (A) � Pl (A) (11)

when (F ,m) is normal.
Dempster[1] has proved that the set of probability measures satisfying (11)

is convex and is the convex closure of the set of probability measures obtained
by the procedure (i)–(ii).
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b) F contains only a nested sequence of subsets E1 ⊆ E2 . . . ⊆ Ep. It occurs
if and only if ∀ A,B ⊆ Ω

Cr (A ∩B) = min (Cr (A) ,Cr (B)) (12)
Pl (A ∪B) = min (Pl (A) ,Pl (B)) . (13)

Cr is called a consonant belief function by Shafer[24] and Pl a possibility
measure by Zadeh[38]. A possibility measure is denoted Π, and the duality
relationship (6) justifies the name of “necessity measure”[2] for consonant
belief functions. They are also called certainty measures by Zadeh[40], and
shall be denoted N in the following.

The set π(Ω) of possibility measures is not convex. Indeed if F and F ′ both
define nested sequences, then generally F ∪ F ′ does not, so that αΠ + (1 −
α)Π′ is not always a possibility measure. A possibility measure Π such that
∀ A,Π(A) ∈ {0, 1} is called a crisp possibility measure. Any crisp possibility
measure derives from a unique focal element which is a subset E of Ω, i.e. (F =
{E}).

These two extreme cases of bodies of evidence correspond to precise but
scattered pieces of uncertain information (Case (a)) and imprecise but conso-
nant pieces of information (Case (b)). The nature of the relevant uncertainty
measure (possibility or probability) is dictated by the structure of the avail-
able body of evidence. Generally a body of evidence is neither consonant
nor precise. A body of evidence (F ,m) is said to be consistent if and only
if

⋂
A∈F A 	= ∅. This condition is weaker than the consonant constraint of

nested focal elements, but still expresses some agreement between the various
statements which form the body of evidence.

The following result indicates that in some sense probability measures and
possibility measures are the basic concepts in the theory of evidence:

Proposition 1. Any plausibility measure other than a possibility or a proba-
bility measure is a convex combination of a probability measure and possibility
measures which are not Dirac functions.

Proof. For any subset A of Ω, denote ΠA the possibility measure such that
{A} is its set of focal elements. Let Pl be a plausibility measure. Then (4)
also reads

Pl (A) =
∑

B⊆Ω

m (B) ·ΠB (A) .

Now if B is a singleton, then ΠB is a Dirac function, so that the plausibility
measure defined by

P (A) =

∑
|B|=1

m (B) · ΠB (A)

∑
|B|=1

m (B)

is a probability measure when it exists. Q.E.D.
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As a consequence, if we identify the set of crisp possibility measures with
2Ω, the set of subsets of Ω, through the bijection A "→ ΠA such that m(A) = 1,
the set B(Ω) can be viewed as the convex hull of 2Ω, while the set P(Ω) of
probability measures is the convex hull of the subset of singletons of Ω.

1.3 Possibility Measures as Fuzzy Sets

A possibility or a probability measure is entirely characterized by the set
{Pl({ω})|ω ∈ Ω}; Pl({ω}) is the one-point coverage function, in terms of
random sets[13] and is called a contour function by Shafer[24]. In the case of
probability measures, Pl({ω}) = P ({ω}) and ∀ A, Pl(A) =

∑
ω∈A Pl({ω}).

In case of a possibility measure

Π (A) = max
ω∈A

Π({ω}) ; N(A) = min
ω∈Ā

1−Π({ω}) . (14)

When Π(Ω) = 1, we have maxω∈Ω Π({ω}) = 1.
In the following, Ω = {ω1, . . . , ωn} has n elements, P ({ωi}) is denoted pi,

and Π({ωi}) is denoted πi, for the sake of simplicity. When Π has values only
in {0,1}, the function μF : Ω "→ [0, 1] defined by

μF (ωi) = πi (15)

is the characteristic function of a set. In the general case it is the membership
function of a fuzzy set[35] F .

Let Fα={ω|μF (ω) � α} be the α-cut of F . When Ω is finite the set {Fα|α∈
[0, 1]} of α-cuts is finite, and it is proved[4] that it is the set of focal elements of
the possibility measure such that μF (ω) = Π({ω}). More specifically assume
π1 = 1 � π2 � · · · � πn � πn+1 = 0 and let Ai = {ω1, . . . , ωi}. Then the
basic assignment m is defined in terms of the πi’s by:[4]

{
m(A) = 0 if 	 ∃ i : A = Ai

m (Ai) = πi − πi+1

. (16)

In the general case, Pl({ω}) may still be interpreted as the membership
grade of ω in a fuzzy set F . However the knowledge of {Pl({ω})|ω ∈ Ω} is not
enough to recover the body of evidence (F ,m). Moreover F is not always a
normalized fuzzy set. Namely, even if (F ,m) is normal,

∃ ω : Pl ({ω}) = 1 if and only if (F ,m) is consistent.

Moreover when Pl is a probability measure, it rather corresponds to the idea of
a fuzzy point,[16] since the grade of complete membership (1) is shared among
the singletons in that case. The characterization of plausibility measures Pl
such that ∀ ω, Pl({ω}) = μF (ω), given μF , is done by Goodman[13] in the
setting of random sets.
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1.4 Disjunctive versus Conjunctive Evidence

In the preceding paragraphs, a set is viewed as restricting the possible values
of a variable x, and these values are supposedly mutually exclusive. Similarly
fuzzy sets are viewed as fuzzy restrictions[36]. There is another view of sets,
as containing values which are actually taken by x. This point of view is
considered by Yager[31] in terms of linguistic variables and by Prade and
Testemale[21] in the framework of fuzzy relational databases. In the first case
variables are single-valued and the body of evidence is said to be disjunctive.
In the second case, variables are multiple-valued, and the body of evidence
is said to be conjunctive. The difference between conjunctive and disjunctive
fuzzy sets has been pointed out by Zadeh[37].

Example 1. “John is tall ” means that John’s height is some number restricted
by the fuzzy set “tall”.

“John stayed in Paris from 1980 to 1984” means that {1980, 1981, 1982,
1983, 1984} is a set of years when John actually stayed in Paris.

In the case of conjunctive knowledge, ∀ B ⊆ A, if “x = A” is true then
“x = B” is also true, so that the entailment principle[39] works backwards
(Yager[31]). As a consequence, the quantity Q(A), i.e. the commonality num-
ber, defined by (5), is the actual grade of credibility of “x = A” in the case
of a conjunctive body of evidence, instead of Cr(A), as pointed out by Zadeh.
Notice that, for singletons the identity

Q ({ω}) = Pl ({ω}) (17)

holds, and moreover if F is consonant then, equivalently

∀ A,B,Q (A ∪B) = min (Q (A) , Q (B)) . (18)

In the consonant case, {Q({ω})|ω ∈ Ω} also characterizes the body of
evidence and

∀ A,Q (A) = min
ω∈A

Q ({ω}) . (19)

In the conjunctive context, the membership function μF defined by (15)
is no longer viewed as a possibility distribution, but what could be termed
as a “necessity” or “certainty” distribution since μF (ωi) = Q({ωi}) is now
the grade of certainty that ωi is a value of x. The grade of possibility is then
defined by

φ (A) = 1−Q
(
Ā
)

= max
ω �∈A

1− μF (ω) . (20)

Note that when F is such that there are at least two elements ω′ and ω′′ such
that μF (ω′) = μF (ω′′) = 0, then ∀ ω, φ({ω}) = 1. Indeed μF (ω) = 0 does
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not forbid ω as a value of x but only let this statement be contingent (total
uncertainty). In other words “x = A” means that x takes at least all values
in A. Lastly note that from (19) and (20)

φ (A) = ΠF̄

(
Ā
)
, Q (A) = 1−ΠF̄ (A) = NF̄

(
Ā
)

(21)

where ΠF̄ is the possibility measure where the underlying possibility distri-
bution is the membership function of the complement F̄ of F , i.e. 1− μF .

The notion of conjunctive versus disjunctive types of information seems to
be an important issue in knowledge representation, and is encountered in the
next section, as a by-product.

2 Set-Theoretic Operations on Bodies of Evidence

Dempster[1] has introduced a rule of combination for two disjunctive nor-
malized bodies of evidence (F1,m1), (F2,m2), consistently with Bayes rule of
conditioning. It reads:

∀ A ⊆ Ω, (m1 ∩m2) (A) =
∑

B∩C=A

m1 (B) ·m2 (C) (22)

∀ A ⊆ Ω,m (A) =
(m1 ∩m2) (A)

1− ({m1 ∩m2}) ∅
. (23)

Equation (22) can be justified in statistical terms on the basis of the inde-
pendence of the sources which provide (F1,m1) and (F2,m2). Equation (23)
underlies a complete reliability of these sources, and is a normalization tech-
nique. The term (m1 ∩m2)(∅) reflects the amount of dissonance between the
sources, and is eliminated. Equation (22) can be viewed as performing the
intersection of independent random sets[4, 13].

Contrastedly, if Π1 and Π2 are two possibility measures, with possibility
distributions π1 = μF1

, π2 = μF2
, a possibility measure Π12 can be obtained

from the possibility distribution π12 = μF1∩F2
where the fuzzy set-theoretic

intersection is defined by a triangular norm[8, 23]:

π12 = π1 ∗ π2. (24)

The main candidates for ∗ are a∗b = min(a, b); a ·b; max(0, a+b−1).[2, 8]
Assuming the complete reliability of the sources leads to normalize π12 into

∀ ω, π (ω) =
π1 (ω) ∗ π2 (ω)

max
ω∈Ω

π1 (ω) ∗ π2 (ω)
. (25)

(24) and (25) are possibilistic counterparts of (22) and (23) respectively.
It was pointed[4] that if Π1 and Π2 are combined via (22) what is obtained

is generally not a possibility measure. This is because when F1 and F2 are
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consonant, the set F1∩2 = {A∩B|A ∈ F1, B ∈ F2} is generally not consonant.
Besides, using (22) yields a not necessarily normalized plausibility function
Pl12 where[4]:

Pl12 ({ω}) = π1 (ω) · π2 (ω) (26)

which is a particular instance of (24) where ∗ is the product. Hence Dempster
rule is closely related to a fuzzy set intersection. But generally

Pl12 (A) � Π12 (A) = max
ω∈A

π1 (ω) · π2 (ω) (27)

i.e. Π12 is more informative than Pl12.
The set of combination operations for fuzzy sets is richer than for bod-

ies of evidence since all connectives of propositional logic can be extended
to the combination of fuzzy sets and this extension is not unique. Strangely
enough counterparts of set-union, set-complementation, etc.. . .have not been
considered for bodies of evidence, but in the mathematical literature of ran-
dom sets[12, 14].

In the following, these connectives are defined at an elementary level1, thus
casting Dempster rule in a set-theoretic framework, and enriching the set of
combination rules. This view of plausibility measures reflects the standpoint of
logic and contrasts with the measure-theoretic view which Dempster had when
he introduced his concept of upper and lower probabilities and expectations.

2.1 The Union of Bodies of Evidence

The union of two bodies of evidence (F1,m1) and (F2,m2) on Ω is defined,
in the spirit of (22)–(23) by the basic assignment m1 ∪m2 such that

∀ A ⊆ Ω, (m1 ∪m2) (A) =
∑

B∪C=A

m1 (B) ·m2 (C) . (28)

Note that (28) is (22) where ∩ is changed into ∪. While the intersection of
two bodies of evidence only keeps the items of information asserted by both
sources, the union does not reject anything. Especially if m1(∅) = m2(∅) = 0,
it is easy to check that (m1 ∪m2)(∅) = 0, i.e. the union does not generate
any conflict, and the normalization step (23) is useless here. The resulting set
of focal elements is indeed F1∪2 = {A ∪B | A ∈ F1, A ∈ F2}.

The union of two bodies of evidence is more easily performed via the
credibility measure since:

Proposition 2. Let Cr1 ∪ Cr2 be the credibility measure associated with
m1 ∪m2. Then ∀ A ⊆ Ω, (Cr1 ∪Cr2)(A) = Cr1(A) ·Cr2(A).

1 During the course of the investigation whose results are reported here, we became
aware of similar attempts by Yager[32] and Oblow[20].
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Proof.

(Cr1 ∪ Cr2) (A) =
∑

∅ �=B∪C⊆A
m1 (B) ·m2 (C)

=
∑

∅ �=B⊆A
m1 (B)

⎛

⎝
∑

∅ �=C⊆A
m2 (C)

⎞

⎠ . Q.E.D.

Notice that in the case of intersection of bodies of evidence, the counterpart
of Proposition 2 holds for the commonality numbers only, since, as noted by
Shafer[24], (22) implies

(Q1 ∩Q2) (A) = Q1 (A) ·Q2 (A) . (29)

The notion of conjunctive and disjunctive knowledge can shed light on
these properties, if we recall, following Yager[31], that in the presence of con-
junctive information, “x = A or x = B” translates into x = A∩B and “x = A
and x = B” translates into “x = A ∪B”.

Example 2. John stayed in Paris from 1980 till 1982 and from 1982 till 1984
is equivalent to “John stayed in Paris from 1980 till 1984”.

But if we happen to know from two sources that he stayed in Paris from
1980 till 1983 or from 1981 till 1984, then the only sure resulting item of
information is that he stayed in Paris from 1981 till 1983.

Now, if we remember that the commonality numbers play, for a conjunctive
body of evidence, the same role as the credibility degrees in a disjunctive body
of evidence, it is clear that (29) is the mirror image of Proposition 2, and
achieves an “or” of two conjunctive bodies of evidence.

As a consequence of (29) and Proposition 2, the union and intersection of
bodies of evidence are commutative and associative. If we denote by Ω (resp.:
∅) the body of evidence such that m(Ω) = 1 (resp.: m(∅) = 1), that is,
total ignorance (resp.: the null value “not applicable”) for variable x in the
disjunctive interpretation, we have

∀ m,m ∩ Ω = m; m ∪∅ = m. (30)

Now, applying (22) and (28) on subsets A of Ω, i.e. m(A) = 1, we recover the
usual set-intersection and union in 2Ω. But these operations are not idempo-
tent on B(Ω). Indeed, Proposition 2 and (29) lead to

∀ ω ∈ Ω, (Pl1 ∩ Pl2) ({ω}) = Pl1 ({ω}) · Pl2 ({ω}) (31)
(Pl1 ∪ Pl2) ({ω}) = Pl1 ({ω}) + Pl2 ({ω})− Pl1 ({ω}) · Pl2 ({ω}) .

(32)

Note that the intersection and the union in B(Ω) are not stable on the subset
of possibility measures. This is because if F1 and F2 are consonant, then gen-
erally neither F1∩2 nor F1∪2 are. But (32) as (31), correspond to well known
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fuzzy set-theoretic operations. The set of probability measures is not closed
under the union operation, since P1∪P2 corresponds to a set of focal elements
some of which are 2-element sets. Strictly speaking, the closure property does
not hold for intersection since the intersection of two probability measures is
no longer normalized (the intersection of singletons is generally empty!). The
closure property is recovered through normalization (23) i.e. using Dempster
rule as a whole.

Lastly the union of two consistent bodies of evidence is consistent while
their intersection may no longer be so.

2.2 Complement of a Body of Evidence

The complement of a body of evidence (F ,m) is (�F , m̄) defined by

∀ A ⊆ Ω, m̄ (A) = m
(
Ā
)

(33)

so that �F = {Ā|A ∈ F}. This complementation is formally involutive. More-
over the union and intersection satisfy De-Morgan laws since

∀ (m1 ∪m2) (A) = (m1 ∪m2)
(
Ā
)

=
∑

B∪C=Ā

m1 (B) ·m2 (C)

=
∑

B̄∩C̄=A

m̄1

(
B̄
)
· m̄2

(
C̄
)

= (m̄1 ∩ m̄2) (A) .

It is easy to see that (33) reduces to usual set complementation when
m(A) = 1. Moreover if F is consonant, then �F is also consonant, so that
(33) also reduces to fuzzy set complementation when applied to a possibility
measure, i.e. the set of possibility measures is closed under complementation.
But the set of probability measures is not for |Ω| > 2 since all focal elements
in �F then contain |Ω| − 1 elements.
B(Ω) is not a Boolean algebra. Indeed union and intersection are not

idempotent. Moreover the laws of contradiction and excluded middle are not
valid, i.e.

for m ∈ B (Ω)− 2Ω, generally m ∩ m̄ 	= ∅; m ∪ m̄ 	= Ω.

Actually it can be checked that (m ∩ m̄)(∅) > 0, (m ∪ m̄)(Ω) > 0 which
expresses that these laws somewhat hold. If F = {A,B} then �F = {Ā, B̄}
and (m ∩ m̄)(A ∩ B̄) > 0, (m ∪ m̄)(A ∪ B̄) > 0, etc. . ..

Hence B(Ω) has the same algebraic structure as the set of fuzzy subsets of
Ω, [0, 1]Ω, under the product, probabilistic sum, and usual complementation
of fuzzy sets, i.e.

μF∩G (ω) = μF (ω) · μG (ω)
μF∪G (ω) = μF (ω) + μG (ω)− μF (ω)μG (ω)

μF̄ (ω) = 1− μF (ω) .
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Moreover these fuzzy set-theoretic operations are consistent with set-theoretic
operations in B(Ω), under independence assumption, up to stability of π(Ω).

An interesting feature of complementation in B(Ω) is that it turns a dis-
junctive body of evidence into a conjunctive one. To see it consider the simple
case F = {A}, and A restricts the possible values of x. Then Ā is a set of val-
ues which are forbidden for x. Let x̄ be the variable which takes values which
x does not take. It is clear that A ⊆ x (x takes at least all values in A) is
equivalent to x is A (the value of x is restricted by A). In the general case, the
same transformation occurs, and any focal element Ā ∈�F is a set of values
which x certainly does not take (with weight m(A)). This transformation in
the nature of evidence provides some explanation of the following property.

Proposition 3. Let Q̄ be the commonality function associated with the com-
plement (�F , m̄) of a disjunctive body of evidence (F ,m). Then

∀ A,Cr (A) = Q̄
(
Ā
)
−m (∅) .

Proof.
∑

∅ �=B⊆A
m (B) =

∑

Ā⊆B̄ �=Ω

m̄
(
B̄
)

= Q̄
(
Ā
)
− m̄ (Ω) . Q.E.D.

This result stresses that Cr andQ play the same role in each type of knowledge,
disjunctive and conjunctive respectively.

An important remark is that, reciprocally, the complement of a conjunc-
tive body of evidence is not a disjunctive body of evidence in the sense defined
in this paper. To see it, consider the case of the conjunctive statement ‘A ⊆ x’,
then, defining x̄ as above, all we know about x̄ is that any subset of Ā is a
possible conjunctive set of values for x̄, so that the knowledge about x̄ is a
possibility distribution on 2Ā, say π, such that ∀ B ⊆ Ā, π(B) = 1 means
B is a possible set of values for x̄ (i.e. x possibly does not take any value
in B). Hence π defines disjunctive knowledge over 2Ā. The usual disjunctive
information is recovered as a particular case, setting π(B) = 1 if and only
if B is a singleton in Ā and 0 otherwise. This type of higher-order disjunc-
tive information is not a mere game of the mind; it is often encountered in
data-bases with multiple-valued attributes, when one wishes to represent the
possible sets of tongues spoken by an individual, for instance (see Prade and
Testemale[21]).

These remarks weaken the apparent strength of the involution property of
the complementation operation in B(Ω).

2.3 Inclusions

Concepts of inclusion can also be introduced on B(Ω). Given a normal body
of evidence (F ,m), the interval [Cr(A), Pl(A)] can be viewed as the range
of the probability of A induced by the lack of precision of the focal elements
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(see 1.2.). In other words, the body of evidence F defines a (convex) set of
probability measures on Ω, say C(F).

A normal body of evidence (F ,m) can be viewed as included in (F ′, m′)
as soon as C(F) ⊆ C(F ′). In terms of the plausibility and credibility measures
(Pl, Cr) and (Pl′,Cr′), this is equivalent to:

∀ A ∈ Ω, [Cr (A) ,Pl (A)] ⊆
[
Cr′ (A) ,Pl′ (A)

]
. (34)

We shall write (F ,m) ⊆ (F ′,m′) when (34) holds true. (34) reduces to (11)
when Cr = Pl = a probability measure. Note that because Cr(A) = 1−Pl(Ā),
any of the following inequalities is equivalent to (34):

Cr (A) � Cr′ (A) , ∀ A ∈ Ω, (35)
Pl (A) � Pl′ (A)∀ A ∈ Ω. (36)

Disjunctive and Conjunctive Inclusions

The definition of inclusion can be extended from B+(Ω) to B(Ω), taking (36)
as the actual definition. Note that (35) is not equivalent to (36) for bodies
of evidence which are not normal. Indeed, in the general case, (36) is equiva-
lent to:

Cr (A) +m (∅) � Cr′ (A) +m′ (∅) , ∀ A ∈ Ω

due to the definitions of Cr and Pl. (36) induces some relationships between
the respective contents of F and F ′ such that (F ,m) ⊆ (F ′,m′). In the
following the core (resp.: support) of (F ,m) is the intersection (resp.: union)
of focal elements and denoted C(F) (resp.: S(F)). The following necessary
condition for inclusion relationship is noticeable:

Proposition 4. If, (F ,m) ⊆ (F ′,m′) then

i) S(F) ⊆ S(F ′); C(F) ⊆ C(F ′),
ii) ∀ A′ ⊆ F ′, ∃A ∈ F , A ⊆ A′.

Proof. ∀ ω, Pl({ω}) = 1 if and only if ω ∈ C(F). From (36) if ω ∈ C(F) then
Pl({ω}) = 1 = Pl′({ω}); hence ω ∈ C(F ′). Besides ∀ ω, Pl({ω}) > 0 ⇔ ω ∈
S(F). From (36) if ω ∈ S(F) then 0 < Pl({ω}) � Pl′({ω}); hence ω ∈ S(F ′).
To prove (ii), let A′ ∈ F ′ contain no focal element in F . Then

Pl
(
Ā′) = 1 > 1−m′ (A′) � Pl′

(
Ā′)

which contradicts (36). Q.E.D.

Conditions on the relative structure of (F ,m) and (F ′,m′) which would
be necessary and sufficient to ensure (F ,m) ⊆ (F ′,m′) seem to be difficult to
produce. Inclusion ⊆ has natural properties such as transitivity, and mutual
inclusion implies equality (since Cr determines m). Notice also that
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(F ,m) ∩ (F ′,m′) ⊆ (F ,m) ⊆ (F ,m) ∪ (F ′,m′) . (37)

For instance
(
Pl ∩ Pl′

)
(A) =

∑

B∩B′∩A �=∅

m (B) ·m′ (B′)

=
∑

B∩A �=∅

m (B) ·

⎛

⎝
∑

B∩B′∩A �=∅

m′ (B′)

⎞

⎠ � Pl (A) .

The other inclusion in (37) can be obtained in a similar way.
If (F ,m) and (F ′,m′) both generate possibility measures with possibility

distributions π = μF and π′ = μF ′ , then

(F ,m) ⊆ (F ′,m′)⇔ F ⊆ F ′ (i.e. μF � μF
′). (38)

That is, the inclusion of bodies of evidence is completely consistent with
Zadeh’s[35] inclusion of fuzzy sets, hence with the usual inclusion in 2Ω.
To see it just notice that if (F ,m) ⊆ (F ′,m′) then, as a particular case
of (36), Pl({ω}) = μF (ω) � Pl′({ω}) = μF ′(ω). Conversely if F ⊆ F ′ then
Pl(A) = max{μF (ω)|ω ∈ A} � Pl′(A) = max{μF ′(ω) | ω ∈ A}.

More surprising, and a disquieting fact at first glance, is that the comple-
mentation introduced in 2.2. is not order-reversing for ⊆. To see it first notice
that due to Proposition 3

∀ A,Pl (A) � Pl′ (A) ⇔ ∀ A, Q̄ (A) � Q̄′ (A) (39)

where Q̄ and Q̄′ are the commonality functions of the complementary bodies
of evidence (�F , m̄), (�F ′, m̄′) respectively. Moreover (F ,m) ⊆ (F ′,m′) does
not imply any inequality between Q and Q′, as proved by the following:

Counter-example 1 Let

Ω = {a, b, c} , 0 < k <
1
2
.

F = {{a} ,Ω} ;m ({a}) = 1− k,m (Ω) = k.

F ′ = {{a, b} , {a, c}} ;m′ ({a, b}) = k,m′ ({a, c}) = 1− k.

Then the reader can check that (F ,m) ⊆ (F ′,m′); especially ∀ A 	=
{b}, {c},∅, Pl′(A) = 1 and Pl({b}) = Pl′({b}) = k, Pl({c}) = k < Pl′({c}) =
1 − k. But Q({c}) = k < Q′({c}) = 1 − k, Q({b, c}) = k > Q′({b, c}) = 0.
Q.E.D.

This lack of order-reversingness should not hurt our intuition because
(36) is meaningul only for disjunctive evidence, but (�F , m̄) is conjunctive
and the grade of credibility of A deduced from (�F , m̄) is Q̄(A). But from
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(39) (�F ′, m̄′) is contained in (�F , m̄) (remember that Q is a decreasing set-
function for set-inclusion), in the sense of a new kind of inclusion, which makes
sense only for conjunctive evidence, namely ⊂ such that (F ,m)⊂(F ′,m′) if
and only if

∀ A,Q (A) � Q′ (A) . (40)

⊂ can be called ‘conjunctive inclusion’ while ⊆ is called ‘disjunctive inclusion’,
respectively abbreviated as c-inclusion and d-inclusion.

Note that c-inclusion is transitive, that mutual c-inclusion means equality
(since Q determines m as well). Moreover

(F ,m) ∩ (F ′,m′)⊂ (F ,m)⊂ (F ,m) ∪ (F ′,m′) (41)

which is simply (37) transformed by complementation. Similarly, c-inclusion
applied to possibility measures is equivalent to Zadeh’s[35] inclusion of fuzzy
sets, i.e. a counterpart of (38) holds. A necessary condition to get (40) is
given now:

Proposition 5. If (F ,m)⊂(F ′,m′) then

i) S(F) ⊆ S(F ′), C(F) ⊆ C(F ′),
ii) ∀ A ∈ F , ∃ A′ ∈ F ′, A ⊆ A′.

Proof. (i) is easily seen due to S(�F) = C(F), C(�F) = S(F) using comple-
mentation to turn ⊂ into ⊃. Now let A ∈ F be contained in no focal element
in F ′ then

Q(A) � m (A) > 0 = Q′ (A)

which contradicts (40). Q.E.D.

At this point it is natural to define a third concept of inclusion which requires
both (36) and (40) to hold:

Definition 1. (F ,m) is said to be included in (F ′,m′), denoted (F ,m) ⊂⊂
(F ′,m′) if and only if (F ,m) is both c-included and d-included in (F ′,m′).

Inclusion is transitive, mutual inclusion is equality, (37) and (38) hold for
⊂⊂. (Note that c-inclusion and d-inclusion are already equivalent for possibility
measures). Moreover the complementation is order-reversing for ⊂⊂.

Strong Inclusion

Yager[33] has introduced a fourth definition of inclusion in B(Ω), which, for
reasons to be clarified below, can be called strong inclusion, and will be
denoted ⊂⊂⊂. This concept can be presented as follows.

Definition 2. (F ,m) ⊂⊂⊂ (F ′,m′) if and only if the three following state-
ments are valid:

i) ∀ Ai ∈ F , ∃ A′
j ∈ F ′, Ai ⊆ A′

j,
ii) ∀ A′

j ∈ F ′, ∃ Ai ∈ F , Ai ⊆ A′
j,
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iii) there exists a matrix W with size m×n, m = |F|, n = |F ′|, whose entries
are Wij ∈ [0, 1] such that Wij > 0⇒ Ai ⊆ A′

j ,
∑
ijWij = 1 and the basic

assignments m and m′ can be expressed in terms of the Wij ’s as follows:

∀ Ai ∈ F ,m (Ai) =
∑

j
Ai ⊆ A′

j

Wij , (42)

∀ A′
j ∈ F ′,m′ (A′

j

)
=

∑

i
Ai ⊆ A′

j

Wij . (43)

Note that (42) and (43) look like flow conservation equations in a flow network
(Ford and Fulkerson[11]). This analogy is explained in the appendix and is
useful to make Definition 2 work. The name ‘strong inclusion’ is justified by
the following result:

Proposition 6. Strong inclusion implies inclusion i.e.

(F ,m) ⊂⊂⊂ (F ′,m′) ⇒ ∀ A,Q (A) � Q′ (A) , Pl (A) � Pl′ (A) .

The converse does not hold.

Proof. Assume (F ,m) ⊂⊂⊂ (F ′,m′).

Pl′ (B) =
∑

A′
j∩B �=∅

m′ (A′
j

)
=

∑

i,j

{
Wij |Ai ⊆ A′

j ;A
′
j ∩B 	= ∅

}

but
{
(i, j) |Ai ⊆ A′

j ;A
′
j ∩B 	= ∅

}
⊇

{
(i, j) |Ai ⊆ A′

j ;Ai ∩B 	= ∅

}

hence
Pl′ (B) � Pl (B) =

∑

i,j

{
Wij |Ai ⊆ A′

j ;Ai ∩B 	= ∅

}
.

A similar proof holds for the commonality function. Q.E.D.

That the converse does not hold is indicated by the following:

Counter-example 2 Ω = {a, b, c, d, e}. Consider the two normal bodies of
evidence:

(F ,m) = ({a, b} , 0.3) ; ({a, c} , 0.3) ; ({c, d} , 0.3) ; ({e} , 0.1)
(F ′,m′) = ({a, b, c} , 0.4) ; ({a, b, d} , 0.3) ; ({a, c, d} , 0.2) ; ({c, d, e} , 0.1) .
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To check that (F ,m) ⊆ (F ′,m′) see on Table 1. To see that no matrix W
satisfying (42)–(43) exists, it is enough to verify that the following system of
equations has no solution in [0,1]:

⎡

⎢⎢⎣

0.4 = 0.3m11 + 0.3m21 (= m′ ({a, b, c}))
0.3 = 0.3 (1−m11) (= m′ ({a, b, d})
0.2 = 0.3 (1−m21) + 0.3m33 (= m′ ({a, c, d}))
0.1 = 0.1 + 0.3 (1−m33) (= m′ ({c, d, e})) .

This system is equivalent to (42)–(43) where the Wij ’s have been changed
into Wij = m(Ai)mij , with

∑
jmij = 1, which eliminates (42). Deeper

Table 1. Counter-example 2

Events Cr(A) Cr′(A) Q(A) Q′(A)

{a} 0 0 0.6 0.9
{b} 0 0 0.3 0.7
{c} 0 0 0.6 0.7
{d} 0 0 0.3 0.6
{e} 0.1 0. 0.1 0.1
{a, b} 0.3 0 0.3 0.7
{a, c} 0.3 0 0.3 0.6
{a, d} 0 0 0 0.5
{a, e} 0.1 0 0 0
{b, c} 0 0 0 0.4
{b, d} 0. 0 0 0.3
{b, e} 0.1 0 0 0
{c, d} 0.3 0 0.3 0.3
{c, e} 0.1 0 0 0.1
{d, e} 0.1 0 0 0.1
{a, b, c} 0.6 0.4 0 0.4
{a, b, d} 0.3 0.3 0 0.3
{a, b, e} 0.4 0 0 0
{a, c, d} 0.6 0.2 0 0.2
{a, c, e} 0.4 0 0 0
{a, d, e} 0.1 0 0 0
{b, c, d} 0.3 0 0 0
{b, c, e} 0.1 0 0 0
{b, d, e} 0.1 0. 0 0
{c, d, e} 0.4 0.1 0 0.1
{a, b, c, d} 0.9 0.9 0 0
{a, b, c, e} 0.7 0.4 0 0
{a, b, d, e} 0.4 0.3 0 0
{a, c, d, e} 0.7 0.3 0 0
{b, c, d, e} 0.4 0.1 0 0

(The use of Cr or Pl to check the inclusion is indifferent
because the bodies of evidence are normal).
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understanding about the reasons why this system has no solution is gained in
the appendix. Q.E.D.

The nice feature of Definition 2 is that it provides a construction method
to build two bodies of evidence (F ,m) and (F ′,m′) such that one is strongly
included in the other. It may act as a sufficient condition for having inclusion
in the sense of Definition 1. Namely note that letting

F ′ (A) = {A′ ∈ F ′, A⊆A′} ; F (A′) = {A ∈ F , A ⊆ A′}
then

F =
⋃

A′∈F ′
F (A′) ; F ′ =

⋃

A∈F
F ′ (A) . (44)

Given (F ′,m′), all bodies of evidence (F ,m) ⊂⊂⊂ (F ′,m′) can be obtained
by the following procedure:

Procedure a ∀ A′
j ∈ F ′ dispatch the weight m′(A′

j) among any family
F(A′

j) of subsets of A′
j , letting Wij be the share of m′(A′

j) allocated to Ai ∈
F(A′

j).
Define F and m by (44) and (42) respectively.

Similarly, given (F ,m) all bodies of evidence (F ,m) ⊂⊂⊂ (F ′,m′) can be
obtained by the dual procedure.

Procedure b ∀ Ai ∈ F , dispatch the weightm(Ai) among any family F ′(Ai)
of supersets of Ai(F ′(Ai) ⊆ {A|Ai ⊆ A}) letting Wij be the share of m(Ai)
allocated to A′

j ∈ F ′(Ai).
Define F ′ and m′ by (44) and (43) respectively.

Note that a particular case of Procedure (a) is obtained by forcing F(A′
j)

to contain only singletons (provided that (F ′,m′) is normal). We then recover
Dempster’s[1] procedure to generate the set C(F ′) of probability measures
satisfying (11) as recalled in 1.2. Procedure (a) thus generalizes Dempster’s
procedure, but cannot produce all bodies of evidence (F ,m) satisfying (34),
as indicated in Proposition 6. Procedure (b) was first suggested by Yager[33]
who gives it as the very definition of inclusion in B(Ω).

Inclusion ⊂⊂⊂ is transitive. To see it, rewrite (42), (43) under the form

∀ A′
j ∈ F ′,m′(A′

j) =
m∑

i=1

m(Ai) ·mij

as done in the proof of Proposition 6. Let M be the matrix with coefficient
mij , m and m′ be the column vectors expressing the basic assignments. Then
using matrix notation:

m′ = Mm. (45)

Now (F ,m) ⊂⊂⊂ (F ′,m′) and (F ′,m′) ⊂⊂⊂ (F ′′,m′′) translate into m′ =
Mm,m′′ = M ′m′, whereM,M ′ belong to the classM of Markovian matrices,
i.e. with positive entries summing to 1 on each row. Hence m′′ = M ′Mm,
and thus (F ,m) ⊂⊂⊂ (F ′′,m′′) since M is closed under matrix product, and
(44) holds between F and F ′′ as is straightforwardly checked.
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Of course, mutual strong inclusion of two bodies of evidence means their
equality. Strong inclusion applied to possibility measures is consistent with
Zadeh’s inclusion of fuzzy set:

Proposition 7. If (F ,m) and (F ′,m′) are consonant then

(F ,m) ⊂⊂⊂ (F ′,m′) if and only if μF � μF ′

where μF and μF ′ are the contour functions of (F ,m) and (F ′,m′).

Proof. The difficult part is to prove that Zadeh’s inclusion of fuzzy sets implies
the existence of a matrix W satisfying (42) and (43). The proof is given
through network flow theory arguments in the appendix, which gives a con-
structive procedure to build W . Q.E.D.

Lastly⊂⊂⊂ is order-reversing in B(Ω) since Procedures (a) and (b) exchange
via complementation. Inequalities (37) hold for the strong inclusion. Note that
(i) and (ii) of Definition 2 hold between F and F ′′ = {A∪B′|A ∈ F , B′ ∈ F ′}.
Moreover define Wij = m(Ai) ·m′(B′

j) as the share of m(Ai) allocated to the
focal element Ai ∪B′

j .

Properties of B(Ω) under Inclusions

Any of the introduced inclusions equips B(Ω) with a partial ordering structure
(reflexive, transitive and weakly antisymmetric, that is xRy and yRx implies
x = y). ⊂⊂⊂ is able to compare less elements in B(Ω) than ⊂⊂, which in turn
is able to compare less elements in B(Ω) than any of ⊆ and ⊃. However on
π(Ω) = [0, 1]Ω, the set of possibility measures (or fuzzy sets), all four inclusions
collapse into Zadeh’s fuzzy set inclusion.

The greatest element in B(Ω) in the sense of any inclusion is the total
ignorance function (m(Ω) = 1) and the least element is the empty body of
evidence (m(∅) = 1). The least elements in B+(Ω), i.e. normal bodies of
evidence, are the probability measures. This is in the sense of disjunctive
inclusion ⊆. Indeed, because

∑
ω P ({ω}) = 1, probability measures are not

comparable using (34) or (35). This is consistent with the idea that prob-
ability measures are sort of ‘fuzzy points’ (Höhle[16]) for which inclusion is
meaningless (there is equality or disjointness!). Moreover given a normal body
of evidence (F ,m) any probability measure in C(F) is contained in (F ,m) in
the sense of disjunctive inclusion.

Probability measures are always interpreted in the disjunctive information
framework (an event A occurs if and only if ∃ ω ∈ A which is observed, and not
only if all ω ∈ A are observed at the same time). Hence the commonality func-
tion Q is not interesting for probabilistic bodies of evidence (Q(A) = 0 as soon
as |A| > 1). Hence probability measures have no interesting role in (B+(Ω),⊂).
However they are still the least elements in (B+(Ω),⊂⊂⊂), because any prob-
ability measure in C(F) is strongly included in (F ,m), from Dempster’s[1]
construction.
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Lastly there is an interesting convexity property related to the inclusions:

Proposition 8. The following subsets of B(Ω) are convex:

{(F ,m)|(F ,m)R(F ′,m′)}
{(F ′,m′)|(F ,m)R(F ′,m′)}

with R =⊆, ⊂, ⊂⊂, ⊂⊂⊂.

Proof. Using the definition of the convex combination of two bodies of evi-
dence (F ,m) and (G, n) i.e. α(F ,m)+(1−α) (G, n) = (F ∪G, αm+(1−α)n)
with credibility measure Cr = αCrm + (1 − α)Crn, it is obvious that Propo-
sition 8 holds for R =⊆. Now Q = αQm + (1 − α)Qn as well, so that
Proposition 8 holds for R = ⊂ and ⊂⊂. Lastly if (F ,m) and (G, n) are
strongly included in (F ′,m′) then conditions (i) and (ii) in Definition 2 hold
for F ∪ G with respect to F ′. Moreover m = Mm′ and n = Nm′ implies
αm + (1 − α)n = (αM + (1 − α)N)m′ where αM + (1 − α)N is still a
Markovian matrix consistent with the conditions (i) and (ii) in Definition 2.
Hence Proposition 8 holds for ⊂⊂⊂. Q.E.D.

2.4 Projections and Cartesian Product

In this section only normal bodies of evidence are considered.
Let (F ,m) be a body of evidence on a Cartesian product Ω = U ×V . If S

is a subset of Ω its projection on U (resp.: V ) is denoted U(S) (resp.: V (S))
and defined by

U(S) = {u ∈ U |∃ v ∈ V, (u, v) ∈ S}.

More generally the projection of (F ,m) on U is (FU ,mU ) such that
(Shafer[25])

∀ A ⊆ U,mU (A) =
∑

S:A=U(S)

m(S). (46)

It is easy to check that (FU ,mU ) induces a plausibility measure PlU on
U such that PlU (A) = Pl(A × V ), and a credibility measure CrU such that
CrU (A) = Cr(A× V ), which sounds consistent.

Proof.

Pl(A× V ) =
∑

(A×V )∩S �=∅

m(S) =
∑

A∩U(S) �=∅

m(S) � PlU (A).

Now Cr(A× V ) = 1− Pl(Ā× V ). Q.E.D.

As a consequence, if Pl is a possibility measure Π i.e. its contour function
π is a fuzzy relation on U × V, PlU is the possibility measure based on the
projection of the fuzzy relation (in the sense of Zadeh[36]), since
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πU (u) = PlU ({u}) = Π({u} × V } = sup
v∈V

π(u, v).

Conversely, given two bodies of evidence (FU , mU ) and (FV , mV ) on U
and V respectively, we can define their cylindrical extensions and define the
product of these extensions via Dempster rule (Shafer[25]). Namely, the cylin-
drical extension of (FU , mU ) is (cFU , cmU ) such that

∀ B ⊆, U, cmU (B × V ) = mU (B)

and
cmU (A) = 0 for other A ⊆ Ω = U × V.

From (FU , mU ), (FV , mV ) on U and V respectively, (F̂ , m̂) � (FU , mU )
× (FV , mV ), denotes a Cartesian product of bodies of evidence. m̂ is calcu-
lated by:

∀ A ⊆ Ω, m̂ (A) = mU (B) ·mV (C) if A = B × C

= 0 otherwise. (47)

Note that {(B,C)|A = B×C} = {(U(A), V (A))} and B×C = ∅ only if B or
C = ∅ so that Dempster rule really boils down to (47), and F̂ = {B×C|B ∈
FU , C ∈ FV }. Note that (F̂ , m̂) is always normal since (FU , mU ) and
(FV , mV ) are supposed to be so.

If (FU , mU ) and (FV , mV ) reduce to sets B and C, then their products in
the sense of (47) is their Cartesian products. (47) is however not in accordance
with Zadeh’s[36] definition of the Cartesian product of fuzzy sets since if
(FU , mU ) and (FV , mV ) are possibility measures, with contour functions
μF and μG respectively then the fuzzy Cartesian product is the possibility
measure with contour function min(μF , μG). Rather, (47) implies that (F̂ , m̂)
is generally not a fuzzy Cartesian product since it is consistent with μF ·μG, an
operation previously introduced by the authors[3]; moreover (F̂ , m̂) defines
no possibility measure, generally.

The natural thing to do is now to project (F , m) on U and V and recom-
bine their projections. One may expect some relationship between (F , m)
and (F̂ , m̂) in terms of specificity, namely that (F ,m) is included in (F̂ , m̂);
unfortunately this property does not hold as shown below.

Counter example 3 F = {S1, S2} with S1 ∩ S2 = ∅, U(S1) ∩ U(S2) =
∅, V (S1)∩ V (S2) = ∅. F̂ = {U(Si)× V (Sj)|i = 1, 2; j = 1, 2}. F̂ is made of
four disjoint focal elements.

Now since S = U(S1) × V (S2) 	∈ F , Cr(S) = 0 while Ĉr(S) = m(S1) ·
m(S2) > 0. Moreover Cr(S1 ∪ S2) = 1 while Ĉr(S1 ∪ S2) � m(S1)2 + m(S2)2

< 1 (the equality holds if S1 and S2 are Cartesian products).

More particularly, if (F , m) is a probabilistic body of evidence then (F̂ , m̂)
also generates a probability measure, and no inclusion must be expected,
relating these two bodies of evidence.



396 D. Dubois and H. Prade

However, if (F , m) is consonant, this relationship might be expected to
hold. The following result leaves no hope about it for the d-inclusion.

Proposition 9. Even if (F , m) is consonant, the property (F , m) ⊆ (F̂ , m̂)
does not hold.

Counter example 4 F = {S1, S2}, S1 ⊂ S2, with U(S1) 	= U(S2), V (S1) 	=
V (S2). Let α = m(S1). Hence, m̂(U(S1) × V (S1)) = α2, m̂(U(S1) ×
V (S2)) = m̂(U(S2)× V (S1)) = α(1− α), m̂(U(S2)× V (S2)) = (1 − α)2.

Now assume S is such that:

(U (S1)× V (S2)) ∪ (U (S2)× V (S1)) ⊂ S ⊂ S2

where the inclusions are strict. It is easy to figure out that such a set S may
exist. Then we have:

Cr (S) = α < Ĉr (S) = α (2− α) , ∀α < 1. Q.E.D.

Note that the c-inclusion does not hold either. Indeed assume that Si 	=
U(Si)× V (Si) for i = 1, 2 in the above counter example. Clearly,

Q (U (S1)× V (S1)) = 1− α < Q̂ (U (S1)× V (S1)) = 1

Q (S2) = 1− α > Q̂ (S2) = (1− α)2

since S2 	⊂ U (Si)× V (Sj) , i 	= j.

Proposition 9 contrasts with a well-known result in fuzzy set theory, due to
Zadeh[36]. Namely, a fuzzy relation R on U × V is included in the Cartesian
product of its projections. The inclusion turns into an equality if and only
if μR(u, v) is of the form min(μA(u)μB(v)) where A and B are fuzzy sets
on U and V respectively. In the possibilitistic case it is interesting to specify
conditions under which (F , m) = (F̂ , m̂).

First any S ∈ F must be of the form A×B. Then F ⊆ F̂ is ensured. Now
F = {Ai×Bi|i = 1, p} and F̂ = {Ai×Bj |i = 1, p, j = 1, p}. Let Ai 	= Aj and
Bi 	= Bj , then one of Ai × Bj , Aj × Bi should not be in F̂ since there is no
inclusion relationship between them. So, to preserve a nested structure in F̂
we must have ∀ i, j, Ai = Aj or ∀ i, j, Bi = Bj . Hence the following result,
stated in the case when ∃ Bi 	= Bj :

Proposition 10. If (F , m) is consonant, (F̂ , m̂) = (F , m) if and only if

∃ A ⊆ U, B1 ⊂ B2 ⊂ · · · ⊂ Bp ⊂ V

such that
F = {A×Bi|i = 1, p} .

This is equivalent to state that mU (A) = 1, i.e. the projection of (F , m)
on U is a set. So that mV (Bi) = m(Bi) ∀ i.
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In the general case, the concept of inclusion, even the weaker one proves too
strong to be able to compare (F ,m) and the product of its projections. Such
a comparison can be however carried out using the measures of uncertainty
and specificity respectively introduced by Higashi and Klir[15] and Yager[30].
Then some interesting inequalities can be obtained expressing that (F̂ , m̂) is
not more specific than (F ,m) (see Dubois and Prade[9]). Note that we may
have (F ,m) = (F̂ , m̂) in the general case, since when F is not consonant the
requirement F = F̂ does not induce the same constraints on F , as in the
consonant case.

3 Consonant Approximation of a Body of Evidence

It is easier to deal with a possibility measure or a probability measure rather
than with a general plausibility measure. The main reason is that in both
cases, the body of evidence is completely characterized by its contour function,
i.e. a probability allocation or a fuzzy set. The question of approximation of
a body of evidence by either a probability measure or a possibility measure is
thus worth considering.

3.1 The Approximation Problem

A body of evidence (F ′,m′) can be viewed as a valid substitute of (F ,m) as
soon as (F ,m) ⊆ (F ′,m′) (here we assume bodies of evidence are disjunc-
tive). This is a generalized version of Zadeh’s entailment principle[39], and
it encompasses Yager’s[33] proposal based on the strong inclusion. Moreover
the knowledge of another body of evidence (F ′′,m′′) ⊆ (F ,m) enables the
plausibility measure associated with (F ,m) to be located in an interval, i.e.

∀ A,Pl′′ (A) � Pl (A) � Pl′ (A) . (48)

A related inequality holds for the credibility function, of course. Whenever
(48) holds the pair (Pl′′, Pl′) is said to be an approximation of Pl. Pl′′ is the
lower approximation, Pl′ the upper approximation.

The approximation problem2 for bodies of evidence can then be stated
as follows: Let A be a suitable subset of B(Ω) containing ‘simple’ bodies of
evidence, in the sense that it is easy to deal with them for some reason. Given
any body of evidence (F , m) 	∈ A, find two bodies of evidence (F∗, m∗) and
(F∗, m∗) in A, upper and lower approximations of (F , m) i.e.

2 An example of this approximation methodology can be found in the recent paper
by J. Gordon and E. H. Shortliffe: “A method for managing evidential reasoning
in a hierarchical hypothesis space,” Artificial Intelligence, 26, 1985, pp. 323–357.
In this paper the authors are looking for an approximation of the result of the
combination of several bodies of evidence by means of Dempster rule because the
exact result would be too difficult to compute.
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(F∗,m∗) ⊆ (F ,m) ⊆ (F∗,m∗) . (49)

Moreover (F∗,m∗) and (F∗,m∗) should be best approximations in the follow-
ing sense: denote A+(F ,m) and A−(F ,m) the sets

A+ (F ,m) = {(F ′,m′) | (F ,m) ⊆ (F ′,m′)} ∩ A
A− (F ,m) = {(F ′′,m′′) | (F ′′,m′′) ⊆ (F ,m)} ∩ A

and let A+∗ (F ,m) (resp.: A∗−(F ,m)) be the set of minimal (resp.: maximal)
elements in A+(F ,m) (resp.: A−(F ,m)). Then we should require (F∗,m∗) ∈
A∗

−(F ,m) and (F∗,m∗) ∈ A+
∗ (F ,m).

Clearly it is meaningless to choose A as being the set P(Ω) of probability
measures because an upper approximation will never exist when (F ,m) is nor-
mal (except if (F ,m) generate a probability measure) and a lower approxima-
tion only exists if (F ,m) is normal. In such a case A∗−(F ,m) = A− (F ,m) =
C(F) since probability measures do not compare with one another via ⊆. So
all probability measures are equally candidate as lower approximations.

A member of C(F) is especially interesting and has been suggested by the
authors[4, 5] previously. It is obtained by equally sharing the weights m(A)
among elements of A; we then have

∀ ω ∈ Ω, P ({ω}) =
∑

ω∈A

m (A)
|A| . (50)

(50) is in accordance with Laplace’s principle of modeling a lack of information
by uniformly distributed probability allocations. When (F ,m) is consonant
(50) defines a bijection between probability measures and possibility measures
on a finite set, and the converse mapping can be useful to derive a possibilistic
interpretation of histograms as explained in Dubois and Prade[4, 5].

3.2 Possibilistic Approximations of Normal Bodies of Evidence

A more satisfactory approach is to consider the set [0, 1]Ω of consonant bod-
ies of evidence as the approximation set A. In this section we derive best
upper and lower approximations of (F ,m) when A = [0, 1]Ω. The best lower
approximation Π∗ is first derived. The following result was already obtained
in Dubois and Prade[4].

Proposition 11. The best lower approximation in [0, 1]Ω of a body of evi-
dence (F ,m) is unique and is the possibility measure Π∗, whose possibility
distribution π∗ is the contour function of (F ,m).

Proof. [4]
∀ A,Pl (A) =

∑

B⊆Ω

m (B) · sup
ω∈A

μB (ω) ,

where μB is the characteristic function of B. Hence
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Pl (A) � sup
ω∈A

∑

B∈Ω

μB (ω)m (B) � sup
ω∈A

Pl ({ω}) .

Let Π∗ be the possibility measure such that Π∗({ω}) = Pl({ω}), clearly Π∗ ∈
A (F ,m). Let Π be a possibility measure such that Π � Pl. Then ∀ ω ∈
Ω, π(ω) � Pl({ω}) = π∗(ω). Hence Π � Π∗. Q.E.D.

Π∗ is defined for any (F ,m) ∈ B(Ω). However if (F ,m) is not consis-
tent (i.e. the core C(F) is empty), Π∗ is not normal, while it is always normal
otherwise, since Pl({ω}) = 1, ∀ ω ∈ C(F). As a consequence the lower approx-
imation is completely meaningful for consistent bodies of evidence. Obviously,
if (F ,m) is consonant, then Pl = Π∗. At the opposite if (F ,m) defines a prob-
ability measure then π∗(ω) = P ({ω}), which is not very interesting.

The use of the contour function of (F ,m) has been suggested by Zhang[43,
44] and Wang[27] to derive the membership of a fuzzy set from statistical data
made of error intervals.

The set of focal elements of the lower approximation is F∗ defined by

F∗ = {{ω|Pl ({ω}) � α} |α ∈]0, 1]}

and letting α1 = 1 > α2 · · · > αp > 0 be the elements of the set {Pl({ω})|ω ∈
Ω} ∪ {1}. F∗ contains p focal elements A1 ⊂ A2 ⊂ · · · ⊂ Ap with Ai =
{ω|Pl({ω}) � αi}. A1 	= ∅ if and only if (F ,m) is consistent. Indeed it is easy
to see that A1 is the core of (F ,m) i.e.

C (F) = {ω, ∀ A ∈ F , ω ∈ A}

and Ap is the support of (F ,m), i.e.

S (F) = {ω, ∃ A ∈ F , ω ∈ A} .

Hence (F ,m) and (F∗,m∗) have the same core and support. This remark
enables a member of A+(F ,m) to be constructed from the knowledge of F∗;
to do it we use a technique described in Dubois and Prade[6], which is an
alternative way of deriving a membership function from a set of statistical
data consisting of error intervals. This technique, which contrasts with Zhang
and Wang’s approach goes as follows.

i) Define a mapping f : F → F∗ where f(A) is the smallest Ai containing
A, i.e.

f(A) = Ai such that A ⊆ Ai, A 	⊂ Ai−1.

ii) Let (F∗,m∗) be such that F∗ = f(F) ⊆ F∗

∀ Ai,m∗ (Ai) =
∑

Ai=f(A)

m (A) .
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Note that f(A) is never empty since ∀ A, A ⊆ Ap. Moreover f defines a parti-
tion of F through the equivalence relation ∼: A ∼ B ⇔ f(B) = f(A). Hence

∑

Ai∈F∗

m∗ (Ai) =
∑

A∈F
m (A) .

It is easy to check that (F ,m) is strongly included in (F∗,m∗) since the above
technique is a particular case of Procedure (b) of 2.3.2. where the whole mass
m(A) is allocated to f(A). In Dubois and Prade,[6] however, the sets A1 . . . Ap
are given independently of (F ,m) except that A1 = C(F), Ap = S(F), and
A1 	= ∅ i.e. the procedure was defined only for consistent bodies of evidence.
Here we improve it by prescribing what are the focal elements Ai for 1 < i < p.
We now prove that (F∗,m∗) is a best approximation in some sense. Let π
and π′ be two possibility distributions on Ω, π and π′ are said to be order-
equivalent if and only if

∀ ω, ω′, π(ω) > π (ω′)⇔ π′ (ω) > π′ (ω′) . (51)

Order-equivalence can be nicely characterized in terms of focal elements:

Lemma 1. π and π′ are order-equivalent, if and only if their associated sets
of focal elements are equal.

Proof. Let {α1, . . . , αp} = {π(ω) > 0|ω ∈ Ω}. It is well-known that F =
{A1, . . . , Ap} where i = 1, p, Ai = {ω|π(ω) � αi}.[4, 7] Let ωi ∈ Ai such
that π(ωi) = αi. Now from order-equivalence Ai = {ω|π(ω) � π(ωi)} =
{ω|π′(ω) � π′(ωi)}. Hence Ai ∈ F ′, the set of focal elements of π′. Hence F ⊆
F ′ and F ′ ⊆ F since π and π′ play the same role. The converse proposition
is obvious. Q.E.D.

Note that π∗ and π∗ are generally not order-equivalent but satisfy the
weaker statement

∀ ω, ω′, π∗ (ω) > π∗ (ω′)⇒ π∗ (ω) � π∗ (ω′) . (52)

This is because generally F∗ ⊂ F∗.

Proposition 12. (F∗,m∗) is the best upper approximation of (F ,m) among
its order-equivalent consonant bodies of evidence.

Proof. Let N∗ and Π∗ be the necessity and possibility measures induced by
(F∗,m∗). First note that

∀ A∗
i ∈ F∗,Cr (A∗

i ) =
∑

A⊆A∗
i

m (A) =
i∑

j=1

m∗ (A∗
j

)
= N∗ (A∗

i ) .

Let (F ′,m′) be an upper approximation of (F ,m). Because π′ and π∗ are
order-equivalent, the Lemma yields F ′ = F∗. Now the inequality N ′(A) �
Cr(A), ∀ A implies ∀ A∗

i ∈ F∗, N ′(A∗
i ) � N∗(A∗

i ) which also reads
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∀ i 	= p,max {π′ (ω) |ω 	∈ A∗
i } � max {π∗ (ω) |ω 	∈ A∗

i } . (53)

Now the maximum in both sides of (53) is reached by any element ω in A∗
i+1∩

Ā∗
i since A∗

i is a focal element in both F ′ and F∗. Hence (53) translates into:

∀ ω 	∈ A∗
1, π

′ (ω) � π∗ (ω) .

Moreover ∀ ω ∈ A∗
1, π

′(ω) = π∗(ω) = 1, since C(F ′) = C(F∗). Q.E.D.

The condition of order-equivalence is a necessary one to get optimality.
Indeed (53) implies only the existence of some ω′ in Ā∗

i such that ∀ ω ∈
A∗
i+1 ∩ Ā∗

i , π
′(ω′) � π∗(ω).

Counter example 5 Ω = {a, b, c, d, e}
F = {{c} , {c, d} , {b, c} , {c, d, e} , {a, b, c}}

with a uniformly distributed basic assignment m(A) = 1
5 , ∀ A ∈ F .

We have the following results, where π∗ and π∗ are calculated from m and
π′ is given:

a b c d e
π∗ 0.2 0.4 1 0.4 0.2
π∗ 0.4 0.8 1 0.8 0.4
π′ 0.4 0.6 1 0.8 0.4

Note that Π∗(A) = Π′(A) except for A = {b}, {a, b}, {b, e}, for which
Π′(A) = 0.6 < Π∗(A) = 0.8. But Π′ � Pl since Pl({a}) = 0.2, Pl({a, b}) = 0.4
and Pl({b, e}) = Pl({a, b, e}) = 0.6. But the distribution π′ possesses a dis-
symmetry which does not look natural since neither Pl, nor π∗ have such a
dissymmetry. Assuming π′(d) = π′(b) = 0.6 is not possible since then (53) is
violated. Q.E.D.

It is clear that if (F ,m) is consonant then (F∗,m∗) = (F ,m) which shows
a good behavior of (F∗,m∗).

The possibility distribution associated with (F∗,m∗) is π∗ defined by

∀ ω 	∈ A∗
p, π

∗ (ω) = 0,

∀ ω ∈ A∗
1, π

∗ (ω) = 1,

∀ ω ∈ A∗
i −A∗

i−1, π
∗ (ω) = 1−N∗ (A∗

i−1

)
= 1−

∑

A⊆A∗
i−1

m (A)

=
p∑

j=i

m∗ (A∗
j

)
.

When (F ,m) generates a probability measure, the formula becomes

∀ ω, π∗ (ω) =
∑

{P ({ω′}))|P ({ω′}) � P ({ω})}

and if p1 � p2 . . . � pn are the probability weights on ω1, . . . , ωn we get values
π∗

1 � · · · � π∗
n such that
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π∗
i =

p∑

j=i

pj,∀ i. (54)

(54) defines a bijection between probability and possibility measures on Ω
since it is equivalent to

pi = π∗
i − π∗

i+1, ∀ i (55)

with π∗
n+1 = 0. Equation (54) provides the best possibilistic approximation of

a probability measure in the sense of the consistency condition:

∀ A,N∗ (A) � P (A) � Π∗ (A)

and under order-equivalence assumption.
Particularly this transformation provides a more specific result than the

converse of (50), proposed in a previous paper[5]. Note that in the case of
(F ,m) being a probability allocation, the result was already given in Dubois
and Prade[4].

Conclusion

Shafer’s theory of evidence seems to make measure theory and logic interfere
with each other. Mathematical beings, living in B(Ω) have a dual nature: they
are kinds of sets (more precisely convex combinations of sets) and as such can
combine via logical connectives such as union, intersection and complementa-
tion, and consequently any connective of classical logic can have an extension
in B(Ω). But they are also kinds of measures, and concepts of expectations
can be defined from them as Dempster did[1]. However, because bodies of
evidence first emerged as upper and lower probabilities, the possibility of con-
structing a logic calculus on them was not really pointed out by Dempster or
Shafer, but by the people working in random set theory[12, 14].

Logical operations cannot be introduced in the setting of probability mea-
sures because they are generalized points, not sets. This is why, may be, logic
and probability theory seem to ignore each other. Contrastedly, possibility
theory, first discussed in terms of fuzzy sets, was naturally equipped with
a logic calculus. The measure-theoretic point of view came afterwards when
possibility measures were also viewed as upper probabilities[4].

Similarly, Shafer’s book[24], due to a probabilistic background, always
assume information is disjunctive, as it must be in probability theory. On
the contrary a set is classically viewed as a conjunctive of values as often
as a restriction on the value of a variable. The framework of credibility and
plausibility measures enables the conjunctive point of view to enter the prob-
abilistic arena, and this is very important for knowledge representation issues.
The existence of logical connectives in B(Ω) has been exploited by Yager[34]
to define new patterns of reasoning which generalize the modus ponens. How-
ever, contrary to approximate reasoning, based on fuzzy sets, the choice of
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the implication connective is very much restricted by the unicity of basic
operations such as the union and complementation. This unicity stems from
the unicity of Dempster rule under decomposability conditions[10].

As noted by Zadeh, fuzzy set theory is not a particular case of Shafer’s
theory, although a possibility measure (i.e. a fuzzy set) is a special kind of
a body of evidence, where focal element are consonant. The reason is that
Shafer’s theory needs Dempster rule of combination to perform intersection
in B(Ω) while fuzzy sets are conjunctively combined by means of triangular
norms[8, 23]. Shafer’s rationale for Dempster rule stems from probabilistic
independence between two basic assignments m and m′, viewed as proba-
bility allocations on 2Ω. As a consequence the intersection of two consonant
bodies of evidence is generally no longer consonant. On the contrary Zadeh’s
approach starts from the requirements that any logical combination of fuzzy
sets should be a fuzzy set again. This requirement is linked to the fact that
possibility distributions model the meaning of imprecise statements, and that
the meaning of complex statements should be expressed as some combination
of simpler statements that they involve.

Shafer theory is based on the re-interpretation of results by Dempster,
results which were cast in a frequentist framework. And indeed Dempster
rule has a frequentist flavor, and the development of a frequentist theory of
upper and lower probabilities receives attention in the literature[26]. Such
attempts combined with results of Sect. 3, can provide grounds for statisti-
cal estimation of membership functions[6, 27]. However the possibility of a
frequentist interpretation of fuzzy set-theoretic operations seems to be very
unlikely, while the connections between these operations and the theory of
conjoint measurement[8, 18] are more promising. In other words fuzzy set
theory seems to be closer to research in psychological measurement than to
statistics, although possibility measures may have frequentist interpretation.
The rules of combination of frequentist possibility measures will be dictated
by independence-like arguments deriving from the study of statistical exper-
iments, while the rules of combination of subjectivist possibility measures
may turn out to be those of fuzzy set theory. The core of the debate is the
relevance of subjective probability theory. If subjective probability theory is
acknowledged as being too restrictive to model uncertainty judgments, then
Shafer’s subjectivist interpretation of upper and lower probabilities can be
questioned on the same grounds. From a mathematical point of view, the
theory of evidence is nothing but the rules of probability theory applied to
imprecise statements, while classical probability theory leaves no room to
imprecision. As a consequence the rules of combination of bodies of evidence
are given by the rules of probability theory, and what is behind the prob-
lem of validating Shafer’s theory as a theory of measurement of subjective
uncertainty is the validity of the rules of (subjective) probability theory (and
especially the rule of additivity). From this point of view fuzzy set theory
seems to be far less normative than the theory of evidence, although both
provide tools for modeling imprecision and uncertainty in a unique setting.
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Appendix

Flows in Networks and Inclusion

Let (F ,m) and (F ′,m′) be two bodies of evidence such that (F ,m) is strongly
included in (F ′,m′) (cf. Definition 2). Let A1, . . . , Ap (resp.: A′

1, . . . , A
′
q) be

the elements of F (resp.: F ′). It is then possible to build a bipartite graph
(V, V ′, E) where V and V ′ are disjoint sets of nodes, and E is a set of arcs
(v, v′) where (v ∈ V, v′ ∈ V ′, defined as follows:

each element of V (resp. : V ′) represents a focal element in F (resp. : F ′),
arc (vi, v′j) exists if and only if Ai ⊆ A′

j .

Note that ∀ vi, ∃(vi, v′j) ∈ E ; ∀ v′j , ∃(vi, v′j) ∈ E from strong inclusion.
Let s be a source node and d a sink node, which do not belong to V ∪ V ′.

Build the arcs (s, vi)∀ vi ∈ V , with an associated capacity ai = m(Ai), and the
arcs (v′i, d) with an associated capacity a′i = m′(Ai). The graph corresponding
to counter-example 2 is as follows:
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Arcs in E are supposed to have infinite capacity. It is clear that the strong
inclusion of (F ,m) in (F ′,m′) is equivalent to the existence of a flow of value
1 in the graph whose set of nodes is N = V ∪ V ′ ∪ {s, d} and arcs, E =
E ∪ {(s, vi)|vi ∈ V } ∪ {(v′j , d)|v′j ∈ V ′}. This fact is expressed by (42)–(43).

Now a cut in the graph is a partition (X, X̄) of the nodes such that s ∈
X, d ∈ X̄, and its capacity is the sum of the capacities of the arcs (i, j)
such that i ∈ X, j ∈ X̄. The max flow min-cut theorem[11] states that the
maximal flow value from s to d is equal to the minimal cut capacity of all cuts
separating s and d.

Obvious finite capacity cuts in (N,E) are obtained by stating X = {s} or
X̄ = {d}, and their capacity is 1. Hence the flow value through the graph is
at most 1. Moreover if a cut involves an arc in E , it has infinite capacity and
is useless in the computation of the maximal flow. Hence interesting cuts are
such that

if S ⊆ V is a part of X then the set Γ(S) ⊆ V ′ of successors of nodes in S
is also in X ,

if T ⊆ V ′ is a part of X̄ then the set Γ−1(T ) ⊆ V of predecessors of nodes
in T is also in X̄.

Hence the set of cuts can be described as the set {(S, T )|S ⊆ V, T ⊆
V ′,Γ(S) ∩ T = ∅,Γ−1(T ) ∩ S = ∅}. The capacity of cut (S, T ) is easily
found as

C (S, T ) =
∑

vi∈S̄
ai +

∑

vi∈T̄
a′i

since X = {s} ∪ S ∪ T̄ , X̄ = {t} ∪ T ∪ S̄.
Now consider the cut (Γ−1(T ),Γ(S)). It is clear that

C (S, T ) � C
(
Γ−1 (T ) ,Γ (S)

)
.

So that the set of interesting cuts for the computation of the maximal flow
is {(S, T )|S ⊆ V, T ⊆ V ′Γ(S) = T̄ ,Γ−1(T ) = S̄}. A necessary and sufficient
condition for the existence of a flow of value 1 through the network is thus

∀ S ⊆ V,
∑

vi∈S̄
ai +

∑

v′i∈Γ(S)

a′i � 1

∀ T ∈ V ′,
∑

vi∈Γ−1(T )

ai +
∑

v′i∈T̄
a′i � 1

which also reads

∀ S ∈ V,
∑

vi∈S
ai �

∑

v′1∈Γ(S)

a′i (I)

∀ T ∈ V ′,
∑

v′i∈T
a′i �

∑

vi∈Γ−1(T )

ai. (II)
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It is easy to check that the condition Q(A) � Q′(A) applied with A = Ai
gives (I) with S = {vi}, and the condition Cr(A) � Cr′(A) applied with
A = A′

j gives (II) with T = {v′j}. But generally it is possible to find S ⊆ V
such that

	 ∃ A,Q(A) =
∑

ui∈S
ai

and T such that
	 ∃ A,Cr′(A) =

∑

u′
i∈T

a′i.

This is why inclusion does not imply strong inclusion. In the above example
if S = {v3, v4} then Γ(S) = {v′3, v′4} and (I) is violated i.e.

a3 + a4 = 0.4 > a′3 + a′4 = 0.3.

However, as the Table 1 shows, Q(A) � Q′(A), Cr(A) � Cr′(A)∀ A.
Now assume (F ,m) and (F ′,m′) are consonant. F and F ′ are ordered such

that A1 ⊂ A2 · · · ⊂ Ap, A
′
1 ⊂ A′

2 · · · ⊂ A′
q. The bipartite graph (V, V ′, E) has

a special structure since if Ai ⊆ A′
j then Ai ⊆ A′

k, ∀ k � j.
We now prove that the flow equations always have a solution if the fuzzy

set F associated to (F ,m) is included in F ′ associated to (F ′,m′).
∀ vi ∈ V , let σ(i) be the index such that

σ (i) = min
{
j|Ai ⊆ A′

j

}
.

Similarly ∀υ′j ∈ V ′, let τ (j) be the index such that

τ (j) = max
{
i|Ai ⊆ A′

j

}
.

Then the flow (42) and (43) reads

ai =
∑

j�σ(i)

wij ∀ i = 1, p (III)

a′j =
∑

i�τ(j)
wij ∀ j = 1, p. (IV)

Let n = |σ(V )|, k ∈ σ(V ), σ−1(k) = {Ai|σ(i) = k} and ik = max{i, Ai ∈
σ−1(k)}. Because (F ,m) ⊆ (F ′, m′), A1 ⊆ A′

1 and Ap ⊆ A′
q. Moreover

∀ i ∈ σ−1(k), Ai ⊆ A′
k but Ai 	⊂ A′

k−1. Hence F can be partitioned into n
groups of consecutive focal elements, and this partition creates a partition of
F ′, also in n groups τ−1(ik), k ∈ σ(V ) with

τ−1 (ik) = {Bj |k � j < σ (ik + 1)} (see Fig. 1)

and ∀ Bj ∈ τ−1(ik), Bj ⊇ Ai for all i ∈ σ−1(σ(ik)), but Ai 	⊂ Bj , j < k.
Note that maxk∈σ(V ) ik = p so that σ(p+ 1) = q+1 by convention. It is clear
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that ik = τ(k + 1) − 1 (see Fig. 1). Pairs (σ−1(k), τ−1(ik)) are ranked along
increasing k’s and can be renumbered as {(Gi, G′

i) i = 1, n} as in Fig. 1.
For all (Ai, A′

j) ∈ Gk ×G′
l we define xkl = Σ{wij |(Ai, A′

j) ∈ Gk ×G′
l}.

āk =
∑

Ai∈Gk

ai, ā′l =
∑

A′
j∈G′

l

a′j.

FIGURE 1

Now (III) and (IV) imply

āk =
∑

l
l � k

xkl k = 1, n, (V)

ā′l =
∑

k
l � k

xkl l = 1, n. (VI)

Similarly, let Φ and Φ′ be the fuzzy sets derived from F and F ′ as follows: Φ
and Φ′ have n α-cuts which are respectively the smallest set in each Gk and
the greatest set in each G′

k, the mass allocated to the set from Gk (resp.: G′
k)

being āk (resp.: ā′k). It is easy to check that Φ ⊆ F ⊆ F ′ ⊆ Φ′.
System (V) and (VI) always have solutions. Let

μi =
n∑

k=i

āk, μ′
i =

n∑

k=i

ā′k.

Φ ⊆ Φ′ implies μi � μ′
i ∀ i = 1, n. Then let

x11 = 1− μ′
2

xii = μi − μ′
i+1 1 < i < n

xi,i+1 = μ′
i+1 − μi+1 1 � i < n

xnn = μn

xij = 0 otherwise.
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This is a solution of (V–VI). Indeed, it is demonstrated as follows:

āk = xkk + xkk+1 = μk − μk+1

ā′k = xkk + xk−1k = μ′
k − μ′

k+1.

From this solution, a solution to (III) and (IV) is easily deduced letting

wij =
ai · a′j
āk · ā′l

xkl whenever (Ai, Aj) ∈ Gk.l.

Hence if F ⊆ F ′ then (F ,m) is strongly included in (F ′,m′).

Example Ω = {a, b, c, d, e}
F = {1/a, 0.5/b, 0.4/c, 0.2/d}
F ′ = {1/a, 1/b, 0.5/c, 0.3/d, 0.3/e} .

Then

A1 = {a} a1 = 0.5 A′
1 = {a, b} a′1 = 0.5

A2 = {a, b} a2 = 0.1 A′
2 = {a, b, c} a′2 = 0.2

A3 = {a, b, c} a3 = 0.2 A′
3 = Ω a′3 = 0.3

A4 = {a, b, c, d} a4 = 0.2

G1 = {A1, A2} ā1 = 0.6 G′
1 = {A′

1} ā′1 = 0.5
G2 = {A3} ā2 = 0.2 G′

2 = {A′
2} ā′2 = 0.2

G3 = {A4} ā3 = 0.2 G′
3 = {A′

3} ā′3 = 0.3

x11 = 0.5

x12 = 0.5− 0.4 = 0.1 ⇒
{
w11 = 2.5/6
w21 = 0.5/6

x22 = 0.1 w12 = 0.5/6
x23 = 0.1 w22 = 0.1/6 etc . . . .
x33 = 0.2

Hence the flow


